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Abstract Touchless detumbling of space debris is investigated to enable orbital ser-
vicing or active debris removal. Using active charge transfer between a servicer and
debris object, control torques are created to reduce the debris spin rate prior to mak-
ing any physical contact. In this work, the servicer shape is spherical and the debris
is assumed to be cylindrical and tumbling. The attitude control goal is to reduce the
debris tumbling motion while maintaining a fixed position ahead of the debris object.
Prior work has identified the feasibility of electrostatic detumble for one degree
of rotational freedom. This work extends the theory to three-dimensional tumbling
motion. Using the previously developed Multi-Sphere modeling method for electro-
static forces and torques on non-spherical objects, detumble behavior is predicted
and Lyapunov control theory and numerical simulations are used to demonstrate a
stabilizing attitude control.

Keywords Electrostatic · GEO · Touchless detumble

Introduction

Electrostatic actuation has applications in orbital servicing, fractionated satellite
concepts, formation flying applications such as telescope arrays, rendezvous and
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docking control, and many other mission concepts that involve proximity operations.
This study further develops general electrostatic relative attitude control exempli-
fied by orbital space debris mitigation and servicing for bodies in Geosynchronous
orbits. For example, defunct dual-spin spacecraft or spent upper-stage boosters form
a significant part of the GEO debris population and help motivate this study. These
objects of interest may tumble at rates of 10’s of degrees per second [1], exceeding
the servicing capabilities of current docking or grappling techniques [2]. Orbital ser-
vicing is a challenging space mission concept that requires an active host vehicle to
approach, and mechanically interface with a defunct satellite or satellite component
[3–5]. If the debris is tumbling, the process of docking onto the debris presents chal-
lenges and collision risks. Advanced docking systems, such as those being developed
by MDA, discuss a maximum tumble rate of 1 degree/second for autonomous dock-
ing [2]. A touchless method of detumbling a passive object would greatly simplify
the rendezvous and docking phase of an orbital servicer, and is the focus of this paper.
Reference [6] discusses how electrostatic torque can be controlled to apply torques
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on a spinning debris object without requiring physical contact as shown in Fig. 1.
The charging is controlled through an electron or ion gun that charges the servicer
positively or negatively and the debris positively. Such electrostatic actuation with a
passive object is called an Electrostatic Tractor (ET), and is being considered for both
large GEO debris mitigation [7–9] as well as touchless asteroid spin control [10, 11].

Electrostatic actuation of spacecraft has been explored since the 1960s. Reference
[12] shows that the Geosynchronous Orbit environment is a candidate region where
space plasma conditions enable Debye lengths on the order of 100’s of meters with
electrostatic control requiring only Watt-level power requirements. The feasibility
of electrostatic control and actuation in space has been studied by several authors
exploring both applications and charging dynamics [13–19]. The electrostatic forces
exerted on the target body are possible because spacecraft are coated with outer
conducting Mylar sheaths. The Mylar sheath is expected to remain intact and fixed
to the target object because the forces exerted are on the order of milli-newtons.
Reference [20] demonstrates that Mylar structures can sustain the voltage and forces
exerted. Electrostatic detumble control could reduce the non-cooperative spacecraft
rates prior to using other proximity or docking operations while minimizing onboard
fuel usage.

The prospect of fuel efficiency in implementing electrostatic actuation is subject
to a small increase in spacecraft complexity and highly-coupled nonlinear differ-
ential equations [21]. Electrostatic interaction between two spacecraft in a vacuum
is accurately determined using finite element methods; however, these methods are
computationally expensive and time intensive. Overcoming the modeling complex-
ity enables onboard and autonomous spacecraft control through control of relative
potentials on itself and another spacecraft or uncooperative body. Stevenson and
Schaub introduce a new method called the Multi-Sphere Method (MSM) [21, 22]
that approximates the electrostatic interaction between spacecraft with orders of
magnitude less computational time than finite element methods, enabling faster-than-
realtime attitude simulations and control developments. The multi-sphere method,
summarized in the following sections, partitions the spacecraft volume into many
electrostatically charged conducting spheres constrained by a spacecraft potential.
Using the recently developed MSM technique, Reference [6] studies the charged
relative one-dimensional rotational dynamics of a non-cooperative cylinder and a
spherical charge-controlled spacecraft. A Lyapunov control development is provided
to analytically guarantee global stability of the spin rate with the nominal ET force
is assumed to be zero. The MSM result is used in numerical simulation to validate
the expected control performance for all these 1-D despin scenarios. An experimen-
tal setup demonstrating electrostatic detumble control for 1-D cylinder rotation is
discussed in Reference [23].

