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ABSTRACT

Novel Coordinates for Nonlinear Multibody Motion with Applications
to Spacecraft Dynamics and Control. (May 1998)
Hanspeter Schaub, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. John L. Junkins

Novel sets of attitude coordinates called the Stereographic Parameters (SPs) and
configuration quasivelocity coordinates called the Eigenfactor Quasivelocities (EQVs)
are discussed. The SPs are generated through stereographic projections of the Euler
parameter constraint hypersphere onto hyperplanes. SP sets are non-unique and
have distinct alternate sets referred to as shadow sets. They abide by the same
differential kinematic equation, but generally display a different singular behavior.
Explicit expressions are developed that map the original SP set to the shadow set and
thus avoid any singularities. Both symmetric SPs such as the classical and Modified
Rodrigues Parameters (MRPs), as well as asymmetric SPs are discussed. A globally
asymptotically stable MRP feedback law which tracks any reference trajectory is
presented. Both unsaturated and saturated control cases are discussed. Further, an
MRP costate switching condition is developed that allows both original and shadow
MRPs to be used simultaneously in optimal control problems.

The Lagrange equations of motion in terms of the n-dimensional EQV vector
are developed. The EQV formulation has an identity mass matrix which results in
no matrix inverse being taken in numerical simulations. An explicit expression is
presented that incorporates Pfaffian non-holonomic constraints into the EQV for-

mulation without increasing the system order. Unfortunately, the use of EQV in
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numerical simulations only proved beneficial in selected cases. Generally the compu-
tational burden proved too high. However, the EQVs are found to be valuable when
used as velocity feedback coordinates. EQV feedback laws have an exponentially
decaying kinetic energy, superior performance to traditional state velocity feedback
laws and are found to decouple the motion of multi-link robotic systems.

The equations of motion and steering laws of spacecraft containing Variable
Speed Control Moment Gyroscopes (VSCMGs) are developed. Contrary to classical
CMG steering laws, the VSCMG steering laws derived herein are do not encounter
singularities. Both gimbal angle velocity and acceleration based steering laws are
presented. Since gimbaling is more efficient energy consumption wise, the steering
law presented only utilizes reaction wheel modes close to classical CMG singularities.
The reaction wheel mode also assists in driving the gimbals to preferred angles using

null motion.
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CHAPTER I
INTRODUCTION

This dissertation explores the role of coordinate selection in analytical dynamics in
a broad sense and in multibody spacecraft dynamics and controls in particular. The
early portion of the dissertation deals with the classical case of a single rigid body.
Subsequent developments are introduced that apply to a large family of multibody
dynamics problems. Finally, a detailed study is addressed to systems of variable
speed control moment gyroscopes. In these developments, novel coordinate choices,
together with Lyapunov stability theory, are utilized to establish new insights into
dynamics, stability, and control of nonlinear multibody systems.

The choice of configuration coordinates used to describe nonlinear dynamical
systems is a very fundamental and important issue. Unfortunately, it is also very often
an overlooked one.! Choosing an inappropriate set of configuration coordinates can
unduly complicate the resulting dynamical expressions and the time evolution of the
motion as seen in the chosen coordinates. Further, singularities can be introduced that
are solely due to the choice of coordinates and not inherent in the actual dynamical
system. For example, the standard aircraft orientation angles, the 3-2-1 Euler angles
yaw, pitch and roll, are singular when the aircraft pitches up or down 90 degrees.?
This is a geometric singularity and has nothing to do with the actual aircraft motion.
Therefore, choosing these Euler angles as the orientation parameters artificially limits
the type of maneuvers that can thus be performed or controlled. Similar examples can
be found for spacecraft dynamics and robotics. Tsiotras and Longuski introduce a

new set of rigid body attitude coordinates called the (w, z) coordinates in Ref. 3. The

The journal model is ATAA Journal of Guidance, Control and Dynamics.



parameter w is a complex parameter and z is a real scalar quantity. These attitude
coordinates lend themselves perfectly to describe the orientation of a spinning rigid
body since w describes the spin axis orientation and 2 essentially defines the current
rotation angle about the spin axis. Therefore these attitude coordinates provide
excellent feedback parameters to stabilize a spinning symmetric spacecraft about its
spin axis as shown in Ref. 4.

Several new coordinate choices are discussed in this dissertation that have use-
ful properties for describing dynamical systems and/or have benefits when used as
feedback variables in a control law. Chapter II introduces a family of attitude coordi-
nates called the Stereographic Parameters (SPs). They are a minimal set of attitude
coordinates which are closely related to the Euler parameters (quaternions). The
Euler parameters are a well-known set of four attitude coordinates which have been
extensively used both in academia and industry. They have several elegant proper-
ties, but their popularity arises from the fact that they do not contain any singular
orientations and have a linear kinematic differential equation. They achieve these
remarkable properties by increasing the number of coordinates from three to four.
This redundancy can cause some numerical difficulties at times.”

This dissertation will focus on sets of minimal attitude coordinates that are func-
tionally equivalent to the Euler parameters. Sets of minimal attitude coordinates all
have one thing in common, they go singular at particular orientation. Different sets
differ by the location of their singular orientation and the nonlinearity of their dif-
ferential kinematic equations. The family of stereographic parameters are attractive
since they allow custom sets of attitude parameters to be created whose singularities
are set at specific orientations. Two general classes of SPs are introduced. The sym-
metric SPs are singular at specific principal rotation angles regardless about which

axis the rigid body is rotated. The asymmetric SPs only become singular at specific



principal rotations angles about certain axes. The most elegant set of SP attitude
coordinates are called the Modified Rodrigues Parameters (MRPs). Their basic for-
mulation was first introduced as a modification to the classical Rodrigues parameters®
by Wiener in Ref. 7(1962). Thereafter they did not appear in the literature for over
two decades and remained largely undeveloped. The MRPs were essentially “redis-
covered” by Marandi and Modi in Ref. 8 and studied further by Tsiotras in Refs. 9
and 10. They have many attractive properties such as being able to describe any
arbitrary orientation, having kinematic differential equations with only second order
polynomial nonlinearities and being able to scale to higher dimensions.

While chapter II deals with sets of configuration variables, chapter III studies
novel velocity coordinates called the Eigenfactor Quasivelocity coordinates (EQVs).
Complex dynamical systems, such as found in multi-body dynamics, typically have
large, configuration variable dependent system matrices. Numerically simulating
these systems often involves inverting a configuration-variable dependent mass ma-
trix to find the corresponding instantaneous state acceleration vectors. Jain and
Rodriguez discuss a method called the diagonalized Lagrangian robot dynamics in
Ref. 11. Their formulation introduces a new set of quasivelocity coordinates which
render the system mass matrix equal to the identity matrix. This dissertation presents
another set of quasivelocities which diagonalize the Lagrangian dynamics. Whereas
Jain and Rodriguez use the innovations factorization to parameterize the mass ma-
trix, an instantaneous spectral decomposition will be used in this dissertation. This
method replaces the task of inverting the configuration dependent mass matrix with
the one of solving the corresponding eigenfactor differential equations. The literature
usually deals with the case where the mass matrix M and and its derivative M are
given and one needs to solve for the eigenfactor derivatives.!>'> A simple method

is presented that establishes kinematic-like differential equations for the eigenfactors



which can be integrated. The method includes provisions for the case of crossing
eigenvalues. The resulting Lagrangian dynamics in terms of these quasivelocities pro-
vide for a natural splitting of the dynamics and kinematics of the equations of motion.
The development is analogous to the introduction of the orthogonal components of
the body angular velocity vector as the quasivelocity vector for a rigid body. Euler’s
equations of motion of a rigid body are typically not written in terms of the second
derivative of the attitude vector, but in terms of the derivative of the orthogonal
components of the body angular velocity vector.

The EQV formulation also allows for Pfaffian constraints to be directly incorpo-
rated into the equations of motion without increasing the overall dimension of the
system. Numerical studies are performed to examine any benefits and drawbacks of
this formulation when used to solve numerical simulations. Further, just as the body
angular velocity vector plays an important role in rigid body velocity feedback laws,
the use of the EQV as feedback coordinates is examined. Simple globally asymp-
totically stable EQV feedback laws are developed and compared to classical velocity
feedback laws.

In chapter IV the marriage between two popular spacecraft attitude control ac-
tuator systems is proposed, namely between the single-gimbal Control Moment Gy-
roscopes (CMGs) and the Reaction Wheels (RWs). The CMGs are usually more
efficient energy wise in controlling large space structures. However, they contain sin-
gular gimbal orientations which can cause the feasible torque set produced by the
CMG cluster to not include the required torque demanded by the control law.'6 18
Any discrepancy between commanded and realized torque causes the spacecraft to
deviate from the desired trajectory, which is unacceptable in some applications. In
such cases it has been proposed to augment the CMG control system with thrusters

to provide the necessary torque when the spacecraft is operating close to a CMG



singularity. However, thrusters have several drawbacks. They expel propellant which
cannot be easily renewed, and are difficult to use when a precision maneuver is being
performed. Ford and Hall present in Ref. 19 the dynamical equations of motion of a
spacecraft with several Variable Speed Control Moment Gyroscopes (VSCMGs) at-
tached. These devices are essentially single-gimbal CMGs with a variable speed RWs.
Their formulation was convenient since it allowed them to quickly develop control laws
for either CMG or RW case. However, they did not consider the simultaneous use of
both modes together.

The dynamics of a spacecraft with several VSCMG is presented in this disser-
tation in a manner that makes it trivial to either switch to either classical case of
using only RWs or CMGs or retain and use the two modes together. Ideally the
VSCMGs should perform like classical CMGs when not in the proximity of CMG
singularities since they are more efficient energy wise than the RWs. Whenever a
singularity is approached, then the RW mode should be used along with the CMG
mode to ensure that the actual torque produced by the VSCMG cluster is equal to
the torque demanded by the control law. Two types of steering laws which perform
in such a manner will be discussed, a velocity- and an acceleration based control law.
The CMGs are typically controlled at the gimbal velocity level to take advantage of
the torque amplification effect. However, the dynamical system which leads to the
velocity-based steering law ignores the transverse and gimbal VSCMG inertia terms.
To provide a more accurate simulation and perform energy consumption studies, the
gimbal acceleration based steering law is developed. Further, the use of the VSCMG
null motion to reorient the gimbal angles away from the proximity of a singularity is
discussed. Vadaliet. al. discuss in Ref. 20 the existence of preferred gimbal angle sets
for which the resulting maneuver will be singularity free. However, the classical CMG

null motion of four CMGs in a pyramid configuration is very limited in its ability to



rearrange the gimbal angles without producing an effective torque on the spacecraft,
because only one degree of freedom exists. The use of the RW mode allows for far
more general reorientations since this approach has five redundant degrees of freedom.
While the RW mode of the velocity or acceleration based steering laws might require
relatively large torques to pass by CMG singularities, it will be of interest whether or
not the VSCMG null motion could be performed with existing CMG hardware (which
already include a small RW torque motor and feedback controller to keep the disk
spinning at a constant rate). The main question will be: What are the consequences
of surrendering the constant speed constraint in favor of variable wheel speeds, with
no other design changes? This question can be readily answered using the results of

this dissertation.



CHAPTER II
STEREOGRAPHIC ORIENTATION PARAMETERS~

A novel family of rigid body attitude parameters called the Stereographic Parame-
ters (SPs) were recently developed.?! It is well known that the Modified Rodrigues
Parameters (MRPs) can be found through a stereographic projection of the Euler pa-
rameters unit constraint sphere onto an appropriate three-dimensional hyperplane.®?
This projection will be discussed in detail in the first section of this chapter. This
elegant geometric interpretation of the MRPs can be expanded to generate a whole
family of rigid body attitude parameters. As an example, it turns out the classical
Rodrigues parameters® can also be described through a stereographic projection of
the Euler parameter constraint sphere. The second section will briefly discuss these
Rodrigues parameters and develop them from the general stereographic parameters.
As will be evident in this discussion, the bright shining star of the SPs are the MRPs.
The bulk of this chapter will deal with their development and the discussion of their
many unique properties, including their use in feedback control laws and optimal con-
trol problems. Both the classical and the modified Rodrigues parameters are members

of a subset of the SPs called the symmetric SPs. The last section will discuss the

properties of the second subset called the asymmetric SPs.
2.1 General Stereographic Projection

2.1.1 The Euler Parameter Unit Constraint Sphere

The four Euler parameters (quaternions) are well known in the field of rigid body

kinematics, and are thoroughly studied in the literature. It is possible to describe

“Portions of this chapter were published in References 21-26. Authors retained
the copyright.



them directly from Euler’s principal rotation theorem.>?” Let the angle ® be the

principal rotation angle and the unit vector & be the principal rotation axis.

Theorem 2.1 (Euler’s Principal Rotation) A rigid body or coordinate reference
frame can be brought from an arbitrary initial orientation to an arbitrary final orien-
tation by a single rigid rotation through a principal angle ® about the principal azis
€; the principal axis being a judicious axis fized in both the body and reference frame

defined by the initial body position.

The principal rotation angle ® is not unique. There always exists a second principal

rotation angle ®' defined as the complement of ®
=P 27 (2.1)

The angles ® and @' always differ by 360 degrees. In most cases the magnitude of ®
is simply chosen to be less than or equal to 180 degrees. In this case ® represents the
“shorter” principal rotation and ®' represents the “longer” rotation. This reflects the
fundamental truth that there are always two ways to rotate an object to a specific
attitude. The shorter rotation ® will have a principal rotation less than 180 degree,
while the longer rotation angle ® is the complement of ® (more than 180 degrees)
in the opposite direction. However, note that both ® and @’ locate the same unique
physical orientation.

The Euler parameters 3; are defined in terms of the principal rotation elements

as

P P
By = cos o f; = e;sin 5 1 =1,2,3 (2.2)



and form a once redundant set of rigid body attitude parameters. The four Euler

parameters (3; must abide by the holonomic constraint
BB=05++ 0 +0=1 (2.3)

This constraint geometrically represents the surface of a four-dimensional unit hy-
persphere. All Euler parameters therefore lie on the surface of this sphere and some
geodesic arc on the sphere surface completely describes any possible rotational motion
without any singularities or discontinuities. However, note that the Euler parameter
vector 3 is not unique. The mirror image trajectory —@(t) describes the identical
rotational motion as (3(¢).° The negative sign means the corresponding principal ro-
tation is accomplished using @' instead of ®. Usually this non-uniqueness does not
pose any difficulties since both sets have identical properties, correspond to the same
physical orientation, and can be solved uniquely once initial conditions are prescribed.
However, this non-uniqueness will lead to some very interesting and useful SP prop-
erties, when 3(t) and —3(t) are mapped through coordinate transformations.
Because the four Euler parameters satisfy one holonomic constraint, they form a
once redundant set of equations. Three parameters are sufficient to describe a general
rotation. However, the problem with any set of three parameters is that, as is well
known, singularities will occur at certain orientations. Different three-parameter sets
distinguish themselves by having different geometric interpretations and, especially,
having their singular behavior at different orientations. Also of significance, most
three-parameter sets introduce transcendental nonlinearities into the parameteriza-
tion of the direction cosine matrix and related kinematical relationships. However,
the classical Rodrigues parameters and other sets discussed herein involve low degree
polynomial nonlinearities in both the direction cosine matrix and associated kinemat-

ical differential equation, without approximation. The Euler parameter description
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represents an attractive regularization which has no singularity, at the cost of having

one extra variable.

2.1.2  Stereographic Projection of the 4D Unit Sphere

If a minimum parameter representation is desired, the four Euler parameters can be re-
duced to any three parameter set by an appropriate transformation. For example, the
3-1-3 Euler angles or the Rodrigues parameters are very commonly used sets that are
easily transformed from the Euler parameters.>?” Marandi, Modi and Tsiotras found
that the modified Rodrigues parameters are obtained by means of a stereographic
projection of the four-dimensional unit constraint sphere onto a three-dimensional
hyperplane. To visualize the stereographic projection, imagine a three-dimensional
sphere being projected onto a two-dimensional plane (analogous to the Earth map
projection problem). A certain point is chosen in the 3-D space called a projec-
tion point. Next a 2-D mapping plane is chosen. Every point on the unit sphere is
then projected onto the mapping plane by extending a line from the projection point
through the point on the unit sphere and intersecting it with the mapping plane.
Figure 2.1 shows only a 2-D to 1-D stereographic projection to keep the illustra-
tion simple. The results though can easily be expanded to a four-dimensional sphere
since the axes are mutually orthogonal. With all these projections shown in Fig-
ure 2.1, the Euler parameter 3y is eliminated since the mapping hyperplane normal
is chosen to be the 3; axis. The resulting projections are labelled symmetric pro-
jections since the non-singular principal rotation angle range is symmetric about the
zero rotation orientation. Asymmetric stereographic projections are projections onto
a hyperplane with a normal other than the 3, axis, and result in a non-symmetric
principal rotation angle range. The case where the Euler parameter 3y, 5, or (3 is

eliminated is discussed in the last section in this chapter.
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B;

mapping
line

projection
point

3 (Bo:B)
(0) /2
« Bo
’ BO:a+l
zero
S~ rotation
/—Pg2
unit /
circle \—/

< 1] —>

Fig. 2.1: Tllustration of a Symmetric Stereographic Projection onto Hyper-
plane Orthogonal to 3y axis
Placing the projection point on the 3, axis yields a symmetric situation wherein
the zero rotation is in the center of the nonsingular principal angle range. The
mapping line is placed a distance of +1 from the projection point. The parameters
are scaled by this arbitrary distance, so having a distance of 2 between the projection
point and the mapping plane would simply scale all the parameters by a factor of 2.
Keep in mind that the Euler parameters are defined in terms of half of the
principal rotation angle ®. The point (1,0) on the circle corresponds to a zero rotation.
The point (0,1) corresponds to a +180 degree rotation. Studying Figure 2.1 it becomes
evident that the reduced parameters go off to infinity when a point on the circle is
projected which lies directly in the plane perpendicular to the (3, axis through the
projection point. The two lines that need to be intersected are parallel to each

other causing the intersection point to move to infinity. The corresponding principal
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rotation obviously yields the angle at which the reduced set of parameters will go
singular! By placing the projection point at different locations on the [y axis, the
maximum range of principal rotation angles is varied. If the projection point is
outside the unit circle no singularity will occur; however, the resulting projection
will no longer be one-to-one. Clearly this is not a desirable feature because of the
ambiguity this lack of uniqueness would introduce (given the projected coordinates,
we cannot uniquely orient the reference frame).

Let € be a stereographic parameter vector and let the angle &, be the corre-
sponding principal rotation angle where & encounters a singularity. This angle ®; is

determined by the placement of the projection point a.

P
@ = cos - (2.4)

The transformation from the Euler parameters to a general set of three symmetric

stereographic parameters ¢; is defined as

_ /81'
By —a

13 i=1,2,3 (2.5)

The condition for a singularity to occur with symmetric stereographic parameters is

evident in the denominator of Eq. (2.5) and is given by

d
a = 3y = cos 5 (2.6)
If @ < 1 this condition is satisfied at an infinite set of orientations with the same
principal orientation angle ®,. If the projection point is on the unit sphere surface,

then @ = —1 and a singularity is only encountered at ® = £360 degrees. The inverse
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transformations from the general SP to the Euler parameters are

"€+ 1+ €7¢(1 — @)

Bo = Trele .
g=g | =T \/111555(1 ) i=1,2.3

This equation holds for both the symmetric and asymmetric stereographic projec-
tions. Since the Euler parameters are unique only to within a 4 sign, it is equally
valid to rewrite Eq. (2.5) in terms of —f;. For the general case the resulting stereo-
graphic parameters € correspond to the mirror image of the Euler parameters and
are generally numerically distinct of &€ given in Eq. (2.5). However, the resulting
vector €° describes the same orientation as the original parameters and are herein

referred to as the shadow sets of £ and are denoted with a superscript S.

s _ b
¢ —,BO—CL /)’0+6L

i=1,2,3 (2.8)

This non-uniqueness of the SPs turns out to be very beneficial and allows one to
switch between the two possible sets to avoid any singularities. Using Eq. (2.7) the
shadow parameter vector £€° can be expressed directly as a transformation of the

original parameter vector £ and the projection point a as

—a+\/1+€ET€(1—a?)

& =¢
’ a+2a€T€E+\/1+€T€ (1 — a?)

i=1,2,3 (2.9)

Note that the distinction between which parameter vector is the original and which
is the shadow set is purely arbitrary. Once a particular set is found, the alternate
shadow set is found using Eq. (2.9). The fact that the shadow parameter vector £°
generally has a different behavior than the original £ will be useful when describing

a rotation. By differentiating Eq. (2.5) the differential kinematic equations of £ are
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found to be

- 50/”_1' - (affoaf i=1,2,3 (2.10)

£

By making use of the differential kinematic equations of the Euler parameters®®

B -ﬁo —B1 = —ﬂ3- 0
,Bl 1|5A Bo —fs B2 w1 .
-1 .11)
Bo o 3 Bo —M W2
33 O3 =B B fo] \w:a

and the definition of the stereographic parameters given in Eq. (2.5), the differential
kinematic equations for the stereographic parameters are found. Their general form
is very lengthy and not shown here. The most important special cases are discussed
in the following sections. Viewing Figure 2.1, it becomes evident that a set of three
symmetric stereographic parameters cannot have the singularity point moved beyond
a principal rotation of £360 degrees. Moving the projection point further to the
left than @ = —1 would not result in a one-to-one map onto the projection plane.
Therefore the symmetric parameters are better suited for regulator or moderately
large departure motion problems, than for spinning body cases. However, this picture
corresponds to a rotational scaling of ®/2. Recent developments in Ref. 24 show that
corresponding developments can be carried out for ®/n scaling with n = 2,3,4,...,
and thereby the nonsingular range be be moved beyond £360 degrees. However,
these higher order Rodrigues parameters are no longer the result of a stereographic
projection of the Euler parameter unit constraint sphere.

Asymmetric stereographic parameters have a qualitatively different singular be-
havior from the symmetric stereographic parameters. The Euler parameter 3y con-

tains information about the principal rotation angle only (i.e., the direction of € does
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not affect (y). Eliminating 3y during a symmetric projection causes the singularity
to appear at a certain principal rotation angle only, independent from the principal
rotation axis €. Consequently, symmetric projections have a symmetric range of non-
singular principal rotations (—®; < ® < +®,) about the zero rotation, regardless of

the direction of é.

