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Nomenclature

Bc, Si = rigid hub center of mass location and ith solar
panel center of mass location, respectively

fb̂1; b̂2; b̂3g = body frame basis vectors
c = vector from point B to center of mass of the

spacecraft C, m
ci, θi = ith solar panel torsional damping, �N ⋅m ⋅s�∕

rad; and deflection from equilibrium, deg,
respectively

di, ki = ith solar panel center of mass offset, m; and
torsional spring constant, �N ⋅m�∕rad,
respectively

Fext = vector sum of external forces on spacecraft, N
Hsc;B = angularmomentum vector of spacecraft about

point B, N ⋅m ⋅ s
fĥi;1; ĥi;2; ĥi;3g = ith hinge frame basis vectors
�Isc;B�, �Ispi ;Si � = inertia tensor of spacecraft about pointB and of

solar panel about pointSi,kg ⋅m2, respectively
LB = vector of sum of external torques of spacecraft

about point B, N ⋅m
msc, mhub, mspi

= mass of spacecraft, hub, and ith solar panel,
respectively

N, B, Hi = inertial frame origin, body frame origin, and
ith hinge frame origin, respectively

N , B,Hi, Si = reference frame of inertial, body, ith hinge,
and ith solar panel, respectively

rB∕N = position vector of B with respect to N, m
fŝi;1; ŝi;2; ŝi;3g = ith solar panel frame basis vectors
ωB∕N = angular velocity vector of B frame with

respect to N frame, deg/s

I. Introduction

S PACECRAFT designs include a range of shapes and sizes, as
well as deployable structural components such as large solar

panels or antennas. Typically, these components are connected to the

spacecraft as cantilevered elements; therefore, they are susceptible to
flexing behavior. In many situations, this behavior needs to be
included in the dynamics. The spacecraft is typically assumed to be a
rigid body in initial modeling, but this assumption degrades the
fidelity of the simulation if there are components that flex. Flexible
dynamics impacts both the translational and rotational motions (and
associated stability margins) of the spacecraft, as well as sensor
modeling such as accelerometers and rate gyroscopes. For simulation
and analysis purposes, flexing is very important because it can impact
the performance, requirements, and success of the mission.
There aremany different ways tomodel flexible dynamics [1].One

method is to assume that the primary impact will be on the attitude
dynamics of the spacecraft so that the translationalmotion coupling is
ignored [2]. Also, in some scenarios, the effects of flexible behavior
can be assumed to only impact one plane of motion [2–4]. These
methods are helpful in the early stages of a mission, but they lack
fidelity and are limited in application, in that they do not allow
general three-dimensional closed-loop dynamics to be considered.
The field of multibody dynamics has received extensive research in

modeling flexible dynamics, and the equations ofmotion presented are
generalized for complex and diverse problems [1,5]. This results in
rederivation of equations because of generality [6–12]. Thesemethods
are required for unique and complex systems because the equations of
motion dependonhowmany joints are interconnected. For example, in
robotic systems, the number of interconnected joints varieswidely, and
the equations of motion are specific to that system [13,14]. Because
there aremany spacecraft that have similar designswith appended rigid
bodies, there is a need to develop equations of motion that can be
readily applied to these spacecraft. However, as is illustrated in this
Note, deriving complete equations of motion for a general spacecraft
configuration is a challenging and time-consuming task.
Related to the work in this Note, multiple publications presented

models of spacecraft dynamics with appended solar panels [15–17].
However, this previous researchwasmainly focused on the deployment
of solar panels and how the deployment affected the dynamics of the
spacecraft [15–17]. Also, the previous research on deployable solar
panelswas specific to solar panels thatwere composedof interconnected
bodies. This Note considers systems inwhich the solar panels are single
rigid bodies.
Additionally, there was extensive research on the attitude control

of flexible spacecraft and spacecraft structures. This area of research
used dynamics formulations for the flexing phenomenon; therefore,
the literature introduced many different ways to model flexible
dynamics. Sometimes, a new control algorithm, for proof of concept,
will assume the primary impact of flexing is constrained to one body
axis, which greatly simplifies the flexible dynamics formulation
[4,18]. Another common strategy is to assume that the flexible
dynamics can be added on as an external perturbation to the spacecraft
with modal coordinate dynamics [19–21]. However, the dynamics
formulations either make too many assumptions that limit the
applicability of the solution, energy and momentum verification is not
available, or the focus of the work is not on the dynamics and further
work must be done to implement the solution in simulation software.
When developing equations of motion of multibody systems, an