The focus of this study is the generalization of the one-dimensional cylinder
detumble control to three-dimensional detumble control using Lyapunov control
techniques and the MSM electrostatic force model. The study considers a non-
cooperative tumbling cylinder and a spherical control spacecraft, or servicer, sepa-
rated by a fixed distance, analogous to the GEO rocket body scenario. As in earlier
studies, the objects are assumed to be in deep space, and additional perturbations
are assumed to be negligible. Applying electrostatic detumble to a deep space case
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decouples the orbital motion to study the effects of a 3-D detumble control law and to
gain intuition about steady-state behavior. Future studies will apply the 3-D detum-
ble control in the GEO regime where the Debye length is most favorable and the
orbital motion influence can be studied. The focus of this work is to investigate how
general three-dimensional rotation can be arrested with a servicer sphere at a fixed
relative location. This work serves as a key step towards the development of modeling
and control strategies of general 3-dimensional geometries that may include flexible
appendages. Greater complexity may later be added by including flexible structures
and residual propellent dynamics. The more complexity introduces resonance con-
siderations. However, the tumble rates currently considered are less than 10◦/sec with
detumble dynamics often 2 orders of magnitude slower than resonant frequencies
near 1 Hz leaving the interesting questions about on-rigid dynamics and resonance
to future studies. Electrostatic detumble benefits in cases where energy dissipation
from non-rigid body dynamics is present. Reference [6] postulates a simplified rigid
body electrostatic torque model with separation of the voltage and attitude dependent
components. This assumption is shown to be good if the separation distance is at
least 3-4 craft radii. In this paper this separation of voltage and attitude dependency
of the electrostatic torque is investigated in more detail for debris undergoing three-
dimensional rotations. Of interest are how torque equilibria impact the convergence
of the general tumbling scenario, the stability of such equilibria, and the development
of a general detumble ET control algorithm. The following sections detail the Multi-
Sphere Method, the torque development, and proposed control structure. The paper
concludes with numerical simulations and analysis.

Overview of the Multi-Sphere Method

The Multi-Sphere Method (MSM) represents the complete spacecraft electrostatic
charging model as a collection of spherical conductors dispersed through the body
[21] to provide induced charging effects consistent with finite element methods. The
cylinder configuration with a 3 sphere MSM, representative of the above mentioned
rocket bodies and defunct spacecraft, is presented in Fig. 2. Visible are the electro-
static forces between spheres, the projection angle for the torque controller, and the
inertial station keeping thrust.

The three-sphere MSM approximation provides sufficient force and torque accu-
racy, within a percent of the finite element solution, for the separation distances
considered [22]. All three conducting spheres are centered along the long axis of the
cylinder which provides a diagonal moment of inertia matrix and symmetric charg-
ing. These two simplifications are crucial in the analysis presented here. The MSM
geometric parameters used in this analysis are shown in Table 1.

The cylinder in this study tumbles with three rotational degrees of freedom.
Figure 2 presents the two-craft configuration with projection angle defined. The mod-
eled control parameters are the separation distance d of the mass centers along the
separation vector r̂ and the controlled potentials φ1 and φ2 corresponding to the
servicing spacecraft and cylinder respectively. The non-rotating coordinate system
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Electorstatic force 
between 2 spheres

Fig. 2 3 sphere MSM cylinder and spherical spacecraft configuration

fixed to the servicer spacecraft and initially has the y-axis aligned with the separa-
tion vector r̂ , the z axis pointed up, and the x axis completing a right-handed system.
The cylinder has body fixed coordinates with b̂1 through the long axis, and with b̂2

and b̂3 in the right handed transverse directions. The non-rotating and cylinder fixed
frames are graphically represented in Fig. 2. Prior to exploring the projection angle
shown in Fig. 2, the cylinder attitude is characterized by a rotation about the inertial
z axis θ , and a pitch angle defined as a positive b̂2 rotation. The rotation angle θ = 0
and the pitch angle ψ = 0 when the cylinder b̂1 axis is aligned with the vector from
the commanding spacecraft mass center to the cylinder mass center.

The electrostatic forces are determined by the charges residing on each sphere.
These result from the prescribed electric potentials, according to the self and mutual
capacitance relationships in Eq. 1, where kc = 8.99 × 109 N·m2/C2 and qi is the
charge of each sphere [24, 25].