B
(Bo:By) mapping
line
Bi=at+l \
“~
zero
\ \ \ / rotation

\ \CDSZIZ g - Osif f/ / Bo
0,3

unit /

circle projection
point

Fig. 2.2: Illustration of a Asymmetric Stereographic Projection onto Hyper-
plane Orthogonal to (3; axis

For an asymmetric projection one of the 3;, (s, or 53 Euler parameters is elim-
inated. Each one of these parameters contains information about both the principal
rotation angle ® and axis €. Therefore singularities will only occur at certain angles
about the 7th axis (corresponding to the eliminated f3;). Figure 2.2 illustrates an
asymmetric stereographic projection where [3; is eliminated. All possible projections
points a now lie on the f3; axis, while the mapping hyperplane perpendicular to the
(; axis is defined as 5; = a + 1. Since the zero rotation is no longer in the center

of the nonsingular principal angle range, the valid range of principal angles is now
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non-symmetric. A singularity will occur at &, or ®,,, where these two principal
angles are unequal in magnitude. Given a singular principal rotation angle ®,, which

lies between £180 degrees, the corresponding projection point a is defined as

¢
a = cos — (2.12)
The second singular principal rotation angle @, is then found as
b, =21 — D (2.13)

The transformation from Euler parameters to the corresponding asymmetric
stereographic parameters is the same as given in Eq. (2.5) with §y and 3; switched.
A singularity now occurs when 3; equals a. If the projection point a lies inside the
four-dimensional unit sphere, this may occur at several orientations. Using Eq. (2.2),

the condition for a singularity becomes

. D .
cising =a (2.14)

where the index 7 stands for the 3; parameter which was eliminated. Since the sine
function is bounded between +1, a singularity will never occur if |e;] < a. If the
projection point a is moved to the sphere surface, namely to 41, then a singularity
may occur with a rotation about the +-th body axis only! The reason for this is evident
in Eq. (2.14). Since a is 1 and the sin function is bounded within £1, the only way
Eq.(2.14) is satisfied is if |e;| = 1. Because € is a unit vector, the other two direction
components must be zero if |e;| = 1. Thus, if the body is spinning about an axis other
than the i -th body axis, a singularity will never occur. Therefore these asymmetric
stereographic parameters are attractive for spinning body problems where an object is
rotating mainly about a certain axis. The principal rotation angle is now not bounded

within a closed angle range as with the symmetric stereographic parameters, but can
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grow beyond £360 degrees. Simply choose the normal of the projection hyperplane
to be far removed from the rotation axis and place the projection point a on the four-
dimensional unit sphere surface and the probability of encountering a singularity is
virtually nil.

For both the symmetric and asymmetric stereographic parameters, having the
projection point on the sphere surface means the singularity can only occur at two
distinct orientations. If the projection point lies inside the sphere, there generally
exists an infinite set of possible singular orientations.

The inverse transformation from asymmetric stereographic parameters to Euler
parameters is the same as given in Eq. (2.7). These asymmetric parameters also
exhibit the same shadow point behavior as the symmetric parameters do with the
same transformations given in Eqgs. (2.8) and (2.9). Therefore, if a singular orientation
is approached with the asymmetric stereographic parameters, one can again switch

to the shadow set to avoid the approaching singularity.
2.2 Classical Rodrigues Parameters

The origin of the classical Rodrigues parameter vector q (also known as Gibbs vector)
dates back over a hundred years to the French mathematician O. M. Rodrigues.
They are well suited to describe most large rotations since their only singularity is for
principal rotations of ® = +180 degrees. It is well know that the modified Rodrigues
parameters can be described geometrically through a stereographic projection. What
is less widely known is that the classical Rodrigues parameters are also a particular set
of SP, and can thus be described through a corresponding stereographic projection as
outlined in the previous section. The singularity at ® = £180 degrees corresponds to

a point on the two-dimensional unit circle in Figure 2.1 of (0,£1). Since the singular

points are always within a hyperplane which is perpendicular to the [, axis and



18

contains the projection point a, then this projection point @ must lie on the origin for
& to become the classical Rodrigues vector g. The corresponding mapping hyperplane
is at 3y = 1. With this geometrical interpretation it becomes evident why the classical
Rodrigues parameters go singular at & = £180 degrees when describing them as a
special case of the symmetric stereographic parameters. The transformation from the
Euler parameters to the Rodrigues parameters is found by setting ®, = £180 degrees

in Egs. (2.4) and (2.5). The well known result is given by

_ B

= 1=1,2,3 2.15)
Bo ' ( '

q;

The inverse transformation from the Rodrigues to the Euler parameters is found by

using the same @, in Eq. (2.7).

1 ; ,
Bp= ——— pi=— i-123 (2.16)

o Vi+tdq T V1+47q
The differential kinematic equation in terms of the classical Rodrigues parameters

is given in vector form as

g = % [I+[q]+q9q"|w (2.17)

where w is the body angular velocity vector and I is the 3 x 3 identity matrix. The

tilde matrix operator [q] is defined by g X ... and is expressed as
0 -5 @
d=| ¢ 0 - (2.18)
- G 0

Note that only second order polynomial nonlinearities appear in these differential
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kinematic equations. An explicit matrix form of Eq. (2.17) is given below.?

I+¢ a@p-6 ap+e| (v
q= % Bo+a L+@ qas—aq | w (2.19)
BN —¢ Bet+a 1446 ws3
Using the definitions of the Euler parameters in Eq. (2.2), the Rodrigues parameters

can also be expressed directly in terms of the principal rotation angle ¢ and the

principal rotation axis é.

q = tan —é (2.20)

N |

Studying Eq. (2.20) it is mathematically apparent why the classical Rodrigues pa-

rameters go singular at ® = £180 degrees. For completeness the direction cosine
matrix [C] is given in explicit matrix form as®

+¢-¢E—¢ 2(ae+a) 2(ae— @)

[C] = 2(pa —q) 1-G+6—-6G 2(ee+aq) (2.21)

1
1+q7q
2(pan+ @) 2(@ae-—q) 1-¢d—@+d

and in vector form as?’

1
- 1+47q

[C]

((1—q"q) I +2qq" —2[q]) (2.22)

Eq. (2.22) and its inverse can also be written as the very elegant and beautiful Cayley

Transform.522,27,29

[Clq)] = (I—[g]) (I +[a]) " (2.23)

[4 = -[C@)U+[Cq) " (2.24)

The kinematic differential equation shown in Eqs. (2.17) and (2.19) has the “Cayley”
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form?

1

Sl = 5 (1 —1a) @] (7 - 1) (2:29

Let the vector ¢° (defined with —3) denote the shadow set of the classical Ro-
drigues parameters. Using Eq. (2.15), the following definition for the ¢° vector is

found.

s_ —Bi _ B .
T T e ! T (2:26)

Eq. (2.26) shows that for the classical Rodrigues parameters, the shadow set com-
ponents are identical to the original Rodrigues parameters, with identical values and
properties. Therefore the shadow set concept is of no practical consequence in this
particular SP set; however, the classical Rodrigues parameters are unique and their

singularity cannot be avoided.

Euler Parameter A Bi

Unit Constraint IS
Sphere a=q
Projection g
Point % Bo
_ 1 + )
A Classical Rodrigues
-B Parameter Hyperplane

Fig. 2.3: Original and Shadow Point Projection of the Classical Rodrigues
Parameters

Having the projection point a at the origin causes this elegant, degenerate pro-

jection. Figure 2.3 illustrates why both sets of classical Rodrigues parameters are



21

identical. These Rodrigues parameters are the only symmetric SPs which exhibit this
lack of distinction between the original parameters and their image (shadow) point

counterparts. This proves simultaneously to be an advantage and a disadvantage.
2.3 Modified Rodrigues Parameters

2.3.1 Rigid Body Attitude Vector

The modified Rodrigues parameters discussed by Marandi and Modi in Ref. 8 and
Tsiotras in Ref. 9 move the projection point to the negative extreme end of the
axis at (-1,0,0,0) and project the Euler parameters on the sphere surface onto the
hyperplane defined through 3y = 0. This results in the MRP singularity being as
far away from the zero-rotation as possible. The parameters will now go singular
at & = 4360 degrees. This means that the MRP are able to describe any type
of rotation except a complete revolution back to the original orientation. Compare
this non-singular range with that of Euler angles where one is never more than a 90
degree rotation away from a singular orientation. The classical Rodrigues parameters
go singular when ® = £180 degrees. On the constraint hypersphere this corresponds
to a great circle (hyperline) around the 4-D sphere equator. The attitude description
is singular for any 180 degree principal rotation about any principal rotation axis.
Contrary to this, the singular MRP condition is not a hyperline, but a point on the
constraint hypersphere. Only a complete 360 degree tumbling maneuver back exactly
to its original or reference orientation will cause the MRP description to go singular.

Setting @ = —1 in Eq. (2.5), the transformation from Euler parameters to the

modified Rodrigues parameter vector o is given by”

b
! G+ 1

i=1,23 (2.27)
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Using Eq. (2.7), the inverse transformation is found to be

1—o0? 20;

=11 =15

i=1,2,3 (2.28)

where the notation o?" = (O'Ta)n is used. Using Eq. (2.2) again, the modified
Rodrigues parameters are written as®

o =tan—e (2.29)

|

Studying Eq. (2.29) it is evident that the MRP have a geometric singularity at ® =
4360 degrees. Also note that for small rotations the MRPs linearize as quarter

angles?!

o>

(2.30)

|

It is interesting that ® = 0 and & = 4360 degrees correspond physically to the
same body orientation. This fact has both theoretical and practical consequences in
avoiding the singularity.

The MRP vector o can be transformed directly into the classical Rodrigues

parameter vector ¢ through?!

2
1—o02

q= o (2.31)

The inverse transformation is given by

ag

(2.32)

1
RN e
Naturally, these forward and inverse transformations go singular at = 4180 degrees
since the classical Rodrigues parameters description is singular at this orientation.
Comparing Egs. (2.20) and (2.29) it is immediately evident that both the classical

and the modified Rodrigues parameter vectors have the same direction e, but differ in
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their magnitude. The transformation shown in Eq. (2.31) can be rewritten in terms

of the principal rotation angle ® as

tan 2

q= 2o (2.33)

- )
tan 4

The direction cosine matrix [C] in terms of the MRPs is given by® 2127

4(0?—03—03) + X2 80109 + 403X

[C] = (1_}_102)2 80901 — 403X 4(—0ti+03—03) + X2
8(7301 + 40’22 8030'2 — 4012
(2.34)
80'10'3 — 40'22
80'20'3 + 40'12
4(—0l—03+03) + X2
where ¥ = 1 — 2. In compact vector form [C] is parameterized in terms of the MRP

vector o as?h?7

8[612 — 4 (1 — 02 [3]
(1+ 02)°

[C]=1+ (2.35)

However, contrary to the classical Rodrigues parameters, the projection of the
alternate Euler parameter vector —3 results in a mathematically and numerically dis-
tinct set of shadow MRPs as can be seen in Figure 2.4. Each MRP vector is an equally
valid attitude description satisfying the same kinematic differential equation. There-

fore one can arbitrarily switch between the two vectors through the mapping® 2!+27

oS = — 0 04
! 1-— ,60 o?

i=1,2,3 (2.36)

where the choice as to which vector is the original and which is the shadow vector
is arbitrary. Studying Figure 2.4 it is clear that while one set of MRPs will have a

magnitude of 1 or less, their corresponding shadow set will have a magnitude of 1 or
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Fig. 2.4: Stereographic Projection of Euler Parameters to Modified Rodrigues
Parameters

greater. From Eq. (2.29) it evident that
lo| <1 if @ <180°
lo| >1 of & >180° (2.37)
lo|=1 if @& =180°

This behavior can also be observed in Figure 2.4. The mapping in Eq. (2.36) can

be written in terms of the principal rotation elements using the definitions of 3; in

Eq. (2.2) as

¢ -2
o’ = tan ( 1 W) e (2.38)

Using Eq. (2.1) this can be written directly in terms of the alternate principal rotation

angle ¢’ as

@/
o’ = tan (Z) é (2.39)
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Thus, while one MRP set describes the “shorter” principal rotation, the corresponding
shadow MRP set describes the “longer” principal rotation.

Note that the singular behavior of the shadow set is the opposite of that of the
original set. As is seen in Figure 2.4, the shadow point of the zero rotation is a
singular description while the shadow point of the £360 degree principal rotation is
non-singular! Therefore the non-uniqueness of the MRPs allows one to avoid their
singularities altogether. As one MRP set approaches a singularity, this set can be
mapped to the corresponding shadow set through Eq. (2.36). On which surface 6% = ¢
one switches is arbitrary. However, switching between the two MRP sets whenever
the vector o penetrates the surface 0> = 1 has many positive aspects. For one, the
mapping between the two MRP vectors simplifies on this surface to the simplest form
0° = —o. Further, the magnitude of o will remain bounded above by 1 and the
corresponding principal rotation angle ® will remain less than or equal to 180 degrees
through the condition in Eq. (2.37). Having a bounded norm of an attitude description
is useful since it reflects the fundamental fact that two orientations can only differ
by a finite rotation. Referring to the MRPs from here on, it will be understood that

the combined set of original and shadow MRPs is meant. This combined set forms a

non-singular, bounded, minimal attitude description.

2.3.2  Differential Kinematic Equations

The differential kinematic equation of the MRPs is found by substituting Eq. (2.28)

into Eq. (2.10). The resulting matrix formulation is®?!

1 —0%+20% 2(0109 —03) 2(0103+ 03) wy
) 1
o= 2 (0901 +03) 1—02+4205 2(0903 —01) Wy (2.40)

2 (0301 —03) 2(0309+07) 1-— o’ + 20§ w3
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The MRP kinematic differential equation in vector form is*! 27

[(1—0*)I+2[6]+ 200" | w=[B(0)]w (2.41)

o=

e |

Note that the MRPs satisfy a kinematic differential equation very similar to the classi-
cal Rodrigues parameters in Eqs. (2.17) and (2.19) with only quadratic nonlinearities
present. Further, this same and identical differential equation holds for both sets of
MRPs, i.e., after switching between original and shadow MRPs, the same differential
equation is satisfied. However, the resulting vector o will obviously depend on which
set of MRPs is being used in Eq. 2.41. Just as a direct mapping exists between o
and o, a direct mapping between ¢ and o is given by

;1 (1407
&5 = —% +5 ( :;f ) oo’ w (2.42)

Let the matrix [B] map the w vector into ¢ in Egs. (2.40) and (2.41). This [B]
matrix is near orthogonal for the MRPs, since the inverse of [B] can be written as a
scalar times its transpose.

i (2.43)

ST

To prove Eq. (2.43), let’s study the orthogonality condition [B][B]". Using Eq. (2.41)

this is written as

[B][B]" = % (1—0*I—-2[c]+200") (1—0”) +2[6] +200") (2.44)

where the skew-symmetric matrix property []7 = —[o] was used. After carrying out

all the matrix multiplications the [B][B]? expression is reduced to

(BB = 11—6 (1— 01 — 46] + 4o o) (2.45)
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which can be further simplified using the identity [6]? = oo — %I to

(1 +0?)?

[BI[BJ" ==

I (2.46)

At this point, it is trivial to verify that Eq. (2.43) must hold. The inverse transfor-

mation of Egs. (2.40) and (2.41) then is in matrix notation

16
= ————[B]"6 2.47
w= 3 Bl (247
and in the more explicit vector form is?’
w= (10— 26]+200 6 (2.48)
(14 02)2 ' '

2.3.3 MRP in a Higher Dimensional Setting

Like the classical Rodrigues parameters, the MRPs can also be used to minimally
parameterize a higher-dimensional proper orthogonal matrix [C]. Let the [S] be a

skew-symmetric matrix. The extended Cayley transform of [C] in terms of [S] is*%2*

[C1= (I = [S)* (L +[S) ™" = (T +[S]) " (I = [S))° (2.49)

where the order of the matrix products is again irrelevant. For the case where [C] is a
3x3 matrix, then [S] is the same as [¢], as was shown in Ref. 22. Therefore Eq. (2.49)
transforms a higher dimensional proper orthogonal [C] into higher dimensional MRPs.

Unfortunately no direct inverse transformation exists, analogous to Eq. (2.24),
for the higher order Cayley transforms.?? The transformation is achieved indirectly

through the matrix [W] which is defined as the proper matrix square root of [C].

[C]=[W]W] (2.50)
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Since [C] is orthogonal, it can be spectrally decomposed as
[C]=[VIIDIIV] (2.51)

where [V] is the orthogonal eigenvector matrix and [D] is the diagonal eigenvalue
matrix with entries of unit magnitude. The “x” operator stands for the adjoint
operator which performs the complex conjugate transpose of a matrix. The matrix

[W] can be computed as

(W] =[V] VDl \4h (2.52)
0

The eigenvalues of [C] are typically complex conjugate pairs. If the dimension of [C]
is odd, then the extra eigenvalue is real. For proper orthogonal matrices it is +1 and
it’s square root is also chosen to be +1. The resulting [W] matrix will then itself
also be an proper orthogonal matrix. As Ref. 22 shows, the geometric interpretation
of [IW] is that it represents the same “higher-dimensional” orientation as [C] except
that the corresponding principal rotation angles are halved.

The standard Cayley transforms in Eqs. (2.23) and (2.24) can be applied to map
[W] into [S] and back.

(W] = —[SDI+[S) ™ =T +[S)~" (I - [S]) (2.33)

[S]= (I =WDI+[W])~™ = (I + W)~ (I - [W]) (2.54)

Therefore, to obtain a higher-dimensional MRP representation of [C], the matrix [IV]

must be found first and then substituted into Eq. (2.54). Note that substituting



29

Eq. (2.53) into Eq. (2.50) a direct forward transformation from [S] to [C] is found.
[C] =T =[S’ +[S)™" = (T +[S)~*( = [S])” (2.55)

The kinematic differential equations for [S] are not written directly in terms of
[C] as they were for the classical Cayley transform. Instead the [W] matrix is used.

Being an orthogonal matrix, it’s kinematic differential equation is of the form
(W] = —[Q)[W] (2.56)

where [€] is the corresponding angular velocity matrix. It is related to the [@] matrix

in [C] = —[@][C] through
(@] =[] + W) (2.57)

Analogously to Eq. (2.25), the kinematic differential equation of the [S] matrix is

given by
8= 5 (7 + SN (1~ [5) (2.59)

2.3.4 MRP Feedback Control Law

The modified Rodrigues parameter vector o is very well suited for describing attitude
errors in a feedback control law setting. Particularly when very large attitude errors
are present, the MRPs are extremely attractive. By switching between the original
and shadow MRP set they are able to describe any arbitrary orientation without
encountering singularities by only using three parameters instead of four as do the
Euler parameters. Adopting the switching surface 0 = 1 bounds the attitude error
vector norm within || < 1. This bounded attitude error property is very useful

since it makes designing the attitude feedback gain much easier. Choosing the 02 =1
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switching surface also has a big benefit when trying to bring a tumbling rigid body
to rest. Conventional attitude parameters such as the Euler angles have no explicit
means of determining the shortest rotational distance back to the reference attitude.
Consider this one dimensional example. If a rigid body has tumbled past 180 degrees
from the reference attitude, it would be much simpler for the control law to just let
the body complete the tumble and then bring it to rest as it approaches the reference
attitude from the opposite direction. Using MRPs with the 02 = 1 switching surface
(in a feedback control law setting) provides a set of attitude coordinates that will
naturally do just that. As is shown in the cases in Eq. (2.37), bounding the MRP
vector to unit magnitude or less limits corresponding principal rotation angle ¢ to
be 180 degrees or less. In other words, these MRPs will always measure the shortest
rotational error to the reference attitude, and implicitly seek the shortest angular

path to the target state.

2.3.4.1 Unconstrained MRP Feedback Control Law

Let [I] be the rigid body inertia matrix, w(t) be the body angular velocity vector
and w(t) be some unconstrained external torque vector. Euler’s rotational equations

of motion for a rigid body are given by®
[Iw = —[@][I|w+u (2.59)

The vector o(t) measures the attitude error of this rigid body to some reference
trajectory which itself is defined through the reference angular velocity vector w,(t).

The error dw(t) in angular velocities is defined as

w=w—uw, (2.60)
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The MRP rate vector o and the body angular velocity error vector dw are then

related through

1
o= [(1-0%)1+2[6] +200"] 6w (2.61)
The Lyapunov function? ?!25
1
V(w,o) = §5wT[I]5w +2Klog (1 +o"0o) (2.62)

provides a positive definite, radially unbounded measure of the rigid body state error
relative to the reference trajectory. The use of the logarithm function was introduced
by P. Tsiotras in Ref. 9 and results in a feedback control law which is linear in the
attitude error vector o. The parameter K is a positive scalar attitude feedback gain.

The derivative of 2K log (1 + o'Ta') is

After using differential kinematic equations for the MRPs in Eq. (2.41) this is simpli-

fied to
d 4K 1
y (2Klog (1 +0"0)) = ﬁ”Tl [(1—0*)I+2[6] +200 ] 6w  (2.64)
K
= ﬁ (1-0"0)+20"0) 0" dw (2.65)
= Ko'éw (2.66)

After differentiating V and using Eqs. (2.61) and (2.66), V is expressed as

V =dw! ([I]éw + Ko) (2.67)
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Upon forcing V to be negative semi-definite through the use of the positive definite

angular velocity feedback gain matrix [P]
V = —5w’[P)ow (2.68)

the following stability constraint is found.
[[]ow + [P]dw + Ko =0 (2.69)

After substituting the rigid body dynamics in Eq. (2.59) into Eq. (2.69), the feedback

control u is given by
u=—Ko — [Plow + [[|w, + [w][I|w (2.70)

Note that if the reference trajectory is a stationary attitude then the feedback control

law is simplified to%?2!

u=—Ko — [P]éw (2.71)

The last term in Eq. (2.70) is not needed here since for this case this gyroscopic term
is non working (w’ [@][Iw is zero).

Since V in Eq. (2.68) is only negative semi-definite, it can only be concluded
at this point that the control law w in Eq. (2.70) is globally stabilizing. To prove
that it is indeed globally asymptotically stabilizing, the higher time derivatives of
the Lyapunov function V' must be investigated. A sufficient condition to guarantee
asymptotic stability is that the first nonzero higher-order derivative of V', evaluated
on the set of states such that V is zero, must be of odd order and be negative

definite.?®30:31 For this dynamical system V is zero if 6w is zero. Differentiating
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Eq. (2.68) yields

d2
3EWf::—25wTUﬂ5w (2.72)

which is zero for the set where dw is zero. Differentiating again the third derivative

of the Lyapunov function V' is

3
g%wf::—25wTUﬂ5&-—25wTUﬂ5w (2.73)

Substituting Eq. (2.69) into Eq. (2.73) and setting éw = 0, the third derivative of the

Lyapunov function is expressed as

d3 -2 T —1
;ﬁV:—xa(m ) [PllI]e (2.74)

which is a negative definite quantity (on the dw = 0 set) since both [/] and [P]
are positive definite matrices. Therefore the control law u in Eq. (2.70) is globally
asymptotically stabilizing.

To determine appropriate feedback gains, the closed loop dynamics are studied.
Substituting the feedback control law u given in Eq. (2.70) into Eq. (2.59) the closed

loop dynamics for the controlled rigid body are®

[[]6w = —[Pléw — Ko (2.75)

Note that thanks to the use of the MRPs and the logarithm function in Eq. (2.62),
the closed loop dynamics are rigorously linear in both the body angular velocity
and attitude error vectors. Eq. (2.75) is solved along with Eq. (2.41) to determine
the exact closed-loop performance. The only nonlinearities that appear in these two

differential equations are the quadratic nonlinearities present in the MRP kinematic



34

differential equation. Linearizing Eq. (2.41) about o= 0 yields
o~ -w (2.76)

Since the MRPs “behave like angles over four” for small angles, this linearization will
be applicable for a relatively large range of rotations. As a comparison, the classical
Rodrigues parameters only linearize as angles over two, whereas the standard Euler
angles simply linearize as angle type quantities.

The linearized set of closed loop equations is
1
= * (2.77)

Given the rigid body inertia matrix [I], any standard linear control design method
such as a pole placement method can be used to determine the desired response of the
linearized closed loop dynamics. If both the inertia matrix [I] and the angular velocity
feedback gain matrix [P] are diagonal matrices with entries I; and P; respectively, then

Eq. (2.77) can be conveniently decoupled into three sets of two differential equations®

- i=1,23 (2.78)
whose roots are explicitly given by
1
NP = - (P V=KL+P?) =123 (2.79)

For an underdamped system, the corresponding natural frequencies w,, and damping

ratios &; are

KI, —2P? (2.80)

wni:Q_[i
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& = S — (2.81)

VKI; —2P?
The decay time constants 7; which indicates how long it would take for the state error

to decay to % of its initial value is given by

20

T;
P,

(2.82)

It is interesting to note that only the angular velocity feedback gain constants P,
dictate how fast the state errors will decay. The attitude feedback gain constant K
contributes to the natural frequency and damping ratios of the closed loop response.

