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a b s t r a c t

Circumnavigation relative motion is considered for applications such as inspecting a space
object for damage, or characterizing space debris before engaging a remediation opera-
tion. Faster-than-natural circumnavigation is a guidance method in which the deputy
spacecraft is advanced ahead of the natural Keplerian relative motion. A state transition
matrix method of generating a discrete way point guidance solution is proposed for faster-
than natural circumnavigation. The state transition matrix methodology is applied to both
circular and elliptical chief orbits. For the circular chief case, natural relative trajectories
are planar in nature. With the faster-than-natural circumnavigation, this work illustrates
how the required relative trajectories become three-dimensional curves. This methodol-
ogy allows for closed-form impulsive control solutions and the associated fuel cost.
Numerical simulations illustrate and validate the proposed method.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Circumnavigation orbits are useful for inspection type
missions, formation flying science and Earth observation,
engaging in servicing missions, or even performing the
proposed electrostatic tugging and formations [1]. The lim-
itation of these circumnavigation relative orbits is that the
natural motion solutions require one orbit period to com-
plete. Further, the natural motion solutions may not provide
the relative way points needed by the deputy satellite to
obtain the desired relative orbit. A variety of methods exist
for relative orbit control for missions such as PRISMA, Ter-
raSAR-X, and the Magnetospheric Multiscale Mission [2–5].
A wide range of relative orbit formulations and control
methodologies exist for such missions; however, this study
ll rights reserved.

T. Bennett),
considers an impulsive approach to relative motion control
through prescribing relative orbit way points and desired
flight time.

This study utilizes the state transition matrix formula-
tion to perform faster-than-natural circumnavigation via a
set of pre-defined way points. Several authors have
explored the faster-than-natural relative orbits providing
initial insight into continuous thrusting solutions. Ref. [6]
investigates using a bi-elliptic method to find a 2-impulse
sequence to join 2 natural elliptic relative motions, yielding
a faster-than-natural circumnavigation. Straight uses the
relative motion state transition matrix (STM) for the circular
chief case to develop impulsive control solutions to yield a
non-natural circular circumnavigation solution [7]. Here a
general set of way points can be applied to both circular and
elliptical chief orbits, and the STM is used to determine the
required changes in velocity at each way point. Ref. [8] also
uses the circular chief STM to investigate using a series of
way points to perform a faster-than-natural approach to
another space object. STM methods that scale to elliptic
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Fig. 1. Local vertical local horizontal rotating frame for formation flying.
[12].

Fig. 2. Illustration of relative motion way points.
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orbits are investigated in Ref. [9]. More recently, Danne-
miller discusses the general STM approach to planning a
multi-maneuver relative trajectory in Ref. [10].

Faster-than-natural circumnavigation presents addi-
tional flexibility in the design of formation flying relative
orbits. The STM-based approach provides opportunities for
discrete guidance solutions with impulsive maneuvers.
Consider two spacecrafts in formation in the rotating local
vertical local horizontal (LVLH) frame defined in Fig. 1.
Given the Keplerian orbits of the two spacecrafts, the
relative orbit of the deputy spacecraft remains constant
and bounded. This paper investigates a method of advan-
cing the deputy spacecraft to discrete points along the
natural relative orbit in a faster time than otherwise fea-
sible with the natural uncontrolled propagation of
Keplerian motion. The concept of faster-than-natural cir-
cumnavigation is illustrated by the forced trajectory
shown in Fig. 2. The natural relative motion for the deputy
spacecraft, under the assumption of Keplerian orbits, fol-
lows the dotted red trajectory around the chief spacecraft.
Applying precise Δv maneuvers at way points, shown as
blue points, enables the deputy spacecraft to reach the
subsequent way point at a prescribed time denoted as ti
earlier than otherwise possible. The time reduction to
complete the faster-than-natural circumnavigation is cap-
tured in a unitless speed up factor.

The application of faster-than-natural circumnavigation
for both circular and elliptical chief orbits is investigated. In
this study the Keplerian relative motion STM is developed
based on the orbit element difference approach to be gen-
erally applicable. Of interest is the maneuver cost and time
benefit from a non-natural relative orbit period while
requiring the satellite still visit targeted way points of the
naturally occurring relative trajectory. The naturally occur-
ring relative orbits are planar, and the impact of changing
the way point visit time on the relative trajectory is inves-
tigated. Alfriend and Gim develop the relative motion STM
in Ref. [11] assuming both point-mass and J2 gravitational
influences, even if eccentric chief motions is considered. In
this paper, as control solutions implement non-natural
relative trajectories, the impact of the J2 perturbation is
assumed to be minimal between two impulsive control
burns. While this study utilizes a simplified Alfriend and
Gim STM formulation, the general methodology is applic-
able to any system accompanied by an STM. The simplified
Gim/Alfriend STM is useful in developing analytical fuel
consumption predictions over considered chief eccentricity
with variable speed up factor cases. Further, the approach
scales to elliptic chief motions as well. While closed form
solutions are feasible, their analytical expressions can be
rather lengthy. The faster-than-natural way point naviga-
tion is explored in simple two way point scenario with a
highly eccentric chief to provide the elliptical chief insight
with available simplifications. The impact of the eccentric
chief motion on the inter-way point trajectories is investi-
gated both in the geometrical distortion of the relative orbit
and in the maneuver cost required. The influence of both
the speed up factor and eccentricity are considered. Relative
motion with an eccentric chief becomes quick complex. The
goal of this study is to show how the presented metho-
dology can be applied to eccentric chief cases, and highlight
some interesting challenges that arise with non-zero
eccentricities. Numerical simulations are used to demon-
strate the resulting solutions.
2. Circumnavigation way points