φi = kc

qi

Ri

+
m∑

j=1,j �=i

kc

qj

ri,j
(1)

Table 1 MSM parameters for cylinder detumble system

Parameter Value Units Description

d 15 m Object center-to-center separation

l 1.1569 m Outer sphere offset

Ra,Rc 0.5909 m Outer sphere radius

Rb 0.6512 m Central sphere radius
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where Ri denotes the radius of the ith conducting sphere and ri,j denotes the vector
between the ith and j th conducting spheres. These forces are shown emanating from
each sphere in Fig. 2. These relations can be collected in matrix form

⎡

⎢⎢⎢⎣

φ1
φ2
...

φ2

⎤

⎥⎥⎥⎦ = kc

⎡

⎢⎢⎣

1/R1 1/ra 1/rb 1/rc
1/ra 1/R2,a 1/l 1/2l

1/rb 1/l 1/R2,b 1/l

1/rc 1/2l 1/l 1/R2,c

⎤

⎥⎥⎦

⎡

⎢⎢⎣

q1
qa

qb

qc

⎤

⎥⎥⎦ (2)

Inverting the matrix multiplying the charge at a given instant in time produces the
forces and torques on the cylinder given by the summations

F 2 = kcq1

c∑

i=a

qi

r3
i

r i (3a)

L2 = kcq1

c∑

i=a

qi

r3
i

r2,i × r i (3b)

The servicer and cylinder remain at a constant separation distance, requiring the
servicer inertial thrusting to counter-balance the net attractive or repulsive electro-
static forces. The control developed here assumes the necessary thrust force is present
such that the system is moving in space yet the relative distance remains fixed
allowing the spacecraft to be considered stationary for the control development and
analysis.

Analytic Electrostatic Torque Approximations

Equation 3b provides an analytic torque expression. However, the square matrix has
a size equivalent to the number of MSM spheres and couples the control potential
φ to the attitude information through the resultant sphere charges qi . Therefore, the
equilibrium states, stability of the system, and control development are more easily
explored using an analytic approximation of the MSM torque.

One-Dimensional Rotation Review

As shown by Reference [6], if the separation distance is sufficiently large, the poten-
tial and attitude influence on the electrostatic torque can be separated as shown in
Eq. 4 where θ represents a 1-D attitude rotation measure.

L = γf (φ) g (θ) (4)

where L is the torque magnitude and γ is a model calibration constant. The separation
of the potential dependence function f (φ) and the orientation dependence function
g(θ) allows for a simplified analytic study in-place of the matrix form in Eq. 2.
Without loss of generality, the non-cooperative cylinder is assumed to have the same
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potential magnitude as the servicer, that is φ2 = |φ1|, and is assumed to be always
positive [6]. Thus, the voltage dependency function is set to [6]:

f (φ) = φ|φ| (5)

The orientation angle dependency explored by Reference [6] presents (6) as the
analytic representation. Reference [6] also demonstrates more complicated torque
surfaces character at close proximity not captured due to induced charging properties.
Using the simulation states shown in Table 1, the function

g(θ) = sin(2θ) (6)

provides a good approximation of the MSM developed torque surface with a corre-
lation of R2 = 0.998 and the tuned scaling parameter γ = 2.234 × 10−14 [6]. Using
the potential and orientation dependency functions in Eq. 4 provides a separable form
base function to approximate the MSM torque profile. Setting θ = 0 when the slen-
der axis of the cylinder is aligned with the separation vector allows for a 1-D spin
rate control function f (φ) to be developed.

Generalization to 3-D Rotations

The torque magnitude presented in Eq. 4 and accompanying orientation angle depen-
dency in Eq. 6 are generalized for 3-D tumbling motion by Eq. 7 and the generic set
of three attitude coordinates σ .

L = γf (φ) g (σ ) (7)

Because of the axi-symmetric shape of a cylinder and MSM sphere distribution, no
torque is generated on the roll rotation about the first body axis b̂1. Returning to the
torque produced by the MSM representation in Eq. 3b, the vector r̂ between the cen-
ters of mass of the two craft is always coplanar with the vectors from servicer sphere
to all spheres of the cylinder. Torque is only produced about an axis perpendicular to
the defined plane and thus the torque produced is always perpendicular to the vec-
tor r̂ . Therefore the torque axis êL and projection angle � about the torque axis are
defined as:

êL = b̂1 × (−r̂) (8)

� = cos−1
(
b̂1 · (−r̂)

)
(9)

where r̂ is the unit separation vector from the servicing spacecraft mass center to the
tumbling body mass center. The projection angle and torque axis are shown in Fig. 2.
The 3D torque vector is finally expressed as:

L̂ = LêL (10)

The new orientation dependency function g(σ) assumes the following form for an
axi-symmetric cylinder:

g(σ ) = sin(2�) (11)

The induced charge effect of the MSM spheres dictates that the g(σ) function also
be dependent on the separation distance. This study primarily considers a long-range
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fixed separation distance of d = 15m where the induced charging effects are neg-
ligible. Assuming a fixed separation distance and electrical potential, Fig. 3a uses
the MSM model to illustrate the resulting electrostatic torques on the cylinder where
the attitude is parameterized using a 3-2-1 Euler angle sequence through yaw ψ and
pitch θ , and a roll rotation angle about b̂1. The torque surfaces are normalized by the
largest torque value obtained from all configurations at the set separation distance
and potential. Also visible in Fig. 3a is the symmetric character of the torque sur-
face suggesting that the projection angle previously defined sufficiently captures the
resulting torque.