The damped natural frequency wy, is given by

1
wi, = 5 Kl = P? (2.83)

Other methods exist to achieve linear closed loop equations. In Ref. 32 Paielli
and Bach first start out with linear, stable, second order differential equation in terms
of the attitude error vector and then extract the rigid body dynamics. However, their
corresponding nonlinear control input contains higher order polynomial nonlinearities,
and is not of the simple form as the control presented in Eq. (2.71). Further, since
they are essentially feeding back the Gibbs vector as a attitude error measure, their
control law has numerical difficulties for & = +180 degrees. While the closed loop
dynamics presented here are not perfectly linear, they linearize very well for a large
range of rotations while retaining a rather simple control formulation.

The use of the feedback control law in Eq. (2.70), along with the design of the
feedback gains, is illustrated in the following numerical simulation. Assume a rigid
body with body axes aligned along the principal axes is initially in a tumbling situ-
ation. The reference trajectory is set to be the zero attitude at rest. The parameter

values for the numerical simulation are shown in Table 2.1. The relative orientation
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of the rigid body to the zero attitude is expressed through the MRP vector . Note
that the rigid body has a large initial angular velocity about the first body axis which
will cause the body to tumble through the & = 180 degree orientation. Other three-
parameter sets of attitude coordinates cannot describe arbitrary rotations without
encountering singularities. For example, had the classical Rodrigues parameters been

used in the simulation they would early on encounter a singularity at ® = 180 degrees.

Table 2.1: Parameter of MRP Control Law Numerical Simulation

Parameter Value Units
I, 140.0 kg-m?
I 100.0 kg-m?
I3 80.0 kg-m?

o(ty)  [0.60 — 0.40 0.20]

w(to) [0.70 0.20 — 0.15] rad/sec
[P] [18.67 2.67 10.67] kg-m?/sec
K 7.11 kg-m?/sec?

The feedback gains for this simulation were chosen such that the closed loop
dynamics will be very underdamped. Clearly the resulting performance would not
be what is needed to control a real system. However, having clearly visible state
oscillations present will allow for the predicted damped natural frequency in Eq. (2.83)
and decay time constants in Eq. (2.82) to be verified.

The results of the numerical simulation are shown in Figure 2.5. The control
vector u stabilizes the tumbling rigid body and brings it to rest at the zero attitude.
The decay time constant 75, which controls how fast the states o, and w, are reduced,
was chosen purposely to be much larger than the other two time constants. This
results in the second body axis state errors being reduced much slower than the other
two, simulating a situation where less control authority is present about this axis. As
is seen in Figures 2.5(i) and 2.5(ii) the nonlinear response corresponds very well with

the linearized prediction. As the body tumbles through the “upside down” orientation
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Fig. 2.5: MRP Feedback Control Law Simulation Without Control Con-
straints

at &= 180 degrees, the MRP vector switches to the alternate set. At this point the
corresponding control law ceases to fight the tumble and lets the body complete the
revolution before bringing it to rest at the origin as seen in Figure 2.5(iii).

Let vector € be the state error vector whose components are given by
€ =4/02+w? =123 (2.84)

To study the damped natural frequencies wy, and the decay times 7; the natural

logarithm of ¢; is plotted in Figure 2.5(iv). This Figure clearly shows the decay rate



38

Table 2.2: Comparison of True vs. Linearized Decay Times and Damped
Natural Frequencies

Parameter Actual Averaged Value Linearized Prediction Percent Difference

T 14.71 s 15.00 s 1.97%
Ty 76.92 s 75.00 s -2.50%
T5 14.71 s 15.00 s 1.97%
W, 0.0938 rad/s 0.0909 rad/s -3.12%
W, 0.1326 rad/s 0.1326 rad/s 0.08%
Wi 0.1343 rad/s 0.1333 rad/s -0.74%

and the natural oscillations of the underdamped response.

Note that the simulated maneuver performs a very large rotation which includes
a complete tumble. Typically, when studying the closed loop response of a control
law, only small attitude errors in the order of 10s of degrees are used. Table 2.2
compares the actual averaged decay rates and damped natural frequencies of the
nonlinear system to the ones predicted by the linearized feedback gain design. As
expected, the linearization used in Eq. (2.76) yields accurate closed loop performance
predictions. The percent differences between the actual nonlinear 7; and w,, and
the ones obtained from the linearized model are only in the 1 to 2 percent range.
Thus the MRP feedback law in Eq. (2.70) achieves global, asymptotic stability by
only using three attitude coordinates as compared to four coordinates required by
Euler parameter feedback laws. Some control laws using other three parameter sets
of attitude coordinates such as the standard yaw, pitch and roll angles also claim
to have global stability. However, they all come with a disclaimer warning against
rotating the rigid body to certain attitudes because of the inherent singularities of
the chosen attitude coordinates. Such control laws can therefore hardly be considered
globally stabilizing. The MRP attitude description allows for arbitrary rotations and
has the added benefit of always indicating the shortest rotational distance back to

the origin when the switching surface 02 = 1 is chosen.
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2.3.4.2 MRP Feedback Control Law with Control Constraints

As expected, the control effort required to stabilize a tumbling rigid body can be quite
large as is seen in Figure 2.5(iii). Most control devices typically have an upper bound
on how much control authority they can exert onto the rigid body. As discussed
in Ref. 26, there are essentially two possibilities in dealing with saturated control
torques. One solution is to reduce the angular velocity and attitude feedback gains
such that the required torque about each axis never exceeds the maximum allowable
torque. However, this method has the drawback that the overall performance of the
feedback law is greatly reduced.

A more efficient method of dealing with saturated controls is to allow the control
about each individual axis to become saturated. This leads to a saturated control law
which is Lyapunov optimal. Being Lyapunov optimal means that the time derivative
of the given Lyapunov function V' is made as negative as possible during intervals
where one or more of the control devices are saturated.?%333% Substituting the rigid

body equations of motion into Eq. (2.67), V is expressed as
V= ow! (~[@][[lw +u — [[|w, + Ko) (2.85)

Since we are now dealing with a tumbling rigid body where the control will be at
times saturated, during these intervals we do not attempt to track some reference
trajectory, but simply set w,(t) equal to zero. This allows V to be simplified along

these saturation to
V=uw(u+Ko) (2.86)
The control torque u, for unsaturated conditions is set equal to Eq. (2.71)

U, = —Ko — [Plw (2.87)
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Recall that u,s for unsaturated conditions was shown to be globally, asymptotically
stabilizing. Assume that the available control torque about the th body axis is now
limited by wpas,. A saturated control law is augmented with the unsaturated control

law wu,;, to form?6

Uys, i s | < Uma

u; = (2.88)

Umaz; * Slqn (uus,') if |uus,' > Umaz;

Without the unsaturated control term chattering about the reference state would be
an issue. Note that it is possible for the control law to be saturated about one body
axis, but not about the other two. Stability of this saturated control law is guaranteed
if V in Eq. (2.86) can be kept negative. The control law in Eq. (2.88) will render V
as negative as possible during saturation and is therefore Lyapunov optimal during
these sub intervals for fixed K and [P]. A conservative stability condition is found

by studying V in Eq. (2.86):
K|o;| < tmag, (2.89)

Since the magnitude of the MRP attitude error vector o is bounded by 1, this stability

condition can also be written as
K < Unaa, (2.90)

As shown in Ref. 26, while this condition in Eq. (2.89) guarantees stability, it it not
a necessary condition for stability. If one simply wanted to stop the tumbling motion
without regard to the final attitude, then one could set K = 0 and be guaranteed
global asymptotic stability with the saturated control law in Eq. (2.88).

However, limiting K through the stability condition in Eq. (2.90) is usually

overly conservative. As the following numerical simulation will illustrate, having a
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K > U, still typically leads to an asymptotically stable closed-loop dynamics. The
reason for this is the bounded nature of the attitude error vector. The stability condi-
tion in Eq. (2.89), and therefore the requirement of 1% being negative, may indeed be
locally violated for finite periods of time. These violations are likely to occur when-
ever the rigid body tumbles towards the & = +180 degrees condition. After the body
tumbles past ® = +180 degrees, the sign of attitude vector components are switched
through 0% = —o. As is seen in Figure 2.5(iii), the required unsaturated control
torque drops drastically in magnitude during this switching. Before the switching,
where the body is still rotating away from the origin, both the angular velocity and
the attitude feedback are demanding a control torque in the same direction and their
effects are added up to produce the large control torque before the switching. After
the switching at the 02> = 1 surface, the body now starts to rotate back towards
the origin and the sign of the attitude feedback control is switched. This results in
the angular velocity and attitude feedback control partially cancelling each other and
therefore producing a much smaller control torque. Therefore the required control
torques are larger and more likely to be saturated approaching & = £180 degrees
then they are leaving the “upside-down orientation.” Since the body is tumbling, the
o vector magnitude will always periodically come close to zero where the stability
condition in Eq. (2.89) is satisfied and kinetic energy is guaranteed to be pumped out
of the system. Eventually, after several revolutions or tumbles, the body will come
to rest.

To illustrate this behavior, the following numerical simulation uses the same pa-
rameters in Table 2.1 as the previous unsaturated simulation used. The only difference
is that now the saturated control law given in Eq. (2.88) will be used. The maxi-
mum allowable torque about all three body axes is set to ., = 1. The numerical

simulation results are shown in Figure 2.6.
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Fig. 2.6: Saturated MRP Feedback Control Law Simulation

As Figure 2.6(i) shows, with the limited control effort present the rigid body
now performs about five tumbles before coming to rest at the origin. The large initial
body angular velocity about the first body axis is gradually reduced until the control
torque w remains in the unsaturated regime. As shown in Figure 2.6(ii), from there
on wy starts to exhibit the anticipated underdamped oscillations as were present with
the unsaturated control law. For the first 100 seconds into the simulation the control
torque components u; remain mostly saturated as shown in Figure 2.6(iii). Once the

angular velocity errors are sufficiently reduced, the required control effort remains in
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the unsaturated regime. Figure 2.6(iv) shows the MRP attitude vector components
for up to 120 seconds into the simulation. In the background the time regions are
grayed out where the Lyapunov function time derivative V is actually positive for this
dynamical system. As predicted, V' becomes temporarily positive when the rigid body
is rotating towards the “upside-down” orientation. As soon as the body rotates past
this orientation V' becomes negative again. This happens even though the control
torque vector components u; are mostly still saturated.

Therefore, even though K was chosen to be much larger than ,,,,, = 1 for this
simulation, the saturated control law in Eq. (2.88) still asymptotically stabilized the
rigid body. One beautiful property of this MRP feedback control law is that not only
does it perform well for small orientation errors, it also scales well to handle the much

tougher problem of arbitrary orientation in the presence of control saturation.

2.3.5 MRPs in Optimal Control Problems

Solutions of spacecraft optimal control problems, whose cost functions rely on an
attitude description, usually depend on the choice of attitude coordinates used. Co-
ordinate choices are often considered a matter of taste, but the question of coordinate
“optimality” arises. For example, a problem could be solved using 3-2-1 Euler angles
or using classical Rodrigues parameters and yield two different “optimal” solutions
unless care is taken to ensure that the performance index is invariant with respect to
the attitude coordinate choice. Another problem arising with many attitude coordi-
nates is that the resulting control formulation has no intrinsic sense of when a body
has tumbled beyond 4180 degrees from the reference attitude. In many such cases
it would be simpler and cheaper to let the body complete the revolution rather than
force it to reverse the rotation and return to the desired attitude; it is desirable that

attitude error be measured in a fashion consistent with this truth.
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Schaub et. al. in Ref. 23 develop a universal attitude penalty function g() which
renders the resulting optimal rigid body attitude maneuver independent of the choice
of attitude coordinates. This penalty function is defined at the most basic level in

terms of the direction cosine matrix [C] as
1
q([C]) = 1(3 —trace([C])) € Rt (2.91)

By expressing the [C] matrix in terms of other attitude coordinates, the attitude
penalty function g() is written in terms of these coordinates. No matter what attitude
coordinates are used, for a given attitude error the g() function will return the same
23

scalar attitude penalty. Using Eq. (2.34), the function g(o) is written as

O'TO'

g([C(a)]) = 4m

(2.92)

Ref. 23 provides several other parameterizations of the universal g() function. Written

in terms of the principal rotation elements, it is written as

o([C(e,0) = sin’($) (2.93)

As Eq. (2.93) shows, the penalty function ¢() depends only on the corresponding
principal rotation angle ® and not the principal rotation axis €. Besides returning
the same penalty for a given physical attitude regardless of the choice of attitude
coordinates, this attitude penalty function has several other benefits. It provides a
bounded scalar measure of the attitude which ranges from 0 for a zero rotation to 1
for a 180 degree rotation as is shown in Figure 2.7(i). This boundedness is attractive
since it mirrors the fundamental truth that two orientations can only differ by a finite
amount. This attitude error measure handles the case of a generally tumbling body

well since the attitude penalty is reduced automatically once the body rotates through

® = 180 degrees.
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Fig. 2.7: Illustration of Attitude Penalty Function vs. the Principal Rotation
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One drawback of ¢() is that, depending on the choice of attitude coordinates,
the resulting expression is generally more complicated than the standard use of the

sum squared of all the attitude coordinates. The simpler attitude penalty function®?
Glo)=0o"0 (2.94)

provides the same benefits as does the more complex ¢(), such as being bounded
between 0 and 1 and handling the case of a tumbling rigid body well. The exception
of course is that the optimal trajectory, obtained with G() in the optimal control
formulation, will no longer be independent of the attitude coordinate choice. Using

Eq. (2.29) the function G() is written in terms of ® as

® |
G(®) = tan? 7 (2.95)

which is illustrated in Figure 2.7(ii).
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With either attitude penalty function the MRP vector o provides for a convenient
way to express any arbitrary orientation with a minimal set of three parameters. Euler
parameters can also naturally express any orientation without encountering singular-
ities. However, their being once redundant can cause some analytical and numerical
problems when solving optimal control problems.® While these issues have been ad-
dressed, it would be attractive to be able to use a non-redundant three-parameter
set to describe rigid body attitudes singularity free in optimal control problems. On
the other hand, the use of MRPs in optimal control problems brings up a new dif-
ficulty. Since the MRPs are rendered nonsingular and bounded by introducing the
notion of switching to the shadow set, the o vector will be discontinuous during this
switching. Of particular importance to solving optimal control problems is that the
MRP switch will result in discontinuous partial derivatives of the accelerations with
respect to these attitude coordinates. Such discontinuous behavior can in principle
be accommodated rigorously in optimal control theory. This section will develop the
necessary MRP costate switching condition that will allow MRPs along with their

shadow counterparts to be used in optimal control problems.

2.3.5.1 Optimal Control Problem Statement

Most spacecraft optimal control problems have a cost function J which depends on
the control effort, the body angular velocity, and the attitude coordinates. Let u be
the control torque vector, w be the body angular velocity vector and o be a MRP
attitude coordinate vector in the following general optimal control formulation. For
these developments, we consider the fixed final time problem. Adding a free final

time would not change the resulting costate switching theorem and would unduly
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complicate the formulation.

J = h (tf) + fotf p(avwv u7t)dt

(2.96)
s.t.  (o,w)T =F(o,w,u)
where typical scalar penalty functions are
1 s 1 Tr717
h (tf) = 5]\19 (Utf) + iwtf[lm]wtf (297)
and
1

plowut) = 3 (K39(0) + w'[Ky]w + u' [R]u) (2.98)

The weights I and K are positive scalars and the weights [K3], [Ky] and [R] are
positive definite 3x3 matrices. The function g(o) is a general, non-negative attitude
penalty function. For spacecraft optimal control problems, the equations of motion
can be imposed as an equality constraint. The complete equations of motion for a
rigid body are rewritten below in Eqs. (2.99) and (2.100), where the function f(o) is
defined in Eq. (2.41).

o= flo)w (2.99)

{w = —[@][{]w+u (2.100)
The matrix [/] is the spacecraft inertia matrix. The Hamiltonian H for this system is

1 1 1 :
H= 51{39(‘7) + §WT[K4]W + §UT[R]U +Alflo)w

+ AT (=[] Iw +u) (2.101)

where A, is the o costate vector and A, is the w costate vector. The costate (adjoint)
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differential equations are given by?363%

OH 1. . 0g 0

A, = —g = =Ko - 8—a(f(cr)w)TAa (2.102)
A== = —[Kiw— f(0) A — (@] - (] ) (174, (2103)

For unbounded control torque u, the optimality condition 0H/Jdu = 0 leads to the

following optimal control torque36—38

u = —[R]7I] A, (2.104)
The transversality conditions for a free final state are3637
. oh 1__ 0g
A, (ty) = — (t;) = =K== (t 2.105
(tr) = 5 (tr) = 5Hi5— (ty) (2.105)
h
A, (tf) = g_w (tf) = Kow (ty) (2.106)

The partial derivative of Eq. (2.41) with respect to o is

(ow" — [@] —wo" + o' wl) (2.107)

N —

Given good estimates of initial conditions, this nonlinear optimal control problem can

be solved using various standard techniques.?®

2.3.5.2 MRP Costate Switching Condition

The optimality conditions for optimal control problem are derived assuming that all
states are piece-wise smooth and continuous. Continuity is not guaranteed when
switching between the two sets of MRPs. Since the “original” and “shadow” MRP
satisfy exactly the same differential equation, however, the MRP costate differential
equation in Eq. (2.102) is the same for either set of MRPs. To be able to switch the

MRPs along the optimal trajectory, an analogous mapping of the MRP costates at
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the time of the switch is required. Since the attitude penalty function g() renders
the optimal trajectory independent of attitude coordinate choice, the MRP switching
could be triggered at any time. If the G() function is used, then one must switch the
MRPs on the 0”0 = 1 surface, otherwise the cost function J will be discontinuous.

Deriving the necessary corner conditions for discontinuous states has been cov-
ered in the literature, such as in Ref. 38. However, the state discontinuities, and
therefore the variations of the state before and after a jump, are assumed to be ar-
bitrary in this reference. With the MRPs we are in the unique situation where the
discontinuity is well defined through Eq. (2.36). This results in the state variations
before and after a jump being related, and leads to a different costate switching
condition than what is found in the literature.

The Weierstrass-Erdmann corner conditions were developed for the case where
the state derivative is discontinuous.3®3? The same initial assumptions used in deriv-
ing the Weierstrass-Erdmann corner conditions also hold if the state, not the deriva-
tive of the state, is discontinuous. Without loss of generality, let us assume that o is
only discontinuous at #;, where 0 < t; < t;. The time #; is chosen or specified apriori
and is not part of the optimization process. Since the attitude penalty function used
in this development is the universal g() function which renders the optimal solution
independent on the choice of attitude coordinates. Therefore we can switch arbitrar-
ily between the original and shadow MRP attitude coordinates without affecting the
final optimal trajectory. In essence, we are describing the identical optimal attitude
trajectory in two different ways by using the MRPs along their shadow counterparts.
This concept is illustrated in Figure 2.8. At a time ¢;, where both the original MRP
vector o and the corresponding shadow set o are defined, we chose to switch from
one description to another. Since o and o are related through Eq. (2.36), any

variations in o at time ¢; will be therefore related to variations at time #7.
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Fig. 2.8: Switching between MRP Descriptions While Taking Variations

The cost function J, in terms of the system Hamiltonian H and the costates A,

can now be written as

ty ty
J=h(ts) + / (H— A"a)dt + / (H—A"z)dt=J +J,+J;3  (2.108)

0 tf
where & = col(o,w) and A = col(A,, A,). For notational compactness, lets define
o =o(t]),o. =oa(t), Ai- = A;(t]) and A+ = A;(t]). Each integral can now be

evaluated without state discontinuity problems. The first variation of J must satisfy3%
0J=0=0J1+0Jo+dJ5 (2.109)

The first variation of .J; is

5= e (1)) 1) (2.110)

Taking the first variation of J5, we treat ¢; as a fixed time.

ty HT HT
§Jy = / (g— Sz — ATox + il 5u> dt (2.111)
Jo T Ju

Since the states are smooth and continuous within the integral, d& can be written as
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£ (§a). This permits 8. to be integrated by parts.

t N T
5Jy = —A(ty) sa(ty) +/ ((a—H + A) b + g—H 5u> dt (2.112)
0

ox u

Let dz(t]) = (00—, 0w_)T, then §.J, is written as

t; 7 g
6Jy = —AL s — AL_dw_ + / ((8_1{ + A) dx + o 5u> dt (2.113)
0 ox ou

Similarly 6.J3 can be found assuming that the initial and final states on the interval

(tf.tf) are free and the time #; is fixed.

6J3 = Al oy + AL dwy — A(ty) oy

ts \T T
+/ ((8_]—[ +A> ox + 8_H (5u> dt (2.114)
i ox ou

Since the body angular velocity is continuous dw_ = dwy = dw. After enforcing the

optimality and transversality conditions, the total variation 6.J becomes>®

60J =A% 00, — AL So_ 4+ (Ay+ —A-) 0w =0 (2.115)

Since the variation dw; in Eq. (2.115) is independent from other variations, the fol-

lowing conclusion can be made.
A+ = A - (2.116)

Since a switch occurs at ¢;, o would be the “shadow” set of o_. Recall that
which set is referred to as the “original” or as the “shadow” set is arbitrary. This
mapping from o _ to o is well defined in Eq. (2.36), therefore the variations dor_ and

0o are also related. Their relative mapping is found by taking the first variation of

Eq. (2.36).

bo_ =0, 20,0} —0lo.I] b0, (2.117)
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which can be further reduced to the following useful form using Eq. (2.36).

do_ = [20'_0'T — O'ZO'_I] oo, (2.118)

Since the total variation 0./ given in Eq. (2.115) must be zero, then
Al do,. = Al so_ (2.119)
must be true. After expanding this condition using Eq. (2.118) we obtain

(Aps —[20 0 T —o Ta I|A_) 60, =0 (2.120)

o=

Since Eq. (2.120) must hold for any admissible variations do . the following costate

switching condition is found:

Apv =20 0" — (cTo_)I| A, (2.121)

Note that Eq. (2.121) yields a general mapping for the switching of a costate A,- to
its “shadow” costate A,+. This mapping is valid at any instance of the maneuver.
Let us examine the special case of performing pure single-axis rotations. Using
Eq. (2.36) the attitude vector can be written as o = é|o| = éo. The body angular
velocity vector is given by w = é|w| = éw. From Egs. (2.102), (2.105) and (2.107)
it is clear that for a single axis rotation the attitude costate A, can be written as
A, = é|A,| = éA,. Using these definitions, the following costate switching condition

can be found for the single-axis rotation case.
A+ = (0l ) A,- (2.122)

The above condition shows that the only instance for which A, does not have

a discontinuity during the switching is the case of a single-axis rotation with the

T

switching surface o' o = 1. The developments above lead to the following theorem:
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Theorem 2.2 (MRP Costate Switching Condition) Assume that the scalar at-
titude penalty function be given by Eq. (2.92), then the costate A, and the Hamiltonian
H will remain continuous during the switching of the MRPs to their “shadow” set.

The costate A, however, will have a discontinuity defined by Eq. (2.121).

