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This paper investigates different strategies for end-to-end flight software development that support having

both desktop and embedded environments while minimizing the existing gap between them, in order to facilitate

reiteration back and forth of the flight application. For desktop prototyping, the use of Python as a user-facing

languagewrappingC/C++algorithmsource code is considered.TheBasilisk software testbed is presentedas a specific

incarnation of this desktop development proposal. For embedded development and testing, two different approaches

are reviewed and demonstrated: the use of NASA’s core Flight System, which is a well-knownmiddleware layer, and

the use of MicroPython, which is a new, lean, and efficient implementation of the Python 3 programming language

optimized to run on constrained environments. The migration flow of flight algorithms from the Basilisk desktop

environment into each of the considered embeddable targets is described and numerical results from embedded

testing are shown.While the Basilisk–core Flight System strategy is explained through the experience of its use in an

actual mission, the Basilisk-MicroPython strategy is proposed as a promising and novel strategy that is still under

investigation.

I. Introduction

T HE complete engineering cycle to develop a flight software
system encompasses an involved path of deploying and running

the flight algorithms within different testbed environments. In a stan-
dard spacecraft mission, there are three distinct computing environ-
ments to consider as flight algorithm targets: desktop computer (for
algorithm prototyping and rapid iteration), hardware flight processor
(for flat-sat testing and eventually flying), and emulated flight proces-
sor in a virtual machine (for emulated flat-sat testing). The two latter
computing environments (hardware or emulated flight processor)
are considered to be embedded. Because a regular desktop environ-
ment and an embedded environment are very different (in terms of
resources, capabilities, deployability, and end-user programmability
among other),migrating the flight algorithms fromone environment to
the other generally demands a significant engineering effort. Further,
there is also a disparity in the testing and debugging tools and proce-
dures that each testbed currently allows, hence potentially leaving
room for a lack of testing continuity and fidelity across environments.
This paper investigates end-to-endFSWdevelopment strategies that

support having both desktop and embedded environments separately
while minimizing the existing gap between them (in terms of pro-
grammability, deployability, and testability), with the aim of facilitat-
ing migration back and forth of the flight application. Regarding
programmability, in order to mitigate changes across environments it
seems critical that the flight algorithm source code remains unmodi-
fied. The underlying idea being to stay as close as possible to the long-
held NASA saying of “test what you fly, flying what you test”—since
the first day of desktop development until the last day of embedded
testing.Regardingmitigation of portability efforts and changes, the use
of middleware is considered. As for high-fidelity and continuous
testability across environments, distributed multiplatform simulations
are suggested. On these lines, three FSW development proposals are
presented throughout the paper: one desktop development proposal

and two embedded development ones. The combination of the desktop
proposal and each one of the embedded proposals constitutes an end-
to-end FSW development approach by itself.
The desktop development proposal suggests the use of Python as a

user-facing language for prototyping and testing flight algorithm
code that is actually written in either C or C++. The idea behind this
strategy is to develop algorithms directly in an embeddable program-
ming language while leveraging Python for setting up simulation
scenarios faster and analyzing results more easily. The Basilisk
(https://hanspeterschaub.info/bskMain.html) software testbed is pre-
sented as a specific incarnation of this desktop development proposal.
InBasilisk in particular, the flight algorithm code iswritten inC as per
common requirement of spacecraft missions although C++ is also
supported. In the recent years, the combination of Python and C/C++
for aerospace tools/applications has seen increasing interest. Exam-
ples of aerospace applications, other than Basilisk, that use the same
strategy are MONTE [1] (developed by the Jet Propulsion Labora-
tory, JPL, for design and analysis of deep-space navigation) and
Dshell [2] (a physical simulator for both robotic and spacecraft
simulations also created at JPL).
Regarding embedded development, the first strategy considered in

this paper suggests the use of the core Flight System (cFS) middle-
ware and the same C flight algorithm source code as in the desktop
environment. This strategy is showcased through its application into
an ongoing interplanetary spacecraft mission [3]. The second
embedded development proposal contemplates the replacement of
cFS for the novel MicroPython (https://micropython.org), using a
C++ version of the same flight algorithm as in the desktop environ-
ment. This strategy is being investigated in the context of a Ph.D.
thesis [4]. All the development proposals are demonstrated and tested
through distributed simulations; they consider exclusively open-
source products and strive for the embedded system to be as close
as possible to the desktop testbed in terms of user friendliness and
interaction functionalities while still adhering to the needs of space:
determinism, concurrency, and low use of resources.
Currently, deploying an embedded flight system and testing flight

algorithms on it is not an easy task. However, many small-satellite
missions or startup companies with limited resources and without
extensive flight heritage would highly benefit from having available
an easily deployable, easily testable embedded flight system. An
interesting new trend in somemissions is to use commercial processors
in redundant configurations instead of a single radiation hardened
processor [5,6]. The increasing interest on alternatives to classic
radiation-hardened processors reveals the need for improvement
in existing embedded flight systems. As mentioned, the use of mid-
dleware can aid portability of the flight application across different
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targets. In addition to cFS, which is an established and widely used
middleware layer [7,8], different and more modern frameworks have
been developed in the recent years to support FSW development
and testing across environments. For instance, JPL’s F Prime (F′) [9]
is a software framework for rapid development and deployment
of embedded applications, which is specifically designed for small-
scale flight systems. In the context of robotic FSW for Mars surface
exploration missions, JPL has also developed the Surface Simulation
(SSim) [10], which uses actual FSW instead of a simplified model
to perform rapid desktop testing. The present paper investigates
yet another modern alternative for a middle ground between desktop
and embedded environments: MicroPython. Although the promising
MicroPython is being investigated by ESA for onboard control pro-
cedures in particular [11,12], its application as middleware is different
and novel.
The paper is outlined as follows. Section II describes the general

features of desktop development environments and discusses two of
the most popular approaches for FSW prototyping: model-based
development and Python-wrapping of C/C++ flight algorithm code.
Section III explains the features of embedded environments, intro-
duces the concept of middleware as a transition point, and describes
how this paper aims tomitigate the impact of changing environments.
Section IV describes the use of Basilisk for desktop FSW develop-
ment. Section V describes the migration of flight algorithms from the
desktop environment into cFS and showcases numerical results from
testing the embedded cFS-FSW application in an emulated flat-sat.
Section VI explores, in turn, the migration of flight algorithms from
the desktop environment intoMicroPython and provides a first proof-
of-concept. Section VII concludes the paper and, at the end, there is
Appendix with pseudocode for some of the tools presented.