This study examines how a deputy spacecraft performs
relative orbit maneuvers such that resulting circumnaviga-
tion is either faster or slower than the natural relative orbit
period. The maneuver sequence is set up through a series of
Nwp way points relative to the chief satellite as shown in
Fig. 2. The illustration shows a 2D in-plane relative trajec-
tory; however, these way points can also contain out of plane
z components. For simplicity in this study, uniform time
segments are assumed between way points. If P ¼ 2π

n is the
natural relative motion period with mean motion n, then
TrP is the period required to circumnavigate through these
way points. The time between way points is distributed
uniformly such that the elapsed time of each segment is

Ti ¼
T

Nwp
ð1Þ

The time Ti for circular chief motion represents an intuitive
geometrical division of the relative orbit. As is seen in later
sections, equal segment time does not necessarily corre-
spond to equal geometrical spacing. The deputy circumna-
vigation time will be less than the natural period prescribed
by the speed up factor 0oso1 such that

s¼ P
T

ð2Þ

The speed up factor provides the natural motion for s¼1,
slower than natural for so1, and faster-than-natural for
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s41. The sped up time between way points is expressed in
terms of the chief mean orbital motion n and the number of
way points Nwp as

Ti ¼
2π

nNwps
ð3Þ

Intuitively, increasing the speed up factor requires more ΔV .
Also, the spacing of way points influences the ΔV budget.
The influence from both the speed up and number of way
points is addressed in later sections.

The time between way points is defined by the desired
speed up factor. The relative motion is propagated and
studied using the circular chief state transition matrix
(STM) for the deputy spacecraft between way point man-
euvers. Utilizing ΔVi maneuvers at the way points
between STM coast periods completes the faster-than-
natural circumnavigation. The uniform spacing of the
way points simplifies the following analysis, however the
methodology is applicable to non-uniform way point
spacing. The methodology is also expanded to an elliptical
chief case presented in later sections.
3. Relative motion state transition matrix

The ΔV budget can be expressed analytically given the
prescribed relative orbit and speed up factor. The motion
can be propagated through the use of a state transition
matrix that maps the current deputy position forward in
time assuming Keplerian motion. The STM further pro-
vides the required relative position and velocity state of
the deputy at the respective way points given the
sequence of maneuvers. This is achieved by first allowing
the relative motion state vector to be

X ¼ x y z _x _y _z½ �T ¼ rT vT
� �T ð4Þ

The state transition matrix ½ΦX ðt; t0Þ� maps initial
Xðt0Þ ¼ X0 states into the current states XðtÞ at time t
through

XðtÞ ¼ ½ΦX ðt; t0Þ�X0 ð5Þ
An elegant analytical solution to the STM is available when
derived from orbit elements. Consider the semi-non-
singular orbit element set [12]

¼ fa; θ; i; q1; q2;Ωg ð6Þ
where a is the semi-major axes, θ¼ ωþ f is the true lati-
tude with the argument of periapse ω, true anomaly f , the
inclination angle i. Defining q1 ¼ e cosω and q2 ¼ e sinω as
measures of eccentricity e and argument of periapses with
Ω as the ascending node angle completes the set.

In formation flying applications, the relative motion is
small compared to the orbit radii and the linearized
mapping ½Að ðtÞÞ� provides a convenient method to map
orbit element differences into the Cartesian LVLH frame
position and velocity counter parts [12–14]. The orbit
element difference δ ðtÞ is obtained by differencing the
deputy and chief orbit element sets with linearization
about the chief element set.

XðtÞ ¼ ½Að ðtÞÞ�δ ðtÞ ð7aÞ
X0 ¼ ½Að ðt0ÞÞ�δ 0 ð7bÞ

The orbit element description has the benefit by assuming
Keplerian motion all elements are constant, except for the
anomaly measure (θ in the given set). Using the line-
arized mapping in Eq. (7a), the state transition matrix ½ΦX �
can be found using

½ΦX ðt; t0Þ� ¼ ½Að ðtÞÞ�½Φδ ðt; t0Þ�½Að ðt0ÞÞ��1 ð8Þ

The matrix ½Að ðtÞÞ� is defined in parts by [12, pp. 689–
690]:

½Að ðtÞÞ� ¼
A11 A12

A21 A22

" #
ð9aÞ

½A11� ¼
R=a VRR=VT 0
0 R 0
0 0 Rsθ

2
64

3
75 ð9bÞ

½A12� ¼
�Rð2aq1þRcθÞ=p �Rð2aq2þRsθÞ=p 0

0 0 Rci
0 0 �Rcθsi

2
64

3
75
ð9cÞ

½A21� ¼
�VR=ð2aÞ ð1=R�1=pÞh 0
�3VT=ð2aÞ �VR 0

0 0 VTcθþVRsθ

2
64

3
75 ð9dÞ

½A22� ¼
ðVRaq1þhsθÞ=p ðVRaq2�hcθÞ=p 0

ð3VTaq1þ2hcθÞ=p ð3VTaq2þ2 hsθÞ=p VRci
0 0 ðVTsθ�VRcθÞsi

2
64

3
75

ð9eÞ

where the short-hand notation cθ¼ cos θ and sθ¼ sin θ is
used, along with the definitions