To verify that the Hamiltonian H remains continuous during the switching of the
MRPs, Eq. (2.101) is studied. The attitude penalty function g() is continuous during
the switching, as are the control vector w and the angular velocity vector w. The
only term that needs to be shown to remain continuous during the MRP switching is

Al f(o)w. Using Eq. (2.121) we get
AT f(o Jw — AT, f(o)w = AL (f(o ) — (20 o7 — oo D)f(ey)w (2123)

After using Eq. (2.42) this expression is rewritten as

r_ 1 /1 2
AL (d'_ — (20_0" —o'o_I) <_Z_2 +3 ( +40_) aaf)) w (2.124)

o_

After substituting the differential kinematic equation for the MRPs given in Eq. (2.41)

it can be verified that
AT (o )w — AL f(0)w =0 (2.125)

and that the Hamiltonian H will remain continuous during the MRP switching. Note

Tg > 2.

that Theorem 2.2 allows for the MRPs to switch on any time where o
A numerical method would not have to pin point the time where this surface is
penetrated. It is sufficient to monitor at each time step if a surface penetration has
occurred, meaning that 6”o > 2. If yes, then the attitude state and costate would

be switched as shown. This theorem leads directly to the following corollary regarding

the costate magnitude |A,| during the MRP switching.
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Corollary 2.1 The costate magnitude |A,| will remain continuous during the MRP

switching if the oo = 1 switching surface is used.

Proof: Corollary 2.1 is verified by using Theorem 2.2 to find the expression ALA,
before and after the MRP switching, and using the fact that during the switching

olo is equal to 1. [ |

This corollary shows that the MRP costate vector A, behaves very similar to
the MRP vector o during the switching. Both switch on the surface of a sphere.
The difference is that o switches on a unit sphere, where A, switches on a sphere of
arbitrary radius.

Instead of using the calculus of variations development, the MRP costate switch-
ing conditions can also be derived by transforming the given optimal control problem
with internal discontinuous states into a standard optimal control problem with a
terminal constraint surface. This is accomplished by doubling the number of system
states by assigning the states before and after the switch at ¢; to be separate, inde-
pendent states. The states before the switch are integrated forward in time on the
interval [0,%;], where the states after the switch are integrated backward in time on
[tf,t1]. By folding the time around the state discontinuity, the previously internal
MRP switching at t; now effectively becomes a terminal state constraint.*® The MRP
costate switching conditions are then found by using the standard necessary condi-
tions for a continuous optimal control problem with the terminal state constraint

surfaces®® o (1) + o (t; ) /o?(t7) = 0 and w(t]) — w(t;) = 0.

2.3.5.3 Analytical Result of a Single-Axis Rotation

To verify the MRP costate switching conditions, a simple single-axis optimal control

problem is solved analytically using the MRPs as attitude parameters. For generality,
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the switching surface is set to 02 = ¢?. Let us minimize the cost function .J which

depends solely on the control u

1 1
J = —/ u?dt (2.126)
2 Jo

subject to the simple one-dimensional equations of motion for a body with unit inertia

1
6= (1+0°)w (2.127)
w=u (2.128)
and subject to the state constraints
o(to=0)=09 o(tr=1) =05 w(ty) =w(ty)=0 (2.129)

The optimal control torque u* for this cost function .J is known to be of the form®
u™(t) = k(1 —2t) (2.130)

where £ is simply a scaling factor that guarantees that the body is at oy at ;. Note
that the optimal trajectory is independent of the choice of attitude coordinates. This
allows the optimal control problem to be solved using either the “original” MRP set or
their “shadow” set. By comparing the resulting costate A, history for the “original”
and “shadow” costates, we verify below the costate switching condition for single-axis

rotations in Eq. (2.122). The optimality condition in Eq. (2.104) states that
u () = —Au(t) (2.131)

Since w” is continuous, so is A, as predicted in Eq. (2.116). If at some point in
time the MRP are switched to their “shadow” set it obviously has no effect on the

continuity of A,,.
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To find a time history of the costate A,, Eq. (2.103) is used.
. 1 9
A, = -7 (1+0%) A, (2.132)

Since Aw = 2k this can be solved for A,.

8k
No=—1202 (2.133)

Let 0% and A2 be the “shadow” attitude and costate vector. Analogous to above, the

solution for A% is

8k

AS=——— 2.134
o 1+ (O_S)Q ( )
Eq. (2.134) can be written in terms of o by using Eq. (2.36).
8k 8k
AS = = o’ (2.135)

T 1+ L T 1407
Substituting Eq. (2.133) into Eq. (2.135) a direct relationship between A5 and A, is

obtained.
AS = o%A, (2.136)

By switching between the two possible MRP attitude descriptions the costate A,
must be switched as well according to Eq. (2.136). This result verifies the single-axis

rotation MRP costate switching condition found in Eq. (2.122).

2.3.5.4 Three-Dimensional Numerical Result

To verify the general transformation given in the MRP costate switching condition
theorem, a three-dimensional optimal control problem was solved as outlined in the
problem statement. The attitude penalty function was chosen to be the g() given in

Eq. (2.91). With this penalty function the answer did not depend on the attitude
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coordinate choice. Therefore the optimal solution using the combined set of o and
o should be the same as the optimal solution obtained by using only o or .

The optimization problem was solved numerically by a steepest descent method.3®
The only modification needed to use the combined set of original and shadow MRP
vectors was to check whether o7 o had grown larger than one. If yes, then the attitude
vector was switched to its shadow counter part. At the same time the corresponding

attitude costate vector was also switched to its shadow counter part using the MRP

costate switching condition.

Table 2.3: Parameters of 3D Optimal Control Problem

Parameter Value Units

I 0.5 kg-m?/sec
I 1.0 kg-m?/sec
I3 0.7 kg-m?/sec
K, 2

K> 10

K 1

K, 5

R 20

o(tp) [0.87 0.00 0.00]

w(ty)  [80.21 51.57 45.84] deg/sec

The three-dimensional optimal control problem had a fixed maneuver time ¢ of
10 seconds. The body axis are assumed to be aligned with the principal axis. The
values of the simulation parameters are shown in Table 2.3. Note that the initial ori-
entation has the body almost turned up-side-down with a large initial angular velocity
driving it to the up-side-down orientation. This optimal control problem penalizes
any non-zero state and torque during the maneuver and any non-zero final state.
Note that the final state is left free. Trying to minimize torque for this maneuver, it
is intuitively reasonable to let the body rotate through the up-side-down orientation

and then reduce the states instead of forcefully reversing the existing motion.
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Fig. 2.9: Optimal Results for All Three Cases

Three separate optimal control problems were solved using either o /a®, o or
o as the attitude coordinates. As expected, all three optimizations converged to
the same solution. The principal rotation angle ¢ and the magnitude of the angular
velocity are shown in Figure 2.9(i). The optimal solution indeed lets the body rotate
through the ® = 180 degree point and diminishes simultaneously the angular velocity
and attitude errors as the final maneuver time is approached. The optimal control
torque for the maneuver is shown in Figure 2.9(ii). The attitude coordinate vector
time histories are shown in Figure 2.10(i). The respective MRP trajectories were
different for each case since different attitude coordinates were used. The combined
set o /o started out identical to o, since the initial attitude vector had less than
unit magnitude. As |o| grew larger than one, the combined set /o trajectory is
switched to the shadow set o trajectory. This is illustrated in Figure 2.10(i). The
black line denotes the trajectory of the combined o and o* set which remains within
the unit sphere. Note that this trajectory converged exactly with the o and o*

trajectories whenever they too were within the unit sphere.

The ultimate test of the MRP costate switching condition theorem is to see
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unit sphere

(i) MRP Attitude Coordinates (ii) MRP Costate Coordinates

Fig. 2.10: Three-Dimensional Illustration of o and A, for All Three Cases

if the costate A, exhibits the same behavior. The costate trajectories are shown in
Figure 2.10(ii). Again the black line is the solution obtained using the combined o /o®
set and using the MRP costate switching condition. Indeed the costate A, switches
exactly from the costate trajectory of the pure o solution to the costate trajectory of
the pure o® solution, thus verifying the MRP Costate Switching theorem presented

in this section.

2.4 Asymmetric Stereographic Orientation Parameters

Both the classical and the modified Rodrigues parameters are examples of symmetric
stereographic parameters. Their singular orientation depends solely on the corre-
sponding principal rotation angle ® and the range of allowable orientations up to
the singularity is symmetric about the zero rotation. In this section, an example
asymmetric stereographic parameter vector i is constructed. The Euler parameter

(1 is eliminated and setting the projection point ¢ = —1 on the [3; axis as shown
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in Figure 2.2. The corresponding projection hyperplane is defined through 5 = 0.

Adjusting Eq. (2.5), the vector 1 is defined as

Bo
- ! (2.137)
= pr+1 & '
B3
The singularity condition in Eq. (2.14) is for this set of parameters
)
€1 sin 5 = -1 (2.138)

Since the sine function is bounded by +1, a singular orientation is only possible if the
corresponding principal rotation axis e is along the first body axis. If € is neveralong
51, then the i parameters will never encounter any singular orientations. Therefore,
contrary to the symmetric SP such as the classical and modified Rodrigues parame-
ters, the asymmetric SP vector 7 is able to describe the orientation of a rotating body
without having to resort to switching the attitude parameters to alternate shadow
sets.

Using Eqgs. (2.12) and (2.13) the singular principal rotation angles for the 7 atti-
tude vector becomes ®;, = -180 degrees and ®,, =+540 degrees about the first body
axis. As mentioned earlier, the direction at which a singular orientation is approached
is important with asymmetric stereographic parameters. Here a negative principal
rotation of 180 degrees about the first body axis causes a singularity. A positive
principal rotation of 180 degrees would yield an identical physical orientation, yet
no singularity is encountered! Only after a +540 rotation about b, does this repre-
sentation go singular, even though this position is the same as 4180 degrees. This
strange non-symmetric principal angle range is due to the fact that the zero rotation

point (1,0,0,0) does not lie on the 3; axis. Naturally, as with the symmetric SPs, any



61

singularities could always be avoided by switching the i vector to its corresponding

shadow set through
N’ =———n (2.139)

Differentiating Eq. (2.137) and using Eq. (2.11), the differential kinematic equa-

tion for the i vector is found to be

(=l=ui+m+mn3)  2(mn;— 1)
m=z| 20— mn) 2 (g3 + 1 — 1)

—2(mns + ) (L= =3 +n3) (2140

=2 (mnz + n3) w1

(=14 —n3 +m5) | |we

2 (m — na2ms3) w3
Note that Eq. (2.140) contains no transcendental functions and is similar qualitatively
to Eq. (2.40). Because i is an asymmetric stereographic parameter vector, there is
less evident symmetry in the matrix. As a result, Eq. (2.140) cannot be written

in a more compact vector form as was the case with the symmetric stereographic

parameters. The direction cosine matrix in terms of the  components is given by

4 (7 —m5—n3) + %° 8minz + 4mX
[C] = m —8mns + 4mpY 4 (nF+ni—ni) + T2
812 + 413X 8nanz — 4mX (2.141)
—8mne + 43X
821z + 4m X
4 (nf —n3+n3) + T°
Analogously, asymmetric stereographic parameters could be derived by project-

ing onto a hyperplane orthogonal to the 35 or 33 axis, or actually any non-/3; axis.
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All these parameters would have a similar singular behavior as the  parameters pre-
sented in the section. In practice the body axis is chosen about which the rigid body
is least likely to rotate. Then the corresponding [3; parameter is eliminated through
the appropriate stereographic projection. The resulting three parameter set will then
only encounter a singularity when the rigid body is at the two specific orientations

discussed earlier.
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CHAPTER III
EIGENFACTOR QUASI-VELOCITY COORDINATES ~

While the previous chapter dealt with studying novel sets of attitude coordinates,
this chapter studies a new set of quasivelocity coordinates called the Eigenfactor
Quasivelocities (EQVs). Also, while the earlier discussion pertained to a single rigid
body, a system of bodies is considered in this chapter. Large nonlinear motions are
admitted. The equations of motion of complex dynamical systems are usually second
order nonlinear differential equations which, in the most general case, require taking
the inverse of a time-varying, configuration variable dependent mass matrix in some
manner. Such dynamical systems could be a large nonlinear deformation model for
an arbitrary body, a multi-body system, or a multi-link robot arm. One reason why
the resulting dynamics are complicated is that they are usually written in a way that
combines coordinates natural to the momentum or energy description with configura-
tion coordinates natural to the displacement description. The result is a split between
momentum differential equations and kinematic differential equations. This natural
splitting is typically destroyed when the generalized methods of mechanics are em-
ployed and result in a more complicated mass matrix. This occurs when the classical
Lagrange equations of motion are written in terms of a generalized coordinate and
their time derivatives. By using Newton-Eulerian mechanics or modified Lagrange’s
equations of motion, it is possible to introduce quasivelocities which separate the deci-
sion of choosing displacement coordinates and velocity (momentum) coordinates. As
is well-known, (e.g. Eulerian rigid body dynamics), this process often leads to more
attractive sets of equations than those that result from “brute force” application of

*Portions of this chapter were published in References 41 43. Authors retained
the copyright.
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Lagrange’s equations. It is possible to bring the equations of motion to their most
convenient form with a constant mass matrix.!"** For general configuration-variable
mass matrices there has not been a generally applicable method to accomplish an
analogous transformation.

Several methods have been proposed to carry out the mass matrix inverse!n45
ranging from taking an algebraic inverse, to using traditional numerical inverse meth-
ods (such as a Cholesky decomposition), to an elegant recursive method of using the
innovations factorization.!! Naturally each method has its advantages and disadvan-
tages. The algebraic inverse is only feasible for relatively small systems; even when
making use of symbol manipulation programs such as Mathematica and Maple. Tak-
ing a numerical inverse at each integration step is computationally costly and difficult,
but is also the most generally applicable method. The method proposed by Ref. 11
uses the innovations factorizations technique to parameterize the mass matrix and
recursively approximate its inverse. The mass matrix factors involved are obtained
from a recursive filter. However, this recursive filter is conveniently applicable only
to a linked body chain and other kinematically recursive topologies.

This chapter presents a method to solve a very general class of constrained and
unconstrained dynamical systems and avoids the necessity of inverting a configuration
variable mass matrix to obtain instantaneous accelerations. The equations of motion
will be separated into dynamical and kinematic differential equations somewhat anal-
ogous to classical developments in rigid body dynamics. A method outlined in Ref. 41
will be used to replace the mass matrix inverse problem with one of solving the cor-
responding eigenfactor differential equations. The new formulation will also allow
any Pfaffian constraints to be easily incorporated into the equations of motion, thus
avoiding having coupled algebraic constraint equations to be solved simultaneously

with the original equations of motion and reducing the overall order of the system.
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3.1 Classical Lagrange Equations of Motion

The equations of motion for a dynamical system can be derived by first formulating
expressions for the kinetic energy 7T and the potential energy V. Let the system

Lagrangian £ be defined as
L=T-V (3.1)

Let & be the generalized configuration coordinate vector for the system, then the

potential energy is given by
V=V(x) (3.2)

The kinetic energy can be written in terms of the state vector derivative @ or in terms

of a quasivelocity vector y defined as
y = [R(z)]® (3.3)

where the matrix [R(«)] linearly relates & to y. A field where quasivelocities are often
preferred over configuration coordinate derivatives is rigid body attitude dynamics.
For example, it is much simpler to write the system kinetic energy in terms of the
body angular velocity w than in terms of the Euler attitude angle derivatives 6. Let

[M(x,t)] be the mass matrix for a system described with y, then the total kinetic

energy for the system is given by
1 . _
T=T+T+Ty)= 5yT[M(gc,t)]y +GT(z,t)y + Ty(z,t) (3.4)

where the T\ = Gy and T, terms only appear in unnatural systems. However,
to find the traditional version of Lagrange’s equations of motion, the kinetic energy

needs to be written in terms of generalized coordinate derivative &, not in terms of
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quasivelocities y. Using Eq. (3.3), the kinetic energy is thus rewritten in terms of @

T, = %dzT[R(az)]T[.M(a:,t)][R(az)]:j: = %d:T[J\I(a:,t)]at (3.5)
T, = G"(z,t)[R(z)]z = G (z,t)2 (3.6)

where [M(x,t)] = [R(z)]"[M(z,t)][R(z)] is the system mass matrix for the state
vector (z,2) and G(z,t) = [R(z)]"G(z,t). For mechanical systems [M(z,t)] will
always be symmetric positive definite. Let @ be a non-conservative force and let
—[A]" X be the constraint force, then the Lagrange equations of motion are defined
as

i (55) - Se =@ (3.7)
with the Pfaffian non-holonomic constraint system having the structure®®

[A(z)]& + b(t) = 0 (3.8)

If m Pfaffian non-holonomic constraints are present and the state vector x is of
dimension n, then [A] is a mxn matrix. The needed partial derivatives of the system

Lagrangian L are

Z_i — [M(2.)]é + Gla.1) (3.9)

and

0L _ 1 0], | 0G @), OLiwr) O

ox 2 ox ox or  Ox (3.10)
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I[M (w,t)]

where the term z” e

 is a column vector. The resulting standard Lagrange

equations of motion are

T
(M (@.0)]é + ([M] - %d:Ta[Agf’t)] _ 9 af’”) &+ G, 1)
(1) OV .
R e S PR | (PRNEATY
or more compactly
M D)+ Zlwid) + 0 = @~ [4]'A (3.12)

The above equations of motion are a second order nonlinear differential equation,
obviously generally not a simple task to solve. In particular, the time and state
dependence of the mass matrix poses a potential difficulty. These standard equations
of motion, when coupled to the constraint equations in Eq. (3.8), pose a significant
challenge for high dimensioned systems. The necessity of solving systems of order

n+m to obtain (&, A) for each (x,&,t) lies at the heart of the difficulty.
3.2 Eigenfactor Quasivelocity Equations of Motion

The following development is motived by studying rigid body dynamics wherein it
is common practice to separate the momentum dynamics and kinematics. Euler’s
rotational equations of motion of a rigid body with inertia matrix § are usually

written in terms of the body angular velocity w, not in terms of the time derivative

of the attitude coordinate vector 6.

o = —w x [[w +u (3.13a)

6=fO)w (3.13h)
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Eq. (3.13a) describes the system momentum time rate of change and Eq. (3.13b)
describes the kinematic relationship between the body angular velocity w and the
attitude coordinate derivative . Using only @ and its derivative instead of {6, w}
would yield a much more complex second order differential equation.

This separation of dynamics and kinematics in the equations of motion cannot
be accomplished in more general dynamical systems. However, we show a way to
accomplish an analogous structure in the more general system equations, at the ex-
pense of increasing the number of differential equations to be solved. This involves
projecting the configuration coordinate derivative into a moving reference frame!'!-44
by introducing a quasivelocity vector which diagonalizes the mass matrix. Since the
mass matrix [M] is always symmetric and positive definite, it can be spectrally de-
composed using the orthogonal real eigenvector matrix [E] and the diagonal positive
real eigenvalue matrix [D]. Instead of using [F] directly, using [C] = [E]" will simplify
the following development. Let ¢; be the #-th eigenvector of [M (x)] at any instant,

then [C] is written as
[C]=[e1--en]” (3.14)
The spectral decomposition of [M] yields
[M]=[C)"[DI[C]  [ClC]" =1  [D] = diag(X;) (3.15)

Let the diagonal [S] matrix be defined as the positive square root of the eigenvalue

matrix [D].

(5] = /[D] = diag (+V/A:) (D] =[S]"[S] (3.16)

Substituting Eqs.(3.15) and (3.16) into Eq. (3.5) yields the following kinetic energy
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expression.

T, = 5[] [S]'[S][Cle (3.17)

The spectral decomposition of Eq. (3.15) is identical to the singular value decompo-
sition of [M] since [M] is symmetric. If needed, the inverse of [M] could be found
robustly using the Moore-Penrose inverse. However, using developments below, we
avoid [M] ! altogether by introducing the Eigenfactor Quasivelocity coordinate vec-

tor
n=I[SIClz  n=mn(\z).c(z)) (3.18)

Using this 7 we obtain a new simplified expression for the kinetic energy. The mass

matrix associated with 7 is the identity matrix.

1 :
T =Ty+T1+T; = §nTn + GT (2, )[C)[S] ' + Ty (2, t) (3.19)

Note that T35 depends explicitly only on n. However, if we choose (x,2) as the
independent set for taking partial derivatives, we must recall that 7 depends on
(x,x). The « dependence is implicit in Eqs.(3.15), (3.16) and (3.18) because [S(z)].
[C ()] parameterize [M (z)] = [C]"[S]"[S][C]. Also note that T* is equal to T (both
represent the same physical kinetic energy quantity), they differ only in their algebraic
formulations.

The new quasivelocity vector 7; can also be expressed as

i = sicj @ (3.20)

1

Or in words, 7; is the projection of the velocity vector z onto the i-th eigenvector c;
and scaled by the i-th eigenvalue square root s;. The new velocity coordinate not only

contains information about the standard velocity coordinate, but it is also implicitly
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linked to the system mass matrix itself. The inverse mapping of Eq. (3.18) describes
the kinematic relationship between & and n similarly to the relationship of 0 and w
in Eq. (3.13b). Since C'is orthogonal and the diagonal entries of S are positive, the

inverse mapping is trivial and singularity free:
& = [C]'1S] ™" (321)

The partial derivatives of the system Lagrangian £ are now rewritten in terms of the

new generalized velocity vector 1 using the chain rule as**
oL or*  [(on\ ' oT* oT*
— = — 3.22
0% 8a'3+(8a'3) oy = V815 (822)
and
oL oT~ 20T 0V
98 _ - 2
ox ox + 1] on  Ox (3:23)

where [J] is the sensitivity matrix of 1§ with respect to the state vector . This matrix

is non-zero since the [C] and [S] both indirectly depend on .

dn _ | 9n In
_on _ 24
=g = | 324
Using the chain rule dn/0xy is expressed as
377 8[5] a[C] —1 [
o= (s Gher ) s (3.29

However, finding 0[S]/0x) and 0[C]/dz is difficult to do without resolving the eigen-
vector, eigenvalue problem. One method to find these partial derivatives is to use the
same square root algorithm used in this paper to find [S] and [C]. This method

is covered in a technical report.*3

However, this method only allowed the partial
eigenfactor derivatives to be evaluated at the discrete integration time steps, not in

between them. Because of this, methods such as the Runge-Kutta methods which
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require intermediate steps could not be used to forward integrate the equations of
motions. Thus Ref. 43 uses a predictor-corrector type integration method instead.

To avoid solving for the computationally expensive 9[S]/dxy and 9[C]/dz) terms,
0L /0x can be solved using T'(z, ) instead of T*(x,n) as was done in Eq. (3.10).
The @ velocities in Eq. (3.10) could be replaced by the new velocity vector i through
Eq. (3.21), but it is computationally more efficient to keep the @ terms.

