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Abstract

Presented is an analytic method to establish J2 invariant relative orbits, that is, relative orbit
motions that do not drift apart. Working with mean orbit elements, the secular relative drift
of the longitude of the ascending node and the argument of latitude are set equal between two
neighboring orbits. Two first order conditions constrain the differences between the chief and deputy
momenta elements (semi-major axis, eccentricity and inclination angle), while the other three angular
differences (ascending node, argument of perigee and mean anomaly), can be chosen at will. Several
challenges in designing such relative orbits are discussed. For near polar orbits or near circular
orbits enforcing the equal nodal rate condition may result in impractically large relative orbits if
a difference in inclination angle is prescribed. In the latter case, compensating for a difference in
inclination angle becomes exceedingly difficult as the eccentricity approaches zero. The third issue
discussed is the relative argument of perigee and mean anomaly drift. While this drift has little or
no effect on the relative orbit geometry for small or near-zero eccentricities, for larger eccentricities
it causes the relative orbit to enlarge and contract over time. A simple control solution to this issue
is presented. Further, convenient expressions are presented which allow for quick annual fuel budget
estimations. For given initial orbit element differences, these formulas estimate what ∆v is required
to compensate for the J2 induced relative drift.

Introduction

In recent years, the concept of spacecraft formations has been considered for various
missions. One class of spacecraft formations has the satellite constellation composed of
spacecraft of equal type and build which form a rotating sparse aperture. These types
of formations are typically considered in remote sensing missions where each satellite is
an individual element of a large, virtual antenna formed by the formation. By sharing
the individual measurements, the resolution of the spacecraft cluster is potentially much
higher then the resolution of any individual craft. To minimize secular relative drift among
the spacecraft, these missions typically are comprised of identical spacecraft to reduce the
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differential atmospheric drag. The gravitational perturbations should be the dominant
factor producing the secular drift in this case. Ignoring these perturbations leads to relative
orbit designs which require more frequent corrections, and thus use more fuel. The J2

perturbations cause secular drift in the longitude of the ascending node, argument of perigee
and mean anomaly. The magnitude of the secular drifts are determined by the semi-major
axis, eccentricity and the inclination angle.1 If these quantities aren’t carefully selected,
then the relative drift rates will cause secular drift among the various spacecraft in the
formation.2

Another class of spacecraft formations are composed of craft of different design and built.
These formations are often of a lead-follower type where one spacecraft is intended to follow
in the trail of another spacecraft. Since these craft may have different ballistic coefficients,
the dominant cause for secular drift among these craft is the differential atmospheric drag
effect. It causes the spacecraft with the higher ballistics coefficient to first fall back and slow
down. This causes it to drop to a slightly lower orbit with a shorter period, which in return
makes it catch up again to the other craft at a lower altitude. For these types of missions
it is not possible to compensate for the secular drift by carefully picking appropriate orbit
elements. Due to the differential drag, the individual orbits are losing energy at unequal
rates and no choice in orbit elements will cancel this. Thus, these types of spacecraft
formations cannot avoid the periodic orbit corrections to keep the relative orbit bounded.

This paper investigates spacecraft formation flying issues for the first mentioned class of
formations where all the craft are of equal type and design. Thus, differential drag is a minor
cause of relative drift compared to the J2 gravitational perturbation. Previous studies on
the relative spacecraft motion in low Earth orbit have typically used the Clohessy-Wiltshire
(CW) equations3–6 to describe the relative equations of motion. With these linearized
equations periodic orbits in the relative motion reference frame have been identified. These
periodic orbits include in-plane, out-of-plane, and combinations of these two motion types.
Of these types of relative motion, having an out-of-plane motion at the maximum latitude
(polar crossing) poses the greatest challenge when designing relative orbits which do not
have secular drift. An inclination difference between the chief and deputy satellites is
necessary to cause this type of out-of-plane motion. This difference in inclination angles
also results in a differential nodal precession rate between the two satellites. However, the
linear CW equations do not show this motion; they indicate an out-of-plane oscillatory
motion with a constant amplitude. To maintain a relative orbit designed with the CW
equations, periodic orbit corrections are necessary to cancel deviations caused by the J2

perturbations. Further, a reference motion and the accompanying state transition matrix
might result in an out-of-plane control that changes inclination because the state transition
matrix does not indicate the increasing amplitude caused by the inclination difference. For
these reasons, it is necessary for the reference motion to include at least the secular J2

gravitational perturbation effect.

This paper will outline and discuss a method to generate J2 invariant relative orbits which
was first presented in Reference 2. Benefits and challenges of composing such relative orbits
are discussed and illustrated in detail. Further, a method is presented to estimate the fuel
required to compensate for the relative secular drift due to initial orbit element differences.
These fuel cost estimates are critical when designing relative orbits in that they allow the
orbit designer to quickly assess what effect relaxing any of the J2 invariant orbit conditions
will bring.



