
Distributed Simulation of Heterogeneous Mission
Subsystems Through the Black Lion Framework

Mar Cols Margenet,∗ Patrick Kenneally,∗ Hanspeter Schaub,† and Scott Piggott‡

University of Colorado Boulder, Boulder, Colorado 80309

https://doi.org/10.2514/1.I010827

This paper describes the design and implementation of Black Lion, a purely software-based, distributed

environment for integrated testing of independent spacecraft mission models. The Black Lion simulation

environment is architected to be reconfigurable, allowing for any number of heterogenous software models, across

one or multiple computing platforms, to be integrated into a single spacecraft simulation. This architecture enables

seamless integration of legacy software models that were never designed to work together into mission-wide

simulations. A flat-sat scenario is used to showcase the capabilities of Black Lion. In this flat-sat scenario, Black

Lion synchronizes and ties together the following components: a ground system model, a spacecraft physical

simulation, and a flight processor emulator in which the flight software application executes. The numerical

simulation presented in this paper showcases the closed-loop behavior of the entire spacecraft system.

I. Introduction

B LACK Lion (BL) is a communication architecture designed to
enable distributed software simulation (SW-sim) of spacecraft

(SC) systems. SC software undergoes rigorous levels of integration,
validation, and testing. The coverage of these testing processes goes
beyond the validation and verification (V&V) of nominal algorithm
performance. Besides testing the nominal functionality and expected
behaviors of an SC, simulations are critical to test off-nominal
behaviors where components fail and sensor signals are corrupted.
In addition, SC simulations are used to verify commands, commu-
nication protocols, and interaction with the ground. In overall, inte-
grated SC simulations are key to test that SC flight rules are not
violated, i.e., that prohibitive conditions or states on the SC are not
induced upon execution of certain commands or onboard procedures.
The BL SW-sim is being developed in order to support flat-sat

testing for an ongoing interplanetarymission inwhich the Laboratory
for Atmospheric and Space Physics (LASP) and the Autonomous
Vehicle Systems (AVS) laboratory at the University of Colorado
Boulder are collaborating. Having said that, the BL architecture is
designed to be a multimission and multiscenario software tool. In a
flat-sat scenario, there are multiple mission components interacting
with each other: the ground system (GS), the single board computer
(SBC), and its flight software (FSW) algorithms, as well as SC
models to simulate the dynamics, kinematics, and environment
(DKE) of space. SW-sim testing uses virtual models or emulators
in place of hardware components such as the GS or SBC. The idea
behind an SW-sim is to provide a comprehensive simulation testbed
that is purely software based. Figure 1 depicts the idea behind the
virtualization of the GS, the SBC, and the SC’s DKE. Ideally, the GS
emulator should be able to ingest the same scripts as the real GS and
should contain the same command and telemetry databases. On the
same lines, the SBCemulator should run the unmodifiedFSWbinary.
The challenge of an integrated SW-sim is that the different soft-

ware components or models used are usually pre-existent resources
from the particular mission that the SW-sim effort is supporting.
These virtual components are stand-alone applications that are gen-

erally heterogeneous: they are written in different programming
languages and they have different execution speeds (e.g., execution
could be real time, faster than real time, or slower). Because of this
heterogeneity, a dedicated communication architecture or layer is
needed for the purpose of synchronizing the exchange of data
between the different applications.
The BL communication architecture is designed to connect all the

components or nodes of a distributed SW-sim while being as trans-
parent as possible to the internals of these nodes, such that different
mission users can plug and play their virtual models of choice. By
design, the BL architecture obeys the Open-Closed Principle of
objective-oriented programming, in the sense that new models can
be added to the simulation without modifying the existing code. This
principle is defined as follows: “Software entities (classes, modules,
functions, etc.) should be open for extension, but closed for modifi-
cation.” In this sense, while the BL development is currently moti-
vated for an interplanetarymission, the system is being built under the
principles of reusability and scalability. As such, the BL applications
extend beyond the flat-sat example discussed here. Examples of
further BL applications include the integration of large clusters of
SC (i.e., formation flying), complex simulation components running
on super computers or cloud servers, and, up to a certain extent,
hybrid hardware-and-software simulations.
In the context of a flat-sat scenario, SW-sim testing does not

