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High tumbling rates of uncooperative target pose strong technical challenges and collision risks that can prevent

removal of the debris using contact, such as with robotic arms or capture nets. Electrostatic touchless detumbling is a

promising technology that can be used to decrease the rotational velocity of an uncooperative object in

geosynchronous orbit, from a safe distance. This paper demonstrates the advantages of applying a Lyapunov

optimal control in conjunction with a surface multisphere model. This approach allows for the analysis of general

shapes, eliminating the need for analytical approximations on debris shape and expected torque, employed by

previous work. Moreover, using this model, the robustness of the system to uncertainties to the debris center of

mass position is tested. This analysis uncovers an unstable phenomenon that was previously not captured using

simpler models. An active disturbance rejection control ensures robustness of the system in the cases analyzed, also

granting an increase in its effectiveness. It is shown in simulation that the system can exploit deviations in the center of

mass to achieve a higher level of controllability and completely detumble all components of angular velocity.

I. Introduction

T HE accumulation of space debris in Earth orbit presents a
significant risk to infrastructure and human presence in space

[1,2]. Active debris removal is one approach that has been proposed
to mitigate this risk to existing space assets. This is especially
challenging for debris in Geocentric orbit (GEO), where the pertur-
bations due to atmospheric drag and Earth oblateness are too small to
ensure natural deorbiting, compared, for example, with low Earth
orbits (LEOs), where the lifetime of a debris can be significantly
shorter.
The total number of inactive objects in the geostationary belt has

increased considerably over the last decade, leading to an accumu-
lation of over a thousand of debris, several meters in size, far
surpassing the number of total active spacecraft in orbit (around
500) [3–5]. The value of space assets, essential for communication,
in the region of GEO is estimated to be U.S. $13 billion [6], and so
protecting these objects from potentially catastrophic impacts is a
priority. Most concepts for deorbiting an uncooperative object
involve the use of a chaser spacecraft that brings itself close to the
debris, and detumbles and de-orbits it using, for example, a robotic
arm or a net [7–11].
This requires the spacecraft to touch the debris, posing significant

risks because the debris can be tumbling uncontrollably with rates up
to 10 deg ∕s [12–14]. In fact, the current requirement of de-orbiting
technology is estimated to be around 1 deg ∕s [8–11]. It is then
necessary to reduce these rotations before employing the de-orbit
technology.Moreover, it is desirable to do this at a safe distance from
the debris itself without the requirement of contact. For this reason,

different touchless detumbling strategies have been developed, like
the ion-beam shepherd [15,16] or electrostatic detumbling [17–19].
Both of these methods trade the speed and effectiveness of a contact
strategy for the reduced risk of impacts and ability to handle high
tumbling rates. Electrostatic detumbling is examined in this paper.
Electrostatic charging is used to generate forces and torques on the
debris instead of using the momentum carried by the ion beam itself,
as in the case of the ion-beam shepherd. This is achieved by using a
service spacecraft that imposes the potential on the debris, as showed
in Fig. 1.
In recent years, studies have been conducted on the feasibility of

imposing an electric potential on a debris and a service spacecraft,
using electron beams and ion emitters [20], and then using the
electrostatic forces generated to decrease the kinetic energy of the
debris touchlessly [21,22]. Schaub and Sternovsky [20] showed that
this is feasible to accomplish using current technology;moreover, it is
possible to charge objects to tens of kilovolts in a matter of micro-
seconds and using as little as watts level electric power. In GEO, the
charged objects are able to exert significant electrostatic forces even
with separation distances of tens of meters, because Debye lengths
are approximately around 200m [23,24]. This is not possible in high-
density plasma environments, such as in LEO, where the effects of
Debye shielding are much more intense [25].
To predict the generated torques, and thus compute the voltage

required, a multisphere model (MSM) has been developed [26]. It
models the charge distribution as a population of spheres placed in
various parts of the body. Based on the radius of the spheres and their
position, the MSM computes the charge contained in each sphere by
solving a linear system. The total forces and torques are then obtained
by applying Coulomb’s law between each pair of spheres created,
allowing the generated torques to be predicted faster than real time.
The model assumes the bodies to consist of uniform conductors,
which is reasonable for most spacecraft due to the high conductivity
of the external Mylar protective layers [27].
The volume MSM (VMSM) generates a small number of spheres