Dynamics and Control of Spacecraft Formations: Challenges and Some Solutions 3

Problem Statement

Adding the J2 perturbation to the classical Keplerian orbit motion causes three types
of changes in the osculating orbit elements, short period and long period oscillations, and
secular growth. The long period term is the period of the apsidal rotation. Over a short
time this looks like a secular growth of O(J2

2 ). The short period growth manifests itself as
oscillations of the orbit elements, but doesn’t cause the orbits to drift apart. The relative
secular growth is the motion that needs to be avoided for relative orbits to be J2 invariant.
This growth is best described through mean orbit elements rather than the osculating ele-
ments. By studying the relative motion through the use of mean orbit elements,2,7, 8 we are
able to ignore the orbit period specific oscillations and address the secular drift directly. It
is not possible to set all of the individual orbit drifts equal to zero. However, instead we
choose to set the relative mean orbit element drifts to zero to avoid relative secular growth.

The following algebra is greatly simplified if we work with dimensionless variables. There-
fore distances will be measured in Earth radii Re and time is normalized by the mean motion
of a satellite at one Earth radius (i.e. µ = 1). The J2 gravitational perturbation causes only
secular drift in the longitude of the ascending node h, the argument of perigee g and the
mean anomaly l. The individual drift rates are solely determined through the semi-major
axis a, eccentricity e and inclination angle i. Instead of using a and e directly, we use the
equivalent dimensionless variables L and η instead which are defined through

L =
√

µa (1)

η =
√

1− e2 (2)

The mean dimensionless drift rates of l, g and h are given by1,2

l̇ =
1
L3

+ ε
3

4L7η3

(
1− 3 cos2 i

)
(3)

ġ = ε
3

4L7η4

(
1− 5 cos2 i

)
(4)

ḣ = ε
3

2L7η4
cos i (5)

where ε = −J2. The momenta variables a, e and i do not exhibit secular drift due to J2,
only short and long period oscillations.

J2 Invariant Relative Orbit Constraints

Orbit Element Constraints

The following section outlines the development of the J2 invariant relative orbit con-
straints presented in Reference 2. Since the mean angle quantities l, g and h do not directly
contribute to the secular growth caused by J2, their values can be chosen at will. However,
the mean momenta values L, η and i (and therefore implicitly a, e and i) must be carefully
chosen to match the secular drift rates shown in Eqs. (3) through (5). To keep the satellites
from drifting apart over time, it would be desirable to match all three rates (l̇, ġ, ḣ) between
the various satellites in a given formation. However, this can only be achieved by having the
momenta equal, which in return severely restricts the possible relative orbits. Therefore,
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the condition that the relative average drift rate of the angle between the radius vectors be
zero. This results in

ḣi = ḣj ∀i 6= j (6)

θ̇i = l̇i + ġi = θ̇j ∀i 6= j (7)

where θ is the argument of latitude. Thus, the arguments of perigee and the mean anomalies
are allowed to drift apart. In fact, they end up drifting apart at equal and opposite rates.2

Imposing equal latitude rates instead of forcing equal argument of perigee and mean anomaly
drift has little consequence on the general spacecraft formation geometry if the eccentricity
is small. For the case of having a circular orbit (i.e. e = 0), then having the relative
g and l drift apart has no consequence at all. However, for relative orbits with a larger
eccentricity, having the g and h drift apart at equal and opposite rates causes the relative
orbit to “balloon” out and in again as the argument of perigees drift apart from their
nominal values. Combining Eqs. (3) and (4), the mean latitude rate θ̇ is expressed as

θ̇ =
1
L3

+ ε
3

4L7η4

[
η

(
1− 3 cos2 i

)
+

(
1− 5 cos2 i

)]
(8)

Let the chief mean orbit elements be denoted with the subscript “0”. The drift rate θ̇i of
a neighboring orbit can be written as a series expansion about the chief orbit element as

θ̇i = θ̇0 +
∂θ̇0

∂L
δL +

∂θ̇0

∂η
δη +

∂θ̇0

∂i
δi + H.O.T. (9)

where we make use of the fact that θ̇ = θ̇(L, η, i) only. Let the difference in latitude rates
be δθ̇, then a first order approximation of Eq. (9) is written as

δθ̇ = θ̇i − θ̇0 =
∂θ̇0

∂L
δL +

∂θ̇0

∂η
δη +

∂θ̇0

∂i
δi (10)

Similarly, the nodal rate ḣ is expressed as

δḣ =
∂ḣ0

∂L
δL +

∂ḣ0

∂η
δη +

∂ḣ0

∂i
δi (11)

To enforce equal drift rates θ̇i and ḣi between neighboring orbits, we must set δθ̇ and δḣ
equal to zero in Eqs. (10) and (11). Taking the appropriate partial derivatives of Eq. (8) and
substituting them into Eq. (10), the condition that enforces equal latitude rates is rewritten
as:

− 3
L0

4 δL− ε
21

4L8
0η

4
0

[
η0(1− 3 cos2 i0) + (1− 5 cos2 i0)

]
δL

− ε
3

4L7
0η

5
0

[
3η0(1− 3 cos2 i0) + 4(1− 5 cos2 i0)

]
δη

+ ε
3

2L7
0η

4
0

(3η0 + 5) cos i0 sin i0δi = 0 (12)



Dynamics and Control of Spacecraft Formations: Challenges and Some Solutions 5

Note that only the term δL appears without being multiplied by the small parameter ε.
Thus δL must be itself of O(ε) and the term involving εδL is dropped as a higher order
term. The first orbit element constraint is then simplified to

− δL− ε
1

4L3
0η

5
0

[
3η0(1− 3 cos2 i0) + 4(1− 5 cos2 i0)

]
δη

+ ε
1

2L3
0η

4
0

(3η0 + 5) cos i0 sin i0δi = 0 (13)

Taking the partial derivatives of Eq. (5), the second condition for J2 invariant orbits is
written as

ε
3

2L7
0η

5
0

[
− 7

L0
cos i0δL− 4 cos i0δη − η sin i0δi

]
= 0 (14)

Since δL = O(ε) the δL term is dropped. Thus, the condition that results in equual nodal
precession rates for two neighboring orbits is:

δη = −η0

4
tan i0δi (15)

Observe that as the chief satellite approaches a polar orbit (i.e. i=90 degrees), the necessary
change in eccentricity results in an eccentricity greater than unity (hyperbolic orbit) or less
than zero. This issue will be discussed in more detail in the following section. Using the
δi defined in Eq. (15), we are able to simplify the equal relative latitude rate condition in
Eq. (13) to

δL = − ε

4L4
0η

5
0

(4 + 3η0)
(
1 + 5 cos2 i0

)
︸ ︷︷ ︸

D

L0δη (16)

Combined, Eqs. (15) and (16) provide the two necessary conditions on the mean momenta
differences between two neighboring orbits to yield a J2 invariant relative orbit. When
designing a relative orbit using the mean orbit element differences, either δi, δe or δa is
chosen, and the other two momenta element differences are then prescribed through the two
constraints. The remaining mean orbit element differences δh, δg and δl can be chosen at
will without affecting the J2 invariant conditions. Further, note that these two conditions
are not precise answers to the nonlinear problem, but are only valid up to a first order
approximation. Thus, relative orbits designed with these two conditions will still exhibit
some small relative drift.

Effect of Dropping the εδL Term

To achieve the two orbit element constraint equations in Eq. (15) and (16), the terms
containing εδL were dropped as a second order term. The reason for this is that in Eq. (12)
δL is the only term appearing without being multiplied by ε and thus must itself be of order
ε. However, as the inclination angle approaches either 0 or 90 degrees, then the term in
Eq. (12) which contains δi would also become very small. Thus, ignoring the εδL terms in
these cases could potentially contribute lead to significant numerical errors.
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The following development will show that the error introduced by neglecting the εδL
terms in minimal. If the εδL terms are retained, then the two J2 invariant relative orbit
conditions take on a more complicated form:

δη =
η

(
7ε(η − 2)(5 + 3η) cos i sin i− η(4L4η4 + 7ε(1 + η)) tan i

)
16L4η5 + 7ε(4η2 + η − 4)− 7ε(η(11 + 12η)− 20) cos2 i

δi (17)

δL = − ε(4 + 3η)(1 + 5 cos2 i)
η(4L4η4 + 7ε(1 + η))− 14ε(η − 2)(5 + 3η) cos2 i

Lδη (18)

Note that Eqs. (17) and (18) perfectly satisfy the first order conditions in Eqs. (12) and
(14). If the higher order terms are dropped, then the previously presented J2 invariant
orbit constraints are retrieved. However, these more precise conditions on the mean orbit
element are also more complex and analytically less trackable than their simplified cousins.
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Figure 1: Percent Error in Computing δL by dropping the εδL Terms

Figure 1 illustrates the percent error in computing the δL correction for a range of eccen-
tricities and inclination angles. Here L is set to be 1.054. As the figure shows, the numerical
errors involved in using the simplified orbit constraint conditions are typically less than or
equal to 1.5 percent. Only as the eccentricities grow larger do the numerical errors start to
grow larger. It is interesting to note that dropping the εδL term causes the largest numeri-
cal errors for near-zero inclination angles, while near-polar orbits show the least numerical
errors. The numerical errors in computing δη and δi are essentially equivalent. Thus, using
the simplified J2 orbit element constraints results in minimal numerical errors. For cases
where the numerical errors are too large, the more precise expressions in Eqs. (17) and (18)
can be used.