replace hardware flat-sat tests. However, it can reduce bottlenecks
by providing pure software substitutions for hardware components of
limited quantity that might be needed simultaneously for testing by
different mission groups. This alleviates schedule constraints and, in
overall, it provides a flexible and cost-effective means of performing
early-on and missionwide testing in a mission’s program. SW-sim
environments have long been used in the aerospace industry. Notable
examples of aerospace missions using a software-only test-based
approach are James Webb Space Telescope, Space Launch System,
Juno, and OSIRIS-Rex. Different flavors of SW-sim architectures
exist; some groups are developing their own in-house solutions like
NASA’sOperational Simulator (NOS) engine,§ whereas other groups
may have acquired and maintain versions of Lockheed Martin’s
SoftSim to support V&V activities. In the context of robotic Mars
missions, there is also the Surface Simulation (SSim), which has been
used on both Mars Science Laboratory and Mars 2020 missions
to validate the sequences that will be uplinked to the SC [1]. In
general, simulators tend to be sophisticated software products that
are developed in parallel with the systems they are intended to test.
However, all SW-sims are meant to provide a common functionality:
the ability to run the unmodified FSWexecutable in a software-only
simulation environment. A critical feature of the BL architecture,
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which differentiates the system from the rest, is that it is meant to be
not only mission agnostic but also fully open source.
The architectural characteristics of SW-sims strongly influence the

functionality and, therefore, applicability of the simulation tool.With
some generalization, simulation architectures are characterized by
the degree to which system components are coupled. The coupling
between simulation components is manifested by the simulation
structure, where the overall system may be integrated as a single

system of required components; integrated as a modular system with
optional components; or developed as a group of cooperative yet
stand-alone components.
An example of a system that has increased coupling between

components is Advanced Solutions, Inc.’s (ASI’s), Spacecraft Object
Library in STK (SOLIS). SOLIS is a commercial plug-in to the
Analytical Graphics, Inc. (AGI), Systems ToolKit (STK) mission
analysis software. The plugin extends STK’s orbit and space envi-

ronment dynamics with the On-board Dynamic Simulation System
(ODySSy). ODySSy is an on-board SC simulator providing addi-
tional models for rotational dynamics, sensors, actuators, power, and
thermal dynamics, and basic SC control and guidance algorithms [2].
Using both SOLIS and ODySSy from ASI provides end-to-end SC

simulation functionality. However, it does so by requiring those tools
specifically. There are minimal options to substitute one component
with another that was not intended to operatewith the SOLIS system.
A software suite that demonstrates increasing modularity in its

architecture is the NASA Jet Propulsion Laboratory’s Dshell system
[3]. The Dshell system avoids tightly coupled components by estab-
lishing interconnections and communicating data between compo-
nents via connector signals. Connector signals allow each component

to provide data to other components without requiring knowledge of
the other components internals or availability [4]. The Dshell suite of
components has grown since its initial development, and it currently
supports a wide variety of simulation configurations, including both
robotic and SC simulation, software and hardware-in-the-loop test-
ing, and mission telemetry visualization [5].
The NASAOperational Simulator (NOS)¶ is a simulation system

that exemplifies the characteristics of a loosely coupled system

architecture. The NOS system is a generic software-only simulation
architecture and was developed by NASA’s Independent Verification
andValidation (IV&V) Independent Test Capability (ITC). The NOS
system achieves its flexible architecture by employing a message
passing middleware application to connect various simulation com-
ponents by a virtualized MIL-STD-1553 or SpaceWire messaging

bus [6]. This middleware approach allows users to add or remove
heterogeneous simulation components, unique to a particular SC
mission, without needing to rewrite or recompile model or applica-
tion code [7].
Similarly to howNOS operates, BL integral simulations are devel-

oped as a group of cooperative yet stand-alone components that can
run in a distributed fashion. The main difference is that BL is in the

process of becoming open source (as intended since its inception),
whereas NOS is an internal NASA IV&V tool.
The paper is outlined as follows: First, there is a preamble intro-

ducing the FSW application that is to be tested. Next, the different

components to be included in the SW-sim are described. The follow-
ing sections describe the communication process, the software tools
adoptedwithin BL, and the synchronization strategy. Next, a numeri-
cal simulation is shown, results are discussed, and several tasks are
proposed as future work.