II. Desktop Development Environment

Desktop computers are the most flexible of the environments
thanks to the use of state-of-the-art processors and operating systems.
This flexibility is shown in terms of computing speed, memory
availability, and user friendliness among others. Because of its flex-
ibility, the desktop environment is used in the preliminary step of
prototyping mission-specific flight algorithms. These FSW algo-
rithms are usually tested in closed-loop dynamics simulations with
spacecraft physicalmodels until the desired algorithm performance is
achieved andmission-specific requirements aremet. For the purposes
of prototyping FSW in a desktop environment, the use of high-level
scripting languages like Python orMatlab is extremely convenient as
it enables rapid development and iteration. However, regular desktop
scripting languages are not suitable for embedded flight applications
requiring low memory footprint and bounded use of resources like
CPU and RAM. For this reason, if flight algorithm source code is
firstly prototyped in the desktop environment using desktop scripting
languages, it is then usually translated into programming languages
like Fortran, C, or C++ for migration into an embedded flight target.
Note that the previous statement refers specifically to “regular desk-
top scripting” languages, in the sense that they are meant for general-
purpose programming (like Python, Matlab, Ruby, Perl, etc.). In the
field of space engineering, command sequencing languages like
VML [13], PLEXIL [14], or Timeliner [15] are often also referred
to as scripting languages because they express spacecraft commands
using high-level concepts. However, sequencing languages are much
simpler and memory lightweight yet less flexible than general-pur-
poses scripting languages, because they have to guarantee spacecraft
safety under all possible execution paths. In this paper, the term
“scripting” language is used to refer specifically to the former type,

i.e. general-purpose scripting languages like Python or Matlab that
are used for all sorts of desktop software applications.
In the context of FSW, there are two different approaches com-

monly adopted for desktop development: model-based development
(MBD) and Python-wrapping of underlying C/C++ code. Each of
these approaches is discussed in the next subsections. Be aware that
this discussion is limited to desktop development, and the migration
into actual flight targets is treated in later sections of the paper.

A. Model-Based Development

MBD consists on performing architecture design and modeling of
both software functions and hardware subsystems using block-dia-
gram programming software tools like, for example, Mathworks’s
Simulink (https://www.mathworks.com/products/simulink.html) and
National Instruments LabVIEW (http://www.ni.com/en-us/shop/
labview.html). Next, an automated source code generation software
tool is used to translate the graphic design into programming source
code. This step is often known as autocoding. The MBD process is
depicted in Fig. 1. In spite of its convenience,MBD introduces another
step in the flow of flight algorithmsbetween environments that adds on
into the continuity problem: FSW validity from model-in-the-loop
(MIL) simulations to software-in-the-loop (SIL) simulations cannot
be readily inferred without further testing [16].
Ultimately, it is, of course, on eachmission to decidewhetherMIL-

to-SIL transition requires dedicated validation steps or not. Having
said that, autocoding undeniably implies a complete change (or rather
a complete generation) of source code and, as pointed in [16], a
change in mathematical libraries as well. Additional challenges with
automatically generated code are that 1) it can be less efficient in
either size or execution than optimized hand-written code, and 2) it
can be very challenging to edit and debug due to lack of readability
[17]. With this in mind, for all those FSWmission groups who might
be concerned about transparency in the generation of the source code
that ultimately gets deployed on the target spacecraft environment, an
alternative and popular strategy is described next.

B. Python Interface with Underlying C/C++

An alternative toMBD is to use Python for wrapping C/C++ source
code. This approach is inspired on the internal workings of the Python
language itself: built-in modules that require speed, like Numpy
(https://numpy.org), are actually written in C/C++ and then wrapped
into Python using Python-language bindings. As amatter of fact, there
are several ways to extend the Python language with custom C/C++
modules. Although CPython is the native way of extending Python
with customC/C++modules, there are also high-level and easy-to-use
libraries like Simplified Wrapper and Interface Generator (SWIG;
http://swig.org) that handle this extension. Using the same logic,
Python could serve as an excellent testbed for FSW development if
the flight algorithm code is written exclusively in C/C++ and then
wrapped into Python for simulation setup and analysis of results.
Such development proposal is depicted in Fig. 2. The advantage of

this approach is that that there is no MIL development and, from a
testing perspective, the transition from MIL to SIL is skipped.
Although this improvement in continuity comes at the expense of
developers writing the algorithm source code directly in C/C++,
testing and postprocessing can be done entirely in Python, hence
taking advantage of built-in libraries and other optimized mecha-
nisms that scripting languages provide for these very specific pur-
poses. Regarding migration into the embedded target, the C/C++
source code remains unmodified and the Python portion in Fig. 2 is
simply removed. The transition from SIL to hardware-in-the-loop

Fig. 1 Model-based development: from model in the loop, through software, to hardware.
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(HWIL), which requires dedicated testing, is discussed in later
sections of this paper.
As far as desktop development is concerned, the point of the Python-

wrapping C/C++ approach is to take advantage of two extremely
powerful and different languages, exploiting each one for what it is
best at. Specific advantages of using Python as wrapper and user-
facing language are that it presents an especially clean and straightfor-
ward syntax (which leads to faster development and less cognitive
load), it has a very large standard library, and, because Python is
generally not compiled, Python interpreters are great for rapid testing
and exploration. In turn, some advantages of having underlying C++
source code are that the runtime performance is better and more
predictable and, because it is a low-level language, it can target just
about every known platform, including embedded systems.

