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a b s t r a c t

The relative motion about 4179 Toutatis is studied in order to investigate the feasibility of
formation flying as an alternative concept for future asteroid exploration missions. In
particular, the existence of quasi-frozen orbits about slowly rotating bodies allows us to
compute families of periodic orbits in the body-fixed frame of the asteroid. Since these
periodic orbits are of the center� center type, quasi-periodic invariant tori are calculated
via fully numerical procedures and used to initialize spacecraft formations about the
central body. Numerical simulations show that the resulting in-plane and out-of-plane
relative trajectories remain bounded over long time spans; i.e., more than 30 days.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In this thriving era for small bodies exploration, it may
be interesting to study the relative motion of satellites
flying in a formation about asteroids or comets. Such a
concept is not novel and has already been proposed as a
potential benefit for several asteroid mitigation strategies.
For instance, Maddock and Vasile considered formations of
solar concentrators to deflect hazardous Near Earth
Asteroids (NEA) by surface ablation [1]. Alternatively, Gong
et al. proved the reliability of solar-sail formations in dis-
placed orbits as effective and powerful gravity tractors [2].

A common denominator in the literature, however, is
that the gravitational attraction of the asteroid is usually
neglected or oversimplified. Both Gong [2] and Vasile [3]
approximate the gravitational pull excerted by the central
body via a point-mass gravity field. Only recently, Foster
et al. considered multiple gravity tractors in a high-order
spherical harmonics gravity field, but instead of designing
ll rights reserved.

Baresi),
cost-free relative trajectories, the authors were focused on
controlling the satellites at fixed locations with respect to
the Sun-asteroid rotating frame to maximize the effects of
their proposed deflection strategy [4]. Accordingly, passive
relative orbits in the proximity of small bodies are yet to be
found and described.

In this paper, a systematic approach to establish boun-
ded relative motion about slowly rotating tri-axial ellipsoids
is presented. As a case study, a chief and a deputy spacecraft
are considered while flying in a formation about 4179
Toutatis, a slowly rotating asteroid that was flown-by Chi-
na's Chang'e 2 spacecraft in December 2012 [5]. Because of
the existence of quasi-frozen orbits in the body-fixed frame
of the asteroid [6], the secular evolution of the mean orbit
elements of the satellites can be studied via Lagrange Pla-
netary Equations [7]. Moreover, first-order bounded relative
motion conditions can be derived by matching the averaged
drift rates due to the nonspherical shape of the central body
[8]. As these bounded relative motion conditions are based
on mean orbit element differences, the applicability of
using a first-order mean-to-osculating orbit element map-
ping for spacecraft formations about Toutatis is also inves-
tigated and used to motivate additional numerical analyses.
Specifically, stable periodic orbits are computed starting
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from the output of the mean-to-osculating orbit element
mapping and using a Poincaré map between consecutive
surface of section crossings [9]. Then, Kolemen's method is
applied to extend the center submanifolds beyond the lin-
ear regime, and to compute quasi-periodic orbits that foli-
ate two dimensional invariant tori in the neighborhood of
the original periodic orbit [10]. Finally, the relative motion
between satellites initialized on the quasi-periodic tori as
well as on the computed periodic orbit is studied. In par-
ticular, numerical simulations investigate the long-term
behavior of the relative motion and assess the robustness
of the derived initial conditions while taking into account
unmodeled forces such as solar radiation pressure and third
body attraction.
2. Bounded relative orbit conditions

According to Reference [9], the majority of the pertur-
bations felt by mass particles about asteroids are due to
the second degree and order gravity field. Thus, for pre-
liminary Formation Flying mission analyses, it is possible
to consider the gravitational potential as given by

U ¼ μ

r
þR¼ μ

r
1þ r0

r

� �2
C20

3
2
sin 2 δ�1

2

� ���

�3C22 cos ð2λÞ sin 2 δ�1
� �i�

; ð1Þ

where μ is the gravitational parameter of the central body,
r is the distance of the satellite from the center of the
asteroid, δ and λ are its latitude and longitude with respect
to the first principal axis, respectively, r0 is the scale factor,
and C20 ¼ � J2 and C22 are respectively the second zonal
and second-degree second-order spherical harmonics
coefficients.