The partial derivative of T with respect to n is

ar~

G =t [S]7[C]G (. 1) (3.26)

Using Eqs.(3.10), (3.22) and (3.26), the Lagrange equations of motion in Eq. (3.7)

become

1 p0M]. O0GT 9T, OV T
5E 5n T wa_aa:—i_a:c_Q_[A]/\ (3.27)

< (1 1sin + @) -

After carrying out the time derivative and using the orthogonality of the [C] matrix,

the following first order differential equation is obtained.*?

i+ 517 ([CNCT 181+ 81) m = (S]] (%"” - “’")

= [S]'C]F — [B]* A (3.28)

where
[B] = [A][C]"[S] (3.29)
and
B oV 0Ty
F_Q_a—a:_G—}—% (3.30)

The two first order Egs (3.21) and (3.28) replace the classical second order equa-
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tions of motion in Eq. (3.12). Eq. (3.28) is an interesting special case of quasivelocity
Lagrangian mechanics***7 for our choice of quasivelocity vector i. This diagonalized
equation of motion is very similar to the one introduced in Ref. 11, except that our
new velocity vector 1 is not equal to their v since our parameterization of the mass
matrix is different. Note that Eq. (3.28) requires no matrix inverse to be taken thanks
to the orthogonality of the [C] matrix. Inverting the [S] matrix is trivial since it is a
positive diagonal matrix. At this stage the complex problem of finding the instanta-
neous matrix inverse has been traded for another kinematics-like problem of solving

the associated eigenfactor differential equations.
3.3 Mass Matrix Eigenfactor Derivatives

To solve the above quasivelocity Lagrange equations of motion, auxiliary differential
equations are required to yield the eigenfactor derivatives with respect to time. A
square root algorithm developed by Oshman and Bar-Itzhack to solve the matrix Ric-

cati differential equation®®

was enhanced and extended in Ref. 41 to robustly handle
the mass matrix eigenfactor derivatives. The method calculates the instantaneous [C]
and [S] matrices and can also handle the very rare case of either repeated eigenval-
ues with distinct derivatives or with repeated derivatives. Since [C] is an orthogonal

matrix it satisfies a differential equation of the form? 2274

€] = —[9[C] (3.31)

where [] is a skew-symmetric matrix. Analogous to the attitude dynamics problem
where the [Q] matrix represents body angular velocities, for the eigenvector dynamics
each ();; term represents a generalized eigenvector axis angular velocity. All eigenfac-

tor derivatives of [M] are expressed by a projection onto [C] in terms of p;; as?41:48:49

Hij = c?[]b'[(a;t)]ci (3.32)
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The method in Ref. 41 defines the [Q] matrix elements as®®*®

pij/ (s3 — s?) for |s3 — 57| > €

7

Q= (3.33)

Qii(to) + Qij(to)(tl —tg) for |s? — s <e
where € is the smallest allowable numerical difference in eigenvalues before numerical
problems occur in calculating €2;;. When A; differs from A; by less than e, then the
unknown €2;; term at ¢; is linearly interpolated from known terms at ¢y. This approxi-
mation is shown to have minimal impact on the numerical accuracy of the solution. To
enhance long term stability of the eigenfactor integration and handle the theoretical

41,5051 when-

cases of discontinuous eigenvectors, Ref. 41 performs a Jacobi sweep
ever the {2;; term is being approximated. Discontinuous eigenvectors of a continuous
and differentiable symmetric positive definite matrix [M(x(t))] are mathematically

only possible for the rare case where both the corresponding eigenvalues and their

derivatives are repeated.*!

Fig. 3.1: Three-Link Manipulator System

To illustrate typical eigenvalue and €2;; behavior for a real mechanical system,

the simple three-link dynamical system shown in Figure 3.1 is studied. All masses
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and rods are set to unit weight and length and the system is initially at rest. The
spring constant K is 0.2. The initial orientation angles are #; = —90°, #, = —30° and
03 = 0°. The forward integration is performed with a variable step size third/fourth
order Runge-Kutta method. The resulting eigenvalue time evolution for up to 20
seconds is shown in Figure 3.2(i). The eigenvalues Ay and A3 become very close
at certain times, yet are never exactly equal. It appears like they repel from each
other in the last moment and change directions. This phenomena of “eigenvalue
near-misses” is discussed by V. I. Arnold in Appendix 10 of Ref. 52. We note that
this is but one “eigenvalue encounter” pathology, for more general problems, the
eigenvalues can indeed cross. For the single parameter system mass matrix M ()
it is very unusual to encounter repeated eigenvalues; but it is not impossible. A
two-link manipulator can be configured such that the eigenvalues do periodically
become equal. If the manipulator chain is allowed to “fork”, then it is also possible
for eigenvalues to become equal. However, in all physical systems studied so far
no system was found that exhibited crossing eigenvalues A; and A; and had non-
zero corresponding €);; terms. If the eigenvalues actually crossed, then their relative
eigenaxis angular velocity was always found to be zero. While this pattern has been

consistently observed, no claims are made that this will occur for all physical systems.

time[s]

(i) Eigenvalues of System Mass Matrix (ii) Eigenvector Axis Ang. Vel. €;;

Fig. 3.2: Three-Link Manipulator Simulation
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To track the rapid eigenvalue changes near \o = A3, a variable step size in-
tegration method is essential. Every time these two eigenvalues become very close
something interesting happens to corresponding eigenvectors. Away from a near
eigenvalue encounter the eigenvectors oscillate normally as is seen in their angular
velocity measures €2;; in Figure 3.2(ii). However, every close approach of Ay and A3
causes the corresponding eigenvector axes to “switch places.” This switching is seen
as a clear spike in the {23 time history in Figure 3.2(ii).

The time derivative of the eigenvalues \; are defined in terms of [¢] matrix entries

as28’41’48’49

).\1' = Hii (3-34)

However, the time derivative of the eigenvalues is not used directly in the EQV
formulation, but the derivative of the eigenvalue square root. Let s; be the i-th entry

of the [S] matrix. Using the chain rule, the derivative of s; is

6= — N\ 3.35
$ 5. (3.35)

This is written in a more compact form using the diagonal matrix [['] = diag(j;) as*®
1 .
8] = 5I01(s] (3.36)

Substituting Eq. (3.31) into Eq. (3.28), the quasivelocity Lagrange equations of mo-

tion are now reduced to

i+ (517 ([l + (81) m = 1517 ) (5o b - 5a)
= [S]7'CF —[B]"Xx (3.37)

At first glance, Eq. (3.37) may seem more complicated than than the original equa-
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tions of motion. Keep in mind, however, that [S] and [I'] are diagonal matrices
which greatly reduces the computational burden. The most costly terms to compute
when evaluating the eigenfactor derivatives are the j; terms in Eq. (3.32). Finding
the instantaneous eigenfactors would be a very attractive task for massively parallel

computer system since the p;; calculation is trivially parallelizable.
3.4 Pfaffian Non-Holonomic Constraints

If the dynamical system is unconstrained, then the Pfaffian constraint matrix [B]
is zero and Eq. (3.37) is fully defined. However, if the dynamics are constrained
through the Pfaffian constraint of Eq. (3.8), then Eq. (3.37) will need to be solved
simultaneously with the constraint equation. Using Eq. (3.21) we rewrite the Pfaffian

constraint in terms of the new velocity vector 7.
[AI[CTT[S] 'n+b=0 (3.38)
which can be simplified using Eq. (3.29) to
[Bln+b=0 (3.39)

The dynamical constraint equation is obtained by taking the first time derivative of

Eq. (3.39).
[Bln+ [Bln+b=0 (3.40)
Using Eqs. (3.36), (3.31) and (3.29) [B] can be expressed as

[B] = (J4I[CT" + [AJ[C)” - [BIIS)) 5] (3.41)
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To determine the vector (1, A) Eq. (3.37) will need to be solved simultaneously with

Eq. (3.40). This leads to the differential-algebraic equations (DAE)

I [B]" ' a
[B] n _ 1 (3.42)
[B] 0 A as
where the vectors a; and a, are given as
_ : _ 1 ,0[M]. 0G" .
s = {51 ({lls)+ (81) m+ 517 (5o e - 02 e F) s
ay=—[Bln—b (3.43b)

Since [B] is a mxn matrix, [Ms] is a symmetric (n+m)x(n+m) matrix. A parti-
tioned matrix inversion formula®® is used to find the inverse of [Ms]. Because of the
use of the quasivelocity vector n, the upper left partition of [My] is a nxn identity
matrix which simplifies the partitioned inverse immensely. For this case the mxm

Schur complement matrix [A] reduces to®®
[A] = [BI[B] (3.44)
making the partitioned inverse of [Ms]

gyt [T BITAITEL B 015
NSNS

Using [My] ! in Eq. (3.45) the constrained differential equation of motion for 7 is
= (I—[B]"[A] [B)a + [B]'[A] 'as (3.46)
The Lagrange constraint vector X is

A = [A]Y[Bla; — [A] tay (3.47)
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Note that if no constraints are imposed on the dynamical system, then Eq. (3.46)
collapses back to Eq. (3.37). If the number of system constraints m is small, then the
mxm matrix [A]"! could be inverted for each time step. However, as m grows larger
taking a numerical inverse quickly grows in computational complexity.

Since [A], for linearly independent constraints, is a positive definite symmetric
matrix by Eq. (3.44), it can be decomposed using the eigenfactor parameterization
analogous to the mass matrix parameterization. Let [Ca] be the transpose of the
eigenvector matrix of [A], and let [Sa] be a diagonal matrix whose entries are the
positive roots of [A] eigenvalues. Then through a spectral decomposition [A] can be

written as
[A] = [CA]"[Sa]"[Sa][Cal (3.48)

Since [Ca] is an orthogonal matrix and the diagonal entries of [Sa] are all positive,

the inverse of [A] is
[A]7 = [Ca]"[Sa]*[Ca] (3.49)

This direct inverse formulation reduces Eq. (3.46) to the following matrix inverse free

formulation.
1= (I —[B]"[Cal"[Sa]°[Cal[B])ar + [B]"[Ca]" [Sa]*[Calas (3.50)

Keep in mind that [Sa] is a diagonal matrix with positive entries. Therefore finding
its inverse involves only scalar inversions.

To update the [Ca] and [Sa] matrices without resolving the eigenvalue, eigen-
vector problem, their time derivatives are found using the square root eigenfactor

algorithm*! analogously to finding the time derivatives of [C] and [S] of the mass
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matrix [M]. Let ca, be the i-th eigenvector of [Ca], then [;; is defined as
Bi; = ca,[Alek, (3.51)
where the time derivative of [A] is
[A] = [B][B]" + [B][B]" (3.52)

and [B] was defined in Eq. (3.41). The diagonal matrix [['a] and the skew-symmetric

matrix [Q2a] are then defined as

[L'a] = diag(5i) (3.53)

L A for |52A], — SQAJ > €

[Qa,] = A (3.54)
QAi]’ (to) + QAU (to)(tl — to) for |S/2A], - 52Az| <€

The time derivatives of [C'a] and [Sa] are written as*®

[Sa] = 5l liSa] (3.55)

[Ca] = ~[Q4][Cal (3.56)

3.5 Numerical Simulations

Two numerical studies simulating distinct dynamical systems are presented in this
section. This first study shows a case where it is beneficial to use the EQV and
illustrates that dynamical systems do exists that have crossing eigenvalues. The
second study deals with a more complicated constrained multi-link system which

illustrates the typical EQV property of dealing with “near-eigenvalue misses.”
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3.5.1 Unconstrained Two-Link Simulation

The first dynamical system studied is a two-link manipulator system whose shoulder
is inertially fixed, but free to rotate. This system is identical to the one illustrated
in Figure 3.1 without the third link. Each link is of length /; with all it’s mass m;
located at the tip. The configuration angles §; are measured from the local horizon.
The manipulator hand is attached to an inertial point at coordinates (0,4) through
a spring with stiffness K. Let 6 = (01792)T be the state configuration vector. The

system potential energy is the total spring energy given as
1 . .
V(0) = L (4 —y)*+27) (3.57)
The system kinetic energy is given as

A T . L
T(6.6) = S8 + Smo (zfaf + 201y cos (6 — 02)6165 + 1303) (3.58)

From the kinetic energy T the system mass matrix [M] can be extracted.

‘ ma )2 ‘ _
[4]‘{(0)] _ (m1 + mg)ll m21112 COS (01 02) (359)

7712[112 COS (01 — 62) m2l§

The eigenfactor square root algorithm requires an algebraic expression for []M | and

O[M]/00. They are found directly from the system mass matrix [M] in Eq. (3.59).

0 7712[1[2 sin (01 — 62)(62 - 01)

[M(6.6)] = o (3.60)
mglllg sin (01 - 62) (92 - 01) 0

J[M(6)] _ 0 —malily sin (61 — 6-) (3.61)
801 —m21112 sin (91 - 92) 0

O[M(0)] _ 0 malilysin (61 — 65) (3.62)

802 T

m2l112 sin (91 - 02) 0
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Table 3.1: Parameters of Unconstraint Two-Link Simulation

Parameter Value Units
I 0.5 m
lg 1/\/5 m
mi 1.0 kg
mo 1.0 kg
K 1.0 kg /sec?

0(to) [0.0 60.0] deg
6(to) [0.00.0] deg/sec

The simulation parameters are provided in Table 3.1. The link lengths and
masses were chosen such that the mass matrix eigenvalues are time varying and could
become equal. The geometric condition for A\; = Ag is that |6, — 6;] = 90 degrees.
However, as mentioned earlier, the eigenvector axis angular velocity 215 is always zero
for this system. This pattern was observed with every mechanical system studied.
Whenever two eigenvalues A; and A; do potentially cross, then the corresponding €;;
is always zero. Therefore this example cannot be used to study the effect of near-
equal eigenvalues since the critical {215 calculation is trivial. However, this example
will provide some good insight into what potential benefits there are in using EQV 7
as the velocity measure instead of the standard 0.

The initial motion of the two-link system defined in Table 3.1 is shown in Fig-
ure 3.3. A constant step size fourth order Runge-Kutta method was used to numer-
ically integrate the system. The links ended up oscillating back and forth between
the right and the left side. The initial conditions for this simulation were chosen such
that the two links come close to being fully stretched as they pass the vertical axis.
Since the spring is located on the vertical axis and is pulling the manipulator hand
essentially upwards, the two-links systems end up “snapping” through this orientation
and experience locally very high accelerations.

The configuration angles #; and angle accelerations f; are shown in Figures 3.4(i)
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Fig. 3.3: Initial Motion of Two-Link System

and 3.4(ii) respectively with highlights where 6; ~ 6#,. Combined both figures il-
lustrate this “snap through” behavior very clearly. Whenever 6, ~ 65, the angular
accelerations 6; change sharply. Therefore integrating the system with (0, 9) as the
state vector would require drastically reducing the integration step size during these
“snap-through’s.” However, using (8, n) as the state vector the angular accelerations
look quite different. During these “snap-through’s” the 7); coordinates don’t change
nearly as fast as the 0; coordinates do. The explanation for this is given in Eq. (3.20).
Since 1; = s;cl'®, the EQVs represent an angular momentum like quantity which
does not change as sharply as the “pure” angular velocities 0.

Since this two-link manipulator system is conservative the total energy E is
constant and can be used as a measure of integration accuracy. The total energy

error 0 encountered during the integration is
SE(6,8) =T(6,0) +V(0) — E(t) (3.63)

The EQV formulation was compared to two other methods. Method 2 uses 0 as its
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Fig. 3.4: Unconstrained Two-Link Simulation Results

velocity coordinate vector but inverts the mass matrix using its spectral decomposi-
tion [M]~! = [C][S]?[C]T. Method 3 uses @ as the velocity coordinate vector and
inverts the mass matrix by “brute force” using an LU decomposition. The numerical
accuracy of each method is shown in Figure 3.4(iii). Since a constant step size inte-
gration was used, method 3 clearly performs very poorly during the snap-through’s
and starts to generate a non-zero offset in 0 . Method 2 performs a little better than
method 3 during the snap-through’s and does not appear to generate any longterm
energy errors. At least for this simulation method 1, which uses the EQV formulation,
provided the best integration. The greatest numerical effort with the EQV formu-
lation is calculating the [p] matrix which is a n® operation. For a given integration

step size even the “brute-force” method using the LU decomposition for inverting the
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mass matrix only requires a n? type operator. More elegant methods such as the in-
novations factorization using in Ref. 11 are only n-th order operators. However, given
the encouraging preliminary results in Figure 3.4 it was anticipated that the EQV
would allow for a larger integration step size to offset the penalty of having a larger
numerical effort per integration step. As will be discussed in the following numerical
simulation, unfortunately this was not generally the case. For more complex system
the required integration step size is roughly equal when using either the classical or

the EQV formulation.

3.5.2 Constrained Multi-Link Simulation

The second dynamical system is a semi-flexible multi-link system illustrated in Fig-
ure 3.5. The two-link subsystem is very similar to the previous dynamical system.
The only difference is that the first link is now able to stretch without bending.
The stretching is simulated by the spring K and the amount stretched in indicated
through the coordinate f3. At the shoulder of the two-link system another link is
added. A torsional spring K3 connects these two link subsystems. Studying this sys-
tem will provide some more insight into how typical mass matrix eigenfactors behave.
Further, it illustrates how Eq. (3.46) is used to incorporate constraint into the EQV
formulation.

The hand coordinate y of the two-link subsystem in the vertical direction is given

by
Yy = (ll + ‘93) sin 01 + 12 sin 62 (364)

The system potential energy is the total spring energy given by

1 1 o 1
V(0) = 51{103, + 5K (2®+(4—y)?) + 5 K0 — 01 — g)2 (3.65)



Fig. 3.5: Semi-Flexible Multi-Link System Layout

The system kinetic energy is given as

1 T T L
T =sm ((11 +04)260% + 93) + 5msl303 + Smo ((11 + 04)26 + 1202

+9§ + 2([1 + 63)[2 COS (01 — 92)9192 + 2[2 sin (01 — 92)0203) (366)

From the kinetic energy 7 the system mass matrix can be extracted.

(‘m1 + WIQ)L% 'mQLllQ COS (012) 0 0
M(g) _ 7712[/1]2 COS (012) mglg ’TTLQ[Q sin (012) 0 (367)
0 maly sin (612) mi + mo 0
0 0 0 m3l3
where the shorthand notations 615 = 0y — 0y and Ly = [ + 63 were used. The

eigenfactor square root algorithm requires an algebraic expression for M and dM /0.
They are found directly by appropriate differentiations of the system mass matrix M
in Eq. (3.67).

This dynamical system will be constrained such that the hand of the two-link sub-
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system can only move in the horizontal direction. This constraint therefore requires

that § = 0. Using Eq. (3.64) this can be expressed as A(9)9 = 0 where

A(B) = | (I, + 03) cos by lycosBy sinf; 0 (3.68)

The simulation parameters are shown in Table 3.2. The torsional spring K3 is assumed

to be unstretched whenever |0, — 6] = 90 degrees.

Table 3.2: Parameters of Constraint Multi-Link Simulation

Parameter Value Units
l1 0.5 m
lo 1/\/5 m
I3 1.5 m
my 1.0 kg
mo 1.0 kg
mg 1.0 kg
Ky 1.0 kg/sec?
K, 1.0 kg/sec?
K3 0.5 kg-m?/sec?
[01(t0), 02(t0), 04(to)]  [30 60 135]  deg
03 (to) 0.0 m
[01(t0). Oa(t0), Ba(tg)] [0.0 0.0 0.0] deg/sec
65 (to) 0.0 m/sec

The numerical integration was performed with a 3rd/4th order variable step-size
Runge-Kutta method. The resulting initial motion is illustrated in Figure 3.6. As
required by the system constraint, the hand of the two-link sub-system only moves
in a horizontal manner. These motions were verified using the classical Lagrangian
formulation along with the “brute force” integration method outlined with the pre-
vious simulation. Note that using Eq. (3.46) only requires solving an n-th order
system instead of the standard (n + m)-th order system for dynamical systems with
m constraints present.

The matrix eigenvalues A; are shown in Figure 3.7(i). The eigenvalue \; remains
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Fig. 3.6: Constrained Multi-Link Motion

constant for this system while the other vary with time. The corresponding eigenaxis
angular velocities §2;; are shown in Figure 3.7(ii). For this dynamical system, the
eigenaxis angular velocities (215, 213 and €214 are always zero. This is because the
corresponding jiy; terms are all zero. Therefore having Ay cross A; does not pose any
numerical difficulties when computing Eq. (3.33). The eigenvalue A, is even able to
remain very close to A; for finite periods of time without causing numerical problems.
Clearly this eigenvalue represents the separate link /3 whose motion is only indirectly
linked to the other links.

The remaining three eigenvalues Ao, A3 and A4 represent the two-link subsystem.
These eigenvalues will vary with time, but will never cross. Eigenvalues that corre-
sponded to a single chain of links were never found to cross. For chains with more
links than two, the only way found to make corresponding eigenvalues cross was to
fork the chain as was done in this dynamical system. Figure 3.7(i) again shows the
phenomenon of eigenvalue “near-misses” that were discussed Arnold in Ref. 52. At

times two eigenvalue pairs appear to be crossing, but repel off eachother before doing
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so. Figure 3.7(ii) shows that the corresponding ©;; always grows rather large when
such an eigenvalue near-miss occurs. Even though the behavior of 8 and 1 might be
perfectly smooth for these occurrences, the variable step size integrator is required
to reduce the step size drastically here to accurately forward integrate the current

eigenfactors.
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Fig. 3.7: Constrained Multi-Link Simulation Results

The previous unconstrained system encountered some snap-through’s where it
proved beneficial to use the EQV formulation. However, integrating the eigenfactors
was also rather simple. For this more complex dynamical system the EQV formulation
does appear to offer any computational benefits over the simple brute force method.
In Figure 3.7(iii) the constraint error Ay(t) = |y(t) — y(to)| obtained through the

EQV formulation is compared to that of a numerical simulation using the brute
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force method. Both methods use the same variable step size technique. However,
due to the behavior of the eigenfactors, the step sizes taken by each methods are
quite different. To provide a fair comparison each simulation was setup such that
the average integration step size was about 0.0027 seconds for each method. As
Figure 3.7(iii) shows, the constraint error violation was of roughly the same magnitude
for either method. This was also confirmed testing other constrained dynamical
systems.

Since the dynamical system is conservative, the total energy ' = T+ V can

again be used as a measure of the total integration accuracy. The integration error

|AE| is defined to be
ty
|AE| = / |E(t) — E(to)|dt (3.69)
0

The brute force method and the EQV formulation integration errors for a 100 second
simulation are compared in Figure 3.7(iv). Per average integration step the EQV
method actually proved to be about one order of magnitude less accurate than the
brute force method. Therefore, even after taking into account that the evaluation of
the computationally most expensive term €);; is trivially parallelizable, the remaining
numerical effort involved in using the EQV formulation for running simulations still
remains too high. While the EQV formulation is of interest by itself, since it provides
some interesting insight into a complex dynamical system, it is not recommended
that this formulation is used to run numerical simulations of complex systems. In the
next section, we will establish that the important practical application for the EQV

formulation lies elsewhere.
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3.6 Eigenfactor Quasivelocity Feedback Law

This section will investigate the use of the EQVs as a velocity feedback measure
rather than the standard x. This is analogous to feedback control laws in rigid
body dynamics where w is fed back instead of 6. In particular, the effect of the
nonlinear generalized coriolis term in the EQV formulation is studied. The resulting
EQYV feedback control law is shown to be asymptotically stabilizing and provide some

elegant decoupling properties to complex dynamical motions.

3.6.1 Feedback Control Law

An unconstrained version of the EQV formulation given in Eq. (3.28) can be com-

pactly written as
n=-—H(z,n) +e (3.70)
The vector H is the nonlinear, generalized coriolis term
Hia.m) =[] (10084 8)) m =[] €] (3" 00ls) 370

where [M,] = 0[M]/0x. The vector € is the generalized forcing term defined as

ov

e=[517'[C1Q - )

(3.72)

Because of the close relationship between this EQV formulation and the classical
rigid body attitude dynamics formulation, the question naturally arises: Does the
EQV vector have an important role in feedback laws, analogous to the w vector in
attitude control? To gain some insight, first recall the Euler equation of motion of a

rigid body given as

o = —[@[I]w + u (3.73)
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where [I] is again the inertia matrix, w is an external torque vector. The kinetic

energy of a rotating rigid body is given as

T= %wT[I]w (3.74)

It is a known that the term [@]/w is a non-working term and that the kinetic energy

rate can be written as the power equation®?’