III. Embedded Development Environment

Time-critical applications like those of FSW usually demand the
use of onboard processors with drastically fewer resources than a
typical desktop computer. Therefore, FSW systems are said to be
constrained or embedded. Embedded environments are, in essence,
electronic systems that are managed by a microprocessor (like a
hardware flight processor) or a microcontroller that operates the
whole system with precise timing. Embedded flight processor envi-
ronments are defined by the selection of two items: the microproc-
essor board and the real-time operating system.
When programmed appropriately, a real-time system can guaran-

tee that tasks consistently execute in a specified time constraint.
Determinism is, precisely, the characteristic that describes how con-
sistently a system executes tasks within a time constraint. A perfectly
deterministic system would experience no variation in timing for
tasks. Typical flight systems demand determinism in both operations
and CPU cycles. In addition, they present reduced memory avail-
ability (RAM/ROM).
Embedded flight processors lag state-of-the-art processors (like

those in a desktop computer) by about 10 years due to flight heritage
and radiation-hardening requirements [18]. Radiation hardening of
processors is important in order to ensure their uninterrupted operation

over long durations in the harsh space environment. Figure 3 shows
several radiation-hardened processors commonly used for space
exploration (RAD750, ColdFire, LEON, etc.), all of them being very
expensive and presenting similar limitations in performance.
Because a regular desktop computer environment and a flight

processor environment operate differently, migrating the flight appli-
cation from one to another demands a significant migration effort.
Furthermore, this effort is intrinsically linked to the specific proces-
sor board and RTOS chosen, tending to be mission specific. An
alternative target for flight algorithms is a middleware layer, which
is described in the next subsection.

A. Middleware

Middleware can be regarded as an abstraction layer or “glue code”
that ensures portability of the flight algorithms among different
processors and RTOS. An example of middleware is the cFS, which
is an open-source product provided by NASA Goddard Spaceflight
Center [7,8]. Although targeting middleware can be worthwhile
in the long run to ensure portability of the flight application, small
missions do not tend to follow this approach given the complexity and
steeper learning curve of the work entailed [17]. However, if a user-
friendly, easily deployable middleware layer existed, the number
of missions embracing reusability through middleware would most
likely increase.
Recently, a lean (i.e., memory lightweight), efficient (i.e., with fast

execution), and highly portable implementation of the Python 3
programming language has been developed. This new implementa-
tion is named “MicroPython” and it is very compelling for use in
embedded FSW systems as it includes a small subset of the Python
standard library, and it is optimized to run on microcontrollers and
in constrained environments. The difference between MicroPython
and conventional programming languages is that it provides many
advanced features (characteristic of scripting languages) while
having little memory footprint and being extremely compact (char-
acteristic of compiled programming languages). Regarding Micro-
Python’s portability, it currently supports about 15 different ports
available on GitHub (https://github.com/micropython/micropython/
tree/master/ports). Some of these ports include unix,windows, stm32,
qemu-arm, bare-arm, and est32. Supporting both 32-bit and 64-bit
platforms, MicroPython’s potential as a middleware layer is very
compelling.

B. Impact of Changing the Target Environment

While FSW migration from desktop environments to embedded
flight targets can be facilitated by the use of middleware, a change in

Fig. 3 Radiation-hardened microprocessors. Image extracted from [18].

Fig. 2 Python wrapper with underlying C/C++ code: from software in
the loop to hardware.
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computing environments always requires dedicated testing, regard-
less of the chosen approach for desktop development. Having said
that, the strategies presented in this paper aim to mitigate the impact
of changing targets by avoiding introduction of nonessential mod-
ifications, which is achieved by following these guidelines:
1) Use the same source code for flight algorithms and mathemati-

cal libraries in both environments. Note that this is the rationale
behind the desktop development proposal of using Python for wrap-
ping C/C++ instead of using a model-based approach.
2) Use middleware to avoid the need of developing target-specific

code and to ensure portability.
3) Use distributed simulations such that external models (like the

spacecraft physical simulation against which flight algorithms are
tested) always run in the same platform, being then FSW the only
component of the simulation that changes environments.
4) Match test scenarios (e.g., launch separation, Mars orbit inser-

tion, and science maneuvers) in both environments.
Without further sources of change and/or uncertainty other than

the FSW migration itself, numerical results from runs in the desktop
environment can be compared with their counterparts in the target
environment. Such comparison of runs can be found, for example, in
Ref. [6], which considers a Raspberry Pi as the target hardware.
For the purposes of embedded testing, this paper also suggests the

use of flight processor emulations instead of their hardware counter-
part. An example of a processor board emulator is the open-source
QEMU (http://qemu.org). The advantage of using an emulation is
that it provides pure software substitutions for an expensive and
limited piece of hardware and, in this way, it allows simultaneous
testing among different mission groups [19–21]. Another advantage
of an emulation is that it can accommodate for times when FSW
asleep in a simulation scenario.
The complete FSW development cycle, according to the described

guidelines and using an emulated board for embedded testing, is
depicted in Fig. 4. In this paper, the Basilisk software is applied for
FSW development in the desktop computer environment, and two
different middleware tools, cFS and MicroPython, are analyzed. The
focus of the paper is on the flight algorithm migration from the
desktop computer into the target middleware. Numerical simulations
testing FSWon middleware running on an emulated flight processor
are shown but, for full details on embedded FSW testing, the reader is

referred to Ref. [4]. With this in mind, the next section in this paper
provides an introduction to the Basilisk framework.

IV. Desktop Development Through Baslisk

The desktop FSW development proposal being suggested in this
paper encompasses the use of Python as a user-facing language for
prototyping and testing flight algorithm code that is actually written
in C/C++. The Basilisk software testbed is presented, next, as a
specific incarnation of this proposal.
Basilisk is an open-source, cross-platform, desktop testbed for

designing flight algorithms and testing them in closed-loop dynamics
simulations. The Basilisk testbed is currently being implemented by
the Autonomous Vehicle Systems (AVS) laboratory at the University
of Colorado Boulder and the Laboratory for Atmospheric and Space
Physics (LASP) in order to support an interplanetary spacecraft
mission.
Basilisk is architected in a modular and highly reconfigurable

fashion using C++ modules that perform spacecraft physical simu-
lation tasks and C modules that perform mission-specific GN&C
tasks. The SWIG library is used to wrap the C/C++ modules and
make them available at the Python layer for three purposes:
1) Setup of C/C++ algorithms for specific simulation scenarios
2) Desktop execution of the simulation scenarios (i.e., running the

main control loops)
3) Postprocessing of simulation results
Some of the advantages of using Python as the user-facing inter-

face are ease of data analysis (which is comfortably leveraged
through built-in libraries like Numpy, Matplotlib, and PANDAS,
among others), capability of automated regression tests (via py-test),
and rapid Monte Carlo handling.
Figure 5 illustrates the nominal (but not necessarily required)

layout of a Basilisk scenario. This layout is composed of two inde-
pendent processes: an FSW process and a spacecraft physical simu-
lation process. During a simulation run, the C and C++modules from
the different processes communicate with each other through a
message passing interface based on a publish–subscribe pattern.
The beauty of using a message interface is that it delineates a very
clean separation between the different processes. This separation
facilitates, later on, the migration of the FSW application into a