Assuming that the asteroid is rotating about its max-
imum axis of inertia, one can rewrite δ and λ via

sin δ¼ sin i sin u; ð2aÞ

tan λ¼ sin ΩR cos uþ cos ΩR sin u cos i
cos ΩR cos u� sin ΩR sin u cos i

; ð2bÞ

where i is the inclination of the spacecraft, u¼ωþ f is the
argument of latitude, ΩR ¼Ω�ωT t is the longitude of the
ascending node with respect to the rotating body-fixed
frame of the asteroid, and ωT is the spin rate of the central
body. Furthermore, if the mean motion of the spacecraft is
much larger than ωT , all of the orbit elements can be
regarded as constant over one orbit period [6]. Then, it is
also possible to consider the averaged perturbing function
over the mean anomaly M, i.e.,

R ¼ 1
2π

Z 2π

0
R dM¼ μr20

2a3ð1�e2Þ3=2
C20

3
2
sin 2 i�1

� ��

�3C22 sin 2 i cos ð2ΩRÞ
i

ð3Þ

and investigate the evolution of the spacecraft mean orbit
elements with Lagrange Planetary Equations [7].

It turns out that for a very slow rotator such as 4179
Toutatis (PT ¼ 2π=ωT C5:43 days), the mean orbital
element rates can be rewritten as [6,8]

a0 ¼ 0; ð4aÞ

e0 ¼ 0; ð4bÞ

i0 ¼ 3C22 sin i sin ð2ΩRÞ
η4L7

; ð4cÞ

Ω0
R ¼

3 cos iðC20þ2C22 cos ð2ΩRÞÞ
2η4L7

�ωT

n0
; ð4dÞ

ω0 ¼ �15 cos ð2iÞðC20þ2C22 cos ð2ΩRÞÞþ9C20�6C22 cos ð2ΩRÞ
8η4L7

;

ð4eÞ

M0 ¼ 1

L3
þ9 sin 2 iðC20þ2C22 cos ð2ΩRÞÞ�6C20

4η3L7
; ð4fÞ

where

ð�Þ0 ¼ 1
n0

d
dt
; ð5aÞ

n0 ¼
ffiffiffiffiffiffiffiffiffiffi
μ=r30

q
; ð5bÞ

η¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�e2

p
; ð5cÞ

L¼
ffiffiffiffiffiffiffiffiffiffi
a=r0

p
: ð5dÞ

Accordingly, the semi-major axis and the eccentricity are
constant on average, whereas the inclination, body-fixed
longitude of ascending node, argument of periapse, and
mean anomaly have secular variations that depend on a, e,
i, and ΩR.

It is worth noting that the latter may become an issue
for the design of bounded relative trajectories about
strongly elongated bodies. In fact, in order to establish
bounded relative motion, one should carefully choose the
values of a, e, i, and ΩR, and try to minimize the difference
between the mean orbit element rates of the spacecraft
within the formation [8]. However, for any specified value
of i and ΩR, the mean inclination and the mean body-fixed
longitude of the ascending node will be changing accord-
ing to (4c) and (4d) unless i0 and Ω0

R are somehow nullified.
As suggested by Hu and Scheeres [6], this is actually

possible for orbiters about slowly rotating bodies that
satisfy jwT=Bjo1, where B¼ ð3n=2p2Þ 2C22�C20½ �r20. Then,
ΩR ¼ 7π=2; ð6aÞ

cos i¼ �ωT=B ð6bÞ
nullify (4c) and (4d). The relationships (6) are known as
the quasi-frozen orbit conditions and can be used in
combination with (4) to infer second-order second-degree
bounded relative motion conditions.

To that end, consider a formation of two satellites
where a, e, i, ΩR, ω, and M will be referred to as the mean
orbit elements of the chief, whereas ad, ed, id, ΩR;d, ωd, and
Md will be used to indicate the mean orbit elements of the
deputy spacecraft. We will also refer to δi0, δΩ0

R, δω
0, and

δM0 as the first variations of i0d� i0, Ω0
R;d�Ω0

R, ω
0
d�ω0, and

M0
d�M0 respectively.
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It can immediately be noted that δi0, δΩ0
R, δω

0, and δM0

would vanish if Ld ¼ L, ηd ¼ η, id ¼ i, and ΩR;d ¼ΩR (in-plane
formations). Such a selection would guarantee bounded
relative motion but would also leave less freedom in the
design of the relative trajectory. The same happens
whenever the chief and the deputy are initialized with the
same set of mean orbit elements, except for the mean
anomaly at epoch, i.e., MdaM (Leader–Follower forma-
tions). Alternatively, following the derivation of the
J2-invariant relationships [8], one could look at the first
variation of the mean argument of latitude, i.e., θM ¼Mþω,
and try to nullify δθ0M ¼ δM0 þδω0 instead of δω0 and δM0.
Then, the more general second-order second-degree
bounded relative orbit relationships will be given by