R¼ r¼ að1�q21�q22Þ
1þq1cθþq2sθ

ð10aÞ

VR ¼
h
p

q1sθ�q2cθ
� � ð10bÞ

VT ¼
h
p

1þq1cθþq2sθ
� � ð10cÞ

p¼ að1�e2Þ ð10dÞ

h¼ ffiffiffiffiffiffi
μp

p ð10eÞ

Here the orbit has semi-major axis a and eccentricity e
about the central body with gravitational parameter μ. The
inverse of ½Að ðtÞÞ� is taken to obtain ½Að ðtÞÞ��1 with
analytical solution in Ref. [14].

The orbit element description has the benefit of
assuming Keplerian motion where all orbit elements are
constant except for the anomaly measure (θ in the given

set). Thus, the state transition matrix for the differential
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orbit elements δ assumes the simple form [12, p. 697]

½Φδ ðt; t0Þ� ¼

1 0 0 0 0 0
A B 0 C1 C2 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666664

3
777777775

ð11Þ

where

A¼ �3
2
aη
r2
nt ð12aÞ

B¼ r0
r

� �2
ð12bÞ

C1 ¼
1

r2η2
rsθðrþað1�q21ÞÞ�r0sθ0ðr0það1�q21ÞÞ
�

þaq1q2ðrcθ�r0cθ0Þþq2ðr�r0Þðaþrþr0Þ
�

C2 ¼
1

r2η2
�rcθðrþað1�q22ÞÞþr0cθ0ðr0það1�q22ÞÞ

�
�aq1q2ðrsθ�r0sθ0Þ�q1ðr�r0Þðaþrþr0Þ

� ð12cÞ

using the following definitions in terms of :

η¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�q21�q22

q
ð13Þ

r¼ aη2

1þq1 cos θþq2 sin θ
ð14Þ

r0 ¼
aη2

1þq1 cos θ0þq2 sin θ0
ð15Þ

Note that this solution to ½Φδ � assumes that θðtÞ is found
separately by solving Kepler's equation. For circular chief
motion, the implementation of Kepler's equation reduces
simply to the change in time at a mean motion as analo-
gous to change in angle. The more complicated inclusion of
time of flight is discussed in the specific derivation of the
elliptical chief motion. Therefore, the state transition
matrix ½ΦX � can be found using

½ΦX ðt; t0Þ� ¼ ½AðtÞ�½Φδ ðt; t0Þ�½Aðt0Þ��1 ð16Þ

Using the linearized mapping in Eq. (7a) and extensive
algebraic simplification of Eq. (8) provides the state tran-
sition matrix for general spacecraft motion. This metho-
dology applies generally to Keplerian linearized relative
motion. The only restriction to the presented methodology
is that the inclination angle must be non-zero, ia0,
because of the coti in the inverse of ½Að ðtÞÞ�. However,
this constraint is irrelevant when i¼0 is set in ½Að ðtÞÞ�
before inversion as is done for circular chief relative
motion and the planar relative motion discussed in the
elliptical chief development.

Utilizing the analytical form of the state transition
matrix, we can solve for the next way point position riþ1

in terms of the current way point position ri and the
corresponding departure velocity vþ

i using impulsive
burns.

riþ1 ¼ ½ΦX;11ðtiþ1; tiÞ�riþ½ΦX;12ðtiþ1; tiÞ�vþ
i ð17Þ

Given the ri and riþ1 way point information, this can be
solved for the current way point desired open-loop
departure velocity vþ

i using

vþ
i ¼ ½ΦX;12ðtiþ1; tiÞ��1 riþ1�½ΦX;11ðtiþ1; tiÞ�ri

� � ð18Þ
where ½ΦX;12ðtiþ1; tiÞ��1 maps the position error back to
the present state. Applying the impulsive burn, the
expected arrival velocity at the next way point is given by

v�
iþ1 ¼ ½ΦX;21ðtiþ1; tiÞ�riþ½ΦX;22ðtiþ1; tiÞ�vþ

i ð19Þ
Thus, the open-loop burn Δvi at the ith way point is given
by

Δvi ¼ vþ
i �v�

i ð20Þ
with the total ΔV budget as the sum of all way point burn
magnitudes. Considered in the following sections are three
implementations of the proposed methodology. First pre-
sented is the circular chief case with both four and two
way point solutions. Following is the elliptic chief case
results using two way points.
4. Circular chief circumnavigation

The simplest relative orbit to consider first is the
motion around a circular chief. Significant simplification of
Eq. (8) is possible using r-a, r0-a, and with zero
eccentricity q1-0, and q2-0. The resulting STM for line-
arized motion around a circular chief is [15]