positioned in the spacecraft volume; the radius and exact position
were initially handpicked to match the electrostatic forces and fields
of a high-precision finite element method (FEM) model [12]. This
procedure is computationally expensive, and so automated methods
have been developed to speed up the procedure [28,29], but it still
requires a complex truth model to match. Moreover, this method is
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better suited for simple shapes, like the one depicted in Fig. 2, where
no torque around the symmetry axis was considered. This led to
previous control laws to assume a certain expected analytical torque
function that depends on the inclination of the cylinder axis, com-
pletely ignoring any possible effect on the angular velocities around
the symmetry axis [17–19]. It is also possible to generate more
precise models by increasing the number of spheres distributed in
the volume of the object, thus granting a better description of the
torque in all axes, but again the position in which the spheres are
generated can be arbitrary and complex to implement. Using an
analytical function to describe the obtained torque is useful to find
equilibrium points and analyze the general behavior of the system,
but it can limit the flexibility of the analysis.
For this reason, the next advancement switches to generating a

greater number of spheres on the conductor surface, and is thus called
surface MSM (SMSM) [30]; it is faster to set up and it yields more
precise torque estimationswith just a small increase of computational
effort. Also, it represents more accurately the behavior of real electric
charges that always position themselves on the surface of the objects.
This paper implements the method developed in [31] to generate

SMSM of complex shapes and simulate detumbling by computing

the generated forces and torques by directly applying Coulomb’s law
on each sphere, instead of relying on a torque analytical function.
The control strategy employed is a Lyapunov optimal controller that
aims to obtain the fastest decrease of kinetic energy possible, by
selecting the correct voltage to impose at each time step. This new
control law is also able to handle general spacecraft tug and debris
geometries, because it does not rely on any shape assumption. The
robustness of the system to uncertainties is analyzed and the appli-
cation of an active disturbance rejection control (ADRC) [32–35],
which estimates the lumped uncertainties accounting for them in the
control, is tested.

II. Multisphere Model Generation Procedure

An SMSM is generated for the two objects considered: the service
spacecraft and the debris. First, a triangular surface mesh is created,
and then the method of moments (MOM) is applied to the mesh to
generate the sphere distribution. The MOM is an analytical model
employed to compute the charge on the mesh elements described
in [31].

A. Mesh Generation

A triangular mesh that describes the object external surface as a
series of triangles is generated; the higher the number of triangles
used, the more precise the model, with a higher number of spheres
generated, and thus a higher computational complexity to the simu-
lation. Thesemeshes can be createdmanually, generating each vertex
and edge, but this is only feasiblewhen using very simple shapes, like
cubes and cylinders. It is far easier to use a 3-Dmodeling software to
create .stl files manually or starting from already existing 3-D CAD
models.
The software used during this study is 3D Builder [36], usually

used for 3-D printing, and so each part of the system can be custom-
ized to have as many triangles as necessary. By changing only a few
parameters, it is possible to create .stl files of many different numbers
of total triangles for the same shape, even with a heterogeneous
distribution, for example, by concentrating most spheres on the parts
closer to the debris (Fig. 3c). The meshes are also modified using
MeshLab [37] to refine some aspects and delete triangles thatmay not
be necessary.

B. From MOM to SMSM for the Isolated Object

Once the mesh is created, the MOM is used to compute the charge
distribution on each of the N triangles the surface is divided into, by
solving the Gauss theorem on each triangle (for a more in-depth
description, see [31]):

Fig. 2 Same geometry represented using the two MSMs.

Fig. 1 Service spacecraft imposing an electric potential to the debris.

(Figure taken from [12].)
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Then, for all the triangles, the following linear system is built:
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Thanks to the square matrix in the preceding system (called
elastance matrix �S�), it is possible to relate the potential on each
element of the object to the charge accumulated on it. In this study, the
potential is assumed equal for all elements V1 � V2 � VN � Vbody,

then to compute the resulting charge, the elastance �S� is inverted to
obtain the capacitance matrix �C�.
This procedure, although giving accurate results, is computation-

ally heavy because it requires one to solve N × N integrals at each
sampling time. Therefore, this is only done once to set up the
parameters for the SMSM by matching the elements of �S�.
This is possible because the SMSM relates potential and charge in

the system in a similar way, with the following linear system:

2
6666664

V1

V2

..

.

VN

3
7777775 � 1

4πϵ0

2
6666664

1∕R1 1∕r1;2 · · · 1∕r1;N
1∕r2;1 1∕R2 · · · 1∕r2;N

..

. ..
. . .

. ..
.

1∕rN;1 1∕rN;2 · · · 1∕RN

3
7777775

2
6666664

Q1

Q2

..

.