δi0 ¼ ∂i0

∂L
δLþ∂i0

∂η
δηþ∂i0

∂i
δiþ ∂i0

∂ΩR
δΩR ¼ 0; ð7aÞ

δΩ0
R ¼

∂Ω0
R

∂L
δLþ∂Ω0

R

∂η
δηþ∂Ω0

R

∂i
δiþ∂Ω0

R

∂ΩR
δΩR ¼ 0; ð7bÞ

δθ0M ¼ ∂θ0M
∂L

δLþ∂θ0M
∂η

δηþ∂θ0M
∂i

δiþ∂θ0M
∂ΩR

δΩR ¼ 0: ð7cÞ

From Eqs. (7a) and (7b), it follows that

C22 sin ð2ΩRÞ η cos iδi� sin ið4Lδηþ7ηδLÞ½ �
þ2C22ηL sin i cos ð2ΩRÞδΩR ¼ 0; ð8aÞ

C20þ2C22 cos ð2ΩRÞ½ � cos ið4Lδηþ7ηδLÞþδiηL sin i½ �
þ4C22ηL cos i sin ð2ΩRÞδΩR ¼ 0; ð8bÞ

which, when evaluated at the quasi-frozen orbit condi-
tions (6a)–(6b), simplify in

�2
B
C22ωTηLΓδΩR ¼ 0; ð9aÞ

�7ηδL�4LδηþηLΓδi¼ 0; ð9bÞ
with

Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B=ωT

 �2�1

q
: ð10Þ

Consequently, in order to satisfy the bounded relative orbit
conditions (7a) and (7c), δΩR must always be equal to zero,
i.e., ΩR;d ¼ΩR. Furthermore, substituting Eq. (9a) and (9b)
Fig. 1. Chief body-fixed trajectory set up in osculating
into Eq. (7c) yields

δi¼
B2 7C20�42C22þ16η3L4

� �
�21ω2

T ðC20�2C22Þ
B2 7ðηþ1ÞðC20�6C22Þþ4η4L4

h i
þ7ω2

T ð3ηþ5ÞðC20�2C22Þ
1
Γ
δη;

ð11Þ
which can also be substituted back into Eq. (9b) to get the
final set of first-order mean orbit element relationships as
a function of δη:

δL¼ �
ð3ηþ4ÞL B2ðC20�6C22Þþ5ω2

T ðC20�2C22Þ
h i

B2 7ðηþ1ÞðC20�6C22Þþ4η4L4
h i

þ7ω2
T ð3ηþ5ÞðC20�2C22Þ

1
η
δη:

ð12Þ
Thus, for small values of δη¼ ηd�η, Eqs. (11) and (12)

give the mean inclination and semi-major axis differences
that minimize the secular drift induced by second-order
second-degree gravity terms. Also notice that for C22 ¼ 0,
ωT ¼ �B cos i, Eqs. (11) and (12) reduce to the J2-invariant
orbit relationships derived in Reference [8].
3. Mean/osculating orbit element mapping

The second-order second-degree bounded relative
orbit conditions have been derived in the mean orbit ele-
ment space. Thus, it is necessary to implement a reliable
mean-to-osculating orbit element mapping in order to
design spacecraft formation about slowly rotating aster-
oids. To that end, a first-order Lie–Deprit transformation is
implemented to convert from mean to osculating orbit
elements and vice versa [11]. The generating functions
used for the conversion can be found in De Saedeleer and
Henrard [12].

Fig. 1 shows a comparison between two different chief
trajectories integrated in the rotating body-fixed frame of
the asteroid for four weeks, i.e., more than 70 Orbital
Periods (OP), with a second-order second-degree gravity
field [9]. Both the trajectories are initialized on a quasi-
frozen orbit with Keplerian orbit elements given by

æc¼ ½a e i Ω ω M�T ;
orbit elements (a) and mean orbit elements (b).



Fig. 2. Osculating orbit elements for the mean orbit element initialized trajectory.