II. Preamble: The FSW Application to be Tested

The collaboration between LASP and the AVS laboratory has
produced a generic testbed framework for prototyping and testing
flight algorithms. This astrodynamics framework is named “Basi-
lisk” (BSK)** and is currently available as an open-source product
[8]. BSK leverages Python’s flexibility as a testbed for FSWdevelop-
ment provided that the SC models and the flight algorithm code are
written exclusively in C/C++, and then automatically wrapped into
Python for simulation setup, analysis, and testing. The architecture of
the BSK framework is depicted in Fig. 2. As illustrated, the BSK
simulation system is decomposed into two main blocks: a high-
fidelity simulation of the physical SC written in C++ (SC Models
in Fig. 2) andGN&Calgorithmswritten inC (FSWAlgs in Fig. 2). All
BSKmodules are developed in a modular architecture using C, C++,
and Python modules that communicate with each other through a
custom message passing interface (MPI in Fig. 2).
The BSK desktop environment is used to construct and test differ-

ent modes of the FSW application until the required functionality is
achieved. At this point, the task, parameter, and state configurations
are migrated out of the Python environment and embedded onto a
flight target.
The flight target could be either a specific processor and Real-time

operating system (RTOS) or a middleware layer like NASA’s core
Flight System (cFS). Targeting middleware is advantageous because
it ensures portability of the FSW application among different pro-
cessors and RTOS. Figure 3 depicts the case in which FSW algo-
rithms are integrated within cFS and then embedded into an SBC

BSK

FSW Algs (C)

Controls

Guidance

Navigation

SC Models(C++)

Environment

Kinematics

Dynamics

MPI

User Scripts (Python)

Fig. 2 Spacecraft models and FSW application developed within Basi-
lisk (BSK).

Ground System 
Emulator

FSW

Controls

Guidance

Navigation

Spacecraft Models

Environment

Kinematics

Dynamics

Telemetry

Commands

SBC Emulator

Fig. 1 Virtualization of spaceflight components.

¶http://hanspeterschaub.info/bskMain.html. **http://hanspeterschaub.info/bskMain.html.
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emulator. A virtual SBC would be used in an SW-sim, whereas a
physical SBC would be used in a hardware flat-sat system. Note that
Fig. 3 also illustrates the distributed nature of the system, where
communication between components happens through TCP connec-
tion. Previous work in Refs. [9,10] shows results of a peer-to-peer
testbed systems in which only two components (i.e., a client and a
server) could communicate. With BL SW-sim it is now possible to
enable communication between an indefinite number of components.

III. Expansion of Simulation Models

Once the GN&C flight application is tested and stable, the next
natural step is to expand the SW-sim coverage by including further
components and analyzing the overall closed-loop behavior. Figure 4
illustrates the different components that are to be included in the BL
SW-sim. As shown, the initial system with only the FSWapplication
and the SCmodels is expanded to include also a GS virtual model, an
SBC virtual model, and a visualization tool. Each of these models is
briefly described next.
Ground system emulator: This includes the command and telem-

etry databases and runs the same mission scripts/sequences as the
physical GS. It sends commands out and receives telemetry back, all
in the form of Consultative Committee for Space Data System
(CCSDS) packets. An example of GS emulator is the open-source
COSMOS.†† The BL SW-sim, however, uses a legacy model devel-
oped by LASP.
Virtualized single board computer: It contains the mission cFS-

FSW executable, which runs on a standard RTOS. The SBC emu-
lation also includes FPGA-like registers. These registers are emulated
as a memory map for the input and output of raw binary data. An
example of a processor board emulator is the open-source QEMU.‡‡

The BL SW-sim currently makes use of a slightly modified version
of QEMU.
Spacecraft models: The BSK simulation framework is used for

both high-fidelity DKE models and hardware component models.
The hardware models include sensors (gyro, star tracker, coarse sun
sensors, etc.), actuators (reaction wheels, attitude control thrusters,
orbit control thrusters), and the power control unit (PCU).
Visualization:Agraphical user interface (GUI) is being developed

with the Unity§§ game engine in order to visualize the SC physical
behavior as determined by the BSK SC models [11].