important consideration is determining what analytical method to
use to arrive at the equations. Lagrangian mechanics [3,4,22–24],
Newtonian and Eulerian mechanics [2,25], and Kane’s method
[26,27] are the threemost commonmethods for spacecraft. Each have
their advantages and disadvantages [22]; in some situations, a certain
method can be more beneficial than the others. For example, the
Lagrangian approach is a desirable method based on the simple form
of themethod; however, special identities and algebraicmanipulation
are required to convert from generalized coordinates and quasi
velocities to the desired angular velocity vector form [23,24]. In this
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Note, Newtonian and Eulerian mechanics is the method chosen for
the ease of compact vector notation, as well as the explicit forms of
internal forces and torques that are produced [2,25]. However, note
that the presented general spacecraft dynamics formulation is not tied
to this method of deriving the equations of motion.
There is a need for a general solution tomodel the flexing behavior

of spacecraft that can be readily implemented into software and
be computationally efficient. This Note introduces a solution for
modeling the flexible dynamics of the solar panels by assuming that
the hub of the spacecraft and the solar panels are rigid bodies, but the
solar panels are connected to the hub by single-degree-of-freedom
torsional springs. This is a first-order approximation to the actual
structural deflection phenomenon; but, for simulation and analysis
purposes, this approximation is beneficial to computational speed and
control system performance analysis. The torsional spring constants
and damping coefficients can be attenuated to match the natural first-
order frequencies of the solar panels found from finite element analysis
or testing. An additional contribution of thiswork is a backsubstitution
method to increase the computational efficiency and is similar to
Ref. [25] for reaction wheels, but it is expanded to problems for which
the translational and rotational motions are coupled. In addition to
increasing the computational efficiency, the backsubstitution method
aims to modularize the solution by oneway decoupling the equations,
which will benefit a software implementation within a modular
dynamics architecture.

II. Problem Statement

The purpose of this Note is to develop differential equations of
motion describing a general spacecraft configuration with flexible
appendage dynamics that can be readily integrated into a computer
simulation. This avoids the need of deriving equations of motion for
future spacecraft mission concepts. This formulation is developed in
a general manner that applies to a wide range of spacecraft
configurations and panel locations. The descriptions of the spacecraft,
components, coordinate frames, and variables are introduced in Fig. 1.
The particular spacecraft in Fig. 1 is composed of a rigid-body hub

connected to two solar panels by one-degree-of-freedom joints.
These joints are modeled as torsional hinges with a linear spring
constant of ki and an angular rate damping term ci. Two panels are
shown for simplicity; however, the following formulation assumes
there areNs number of solar panels, each with a general location and
hinge axis.
There are four coordinate frames defined for this formulation.

The inertial reference frame is indicated by N :fn̂1; n̂2; n̂3g, and the
dynamics are developed with respect to this reference frame. The
body-fixed coordinate frame B:fb̂1; b̂2; b̂3g is defined with its origin
B, which can be located anywhere fixed to the hub; and the B frame
can be oriented in any configuration. The ith solar panel frame
Si:fŝi;1; ŝi;2; ŝi;3g has its basis vectors oriented in the same direction
because the principle axes of the solar panel and its origin are
coincident with the ith hinge joint Hi. The Si frame is oriented such
that ŝi;1 points antiparallel to the center of mass of the solar panel Si,
and the variable di defines the distance between pointsHi andSi. The
ŝi;2 axis is defined as the rotation axis thatwill yield a positive θi using
the right-hand rule. The ith hinge frameHi:fĥi;1; ĥi;2; ĥi;3g is a frame

fixed with respect to the body frame, and it is equivalent to the
respective Si frame when the solar panel is undeflected. As can be
seen in Fig. 1, ŝi;2 � ĥi;2; therefore, θi defines a single-axis rotation
of the Si with respect to theHi frame.
The location C is the center of mass location of the entire

spacecraft, and Bc is the body-fixed center of mass location of the
rigid-body hub. The vector c points from the origin of the body frame
to the center of mass of the spacecraft. It is important to acknowledge
that points B, Bc, and C are not necessarily coincident; and this
assumption can be very useful when defining the spacecraft
parameters. Simulation teams typically work very closely with
structural engineering teams to define the spacecraft mass properties,
and the general pointB assumption gives muchmore flexibility in this
technical interchange.

III. Derivation of Equations of Motion

Next, the equations of motion (EOMs) are derived using
Newtonian and Eulerian mechanics. This approach allows for a
general set of rigid hub attitude coordinates to be used while still
describing the hub rotation rate through the convenient body angular
velocity vector. Using Kane’s method will also result in this
decoupled form, but special identities and further algebra for
simplification will be required to use Lagrangian mechanics. EOMs
are required for the translational, rotational, and solar panel motion.