QN

3
7777775 (3)

As it can be seen, the charge on each i sphere depends only on its
radius Ri and the distance from all the other spheres ri;j, and so the

matrix �S� stays constant as long as the object does not change its
shape. The radius of the sphere is obtained by inverting the diagonal
elements of the �S� matrix given by the MOM; the spheres are then
positioned at the centroid of each triangle, and this leads to good
matching of all the elements of the two �S� matrices, if the mesh has
an appropriate amount of triangles; otherwise, the errors increase
noticeably.
The resulting matrix is mostly diagonal unless the radius of the

spheres is too big compared to the sphere distance (Spheres should
not intersect.), leading to singularity effects when computing the
inverse. The elements of this matrix only depend on the geometric
properties of the isolated body and are conserved during rigid-body
rotations or translations, and so they can be computed only once
during the preprocessing phase, as demonstrated in [27,38]. Because
of this property, the �S�matrix referred to the single body is called the
self-elastance matrix.

C. Capacitance Matching and Two-Body Setup

The total capacitance of the isolated body is computed by summing
all the elements of the self-capacitance matrix �C�; this increases the
performance of the simulation, as stated in [31]. Scaling the com-
puted radius of the spheres to obtain the same total capacitance of a
truth model (FEM model or high-number SMSM) increases the
precision of the computed torques and forces without increasing
the computational effort.
So, the radii of the SMSM obtained are scaled up, by a radius

parameter α, until the total capacitancematches the desired value or at
least comes as close as possible without leading to any numerical
instabilities (depicted in Fig. 4); once this has been done for both
bodies considered (service craft and debris), the two can be put
together to compute the interactions between the charged elements.
In particular, the charge will redistribute based on the distance

between each sphere that is changing with the debris tumbling
motion. The obtained linear system can be summed up to obtain

�
V1

V2

�
�

� �S1� �Sm�
�Sm�T �S2�

��
Q1

Q2

�
(4)

where �S1� (N × N) and �S2� (M ×M) are the constant self-elastance
square matrices of the service and debris, respectively, and the
elements of �Sm� are made up by the inverse of the distance between
the spheres of the two different bodies, and these are the elements that
change during the tumbling motion. Also, V1 and V2 represent
vectors with the imposed potential for each sphere of the two bodies,
same for charge vectors Q1 and Q2.
Given this particular structure of the total elastance matrix, the

Schur complement method can be used to obtain the capacitance
matrix without having to recompute the full matrix at each time step:

Fig. 3 Three different levels of mesh precision.

Fig. 4 How capacitance changes by scaling the radii of the SMSM of a
parameter α.
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Once the charge distribution is obtained, the forces and resulting
torques for each sphere pair (N spheres on service craft andM spheres
on debris) are computed using Coulomb’s law, and the total torques
acting on the bodies are obtained:

Fj �
XN
i�1

1

4πϵ0

QiQj

r3ij
rij (6)

L �
XM
j�1

rjjb × Fj (7)

First, the total force Fj on each j sphere of the debris is computed

by summing all Coulomb contributions from each i sphere of the
service. Then, the total torque L acting on the debris is obtained by
summing up all the contributions given by the cross product between
the position of the j sphere in body coordinates rjjb and the total force
resulting on it Fj.

With this, the setup of the SMSM is completed (Fig. 5). In the next
section, a description of the dynamic system is provided, and then the
chosen parameters and first results are given.

III. System Dynamics and Control Strategy

The system uses two different frames of reference, depicted in
Fig. 2: a fixed one called N (i, j, k) that is centered in the service
spacecraft center of mass (c.m.), and a body frame B (b1, b2, b3)
centered at the debris c.m. that is initially set at a certain distance d on

the axis j. Only rotations of the debris are considered; this is because
the service spacecraft is assumed to use thrusters to offset the result-
ing torques on it, and this assumption can be considered reasonable

given the low intensity of the resulting torques (around 10−7 N ⋅ m
for the symmetry axis and 10−4 N ⋅m for the others). Also, the same
thrusters are assumed to be able to keep the separation distance
imposed, as demonstrated in [22].

A. System Description

The system architecture is depicted in Fig. 6. At each time step, the
relative attitude between the two frames is described by the direction
cosine matrix AB∕N and used to compute the resulting electrostatic
torques on the debris using the SMSM.
In particular, the torques are first computed by the controller,

which selects the electric potential to impose on the objects based
on a less precise sphere population (Fig. 3a), and then this potential is
given to the physics model that computes the real value of the
resulting torques, using a better sphere model (Fig. 3b), which are
then applied to the system.
Thanks to the customization proprieties of the SMSM, it is thus

possible to mimic the modeling errors that are present in a real case
and study their effect on the system performance. Ideally, the physics
population would have a very high number of sphere count to better
represent the real charge distribution, but this is limited by the
performances of the machine used to run the simulation.
Also, no uncertainties in angular velocity reading or attitude

imprecision are included. It is assumed that the service spacecraft
is able to reconstruct the debris state using cameras or LIDAR
with an error well below 0.1 deg ∕s for velocity and 10 cm for
the position of the debris, which would not contribute signifi-
cantly to the performance of the detumble; this is a reasonable
assumption, given the precision granted by modern imaging
systems [39–41].