IV. Communication Between the Components

Asmentioned earlier, the different components or nodes in an SW-
sim tend to be stand-alone applications that are completely hetero-
geneous: they are written in different programming languages, wrap
their internal data using different structures or packet types, and, in
addition, present different execution speeds.

The differences between the particular nodes currently used in BL
are illustrated in Fig. 5. The GS model is written in C++ and uses
CCSDS packets with mission-specific data format. The SBC emu-
lator is based on the open-source product named “QEMU.” It is
written in a combination of C/C++ and deals with raw binary data.
The SCmodels are simulated within BSK. Although the BSK source
code is written in C++, the application’s interface with the external
world is Python. The BSK packets are C++-defined structures.
Finally, the Unity-based GUI is written in C#. The heterogeneity
between all these components drives the need for a dedicated com-
munication architecture, which is BL. The term “communication,” as
understood here, involves multiple goals:
1) Transport of binary data between nodes
2) Serialization of binary data (i.e., each node must know how to

convert the received bytes into structures that can then manage
internally)
3) Synchronization of nodes to keep all the nodes in lock step

during a simulation run (lock-step synchronization implies that none
of the applications runs ahead of the others in terms of simulation-
elapsed time)
4)Dynamicity in the connectionsmap (in the sense that none of the

components should be required).
The purpose of BL is to achieve the described communication

goals while being transparent and abstracted from to the internals of
each node as much as possible. To achieve the desired level of
abstraction the BL architecture has been designed as a single Central
Controller and two APIs per node: the Delegate and the Router. The
architecture is depicted in Fig. 6 and each of the components is
described next.
Central Controller: This is the only static and required piece in the

network (static in the sense that it has a fixed IP address). The Central
Controller acts as a synchronization master and message broker
between the components.
Delegate API: This interface manages sockets and connections

with the Central Controller. It is the same script attached to all the
nodes. The Delegate class is currently implemented for Python
nodes, C++ nodes, and C# nodes.
Router API: This is a generic class with node-specific callbacks to

create a custom interface to a legacy or newly developed mission
simulation component. Its purpose is to route data in and out of the
internals of the node. For instance, when routing out, the Router API
gathers the node internal data, translates the data into a standardized
BL format, and then passes the data to the node’s Delegate API, who
is ready to ship it across through the network.
Let us use a human language analogy to exemplify the function-

ality of the BL interfaces: Each node is an individual that speaks a
different language (i.e., Spanish/French/German or, in BL, Python/C
++/C#). TheRouter acts as a translator from the individual’s language
to a common standardized language (i.e., metaphorically English,
and hexlified byte string in BL). If the Router is the translator, the
Delegate can be seen as the communicator (i.e., the person who reads
the translation out loud or, in BL, the interface that sends out the
standardized data through the sockets). The final result is an English
conversation in which each individual does not have to learn the
particular languages of every other participant in the conversation.
This property of the architecture is the key to its scalability.

V. Adoption of Modern Software Technology and
Techniques

Before moving into the details of the communication hub, it is
interesting to emphasize on the modern libraries that BL takes
advantage of ZeroMQ (ZMW) and Google Protobuffers. These two
libraries are briefly described next:
ZeroMQ Message Library: This is a high-performance asynchro-

nous messaging library aimed at use in distributed or concurrent
applications.¶¶ It allows the transport of data to be fast, reliable, and
protocol independent. The ZMQ interfaces are available in a wide

CFS

Controls

Guidance

Navigation

TCP

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

SBC Emulator

FSW App

Fig. 3 Spacecraft models in BSK and FSW application migrated to a
flight target.

††http://cosmos-project.org.
‡‡http://qemu.org.
§§http://unity3d.com. ¶¶http://zeromq.org.
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range of programming languages, which can perfectly interact with

each other.