Fig. 4 FSW development cycle.
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different processor. Figure 6 showcases two different processor
targets to which Basilisk-developed flight algorithms have been
migrated.
The target processor in Fig. 6a is a Raspberry Pi, which has a built-

inARMprocessor and comeswith the LinuxOSout of the box. Since
Basilisk is cross platform in nature, a regular Basilisk FSW process
can seamlessly run on the Pi platform. Reference [6] showcases a
numerical simulation with the setup of Fig. 6a running on soft real
time. The target processor in Fig. 6b is an emulated radiation-
hardened processor. Such target is currently being used for testing
in the aforementioned interplanetary mission in which LASP and the
AVS laboratory are collaborating. For this mission, the emulated
board is a LEONmicroprocessor with RTEMS running on top. Since
the emulated system is embedded, the Basilisk process containing the
FSWalgorithms cannot natively run on this system; hence, the flight
algorithms are firstly integrated into a cFS application that is actually
embeddable. The next section in this paper describes the details
behind integrating Basilisk-developed flight algorithms into a cFS
application that is then tested in an emulation of a LEON board.

V. Embedded Development Through cFS

First and foremost, let us provide some more insight on the cFS
itself. The cFS is amiddleware layer that ensures portability of a flight
application among different RTOS and processor boards. It is an
open-source product by NASA Goddard that has inherited software
from flight missions for over 20 years, and it is written mostly in C.
The architectural design of cFS is depicted in Fig. 7. Starting from

the highest level of the architecture to the lowest, first, there is the
application layer, which is where the mission-specific flight algo-
rithms reside; therefore this layer is always customized by the user.
Below, there is a library layer, where common components that are
typically part of an FSW system are available for sharing and reuse
(e.g., file delivery protocol, checksum, and housekeeping). In the
middle, there is the core Flight Executive (cFE) layer, which is the
central piece of cFS and provides five core services: executive, event,
software bus, table, and time services. One level lower, there is the
platform and OS abstraction layer, which are the key pieces enabling
portability. The very bottom is where the RTOS/processor boot
software resides.
Because cFS it is mostly written in C, a mission that decides to use

this middleware layer needs to implement its FSWapplication in C as
well. Therefore, if in the desktop environment the FSW algorithms
and their setup are written in a combination of C and Python, the
Python portion has to be removed (or rather translated) for migration.
The next section introduces a novel mechanism to facilitate the
required translation. This mechanism is generally applicable to any
desktop testbed that, similar to Basilisk, leverages the use of Python
as a wrapper for C/C++ flight algorithm code.

A. Flight Algorithm Migration into a cFS Application

To understand the process of migrating Basilisk-developed flight
algorithms into a cFS application, it is necessary to look back at the
desktop development proposal of using Python for setup, desktop

a) FSW on the Raspberry Pi: ARM processor and Linux OS

b) FSW inside cFS on an SBC (single-board computer) emulator

Fig. 6 Migration of the flight application.

Fig. 5 Basilisk (BSK) desktop environment.

Fig. 7 Architecture of the core flight system.
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execution, and postprocessing of underlying C/C++ flight algo-

rithms. There is one of these Python functionalities that need to be

translated into C for migration: the setup for the C flight algorithms.

Once the flight application is all written in C, it can be readily

integrated within cFS. The next question to be answered is what

“setup” means exactly. In the Basilisk framework, the Python setup

encompasses 1) variable initialization of each individual C module

and 2) grouping of modules in tasks that run at certain task rates.

These two setup items are further explained next.

1)Cmodule initialization:EachBasilisk C-module is a standalone

model or self-contained piece of logic. In the context of FSW, a

module could be a specific navigation filter, a control law, a torque-to-

voltage converter, or, simply, a container for static vehicle configu-

ration data. All Basilisk C modules are characterized for having a C

configuration struct and four main methods operating on the defined

struct. In functionality, these main methods are common to all

modules, and they perform module self-initialization, cross-initial-

ization, update, and reset. These generic functions are externally

called from Python during desktop execution. Listing 1 shows a

snippet of code from a very simple module, the vehicle configuration

one. Thismodule simply contains static data of the spacecraft vehicle,

like inertia and center of mass.

Listing 1: C module source code (vehicleConfigSource.h)

In the desktop environment, SWIG automatically handles the conversion of types from C and C++ into Python. A complete list of the

C and C++ features that can be converted is found in the official SWIG webpage (http://swig.org/compare.html). Initializing the C

and C++ variables of all the modules in Python is handy because it makes the simulation completely reconfigurable: changing the

initialization values from Python does not force recompilation of the C code again. This principle, which consist on decoupling the high-

level software functionality from the low-level implementation, is also know as the principle of dependency inversion in object-oriented

programming. A snippet of Python code initializing the C vehicle configuration module is shown in Listing 2. While, in the desktop

environment, the module variables are initialized through Python, in the cFS environment the variables are initialized with the same values

through C.