½ΦX � ¼
ΦX;11 ΦX;12

ΦX;21 ΦX;22

" #
ð21aÞ

½ΦX;11� ¼
4�3 cos ðntÞ 0 0
6ð sin ðntÞ�ntÞ 1 0

0 0 cos ðntÞ

2
64

3
75 ð21bÞ

ΦX;12
� �¼

sin ðntÞ
n

2ð1� cos ðntÞÞ
n 0

�2ð1� cos ðntÞÞ
n

4 sin ðntÞ
n �3t 0

0 0 sin ðntÞ
n

2
664

3
775 ð21cÞ

½ΦX;21� ¼
3n sin ðntÞ 0 0

�6nð1� cos ðntÞÞ 0 0
0 0 �n sin ðntÞ

2
64

3
75 ð21dÞ

½ΦX;22� ¼
cos ðntÞ 2 sin ðntÞ 0

�2 sin ðntÞ 4 cos ðntÞ�3 0
0 0 cos ðntÞ

2
64

3
75 ð21eÞ

Recall that in the circular chief case, the change in the
anomaly angle is Δf ¼ΔM¼ nt. The change in the angle is
easily obtained from Kepler's equation for any point-to-
point state transition in a circular orbit. Therefore the
simplification Δf ¼ nt ¼ α is employed enabling any point-
to-point transition. The constant ½ΦX;ij� state transition sub-
matrices are then simplified to

½ΦX;11� ¼
4�3 cos ðαÞ 0 0
6ð sin ðαÞ�αÞ 1 0

0 0 cos ðαÞ

2
64

3
75 ð22aÞ
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ΦX;12
� �¼

sin ðαÞ
n

2ð1� cos ðαÞÞ
n 0

�2ð1� cos ðαÞÞ
n

4 sin ðαÞ
n �3α

n 0

0 0 sin ðαÞ
n

2
664

3
775 ð22bÞ

½ΦX;21� ¼
3n sin ðαÞ 0 0

�6nð1� cos ðαÞÞ 0 0
0 0 �n sin ðαÞ

2
64

3
75 ð22cÞ

½ΦX;22� ¼
cos ðαÞ 2 sin ðαÞ 0

�2 sin ðαÞ 4 cos ðαÞ�3 0
0 0 cos ðαÞ

2
64

3
75 ð22dÞ

The following algorithm makes use of the inverse of
½ΦX;12�. The analytical inverse solution is given as

½ΦX;12��1 ¼ 1
κ

nð3α�4 sin αÞ 2nð1� cosαÞ 0
�2nð1� cosαÞ �n sin α 0

0 0 κncscα

2
64

3
75
ð23Þ

with

κ¼ 8 cos αþ3α sin α�8 ð24Þ
The analytical form for the open loop Δv enables fuel

and time cost analysis and enables parameter tuning.
Visualization of these results is presented in the following
sections.
Table 1
Analytical Δvi Burn Solution for a 4-Way point Circumnavigation
Maneuver.

Time Δvi � ôr Δvi � ôθ Δvi � ôh

t0 A0n
κ

3α sin αð Þ�3α�4β1
� � 2A0nβ1

κ

�B0ncscα

t1 2A0n
κ

4β1þ3α cos α
�

)
0 2B0ncotα

t2 0 �4A0nβ1
κ

0

t3 �2A0n
κ

4β1þ3α cos α
� � 0 �2B0ncotα

t4 A0n
κ

3α sin αð Þ�3α�4β1
� � 2A0nβ1

κ

B0ncscα
5. Simulated 4 way point study

Simulation of the open-loop Δv computation provides
visualization of the faster-than-natural circumnavigation
concept. Consider the circular chief case where Nwp ¼ 4
with A040 and B040. In the current study the way points
are assumed to have even temporal spacing throughout
the maneuver. The maneuver time Ti between way points
is given in Eq. (3). Assuming a general number Nwp of way
points leads to

t ¼ Ti ¼
1
n

2π
Nwps|fflffl{zfflffl}

α

¼ α

n
ð25Þ

For the specific case where Nwp ¼ 4, then

α¼ π

2s
ð26Þ

The motion between the way points is computed using the
STM mapping

XðtÞ ¼ ½ΦX ðt; tiÞ�XðtiÞ 8tiototiþ1 ð27Þ
The faster-than-natural circumnavigation study focuses on
the open-loop impulsive burns where Eq. (5) is also used
to generate the reference motion. The presented form in
Eq. (27) allows for any reference motion to be prescribed
from any set of initial relative orbit conditions. This form is
also employed in the elliptic chief case.

A variety of relative orbits are available for study.
Considered here is a generic 2-1 planar ellipse with an
equivalent radial and normal component magnitude. The
mean motion of the chief is fixed at n¼0.0007 rad/s. The
considered four way point positions are given in sequence
by

rðt0Þ ¼ �2A0ôθ ð28aÞ

rðt1Þ ¼ �A0ôr�B0ôh ð28bÞ

rðt2Þ ¼ þ2A0ôθ ð28cÞ

rðt3Þ ¼ A0ôrþB0ôh ð28dÞ

rðt4Þ ¼ �2A0ôθ ð28eÞ
The prescribed points reside on the nominal trajectory.
Enforced are the endpoint velocities to start from and end
on the nominal relative orbit.

vðt�0 Þ ¼ vðtþ0 Þ ¼ �nA0ôr�nB0ôh ð29Þ
The “�” super-script indicates the LVLH frame velocity
prior to a burn, and the “þ” super-script indicates the
post-burn LVLH frame velocity.