Figure 3b illustrates the percent modeling error in torque magnitude if the simpli-
fied torque expression in Eq. 7 is used with the newly proposed g-function in Eq. 11.
The g-function retains the double-angle sine function form previously studied by
Reference [6] for the 1-D case. For example, if the pitch angle were zero, the projec-
tion angle would be the rotation angle θ and the control collapses to the 1-D form.
Implementation of the projection angle formulation g(�) captures the torque surface
in Fig. 3a with a correlation of R2 = 0.998 when separated at d = 15 m.

The MSM predicted torque surface is sensitive to separation distance, and the fit
quality provided by Eq. 11 decreases rapidly as the separation distance diminishes.
The sensitivity to separation distance is shown in Fig. 4 where the MSM predicted
torque is shown for a separation distance of d = 15 m and d = 2.5 m respectively.
The change in torque surface character is clearly visible in Fig. 4b where the torques
for the cases d = 15 m and d = 2.5 m are shown respectively.

Comparing the torque surface shapes in Figs. 4a and 4b there are 2 primary differ-
ences between the long- and short-range torque profiles. First, with shorter separation
distances, the repulsive (negative) torques are significantly smaller in magnitude
than the attractive (positive) torques. Second, the surface contour at a given poten-
tial level has less resemblance to the earlier double-angle sine function. To capture
the variation between short- and long-range torque profile behaviors, a more general
orientation dependency function is required.

(a)  Base function as a function of attitude (b) Error between base function and MSM

Fig. 3 Normalized torque surface and corresponding error at a separation distance of d = 15m for V1 =
−30kV and V2 = 30kV
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(a)  Separation m (b) Separation m

Fig. 4 MSM torque surfaces at a separation distances of d = 2.5 m and d = 15 m for V1 = −30kV and
V2 = 30kV

Higher Order Attitude Dependent Torque Scaling Function

The quality of the fit degrades as the separation distance decreases due to the induced
charging effects predicted by MSM but not captured by the analytic torque approxi-
mation in Eq. 7 and the associated g-function in Eq. 11. The torque approximation is
revised to the following series form:

L = f (φ)

n∑

m=1

γmgm (σ) (12)

where n is the number of terms in the desired approximation and γm is the coef-
ficient of the mth term. Inclusion of additional terms in the analytic approximation
enables more accurate close proximity fits to the MSM torque representation. Note
that while the the torque surface shape profiles vary between short- and long-range
evaluations, the sign of the predicted torque is always correct. Having the reduced
order torque model retain the correct sign at all times is important when develop-
ing spin-stabilizing controls. The series from does provide a closer approximation of
charging and therefore detumble performance.

Referring to approximate model errors in Fig. 3b, the error plot resembles the
sin(4�) surface. This motivates the following series approximation:

n∑

m=1

γmgm (σ ) =
n∑

m=1

γm

m!
d2(m−1)

sin(2m�) (13)

The separation distance appears in the denominator as a “stiffness” like term. There-
fore, as the separation distance grows, the higher order terms tend towards zero. This
stiffness formulation increases the fit quality across the entire separation distance
regime.

Applying the general expansion form to the close proximity profiles in Fig. 4b
yields the improved approximation shown in Fig. 5. The profiles shown in Fig. 5
are generated using the expansion in Eq. 13 where all γm values are set equal and
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Fig. 5 Additional terms in g(�) approximation of MSM

the torque surface is normalized about the maximum torque value. This removes the
search for scaling terms γm and more clearly exhibits the surface contour shape fit
quality improvement. While improved approximation is gained when implementing
higher order terms, only the first order term is considered in the numerical simula-
tions because the separation distance is held fixed at d = 15 m. Satellites separated
by a distance of d = 15 m with the geometry prescribed in this study are outside of
substantial induced charge effects where sufficient accuracy is attained through the
first order term using γ = 2.234 × 10−14 tuned in Reference [6].