A. Spacecraft Translational Equations of Motion

The derivation of the hub translational equations of motion begins
with Newton’s second law for the center of mass of the spacecraft:

Fext � msc �rC∕N (1)

where rC∕N defines the vector pointing from pointN to point C, Fext

is the sum of the external forces acting on the spacecraft, and msc is
the total mass of the spacecraft. Finding the hub EOM requires
describing the acceleration of the origin of the body frame, point B

�rB∕N � �rC∕N − �c (2)

where the center of mass vector c is

c � mhubrBc∕B �PNs

i�1 mspi
rSi∕B

msc

(3)

where

msc � mhub �
XNs

i�1

mspi

is the total mass of the spacecraft.
To find the inertial time derivative of c, it is first convenient to find

the time derivative of c with respect to the body frame. A time
derivative of a vector vwith respect to the body frameB is denoted by
v 0; the inertial time derivative is labeled as _v.
The variable rSi∕Hi

is easily defined using the ŝi;1 axis

rSi∕Hi
� −diŝi;1 (4)

To find the body-frame-relative time derivative of c, the first and
second time derivatives with respect to the body frame of rSi∕Hi

are
taken:

r 0Si∕Hi
� di _θiŝi;3 r 0 0Si∕Hi

� di��θiŝi;3 � _θ2i ŝi;1� (5)

Referring to Eq. (3), taking the first and second body frame relative
time derivatives of c yields

c 0 �
PNs

i�1 mspi
di _θiŝi;3

msc

c 0 0 �
PNs

i�1 mspi
di��θiŝi;3 � _θ2i ŝi;1�
msc

(6)Fig. 1 Components, variables, and coordinate frames used for this
derivation.
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The transport theorem [25] maps the time derivative of vector v as
seen by one frameB into the time derivative as seen by another frame

N through

_v � v 0 � ωB∕N × v (7)

Using the transport theorem, the inertial second derivative �c is

expressed in terms of body relative derivatives of c as

�c � c 0 0 � 2ωB∕N × c 0 � _ωB∕N × c� ωB∕N × �ωB∕N × c� (8)

whereωB∕N is the angular velocity vector of frame Bwith respect to
frame N . Substituting Eq. (8) into the translational equations of

motion in Eq. (2) results in

�rB∕N� �rC∕N−c00−2ωB∕N ×c0� _ωB∕N ×c−ωB∕N ×�ωB∕N ×c� (9)

It is evident by looking at Eqs. (6) and (9) that the angular

acceleration of the body _ωB∕N and the angular acceleration of each
solar panel angle �θi are coupled with the translational acceleration
�rB∕N . Because these are accelerations of state variables that will

ultimately populate a system mass matrix, Eq. (9) is rearranged with
the second-order state variable terms isolated on the left-hand side of
the equation. The mass of the spacecraft msc is multiplied on both
sides of the equation, which results in the substitution of the sum of

the external forces applied on the spacecraft seen in Eq. (1):

msc �rB∕N −mscc × _ωB∕N �
XNs

i�1

mspi
diŝi;3 �θi � Fext − 2mscωB∕N × c 0

−mscωB∕N × �ωB∕N × c�−
XNs

i�1

mspi
di _θ

2
i ŝi;1 (10)

This frame-independent vector equation describes the translational

motion of body frame pointBwith respect to the inertial frame and is
in terms of the rotational motion and solar panel motion.

B. Spacecraft Rotational Equations of Motion

Next, the EOM for the hub rotational motion is developed. The

rigid-body rotational motion is most conveniently expressed by
separating the kinematic and kinetic differential equations. This
allows for any choice of attitude coordinates to be used to describe the

orientation, whereas the convenient use of the quasi-velocity vector
ωB∕N is retained [25]. The kinetic rotational EOM derivation starts
with Euler’s equation when the body-fixed coordinate frame origin is
not coincident with the center of mass of the body [25]:

_Hsc;B � LB �msc �rB∕N × c (11)

Here, the vector LB is the total external torque about point B. The
definition of the angular momentum vector of the spacecraft about
point B is as follows:

Hsc;B � �Ihub;Bc
�ωB∕N �mhubrBc∕B × _rBc∕B �

XNs

i�1

��Ispi ;Si �ωB∕N

� _θiIsi;2ĥi;2 �mspi
rSi∕B × _rSi∕B� (12)

The solar panel frame Si is assumed to be a principle frame such
that the solar panel inertia matrix about its center of mass when

defined with respect to the Si frame is as follows:

Si �Ispi ;Si � �
Si
2
664
Isi;1 0 0

0 Isi;2 0

0 0 Isi;3

3
775 (13)

The inertial time derivative of Eq. (12) is evaluated again using the
transport theorem [25] to related vector derivatives as seen by
different rotating frames and yields:

_Hsc;B � �Ihub;Bc
� _ωB∕N �ωB∕N × �Ihub;Bc

�ωB∕N �mhubrBc∕B × �rBc∕B

�
XNs

i�1

��I 0spi ;Si �ωB∕N � �Ispi ;Si � _ωB∕N �ωB∕N × �Ispi ;Si �ωB∕N

� �θiIsi;2ĥi;2 �ωB∕N × _θiIsi;2ĥi;2 �mspi
rSi∕B × �rSi∕B� (14)

The terms �rBc∕B and �rSi∕B are also found by using the transport
theorem and taking advantage of rBc∕B being fixed with respect to the
body frame:

�rBc∕B � _ωB∕N × rBc∕B � ωB∕N × �ωB∕N × rBc∕B� (15)

�rSi∕B � r 0 0Si∕B � 2ωB∕N × r 0Si∕B � _ωB∕N × rSi∕B � ωB∕N

× �ωB∕N × rSi∕B� (16)

Incorporating Eqs. (15) and (16) into Eq. (14) and simplifying the
extensive algebra results in the intermediate result,

_Hsc;B � �
Ihub;Bc

�
_ωB∕N � ωB∕N ×

�
Ihub;Bc

�
ωB∕N �mhubrBc∕B

×
�
_ωB∕N × rBc∕B

��mhubrBc∕B ×
�
ωB∕N ×

�
ωB∕N × rBc∕B

��
�

XNs

i�1

�h
I 0spi ;Si

i
ωB∕N �

h
Ispi ;Si

i
_ωB∕N � ωB∕N ×

h
Ispi ;Si

i
ωB∕N

� �θiIsi;2ĥi;2 � ωB∕N × _θiIsi;2ĥi;2 �mspi
rSi∕B × r 0 0Si∕B

� 2mspi
rSi∕B ×

�
ωB∕N × r 0Si∕B

��mspi
rSi∕B ×

�
_ωB∕N × rSi∕B

�
�mspi

rSi∕B ×
h
ωB∕N ×

�
ωB∕N × rSi∕B

�i�
(17)

Using the inertia matrix parallel axis theorem [25], some
simplified inertia matrix terms are defined in Eqs. (18–21). These
equations use the skew-symmetric matrix definition: a × b is the
crossproduct between a and b as a vector equation and can be
expressed in matrix form as � ~a�b, where � ~a� is a 3 × 3 matrix, b is a
3 × 1matrix, and their components are expressed with respect to the
same frame [25]. Equations (18–24) are matrix equations and the
reference frame is not specified to keep the formulation frame
independent. It is assumed that when evaluating Eqs. (18–24) the
matrices are all defined with respect to the same reference frame.

�Ihub;B� � �Ihub;Bc
� �mhub� ~rBc∕B�� ~rBc∕B�T (18)

�Ispi ;B� � �Ispi ;Si � �mspi
� ~rSi∕B�� ~rSi∕B�T (19)

�Isc;B� � �Ihub;B� �
XP
i

�Ispi ;B� (20)

�I 0sc;B� �
XNs

i�1

��I 0spi ;Si � −mspi
�� ~r 0Si∕B�� ~rSi∕B� � � ~rSi∕B�� ~r 0Si∕B��� (21)

�I 0spi ;Si � needs to be defined and is conveniently expressed by
leveraging the assumption that the inertia matrix is diagonal and can
be written in terms of its base vectors:

�Ispi ;Si � � Isi;1 ŝi;1ŝ
T
i;1 � Isi;2 ŝi;2ŝ

T
i;2 � Isi;3 ŝi;3ŝ

T
i;3 (22)

Equation (22) is amatrix equation using the notation thatabT is the
outer product between two 3 × 1 matrices. Again, this equation is
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assumed to be expressed with respect to one specific frame. Taking
the body relative time derivative of Eq. (22) results in

�I 0spi ;Si � � Isi;1 ŝ
0
i;1ŝ

T
i;1 � Isi;1 ŝi;1ŝ

0T
i;1 � Isi;2 ŝ

0
i;2ŝ

T
i;2 � Isi;2 ŝi;2ŝ

0T
i;2

� Isi;3 ŝ
0
i;3ŝ

T
i;3 � Isi;3 ŝi;3ŝ

0T
i;3 (23)

Performing the B-frame relative time derivatives and simplifying
results in the following body-relative time derivative expression of
the solar panel inertia matrix:

�I 0spi ;Si � � _θi�Isi;3 − Isi;1��ŝi;1ŝTi;3 � ŝi;3ŝ
T
i;1� (24)

Using these definitions greatly simplifies the expression in
Eq. (17), yielding the compact expression