Provided an analytical expression for the STM in
Eq. (22a), desired is the total ΔV required to perform a
particular faster-than-natural circumnavigation. To sim-
plify the following descriptions, the two parameter defi-
nitions are introduced

β1 ¼ 1� sin α� cos α ð30aÞ

β2 ¼ 1þ sin α� cos α ð30bÞ
The analytical prediction for the four way point ΔV

utilizes the definition in Eq. (20). The analytical ΔV
requirement at each way point is tabulated in Table 1 for
the prescribed way point sequence in Eq. (28a). To evalu-
ate the total fuel cost, the Δvi's about all body axes are
summed using

Δvtotal ¼
XNwp

i ¼ 0

jΔvi � ôrjþjΔvi � ôθjþjΔvi � ôhj ð31Þ

Using the analytical form in Table 1, the total Δv simplifies
to

Δvtotal ¼
2A0n
jκj 4jβ1jþ2j4β1þ3α cos ðαÞjþj3αþ4β1

�
�3α sin ðαÞjÞþ2B0n jcotðαÞjþj1�cscðαÞjð Þ ð32Þ

The particular multi-burn circumnavigation strategy is
implemented in Mathematica. The speedup factor is set to
s¼1.7 for faster-than-natural and s¼0.75 for slower-than
natural. The relative orbit parameters are set to A0 ¼ B0 ¼
10 meters. The resulting relative motion is illustrated in Fig. 3



Fig. 3. Open-loop forced four way point circumnavigation Illustration using A0 ¼ B0 ¼ 10 meters. (—- s¼1.7, —- s¼0.75, —- natural motion).

Fig. 4. Maximumwarping away from the nominal circumnavigation plane.

Fig. 5. Total ΔV for the four way point circular chief. Nominal is shown by
—-.
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with nominal in grey. Fig. 3 does not provide clear visualiza-
tion of the inertial transfer orbits to transition between way
points. However, it does provide significant insight into the
warping of the relative motion required for faster-than-natural
circumnavigation. The in-plane projection in Fig. 3(a) shows
that the sped up circumnavigation shown in red requires
sharper trajectory changes at the way points on the along-
track axis. The along-track view in Fig. 3(b) shows that in order
to meet the out-of-plane way points, the relative motion is not
longer a planar curve, but rather a three-dimensional curve.
The planar view in Fig. 3(a) exhibits the expected squeeze in
the relative motion plane. More interestingly, the along-track
view in Fig. 3(b) reveals the true warping. The slower than
natural motion warps in the opposite manner to the faster-
than-natural motion. The planar motion seen in Fig. 3
(a) shows that the relative motion expands with the local
velocity at each way point driving the spacecraft out away
from the nominal. The along-track view in Fig. 3(a) shows how
the spacecraft shifts largely out-of-plane to delay the arrival.

Sweeping through the speed up factors above unity
reveals that the maximum warping of the along-track view
occurs with s¼2. This is evidenced in Fig. 4. The value s¼2
physically describes a series of transfer orbits that phase the
deputy spacecraft by half a period. As expected with the
circular chief, the faster-than-natural relative motion is
symmetric. This symmetry breaks down for the elliptic chief
case. Increasing the speed up factor such that s42 transi-
tions the relative orbit geometry towards hyperbolic point-
to-point trajectories. This manifests an along-track view
warping that decreases back into the nominal plane. The
slower-than-natural solutions, so1, exhibit an exponential
divergence from the nominal relative orbit as the new tra-
jectory approaches the infinite size relative orbit at s¼0.

The decrease in speed up factor from unity introduces a
greater sensitivity in geometry change and ΔV require-
ment than does the increase in speed up factor. This is
evidenced in Fig. 5 where variations in the speed up factor
and relative orbit sizing are considered. The nominal s¼1
does not require any burns and is marked with the dashed
red line. The asymmetry in speed up factor and the
increased requirement for larger orbits are visible in Fig. 5.
Consistent with the more substantial relative orbit change
seen in Fig. 3 for the slower circumnavigation, Fig. 5
highlights the more rapidly increasing ΔV requirement for
the same increment of change in the speed up factor.
Recall that the speed up factor appears in the denominator
of the time of flight. It is therefore expected that



Fig. 6. Open-loop forced four way point circumnavigation CW parameter
distortion.
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decreasing s towards zero will have an inverse power
increase in ΔV with an inverse power decrease towards
larger speed up factors. Further exhibited is the increase in
ΔV as the geometry enlarges. This is as expected as greater
distance reduction is required for larger geometries with
the same speed up factor.

The geometric change in the relative orbit is further
visualized by inspecting the change in the Clohessy-
Wiltshire (CW) parameters as a function of the speed up
factor. Recall the general form of the CW equations, as
shown in Eq. (33a), which provide the relative motion of a
deputy satellite as a function of time and constant para-
meters [16].

xðtÞ ¼ A0 cos ðntþαÞþxoff ð33aÞ

y tð Þ ¼ �2A0 sin ntþαð Þ�3
2
ntxoff þyoff ð33bÞ

zðtÞ ¼ B0 cos ðntþβÞ ð33cÞ
The parameters A0 and B0 prescribe the elliptical size of

the relative motion whereas the xoff and yoff prescribe the
offsets and drift. The distortion of the typical elliptical
shape seen in Fig. 3 appears when either the relative
motion is sped up or slowed down. The alteration to the
relative motion is further illustrated by mapping the
change into the CW parameter space.