Google Protobuffers: This is Google’s language-neutral, platform-

neutral, extensible mechanism for serializing structured data (like

XML,but smaller, faster, and simpler).*** Theuser defines the structure

of the data once and then it is possible to use special generated source

code to easilywrite and read the structured data to and fromavariety of

data streams and using a variety of languages.

The adoption of ZMQ has been key to avoid bottlenecks in the BL

broker architecture—in terms of both the number of nodes that BL

admits and in the number of messages that can be sent across

simultaneously. The reason for this is that ZMQ is meant for com-

munication applications that operate in amuch larger-scale and faster

rate than what is demanded by an SC simulation.

While ZMQ is used for all data transport across BL, Google

Protobuffers are only used for un/serialization in certain nodes. For

instance, Protobuffers prove extremely useful for serializing and

unserializing binary data that is shared between the BSK simulation

and the visualization GUI. However, Protobuffers are not used in the

SBC emulator or the GS model because they would not reflect the
operation of these components in actual flight.

VI. Data Transfer and Synchronization

A. Socket and Connection Definitions

To understand how the communication hub operates, it is neces-
sary to explain first the socket patterns and connection types used in

SBC Emulator + FSW

Router

Delegate

BLACK LION 
Central Controller

Spacecraft Models

Router

Delegate

Ground System 
Emulator

Router

Delegate

Visualization

Router

Delegate

Fig. 6 Communication architecture: central controller, delegate APIs,
and router APIs.

Single Board  Computer 
Emulator (e.g. QEMU)

FPGA 
Registers

CFS 

FSW 
App

Ground System Emulator
(e.g. COSMOS)

TelemCommand

GS  Mission 
Scripts

Spacecraft Models
(e.g. BSK)

Sensors

Actuators

PCU

Dynamics

Kinematics

Environm.

Visualization 
(e.g. Unity)

CFS

Controls

Guidance

Navigation

BSK

SC Models(C++)

Environment

Kinematics

Dynamics

FSW App

Fig. 4 Expansion from GN&C testing to an integral SW-Sim testing environment.

BL Ground System Emulator
C++

BSK (Spacecraft Models)
Pyton/C++

Unity GUI 
C#

CCSDS packets CCSDS packets

QEMU (SBC Emulator)
C/C++

BSK packets BSK packets

Unity variables

raw bin data raw bin data

Fig. 5 Heterogeneity of programming languages and internal data
packets in the BL SW-Sim.

***http://developers.google.com/protocol-buffers.
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the system. In particular, two types of ZMQ-socket patterns are used
to transport data: the request-reply pattern and two different flavors of
the publish–subscribe pattern. Their usage is described next.
Request (REQ)–Reply (REP): The central controller has an REQ

socket for each node instantiated in the simulation that is used to
make requests. In turn, each node has anREP socket that receives and
parses the request, performs the commanded task, and replies back
indicating accomplishment.
Publish (PUB)–Subscribe (FRONTEND SUB): Every node has a

PUB socket to share its own internal data by publishing. In turn, the
Central Controller has a frontendwith a SUBsocket that subscribes to
the publications from all nodes.
Publish (BACKEND PUB)–Subscribe (SUB): Additionally, the

Central Controller has a SUB frontend and a PUB backend. The
messages received at the frontend are internally routed to the back-
end, which then republishes the data. In turn, each node has a SUB
socket that subscribes to the messages of interest coming from the
Controller’s backend.
The relationship between sockets is exemplified in Fig. 7. The

Central Controller is depicted in the middle, and two sample nodes
are highlighted in magenta and blue (note that, within the nodes, the
sockets are part of the Delegate API).
Now that the socket types are defined, the connections of these

sockets to a given IP address and port are discussed. All the socket
connections in the system fall into either one of these categories:
static connections (i.e., binding type in ZMQ terms) and dynamic
connections (i.e., connecting type in ZMQ terms). Only the Central
Controller has a static connection, whereas each node’s Delegate has
a dynamic connection.
Central Controller: It is the only static piece in the network thanks

to the frontend–backend (broker) approach. The controller acts as a
server in the sense that it binds to a static IP address. Within the same
address, it uses a total of �2� N� ports, where N is the number of
nodes instantiated: one port for the frontend, one port for the backend,
and a command port for each of the node-request sockets.
Nodes’Delegate API: Through the Delegate API attached to each

one of the nodes, the nodes become dynamic clients that can come
and leave without bringing down the rest of the system. This dynam-
icity is reflected in the fact that the nodes only connect to an address
and port, rather than bind.
Through the described strategy, the Central Controller acts as a

sever and it is always required, whereas the nodes are independent
entities or clients that do not intrinsically rely on each other. The use
of ZMQ also allows all the connections to be protocol independent
(TCP, IPC, etc.)