_Hsc;B � �Isc;B� _ωB∕N � ωB∕N × �Isc;B�ωB∕N � �I 0sc;B�ωB∕N

�
XNs

i�1

f�θiIsi;2ĥi;2 � ωB∕N × _θiIsi;2ĥi;2 �mspi
rSi∕B × r 0 0Si∕B

�mspi
ωB∕N × �rSi∕B × r 0Si∕B�g (25)

Finally, Eqs. (11) and (25) are equated and all second-order state
derivatives are moved to the left-hand side:

mscc × �rB∕N � �Isc;B� _ωB∕N �
XNs

i�1

fIsi;2ĥi;2 �mspi
dirSi∕B × ŝi;3g�θi

� −ωB∕N × �Isc;B�ωB∕N − �I 0sc;B�ωB∕N −
XNs

i�1

f_θiωB∕N

× �Isi;2ĥi;2 �mspi
dirSi∕B × ŝi;3� �mspi

di _θ
2
i rSi∕B × ŝi;1g � LB

(26)

This expanded rotational equation of motion for a rigid hub with
Ns hinged panels shows the additional terms required to account for
the multi-body interaction between the rigid-body hub and the
deflecting hinged panels.

C. Hinged Panel Equations of Motion

The set of EOMs required to solve this system of differential
equations is related to the hinged rigid panels, which can represent
solar panel flexing. In this development, the ith solar panel frameSi is
assumed to be a principal coordinate frame of the panel, yielding the
diagonal inertia matrix representation shown in Eq. (13).
Let

LHi
� Li;1ŝi;1 � Li;2ŝi;2 � Li;3ŝi;3

be the total torque acting on the solar panel about the hinge pointHi.
The corresponding hinge torque component about the body-fixed
hinge axis ŝi;2 is given through

Li;2 � −kiθi − ci _θi � ŝi;2 ⋅ τext;Hi
(27)

The hinge structure produces the other two torques Li;1 and Li;3.
The vector τext;Hi

is the net external torque on the solar panel and is
projected onto the ŝi;2 direction to find its contribution to Li;2.
Gravity, for example, will apply the following torque on the solar
panel about point Hi: τg;Hi

� rSi∕Hi
× Fg.

The inertial angular velocity vector for the solar panel frame is

ωSi∕N � ωSi∕Hi
� ωHi∕B � ωB∕N (28)

whereωSi∕Hi
� _θiŝi;2. Because the hinge frameHi is fixed relative to

the body frame B, the relative angular velocity vector is ωHi∕B � 0.
The body angular velocity vector is written in the Si-frame
components as

ωB∕N � �ŝi;1 ⋅ωB∕N �ŝi;1 � �ŝi;2 ⋅ ωB∕N �ŝi;2 � �ŝi;3 ⋅ ωB∕N �ŝi;3
� ωsi;1 ŝi;1 � ωsi;2 ŝi;2 � ωsi;3 ŝi;3 (29)

Fortunately, using this definition greatly simplifies the following
algebraic development. Finally, the inertial solar panel angular velocity
vector is written as

ωSi∕N � ωsi;1 ŝi;1 � �ωsi;2 � _θi�ŝi;2 � ωsi;3 ŝi;3 (30)

Substituting these angular velocity components into the
rotational equations of motion of a rigid body with torques taken
about its center of mass [25], the general solar panel equations of
motion are written as

Isi;1 _ωsi;1 � −�Isi;3 − Isi;2��ωsi;2 � _θi�ωsi;3 � Lsi;1 (31)

Isi;2� _ωsi;2 � �θi� � −�Isi;1 − Isi;3�ωsi;3ωsi;1 � Lsi;2 (32)

Isi;3 _ωsi;3 � −�Isi;2 − Isi;1�ωsi;1 �ωsi;2 � _θi� � Lsi;3 (33)

where

LSi � Lsi;1 ŝi;1 � Lsi;2 ŝi;2 � Lsi;3 ŝi;3

is the net torque acting on the solar panel about its center of mass.
Note that the second differential equation in Eq. (32) is used to get the
desired equationsofmotionof θi. The first and third equations couldbe
used tobacksolve for the structural hinge torques embedded inLsi;1 and
Lsi;3 if needed.
The torque about the solar panel center ofmass can be related to the

torque about the hinge point Hi using

LSi � LHi
− rSi∕Hi

×mspi
�rSi∕N (34)

Taking the vector dot product of Eq. (34) with ŝi;2 and using
rSi∕Hi

� −diŝi;1 allows for a scalar equation to be developed that
relates the hinge axis torque Lsi;2 :