Equilibrium States Assuming Constant Potentials

The following developments require that the function f (φ) in Eq. 12 be invertible
and has the property f (φ)φ ≥ 0 enforced by the criteria in Eq. 5 [6]. The three-
dimensional rotational equations of motion of a rigid body are given by [26]

I ω̇ + ω × Iω = L (14)

The equations of motion are rewritten in terms of the projection angle � as follows.
The principal moments of inertia Ia and It represent the axial and transverse compo-
nents respectively. The coordinate frame E : {b̂1, êL × b̂1, êL} provides a convenient
frame in which to express the rotational equations of motion in Eq. 14. The direction
cosine matrix [EB] mapping cylinder body-frame B vector components to E-frame
non-body fixed evolving cylinder frame components is

[EB] =
⎡

⎣
1 0 0
0 −(r̂ · b̂2) −(r̂ · b̂3)

0 (r̂ · b̂3) −(r̂ · b̂2)

⎤

⎦ (15)

Recall that r̂ is the unit direction from the servicer spacecraft mass center to the tum-
bling body mass center and the b̂ vectors are the body fixed principal frame vectors.
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The E-frame is not constant in the body frame as it is dependent on the rotation of
the body and the relative position of the two craft. In terms of E-frame components,
the angular velocity vector ω is expressed as:

ω = ω1b̂1 + η(êL × b̂1) − �̇êL (16)

where η is a angular velocity measure about the current êL × b̂1 axis. Noting that the
moment of inertia about the torque axis êL is always perpendicular to b̂1, Eq. 14 is
written in terms of E-frame components to yield the following three scalar differential
equations:

Iaω̇1 = 0 (17a)

It η̇ − Iaω1�̇ sin � = 0 (17b)

It

(
�̈ sin � − η2 cos �

sin2 �

)
+ Iaω1η = L (17c)

Representing the equations of motion in the projection angle coordinate system
E shows that the control only influences torques around the cylinder’s transverse êL

axis. Consistent with the assumption of an axi-symmetric geometry, there exists no
control authority in the b̂1 axis scalar equation and no cross coupling is present. Thus,
ω1 is constant for all time. In Eq. 17, the angular velocity measures η and �̇, as well
as the electrostatic control torque L, are defined by

η ≡ −ω2(r̂ · b̂2) − ω3(r̂ · b̂3) (18a)

�̇ sin � = −ω2(r̂ · b̂3) + ω3(r̂ · b̂2) (18b)

L = −LêL = −f (φ)

n∑

m=1

γmgm (�) êL (18c)

The torque free conditions occur at points where the projection angle dependency
function is zero or the control voltage � becomes zero. These states are present at
projection angle orientations � = πn/2 for n = 0, 1, 2, 3 given the form considered
in Eq. 13.

Feedback Control Development

The following feedback control development uses rotation rate control to reduce or
eliminate the cylinder’s tumbling motion. A fixed separation distance is maintained
using the inertial thrusting scheme described in Reference [6]. Because it is not
possible to generate a general control torque vector, but only a torque about the cur-
rent êL axis, the 3D detumble control will never achieve asymptotic spin regulation.
For example, Eq. 17 shows that if ω1 is non-zero, the electrostatic torque on this
axi-symmetric body will never be able to reduce ω1 to zero.
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The proposed rate controller assumes the projection angle � and rate �̇ are
measured and the commanding spacecraft potential φ1 is the control variable [6].
Revising the control formulation in Reference [6] leads to the new control law
f (φ1):

f (φ1) = −sgn

(
n∑

m=1

gm(�)

)
h(α�̇) (19)

where α > 0 is a constant feedback gain and the function h is chosen for stability
such that[6]:

h(x)x > 0ifx �= 0 (20)

Large tumble rates that tend toward infinity necessitate a limit on commanding a
physical potential. The following h function smoothly limits, or saturates, the control
at a maximum achievable potential [6].

h(α�̇) = f (φmax)
arctan(α�̇)

π/2
(21)

that is

lim
�̇→+∞

f (φ1) =

⎧
⎪⎪⎨

⎪⎪⎩

f (φmax) if
n∑

m=1
gm(�) �= 0

0 if
n∑

m=1
gm(�) = 0

(22)

This smoothly-saturating performance is compared to the conventional bang-bang
controller which always exerts maximum control authority.

h(α�̇) = f (φmax)sgn(�̇) (23)

The saturation controller presented in Eq. 21 becomes the bang-bang controller as α

tends to infinity.