Orbit Element Constraints for a and e

For more physical insight into the J2 invariant relative orbit constraints, it is convenient
to map the differences in L into differences in the semi-major axis a. Recalling that L =

√
a
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(L is a non-dimensional variable), the variations in L and a are related through

δL =
1

2L
δa =

δa

2
√

a
(19)

Substituting Eqs. (19) into Eq. (16), the constraint enforcing equal latitude rates between
two orbits is rewritten as

δa = 2Da0δη (20)

Note that this a is the non-dimensional semi-major axis and must be multiplied by the
Earth radius Re to obtain proper physical units. Combined, Eqs. (15) and (20) form the
two necessary momenta constraints expressed in terms of a difference in semi-major axis,
eccentricity and inclination angle.

It is preferable to express the differences in eccentricity in terms of δη, and not in terms
of the eccentricity δe itself. The reason for this is clear when we observe the variation of
η =

√
1− e2.

δe = −η

e
δη (21)

Using Eq. (21) clearly poses numerical difficulties whenever the orbits become circular. A
finite change in η would erroneously appear as an infinite change in e. Thus, it is preferable
to deal with δη quantities and then use the precise mapping η =

√
(1 − e2) to map these

differences into corresponding δe quantities.

ψ
o

ψ
o

= cos e
-1

ao

J = 0 constraint surface
2

J = 0 constraint line
2

2iο

Figure 2: Drift Free Constraint Illustration In Momenta Space

If J2 is set to zero (i.e. pure Keplerian motion), then we are only left with the constraint
that δa = 0. This makes sense intuitively, since the semi-major axis a determines the orbit
period. For Keplerian motion, if the orbit periods are not equal, then the two spacecraft
will drift apart. Thus, for Keplerian motion the initial conditions that result in relative
motion orbits that do not drift apart are constrained to a five dimensional manifold , or
in the momenta space, (a, e, i), a two dimensional manifold, the surface of the sphere as
illustrated in Figure 2. For a particular chief orbit with a0, e0 and i0, the neighboring orbit
momenta elements must lie on this surface. However, once the J2 perturbation is included,
the geometric constraint on the momenta elements to achieve drift free relative motion is a
straight line which is not tangent to the sphere surface. Thus, the presence of gravitational
perturbations changes the dimension of the constraint manifold from two to one.
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Energy Levels between two J2 Invariant Relative Orbits

It is interesting to study the energy levels of two neighboring orbits that are J2 invariant
using the necessary first order conditions established in Eqs. (15) and (20). For the system
studied, the Hamiltonian M is the total energy. Including the J2 term, the averaged energy
in terms of normalized orbit elements is given by

M = − 1
2a

+ ε
1

4a3η3
(−1 + 3 cos2 i) (22)

Where for Keplerian motion the energy level of an orbit only depends on the semi-major
axis a, including the J2 effect makes the energy expression depend on all three momenta
elements a, e and i. The difference in energy δM of a neighboring orbit and a reference
orbit is approximated as

δM = M −M0 ≈
∂M0

∂a
δa +

∂M0

∂η
δη +

∂M0

∂i
δi (23)

Computing the partial derivatives in Eq. (22) while keeping in mind that δa is of order O(ε)
we find that

δM =
1

2a2
0

δa + ε
3

4a3
0η

4
0

[
(1− 3 cos2 i0)δη − 2η0 sin i0 cos i0δi

]
(24)

For two neighboring orbits to be J2 invariant, the differences in a, η and i must satisfy the
two conditions in Eqs. (15) and (20). Substituting these variational constraint, the energy
difference between two J2 invariant orbits is given by

δM = ε
tan i0
4a3

0η
4
0

(1 + 5 cos2 i0)δi (25)

Eq. (25) states that if the two orbits have a non-zero difference in inclination angle δi (or
implicitly a difference in η or a), then the two orbits must have different energies. Only if
all three momenta elements a, η and i between two orbits are equal will the orbit energies
themselves be equal. Note that this condition still allows the two orbits to have different
mean l, g and h.

Spacecraft Formation Flying Challenges

Near-Polar Orbits

For near-polar orbits, where the inclination i approaches 90 degrees, the equal relative
nodal rate condition in Eq. (15), given by

δη = −η0

4
tan i0δi

may pose some practical problems in designing J2 invariant relative orbits. The issue here is
that as i approaches 90 degrees, and the relative orbit design commands out-of-plane motion
at the maximum latitude (i.e. δi is non-zero), then the corresponding change in eccentricity
becomes unpractically large. The result is that the relative orbit becomes excessively large.
Note that this near-polar issue only arises if a specific mean inclination angle difference
is prescribed and the two J2 constraints are then used to compute the necessary mean
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δa and δi. If a change in mean semi-major axis or eccentricity were required for a near-
polar orbit, then the equal nodal rate condition in Eq. (15) would require a very small
corresponding mean inclination angle difference. Thus, achieving out-of-plane motion the
maximum latitude poses the greatest challenge in designing J2 invariant relative orbits. If
the out-of-plane motion should occur during the equator crossing, then this can be achieved
by describing a difference in ascending nodes δh. Since the three angular quantities δh, δg
and δl can be chosen at will, no practical issues would arise here.