B. Request–Reply Communication Between the Controller and the
Nodes’ Delegate

The requests from the Central Controller to each node’s Delegate
are not SC commands; they are communication and synchronization
commands exclusive to the SW-sim. In the current BL implementa-
tion, the Controller can make two different types of requests: one-
time requests or cyclic requests. Examples of one-time requests are
the “Initialize” request (upon which a node performs its internal

initialization and establishes sockets connections) or the “Provide
Desired Message Names” request (which instructs each node to
report all the messages that would like to receive). An example of
cyclic request is the “Tick” request, which is used at every time step of
the SW-sim run for synchronization purposes. This request contains
the time duration of the next time step (i.e., Δt, which is currently a
constant value although it could bevariable). Upon receiving a “Tick”
request, each node needs to perform a series of actions and then reply
with a “Tock.”More details on the “Tick-Tock” synchronization are
explained in the next section.

C. Tick-Tock Synchronization

Three actions are performed by each node upon receiving a “Tick”
request: publish, subscribe, and step simulation forward.
Publish: The node’s Router collects the application internal data

and makes them available to the node’s Delegate for publication to
the controller’s frontend.
Subscribe: The node’s Delegate receives external data coming

from the Controller’s backend and passes the data to the node’s
Router, who is responsible for writing these messages in the internals
of the application.
Step simulation: For synchronous nodes (i.e., those who run in

cycles like FSW rather than being event driven like the GS), “step
simulation” implies executing for the commanded Δt in order to
generate new data.
Because each node is an independent application with different

execution speed, the “Tick-Tock” synchronization ensures that all of
them are kept in lock step (i.e., no application runs ahead of another in
terms of elapsed-simulation time). For instance, if one of the syn-
chronous nodes finishes executing for a Δt earlier than another, it
sends the “Tock” reply and waits for a new request from the Con-
troller. Because theController will not proceed until it has received all
the “Tock” signals from all the nodes, the SW-sim speed is naturally
driven by the slowest component of the simulation. For asynchronous
nodes (i.e., those that are event driven), stepping forward over aΔt is
not applicable. Yet, between a “Tick” and a “Tock,” they still publish
and subscribe.
It is important to mention that, with the described “Tick-Tock”

mechanism, the BL architecture only allows satisfying a single hard-
time constraint, which also has to be the slowest one. When there is a
hardware component in the loop that runs in real time (which would
be a hard-time constraint), the remainingmodelsmust run real time or
faster. For the emulated flat-sat scenario presented in this paper, only
the processor board emulator imposes a hard-time constraint. The
dynamics simulation can run faster than real time, whereas the GS
and visualization are asynchronous.

VII. Numerical Simulation

This section showcases a BL numerical simulation in which three
different nodes run in a distributed fashion. These nodes are the BSK
SC physical models, the SBC emulator running the mission FSW
executable, and the GS model. In this configuration, the Central
Controller is responsible for synchronizing the aforementioned

Central ControllerDelegate

BACKEND PUB

FRONTEND SUB

REQ REP

PUB

SUB

Delegate

REP

PUB

SUB

REQ

Fig. 7 Socket patterns between the central controller and sample nodes.
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nodes and orchestrating the data exchange. This distributed simula-

tion setup is depicted in Fig. 8.

A. Node Configurations

The integrated numerical simulation to be shown encompasses

commanding the SC into different pointing modes. Because each

node is an independent, stand-alone application, it is critical that all of

them are configured for the same scenario. For the pointing guidance

scenario considered here, each node is configured as follows:
Basilisk node configuration: The physical simulation is config-

ured in a state where the SC probe has just separated from the

launcher after leaving Earth’s sphere of influence. The simulated true

attitude and rate of the SC are set to the following values:

σB∕N�t � 0� � �0.4; 0.2; 0.1� (1a)

ωB∕N�t � 0� � �0.0; 0.0; 0.0� (1b)

where σB∕N is a modified-Rodrigues-parameter (MRP)-based atti-

tude description [12–14] and ωB∕N is the inertial angular velocity.