Solving for the inverse mapping of the CW equations in
Eq. (33a) transforms the LVLH frame state into a CW
parameter state. The inverse mapping assumes the form

A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9n2x2þ _x2þ12nx _yþ4 _y2

q
n

ð34aÞ

α¼ tan �1 _x
�3nx�2 _y


 �
�nt ð34bÞ

B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2z2þ _z2

p
n

ð34cÞ

β¼ tan �1 � _z
nz


 �
�nt ð34dÞ

xoff ¼ 4xþ2
_y
n

ð34eÞ
yoff ¼ �2
_x
n
þyþ 6nxþ3 _yð Þt ð34fÞ

Using the inverse mapping, the sped up way points are
mapped into the CW parameter values. The distortion in
these parameters, and therefore the geometrical distor-
tion, is shown in Fig. 6 for the ellipse sizing and Fig. 7 for
the offsets.

Decreasing the speedup factor towards zero introduces
an asymptotic divergence of the elliptical scaling para-
meters as visible in Fig. 6. Using a speedup factor of 0.6,
the far left in Fig. 6 shows the A0 parameter tending
towards zero as the B0 tends toward infinite. This physi-
cally represents the distortion seen in Fig. 3(b) where the
out of plane motion tends towards an arc with increasing
magnitude perpendicular to the nominal relative orbit
plane. The A0 parameter shrinks towards zero allowing a
drift towards the way points with the offset parameters.

The offset parameters are shown in Fig. 7(a) and (b),
respectively. The offset parameters take on 2 values: the
first half from way point 0 to way point 2 and the second
half going from way point 2 to way point 4. The sig-
nificance is that the CW parameterized relative motion has
an offset and drift that characterizes faster-than-natural
motion. There is no discontinuity in the value for the off-
sets through a particular relative orbit. Inserting impulsive
maneuvers in the LVLH frame introduces new velocity
components into the inverse mapping to the CW para-
meters. The impulsive maneuver at the midpoint of the
relative motion, way point 2 in this case, provides the
change in offset and drift required.

An example of a circular chief faster-than-natural cir-
cumnavigation via way points is presented. Given the
trajectory magnitudes considered, Fig. 5 demonstrates the
speed up is feasible with less than 250 mm/s. The fol-
lowing sections introduce the elliptic chief case and
another circular chief case used for comparison.
6. Circular 2 way point study to compare with an
elliptic chief

The more general form for faster-than-natural cir-
cumnavigation is desired to enable implementations with
an elliptic chief. As mentioned in the derivation of the
state transition matrix form, the elliptic chief does not
have a linear relationship between time of flight and true
anomaly change. Therefore, the elliptic chief way points
are set to periapse and apoapse for simplicity in the STM
although the proposed methodology applies generally.

Consider first a comparison case where the chief is held
circular and only the periapse and apoapse way points are
used: a true anomaly of 0 and π for the circular chief.
Utilizing the decoupling in the natural relative orbit, the
out-of-plane motion is removed to provide isolation of the
eccentric influence on planar relative motion. The mean
motion of the chief is fixed at n¼0.0007 rad/s and the
considered two way point positions are given in sequence
by

rðt0Þ ¼ �2A0ôθ ð35aÞ



Fig. 7. Open-loop forced four way point circumnavigation CW parameter distortion.

Fig. 8. Open-loop forced two way point circumnavigation using A0 ¼ 10
and B0 ¼ 0 m. (—- s¼1.7, —- s¼0.75, —- Natural Motion).

Fig. 9. Total ΔV for the two way point circular chief. Nominal is shown by
—-.
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rðt1Þ ¼ þ2A0ôθ ð35bÞ

rðt2Þ ¼ rðt0Þ ð35cÞ
Again, enforced are the endpoint velocities to start from
and end on the nominal relative orbit.

vðt�0 Þ ¼ vðtþ0 Þ ¼ �nA0ôr ð36Þ
Similar to the development employed in Table 1, an

analytical expression for the two way point circular chief
ΔV is available and is not included here. The prescribed
nominal relative motion and the relative orbits with a
speed up factors of s¼1.7 and s¼0.75 are shown in Fig. 8.
Unlike the planar motion seen in Fig. 3(a), the faster cir-
cumnavigation traverses outside of the nominal trajectory
at the most radial nodes. The relaxation of the way points
down from 4 to 2 moves the circumnavigation closer to
the efficiency of a 2-burn phasing maneuver. The impor-
tant feature in Fig. 8 is that the relative motion remains
symmetric for each segment with the circular chief.

The reduced ΔV requirements are characterized in
Fig. 9. The respective ΔV magnitudes have diminished in
comparison to Fig. 5. Comparison of Figs. 5 and 9
demonstrates the trend towards the more efficient 2-burn
phasing solution.