That the relative orbits become excessively large for near-polar orbits if a δi is prescribed
was also shown in the relative energy discussion in the previous section. Studying Eq. (25)
is it clear that if the chief orbit is a polar orbit, a finite δi requires an infinite difference in
orbit energy, an unrealistic condition. Thus, as the inclination approaches 90 degrees the
size of the relative motion orbits increases.

The problem posed by attempting to design a J2 invariant relative orbit for a near-polar
chief orbit is illustrated in the following numerical simulation. The chief mean orbit elements
used are shown in Figure 1.

Table 1: Chief Satellite Orbit Elements for Near-Polar Case Study.

Desired Average
Orbit Elements Value Units

a 7153 km
e 0.05
i 88 deg
h 0.0 deg
g 30.0 deg
l 0.0 deg

The numerical simulations are performed by integrating the nonlinear orbit equation

r̈ = − µ

|r|3
r + f(r) (26)

where the perturbative acceleration f(r) includes the zonal J2 through J5 effects. The
relative orbit is described by choosing the mean orbit element differences δh = 0.0 degrees
(all out-of-plane motion produced through δi), δg = 0.1 degrees and δl = -0.1 degrees. Case
1 assumes the relative orbit geometry requires a δi of 0.01 degrees to achieve roughly 1 km
of out-of-plane motion at maximum latitude. To achieve a desired δi of 0.01 degrees without
inducing relative drift in the other orbit elements, the remaining two momenta elements
differences must be δe = 0.020648 degrees and δa = -27.2122 meters. The resulting relative
orbit is shown in Figure 3(a). Note that the necessary difference in eccentricity is very
large, causing the relative orbit to become very large in the along track and radial direction.
However, no apparent drift is visible for the 45 orbits plotted on the scale shown.

One method suggested in Reference 2 is to drop the equal relative nodal rate condition in
Eq. (15) when a δi is prescribed for a near-polar chief orbit. The δi of 0.01 degrees is retained
in case 2 shown in Figure 3(b), but it is not used to prescribe a corresponding difference in
eccentricity. Instead, a δe of 0.0001 is chosen and the corresponding δa of -0.24157 meters
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Figure 3: Relative Orbit Drift for a Near-Polar Chief Orbit
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is computed through the equal relative latitude rate condition in Eq. (20). The resulting
relative orbit does exhibit some drift since the ascending nodes are drifting apart. Over a
year, the ∆v required to compensate for this drift is roughly 56.8 m/s. However, for case 3
the equal latitude rate condition is also dropped (i.e. δa = 0 meters for the same δe), then
the resulting orbit shown in Figure 3(c) has some clear along-track drift. Case 4 has the
same initial orbit element differences as the ones used in case e, but here the orbits were
established using osculating orbit elements instead of mean orbit elements. The resulting
relative orbit is shown in Figure 3(d). This would be analogous to setting up the relative
orbit initial conditions using the CW or Hills equations. Over the 45 orbits shown, clearly
substantial drift would result. This emphasized the point that one should be working with
mean orbit elements when design the relative orbits.

Figure 4 illustrates the relative nodal and latitude rate drifts for case 2. By dropping
the equal nodal rate condition, the nodes clearly drift apart over time. The corresponding
osculating relative ascending node variations are not visible due to the large drift. While
the relative latitude drift is not perfectly zero, it is kept very small. The fuel estimate to
compensate for the δθ drift over one year is only 1.45 m/s, while it would be about 14.1 m/s
if the equal latitude rate condition is dropped. However, as a comparison, to compensate
for the relative ascending node drift it would take about a fuel cost of 56 m/s over year to
compensate.

Thus, it is possible to design relative orbits with out-of-plane motion created by an in-
clination change and a chief orbit that is near-polar. However, the equal ascending node
rate condition must be dropped here to obtain a relative orbit of practical value. Periodic
maneuvers will be required to compensate for the δh drift. References 7 and 8 present
continuous feedback and impulsive control schemes respectively in terms of the mean orbit
elements. For an orbit such as is presented in Case 2, it would make sense to use the impul-
sive control scheme where the ascending node is correct during the polar region crossings
using:

∆vhΩ
=

h sin i

r sin θ
∆Ω for θ = ±90 degrees (27)
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Near-Circular Orbits

As the chief’s orbit eccentricity becomes small, the eccentricity differences commanded
by the equal nodal rate condition may cause the relative orbit to become very large in the
along-track direction. This is clear from the linear mapping of differences in e to differences
in η shown in Eq. (21) to be:

δe =
η

e
δη

However, the change in e does not become infinitely large as e → 0. The equal nodal rate
condition in Eq. (15) shows a finite required difference in η as e goes to zero and η goes
to one. Using the nonlinear relationship between η and e shown in Eq. (2), this finite δη
corresponds to a finite δe for a circular orbit. However, these eccentricity changes may still
result in a relative orbit which is too large for practical use. Again, as was the case with
near-polar chief orbits, if the out-of-plane motion can be produced by a change in node
instead of a change in inclination angle, then having a chief orbit with a small eccentricity
would not pose any practical difficulties.