Hardware components modeled in Basilisk that are relevant in the

present simulation include a set of four reaction wheels (which are

used to control the SC) and a dual-headed star-tracker (which pro-

vides attitude and angular rate measurements).
Ground system configuration: The GS model contains the com-

plete suite of command and telemetry databases for the mission. The

graphical, interactive interface of the GS model can be used to send

commands throughBL and also tomonitor telemetry. The commands

could be either uploaded as block scripts or issued manually by the

user. In the numerical simulation shown in this paper, the user

manually sends a series of commands.

FSW configuration: The FSW executable runs as a cFS appli-

cation on an RTOS in the SBC emulator. Four different registers

have been implemented: two input/output board registers (IOB),

the solid-state recorder register (SSR), and the SBC register.

Through the FPGA registers, FSW reads and writes in a hard-

ware-like fashion that also replicates interrupts. The idea is that

each register has an associated memory buffer, and specific FSW

states are mapped to specific addresses within these buffers. Not

all the internal FSW states are mapped to the register’s buffers,

but only those that require interaction with the external world.

The specific FSW states that are shared with the external world

depend on the scenario being considered. Hence, increasingly

complex scenarios demand the implementation of additional

register spaces and their associated handlers. For a complete

description of the implemented register spaces, the readier is

pointed to Ref. [15].

B. Data Exchange and Synchronization

In the numerical simulation presented, 10 different messages are

being exchanged across BL. These messages are illustrated in Fig. 9

and they are related to commanding the pyramid of reaction wheels

(RW), processing attitude sensor data, parsing commands, and send-

ing telemetry. The BL communication time step is set to 0.01 s, with

all the synchronous applications being updated internally faster than

this communication rate. The communication time step is reconfig-

urable and, in general, is set according to the FSW communication

requirements for the scenario being tested.

SBC Emulator (QEMU)  C / C++
 Leon board + RTEMS

FPGA Registers

Spacecraft Models (BSK)
Py /  C++  

Environment

GS Emulator (Hydra) C++

Commands Database

Telemetry Database

Dynamics

Kinematics

Avionics HW

Sensors

Actuators

Viz Interface

Visualization (Unity) C#

IOB 1 Register

SSR Register

SBC Register

IOB 2 Register

CFS

Controls

Guidance

Navigation

FSW App

BL Central Controller

Fig. 8 Nodes in the integral SW-Sim run.
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C. Closed-Loop Numerical Results: Spacecraft Pointing Commands

As mentioned earlier, this numerical simulation consists on com-

manding the SC into a series of pointing maneuvers. In this case, the

user uses the GS interface to manually send commands to FSW as

well as to monitor the reported telemetry. The different commands

issued by the user are the following:
1) Nav monitoring and inertial pointing command
2) Ephemeris correlation and Mars pointing command
3) Sun pointing command
4) Mars pointing command

These commands are stored in the FPGA registers and picked up

by the cFS-FSW application in order to reconfigure the onboard

pointingmode. In themeanwhile, sensor data from the SC physical

simulation are being continuously updated within the registers.

Once the nav monitoring command is received, FSW starts using

the sensor data as an input to the navigation filters in order to

achieve attitude lock. The user is able to monitor the attitude

dynamics and controls (ADC) packets in the telemetry stream

through the GS interface, hence keeping track of the current

FSW attitude states. Once attitude lock is achieved and a pointing

command (e.g., inertial pointing) is issued, FSW estimates the

SC’s current pointing attitude, derives the associated tracking

errors, and computes the control torques required to drive the SC

into the desired attitude. The control torques are stored in the

registers and sent across BL to the SC physical simulation, where

a set of four reaction wheels is used to apply the commanded

control torque.