Fig. 3. J2-invariant and second-order second-degree out-of-plane relative trajectories with δi¼ 0:41, δω¼ 81, δM¼ �81, and ω¼ 01.
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¼ ½3800 0:10 147:22 90:00 0:00 180:00�T

ðm; � ;degÞ: ð13Þ

However, in the plot of Fig. 1(b) the initial conditions (13)
are first converted with the aforementioned Lie–Deprit
transformation.

As expected, the trajectory initialized via mean orbit
elements (Fig. 1(b)) displays a much nicer behavior than
the one initialized using osculating orbit elements (Fig. 1
(a)). However, even for the mean orbit element case, the
time histories of the chief osculating orbit elements shown
in Fig. 2 reveal that second-order effects can hardly be
neglected for orbiters about Toutatis (C20C�0:31,
C22C0:12). In fact, the first-order Lie–Deprit transforma-
tion fails to yield initial conditions for which the inclina-
tion and the body-fixed RAAN are truly constant on
average.

In addition to that, approximations in the transforma-
tion are even more evident when looking at different
relative trajectories generated with the same mean-to-
osculating orbit element mapping. That is, even though
the obtained relative trajectories are more performant
than the standard J2 invariant orbits (Figs. 3 and 4), it
appears as the initial conditions of the chief highly affect
the long-term behavior of the relative orbit. For instance,
Fig. 5(a) shows the in-plane relative trajectory of the
deputy with δω¼ �δM¼ 81 when the mean orbit ele-
ments of the chief are set equal to (13). As it can be seen,
the relative trajectory looks much more stable than the
one obtained when ω is changed to 901 (Fig. 5b). Since
such variable only appears in the mean-to-osculating orbit
element mapping, it seems as the first-order Lie–Deprit
transformation currently available in the literature is not
accurate enough to design long-term bounded relative
trajectories about strongly elongated bodies.

For this reason, consider switching to a fully numerical
approach that involves the numerical computation of
periodic and quasi-periodic orbits about Toutatis. After all,
the approximate Lie–Deprit transformation indeed suc-
ceeds in generating trajectories that are close to be peri-
odic (Fig. 1(b)). Therefore, starting from the output of the
mean-to-osculating orbit element mapping, one can try to
further refine the initial conditions and compute families
of periodic orbits about the target asteroid [13]. If the
computed periodic orbits have a center component, then



Fig. 4. J2-invariant and second-order second-degree out-of-plane relative trajectories with δi¼ 0:41, δω¼ 81, δM¼ �81, and ω¼ 901.

Fig. 5. In-plane relative trajectories with δω¼ �δM¼ 81 for the case ω¼ 01 (a) and ω¼ 901 (b).
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quasi-periodic invariant tori can be used to initialize
spacecraft formations that are guaranteed to remain
bounded over long time spans. Such a strategy was first
suggested by Barden and Howell [14], and it will be hereby
applied for the first time to design bounded relative tra-
jectories about small bodies.
4. Equations of motion

In order to compute periodic and quasi-periodic orbits,
consider the equations of motion for one spacecraft in orbit
about 4179 Toutatis. The asteroid is modeled as a tri-axial
ellipsoid with semi-major axes α¼ 2250 m, β¼ 1200 m, and
γ ¼ 950 m and constant density σ ¼ 2500 kg=m3 (Fig. 6).
Moreover, although Toutatis is a non-principal axis rotator
[15], it is assumed that the angular velocity vector of the
body is aligned with the third axis ê3 of an inertial reference
frame N ¼ fO; ê1; ê2; ê3g centered on the body and oriented
such that ê1, ê2, and ê3 are parallel to the asteroid principal
axes of inertia at time t0 ¼ 0. That is, ω¼ ωT ê3, where
ωT ¼ 1:34� 10�5 rad=s. This assumption enables the ana-
lytical results of Ref. [6], which provide good initial guesses
for the numerical computation of periodic orbits in the
vicinity of the target asteroid (Fig. 1(b)).
To that end, consider a second rotating reference frame
such that b̂1, b̂2, and b̂3 are always aligned with the asteroid
principal axes of inertia. Thus, let B¼ fO; b̂1; b̂2; b̂3g be
denoted as the Body-Centered-Body-Fixed frame (BCF) and
N ¼ fO; b̂1; b̂2; b̂3g as the Body-Centered-Inertial frame (BCI).