Listing 2: Python setup code (for vehicle configuration module)
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2) Task groups and rates: The other setup item leveraged from

Python in the desktop environment is the instantiation ofC/C++ tasks
that run at the defined task rates. Any number of modules can be

added to a task, and calling priorities are also established from

Python. In the desktop simulation, the Python code itself loops

through the tasks cyclically and, for each task, calls the update
method of all the modules in that task. In the embedded environment,

it is desired tomaintain the same task groups. Therefore, equivalent C

functions, retaining the same groups and priority of tasks, have to be

implemented.
Now that the kind of setup code that needs to be translated from

Python to C has been explained, let us describe the interesting part:

the translation mechanism. Figure 8 illustrates the conversion of the
flight application from a Basilisk desktop simulation into a pure-C

application that can be integrated into cFS. A key remark here is that

the flight algorithm source code remains unchanged. The pure-C

application is conformed by the unmodified algorithm source code

plus one additional header and source file containing the setup code

written in C.
The translation of the setup code from Python to C is

handled automatically via an independent script written in Python:

the AutoSetter. The beauty of the AutoSetter, compared

with autocoding in model-based development, is that it is not a

convoluted black box; rather, the AutoSetter is a simple

template mapping Python variable types/values into their C counter-

parts. The resulting C setup code is minimal and completely human

readable.
The workings of the AutoSetter essentially rely on Python’s

introspection capabilities. Looking at oneself is something that nei-

ther C nor C++ can accomplish without significant investment in

source parsing. In contrast, Python can easily realize that, inside the

FSW simulation process (written in C but wrapped in Python), there

is a list of tasks. And inside each task, there is a list of modules that,

despite being written in C, now appear as Python objects. Therefore,

these modules now present built-in Python properties like module,

name, type(), dir(), getattr(), and so on, which are the key to intro-

spection.
Listing 3 shows a snippet of the C code automatically gen-

erated by the AutoSetter. Note that this C setup code (output

of the AutoSetter) corresponds to the Python code shown

previously in Listing 2 (input of the AutoSetter). Let us take
a closer look, for instance, at the inertia variable (ISCPntB_T).

In Python, the inertia is initialized as a list of nine floats, with

only three of them being actually nonzero values; for the Auto-
Setter this unambiguously translates into a C array of nine

doubles, with the same indices filled with nonzero values as in

the Python list.

Listing 3: Sample of AutoGenerated C Setup Code

Fig. 8 Translation of setup code from Python to C.
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It is worth clarifying that absolutely no naming convention is
imposed on the module variables in order for the AutoSetter to
find them and parse them appropriately. Developing this tool was a
matter of investigating which Python built-in properties would pro-
vide the information required to create C code out of the SWIGed
modules instantiated and initialized in the existing Python scenarios.
The last section of this paper is an Appendix containing pseudocode
for the AutoSetter. It is important to notice that this script is
specifically linked to the workings of Basilisk, because this is how it
was built. However, it constitutes a proof of Python’s effectiveness in
introspection and parsing. Any other FSW testbed that uses Python to
wrap C/C++ code could use an equivalent translation approach.
A final remark is that, as seen in Listing 3, the automatically

generated C code is minimal and completely human readable,
allowing for rapid syntactic checking. In addition, because the gen-
erated code only involves integration and initialization, it is less likely
to cause run-time failures. During the development of the generator,
malfunctions and improper handling were caught by the linker and
compiler when rebuilding the automatically generated code together
with the unmodified flight algorithms. Further verification comes in
the form of integrated tests and analysis of the closed-loop perfor-
mance, which is done in the next section.

B. Embedded cFS-FSW Testing in an Emulated Flat-Sat

As illustrated earlier in Fig. 8, the unmodifiedFSWalgorithms plus
the autogenerated C setup code constitute a cFS application that is
embeddable. The resulting cFS-FSW application can be embedded,
for example, in an emulated flight processor and then tested in an
emulated flat-sat. The flat-sat is emulated in the sense that all the
different components are actually software models replicating its
hardware counterparts. The concept of emulating a flat-sat configu-
ration for the purposes of integrated testing is depicted in Fig. 9. Here,
the cFS-FSW application runs within a processor board (or SBC)
emulator and interacts with external applications like the spacecraft
physical simulation and a ground systemmodel. However, once FSW
is integrated within cFS and embedded into the SBC emulator,
enabling interaction between FSW and the external world is not
simple. To achieve this communication, it has also been necessary
to model several FPGA registers within the SBC emulator. These
registers have been modeled as a memory map for the input and
output of raw binary data. The layout of the combined cFS-FSWand
modeled registers, both within the SBC emulator, is illustrated
in Fig. 10.
For the aforementioned interplanetary mission (in which the Basi-

lisk-cFS development approach has been put in practice), the general
concept of an emulated flat-sat has actually materialized in the
configuration depicted in Fig. 11. Figure 11 illustrates the four main
components of the emulated flat-sat: flight processor emulator,
ground system (GS) model, spacecraft physical models, and visuali-
zation. Note that within the flight processor emulator, there is a total
of four different registers. Through these registers, FSW interacts
with the external world by reading and writing in a hardware-like
fashion that also replicates interrupts. For instance, it receives com-
mands and returns telemetry (using CCSDS packets from and to the
GS emulator) and, similarly, it commands the actuators in the space-
craft simulation and also receives sensor data back.
With the emulated flat-sat shown in Fig. 11, it is possible to

replicate the same scenarios that are executed from Python in the

Basilsk desktop environment. One of these scenarios is, for instance,
a sequence of pointing maneuvers that happens during cruise:
1) Nav-monitoring followed by inertial pointing
2) Ephemeris correlation followed by Mars pointing
3) Switch to sun pointing
4) Back to Mars pointing
Numerical results of executing this scenario in the emulated flat-

sat, where all the different components are running in a distributed
fashion, are shown in Fig. 12. These plots correspond to the modified
Rodrigues parameter (MRP) [22] attitude of the spacecraftmain body
frame, as simulated in the spacecraft physical simulation. During this
run, the user sends several commands from the GS model. These
commands are stored in the FPGA registers and picked up by the cFS-
FSWapplication in order to reconfigure the onboard pointing mode.
Sensor data from the spacecraft physical simulation is also being
continuously updated within the registers. These data are used by the
navigation filters of the cFS-FSW application. In this way, FSW
estimates the spacecraft’s current pointing attitude, derives the asso-
ciated tracking errors, and computes the control torques required to
drive the spacecraft into the desired attitude. The control torques are
stored in the registers and sent back to the spacecraft physical
simulation, where a set of four reaction wheels is used to apply the
commanded control torque. Figure 12 shows the effect of the com-
mands sent and proves the flow of data between the different com-
ponents in the emulated flat-sat. Additional instrument-pointing plots
(not included in this paper but shown in Ref. [4]) demonstrate
convergence into the commanded pointing modes.
When the same FSW scenarios are executed in both desktop and