Stability Analysis

The stability of the proposed feedback control law in Eq. 19 is explored using the
following positive definite candidate Lyapunov function

V = 1

2
ωT Iω (24)

The proposed rate control arrests the rotational motion about the transverse cylinder
axis and does not seek to arrest the rotational motion about the axi-symmetric body
axis nor achieve a specific spacecraft orientation. Taking the time derivative of the
candidate Lyapunov function with no torques around the b̂1 axis produces the familiar
work-energy form.

V̇ = ωT L = ω2L2 + ω3L3 (25)

Applying the rotation matrix in Eq. 15 and the equations of motion presented in
Eq. 18, the Lyapunov function derivative assumes the form

V̇ = −L
(−�̇ sin �

) = f (φ1)�̇ sin �

n∑

m=1

γm sin (2m�) (26)
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Substituting in the proposed control law presented in Eq. 19 into the Lyapunov
derivative in Eq. 26 yields

V̇ = −sgn

(
n∑

m=1

gm(�)

)
h(α�̇)�̇ sin � ≤ 0 (27)

This V̇ expression is globally negative semi-definite as the orientation dependence
summation is positive semi-definite, and the term h(α�̇)�̇ ≥ 0, and sin(�) is pos-
itive semi-definite in the range considered. The symmetry of this treatment enables
the projection angle to be bounded by −π/2 < � ≤ π/2. The bound is justified by
the equivalence between a projection angle of π/2 < � ≤ π and a redefined b̂1 to
align with the approaching slender axis with −π/2 < � ≤ 0. The restricted range of
the projection angle � ensures a positive definite value within the control. Further-
more, the largest invariant set where V̇ remains zero is �̇ = 0. Thus, the proposed
controller is globally Lyapunov stable and drives the projection angle rate �̇ to zero
as desired. However, it does not provide any convergence guarantees on the other
body rates ω1 and η, nor does it predict a particular resulting attitude. Insight into the
behaviors of �, ω1, and η are gained by further study of Eq. 17.

Steady-State Attitudes and Rates

The Lyapunov result in Eq. 27 guarantees the convergence to a projection angle rate
�̇ of zero. To remain at this condition, the rotational equations of motion in Eq. 17
are examined further. First, Eq. 17a illustrates that ω1 will remain constant under the
influence of this electrostatic detumble torque. Second, because �̇ → 0, Eq. 17b
illustrates that the rate measure η will converge to a constant stead-state value ηss .
Assuming a steady-state condition has been reached, where �̈ss = 0, allows (17c) to
be written as

− Itη
2
ss

cos �ss

sin2 �ss

+ Iaω1ηss = 0 (28)

which is further simplified assuming η is non-zero:

ηss cos �ss = Ia

It

ω1 sin2 �ss (29)

Equation 29 provides the final projection angle �ss as a function of system
parameters and final angular velocities.

The decomposition of torque into the E-frame, used previously by the new equa-
tions of motion, can be further applied to study the angular momentum changes with
this closed-loop detumble control. Consider the fundamental rotational equations of
motion expressed in a non-rotating frame:

Ḣ = L (30)

which can be decomposed into vector components perpendicular to and parallel to
the invariant unit vector r̂ in Eq. 31 with graphical representation in Fig. 6.

H = Iaω1b̂1 + H‖r r̂ + H⊥r (31)
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(a)  3D momentum vector components (b)  Planar momentum vector components

Fig. 6 Component breakdown of momentum. Colored to represent the ability for detumble influence

In terms of E-frame components, the angular momentum is expressed as

H = Iaω1b̂1 + Itη(êL × b̂1) − It �̇êL (32)

The Lyapunov control analysis presented above demonstrates that the angu-
lar momentum component H⊥r is driven to zero. Thus, the steady-state angular
momentum vector obtained from Eq. 31 is given by

H ss = Iaω1b̂1 + H‖r r̂ (33)

Because the torque is always perpendicular to r̂ , the magnitude of the parallel
component remains constant through time. Thus, the value can be obtained from the
initial momentum of the system.

H‖r =
(
H (t0) − Iaω1b̂1

)
· r̂ = constant (34)

Inserting the E-frame components of momentum from Eq. 32 into Eq. 34, the
parallel momentum component can be related to the current state via (35).

H‖r = Itη sin2(�) (35)

Evaluating (35) with steady state values of ηss and �ss while enforcing the equations
of motion condition in Eq. 29 predicts the final projection angle, or coning angle, and
the angular velocity after the detumble torque history is applied.

The steady-state spin conditions with this touchless detumble control are illus-
trated through the following 3 cases:

Case 1 Assume both ω1 and the η are initially zero. In the absence of coupling, the
equations of motion enforce η = 0 for all time. Under these assumptions, the cylinder
is undergoing a 1D rotation as discussed in detail in Reference [6]. Equation 29 is
satisfied for any angle �ss , providing no insight into the final resting attitude. In fact,
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for such a 1D rotation scenario, the projection angle at which the cylinder comes to
rest is a function of the initial rotation, and thus generally unpredictable.