In BCF, the equations of motion of a single satellite are
given by [16]

€x ¼ ω2
Txþ2ωT _yþUx;

€y ¼ ω2
Ty�2ωT _xþUy;

€z ¼ Uz;

8><
>: ð14Þ

where X ¼ ½x y z _x _y _z�T is the state of the spacecraft in
the rotating frame, and

Ux ¼
∂U
∂x

¼ �3
2
μx

Z 1

0

1
α2þΛþv

� �
dv

ΔðvþΛÞ; ð15aÞ

Uy ¼
∂U
∂y

¼ �3
2
μy

Z 1

0

1
β2þΛþv

� �
dv

ΔðvþΛÞ; ð15bÞ

Uz ¼
∂U
∂z

¼ �3
2
μz

Z 1

0

1
γ2þΛþv

� �
dv

ΔðvþΛÞ; ð15cÞ

are the partial derivatives of the potential
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U ¼ �μ
3
4

Z 1

0
ϕ x; y; z; vþΛð Þ dv

ΔðvþΛÞ; ð16Þ

with

ΔðvþΛÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2þΛþvÞðβ2þΛþvÞðγ2þΛþvÞ

q
; ð17aÞ

ϕ x; y; z; vþΛð Þ ¼ x2

α2þΛþv
þ y2

β2þΛþv
þ z2

γ2þΛþv
�1: ð17bÞ

Observe that U depends on both the gravitational
parameter of the body, i.e.,

μ¼ 1792:60 m3=s2; ð18Þ

and Λ, which is defined to be either the positive root of
ϕðx; y; z;ΛÞ ¼ 0 whenever U is computed outside of the
ellipsoid, or zero otherwise. Then, both (15) and (16) can
be evaluated via the Carlson elliptic integrals described in
Ref. [17].
Fig. 6. Asteroid 4179 Toutatis and reference frames.

Fig. 7. Initial guess and final perio
It is also worth noting that the system (14) admits an
integral of motion given by

C ¼ �1
2

_x2þ _y2þ _z2
� �

þ1
2ω

2
T x2þy2

 �þU; ð19Þ

and known as the Jacobi constant. Moreover, the equations
of motion (14) can be easily linearized via

_X ¼ AX ð20Þ
where

A¼ 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

ω2
T þUxx Uxy Uxz 0 2ωT 0
Uxy ω2

T þUyy Uyz �2ωT 0 0
Uxz Uyz Uzz 0 0 0;

2
6666666664

3
7777777775

ð21Þ

and Uxx, Uxy, Uxz, Uyy, Uyz, and Uzz are the second partial
derivatives of the potential (16) (see Ref. [9] for details).
Accordingly, the State Transition Matrix Φðt; t0Þ can be
integrated along with Eq. (14) via

_Φðt; t0Þ ¼ AΦðt; t0Þ; Φðt0; t0Þ ¼ I6�6; ð22Þ
where I6�6 is the 6� 6 identity matrix.
5. Periodic orbits about 4179 Toutatis

Integrating the initial conditions provided by the Lie–
Deprit transformation with Eq. (14) yields the trajectory
portrayed in Fig. 7(a). As it can be seen, the satellite is very
close to be on a periodic trajectory, so that numerical
procedures can be implemented in order to refine the
initial conditions and achieve periodic motion.

Notice that the spacecraft pierces the x–y plane twice
along its orbit: one with _z40, and one with _zo0.
Accordingly, SðxÞ ¼ z, _zo0 is a valid surface of section that
can be used to compute a linearized Poincaré Map and its
associated monodromy matrix.

Given the reduced state y¼ ½x y _x _y�T , it turns out that
deviations on the surface of section at time t0, namely δy0,
dic orbit in the BCF frame.
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can be mapped into deviations at the next surface of sec-
tion crossing via [9]

δy1 ¼Φ10δy0; ¼ PT
0PSΦðt1; t0ÞðP0þPHÞδy0 ð23Þ

where

P0 ¼

I2�2 02�2

01�2 01�2

02�2 I2�2

01�2 01�2

2
66664

3
77775; PS ¼ I6�6½ �� 1

∂S
∂x

����
1
� _x t1ð Þ

_x t1ð Þ∂S
∂x

����
1
;

ð24Þ

PH ¼ 1
_z0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ðω2
T x0þUx0 Þ ðω2