A numerical simulation is performed to illustrate this behavior. The chief orbit elements
are shown in Table 2. The relative orbit is established using the mean orbit element differ-
ences of δh = 0.01 degrees, δg = 0.01 degrees and δl = -0.01 degrees. An inclination angle
difference δi of 0.01 degrees is requested. The relative orbits were computed for the three
mean chief eccentricities 0.04, 0.05 and 0.06.

Table 2: Chief Satellite Orbit Elements for Small Eccentricity Case Study.

Desired Average
Orbit Elements Value Units

a 7153 km
e 0.04, 0.05 or 0.06
i 48 deg
h 0.0 deg
g 30.0 deg
l 0.0 deg

Figure 5(a) compares the resulting three relative orbits. For the case where e = 0.06,
the requested δi required a δe of 0.000799. The case where e = 0.05 resulted in a δe of
0.000957 and the case with e = 0.04 resulted in δe = 0.001191. Clearly the smaller chief
eccentricities result in a larger relative orbit in the along track direction.

This general behavior is also illustrated in Figure 5(b) where the required δe for a δi of
0.01 degrees are displayed for various chief eccentricities e and inclination angles i. Due
to the tan i term in the equal nodal rate condition, the effect of having small eccentricities
is enhances for larger inclination angles. The δe here were computed using the nonlinear
mapping between η and e in Eq. (2). While the required eccentricity for the relative motion
orbit does grow large as e approaches zero, it reaches a finite limit for a circular chief orbit
case and does not become infinite.

This result is interesting in that it states that it is easier to compensate for out-of-plane
motion induced by δi if the chief orbit has a larger eccentricity. The richer dynamics of
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having a more eccentric orbit makes it easier to compensate for the relative nodal drift
condition.

Relative Argument of Perigee and Mean Anomaly Drift

To establish the J2 invariant orbits, conditions are established which set the relative
ascending node rate δḣ and latitude rate δθ̇ equal to zero. While this guarantees that the
angle between the chief and deputy position vector remains constant, it is possible that the
argument of perigee and mean anomaly differences drift apart. The effect of this is that for
chief orbits with non-zero eccentricity, the relative orbit geometry swells larger as δg and
δl drift apart and then shrinks again as they eventually approach each other. Since the
relative latitude rate is equal to zero when the two presented J2 constraint conditions are
satisfied, then we know that

δġ = −δl̇ (28)

To compute the relative drift in the argument of perigee, we take the partial derivative of
Eq. (4).

δġ =
∂ġ

∂L
δL +

∂g

∂η
δη +

∂ġ

∂i
δi (29)

After substituting the J2 invariant conditions in Eqs. (20) and (15), the relative perigee
drift rate is found to be

δġ = −ε
3

4L7η4

(
tan i(5 cos2 i− 1)− 5 sin(2i)

)
δi (30)

The following numerical simulation illustrates the effect of the perigee/mean anomaly
drift has on the relative orbit geometry. The chief orbit elements are the same as are shown
in Table 2 with an eccentricity set to be 0.05. A mean δi of 0.01 degrees is prescribed
and the mean δh is set equal to 0.01 degrees. The argument of perigee and mean anomaly
differences are set equal to

δg = −δl = 0.0, 0.5 or 1.0 degrees

The resulting three relative orbits are illustrated in the rotating LVLH frame in Figure 6.
As the argument of perigee and mean anomaly differences drift apart, the overall relative
orbit geometry is expanded without changing the shape itself appreciably. Not that the
presented orbit has a relatively large eccentricity of 0.05. If the eccentricity were closer to
zero, then the effect of the perigee/mean anomaly drift on the relative orbit geometry would
be even less. At the limiting case where the chief orbit becomes circular, the perigee/mean
anomaly drift would have no effect on the relative geometry.

While this drift in δg and δl is an effect that may have to be periodically compensated
for, the argument of perigee and mean anomaly drift occurs very slowly. For the presented
numerical simulation, the δg had only drifted 0.05 degrees after 45 revolutions (roughly
three days). Thus, for δg to drift the 1.0 degrees shown in Figure 6, it would take at
approximately 60 days.

To correct such specific orbit element differences, Reference 8 developed an impulsive
feedback control scheme with the mean orbit element errors as the feedback quantity. While
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this scheme is able to correct any types of orbit element errors, the g and l correction are
of interest to the present problem. Let ∆vrp a orbit radial thrust performed at perigee, and
∆vra the orbit radial thrust performed at apogee. In order to correct a specific ∆g = −∆l
error, the following control is used.