Case 2 Assume ω1 is zero and the initial η is non-zero. These assumptions dictate
η remains a non-zero constant value for all time due to Eq. 17b. The right hand side
of Eq. 29 is zero in this case, requiring that cos(�ss) equal zero. The only resulting
attitude given these initial conditions is a projection angle of �ss = ±90◦ with the
final ηss determined through (35).

Case 3 Assume ω1 is non-zero. Regardless of the initial η value, coupling exists
and η is in general nonzero. The final ηss and projection angle are determined from
Eqs. 35 and 29. The steady state behavior is characterized by a coning motion about
the r̂ vector with the projection angle, or its supplementary angle, as the cone angle.
The final �ss angles are illustrated for a range of ηss and ω1 values, using the
parameters from Table 1, in Fig. 7. A special instance of this formulation is where
H‖r = Iaω1 resulting in a final projection angle of zero.

The control formulation in Eq. 19 is developed assuming both attractive and
repulsive electrostatic forces can be implemented. Repulsive forces are always more
challenging to implement, leading to the question if the control can be implemented
with only attractive forces. As discussed in Reference [6], only using attractive forces
doesn’t impact the control’s stability arguments as V̇ remains negative semi-definite
in Eq. 27. However, this will have an impact on the control’s performance, as the
detumble control is only active for approximately half of the time.

Fig. 7 Correlation between the steady state η, ω1, and the steady state angle �



248 J of Astronaut Sci (2015) 62:233–253

Numerical Simulation

A numerical simulation is performed to validate the stability and steady-state predic-
tions of the developed control scheme. The simulation places the servicer spacecraft
12.5 meters away from a generally tumbling cylinder in deep space. That is, no pertur-
bations other than the electrostatic interaction are present. The numerical simulation
includes the 6-DOF motion of the debris and 3-DOF translational motion of the ser-
vicer sphere. A closed-loop servo control is used to maintain a fixed relative position
between servicer and debris. A 4th order Runge-Kutta integration is employed with a
time step of 0.01 sec. The servicer vehicle potential is controlled via (19), while the
electrostatic force is evaluated using the full MSM model in Eqs. 2–3b.

The debris is initially tumbling above 2◦/sec with the MSM model parameters
presented in Table 1 and the simulation parameters shown in Table 2. Two simulation
cases are presented to highlight both the prediction capability and the performance
of electrostatic detumble. The first case is in the presence of full coupling through
a non-zero ω1, demonstrating a final coning angle near �ss = 96.26◦. The second
case sets ω1 = 0 and demonstrates the pure flat spin with a projection angle of
� = 90◦.

Consider the first case where coupling through ω1 is present. Given the initial
conditions of ω0 = [0.5, −1.374, 1.374] and �0 = 30◦ the proposed controller
detumbles the cylinder in less than 260 h. The commanded potential history is shown
in Fig. 8a and the projection angle time history is shown in Fig. 8b. Clearly visible in
both figures is the reduction of projection angle to the final coning angle of approx-
imately 96.5◦ whereby the controller commands zero nominal potential. Given the
initial conditions the predicted final coning angle �ss = 96.26◦. The slight deviation
from this value is attributed to a true simulation in which the station keeping con-
troller may not keep the commanding craft separated by in the Ŷ component. The
apparent high frequency in the control, Fig. 8a, and the projection angle, Fig. 8b,
is attributed to presenting time in hours. The tumble dynamics with rates less than
10◦/sec considered are much slower than the millisecond charging effects. Figure 8c
demonstrates that the controller monotonically reduces the rotational kinetic energy

Table 2 Simulation parameters for cylinder detumble system

Parameter Value Units Description

mC 500 kg Commanding sphere mass

RC 2 m Commanding sphere radius

mD 1000 kg Cylinder debris mass

RD , lD 1, 3 m Cylinder radius and length

Ia 125.0 kg·m2 Cylinder axial moment of inertia

It 812.5 kg·m2 Cylinder transverse moment of inertia

α 5 × 104 − Gain in h function

φmax 20 kV Max voltage in h function
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Fig. 8 Numerical simulation with initial conditions: ω = [0.5,−1.374, 1.374], �0 = 30◦

to the steady state magnitude, ||H ss ||. Furthermore, recalling the momentum argu-
ments such that the remaining momentum vector after detumble must be co-linear
with the r̂ vector, Fig. 8d shows that the angle between the these two vectors achieve
180◦. An angle of either 0 or 180◦ represents the alignment of H ss and r̂ .