T y0þUy0 Þ � _x0 � _y0

2
6666666664

3
7777777775
: ð25Þ

Consequently, if y1 ¼ gðy0;CÞ is the full nonlinear Poincaré
Map from an initial point y0 and fixed energy C to the next
surface of section crossing y1,

y0þδy0 ¼ g y0þδy0;C

 �

; ¼ g y0;C

 �þ ∂g

∂y

� 

δy0þ…

¼ y1þ½Φ10�δy0þ… ð26Þ

and

δy0 ¼ ½I4�4�Φ10��1ðy1�y0Þ: ð27Þ

Eq. (27) can be used to update the initial guess y0 until
a fixed point for the full nonlinear map is found. After five
iteration, the algorithm converges to

y0 ¼ 1:3185� 10�11 3679:9296 0:5812 2:1991� 10�14
h iT

ðm;m=sÞ

ð28Þ
which corresponds to the periodic orbit illustrated in
Fig. 7(b) (C ¼ 0:2145, hence _z ¼ �0:4302 m=s).

It is now possible to continue along the different
members of the periodic orbit family by varying the value
of the Jacobi integral as follows: given the periodic orbit of
Fig. 8. Families of periodic orbits f
Fig. 7(b), y� ¼ gðy�;CÞ implies

y�þδy¼ g y�þδy;CþδCð Þ; Cg y�;Cð ÞþΦ10δyþ
∂g
∂C

� 

δC;

i.e.,

δy¼ ½I4�4�Φ10��1 ∂g
∂C

� 

δC; ð29Þ

where

∂g
∂C

� 

¼ PT

0PSΦ T ;0ð Þ 0 0 0 0 0
1
C _z

" #T

; ð30aÞ

C _z ¼
∂C
∂_z

¼ � _z: ð30bÞ

The new initial guess computed with (29) can now be used
to initialize Eq. (27) and converge to a new periodic orbit
at a different value of energy C� ¼ CþδC.

Fig. 8 displays a family of periodic orbits computed at
different values of the Jacobi constant for either ΩR ¼ �901
or ΩR ¼ 901. As it can be seen, changing the value of C
yields periodic orbits at different inclinations, thus giving
the possibility to investigate the central body at different
latitudes.

Also notice that the monodromy matrices M¼Φ10ðT ;0Þ
computed along the periodic orbits typically admit two
pairs of complex conjugate eigenvalues with unity mag-
nitude. That is, Fig. 9 shows the root locus of M for the
family of periodic orbits of Fig. 8(a). Except for a very few
cases where the periodic orbit becomes unstable, the
eigenvalues are usually distributed along the unit circle of
the complex plane. In particular, for the periodic orbit of
Fig. 7(b), the eigenvalues of the monodromy matrix are

λ12 ¼ 0:96097I 0:2770; ð31aÞ

λ34 ¼ 0:90167I 0:4326: ð31bÞ
Therefore, the periodic orbit turns out to be stable and
surrounded by two families of quasi-periodic invariant tori
(one for each pair of complex conjugate eigenvalues) [18].

By computing single members within the families,
one can eventually come up with initial conditions for
establishing long-term bounded relative motion about the
or ΩR ¼ �901 and ΩR ¼ 901.



Fig. 9. Distribution of the Monodromy matrix eigenvalues for families of
periodic orbits about 4179 Toutatis.

Fig. 10. Monodromy matrix invariant cir
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target asteroid. In fact, if multiple spacecraft are initialized
on the surface of a quasi-periodic invariant torus, they
would not only be guaranteed to remain on the surface,
but they would also evolve around the central body with
the same frequencies, thus without drifting apart from
each other [14,19]. Accordingly, consider the numerical
method outlined in the next section for computing quasi-
periodic invariant tori about 4179 Toutatis.
6. Quasi-periodic orbits about Toutatis

Following the approach of Kolemen et al. [10], quasi-
periodic tori can be computed as follows. First, notice that
for a given eigenvalue/eigenvector pair, e.g., λ¼ λ12,
v¼ v12 ¼ v17iv2, it is possible to compute the invariant
circle of the monodromy map M. That is, for any θA ½0;2π�
and magnitude κ, we can define

ψðθÞ ¼ κ cos θv1�κ sin θv2; ð32Þ
such that MψðθÞ ¼ ψðθþηÞ (see Kolemen's paper for proof).

Although ψðθÞ should not be confused with the invar-
iant set of the Poincaré section defined by the intersection
between the quasi-periodic torus and SðxÞ, it is a linear
cle in different coordinate planes.
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approximation of the relative distance between the torus
and the periodic orbit under investigation. Therefore, it
can be used to initialize a Newton iteration scheme aimed
to compute the actual invariant set of the surface of
section.