The circular chief examples are fully presented with
comparisons drawn between two and four way point
solutions. The proposed faster-than-natural circumnavi-
gation STM methodology is again applied to an elliptic
chief. The results of the circular chief sections provide
examples for comparison to develop insight into the
influence of ellipticity.
7. Elliptical chief STM development

Given the circular chief cases presented, the elliptical
chief case can be considered and compared. The prescrip-
tion of the relative orbit fundamentally changes in moving
to an elliptic chief. Consider the conceptual visualization of
the faster-than-natural circumnavigation with an elliptic
chief shown in Fig. 10. The nominal way points are placed at
the periapse and apoapse locations with respective LVLH
frames. While two way points are selected for the present
elliptical chief study, the methodology applies generally to
any number of way points. The true anomaly for the
nominal relative motion propagates from 0 to π for the first
segment and π to 2π for the second segment. The faster-
than-natural circumnavigation advances the relative orbit
way points to an earlier true anomaly. The red LVLH frames
shown in Fig. 10 represent the new relative motion coor-
dinate systems at the advanced true anomaly positions.



Fig. 10. Speed up factor influence on the positions of the way points for
the elliptic chief.

Fig. 11. Open-loop forced two way point circumnavigation using
A0 ¼ 10 meters. (—- s¼1.7, —- s¼0.88, —- Natural Motion).
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Also seen in Fig. 10 is the two part propagation through
Δf ¼ π=s which is fundamental to the STM construction.

The required STMs for both the circular and elliptical
chiefs are constructed from the Eq. (8). In the circular chief
case, the time of flight and the change in anomaly angle
were linearly related. In the eccentric chief, the time of
flight and true anomaly change are not linearly related.
Further, in Eq. (10a) the gravitational parameter μ and the
semi-major axis a appear in the STM. The equations can be
non-dimensionalized by introducing the mean motion
n¼

ffiffiffiffiffiffiffiffiffiffi
μ=a3

p
. The resulting elliptic chief STM retains terms of

the form nt. The time of flight t can be removed from the
STM by inserting the geometrical change provided by
Kepler's equation. Recall, the time-of-flight for a spacecraft
under 2-Body motion is expressed by Kepler's equation

MðtÞ ¼M0þnðt�t0Þ ð37Þ
Given that the desired faster-than-natural circumnaviga-
tion requires a mapping to the true anomaly speed-up, the
definition of the eccentric anomaly from the mean
anomaly is utilized

MðtÞ ¼ EðtÞ�e sin ðEðtÞÞ ð38Þ
Further, the eccentric anomaly is related to the true
anomaly through

tan
EðtÞ
2


 �
¼

ffiffiffiffiffiffiffiffiffiffi
1�e
1þe

r
tan

f ðtÞ
2


 �
ð39Þ

The time of flight t�t0 is therefore obtained by inserting
Eq. (38) into Eq. (37) with the definitions in Eq. (39). The
use of Kepler's equation dictates that a single general STM
cannot be applied to all segments for the elliptic chief
trajectory. That is, a unique STM is constructed for each
segment. In the case of the two way point solution, the
respective STMs employed are

ΦX;1 f ¼ π

s
; f 0 ¼ 0

� �h i
ΦX;2 f ¼ 2π

s
; f 0 ¼

π

s


 �� 
ð40Þ

The speed up factor is present in the elliptic STMs such
that the midpoint maneuver happens at a shifted true
anomaly. Effectively, the speed up factor advances the true
anomaly of the relative orbit geometry. The second state
transition matrix ½ΦX;2� may often span across the chief
apoapse and introduces substantial relative motion influ-
ence for the later half of the trajectories considered.

For the following visualizations, the chief eccentricity is
set to a modest e¼0.3 with a meanmotion of n¼0.0007 rad/
s. The argument of periapse is set to zero and the inclination
of the chief orbit does not appear in the planar relative orbit
case. The considered two way point positions are given in
sequence by

rðt0Þ ¼ �2A0ôθ ð41aÞ

rðt1Þ ¼ ½ΦX;1ðf ¼ π; f 0 ¼ 0Þ�Xðt0Þ � þ2:2A0ôθ ð41bÞ

rðt2Þ ¼ rðt0Þ ð41cÞ
The nominal velocity conditions enforced are the endpoint
velocities.

vðt�0 Þ ¼ vðtþ0 Þ ¼ �nA0ôr ð42Þ
The prescribed nominal relative motion and the relative

orbits with a speed up factor of s¼1.7 and speed of s¼0.88
are shown in Fig. 11. The first segment of the faster-than-
natural trajectory appears to have similar form to the
segments seen in the circular chief. As anticipated, the
second part of the relative motion segment experiences
dramatically different character than the circular chief.
Most notable is the turn inward well inside the near 2–1
nominal ellipse. Recall that the trajectory begins in a
trailing along-track position and then transitions into the
negative radial towards the leading along track position. A
critical set of features in Fig. 11 are the kinks in the relative
motion trajectory. These kinks are indicative of apoapse
and periapse crossings. Careful inspection of the first
segment in the slower than natural trajectory reveals a
kink at the largest along-track magnitude. Utilizing a
speed up factor of s¼0.88 dictates that the first way point
is reached after the chief has passed through apoapse. The
trajectory kink marks the chief apoapse crossing. Observe
the most clear kink in the second half of the slower than
natural trajectory in Fig. 11 where the trajectory nearly
aligns with the nominal. The slowed trajectory reaches the
second way point, or the original relative position, after
the chief has passed periapse. The chief periapse crossing
introduces this kink. Careful inspection reveals that a kink
also exists in the faster-than-natural trajectory just fol-
lowing the second segment crossing a zero along-track
position. This kink event marks the chief apoapse crossing
for the faster-than-natural circumnavigation.