T=wlu (3.75)
Using the kinetic energy as a Lyapunov function, the simple feedback control law
u = —[P*|w (3.76)

is found where [P¥] is a positive definite angular velocity feedback gain matrix. If w
is the only state being controlled this controller is globally asymptotically stable.
Analogous statements can be made for the EQV formulation. Similar as in
Ref. 11, the nonlinear coriolis term H (x,n) for the EQV formulation is also non-
working. To show this important truth, let us study the term n” H. Using Eq. (3.18)

it can be written as
n"H = &7[C]7[SP[C)& + & [C]T[S][S][C]& — %a';T (&7 [MyT) (3.77)
which is the simplified to
n'H =& ([C]'[SPC] + [ SISNC) - [Z &, <:bT[Mxi]ab)] (3.78)
Note the following identity.

Z & (2" [M,,)&) = &"[M]2 (3.79)
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After adding and subtracting some terms 7 H becomes

n'H=d' ([C’]T[S]Q[C] +[CT[SPICT + 2(CT ISIISTIC] = [T [SPIC]

[ ISISIC]) & — 547 (3.80)
From Eq. (3.15) it is clear that
[M] = [CT[SP[C] + [CTISTIC] + 2[CT [S]STIC] (3.81)

This identity is used to reduce n’ H to

rd

o H =& (13- ()

R
([S][C])) & — 5" [M)e (3.82)

which can be further manipulated to give the very important result:

o H = &7 ([M] - %[M]) & — %@T[M]d; 0 (3.83)

Recall that the kinetic energy of a dynamical system expressed in the EQV
formulation is T' = %nTn. Since the H(x,n) term is nonworking, the kinetic energy

rate can be expressed simply as
T=n"p=n"(~H(z,n) +¢) =n'e (3.84)

Using the kinetic energy as a Lyapunov function, the following feedback control law

can be shown to be globally asymptotically stabilizing.
e =—[P"n (3.85)

where [P"] is the positive definite velocity feedback gain matrix. Note that Eq. (3.85)

provides a linear velocity feedback control law in the 7 formulation. This renders T
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in Eq. (3.84) into the negative definite expression
T =—n"Py (3.86)

Therefore € = —P"n is a globally asymptotically stabilizing feedback control law for
Eq. (3.70). Eq. (3.72) is used to rewrite this control law in terms of the generalized

external force vector Q.
Q = Vi(x) — [CI"[S][P"]n (3.87)
If the feedback gain [P7] is assumed to be a scalar, then the control laws simplifies to
Q = Vi(@) - P'[M(2))& (3.88)

Note the physical significance of Eq. (3.88). Instead of just feeding back the & vec-
tor, as would be done traditionally in velocity feedback (proportional damping), a
momentum type quantity is fed back instead. Even though [P7] is a constant scalar
in this expression, the [M ()] term acts as a state dependent feedback gain matrix.
While the control law in Eq. (3.88) is fairly simple and straight forward to implement,
the use of the more general control law in Eq. (3.87) requires the instantaneous eigen-
vectors and eigenvalues of the current system mass matrix [M]. One method to find
these eigenfactors without resorting to resolving a complete eigenvector/eigenvalue
problem is to use the elegant Jacobi method as outlined in Appendix A. Given a
current eigenfactor estimate from the previous control update, by implementing one
“Jacobi sweep” these estimates are replaced with the current values. Using the more
general control law in Eq. (3.87) it would be possible to assign separate weights to
each mode of the dynamical response and have them decay at different, well defined
rates.

As a comparison, the traditional method of constructing output velocity feedback
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laws would result in a control law of the type
Q =V,(x) - [P']& (3.89)

where [P?] is the velocity feedback gain matrix. To study stability of the classical
feedback law in Eq.(3.89), let us write the kinetic energy in the classical form and use

it as a system Lyapunov function.

1

T= §a'zT[M]a'3 (3.90)
The first time derivative of 7' is
- T - 1 e Trasle
T=a [M]i+ 5% [M]& (3.91)
Using Eq. (3.12) this is reduced to
.7 Lo, 1op . »
T=a (Q-V,— 5[]%]9: +5¢ [M]& (3.92)
which is then expanded to
T=&"(Q-V,) — 1a':T[Av'f]a:: 41 > (&M, ]d) (3.93)
x 2 2 Z- 1 z; -

Using the identity in Eq. (3.79) this is simplified to the usual work/energy power

expression
T=3&"(Q—-V,) (3.94)

The traditional velocity feedback control law in Eq. (3.89) then yields the following

negative definite expression
T =—&"[P%)é (3.95)

where [P?] is a positive definite matrix. Therefore the classical velocity feedback
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control law is also globally asymptotically stabilizing.

3.6.2 Exponential Convergence

Both velocity feedback control laws in Eqs. (3.87) and (3.89) are shown to be globally
asymptotically stabilizing. Now their convergence rates will be studied. First, assume

that P7 is a scalar quantity. Then the time derivative of T' can be written as
T =—-P'n'y (3.96)

Using Eq. (3.19) this is rewritten as

T =-2P"T (3.97)
This simple first order differential equation can be solved explicitly to yield
T(t) = e 2" T(0) (3.98)

Therefore, for any choice of positive P", the total system kinetic energy will decay
exponentially at a well defined rate.
To show exponential convergence for the case where [P"] is a fully populated

positive definite matrix, we make use of the Rayleigh-Ritz inequality® >

AP

min

n'n <0’ [P < Ajn'n (3.99)

mazr

This inequality allows T to be upwardly bounded by

T=-n"Pm<-X\"n"n (3.100)

Using Eq. (3.19) again, the following inequality for T is obtained.

T <—=2\P" T (3.101)

min
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Note that in this more general case the kinetic energy is upwardly bounded by a

exponentially decaying curve at a rate of —2AL" .
T(t) < T(0)e Pmint (3.102)

Here the kinetic energy decay rate cannot be easily determined for the entire maneu-

ver. However, as time t grows sufficiently large it will approach the decay rate of the

smallest eigenvalue \I" .
Proving exponential stability for the feedback control law in Eq. (3.89) is more

difficult. Let A2

min

be the smallest eigenvalue of [P?], then using Eq. (3.95) and (3.99)

the following inequality must hold.

T < -\ &Tq (3.103)

min

Let AM be the largest eigenvalue of M. If

mar

Ao = Al (3.104)
is true, then the above inequality can be expanded to
T<-\% 3T < —A\M 3T¢ < —&"Mi (3.105)
Using Eq. (3.90), the kinetic energy derivative will be upwards limited by
T < —2T (3.106)

Note that with this control law, exponential stability is only shown for a sufficiently
large set of [P?] eigenvalues. Also, the convergence rate cannot be determined easily
from the above analysis. Numerical analysis shows that the condition in Eq. (3.104) is
very conservative. It is observed that an exponential closed loop stability guarantee,

for a general class of nonlinear systems, is a very significant result. The velocity
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feedback control law in Eq. (3.89) is found to be exponentially stabilizing in the
endgame even if the condition in Eq. (3.104) is violated. Therefore the EQV feedback
control law in Eq. (3.87) or (3.88) provides a very simple and straight forward way of
controlling the exponential convergence of the velocity state.

The concept of feeding back a generalized momentum quantity instead of a con-
figuration velocity coordinate to achieve controlled exponential stability can easily be
applied to the rigid body attitude control problem discussed earlier. Instead of using
the traditional control torque u defined in Eq. (3.76), let the feedback gain P“ be a

scalar quantity and define the torque u instead as
u = —P[I|w (3.107)
The kinetic energy derivative in Eq. (3.75) can now be written using Eq. (3.74) as
T = =P [lJw = —2P°T (3.108)

With this slight modification, a globally asymptotically stabilizing feedback control
law is made exponentially stabilizing, providing a straight forward way to control the

kinetic energy decay rate.

3.6.83 Numerical Results

To compare the performance of the feedback control laws in Egs. (3.87) and (3.89),
they are applied to a three-link manipulator system and a tumbling rigid body. In
each simulation the goal of the control law is to bring the system to rest by dissipating
all initial kinetic energy. For all cases, we consider only damping (velocity) feedback.
The position feedback term would be identical for both control laws and is therefore

uninteresting for this analysis.
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3.6.3.1 Three-Link Manipulator System

The rigid three-link manipulator system is shown in Figure 3.8. Each link has some
initial rotational velocity and the goal of this example is to bring all the links to rest at
an arbitrary orientation. The numerical integration is performed with a fourth order
Runge-Kutta method with an integration step size of 0.005 seconds and a simulation

duration of 15 seconds.

Fig. 3.8: Three-Link Manipulator System Layout

Choosing the inertial polar angles as generalized coordinates the state vector is

x = (01,09,63)", then the system mass matrix is

(my 4+ mg +m3)l¥  (mg+ m3)lilscosby; malil; cos bz
[M(2)] = | (m9 + ms)l1y cos Oy (my + m3)l3 mslals cos O3y (3.109)
malil3 cos 031 malslz cos B39 mgl§
where the shorthand notation #;; = 6; — 6, is used. The feedback gains are chosen to
be scalars are held constant for each control law. To perform a reasonable comparison,
the feedback gain magnitude for each control law is selected such that the maximum

absolute control effort encountered is equal. The first simulation is performed with
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very large initial link rotations as is shown in Table 3.3.

Table 3.3: Parameters of Large Initial Motion Study

Parameter Value Units
A 1 m
12 1 m
13 1 m
mi 1.0 kg
m9 1.0 kg
ms3 1.0 kg
adl 0.7 kg-m?/sec
p? 1.0 kg-m?/sec
x(to) [—90 30 0] deg

x(to) [93 — 110 — 73] deg/sec

The magnitude of the control vector @ is shown in Figure 3.9(i). With this
tuning of the gains, both control laws encounter a maximum control effort of about
3.5 N-m. The 7 control law magnitude starts to be reduced linearly (on the base 10
logarithmic scale) after only about 1 second of maneuver time. A linear logarithmic
decay rate indicates an exponentially decaying quantity. The & control law does not
start to decay linearly on this scale until after 6 seconds into the maneuver. After
an initial hump, the control magnitude associated with @ control drops off quickly at
first and then decays relatively slowly. The kinetic energy T is decreased by about
one order of magnitude every 5 seconds. The 1 control maintains a relatively large
control effort for the initial portion of the maneuver where about 90% of the kinetic
energy is being canceled. After this the 17 control effort drops off at a much faster than
the @ control effort. The kinetic energy T is decreased by one order of magnitude
about every 1.5 seconds.

The only way for the & control law to have a similar (three times as fast energy
dissipation) performance as the 1 control law would be to make P? time dependent,

or introduce piecewise constant gain scheduling. The draw-back of feedback gain
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scheduling is that it makes the overall control law much more complicated. The n
control law effectively performs some feedback gain scheduling implicitly; as is seen

in Eq. (3.88), the control law can be viewed as a variable-gain feedback on .

E N control law S N control law
10° L™ .= = = Xcontrol law - 10° L0\ .= = =Xcontrol law -
il Nl S O N

2 = > -
107 &N 109=- - -\ ~ T
‘ ~
' ' ~
1084 NG 1084 \\\
—t— —f—— 5+
0 5 10 15 0 5 10 15
time[s] time [s]
(i) Control Vector Magnitude |Q| (ii) Kinetic Energy T

Fig. 3.9: Large Initial Rotation Stabilization

The kinetic energy provides a scalar measure of the total system “error motion”
and is plotted on a base 10 logarithmic scale in Figure 3.9(ii). As predicted, the n
control law has an exponentially decaying kinetic energy since the corresponding curve
in Figure 3.9(ii) is completely linear. The kinetic energy for the @& control law starts
to decay linearly on the logarithmic scale after a few seconds, whereas the kinetic
energy for the n control is linear from the outset. These example results demonstrate
very clearly that for a given maximum control effort, the  control law outperforms
the constant gain & control law by having a much larger final decay rate. While these
results are for a particular example, the exponential convergence proof of the previous
section is general. Therefore this pattern is expected to be representative.

The second simulation is performed with only the third link having an initial
rotational motion as evident in Table 3.4. If left uncontrolled, then the coupled

system dynamics would distribute the kinetic energy of the third link into the other
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Table 3.4: Parameters of Isolated Initial Motion Study

Parameter Value Units
I 1 m
9 1 m
13 1 m
mi 1.0 kg
mo 1.0 kg
ms3 1.0 kg
P 0.72 kg-m?/sec
p? 1.0 kg-m?/sec

x(tg) [—90 30 0] deg
x(tg) [0.0 0.0 10] deg/sec

two links and very quickly all three links would be rotating. Furthermore, one can
expect a general closed loop response to have significant energy in all links shortly
after release. The closed loop time history of the & vector components for both control
laws (corresponding to proportional & and 1 damping) are shown in Figure 3.10(i).
With the @ feedback control law, coupling causes all three links to start to rotate and
then the control law brings them all to rest together. The m feedback control law
performs quite differently. The later keeps the motion of the first two links very close
two zero while exponentially reducing the initial 10 degrees/second motion of the
third link. This pleasant surprise is qualitatively a nonlinear analog of “independent
modal space control” popular for linear structural dynamical systems.?® 5" In effect,
this feedback control law is able to approximately decouple the rotation of each link
and bring each individually to zero. Note that no explicit gain scheduling had to be
performed with this control law to achieve this effect.

The magnitudes of the control efforts involved are shown in Figure 3.10(ii). Both
feedback control laws have the same maximum control effort. As is shown in the
previous simulation, again the 7 control effort remains larger than the @ control

effort until about 90% of the kinetic energy is canceled. After this the i control effort
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Fig. 3.10: Isolated Initial Rotation Stabilization

keeps on decreasing in an exponential manner while the & control effort also decreases
exponentially, but at a much slower rate.

The vector components of the control effort are shown in Figure 3.10(iii). As
expected, all three control components are active for the & feedback law. The n
control however keeps the first control component near zero while only using the
second and third control component. They decay at the same exponential rate and
differ in magnitude such that the motion of the third link is stopped while not starting

any motion in the second link.
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3.6.3.2 Tumbling Rigid Body

The second system studied is a tumbling rigid body. For this case, the body has a
very large initial angular velocity and the feedback control law is designed to drive
the kinetic energy to zero. The Euler equations of motion for a rigid body are given
in Eq. (3.73). A fourth order Runge-Kutta integration method is used to perform the
numerical simulation with an integration step size of 0.1 seconds. Total maneuver

time is 15 seconds.

Table 3.5: Parameters of Rigid Body Stabilization Study

Parameter Value Units
{10 5 3-|
(1] 5 7 4| kgm?
L 3 4 5J
P 0.33 kg-m?/sec
p? 2.0 kg-m?/sec

w(ty) [90 — 70 50] deg/sec

The two control laws given in Eqs. (3.76) and (3.107) are compared here. The
simulation parameters used are given in Table 3.5. The angular velocity feedback is

chosen to be a scalar in both cases. The classical feedback law is
u=—P'z=—-Puw (3.110)
where the n feedback law reduces to
u = —P"[[|w (3.111)

which is simply momentum feedback in this case since P7 is a scalar. In an effort to
make a fair comparison of the control laws, the feedback gains are chosen such that the
maximum encountered control effort for both control laws is the same, for the given

initial conditions. The magnitudes of each control law are shown in Figure 3.11(i).
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Both control laws have their gains tuned consistently so that they result in the same
maximum control effort at the beginning of the simulation. As is observed in the
three-link manipulator simulations, the 1 control law retains a larger control effort
during the first segment of the maneuver and decays to a lower value than the @

control effort.

PN |
10°4 O ~ T
101* e —~ 4
10'2; NG
i N control law
10?1 T T " Xcontrollaw N\
S S ——
0 5 10 15 0 5 10 15
time[s)] time[s]

time[s]

(iii) Body Ang. Vel. Magnitudes |w|
Fig. 3.11: Rigid Body Stabilization
The system kinetic energy is plotted in Figure 3.11(ii). As anticipated, the n

control law causes the system kinetic energy to decay exponentially at the prescribed

rate. The & control law appears to cause the kinetic energy to decay exponentially
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only after about 2 seconds into the maneuver at a slower rate. At the maneuver
end, the residual kinetic energy of the m control law simulations is over two orders of
magnitude less then the & control law simulation.

The corresponding body angular velocity vector magnitudes are plotted in Fig-
ure 3.11(iii). Note that even though the kinetic energy of the 17 control law simulation
is typically equal or lower than the & control law kinetic energy, the angular velocity
magnitude of the 1 control law is only smaller than the & angular velocity magnitude
after about six seconds into the simulation.

One reason why the 1 control law performs so much better in these simulations
than the @& control law is that the inertia matrix is fully populated. If we repeat these
simulations with the inertia matrix [/] near-diagonal, then there would be virtually
no inertia matrix coupling to compensate for. In these cases the n and & control laws

perform almost identically.
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CHAPTER IV
VARIABLE SPEED CONTROL MOMENT GYROSCOPES~

Instead of using thrusters to perform precise spacecraft attitude maneuvers, typically
control moment gyros (CMGs) or reaction wheels (RWs) are used. These electric
motor driver reaction devices have two main advantages over thrusters: (1) They
can deliver smooth and easy to throttle torques guaranteed not to spill over into
translational accelerations, and (2) Being driven by electricity, their lifetime on orbit
is indefinitely long. A single-gimbal CMG contains a wheel spinning at a constant
rate. To exert a torque onto the spacecraft, this wheel is gimbaled or rotated about
a fixed axis.!%1%°7 The rotation axis and rotation angle are referred to as the gimbal
axis and gimbal angle respectively. A separate feedback control loop is used to spin up
the rotor to the required spin rate and maintain it. The primary advantage of a CMG
device is that a small gimbal torque input is required to produce a relatively large
effective torque output on the spacecraft. This makes CMGs very popular devices
for reorienting large space structures such as the space station. The drawback of
the single-gimbal CMGs is that their control laws can be fairly complex and that
such CMG systems encounter certain singular gimbal angle configurations. At these
singular configurations the CMG cluster is unable to produce the required torque
exactly, or any torque at all if the required torque is orthogonal to the plane of
allowable torques associated with the singular configuration. Several papers deal
with this issue and present various approaches to solutions.!6:1%:5%:58 However, even
with singularity robust steering laws or when various singularity avoidance strategies
are applied, the actual torque produced by the CMG cluster is not equal to the

*Portions of this chapter were published in Reference 56. Authors retained the
copyright.
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required torque when maneuvering in the proximity of a singularity. The resulting
motion may be stable, but the resulting attitude deviations can be highly undesirable
in some applications where precise tracking is required.

Reaction wheels, on the other hand, have a wheel spinning about a body fixed axis
whose spin speed is variable. Torques are produced on the spacecraft by accelerating
or decelerating the reaction wheels.>?> RW systems don’t have singular configurations
and typically have simpler control laws than CMG clusters. Drawbacks to the reaction
wheels include a relatively small effective torque being produced on the spacecraft and
the possibility of reaction wheel saturation (exceeding maximum wheel speeds). To
exert a given torque onto a spacecraft, reaction wheels typically require more energy
than CMGs.

Variable Speed Control Moment Gyroscopes (VSCMGs) combine positive fea-
tures of both the single-gimbal CMGs and the RWs. The spinning disk can be rotated
or gimbaled about a single body fixed axis, while the disk spin rate is also free to be
controlled.!? This adds an extra degree of control to the classical single-gimbal CMG
device. Note that adding this variable speed feature would not require the single-
gimbal CMG to be completely reengineered. These devices already have a separate
feedback loop that maintains a constant spin rate. However, it is anticipated that the
torque motor controlling the RW spin rate would need to be stronger and, of course,
the constant speed RW feedback law be abandoned in favor of a new control law. With
this extra control flexibility, singular configurations (in the classical CMG sense) will
not be present. Since CMGs are known to be more efficient energy wise than RWs,
the VSCMG steering law should ideally act like the conventional CMG steering law
away from a single-gimbal CMG singular configurations. As a single-gimbal CMG
singularity is approached, the VSCMGs should begin to use the RW modes to avoid

the excessive torques that would normally occur and ensure that the applied torque of
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the VSCMG cluster is exactly equal to the required torque. This strategy will allow
for precise steering without path deviations near the conventional CMG singularities
because the actual commanded torque will be generated at all times. Both a gimbal
velocity based and an gimbal acceleration based steering law are presented in this
chapter. Lyapunov analysis is used to guarantee global asymptotic stability of the
feedback control law.

As is shown by Vadali et. al in Ref.,2? for a given spacecraft maneuver there are
preferred sets of initial gimbal angles. Starting the reorientation with these preferred
angles it is possible to not encounter any singularities during the maneuver and the
corresponding trajectory deviations at all. To reconfigure the internal gimbals to the
preferred set of angles, CMG null motion is typically used. Null motion arises due
to redundancy. For example, a cluster of 4 CMGs has four gimbal angular rates (or
accelerations) to generate the 3 torque components. Null motion refers to the special
set of gimbal motions which yield a net effective torque of zero. To avoid applying any
torque on the spacecraft, the internal CMG cluster momentum vector cannot change
during this reconfiguration. This fact greatly limits the sets of angles between which
the CMGs can be reconfigured. Using VSCMGs, however, more degrees of control are
present to perform an infinite set of null motions. The VSCMG null motion equations
of motion and their use to vary either the gimbal angles or the RW spin speed, or both
together, is discussed below. Of particular interest will be the energy consumption
required to augment the conventional CMG null motion with RW modes to perform

more general reconfigurations.
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Fig. 4.1: Hlustration of a Variable Speed Control Moment Gyroscope

4.1 Equations of Motion

4.1.1  Spacecraft with Single VSCMG

To simplify the development and notation, the rotational equations of motion are
first derived for the case where only one VSCMG is attached to a rigid spacecraft.
Afterwards, the result is expanded to incorporate a system of N VSCMGs. Let G
denote the gimbal reference frame whose orientation is given by the triad of unit
vectors {gs, g:, Gy} as shown in Figure 4.1. The vector components of the unit vectors
g; are assumed to be given in the spacecraft reference frame B. Note that since the
VSCMG gimbal axis g, is fixed relative to B, only the orientation of the spin axis g
and the transverse axis g; will be time varying as seen from the B frame. Given an
initial gimbal angle 7y, the spin and transverse axis at a gimbal angle () are given

by

gs (t) = cos (7(t) — 7o) g (to) + sin (y(t) — 70) §: (o) (4.1)

g: (t) = —sin (y(t) — 7o) gs (to) + cos (Y(t) — 70) G: (to) (4.2)
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The spin rate of the VSCMG about g, is denoted by 2. The angular velocity vector

of the G frame relative to the B frame is

wg/B = A)/gg (43)

The angular velocity vector of the reaction wheel frame W relative to the gimbal

frame G is

wy/g = 1gs (4.4)

To indicate in which reference frame vector or matrix components are taken, a
superscript letter is added before the vector or matrix name. Since the G frame unit
axes are aligned with the principal gimbal frame axes, the gimbal frame inertia matrix

[I;] expressed in the G frame is the constant diagonal matrix.

Y
Iz, 0 0

s

Uc]="llc]l= |0 Is © (4.5)

Tt
0 0 Ig,

where Ig,, Ig, and Ig, are the gimbal frame inertias about the corresponding spin,

transverse and gimbal axes. The reaction wheel inertia about the same axes are

denoted by Iy, and Iyy,.

w
Iy, 0 0
Iw]="[wl= |0 Iy, 0 (4.6)
0 0 Iy

Note that since the disk is symmetric about the g, axis, it follows that "[Iy| = 9[L].
In practice Iy, is typically much larger than any of the other gimbal frame or RW

inertias. In this development the RW and gimbal frame inertias are not combined
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initially into one overall VSCMG inertia matrix; rather, they are retained as separate
entities until a later stage of the developments. This will allow for a precise accounting
for the two sets of physical motor torques that drive the RWs and the CMGs.