To that end, consider N¼ 100 points on the invariant
circle of the map M defined by x0;i ¼ ψðθiÞ with
θi ¼ 2πði�1Þ=N, i¼ 1;…;N. Fig. 10 shows how the points
x0;i look like in different coordinate spaces, illustrating that
the _x– _y coordinate plane can be used to effectively para-
metrize the intersection between the quasi-periodic torus
and the surface of section SðxÞ ¼ z, _zo0. Then, let
R¼

ffiffiffiffiffi
_x2

p
þ _y2, and consider a truncated Fourier series up to

the Nmax ¼ 20 order such that

X0 ¼
x0;1
⋮

x0;N

2
64

3
75¼ AðθÞQ ; ð33Þ

where Q ¼ ½Q T
x Q T

y Q T
R Q T

_z �T is the ð8Nmaxþ4Þ � 1 Fourier
coefficient vector (since z¼ 0 on the surface of section,
there is no need to compute the corresponding Fourier
coefficient vector) and AðθÞ is the 6N � ð8Nmaxþ4Þ matrix
defined by

AðθÞ ¼
Aðθ1Þ
⋮

AðθNÞ

2
64

3
75; AðθiÞ ¼

csðθiÞ 0 0 0
0 csðθiÞ 0 0
0 0 0 0
0 0 cos ðθiÞ csðθiÞ 0
0 0 sin ðθiÞ csðθiÞ 0
0 0 0 csðθiÞ

2
6666666664

3
7777777775

ð34Þ

with

csðθiÞ ¼ 1 cos ðθiÞ sin ðθiÞ cos ð2 θiÞ
�
sin ð2 θiÞ… cos ðNmax θiÞ sin ðNmax θiÞ�: ð35Þ

Now propagate each of the N points till the next surface of
section crossing using the full nonlinear equations of
motion (14), and compute the corresponding angle in
Fig. 11. In-plane Relative Trajectories over 30 days. The chie
terms of the chosen coordinate variable, i.e.,

θT ;i ¼ arctan
_yi
_xi

� �
: ð36Þ

If the X0 points were initialized exactly on the invariant set
of the Poincaré section, the points obtained after one
orbital period, namely XT , would satisfy

FðQ Þ ¼ XT �AðθT ÞQ ¼ 0: ð37Þ
Since this is not the case–at least for the very first initial
guess–consider updating the Fourier coefficients using
Newton's iteration scheme

Q kþ1 ¼Q k�DFðQ kÞ† FðQ kÞ; ð38Þ
where DF† denotes the pseudoinverse of the jacobian
matrix of FðQ Þ (see Kolemen's original paper for details on
how to compute the Jacobian matrix).

Before that, observe that the researched quasi-periodic
invariant tori lie in two-parameter families [20]. Therefore,
two additional equations need to be appended to the error
vector (37) in order to select a single quasi-periodic
invariant torus within its family. It turns out that the
best choice of constraints to be added in order to achieve
bounded relative motion is made by the projected area of
the invariant set in the _x– _y plane, namely

A¼ π

2
Q T

RQ R; ð39Þ

and the period of the quasi-periodic orbit, i.e.,

T ¼ 1
N

XN
i ¼ 1

τ xið Þ; ð40Þ

where τðxiÞ is the time between two consecutive surface of
section crossings for the i th trajectory. Accordingly, the
final error vector FðQ Þ will be given by

FðQ Þ ¼ ½XT �AðθT ÞQ ; ΔA; ΔT �; ð41Þ
where ΔA¼A�Adesired and ΔT ¼ T�Tdesired are the dif-
ferences between the current and desired values. With
these choice of equations, Newton's algorithm (38) usually
converges to the desired quasi-periodic torus in four or
five iterations.
f spacecraft has been initialized on the periodic orbit.
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7. Formation flying

By choosing λ¼ λ12, κ¼ 50 m, Adesired equal to the _x– _y
area of Fig. 10, and Tdesired equal to the period of the per-
iodic orbit of Fig. 7(b), Kolemen's algorithm converges
after four iterations to a quasi-periodic torus that yields
the relative motion of Fig. 11. In the plots of Fig. 11, the
chief spacecraft has been initialized on the periodic orbit,
whereas the deputy spacecraft has been initialized on the
surface of the quasi-periodic torus obtained with the
Newton iteration scheme. The resulting in-plane relative
orbit is shown with respect to the LHLV frame of the chief
after integrating the equations of motion (14) of both
satellites for 30 days.