Fig. 5 Examples of SMSM.

Fig. 6 Controller and physics simulation structure.
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After the electrostatic torque is computed, more effects can be
added, like solar radiation pressure torques, gravity gradient, and c.m.
deviations; this way, it is possible to study the effects these aspects
have on the debris and the detumbling performance.

B. Control Law

The Lyapunov optimal control law used to ensure the detumbling
of the debris is based on the minimization of the Lyapunov function
V�ω� [42], defined as the expected total kinetic energy of the debris;
from now on, all estimated quantities that make up the controller
model are identified with an asterisk:

V�ω� � T� � 1

2
ωT �J�ω

_V�ω� � _T� � ωT �J� _ω � ωT��J�ω × ω� L�� � ωTL� (8)

The angular velocity ω, the torque L�, and inertia matrix [J] are
expressed along the principal axes in body coordinates; also, the term
�J�ω × ω is deleted because it is perpendicular toω, and thus its scalar
product goes to zero.
The expected torque L�, which is different from the real one

evaluated in the physics model, depends on the imposed potential
on the two objects, and so the Lyapunov derivative also depends on
the chosen potential V1 for the spacecraft and V2 for the debris.
Initially, the controller was given the ability to pick both potentials

from an interval of 	20 kV, but first results showed that _T� varies
almost linearly with the imposed potential, as it can be seen in Fig. 7,
and also that the value does not change if the two potentialsV1 andV2

are swapped. Because the objective of the detumbling is to decrease
the kinetic energy as fast as possiblewithout a real interest in the final
attitude of the debris, only the maximum values of 	20 kV are
evaluated for the service spacecraft and the debris is kept at a constant
20 kV, effectively limiting the controller to a bang-bang control.
So, at each time step, the controller computes the resulting _T� for

positive and negative imposed potentials, selecting the one that

ensures a negative value of _T�; if neither of the two potentials grants
the desired negative derivative, the controller sets both potentials to
zero to avoid any possible increase of the kinetic energy of the
system.
This onlyworks as long as the controller is able to correctly predict

the torque; if the prediction is off by a big-enough value, the debris
kinetic energy could actually increase, leading to instability in the
system.

This can be easily understood by adding and subtracting the com-
puted Lyapunov derivative _T� to the real kinetic energy derivative:

T � 1

2
ωT �J�ω

_T � ωT �J� _ω � ωTL � ωT�L� L� − L�� � ωTL� � ωTϵL (9)

The real kinetic energy derivative consists of a first term that is
negative because the controller ensures so, and a second one that
depends on the error in torque estimation ϵL; this could either be
negative or positive, depending on the error and could, if bigger than
the first term, bring the kinetic energy derivative up to positive values.
Nevertheless, the torque estimation is good enough if an appro-

priate number of spheres are set, to avoid this from happening. It can
also be seen that if the expected torque is high, the margin for error is
also higher, and so systems where the torques generated are higher
can ensure a correct detumbling with higher error values. This means
that larger objects may take longer to detumble because of the bigger
inertia, but also are more stable to errors in the estimation of torques;
also, this holds true for different torque components in the same
object. For example, in the case of the cylindrical debris, the rotations
around the symmetry axisb3 should be less stable because the torques
generated are very low.
This hypothesis is later confirmed by the results obtained

in Sec. IV.

C. Ideal Case Simulation

The method developed has been applied initially to the simple
geometry case with a cylindrical debris of height 3 m and radius 1 m
and spherical service spacecraft of radius 2 m, to compare the results
with the ones obtained with the VMSM in previous papers [12]. For
that reason, the same initial conditions have been used here and
throughout the rest of the cases analyzed; all the parameters used
are provided in the Appendix. To select the appropriate amount of
spheres for the two objects, the transversal and symmetry axis torques
have been computed for different sphere counts, resulting in the
graphs represented in Fig. 8.
As it can be seen, the torque computed stays within 2% of the truth

value for the transversal torque after more than 100 spheres are
considered, but it can change considerably for the symmetry axis one.
The net torque can even change sign from onemodel to the other if

a poorly designed mesh is chosen, as it can be seen in the Fig. 8,
highlighted by the blue line. This can be avoided by carefully picking
a mesh that is as symmetrical as possible, leading to a correct
modeling of the torque that is also more robust to uncertainties.
In these first two cases, the same numbers of spheres have been

used in the physics model: 112 for the debris and 100 for the service.
Also, the objects are at 10m distance. (Less spheres are necessary for
this simpler geometry than in the box panel service case.) Because
both simulations give the same exact results, there is only one set of
figures.
These are consistent with the previous experience, with the kinetic