Lsi;2 � ŝi;2 ⋅ LSi � ŝi;2 ⋅LHi
− ŝi;2 ⋅ �rSi∕Hi

×mspi
�rSi∕N�

� −kiθ − ci _θi � ŝi;2 ⋅ τext;Hi
�mspi

diŝi;2 ⋅ �ŝi;1 × �rSi∕N� (35)

Solving for the second-order inertial time derivative of rSi∕N �
rHi∕N − dŝi;1 yields

�rSi∕N � �rHi∕N− _ωSi∕N ×�dŝi;1�−ωSi∕N ×�ωSi∕N ×�dŝi;1�� (36)

Substituting this inertial acceleration into the preceding Lsi;2 and
simplifying using the double vector crossproduct identity, as well as
a ⋅ �b × c� � �a × b� ⋅ c, Lsi;2 yields

Lsi;2 � −kiθi − ci _θi � ŝi;2 ⋅ τext;Hi
−mspi

diŝi;3 ⋅ �rHi∕N −mspi
d2i ŝi;2

⋅ _ωB∕N −mspi
d2i

�θi �mspi
d2iωsi;3ωsi;1 (37)

Substituting this torque into the differential equation seen in
Eq. (33) yields the desired scalar hinged solar panel equation of
motion:

�Isi;2 �mspi
d2i �ŝi;2 ⋅ _ωB∕N ��Isi;2 �mspi

d2i ��θi�mspi
diŝi;3 ⋅ �rHi∕N

�kiθ�ci _θi− ŝi;2 ⋅τext;Hi
��Isi;1 −Isi;3 −mspi

d2i �ωsi;3ωsi;1 �0 (38)

The final task is to expand �rHi∕N in terms of the translational
motion �rB∕N , recalling that the hinge location is a fixed point on
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the body. The final expression again groups the second-order state
variables conveniently to the left-hand side of the equation:

mspi
diŝi;3 ⋅ �rB∕N � �Isi;2 �mspi

d2i �ŝi;2 ⋅ _ωB∕N −mspi
diŝi;3

⋅ �rHi∕B × _ωB∕N � � �Isi;2 �mspi
d2i ��θi � −kiθi − ci _θi

� ŝi;2 ⋅ τext;Hi
� �Isi;3 − Isi;1 �mspi

d2i �ωsi;3ωsi;1 −mspi
diŝi;3

⋅ �ωB∕N × �ωB∕N × rHi∕B�� (39)

Equation (39) provides the Ns scalar hinged panel EOMs
required to describe the motion of the spacecraft.

IV. Backsubstitution Formulation

The equations presented in the previous sections result in Ns � 6
coupled kinetic differential equations. Note that the various kinematic
differential equation for hubmotion and rotation, as well as the flexing
angles, are already decoupled in this formulation. Therefore, if the
remaining N � 6 kinetic EOMs are placed into state space form, a
system mass matrix with a size of Ns � 6 will need to be inverted to
numerically integrate the dynamical system. This can result in a
computationally expensive simulation for a large number of panels. In
the following developments, the EOMs are manipulated using a
backsubstitution method to yield a more modular EOM framework
that is also faster to evaluate. This process is similar to how the reaction
wheel EOMs are solved in Ref. [25]; however, this analytical
backsubstitution is expanded to account for the coupled translational
and rotational motions.
This section of the Note expresses the vector equations developed

in the past section asmatrix equations. These equations do not specify
a reference frame to keep the formulation frame independent.
However, when implementing these equations in software, all of the
matrices need to be defined with respect to the same reference frame.
A common frame in which to express the equations would be the
body frame B. Because these equations are matrix equations, the
following notation will be used: a × b is expressed as � ~a�b, a ⋅ b is
expressed as aTb, and the outer products are expressed as abT .

A. Solar Panel Motion Manipulation

In Eq. (39), the solar panel motion is coupled with both the
translational motion and the rotational motion. In addition, both the
translational and rotationalEOMs include the solar panel accelerations.
To decouple the hub acceleration vectors from the panel accelerations,
Eq. (39) is solved for the angular accelerations �θi:

�θi �
1

�Isi;2 �mspi
d2i �

�−mspi
diŝ

T
i;3 �rB∕N − ��Isi;2 �mspi

d2i �ŝTi;2

−mspi
diŝ

T
i;3� ~rHi∕B�� _ωB∕N − kiθi − ci _θi � ŝTi;2τext;Hi

� �Isi;3 − Isi;1 �mspi
d2i �ωsi;3ωsi;1 −mspi

diŝ
T
i;3� ~ωB∕N �� ~ωB∕N �rHi∕B�

(40)

Equation (40) is rewritten into the following compact form and will
be used multiple times throughout this formulation:

�θi � aT
θi
�rB∕N � bTθi _ωB∕N � cθi (41)

where aθi , bθi , and cθi are defined in Eqs. (42–44):

aθi � −
mspi

di�
Isi;2 �mspi

d2i

	 ŝi;3 (42)

bθi � −
1�

Isi;2 �mspi
d2i

� ��Isi;2 �mspi
d2i �ŝi;2 �mspi

di� ~rHi∕B�ŝi;3�

(43)

cθi �
1

�Isi;2 �mspi
d2i �

�−kiθi − ci _θi � ŝi;2 ⋅ τext;Hi

� �Isi;3 − Isi;1 �mspi
d2i �ωsi;3ωsi;1 −mspi

diŝ
T
i;3� ~ωB∕N �

× � ~ωB∕N �rHi∕B� (44)

B. Decoupled Translational and Rotational Accelerations

To solve for the translational and rotational accelerations, Eq. (41)

is substituted into the translational and rotational EOMs. The result of

this substitution for the translation EOM [Eq. (10)] is seen in the

following equation:

msc �rB∕N −msc� ~c� _ωB∕N �
XNs

i�1

mspi
diŝi;3�aT

θi
�rB∕N � bTθi _ωB∕N � cθi�

� Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c −
XNs

i�1

mspi
di _θ

2
i ŝi;1

(45)

Simplifying and combining like terms yields the translational

EOM that has been decoupled from the solar panel acceleration:

�msc�I3×3� �
XN
i�1

mspi
diŝi;3a

T
θi
� �rB∕N

�
�
−msc� ~c� �

XN
i�1

mspi
diŝi;3b

T
θi

	
_ωB∕N � msc �rC∕N

− 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c

−
XN
i�1

�mspi
di _θ

2
i ŝi;1 �mspi

dicθi ŝi;3� (46)

Following the same pattern for the rotational hub EOM [Eq. (26)]

yields the following:



msc� ~c� �

XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�aT

θi

�
�rB∕N

�


�Isc;B� �

XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�bTθi

�
_ωB∕N

� −� ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N −
XN
i�1

f�_θi� ~ωB∕N �

� cθi �I3×3���Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3� �mspi

di _θ
2
i � ~rSc;i∕B�ŝi;1g

�LB (47)

The coupled translation and rotation hub EOMs can be written

compactly as " �A� �B�
�C� �D�

#"
�rB∕N

_ωB∕N

#
�

"
vtrans

vrot

#
(48)

using the following matrices to yield the compact form:

�A� � msc�I3×3� �
XN
i�1

mspi
diŝi;3a

T
θi

�B� � −msc� ~c� �
XN
i�1

mspi
diŝi;3b

T
θi

(49)

�C� � msc� ~c� �
XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�aT

θi
(50)
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�D� � �Isc;B� �
XN
i�1

�Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�bTθi (51)

vtrans � msc �rC∕N − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c

−
XN
i�1

�mspi
di _θ

2
i ŝi;1 �mspi

dicθi ŝi;3� (52)

vrot � −
XN
i�1

f�_θi� ~ωB∕N � � cθi �I3×3���Isi;2 ŝi;2 �mspi
di� ~rSc;i∕B�ŝi;3�

�mspi
di _θ

2
i � ~rSc;i∕B�ŝi;1g − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N � LB

(53)

Equation (48) represents a system of six linear equations that can

solve the Schur complement matrix formulation for the partitioned

form of the hub system mass matrix:

_ωB∕N � ��D� − �C��A�−1�B��−1�vrot − �C��A�−1vtrans� (54)

�rB∕N � �A�−1�vtrans − �B� _ωB∕N � (55)

The remaining step is to solve for the solar panel accelerations �θi.
The solutions for _ωB∕N and �rB∕N found in Eqs. (54) and (55) are
backsubstituted into the simplified solar panelmotionEOM[Eq. (41)].
This manipulation avoids having to use an inverse with a size of
Ns � 6 to solve the Ns � 6 coupled differential equations. The
equations presented for the backsubstitution method only require two
3 × 3 inverses. This can dramatically increase the computational speed
of a computer simulation because matrix inverse calculations scale a
cube the size of the matrix. Additionally, this modularizes the EOMs
because the software does not need to populate a system mass matrix
with correct locations with respect to other state variables. This can be
very beneficial when designing the software architecture for the
dynamics.