embedded environments, using with the same spacecraft physical
models for closed-loop testing, the impact of changing the FSW
target can be analyzed by comparing the plots of the embedded run
with its desktop counterpart. Because Fig. 12 shows the closed-loop
behavior of the spacecraft simulation interacting with FSW, changes
in the FSWperformancewill be reflected on the closed-loop results as
well. In addition, it is also possible to compare directly FSW data by
postprocessing the telemetry received in the GS system (in the
embedded run) and analyzing it against the FSW results from the
desktop run. An apple-to-apple comparison of a simple pointing
scenario run first in the desktop environment (using a single platform
for both FSWand the spacecraft physical simulation) and run next in
a distributed fashion (with FSW running on the flight target) is shown
in Ref. [6].

C. cFS Approach Summary

As a brief summary of this section, the presented approach for
embedded FSW testing uses cFS, the FSW application is written
purely in C, and, for emulated flat-sat testing, it has been necessary to
emulate the FPGA registers within the processor board emulator.
This approach is being applied into an actual interplanetary space-
craft mission and, so far, it has enabled efficient development,
deployment, and testing across environments. The transition between
desktop and embedded environments is enhanced by the use of the
AutoSetter. In addition, emulated flat-sat testing has proved to be
a very cost-effective means of performing system-wide testing early
on in themission’s program, alleviating schedule constraints by using
software models only. Having said that, the cFS migration approach

Fig. 10 FPGA register emulation.

Fig. 9 Concept of emulated flat-sat.
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Fig. 12 Closed-loop simulation: evolution of the spacecraft main body attitude.

Fig. 11 Mission’s emulated flat-sat configuration.
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presents three clear cons: migration effort, difficult interaction
between FSW and the external world for embedded testing, and
replicated cFS functionality within the flight application. These
caveats are further detailed next.
Migration effort: The AutoSetter.py produces specific code for

every single FSW configuration defined in Python. Therefore, the
AutoSetter.py needs to run for every Python scenario/configuration
that is to be tested in the embedded environment.
Difficult interaction with FSW: The modeling of FPGA registers,

which is necessary to enable interaction between the embedded cFS-
FSW application and the external world, is far from simple. The
general idea is that each register has an associatedmemory buffer, and
specific FSW states are mapped to specific addresses within these
buffers. The challenges associated with this mapping and with the
handling of FSW states are thoroughly described in Ref. [4]. Addi-
tionally, in the embedded environment of Fig. 11, it is not possible to
fully capture all the cFS-FSW states but only those who are even-
tually sent as telemetry to the GS model.
Replicated cFS functionalities: Last but not least, cFS has revealed

some inflexibilities in its design. Recalling Fig. 7, the cFE executive
layer provides five core services, which cannot be removed (even
if not used) or customized. For the mission application presented in
this paper, examples of unused cFS functionality are services like
software bus, time, and events. In addition, the fact that C++ is not
natively supported within cFS also seems a limitation toward the
future.
After seeing both the feasibility and the drawbacks of the cFS-

FSWapproach, a different and more modern tool is researched in the
next section of this paper: MicroPython.

VI. Embedded Development Through MicroPython

Seeing the generalized interest in Python for desktop FSW devel-
opment, it makes good sense to consider MicroPython as a middle-
ware for embedded development. As a quick recapitulation,
MicroPython is a lean and efficient implementation of the Python 3
programming language that includes a small subset of the Python
standard library and that is optimized to run inmicrocontrollers and in
other constrained environments. It presents many advanced scripting
features while being compact enough to fit and run within just 256
KBof code space and 16KBofRAM.Supporting both 32- and 64-bit
architectures, the investigation of MicroPython as a middleware
layer for FSW applications is very compelling. On these lines, the

following section describes the migration of Basilisk-developed
flight algorithms into MicroPython. Then, numerical results of a
distributed simulation are shown as a first proof-of-concept.

A. Integration of FSWModules into MicroPython

The idea proposed in this paper is to use MicroPython for
embedded setup and execution of the same, unmodified C flight
algorithm code as in the desktop environment. However, the standard
way of extendingMicroPythonwith customCmodules involves a lot
of boilerplate code. For this reason, another open-source software
tool is introduced: the MicroPython C++ Wrap (https://github.com/
stinos/micropython-wrap), which is a header-only C++ library that
provides some interoperability between C++ and the MicroPython
programming language. The equivalence between the desktop and
embedded development strategies is shown in Fig. 13. Note that, in
the embedded environment, the MicroPython C++ Wrap has the
same functionality as SWIG in its desktop counterpart.
Using theMicroPython C++Wrap, the process of integrating C++

modules within MicroPython is drastically reduced. However, this
comes at the cost of requiring all the modules to be written in C++
rather than in C. Recall that, currently, all the FSW modules within
Basilisk are written in C. With this in mind, the technical work
required to migrate Basilisk flight algorithms into MicroPython
can be broken down into three tasks:
1) Creating a C++ class for every C FSW module: Because the

MicroPython C++ wrapper is specially designed to wrap C++ code,
the suggested approach for wrapping the unmodified C FSW algo-
rithms, as they currently exist in Basilisk, is to a create a C++ class
(new.hpp file) for every module (.h and .c file) there is.
2) Generating integration code for every C++ class that needs to

be available at the MicroPython layer: MicroPython is meant to
interact directlywith the recently createdC++wrapper classes, treating
themas if theywere nativePythonmodules. To achieve this behavior, it
is necessary to recompile MicroPython after having declared and
registered the different C++ classes, functions, and types.
3) Adapting existing desktop Python scenarios into MicroPython:

Because MicroPython is only a light version of the Python 3 pro-
gramming language, some advanced Python functionalities and large
libraries (like those usually employed for postprocessing) are not
supported. If this constraint is accounted for, the desktop Python
scripts could, in principle, be seamlessly used within MicroPython,
provided that they are written in version 3 of the language. With
respect to Basilisk, however, MicroPython scripts currently import

a) Desktop development through
Python

b) Embedded development through
MicroPython

Fig. 13 FSW development: Python (desktop) and MicroPython (embedded).
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and instantiate the FSWmodules differently from the Python desktop
scripts: desktop Python scripts instantiate directly the C FSW mod-
ules, whereas MicroPython scripts instantiate their corresponding
C++ wrapper classes. Therefore, some small adaptations are needed.