∆vrp = −na

4

(
(1 + e)2

η
− 1

)
∆g (31)

∆vra =
na

4

(
(1− e)2

η
− 1

)
∆g (32)

The advantage of this impulsive firing scheme is that only the osculating g and l are
adjusted in a near-optimal manner. Reference 8 goes into further details describing how
this scheme can also be used to correct for mean orbit element errors.

Fuel Cost Estimation

As has been shown in the previous sections, at times it may be beneficial to relax the two
constraints on the mean orbit elements in order to obtain a relative orbit solution which
is of practical value. This section presents convenient formulas which allow us to predict
the fuel cost in terms of ∆v’s that must be applied to cancel any J2 induced drift if the
orbit elements a, e and i do not perfectly match the conditions in Eqs. (15) and (20). To
perform this analysis, it is convenient to use the dimensional orbit element drift equations,
as opposed to their non-dimensional versions in Eqs. (3) through (5).

ḣ = −3
2
J2

r2
e

a2

n

η4
cos i (33)

ġ =
3
4
J2

r2
e

a2

n

η4
(5 cos2 i− 1) (34)

l̇ = n− 3
4
J2

r2
e

a2

n

η3
(1− 3 cos2 i) (35)
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Note that n =
√

µ/a3 is the mean orbit motion of the chief satellite and re is the Earth’s
equatorial radius. Further, any orbit elements used in Eqs. (33) through (35) are the mean
orbit elements of the chief satellite.

The methodology to compute the fuel cost to combat the J2 induced drift will be the
same for all the cases. First, we will compute how much drift the momenta orbit element
differences δa, δe and δi will cause over one orbit. Then, using impulsive control, we are
able to provide an estimate of what ∆v would be required to cancel the J2 induced drift.
Note that these fuel estimates will not be precise predictions, but rather they provide a
convenient method to quickly assess how roughly much fuel would be required to combat
the J2 perturbation if the momenta orbit element differences are not set at their ideal J2

invariant values.

Ascending Node Relative Drift Correction Cost Estimate

First, we find an estimate of the fuel required to control the J2 induced ascending node
drift. The derivative of Eq. (33) is used to compute the relative nodal drift δḣ. Note that
advantage is taken here of the fact that the semi-major axis differences δa are assumed to
be of order J2 and are thus ignored here as higher order terms.

δḣ =
3
2
J2

r2
e

a2

n

η5
(η sin i δi + 4 cos i δη) (36)

The orbit period T of the chief satellite is given by

T =
2π

n
(37)

The J2 induced drift in the ascending node over one orbit period is then given by

∆horbit = δḣ · T = 3J2π
r2
e

a2η5
(η sin i δi + 4 cos i δη) (38)

Eq. (38) provides an estimate of the amount of ascending node correction that would be
required per orbit. To compute what ∆v would be required to perform these corrections,
the impulsive control scheme developed in Reference 8 is used here. The impulses developed
in this control law to correct specific orbit element errors are based on Gauss’ variational
equations.1 The ideal time to perform a node correction is during the polar crossings where
θ = ±90 degrees. Firing an impulse ∆vh in the orbit normal direction, the following node
correction is achieved:

∆vh =
h sin i

rh
∆h (39)

Note that rh is the orbit radius at θ = ±90 degrees. After substituting Eq. (38) into Eq. (39),
and performing several simplifications, the following fuel estimate is found to counter a J2

induced nodal drift.

∆vh = 3J2π
r2
e

rh

n

η4
sin i (η sin i δi + 4 cos i δη) (40)

Note that this ∆v estimate is the fuel required per orbit. To find a yearly fuel budget
estimate, this figure needs to be multiplied by the number of orbits that occur in one year.
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As expected, if the mean orbit element differences δi and δη satisfy the equal nodal rate
condition in Eq. (15), then the predicted fuel budget is zero. Note that the actual fuel
budget would not be zero though. This is because several first order approximations were
made in developing the two constraints in Eqs. (15) and (20).

Eq. (40) does provide a very convenient method to quickly estimate the fuel budget if the
J2 invariant conditions are not setup perfectly. Assume the relative orbit is designed using
the linear CW equations. Here the chief orbit is circular and we set the inclination angle
equal to 70 degrees and the semi-major axis equal to 7000 km. To obtain an out-of-plane
motion of roughly one kilometer, a δi of 0.01 degrees is required. Using Eq. (40), this leads
to an annual fuel budget estimate of 43.6 m/s solely to correct for the relative ascending
node drift. A cost which could be avoided if the J2 perturbation is taking into account
when designing the relative orbit.

Argument of Perigee and Mean Anomaly Relative Drift Correction Cost Estimate

After having found a fuel budget estimate to correct the relative nodal drift, fuel budget
estimates are now developed to correct for both the relative argument of perigee drift and
mean anomaly drift. Taking the derivative of Eq. (34) and making use again of the fact
that δa is of the order of J2, the relative argument of perigee drift rate is expressed as

δġ = −3
4
J2

r2
e

a2

n

η5

(
5η sin(2i)δi + 4 (5 cos2 i− 1)δη

)
(41)

Using Eq. (37), the perigee drift over one orbit is estimated to be

∆gorbit = δġ · T = −J2
3π

2η4

r2
e

a2

(
5η sin(2i)δi + 4 (5 cos2 i− 1)δη

)
(42)

The mean anomaly drift over orbit is computed in an analogous manner. Note, however,
that here δa appears without being multiplied by J2 and is thus retained.