Although there is some residual drift in the along-track
direction, the relative trajectory does not diverge as fast as
the relative trajectory computed from the linear approx-
imation of the invariant torus (i.e., using as initial condi-
tions one of the x0;i points created on the invariant set of
the monodromy map M). Similar results are also obtained
when initializing the deputy spacecraft on the surface of a
quasi-periodic torus of the second family, i.e., for λ¼ λ34,
v¼ v34 ¼ v3þ i v4. The obtained out-of-plane relative tra-
jectory is illustrated in Fig. 12.

Another interesting design option would be to initialize
both the chief and the deputy satellites on the computed
invariant tori. Figs. 13 and 14 display how the relative
trajectories look like for spacecraft formations on the first
and second center submanifolds respectively. As it can be
seen, bounded relative motion about slowly rotating tri-
axial ellipsoids can be achieved over long time spans; i.e.,
more than 30 days.

It is important to note that these results are obtained
using the full constant density ellipsoidal gravity model of
the central body, thus including gravity coefficients
beyond the second-order second-degree used for the
preliminary analyses at the beginning of this paper.
Nevertheless, the plots of Figs. 11–14 also assume perfect
initial conditions and do not take into account the effects
of other forces such as solar radiation pressure and third
body attraction.
Fig. 12. Out-of-plane Relative Trajectories over 30 days. The ch
As one can expect, the inclusion of these perturbations
in the simulations tends to destroy the formations, and
active control strategies should be implemented to counter
the relative drift induced by external forces and uncer-
tainties in the system. Yet, even in a worst case scenario
where the deputy and chief spacecraft are deployed when
Toutatis is at perihelion, control would not be necessary
for more than 2.5 days (Fig. 15). In this time frame, many
scientific operations could still be performed and used to
infer valuable information on the mechanical and chemical
properties of the target asteroid.
8. Conclusions and future work

By combining analytical and numerical methods, it is
possible to come up with a systematic procedure to initi-
alize spacecraft formations about 4179 Toutatis. The pro-
blem was first analyzed with a second-order second-
degree gravity field, which was initially used to derive
first-order differential relationships between the mean
orbit elements of the spacecraft. The second-order second-
degree bounded relative motion conditions derived in this
paper were seeking to minimize the relative drift between
the satellite in the formations caused by the elongated
shape of the central body. However, this method fails to
provide long-term bounded relative orbits because of the
approximations and errors in the Lie–Deprit transforma-
tion used to carry on the necessary mean-to-osculating
orbit element conversions.

Such mapping, however, provides a reliable initial
guess for the numerical computation of periodic orbits in
the body-fixed frame of the target asteroid (Fig. 7). Since
the monodromy matrix computed along these trajectories
has two pairs of complex conjugate eigenvalues, the
computed periodic orbits are stable and surrounded bytwo
families of quasi-periodic invariant tori. Because of this,
Kolemen's surface of section approach was applied in
order to compute different quasi-periodic tori about
Toutatis and establish bounded relative motion [10]. In
particular, by choosing the orbital period as one of the
ief spacecraft has been initialized on the periodic orbit.



Fig. 13. In-plane Relative Trajectory over 30 days when the satellites are both initialized on the invariant torus.

Fig. 14. Out-of-plane Relative Trajectories over 30 days when the satellites are both initialized on the invariant torus.

Fig. 15. Effects of SRP and Sun Third body attraction on 3U Cubesat for-
mations about Toutatis at Perihelion. SRP was simulated using the
“cannonball” model (see Ref. [21] for details).
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parameters in Kolemen's method, it was possible to come
up with invariant tori foliated by quasi-periodic orbits that
pierce a user-defined surface of section with the same
frequency as the underlying periodic orbit. This is an ideal
condition for spacecraft formation flying as it yields in-
plane and out-of-plane relative trajectories that remain
bounded for more than 30 days (Figs. 11–14).

Future work will be focused on extending this approach
beyond slowly rotating bodies and applying dynamical
systems theory to design spacecraft formations about
planets and other small bodies. Furthermore, it will be
interesting to investigate the existence of cost-free boun-
ded relative trajectories with more sophisticated gravity
fields such as the constant density polyhedron model,
which better takes into account the actual physical shape
of the target asteroid [22]. Finally, solar radiation pressure
should be modeled and included in the equations of
motion to improve robustness.
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