energy of the debris decreasing monotonically until the only compo-
nent of angularmomentum remaining is the one along the j axis, thus
along the line that links service and debris. Using an SMSM model
for the controller, instead of a VMSM, does not seem to influence the
results obtained, and so in this case, the SMSM does not provide any
particular advantage beside an increased precision of the torques
itself. This confirms the validity of the VMSM when dealing with
simple shapes, because it gives the exact same results.
Moving to a more complex geometry, with a cubic service space-

craft providedwith two solar panels (As seen in Fig. 5a). It is possible
to observe how the angular velocity of the debris does not stay
constant after the initial decrease, but continues to fall very slowly
in time. Also, the component of angular momentum Hj is not con-
stant anymore even if the time it would take to go completely to zero
is in the order of months/year. (The simulation time in Fig. 10 is more
than double the one in Fig. 9.) This demonstrates that the controller is
able to use the small torques generated around j by the geometry and

Fig. 7 Lyapunov derivative variation with imposed potential for first
100 time steps.
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induced effects, effectively granting a higher level of control on the
debris.
Nevertheless, this effect is not exploitable, given the long times it

takes to bring the kinetic energy down, and is not really relevant in the
case of a geostationary orbit, where the two bodies do not stay fixed in
the inertial frame, but have a time-varying relative position in a
leader–follower orbit that greatly improves the capability of the
system, because no axis is now perfectly aligned with the two objects
for the entire duration of the detumbling.
As it can be seen, all components of the angular momentum are

decreased uniformly, but there is still no effect in the angular velocity
around the symmetry axis. The reason can be found in the small
magnitude of the torques around this axis, around 5 × 10−7 N ⋅m
compared to the 1 × 10−4 N ⋅m around the other ones. Because the
torque is so low, the error in torque estimation ϵL (i.e., around 10−7,

10−6 N ⋅m) prevents the detumbling from happening. In fact, if the
same number of spheres is given to both controller and physics
model, there is a slight decrease in ω3, but this, of course, represents
an ideal case because the service spacecraft could never have a perfect
knowledge of the debris charge distribution.
It should be noted how it has been demonstrated in previous studies

[43] that the relative orbit between the two bodies can influence the
performances of the detumbling, and there is a way to exploit this to
obtain better results. For simplicity, this is not part of this study
because it can be considered as an added bonus that does not
influence the validity of the cases analyzed.

IV. Robustness to Uncertainties and Disturbances

An important goal of this study was to obtain a numerical quanti-
fication of the effect of system parameter uncertainty on the stability
and performance of detumbling. Previously, it was shown how this
can be obtained for the error in torque estimation ϵL, but this can be
further expanded by adding different contributions to the errors, like
solar radiation pressure, or most important, errors in the estimated
inertia matrix and c.m. of the debris.

Fig. 9 Spherical service and cylindrical debris for VMSM controller and SMSM controller with 56 sphere debris and 60 sphere service.

Fig. 8 Torque on the debris for different sphere counts.
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This is the first time that this kind of analysis is conducted for
an electrostatic detumbling system. The effects of c.m. deviation
have been analyzed before, but only in terms of controllability of
the system [44], and so it was not stated what would happen

if the c.m. of the debris is different from the one the controller
expects.
This can easily be modeled in the system by adding a contribution

to the torque in Eq. (7):

Fig. 11 Same spheres as in Fig. 10, but the debris completes a rotation around the service every 24 h.

Fig. 10 Satellite service and cylindrical debris, respectively, 68–84 spheres SMSM controller, 160–112 spheres physics.
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L�
XM
j�1

�rjjb − δ�×Fj �
XM
j�1

rjjb ×Fj �
XM
j�1

�−δ�×Fj � LI �Ld

(10)

So, the real torque is now composed of two contributions: the firstLI

givenby computing the torque from the ideal position of the c.m. and the
secondoneLd from its deviation.The latter is onlypresent in thephysics
model, while in the controller, there is only the expected total torqueL�.

Also, the expected torque L� and the error in torque esti-
mation ϵL can be changed to L�

I and ϵI for clarity because they
refer to the estimate of the ideal torque LI with respect to the
ideal c.m.
Thisway, it is easy to see that the kinetic energy derivative [Eq. (9)]

now has the same contribution as before regarding the ideal torque
and another one given by the deviation in the c.m.:

_T � ωTL�
I � ωT�ϵI � Ld� (11)