Figures 10–12 show the closed-loop response of the SC physical

simulation. In particular, the plots in Fig. 10 correspond to the MRP

attitude of the SC’s main body frame; the plots in Fig. 11 show the

reaction wheel speeds driven by the control voltage commanded by

FSW; and Fig. 12 displays the miss angle (in degrees) of the onboard

Mars instrument and solar arrays. These plots help testing not only

the flight algorithm performance but also the validity of the GS

(C++)

0.0

Fig. 10 Closed-loop response: spacecraft’s main body attitude.

BL Messages Registers 

GS Emulator 

IOB 1
"rw1_torque_command"

"rw3_torque_command"

IOB 2
"rw2_torque_command"

"rw4_torque_command"

IOB 3

"head1_miru_packet"
"head2_miru_packet"

SBC
"command_packet"

"telemetry_packet"

"head1_fused_attitude_packet"
"head2_fused_attitude_packet"

BSK SC Models 

Reaction Wheels 
(Pyramid of 4)

Star Tracker 
(Dual Headed)

Commands Database

Telemetry Database

Fig. 9 Messages shipped through the black lion central controller.
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GS command:
Mars point

GS command:
inertial point

GS command:
Sun point

GS command:
Mars point

 Mars Point

 Sun Point

 Earth Point

Fig. 11 Closed-loop response: reaction wheel speeds.

a) Mars miss angle

b) Sun miss angle

Fig. 12 Closed-loop response: instruments pointing.
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commands. In addition, they constitute a proof of adequate register
modeling and exchange of data across BL.

VIII. Results Discussion and Future Work

The previous numerical simulation showcases the use of BL to test
nominal functionality of anSC system. Such testing includes not only
validating the onboard flight algorithm performance but also verify-
ing commands and interactionwith the ground aswell asmaking sure
that SC rules are not violated in flight. The scenario shown in this
paper involves commanding the SC into several attitude guidance
pointing maneuvers. For more complex scenarios, including off-
nominal situations in which components fail and sensor signals are
corrupted, the reader is pointed to Ref. [15].
Although the feasibility of the BL architecture has been demon-

strated, there are several limitations and potential improvements that
remain as future work. Firstly, it would be interesting for the Central
Controller to accept user interaction during run time. This would
allow, for instance, to plug new nodes dynamically upon request of
the user or to change the communication time step dynamically.
Secondly, the communication and synchronization costs of BL have
not been benchmarked or thoroughly analyzed yet. The reason for
this is that the biggest limitation found on performance was imposed
by the processing capability of the host machine: executing all the
different nodes simultaneously tends to be very demanding. This
problem can be avoided by running the nodes in a truly distributed
fashion, but, from a user perspective, this is more inconvenient
because each application needs to be launched separately. In addition,
TCP communication across different computing platforms is always
slower than within the same platform. Hence, there is a tradeoff that
must be made on per-case basis. Lastly, the Tick-Tock synchroniza-
tion mechanism used in BL does not support multiple hard-time
constraints imposed by different nodes. Currently, the architecture
can only satisfy a single hard-time constraint, which also has to be the
slowest one. When there is a hardware component in the loop that
runs in real time (which would be a hard-time constraint), the
remaining models must run real time or faster. Although this is a
limitation that would be interesting to overcome, in an emulated flat-
sat like the one described in this paper, the flight processor emulator is
the only component imposing a hard-time constraint and therefore
Tick-Tock synchronization mechanism can be used.

IX. Conclusions

The present work has covered the basic aspects of BL, a commu-
nication architecture that can be configured to provide an integral
SW-sim functionality. BL is currently supporting V&Vactivities for
an ongoing interplanetary mission. Yet, what makes the architecture
interesting is its flexibility and its scalability. These features are in
turn granted by the adoption of modern software tools and tech-
niques. An abstracted communication layer across a diverse set of
nodes is achieved by means of a unique central controller and two
generic APIs attached to each of the nodes. These APIs are imple-
mented for nodes whose heterogeneity spans from multithreaded
versus single-threaded nodes, asynchronous versus synchronous
nodes, little-endian versus big endian nodes, as well as a variety of
programming languages: Python, C, C++, and C#. BL demonstrates
a novel capability in modern SC simulations where modularity and
networking are core capabilities from inception.
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