∆lorbit = δl̇ · T = −3π

a
δa− 9π

2
J2

r2
e

a2

n

η4

(
η sin(2i)δi− (1− 3 cos2 i)δη

)
(43)

Again, note that Eqs. (42) and (43) provide angular drift estimates for one orbit period. To
compute the annual drift, these figures would be multiplied by the number of orbit period
in a year.

To compute ∆v’s necessary to perform the required ∆g and ∆l corrections, the two
impulse technique presented in Reference 8 is used. Here an orbit radial thrust is applied at
both perigee and apogee to achieve the desired orbit element corrections in a near-optimal
manner and without affecting the remaining orbit elements. Using this method, the two
∆v are then computed through

∆vrp = −na

4

(
(1 + e)2

η
∆g + ∆l

)
(44)

∆vra =
na

4

(
(1− e)2

η
∆g + ∆l

)
(45)

where ∆g and ∆l are computed through Eqs. (42) and (43) respectively. The total fuel
estimate required to control either relative argument of perigee drift, relative mean anomaly
drift or both is then computed as

∆vg,l = |∆vrp |+ |∆vra | (46)
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Latitude Relative Drift Correction Cost Estimate

While Eq. (46) is convenient to estimate the fuel budget to correct for g or l relative
drifts, for the formation flying problem this is of lesser importance. What is more critical
is what is the fuel budget to combat the latitude drift, i.e. the sum of both the relative
perigee and mean anomaly drift. For nearly circular orbits the argument of perigee and
mean anomaly can drift apart with negligible effect on the relative orbit geometry, as long
the sum of their drifts is zero. In this section we will provide a fuel budget estimate to
control the relative latitude drift. The amount of latitude drift rate is computed through

δθ̇ = δġ + δl̇ (47)

To estimate how much fuel is required to correct a latitude error, it is assumed that a
∆v is applied to change the semi-major axis a (and thus the orbit period) which will speed
up or slow down the satellite such that it correct the δθ error over one orbit. At the end of
the correction, a second such δa adjustment must be made to reinsert the satellite in the
previous orbit. ¿From Gauss’ variational equations, the required ∆v for a given ∆a is

∆v =
h(1− e)

2a2(1− e2)
δa =

n

2

√
1− e

1 + e
δa (48)

To relative the change in semi-major axis δa to the corresponding change in orbit period
δT , we differentiate Eq. (37) and make use of n =

√
µ/a3.

δa =
2a

3
δT

T
(49)

The final step is to relate the latitude drift amount δθ per orbit to the required orbit period
change δT which will accomplish this correction. This is found through

δθorbit = δθ̇ · T = n · δT (50)

Substituting Eqs. (49) and (50) into Eq. (48), a fuel budget estimate to correct the per orbit
latitude drift is

∆vθ =
a

3

√
1− e

1 + e
δθ̇ (51)

If the δa, δe and δi differences satisfy the conditions in Eqs. (15) and (20), then the latitude
drift δθ̇ becomes zero, resulting in a zero fuel budget estimate. This is easily achievable.

Conclusion

A survey of a method to establish J2 invariant relative orbits for spacecraft formation
flying applications is presented. The desired relative orbit geometry is designed using dif-
ferences in mean orbit elements. Two constraints on the three momenta element differences
δa, δe and δi are required to maintain zero relative drift in the mean ascending node rate
and the latitude rate. Three specific challenges in designing such J2 invariant relative orbits
are discussed. As the inclination angle i approaches a polar orbit, the corrections required
in eccentricity and semi-major axis to compensate for the J2 effect become too large to be
of practical value. Working with near-polar orbits, setting up the relative orbit geometry
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in mean elements and canceling the latitude rate difference still provides a substantial drift
and associated fuel savings. Another similar limitation occurs when the chief eccentricity
becomes small for non-equatorial orbits. The smaller the eccentricity is, the more difficult
it is to compensate for a difference in mean inclination angle. Third, the issue of of the
argument of perigee and mean anomaly drift is discussed. These two quantities will not
remain constant, but drift apart at equal and opposite rates. While this drift does has an
enlarging effect on the relative orbit, it occurs very slowly and is easily controlled with the
presented impulsive control scheme. Further, the fuel budget estimates are very valuable
when designing relative orbit since they provide a cost figure for any deviations which may
be made from the ideal orbit element differences which would have resulted in the relative
orbit being J2 invariant. Due to mission constraints or when designing near-polar orbit with
out-of-plane relative motion, it may be necessary to relax one or both of the J2 invariant
conditions.
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