Fig. 12 Stability analysis for c.m. deviation along b1 in the first column and b3 in the second one.
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To better understand how different deviations affect the system,
simulations with δ components only along one axis at the time have
been performed. Again, the specifics of the parameters used can be
found in the Appendix.
As it can be seen, the system is not significantly affected

by the deviations of the c.m. position, but there is still a small increase
in ω3 that if not appropriately handled could lead to unstable
behavior.
In fact, if the simulation is repeated with a lower sphere count for

the controller debris model, the results in Fig. 12 are obtained.
If the c.m. is moved from the symmetry axis, the system reaches

instability very quickly, even 2 cm is enough to cause unstable behav-
ior ofω3. This demonstrates how sensitive the rotation around this axis
can be to themodel used, as highlighted in Sec. III.C, and so great care
must be taken when selecting the sphere count to use.
As expected, the system is much more stable to deviations of the

c.m. along the symmetry axis that do not lead to instability for
reasonable deviations; only the total detumbling time can be affected
by big-enough δ3.
Moreover, it is interesting to see how the increase in angular

velocity happens only after the other two components have been
brought to almost zero. This is a result of the structure of the con-
troller that tends to prioritize potentials that give torques around the
first two axes, as these also grant higher torques on the debris, thus
decreasing the kinetic energy the most. Once both these components
are brought to zero, the controller tries to use the small torques around
b3, given only by the induced effects and asymmetries of the charge
distributionmodel, to further decrease the kinetic energy, but because
the resulting torque is different because of the deviation component,
the angular velocity can end up increasing uncontrollably, as the
system has no way of dealing with this effect.
To avoid any possible increase of the angular velocity around this

weakly controllable axis, the following two main solutions can be
adopted:
1) Because the unstable behavior manifests itself only after ω1

and ω2 are brought to zero, the controller could be set up to turn itself
off after the components of kinetic energy (Ti � Iiω

2
i ) that depend

on those two are decreased below a certain portion of the third
one (T1 and T2 < kT3). This way, the system is able to detumble most
of the debris kinetic energywithout incurring in any unstable behavior.
This strategy is simple and effective, but has some significant issues.
First, it completely removes any possible control authority on the
symmetry axis, which could be a problem if the angular velocity
around it is too big to be acceptable, and also it relies on the ability
of the system to recognize which axis would yield the lowest torque,
and thus be more susceptible to unstable behavior. This is not a simple
task to accomplish and could require more work than reasonably
possible, to set up correctly.
2) A better alternativewould be to estimate the deviation torqueLd

and other disturbances in the system, and use this to predict insta-
bilities and avoid them. Easier said than done, there is a method
developed in the last decade called ADRC that has already proved
very useful in many applications [32–35]. This has been found to be
very effective in the cases analyzed, and a more in-depth explanation
of its structure is given in the next section.

A. Active Disturbance Rejection Control

This control strategy is effective in cases where the disturbances in
the system are uncertain, which is the case of debris detumbling.
These are often objects in which very little information is available,
apart fromwhat can be observed from the outside.More insight could
be obtained if the objective of the detumble is a known satellite or
spacecraft so that the blueprints and internal structure can be ana-
lyzed, but even then there could be some unexpected amount of fuel
left in some tanks or some parts of the structure could be missing. In
general, it is impossible to know exactly all proprieties of the debris
and in particular the position of the c.m. and the inertia. The ADRC
works by using an extended state observer to reconstruct the
differences between themodeled system and the real one, by lumping
all the differences together as a single disturbance torque. Moreover,

by splitting the inertia in the expected and uncertain parts, it can be
written:

�J� _ω � ��J�� � �ΔJ�� _ω � ��J�� � �ΔJ��ω ×ω� L

�J�� _ω � �J��ω × ω� L�
I � �ΔJ�ω × ω − �ΔJ� _ω� LD � ϵI|��������������������������{z��������������������������}

�J�� _ω � �J��ω × ω� L�
I � d (12)

This way, the real system can be described using the expected
values plus an unknown d that includes all unexpected contributions
to the dynamics of the system. The extended state observed, taken
from [32,34] is given by(

�J�� _ω� � �J��ω� × ω� � L�
I � d� � β1�ω − ω��

_d� � β2�ω − ω�� (13)

So, by comparing the real angular velocity ω of the debris (given
by the sensors on the service spacecraft) to the expected one ω�, an
estimate _d�

of the disturbance derivative _d is obtained, and once
integrated, fed into the controller to correct the computed value of the

Lyapunov function _T� that is now written as

_T� � ωT�L�
I � d�� (14)

Again, the controller checks the value of _T� for positive and
negative service electric potentials, and picks the one that gives a

negative _T�. There are some drawbacks in this though, because
as the value of d� is received as an input from the controller, it acts
as a constant, when in reality it also depends from the chosen
potential.
The system is then forced to assume thevalue ofd� originated from

the last time step of integration, generating some inaccuracies that
could prove significant if the state of the object couple changes very
quickly. To avoid this, the ADRC would need to be able to estimate
the separate components of d� [given in Eq. (12)], so that the
component relative to the deviation torque L�

I could be changed.
The authors have not found a way to achieve this yet.
In the cases examined, the evolution of the system is so slow

that this does not seem to hinder the efficiency of the control;
regardless, it is still something to take into consideration during the
analysis.
This updated Lyapunov derivative, when added and subtracted to

the real kinetic energy derivative, gives

_T � ωTL � ωT�L� L�
I � d� −L�

I − d�� (15)

Expanding the contributions of L and the lumped sum d� into its
components (The term ϵ�I is not included because it is several order of
magnitudes smaller than other components of d�, and so it is not
picked up by the state observer, unless the precision given is very
high.), and deleting the perpendicular term, it becomes

_T � ωT�LI � Ld � L�
I � d� −L�

I − d��
� ωT�L�

I � d�� � ωT�LI −L�
I �Ld − L�

d � �ΔJ�� _ω�
� ωT�L�

I � d�� � ωT�ϵI � ϵd � �ΔJ�� _ω� (16)

Similarly to before, there is a first term that is always negative
because it is selected as such by the controller (has a value of

around −5 × 10−5 �kg ⋅m2�∕s2 for the case shown as follows), and
a second one given by the estimation errors of ideal deviation

torque (10−7 �kg ⋅m2�∕s2) and the estimated inertia uncertainty (2 ×
10−5 �kg ⋅m2�∕s2). The error in torque estimation depends greatly
on how quickly the torque imposed changes, and so it will be higher
when the system switches potential very quickly. In this example,
the last contribution is the most significant and the one that is most
likely to degrade the performances of the system; this is a product of
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the way the ADRC estimates the unknown d. Because it is a lumped
sum, there is no way to select the different contributions, and so the
term given by the change in inertia is present and it cannot be
decreased without obtaining a better knowledge of the debris mass
proprieties.
The plots in Fig. 15 show some of the cases analyzed and give a

plain picture of how this improved control law is able to handle
increasing deviations of the c.m. and inertia uncertainties. Again, the
specifics are given in the Appendix.

TheADRC is able to effectively detect and use the unexpected c.m.
deviation, and the higher the deviation is, the easier it is for the system
to control and detumble the debris. As it can be seen, all the cases on
the bottom row where the deviation is double in magnitude (but
has the same direction) are able to reduce the rotations along the
symmetry axis faster. On the other hand, the bigger the �ΔJ� is, the
more time the system needs to completely detumble the debris.
If the same deviations and inertia uncertainty are given butwith the

33 lower sphere count of Fig. 13, the results in Fig. 16 are obtained.

Fig. 13 System with c.m. deviation and controller spheres of debris reduced to 56.
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The improved control is still able to grant total detumbling in the
cases with lower inertia uncertainty, but higher �ΔJ� can considerably
slow down the detumbling and also lead to an increase in ω3.
So, although the ADRC has proved to be a powerful tool that

considerably improves the robustness and performance of the system,
it is still necessary to select precise-enough sphere models to ensure a
correct behavior of the system, especially when there is no precise
knowledge of the debris inertia.
It is then advisable for the service spacecraft to spend some time

before the detumbling to analyze the free rotations of the debris and
try to reconstruct an inertiamatrixwith the help of LIDARand image-
processing algorithms, like [39–41].
Also, the gains β1 and β2 do not need to be changed for each

different use, because they only depend on the speed at which the
system needs to work and that is based on the angular velocity of the
debris itself.

Fig. 15 Results with 68–84 spheres controller; 160–112 spheres physics with ADRC improved control.

Fig. 14 Angular velocity with shutoff control in unstable case.
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V. Conclusions

The SMSM has proved an effective model to describe the
charge distribution in a generic body, without any constraints on its
shape. The torques and forces acting on the objects can be correctly
computed at faster than real-time speed if the number of spheres
considered is appropriate. Using thesemodels, the Lyapunovoptimal
control law is able to correctly decrease the kinetic energy of the
debris, even when accounting for imprecision in the model used.
When the debris is axisymmetric, the controllability is greatly

reduced along the symmetry axis, because the system is not able to
generate large-enough torques. If the sphere model used is not precise
enough, the axisymmetric system is unstable to small deviations of the
c.m. along transversal axes, and so great care must be taken in selecting
modelswith an appropriate sphere count. The introduction of anADRC
improves both the robustness and performance considerably, granting a
complete detumble for all analyzed caseswith a precise-enoughmodel.
In addition, for a lower sphere count model, the unstable behavior is
avoided if the uncertainty in the inertia components is less than 10%.
In future work, more cases and different geometries should be

analyzed to gain a better understanding of how the geometry of the

service spacecraft affects the control performance. Moreover, the
impact of the attitude of the service spacecraft on the control perfor-
mance could be modeled, too. It may be possible to optimize the
detumbling control further by changing also the attitude of the service
spacecraft.
Another possible improvement could be to develop an ADRC that

does not assume the expected disturbance as a constant, given by the
previous time step, but it is able to select it based on the chosen
potential of the bodies. This would improve the effectiveness of the
system in cases where the imposed potential changes very quickly.