The G frame orientation is related to the B frame orientation through the direc-
tion cosine matrix [BG| which is expressed in terms of the gimbal frame unit direction

vectors as

[BG] = [Qs g: gg] (4-7)

In Eq. (4.7) the g; vector components are taken in the B frame. The rotation ma-
trix [BG| maps a vector with components taken in the G frame into a vector with
components in the B frame. The constant diagonal inertia matrices 9Y[I5] and 9[Iyy]
are expressed with components taken in the B frame as the following time varying

matrices®? 60

S[Iq] = [BG)9[16] [BGT" = 16,9:9% + 10,9197 + 16,949, (4.8)
5lIw] = [BG)“[Iw][BG]" = Iw,4:9! + Iw,6:9/ + Iw, 9,9, (4.9)

The total angular momentum of the spacecraft and the VSCMG about the space-

craft center of mass is given by
H =Hgp + H; + Hy (4.10)

where Hp is the angular momentum of the spacecraft, H is the angular momentum
of the gimbal frame and Hy is the angular momentum of the RW. Let A/ be an
inertial reference frame and wg/n be the relative angular velocity vector, then Hp is

written as

Hp = [[|lwp/n (4.11)
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The matrix [I;] contains the spacecraft inertias and the VSCMG inertia components
due to the fact that the VSCMG center of mass is not located at the spacecraft center
of mass. While the matrix equation of Eq. (4.11) could be written in any reference
frame, we choose the B frame because [I,] = P[I,] is a constant matrix when expressed

in the B frame. The gimbal frame angular momentum H; is given by
Hg = [Ig]wg/n (4.12)
where wg v = wg/p + wp/n. Using Eqgs. (4.3), (4.5) and (4.8) this is rewritten as
Hg = (16,9:9F + 16,6:97 + 16,9,97 ) ws/n + 1,74, (4.13)

To simplify the following notation, let the variables wy, w; and w, be the projection

of wp/n onto the G frame unit axes.

ws = gL wg)x (4.14a)
wy = g} wg/n (4.14b)
Wy = g, wp/N (4.14c)

The angular momentum Hy; is then written as
Hg = I6,w.gs + 1g,w:G: + 1, (wg +7) Gy (4.15)

Upon substituting the B components of {gs, g+, g, }. Eq. (4.15) provides H; in the B

frame, if desired. The RW angular momentum Hyy is given by

where wyy )y = wyy/g +wg/p + wp/a and the components of all vectors are implicitly

taken in the B frame in Eq. (4.16). Using analogous definitions as for Hg, Hyy is
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rewritten as
HVV = IVVS (ws + Q) gs + IWtwtgt + IWt (wg + ’7) gg (417)

To simplify the notation from here on, let us use the short hand notation w =

wp/n- In some developments it will be convenient to express w in the G frame as

Yo = Wsgs + wiGr + wegy, (4.18)

To denote that a vector @ is being differentiated relative to a reference frame A, the
following notation is used.

Ad
— (@
Indicating an inertial time derivatives of a vector & will be abbreviated as
M
—(r)==
- ()

The equations of motion of a system of rigid bodies follow from Euler’s equation’® %

H=1L (4.19)

if all moments are taken about the configuration’s center of mass. The vector L
represents the sum of all the external torques experienced by the spacecraft.
To find the inertial derivatives of H; and Hyy, the inertial derivatives of the

vectors {gs, g1, g,} are required. Using the transport theorem we find%!

: Eq . . . .

9:= 7 (9s) +w x go = (7 +wy) g — wigy (4.20a)
. B

9, = 7 (1) +w X gr = — (7 + wy) Gs + widy (4.20b)
: 5 . . . .

9= = (9g) + @ X gy = wiGs — WGy (4.20c)
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since the B frame derivatives are simply

b o

- () =4, (4.21)
b .

= (91) = =79, (4.22)
Bd .

2 (99) =0 (4.23)

as can be verified through Eqs. (4.1) and (4.2). The inertial derivatives of the G frame

body angular velocity components are

= g,w+ 31w = qw +glw (4.24a)
. 2T AT - . AT -

W =g w+ gl o= —jws + gl w (4.24D)
. 2T N AT

Wy =g,w+ ggw = ggw (4.24c)

Using these definitions, the inertial derivative of Hy, is expressed as

Hy = g.Iy, (Q +glw+ 7wt>
+ G (Iw,yws + Iw, gl @ + (Iw, — Iw,) wswy + Iw, Q (% + wy)) (4.25)
+ gy (Tw, g, (@ +%) + (Iw, — Iw,) wswr + Ly, Quw)
Let Ly, be the torque the gimbal frame exerts on the RW. Isolating the dynamics
of the RW, Euler’s equation states that Hy = Ly. The torque components in the
g: and g, direction are constraint reactions produced by the gimbal frame itself.

However, the torque component u, about the g, axis is produced by the RW torque

motor. Therefore, from Eq. (4.25) the spin control torque ug is given by
s = Iy, (Q +gTw+ wt) (4.26)

After differentiating Eq. (4.15) and making use of the definitions in Eqs. (4.20)
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and (4.24), H is expressed as
Hg = g, ((Ie. — 1o, + 1a,) @i + 16,97 @ + (Ig, = La,) wiwy)
+ 6 ((I6, — Is, — Ia,) Yws + I6,6] @ + (I, — Ig,) wsw,) (4.27)
+ 99 (g, (g9 +7) + (g, — 1a,) wswy)
From here on it is convenient to combine the inertia matrices of the RW and the

gimbal frame into one VSCMG inertia matrix [J] as

4
Js 0 0

[J]=Ucl+[Iwl= |0 J, 0 (4.28)
0 0 J,
Let L be the torque vector that the combined RW and CMG system exerts onto the

spacecraft, then Euler’s equation states that H; + Hy, = L. The Lg torque com-

ponent about the g, axis is produced by the gimbal torque motor. Adding Eqs. (4.25)

and (4.27) and making use of the definition in Eq. (4.28), the gimbal torque u, is then

expressed as
ug = Jy (grw +75) = (Jo = Jo) wewr — Iy, Oy (4.29)
The inertial derivative of Hp is simply
oy = (1) + [@][Jw (4.30)

To further simplify the equations of motions, the total spacecraft inertia matrix [I]

is defined as
1] = [L,] + [J] (4.31)

Substituting Eqs. (4.25), (4.27) and (4.30) back into Eq. (4.19) and making use of

the definition in Eq. (4.31), the equations of motion for a rigid spacecraft containing
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one VSCMG are
[1e> = —[@][1]w — s (i + w2 = (o = Jg) i)
— 1 (Jows + T, Q) 4 = (Jy 4+ J,) wey + T, Qw,) (4.32)
— 39y (17 — Iw, Q) + L

where the identity
[@][J|w = (J; — Jt) wiwe@s + (Js — Jy) wswygr + (Jr — Js) wsws g, (4.33)

is used to combine terms into the [W][I|w expression. From here on the common
assumption will be made that Jg &~ Iy, i.e,. that the gimbal frame inertia I;, about
the spin axis is negligible as regards to it’s contribution to spin momentum. The

corresponding equations of motion are simplified to
o = —[@][l]w — §. (JS (Q + qth) — (] —J,) m/)
— G (T (ws + Q)7 — (Js + Jp) wy + T Qw,) (4.34)

— g, (J,5 = JQuw) + L
An alternate path to derive these equations of motion is shown in Appendix B where

Lagrangian methods are used.

4.1.2  Spacecraft with Multiple VSCMGs

To obtain the equations of motion of a rigid spacecraft with several VSCMGs at-
tached, the effects of each Hg; and Hy are added up. To simplify notation, let us
define the following useful matrices. The <N matrices [G], [G,] and [G,] contain the

spin, transverse and gimbal unit direction vectors of each VSCMG gimbal frame.

(G = [Gs, - Gsr] (4.35a)
[Gi] = [Gr, - Gey] (4.35b)

[Gy] = [Gg, -~ Ggn] (4.35¢)
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The total spacecraft inertia matrix is expressed as

N

N
[I] = [IS] + Z [‘]i] = [IS] + Z [JsigsigsTi + JtigAtigtj; + Jgiggig;;] (4'36)
=1

i1=1

The effective torque quantities 7, 7, and 7, are defined as

I, (Ql + %wtl) — (Jr, — Jgy ) w11

T (QN + quth> — oy = Jy) WinAn

J51 (Ql + wsl) "}/1 — (Jt1 + ng) Wsy ;)/1 + Jslglwgl
T = : (4.37D)

‘]SN (QN + wSN) ;)/N - (JtN + JgN ) wSN;YN + JSNQNWQN

J!h ;7./1 - Jslﬂlwtl
T, = : (4.37c)

JgAr’?N - JsNQNth

The rotational equations of motion for a rigid body containing N VSCMGs is then

written compactly as®®

{w = —[w][Ilw — [Gs]Ts — [Gi]T: — [GylTy + L (4.38)

The rotational kinetic energy 7' of a rigid spacecraft with N VSCMGs is given
by

1 N

1 .
T= in[IS]w + § Z [Jsz (Qi + wsi)z + Jtiwt?i + ng‘ (wgi + 777)2} (439)
=1

The kinetic energy rate, also known as the work rate, is found after differentiating

Eq. (4.39) and performing some lengthy algebra to be

N
T =" (Jiug, + Qus,) + 'L (4.40)

=1



118

This energy rate for this system of rigid bodies was apriori known from the Work-
Energy-Rate principle®? and is thus a validation of the presented equations of motion.
Also, checking the kinetic energy time history is a convenient way to check the accu-

racy of the numerical simulations.
4.2 Feedback Control Law

4.2.1 Tracking a Reference Trajectory

The following feedback law is derived using Lyapunov control theory. Given some
initial angular velocity and attitude measure, the goal of the control law is to track
some reference trajectory. The MRP attitude vector o is measured relative to the
reference frame R attitude. Let w, be the reference frame body angular velocity, then

the instantaneous angular velocity error vector dw is given by
w=w—uw, (4.41)

The angular acceleration error vector is found by taking an inertial derivative of
Eq. (4.41).

S = — o, (4.42)

where the vectors w, and w, are assumed to be known. Note that the vector compo-
nents of w, and w, are typically given in the R frame. To actually compute Eqs. (4.41)
and (4.42) the components of these vectors need to be projected into the body frame

B through

bw, = [BR]*w, (4.43)

o, = [BR]"w, (4.44)

In designing the control law it is assumed that estimates of w, o, €2; and ~;
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are available. The following Lyapunov function V' is a positive definite, radially
unbounded measure of the total system state error relative to the target state dw =

o = 0 where K is a scalar attitude feedback gain.?

V(bw, o) = %(SwT[I](Sw +2Klog (1 +o"o) (4.45)

The MRP attitude error measure containing the logarithm function is the same as was
introduced in Chapter II. Note that all the body angular velocity vectors and inertia
matrices have components taken in the B frame in Eq. (4.45). Using Eq. (2.66), the

time derivative of the Lyapunov function V' is given by
. . 15 .
V =dw" | [I]ow + §§[I]Ow + Ko (4.46)

Since the Lyapunov function V' is a scalar quantity, taking its derivative involves
simply the derivatives of the scalar components. Since the inertia matrix [I] has
components taken in the B frame, it’s derivative here is taken as seen by the B frame
only. The derivatives of the body angular velocity vectors are written in Eq. (4.46)

as w since differentiation of w = wg/x 1s B and N is identical due to the truth:

Nd By By
W=—WwW=—wW+twXw=—Ww (4.47)

Cdt dt dt

Using the inertia matrix definition in Eq. (4.36) and the B frame derivatives in

Eq. (4.21), the B frame derivative of []] is
b ; A o AT AT
i=1

Lyapunov stability theory requires that V be negative semi-definite to guarantee

stability. Let [P] be a positive definite angular velocity feedback gain matrix, then 1%
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1s set to
V = —6w![P]ow (4.49)

which, when combined with Eq. (4.46), leads to the stability constraint:

, B 184 .
0w = —Ko — [P]éw — §E[I]éw (4.50)

After substituting Eqgs. (4.38) and (4.48) into Eq. (4.51), the following stability con-

straint is obtained.

N N N
3 A - oa . . 1 A )
izz; JsiQigSi + 72:; Jgf/iggi + ZZ:; Vi <JSIngtz + 5 (JsZ - Jt,) (wtigsi =+ wsigti)

+ Jgi (wt,-gsi - wsigti> + (JsZ - Jtl> (gslgt];wr + ghéi"‘%))

N | —

]\f
=Ko +[Plow + L — [@][[Jw — [[Jw, — Y _ o, (Quwy,Gr, — Quw,,Gg,)  (4.51)
=1

To express this condition in a more compact and useable form, let us define the

following 3x N matrices, where all components are taken in B:

[Do] = [+ Gs; s -+ ] (4.52a)
[Di] =] ((Q + %w) Gi; + %wt,-ésJ -] (4.52b)
(D3] = [+ 3 i (@0, + 000) ) (4,52
[Ds] = [+ Jg (wi,Gs; — wsi ;) -] (4.52d)
(D =[5 (s~ ) (@6l + 01.67) -] (4.52)

(Bl =[G Jg ] (4.52f)

Let €, 4 and 4 be Nx1 vectors whose i-th element contains the respective VSCMG

angular velocity or acceleration or RW spin rate. The stability constraint in Eq. (4.51)
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then is expressed as
Dol + [BY + [P = L, (4.53)

where [D] = ([D1] — [D2] + [Ds] + [D4]) and the required torque vector L, is defined

to be
N
L,.=Ko + [Plow+ L — [&][I|w — [I|w, — Z Js, (ingigti — intiggl.) (4.54)
i=1

Dropping the [DO]Q term, the standard single-gimbal CMG stability constraint is
retrieved as it is developed in Ref. 16. Note that the formulation presented here
does not require any matrix multiplications of sparse matrices and the effects of the
individual VSCMG inertia terms are immediately evident. The condition in Eq. (4.53)
only guarantees global stability in the sense of Lyapunov for the states dw and o,
since V in Eq. (4.49) is only negative semi-definite, not negative definite. However,
Eq. (4.49) does show that dw — 0 as time goes to infinity. To prove that the stability
constraint in Eq. (4.53) guarantees asymptotic stability of all states including o, the
higher time derivatives of V' must be investigated. A sufficient condition to guarantee
asymptotic stability is that the first nonzero higher-order derivative of V', evaluated
on the set of states such that V is zero, must be of odd order and be negative
definite.?®3%3! For this dynamical system V is zero when dw is zero. Differentiating

Eq. (4.49) the second derivative of V' is

P S i
@V = —20w" [Plow (4.55)

which is zero on the set of states where dw is zero. Differentiating again the third

derivative of V is

3
%V = 20w’ [P]éw — 26w’ [P]ow (4.56)
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Substituting Eq. (4.50) and setting dw = 0, the third derivative of the Lyapunov

function is expressed as

%ff:_K%fqnlfwmn*a (4.57)

which is a negative definite quantity since both [/] and [P] are positive definite matri-
ces. Therefore the stability constraint in Eq. (4.53) does guarantee global asymptotic

stability.

4.2.2  Regulator Problem

If the desired spacecraft trajectory is a stationary attitude, then the reference body
angular velocity vector w, is zero. For these rest-to-rest or motion-to-rest type ma-
neuvers the feedback control law in Eq. (4.54) can be greatly simplified. Let the MRP
attitude vector o be measured relative to the desired final attitude. Since the final

angular velocity is supposed to be zero, the Lyapunov function V' is defined as
e 1 T e T
V:iw[ﬂw+2hbg@+atﬂ (4.58)

where K is a scalar attitude feedback gain. It’s time derivative is given by

B

: 154
vsz0nw+—

QE[I]w + KO') (4.59)

After substituting Eqgs. (4.38) and (4.48) into Eq. (4.59) and rearranging some terms,
Vs expressed as

N N N
. . 1
V=- @)z Js,$2:Gs, T4, %9, Jo, i | S+ < s, )s: 9t
R (CIUNED SRR DURTIED DU CINE (AR )
N N 1
— Ko — L + ; Js,-Q (wgigti - wtiggi) - ; Jti%i (wsigti + wtigsi>
N
# ey — g ) (460

i=1
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For this regulator problem several terms in Eq. (4.60) can be shown to be nonworking
and are neglected in the resulting feedback control law. Setting V= —w![Plw and
performing further algebraic manipulations, the simplified stability constraint for the
regulator problem is found to be

N

N N N
Z JsiQigASi + Z Jgiﬁ/iggi + Z Jsi;}/i (QZ + wsi) gti - Z Jt,'wsiﬁ')/igti
i=1 i=1 i=1 =1

—Ko+[Plw+L=L, (461)

Note that L, defined in Eq. (4.61) is a simplified version of the one defined in

Eq. (4.54). Making use of the 3 x N matrices

[Do] = [ gu. T, -] (4.62a)
[Di] =1 Gud, (Q+ws,) -] (4.62Db)
[Do] = [+ gt Teiws; -] (4.62¢)

[Bl=1["9gJg ] (4.62d)

the stability constraint is written in the following compact form?®

(D)2 + [BI¥ + [D)¥ = L, (4.63)

where [D] = ([Dy] —[Ds]). Note that the matrices [Dy] and [B] are the same as
with the general feedback law. The matrices [D;] and [Ds] are simplified and have
columns which solely depend on the g, directions. The matrices [D3] and [Dy] do not
appear at all in this control law. Since this regulator control law is a specialization
of the more general trajectory tracking control law, it too is globally asymptotically

stabilizing.
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4.2.3 Velocity Based Steering Law

Note that the stability constraints in Eqs. (4.53) and (4.63) do not contain the physical
control torques u,, and ug, explicitly. Instead only gimbal rates and accelerations and
RW accelerations appear. This will lead to a steering law that determines the required
time history of v and €2 such that Eq. (4.53) is satisfied. The reason for this is two
fold. First, currently available CMGs typically require the gimbal rate vector < as
the input, not the actual physical torque vector u,. Secondly, writing Eqs. (4.53)
and (4.63) in terms of the torque vectors u, and u, and then solving for these would
lead to a control law that is equivalent to solving Eq. (4.53) directly for the gimbal
acceleration vector . As has been pointed out in Ref. 16, this has been found to give
a very undesirable control law with excessive gimbal rates. A physical reason for this
is that such control laws provide the required control torque mainly through the [B]¥y
term. In this setup the CMGs are essentially being used as RWs and the potential
torque amplification effect in not being exploited. Because CMG gimbal inertias J,
are typically very small compared to their spin inertia J, the corresponding [B] will
also be very small which leads to very large 7 vectors.

To take advantage of the potential torque amplification effect, most of the re-
quired control torque vector L, should be produced by the larger gyroscopic coupling
[D]¥ term. This is why classical CMG steering laws control primarily the 4 vector
and not 4. For the VSCMGs it is desirable to have the required torque L, be pro-
duced by a combination of the € and 4 terms in Eqs. (4.53) and (4.63). To simplify
the further development, let us assume that the final angular velocity is zero and the
stability constraint in Eq. (4.63) only is used. However, the results are equally valid
for the trajectory tracking control law. Paralleling the development of the classical

single-gimbal CMG velocity steering laws, the terms containing the transverse and
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gimbal VSCMG inertias are ignored at this level. Eq. (4.63) then becomes
[Do]€2 + [Dy]5 = L, (4.64)

Comparing the [D] matrix to that of standard CMG steering laws it is evident that
an extra g;.J;ws term is present in the VSCMG formulation. This term is neglected in
the standard CMG formulation since it can be assumed that w, will typically be much
smaller than 2. However, since for a VSCMG the RW spin speed (2 is variable, this
assumption can no longer be justified and this term is retained in this formulation.

For notational convenience, we introduce the 2Nx1 state vector i

Q
- (4.65)
~
and the 32N matrix [Q)]
[q:[mEDJ (4.66)

Eq. (4.64) can then be written compactly as

[Qln = L, (4.67)

Note that each column of the [Dg] matrix is a scalar multiple of the g, vectors,
while each column of [D;] is a scalar multiple of the g;, vectors. In the classical 4
single-gimbal CMG cluster, singular gimbal configurations are encountered whenever
the rank of [D] is less than 3. This occurs whenever the g;, no longer span the
three-dimensional space but form a plane. Any required torque which does not lie
perfectly in this plane then cannot be generated exactly by the CMG cluster and the
spacecraft would deviate from the desired trajectory. If the required control torque

is perpendicular to this plane then the CMG cluster produces no effective torque
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on the spacecraft. This singular behavior is illustrated in Figure 4.2 with two CMGs
gimbaling to produce a constant torque vector L,. Since each CMG produces a torque
about it’s transverse axis, the two wheels must be gimbaled symmetrically and at the
same rate to produce the indicated required torque vector L,. As both transverse
axes rotate toward perpendicular orientations relative to L,, the associated gimbal
rates become exceedingly large to produce the required torque. This is referred to
as operating in the neighborhood of a singular configuration. If both transverse axes

are perpendicular to L,, then no torque is produced (referred to as gimbal lock).

Fig. 4.2: Dual CMG System Encountering a Singularity

These singular configurations can never occur with a VSCMG since the rank of
the [@Q] matrix will never be less than 3! Since the g, vectors are perpendicular to
the g;, vectors, even when all the transverse axes are coplanar, there will always be at
least one spin axis that is not in this plane. Therefore the columns of [Q] will always
span the entire three-dimensional space as long as at least 2 or more VSCMGs are
used with unique g,, vectors. We mention, however, that while a singularity does not
occur, this does not imply that other difficulties, such as wheel saturation, will not
be encountered occasionally.

Since the [@)] matrix will never be rank deficient, a minimum norm solution for
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1 can be obtained using the standard Moore-Penrose inverse. However, since ideally
the VSCMGs are to act like classical CMGs away from single-gimbal CMG singular
configurations, a weighted pseudo inverse is recommended instead.%® Let [W] be a

2Nx 2N diagonal matrix

Wi, 0
Wsy ,
W] = (4.68)
ng
0 Won

where W, and W, are the weights associated with how nearly the VSCMGs are

desired to locally perform like regular RWs or CMGs. Then the desired 1 is®®

i= || = el (e L. (4.69)
Yy

Note that there is no need here to introduce a modified pseudo-inverse as Nakamura
and Hanafusa did in developing the singularity robustness steering law in Ref. 64.
To achieve the desired VSCMG behavior, the weights are made dependent on the
proximity to a single-gimbal CMG singularity. To measure this proximity the scalar

factor ¢ is defined as
§ = det ([D1][D1]") (4.70)

Note that [D;] has units of angular momentum. With classical CMG configurations
typically each CMG has the same spin axis angular momentum magnitude A, and this
quantity can easily be factored out of [D;] to render § non-dimensional. However,

since VSCMGs will have time varying spin axis angular momentum magnitudes, one
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would have to divide [D;] by a nominal spin axis angular momentum magnitude A to

render § non-dimensional.
1 T
5= = det ([D1][D1]") (4.71)

As the gimbals approach a singular CMG configuration this parameter ¢ will go to

zero. The weights Wy, are then defined to be
Wy, = W2el9) (4.72)

where WSOZ, and p are positive scalars to be chosen by the control designer. The gains
W, are simply held constant. Away from CMG singularities this steering law will
have very small weights on the RW mode and essentially perform like a classical
single-gimbal CMG. As a singularity is approached, the steering law will start to use
the RW mode to ensure that the gimbal rates do not become excessive and that the
required control torque L, is actually produced by the VSCMG cluster.