The effect of an elliptic chief is evidenced in the kinked
relative motion trajectories for faster-than-natural circumnavi-
gation. The behavior is further examinedwith a sweep of speed
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up factors ranging over smin ¼ 1:1 to smax ¼ 1:9 with an
increment ofΔs¼ 0:2. The collection of trajectories is displayed
in sweeping color shown in Fig. 12. Careful inspection of Fig. 12
Fig. 12. Open-loop forced two way point circumnavigation using A0 ¼ 10
and B0 ¼ 0 meters. (—- s¼1.1,—- s¼1.3,—- s¼1.5,—- s¼1.7,—- s¼1.9,
—- Natural Motion).

Fig. 13. Total ΔV for the two way point elliptic chief. Nominal is shown by
- - - - line.

Fig. 14. Two way point elliptic chief total ΔV
reveals the chief apoapse crossing in all trajectories. As expec-
ted, the larger the speed up the later in the second segment the
kink appears.

The behavior in Fig. 12 influences the ΔV requirement
sweep with clear speed up markers. Fig. 13 presents a
sweep of the speed up factor and initial position geometry.
Inspection of s¼2 in Fig. 13 reveals a kink transition in the
smooth contour. The physical significance of the s¼2
vertical is that speed up factors greater than 2 never cross
the chief apoapse. An increasing negative slope is present
immediately following the s¼2 vertical suggesting a dis-
continuity in efficiency change for such transfers. Com-
parison of Fig. 13 and the circular chief case in Fig. 9 shows
that the elliptic chief relative orbit requires greater ΔV for
the same speed up factor and semi-major axis. This is
largely attributed to the nonlinear time of flight and
maneuver efficiency change due to eccentricity experi-
enced by the deputy around and elliptic chief. To effect the
same speed up change, a greater ΔV than the circular
counterpart is required.

The influence of the chief eccentricity is highly non-
linear in the total maneuver cost. Explored in Fig. 14 is the
total ΔV required for a two way point faster-than-natural
circumnavigation as a function of chief eccentricity and
speed up factor. Fig. 14 presents 2 ranges of speed up factor
to provide clarity over the more heavily considered region
of 0:5rs and an additional presented region of 1

6rsr0:5.
Interestingly, the maneuver cost for large speed up factors
is least near an eccentricity of e¼0.5. The nonlinear
maneuver cost contours demonstrate the complexity of
the eccentric chief problem.

Important solutions exist for particular speed up factors
in the implementation of faster-than-natural circumnavi-
gation. Not clearly visible in Fig. 13 are the ΔV contours for
s¼0.5 which represents way points that double the period
of the deputy spacecraft orbit. In the presented elliptical
chief two way point solution, a speed up factor s¼0.5 is
equivalent to a 2-1 resonant orbit where the same final
phasing is obtained by not performing any way point
maneuvers. The integer resonance is seen in Fig. 14 where
the 3-1 resonance is zero-cost at s¼ 1

3, the 4-1 resonance is
versus eccentricity and speed up factor.
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zero-cost at s¼ 1
4, and the integer fraction s¼ 1

k for
k¼ 1;2;3;… capturing all the resonance orbits. While all
the resonant orbit speed up factors will equate to a zero-
cost solution with no speed up, the presented results in
Fig. 14 show a repeating character of the cost contours
between s¼ 1

2k speed up factors. This is believed to be the
result of formulating a two way point solution.

A selected case of the elliptic chief faster-than-natural
circumnavigation is presented although the formulation is
generally applicable for a variety of eccentricities and
speed up factors. The maneuver cost analysis of the pro-
posed STM methodology is demonstrated for general
faster-than-natural circumnavigation reconfigurations. In
addition, the STM solution is equipped to address the
multi-revolution solutions, phasing with a speed up of
so0:5, for either the circular or elliptic chief. The proposed
methodology is also applicable to formulations involving
any number of way points. The presented study provides
the methodology and several implementations of the
proposed faster-than-natural circumnavigation technique
to reveal some of the insights and complexities. As seen in
Fig. 14, the effect of eccentricity is nonlinear motivating
future study of alternate numbers of way points and
elliptical chief maneuver cost predictions.
8. Conclusions

The development and demonstration for impulsive
faster-than-natural circumnavigation solutions applied to
general relative orbit geometries. The general relative
motion state transition matrix is derived from an orbit-
element difference formulation for both the circular and
elliptic chief cases. Two cases are shown of circular chief
faster-than-natural circumnavigation and one case of an
elliptic chief. The results demonstrate how the natural
relative orbit trajectory warps into a three-dimensional
curve off of the nominal if the circumnavigation time is
sped up or slowed down. A maximum three-dimensional
warping is found to occur around a speed up factor of 2 for
the circular chief case. As the speed up factor is further
increased, the non-planar warping is reduced back
towards the nominal plane. Further, for the elliptic chief
case, the way point matching may result in more complex
relative trajectories due to the periapse and apoapse
regions. As shown, the total maneuver cost increases with
an increase in speed up factor with more nonlinear cost
behavior influenced by eccentricity. Future work will
consider a greater range of elliptical chief cases and will
consider eccentric anomaly, mean anomaly, and/or direct
orbit element difference formulations.
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