Appendix: Numerical Simulation Parameters

In this section, the data used to obtain the results and plots present
in the paper are given; in particular, the parameters and dimensions
of the objects that have been examined, the initial conditions that
have been considered, and the deviations and uncertainties that have
been randomly selected for testing the ADRC. In all cases, unless
stated otherwise, the initial angular velocities and initial quaternion
vector are, respectively, ωB0 � �−1.374; 1.374; 0.5� �deg ∕s� and
q0 � �0; 0; 0; 1�.

Fig. 16 Results with 68–56 spheres controller; 160–112 spheres physics with ADRC improved control.
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Table A2 Simulation data for cases with uncertainties

Parameter Value Description

Data for unstable cases in Figs. 11–13

Lc 1 × 1 × 1 m Cubic spacecraft size

Lp 2 × 1 m Solar panel size

Rd 1 m Cylinder radius

h 3 m Cylinder height

I1 125 kg ⋅m2 Debris axial inertia

I2, I3 812.5 kg ⋅m2 Debris transverse inertia

Vmax 	20 kV Maximum potential imposed

jδ1kδ2j 2 cm C.M. deviation along transversal axis

jδ3j 20 cm C.M. deviation along symmetry axes

Data for control shutoff and no inertia uncertainty case in Fig. 14

Lc 1 × 1 × 1 m Cubic spacecraft size

Lp 2 × 1 m Solar panel size

Rd 1 m Cylinder radius

h 3 m Cylinder height

I1 125 kg ⋅m2 Debris axial inertia

I2, I3 812.5 kg ⋅m2 Debris transverse inertia

Vmax 	20 kV Maximum potential imposed

jδ1j; jδ2j 2 cm C.M. deviation along transversal axis

jδ3j 20 cm C.M. deviation along symmetry axes

k 3 Shutoff condition

Data for ADRC case in Figs. 15 and 16

Lc 1 × 1 × 1 m Cubic spacecraft size

Lp 2 × 1 m Solar panel size

Rd 1 m Cylinder radius

h 3 m Cylinder height

I1 125 kg ⋅m2 Debris axial inertia

I2, I3 812.5 kg ⋅m2 Debris transverse inertia

Vmax 	20 kV Maximum potential imposed

δ [ 4; −2.5 6 ] and [8] cm C.M. deviations considered

�ΔJ1� percentage 5–10–12.5% Uncertainty on all elements of inertia matrix for Fig. 15

�ΔJ2� percentage 2.5–5–10% Uncertainty on all elements of inertia matrix for Fig. 16

β1, β2 0.5–50 Full state observer gains

Table A1 Simulation data for cases with no uncertainties

Parameter Value Description

Data for sphere and cylinder debris case in Fig. 9

Rs 2 m Spherical spacecraft radius

Rd 1 m Cylinder radius

h 3 m Cylinder height

I1 125 kg ⋅m2 Debris axial inertia

I2, I3 812.5 kg ⋅m2 Debris transverse inertia

Vmax 	20 kV Maximum potential imposed

R1 − R3 0.5909 m External sphere radius

R2 0.6512 m Middle sphere radius

l 1.1569 m External sphere offset from center of cylinder

Rdeb 1.7334–1.4313 Capacitance match parameter for debris spheres (56–112)

Rserv 1.9–1.9 Capacitance match parameter for service spheres (60–100)

Data for cubic spacecraft and cylinder debris case in Fig. 10

Lc 1 × 1 × 1 m Cubic spacecraft size

Lp 2 × 1 m Solar panel size

Rd 1 m Cylinder radius

h 3 m Cylinder height

I1 125 kg ⋅m2 Debris axial inertia

I2, I3 812.5 kg ⋅m2 Debris transverse inertia

Vmax 	20 kV Maximum potential imposed

Rdeb 1.628–1.4313 Capacitance match parameter for debris spheres (84–112)

Rserv 1.3180–1.3420 Capacitance match parameter for service spheres (68–160)
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The integration method used is ode113 with relative and absolute
tolerances of 10−9 and 10−8.
Also, when inertiamatrix uncertainties are considered, the unknown

real �J� is obtained by adding a certain percentage of the mean inertia
value of the ideal one to all elements multiplied by a random number
between 0 and 1.
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