V. Numerical Simulation

To verify the spacecraft EOMs developed in this Note are agreeing
with physics and to provide an example of the flexing behavior, a
simulation of a spacecraft similar to the one in Fig. 1 is presented. The
hub is a cylinder with its center of mass located at the geometric
center of the cylinder. It has two identical solar panels modeled as
rectangular prisms located opposite from each other. There are two

Table 1 Simulation parameters for the flexing model (DCM, direction cosine matrix)

Parameter Notation Value Units

Number of solar panels Nsp 2 — —

Total spacecraft mass msc 950 kg
Hub mass mhub 750 kg
Solar panel mass msp;i 100 kg

Hub inertia matrix about hub center of mass B�Ihub;Bc
� B

2
664
499.92 −1.76 −2.81
−1.76 400.01 −1.12
−2.81 −1.12 350.08

3
775

kg ⋅m2

Hub center of mass location with regard to B BrBc∕B
B� 0 −0.21 0 �T m

Hinge 1 location vector BrH1∕B
B� 0.5 1.0 0.0 �T m

Hinge 2 location vector BrH2∕B
B� 0.5 −1.0 0.0 �T m

Body to hinge 1 DCM �H1B�
2
64
−1 0 0

0 0 1

0 1 0

3
75

— —

Body to hinge 2 DCM �H2B�
2
664
1 0 0

0 0 −1
0 −1 0

3
775

— —

Center of mass offset of solar panel di 1.5 m
Torsional linear spring constant ki 300 �N ⋅m�∕rad
Torsional linear damping constant ci 0 �N ⋅m ⋅ s�∕rad

Table 2 Simulation parameters for the rigid model

Parameter Notation Value Units

Total spacecraft mass msc 950 kg

Hub inertia matrix about hub center of mass B�Ihub;Bc
� B

2
664
857.81 −1.76 −2.81
−1.76 1300.01 −1.12
−2.81 −1.12 1407.97

3
775

kg ⋅m2

Hub center of mass location with regard to B BrBc∕B
B� 0 0 0 �T m
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scenarios simulated: one that includes flexing, and one that models
the system as a rigid body. The EOMs for the rigid-body model are
not included here but can be seen in Ref. [25]. The two simulations
are assembled to have the samemass properties when the panels have
zero angular deflection. The spacecraft parameters can be seen in
Tables 1 and 2. Additionally, the rigid-body simulation is chosen to
have the center of mass coincident with the body frame origin,
therefore BrBc∕B � BrC∕B � B� 0 0 0 �T . This assumption is
common in rigid-body dynamics formulations [2,25]. All of the
spacecraft state variables start with zero initial values, except for the
angular velocity: BωB∕N � B� 5.73 −8.59 5.73 �T . It should be
noted that the two simulations also have the same initial conditions,
allowing the simulations to be directly comparable; the differences
between the two simulations are solely due to the impact of
flexing. The simulations are given an impulsive body-fixed force of
BFext � B� 0 100 0 �T N, from t � 0 to t � 30 s; for the
remainder of the simulation, there are no external forces or torques
on the spacecraft.

The results from these simulations can be seen in Figs. 2–4. In
Fig. 2, the variables N _rB∕N and BωB∕N are plotted for both the flexing
model and rigid-body simulations. The flexing impact on the
simulations can readily be seen from these plots and visually shows
how this can impact the simulation fidelity and accuracy of simulated
accelerometers. Figure 3 shows the angular deflection of each solar
panel, and these oscillations are what are driving the oscillations in
the translational and rotational motions.
Figure 4 is included to give verification of energy and momentum

conservation for the EOMs developed in this Note. The four
conservationquantities beingconsideredareorbital angularmomentum,
orbital energy, rotational angularmomentum, and rotational energy. The
orbital conservation values are quantities describing the movement of
the center of mass of the spacecraft through space, and the rotational
conservation quantities are describing the rotation of the spacecraft
about its center of mass. Figure 4 shows that the four energy and
momentum quantities are conserved after the impulsive force is turned
off. This gives confidence in the formulation presented.

b) Inertial angular velocity of body frame in body frame
components

a) Inertial velocity of point B in inertial frame components

Fig. 2 Inertial velocity of point B and inertial angular velocity (Ang. Vel.) of the body frame.

a) Angular deflection of panel 1 b) Angular deflection of panel 2
Fig. 3 Angular deflection of the hinged rigid-bodies.
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VI. Conclusions

This Note presents a compact, frame independent formulation for
a first-order approximation of flexible dynamics that can be applied
to spacecraft with appended solar panels or hinged structural
subcomponents that can be modeled as single rigid bodies. The
numerical results show the impact of flexing and the need for it to be
included in simulations if large external forces are present to excite
panel deflections. Also, the conservation of momentum and energy
results that are provided show that the formulation is agreeing with
physics and gives verification of the model. Additionally, the
backsubstitution method presented is more computationally efficient
because it removes the need for a fully coupled system mass matrix
inverse. Modeling the flexing effect using this model is an excellent
way to analyze the impact of flexing on the spacecraft by running
simulations through the life of missions and narrow down scenarios
susceptible to unwanted flexing behavior.
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