Figure 14 illustrates these three items, which are to be done.

Interestingly, two of them, which are the creation of the C++ wrapper

classes and the generation of the MicroPython integration code,

can be handled automatically. Let us recall the introspection capabil-

ities that are inherent to the Python language. Similarly to how the

AutoSetter produces specific C setup code for integration within

cFS, an equivalent script has been developed to automate the integra-

tionwithinMicroPython. This new introspective script will be referred

to as AutoWrapper. The process of migrating Basilisk FSW mod-

ules from the desktop environment into MicroPython through the

AutoWrapper is illustrated in Fig. 15. Note that the input to

the AutoWrapper is simply a desktop Python scenario script and the

outputs are the corresponding C++ wrapper classes and the Micro-

Python integration code patch.

The last section of this paper is an Appendix containing pseudo-

code for the AutoWrapper. The AutoWrapper tool uses the same

mechanism as the AutoSetter to figure out the variable and

method names of the underlying C modules. Once introspection is

granted, the code for the C++ wrapper classes and the MicroPython

integration can be generated through templates. Listing 5 showcases

a sample C++ wrapper class that has been automatically generated,

whereas Listing 6 provides pseudocode for the Python template

defining how the C++ classes are to be written.

With the layout in Fig. 14, Basilisk FSW simulations can be set up

and executed from MicroPython in the same way as they are in the

Python desktop environment. Recall from earlier that in the desktop

prototyping environment Python is used for 1) setup, 2) desktop

execution, and 3) postprocessing of the simulation results. However,

MicroPython cannot handle postprocessing because it is meant to be

embedded and, not surprisingly, large libraries for analysis and

plotting are not supported. The question that arises immediately is

how to validate the results from a MicroPython simulation run. As a

matter of fact, MicroPython is capable of logging all the data from an

execution run. Because the problem is about pulling and plotting such

data within the constrained environment, an alternative solution is to

archive the data in a binary file. Thanks to the interoperability

between MicroPython and regular Python, the archived results can

be loaded without modification back into the desktop Python envi-

ronment for regular postprocessing. Figure 16 illustrates the sug-

gested postprocessing mechanism through an archived binary file.

The key aspect of this approach is that the postprocessing simulation

(on the right) is agnostic of the archive file being created out of the

Python desktop simulation or out of the MicroPython embedded

simulation. Such agnosticism contributes toward a more homog-

enous and smooth process for cross-environment testing.

To elaborate further on how the archived binary file is structured, it

is necessary to go back to Basilisk’s architecture. All Basilisk sim-

ulations are instances of a C++ class that contains a Message Logger

variable. In the desktop environment, the user defines from Python

which module messages have to be logged and at which rate; recall

that Basilisk modules communicate with each other through a pub-

lish–subscribemessaging interface. Eachmessage has a unique name

and associated ID and, when a message needs to be logged, the

Message Logger creates a memory buffer for this message. This

memory buffer increases over time as the simulation executes, and

once the simulation is over, eachmessage buffer can be retrieved back

at the Python layer for postprocessing. In a similar way, the Message

Logger can also write the message buffers into a file (i.e., the binary

archive) using functions from the C++ standard library.

Fig. 14 Complete layout of the MicroPython-FSW application.

Fig. 15 Input and output of the AutoWrapper.

Fig. 16 Postprocessing Python (desktop) and MicroPython (embedded) execution runs.
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B. MicroPython-FSW Testing

To prove the validity of MicroPython as an FSW target, a sample

MicroPython-FSW application is tested in a distributed closed-loop

with spacecraft physical models. To create this sample application,

several Basiliskmodules are integratedwithinMicroPython: a subset

of the C FSW modules, the basic C++ architectural modules

(e.g., process containers, task containers, messaging system), and a

register-like module that enables interaction between the embedded

FSW and the external world. This distributed-simulation setup is

illustrated in Fig. 17.
The scenario executed corresponds to an inertial-pointing guid-

ance maneuver. The FSWmodules required for this sample scenario

are the following:
Vehicle configuration module: It contains vehicle static data used by
other modules.
Reaction wheel (RW) configuration module: It contains RW static
data used by other modules.
Inertial pointing (guidance module): It computes an inertial 3D
reference, which is conformed by an MRP attitude set, angular rate,
and angular acceleration.
Attitude tracking error (guidance module): It computes the tracking
error between the current state and the desired reference.
MRP feedback (controls module): It computes a 3D control torque.
Reaction-wheel motor torque (controls module): It maps the 3D
control torque into individual motor torques for the RW pyramid (a
set of four RWs is used in the physical simulation).
Figure 18 illustrates the numerical closed-loop behavior of the

spacecraft during the inertial-pointing maneuver. The plots illustrate

that the simulated spacecraft is initially tumbling and the FSW
algorithms take it into an inertial-pointing state. In particular, Fig. 18a
displays the attitude tracking error evolution as computed by FSW,
whereas Fig. 18b illustrates the control torques commanded to the
reaction wheel pyramid. After executing the distributed simulation,
the FSW states computed within MicroPython are retrieved and
postprocessed in the desktop environment through the archive
mechanism shown in Fig. 16.