The reduction of angular velocity and angular momentum is shown in Fig. 9.
The body fixed angular velocities, ωi in Fig. 9a show the reduction to final values
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(b)  Momentum Components in servicer frame

Fig. 9 Numerical simulation with initial conditions: ω = [0.5,−1.374, 1.374], �0 = 30◦
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of ω2 and ω3 which exchange magnitudes as the body rotates. This is expected as
the non-rotating frame angular momentum along r̂ is fixed after detumble requir-
ing the rotating cylinder to have oscillatory body-fixed angular velocity magnitudes.
In support of Fig. 8c where the total magnitude is reduced, the non-rotating frame
angular momentum components are shown in Fig. 9b. The non-rotating frame com-
ponent along Y is align with r̂ and remains constant where the two perpendicular
components Hx and Hz are driven to zero.

The � − �̇ − η phase space of the case presented provides further insight into the
behavior of η over time. Figure 10a shows the first 5000 sec following detumble acti-
vation. The peaks visible characterize the minimum magnitude of η possible which
corresponds to the final η magnitude. The convergence on the final � is shown in
Fig. 10b where the phase space has flattened to the minimum magnitude η. This value
of eta is predicted by the momentum arguments of Eq. 35. The phase space view
further demonstrates the predictability of the final resting attitude using momentum
based arguments.

The same initial conditions shown in the first case, Fig. 8, are used to initialize
the second case in Figure 11 although the coupling term ω1 has been set to zero.
Figure 11b shows the uncoupled steady state projection angle to be �ss = 90◦ as
Eq. 29 predicts. Without the coupling, the commanded potential remains large over
the longer time window shown in Fig. 11a. Consistent with prediction and the first
simulation case, the angular momentum magnitude is reduced to the steady state
value. Also clear is the co-linear alignment of angular momentum with the r̂ shown
in Fig. 11d.

The absence of coupling reduces the effectiveness of the detumble controller.
The component magnitudes of body-fixed angular velocity and non-rotating frame
angular momentum magnitudes are shown for the uncoupled case in Fig. 12. The
oscillatory exchange of angular velocity is no longer present due to the absence of
coupling, although the magnitude of the non-oscillating case matches the peak val-
ues shown for the first case in Fig. 9a. The component angular momentum reduction
for the second case retains the constant Hy magnitude and drives the perpendicular
components to zero, however the time scale is much longer than the coupled case.

(a)  Initial 5000 Seconds (b)  Final 27 Hours

Fig. 10 Phase Space with initial conditions: ω = [0.5,−1.374, 1.374], �0 = 30◦ displayed at 5 second
intervals
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Fig. 11 Numerical simulation with initial conditions: ω = [0.0,−1.374, 1.374], �0 = 30◦

Without coupling, the control requires a substantially more time to reduce the sys-
tem motion to the previously obtained level. Comparison of Figs. 8 and 11 reveals
that the uncoupled case requires twice as long to reach steady state values. Further-
more, since the angular momentum along the separation vector, H‖r , is equivalent in
both cases then the momentum removed is equivalent. The presented cases suggest
that coupling contributes to a more sustained control influence with the opportunity
to remove additional angular momentum with a more rapid settling time.
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Fig. 12 Numerical simulation with initial conditions: ω = [0.0,−1.374, 1.374], �0 = 30◦
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The control formulation presented provides comparable performance to the bang-
bang controller. As seen in both Figs. 8a and 11a the proposed controller is primarily
saturated. Thus the bang-bang controller does not provide significant performance
gains until most of the momentum has be reduced. The smoothed controller proposed
is recommended as it removes the chatter at small projection angle rates otherwise
experienced by a bang-bang controller.

Conclusions

The rate-based electrostatic attitude control is investigated for the three-dimensional
tumbling motion of a representative cylindrical body. The electrostatic control author-
ity at separation distances on the order of 3 to 4 craft radii demonstrates that the
tumbling rotational motion is greatly reduced. More rapid detumble is possible with
reduced separation distance and the presence of coupled dynamics for the tumbling
body. The control scheme utilizes a general approximation of the multi-sphere mod-
eling method to verify closed-loop stability. The general approximation generalizes
previous work and enables stability analysis for close-proximity distances. The con-
trol scheme is analytically proven to arrest the tumbling motion and settle in a stable
torque equilibrium orientation. The numerical simulation also highlights the move-
ment towards specific orientations dependent on initial conditions. Future work will
analyze three-dimensional nominal tugging or pushing, control coast segments, and
investigate the torques on more complex geometries.
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