C. Potential of the MicroPython-FSW Approach

The previous section has presented an initial feasibility analysis
for the use of the Basilisk flight architecture together with a Micro-
Python interpreter in order to yield a user-friendly, lightweight, and
flexible flight operating system that can seamlessly run in desktop
environments and constrained flight environments. In this first proof-
of-concept, however, MicroPython is simply running on Unix.
Although the real-world use case of the Basilisk-MicroPython
FSW application is to run in a constrained environment on top of
an RTOS, this initial technical demonstration serves to show that, by
making use of theMicroPython C++Wrap library, MicroPython can
easily interface with Basilisk’s C/C++ algorithm source code.
As stated earlier, common requirements of spacecraft FSWinvolve

not only interfacing to native C and C++ code, but also a demand for
real-time determinism, concurrency, and low use of resources (CPU,
RAM, and ROM). Ongoing research that is not included in this paper
involves, precisely, analyzing the suitability of the Basilisk-Micro-
Python application to run in constrained environments with limited
resources and real-time constraints. The work under development

Fig. 17 Closed-loop testing of MicroPython flight algorithms.

a) MRP attitude tracking error b) Reaction wheel commands

Fig. 18 MicroPython FSW closed-loop testing in an inertial-pointing maneuver.
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involves profiling thememory and CPU usage of the Basilisk-Micro-
Python application on Unix as well targeting the application into
several 32-bit processors, like the STM32 microcontroller of the
PyBoard and the family of LEON boards.
Given that the potential of MicroPython as a middleware for space

applications is already showing in this first proof-of-concept, some
initial comparisons between MicroPython and cFS can be drawn.
Firstly, by means of MicroPython, the migration effort is reduced
because the generated integration code is no longer specific but
reconfigurable. The setup code generated by the AutoSetter for
cFS integration is specific to each Python scenario script. In contrast,
with the code generated by the AutoWrapper, all the FSW states
are reconfigurable from the MicroPython layer without need of
recompiling the source code again (seeing again the principle of
dependency inversion). Secondly, because MicroPython has access
to themessaging system of the FSWapplication, it is possible to fully
capture all the FSW states at any point in a simulation run. Further,
the modeling of the FPGA registers can be greatly simplified for the
purpose of emulated flat-sat testing. The simplification of the regis-
ters is possible thanks to the fact that, for an external-world applica-
tion, it is much easier to interact with MicroPython than with cFS.
Last but not least, MicroPython guarantees the portability of a mid-
dleware layer without the replicated functionality imposed by cFS.

VII. Conclusions

This paper has presented two different strategies for end-to-end
flight software development. Both strategies use the Basilisk testbed
as a desktop development environment, but they differ on the targeted
middleware: the cFS in one case and the novel MicroPython in
the other.
The feasibility of the cFS approach (more conventional than the

MicroPython one) is seen through the experience of its application
into an interplanetary spacecraft mission. Integrating Basilisk-devel-
oped flight algorithms into an embeddable cFS application can be
achieved by automatically generating a minimal set of C integration
code through Python’s introspection capabilities.

In turn, the feasibility of combining a lightweight version of the
Basilisk flight architecture with a MicroPython interpreter is also
investigated with the objective of yielding a flexible flight operating
system that can directly run in constrained environments (hardware
flight processor or its virtual counterpart). Although theMicroPython
investigation is still ongoing research, the current results are prom-
ising. A complete implementation of this strategy would enhance the
testing capabilities of flight software within constrained flight proc-
essor testbeds and would therefore minimize the gap between desk-
top and flight environments. Furthermore, such flight architecture
would offer the same portability as a middleware layer while mini-
mizing migration and integration costs.
Future work encompasses running the Basilisk-MicroPython

flight system in a constrained environment on top of an real-time
operating system. The first proof-of-concept for the feasibility of the
Basilisk-MicroPython approach, as shown in this paper, has been
implemented in Unix. Future work involves (but is not limited to)
testing the Basilisk-MicroPython system on conventional 32-bit
flight processor.

Appendix: Pseudocode for the AutoSetter and
AutoWrapper Tools

A. AutoSetter Tool

Listing 4 provides the pseudocode for the AutoSetter tool
and shows its working mechanisms: looping through the C modules
of each FSW task defined in a given Python scenario and parsing
the modules’ main algorithms as well as their variables and values.
Note that the variables have to be parsed recursively in order to handle
nested structures and arrays. Listing 4 also includes comments exem-
plifying the parsing of the vehicle configuration module (defined
earlier in Listing 1 and initialized in Listing 2). The pseudo-code
provided in Listing 4 focuses, particularly, on the introspection part of
the tool. Once introspection is granted, C output can be generated by
defining output templates. The template strategy is shown for the
AutoWrapper in Listing 5 and Listing 6.

Listing 4: Pseudocode for the AutoSetter.py
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B. AutoWrapper Tool

Asmentioned earlier, the objectives of theAutoWrapper tool are to
generate a C++ wrapper class around each C FSW module and to
generate the integration (or glue) code betweenMicroPython and the
C++ classes. Listing 5 shows the C++ wrapper class that has been
automatically generated for the vehicle configuration C module. The
wrapper class is described next. TheC++ class contains the original C
struct of the vehicle configuration module as a private variable. For

reference, recall that this C struct is provided earlier in Listing 1. For
eachmember in the C struct, a setter function and a getter function are

created in the C++ wrapper class. The reason for this is that the

MicroPython C++ Wrapper library does not support direct interop-

erability between MicroPython and C++ class variables (only

between MicroPython and a C++ class functions). In addition, the

C++ class in Listing 5 also contains callbacks to the main four C

algorithms of the vehicle configuration module. Recall that main
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algorithms calls are used for execution in the Python desktop envi-
ronment, and they will also be used for execution in MicroPython.

The combination of the C++ wrapper class with setters and getters

(Listing 5) and theMicroPython integration code (which is not shown

in this paper) is equivalent to the functionality that SWIG provides

out of the box for Python in a regular desktop environment. Although

the functionality achieved is the same, the memory footprint with the

MicroPython-wrapping approach is drastically reduced. the AutoW-

rapper tool uses the same mechanism as the AutoSetter to figure

out the variable and method names of the underlying C modules.

Once introspection is granted, the code for the C++wrapper class and

the MicroPython integration patch can be generated through tem-

plates. Pseudocode for the Python template describing how to gen-

erate the C++ wrapper class of a C module is provided in Listing 6.

Listing 5: AutoGenerated C++ wrapper class (vehicleConfigSource.hpp)
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Listing 6: Python pseudocode for the C++ templates
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