Two types of CMG singularities are commonly discussed. The simpler type of
singularity is when the rank of the [D;]| matrix drops below 3 which is indicated by 4,
defined in Eq. (4.70), approaching or becoming zero. The VSCMG velocity steering
law in Eq. (4.69) handles temporary rank deficiencies very well. The required control
torque is always produced correctly by making use of the addition control authority
provided by the RW modes. Another type of singularity is when the required control
torque is exactly perpendicular to the span of the transverse VSCMG axis (i.e. L,
is in the nullspace of [D,]). Naturally, this is only possible whenever § is zero. To
measure how close the required torque L, is to lying in the nullspace of [D;] the scalar

orthogonality index O is used.!

o _ LD DL,
1L

(4.73)
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Similarly as with the non-dimensional singularity index 4§, the orthogonality index

can be written in non-dimensional form as

o _ LLIDY (DL,
R IL[P

(4.74)

Whenever L, becomes part of the nullspace of [D;], then O will tend towards zero. A
classical single-gimbal CMG steering law demands a zero 4 vector with this type of
singularity which “locks up” the gimbals produces no effective torque on the space-
craft. The VSCMG steering does not prevent the gimbals from being locked up in
these singular orientations; however, the L, vector is still being produced thanks to
the RW mode of the VSCMGs. If a gimbal lock is actually achieved, then without
any further changes, such as a change in the required L., the VSCMG will simply
continue the maneuvers acting like pure RWs. Running numerical simulations it was
found that unless one starts the simulation in a pure gimbal lock situation, it was
very unlikely for the VSCMG steering law to lock up the gimbals. Once a singular-
ity is approached, the RWs are automatically spun up or down which also in return
affects the gimbal orientation and lowers the likelihood of having the orthogonality
index O go to zero. However, at present this VSCMG steering law makes no explicit
effort to avoid these singular configurations during a maneuver. In essence, once the
momentum symmetry (associated with CMG geometry and constant wheel speeds) is
destroyed; by virtue of variable wheel speeds, the corresponding singular geometries

are also eliminated.

4.2.4  Acceleration Based Steering Law

The simplified formulation provided by the gimbal velocity based steering law in
Eq. (4.69) is convenient to study and analyze the steering law. However, to provide a

more realistic simulation, the transverse inertia need to be included also and “ needs
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to be used as the actual control input. Having a gimbal angle acceleration expression
will also allow for simulations that study the actual work done by the steering laws,
and this is of obvious importance. If the transverse inertias are considered, then the

stability constraint in Eq. (4.61) is given by
(Do) + [B]% + D]y = L, (4.75)

where [D] = [Di] + [Ds]. The goal of the gimbal acceleration based steering law is
to provide the same performance as the gimbal velocity based steering law. Let the
vector 14 be the desired Q and 4 quantities provided by Eq. (4.69), the weighted

minimum norm solution is

ia = W)Q" ([QIW[Q]") " L, (4.76)

where the matrix [@Q] is now defined as
[@]=[Do : D] (4.77)

The angular velocity steering law in Eq. (4.76) is adopted as a target vector of wheel
speeds and gimbal rates, and now we introduce a Lyapunov tracking approach to
command the corresponding accelerations. The vector 17 contains the actual €2 and
v states. As is done with CMG steering laws in Ref. 16, a feedback law is designed
around the desired 74 such that the current m will approach 714. To accomplish this

let’s define the positive definite Lyapunov function V; as

Vi = 5 (= )" (o= ) (4.78)

whose derivative is

Vi = (a—m)" (fia — ) (4.79)
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To guarantee global asymptotic stability, V; is set to
Vi = =K (1a =) (na— 1) (4.80)

where K is a positive scalar quantity. This leads to the following stability constraint,

which is also an acceleration steering law that tracks 7, in a stable manner.

1= K5 (D — 1) + 14 (4.81)

As is done in designing the single-gimbal CMG acceleration steering law in Ref. 16,

the vector 14 is assumed to be small and is neglected relative to the much larger term

of Eq. (4.81). Substituting Eq. (4.76) into (4.81) yields

) L e
i= | | =K [ e (@) L~ | (4.82)
v v

The vector « is the desired gimbal angle acceleration vector. The vector 2, which
represents the reaction wheel “jerk”, is also assumed to be very small and is neglected.
After some algebraic manipulations, the desired RW and CMG angular acceleration
vectors are given through the steering law”®

= U e gemern L - | (453)

ol 0 KiI ol

Note that the RW angular acceleration vector Q in Eq. (4.83) is the same as is
commanded by the velocity based steering law in Eq. (4.69). Since generally the
initial 7 vector will not be equal to the desired velocity vector at the beginning of
a maneuver, the gimbal acceleration vector 4 will drive the gimbal velocities to the

desired values and then remain relatively small following the stable initial transient.
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4.2.5  Reconfiguring VSCMG Cluster Using Null Motion

To perform a given spacecraft maneuver, there are an infinity of possible CMG con-
figurations that would produce the required torques. Depending on the torque direc-
tion and a given CMG momentum, some of these initial gimbal configurations will
encounter CMG singularities during the resulting maneuver while others will not.
Vadali et al. show in Ref. 20 a method to compute a preferred set of initial gim-
bal angles v(ty) with which the maneuver will not encounter any CMG singularities.
To reorient the CMG cluster to these preferred gimbal angles, the null motion of
[D1]%¥ = L, is used which does not apply any torque on the spacecraft. However, the
set of gimbal angles between which one can reorient the classical CMGs is very limited
since the internal CMG cluster momentum vector must remain constant. Also, the
null motion involves the inverse of the [D1][D;]” matrix which has to be approximated
with the singularity robustness inverse whenever the determinant goes to zero. This
approximation results in a small torque being applied to the spacecraft itself.
Rearranging the VSCMGs however, there are now twice as many degrees of
control available. A common four-CMG pyramid configuration would have eight
degrees of control instead of four, and more importantly, instead of having a one
dimensional nullspace, we have a five dimensional nullspace. In particular, the CMG
angles can be rearranged in a more general manner by also varying the RW spin speed

vector 2. The null motion of Eq. (4.67) is given by
0= [yl = WL ([QIWIIQI") ' [Q]] d = [7]d (4.84)

Numerical studies have shown that the weight matrix [I¥] can be held constant for
the VSCMG null motion. If a reconfiguration can be done by the classical CMG null

motion, then the resulting VSCMG is identical and the RW modes are not used. Note
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that the symmetric matrix [7] is a projection matrix and has the useful property that
[7]? = [7]. Let the constant vector n; be a preferred set of £; and ;. The error

vector e is defined as

e = [4) (1 — ) (4.85)
where [A] is the diagonal matrix
(4] = arw[Inxn]  [Onxn] (4.86)
[ONxN] GCMG[INxN]

The parameters agy and acjy are either 1 or 0. If one is set to zero, this means
that the resulting null motion will be performed with no preferred set of either £2; or

v¢. The derivative of e is
é=—[A]n (4.87)

The total error between preferred and actual CMG angular speed states is given

through the Lyapunov function
Veie) =ce'e (4.88)
Using Eqs. (4.84) and (4.87), the derivative of the Lyapunov function is
V. =elée = —€"[A][7]d (4.89)

After setting d = k.e, where the scalar k. is a positive, and making use of the

properties [A]e = e and [7]? = [r], V. is rewritten as

V. = —kee'[7]"[7]le <0 (4.90)
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which is negative semi-definite. Therefore the VSCMG null motion

Q- Q

0 = ke [[Iven] = W1 QU))@)) [4] (4.91)

Y=
is a globally stable motion. Note however, that no guarantee as to asymptotic stability
can be made. As was the case with the classical single-gimbal CMG null motion, it
is still not possible to reorient between any two arbitrary sets of 7 vectors since the
internal momentum vector must be conserved. If the momentum is not conserved,

then some torque acts on the spacecraft.

4.3 Numerical Simulations

4.8.1 Feedback Control Laws

Neglecting the VSCMG transverse and gimbal inertia effects not only simplifies the
analysis and simulation, but only directly provides the correct control input ~ re-
quired by CMGs. However, including these small inertia terms and using the gimbal
acceleration based steering law provides for a more accurate simulation. Also, the
physical torques required by the RW and CMG torque motors can be obtained. The
first simulation will use the gimbal velocity based steering law in Eq. (4.69) to study
the desired performance. The second simulation will use the acceleration based steer-
ing law to verify that it does indeed track the velocity based steering law.

A rigid spacecraft with some initial body angular velocity w and non-zero attitude
o is to be brought to rest at a zero attitude vector. The o vector is assumed to
be measured from a desired attitude. Four equal VSCMGs are embedded in the
spacecraft in a standard pyramid configuration as shown in Figure 4.3. All simulation
parameters are shown in Table 4.1. The angular velocity feedback matrix [P] is chosen

to be of diagonal form with the entries shown in the table. The initial 7 value is only
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Fig. 4.3: Four VSCMGs in a Pyramid Configuration

used in the gimbal acceleration based steering law.
The VSCMG steering laws are compared to the single-gimbal CMG steering laws
presented by Oh and Vadali in Ref. 16. Their steering law combines the Singularity

Robustness Steering Law (SRSL) given by
4 = [Dy)" (IDL[DA]T + a[Ises]) " L, (4.92)

with a variable angular velocity feedback gain matrix [P]. The parameter o depends

on the singularity index ¢ through
a = age”? (4.93)

The SRSL smoothly handles rank deficient [D;] matrices by having a slightly inaccu-
rate matrix inverse. To escape situations where the orthogonality index O has gone to

zero, the required torque is varied by changing the feedback gain matrix [P] elements
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Parameter Value Units

I, 86.215 kg-m?

I, 85.070 kg-m?

I, 113.565 kg-m?

o(to) [0.414 0.3 0.2]

w(to) [0.01 0.05 —0.01] rad/sec
N 4
0 54.75 degrees
Js 0.13 kg-m?
Ji 0.04 kg-m?
Jg 0.03 kg-m?

vi(to) 0090 —90] deg

Fi(to) [0000] rad

Q(to) 14.4 rad/sec
[P] [13.13 13.04 15.08] kg-m?/sec
K 1.70 kg-m? /sec?
K5 1.0 sec !

w 2.0

Wy, 1.0
1 1079

through
P, —0P P
Pl=|sp B _op (4.94)
—o0P oP P

where the smoothly varying parameter 0P is related to the orthogonality factor

through

0P, 0‘29_00 for O < Oy

0P = (4.95)
0 for O > O,

The parameter Oy was set to 0.01 and 0F, is 0.1. The comparison of the steering
laws is not done to establish that one control law is necessarily better than the other.

They both have different purposes. The modified SRSL method is included because
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Fig. 4.4: Spacecraft Information of 4 Based Steering Law

it illustrates the inherent problems of classical single-gimbal CMG steering laws and
how they temporarily may not be able to provide the required torque. The VSCMG
steering law is designed to always provide the required torque. However, as will
be seen in the following simulations, this does come at a price of increased energy
consumption, and in practice, the possibility of occasional wheel speed saturation.
This first simulation utilizes the VSCMG steering law in Eq. (4.69). As a com-
parison, the results of using the modified SRSL in Ref. 16 are included too and are
indicated by the dashed lines in Fig. 4.4. Having the third and fourth VSCMG gim-
bal angles be initially +90 and -90 degrees each makes the dimensional determinant o

zero at the beginning of the simulation as is shown in Figure 4.4(i). The determinant
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Fig. 4.5: VSCMG Information of 4 Based Steering Law

becomes nonzero for a few seconds and then goes back to zero for a while. About 18
seconds into the maneuver, the determinant becomes nonzero for the VSCMG steer-
ing law and then remains nonzero for the entire maneuver duration of 500 seconds.
The standard CMG steering law has a similar behavior initially, but never becomes
nonzero again after dipping back to zero at 5 seconds into the maneuver. The reason
for this is seen by studying the dimensional orthogonality index O in Figure 4.4(ii).
The index O is nonzero to begin with, allowing the CMG steering law to provide
some torque onto the spacecraft. However, as the 6 becomes zero again O also goes

to zero for the CMG steering law, while the VSCMG steering law retains a nonzero
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O throughout the maneuver. The modified feedback gain matrix [P] does change
L, sufficiently that the spacecraft does approach the desired attitude as is shown
in Figure 4.4(iii). However, this occurs very slowly. Here is a situation where the
classical CMG steering law effectively remains trapped near a singular configuration
which results in a very degraded performance. On the other hand, both the attitude
and body angular velocity decay as described by the feedback law for the VSCMG
as shown in Figures 4.4(iii) and 4.4(iv). If it were essential for the mission that the
spacecraft actually follow the prescribed trajectory, the results of the classical CMG
steering law clearly would be unsatisfactory, while the VSCMG steering law stays
right on track.

Figures 4.5(1) and 4.5(ii) show the gimbal angles and gimbal angle rate time
histories. For both the VSCMG and CMG steering law the gimbal rates are relatively
large at the beginning of the maneuver where the CMGs remain close to a singular
configuration. After about 6 seconds the CMG rates remain almost zero since the
steering law is essentially “entrapped” in the singular configuration. Figure 4.5(iii)
compares the required torque L, to the actual torque L, produced by the CMG
steering law. The VSCMG actual torque is not shown in this figure since it always
is equal to L,. While having the SRSL and the time varying [P] matrix to help the
standard CMG steering law and this spacecraft would eventually reach the desired
target state, this Figure shows clearly that the actual torque produced at several time
segments much less than the required torque. However, for the VSCMG steering law
to keep the spacecraft on track comes at the expense of spinning the RW up or down
on occasion. The RW spin speeds © are shown in Figure 4.5(iv). The RW mode is
employed twice when the determinant 6 goes to zero. Once the CMGs are away for
a singular configuration, the spin speeds remain essentially constant.

The second numerical simulation uses the gimbal acceleration-based steering law
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Fig. 4.6: Gimbal Acceleration Based Steering Law Simulation

in Eq. (4.83) and the results are shown in Figure 4.6. The gimbal acceleration were
designed such that they would provide essentially the same performance as the ve-
locity based steering law. Figures 4.6(i) and 4.6(ii) show the gimbal angle rates for
both the gimbal acceleration and velocity based steering law. As expected, during
the initial phase of the maneuver the two gimbal rates are quite different as seen in
Figure 4.6(i). This is because the initial gimbal rates were set to zero and were not
equal to the desired gimbal rates from Eq. (4.69). However, as Figure 4.6(ii) shows
clearly, after about 10 to 20 seconds into the maneuver, the gimbal rate performance

of the acceleration steering approaches that of the desired velocity based steering law.
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The corresponding gimbal angles for both cases are shown in Figure 4.6(iii).

The natural drawback to using the RW modes of the VSCMG to maneuver
through classical CMG singularities is evident when studying the work rate of the
VSCMG steering law compared to the standard CMG steering law in Figure 4.6(iv).
The work rate W for the VSCMGs is defined as

N
W =" [|u,

=1

+ it ] (4.96)

During the initial phase of the maneuver, where the determinant ¢ is very small, the
energy consumption to drive the RW modes is relatively large compared to the CMG
modes. Away from this singularity, the energy consumption is very comparable to
that of the CMG steering law. The power required to generate RW torques is typically
the limiting factor for the VSCMG devices to decide on how large a structure they
could be used. However, for smaller spacecraft which may be able to afford occasional
RW modes, or even for larger spacecraft with proper tuning of the control laws, the
VSCMG steering law provides interesting possibilities. Other authors have looked
into augmenting CMG cluster with thrusters to keep the spacecraft on track during
near singular configurations. Using the RW modes has several benefits over using
thrusters. They provide a much smoother response compared to using thrusters and
will excite few flexible modes within the spacecraft. Also, RW don’t require propellant

to operate, but use electrical power which can be readily recharged from solar arrays.

4.3.2 VSCMG Null Motion Maneuvers

To illustrate the interesting properties of the VSCMG null motion, various simulations
were run. The scalar £, is set to 0.1 and the weights W, are held constant at 2 for
all simulations unless noted otherwise. The feedback gains [P] and K are set to zero

to turn off any station keeping control. In no simulation did the VSCMG null motion



142

cause an effective torque on the spacecraft.

The first simulation is equivalent to the one ran by Oh and Vadali in Ref. 20
to demonstrate their CMG null motion control law to reconfigure the gimbal angles.
The initial and preferred gimbal angles are (0,0,0,0) degrees and (45,45, —45, —45)
degrees respectively. Note that the internal CMG cluster momentum vector is zero for
both configurations and the CMG null motion is able to perform this reconfiguration.

The results of both the CMG and the VSCMG null motion are shown in Figure 4.7.
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Fig. 4.7: VSCMG Null Motion Simulation No. 1

Even though the weights W, on the RW mode were non-zero, the two maneuvers
are identical. The gimbal angles are reoriented to the desired angles as shown in
Figure 4.7(i). The minimum norm inverse automatically uses the CMGs exclusively
here since they would require the least control effort. As shown in Figure 4.7(ii),even
though the determinant does go through zero about 11 seconds into the maneuver,
calculating the inverse of [Q][W][Q]" never poses any numerical problems since this
matrix is always full rank for the VSCMGs. Therefore the VSCMG null motion falls
back to the CMG null motion if possible.

The second simulation is identical to the first, except that the initial gimbal
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Fig. 4.8: VSCMG Null Motion Simulation No. 2

angles now are (0,0,0,2) degrees respectively. The classical CMG null motion will
not be able to reconfigure the gimbals as desired without applying a torque to the
spacecraft. The reason for this is that the initial CMG cluster momentum vector
is non-zero, while the preferred gimbal angles would have a zero momentum vector.
The results shown in Figure 4.8 were obtained with agy = 0 and acpyg = 1. In
other words, here it did not matter how the RW spin speeds changed, as long as
the final gimbal angles approached the preferred sets. The CMG null motion results
are shown as dashed lines while the VSCMG null motion is indicated with solid

lines. Figure 4.8(i) clearly shows that while the VSCMG null motion is very close
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to achieving the preferred gimbal angles after 50 seconds into the simulation, the
CMG null motion stops short of the task. The required VSCMG gimbal rates remain
relatively small. State of the art CMGs can produce gimbal rates of about 2 radians
per second. The RW spin speeds are shown in Figure 4.8(iii). While the CMG null
motion kept €2; constant, the VSCMG null motion adjusts them slightly to maintain
a constant internal momentum vector. What is very interesting is that the change
in €2; is very minimal. The corresponding RW motor torques are shown as a heavy
black line in Figure 4.8(iv). Recall that conventional CMGs maintain a constant 2,
during a spacecraft reorientation by having a separate RW feedback loop. To give a
feel of the VSCMG null motion RW motor torques, the CMG reaction wheel feedback
torque for a sample spacecraft maneuver are superimposed with dashed lines. The
conclusion, for this case, is that the torques required to perform this VSCMG null
motion is of the same order as what standard CMG are capable of producing already.
Implementing VSCMG null motion often would not require a complete re-engineering
of the gyro system, but simply a change in the feedback control law.

The same simulation was repeated with agy set to 1 and €y = Q(t;). The RW
spin speed are ideally to be kept constant during this maneuver. The results are shown
in Figure 4.9. The CMG null motion solution is not shown here. Figure 4.9(i) shows
that the gimbal angles are very close the to preferred gimbal angles after 50 seconds
of maneuver time, but not quite as close as they came in the previous simulation.
The RW spin speeds are shown in Figure 4.9(ii). The first 15 seconds look like the
previous simulation. After this though the €2; are reduced and they approach their
initial states. The corresponding RW motor torques are shown in Figure 4.9(iii) and
are still of the same order of magnitude. This maneuver illustrates that sometimes it is
possible to have both preferred gimbal angles and RW spin speeds. While the current

~; and €); appear to be converging to the preferred values, it is impossible for them to
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Fig. 4.9: VSCMG Null Motion Simulation No. 3

actually reach. This is because if the preferred ~; and 2; are actually obtained, the
VSCMG cluster would have a different momentum vector. While arbitrary sets of
and €2y cannot be achieved, this example illustrates that in some cases it is possible to
get close enough. If the final gimbal angles are not precisely at the preferred values,
the resulting trajectory should still be singularity free; they gimbal sets might just
come closer to singular configurations.

The initial gimbal angles in the previous two simulations were very close to
the gimbal angles in the first simulation which the CMG null motion was able to

reconfigure to the preferred angles. In the next simulation the initial gimbal angles
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Fig. 4.10: VSCMG Null Motion Simulation No. 4

are set to be (0,0,0,20) degrees respectively. The first case was with agy set to zero.
Figure 4.10(i) shows that the CMG null motion does not to a good job reorienting
the gimbal angles towards the preferred set. The VSCMG null motion once again
is able to reconfigure the gimbals very close to the desired values while maintaining
small gimbal velocities (shown in Figure 4.10(ii). The RW spin speeds, shown in
Figure 4.10(iii), are increased more than was the case in the previous simulation,
but all reaction wheels have a sufficient wheel speed to make them effective CMG
devices. The required RW motor torques, shown in Figure 4.10(iv), still remain

within the same level of what the standard CMG feedback control is able to achieve.
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The second case was run with agy = 1 and £ = £(ty). Only the VSCMG null
motion results are shown in Figure 4.11. Since actually achieving the preferred ~; and
Q2 would drastically change the internal momentum vector, these two desired sets are
mutually contradictory. Figure 4.11(i) shows that the gimbal angles quickly become
stationary far away from their preferred values. The €;, shown in Figure 4.11(ii),
varies a little, but remains close to the preferred set. Forcing the €2; to remain close
to the preferred set essentially keeps the VSCMG from performing their task.

The last simulation, shown in Figure 4.12, illustrates the use of the VSCMG
null motion to change the RW spin speed while leaving the gimbal angles free. After
having performed a maneuver with the VSCMG feedback control law, it is possible
that the RWs may have been spun up or down too much. Using the VSCMG null
motion it is possible to redistribute the VSCMG cluster momentum vector among its
RW and CMG modes. To illustrate the feasibility of such maneuvers, the following
drastic task is performed. The preferred RW spin speeds are set to be the negative
of their initial values, i.e. all the momentum of the RWs is to be reversed. Clearly,

not a maneuver for the faint hearted! The parameter ac ;¢ is set to zero here. The
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Fig. 4.12: VSCMG Null Motion Simulation No. 6

results of trying to use pure RW null motion to perform this difficult task are shown
as dashed lines in Figure 4.12, while the VSCMG null motion results are indicated
through solid lines. As expected, the pure RW null motion is not able to perform
the required task and keep the gimbal angles constant at the same time. However,
the VSCMG null motion is able to achieve the objective as seen in Figure 4.12(iii).
After about 60 seconds into the maneuver all RW momentums has been reversed. To
keep the internal momentum vector constant, the gimbal angles naturally have to be
varied as shown in Figure 4.12(i). It is interesting to note that two gimbal angles

remain relatively close to zero and two hover around the £180 degree orientation.
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The required 4; are shown in Figure 4.12(ii). Even for this extreme maneuver they
remain within the feasible range. If these gimbal rates were to grow too large, then
the VSCMG null motion maneuver could be slowed down by reducing the k. constant.
The RW motor torques are shown in Figure 4.12(iv). These torques are of the level
of what regular RW are capable of doing. To perform drastic RW spin speed changes
clearly stronger torque motors are required than what is available with regular CMGs.

However, the more typical moderate €2; changes can be performed with the available

CMG RW feedback torque motor.
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CHAPTER V
SUMMARY AND CONCLUSION

Three sets of new results were developed in this dissertation. The first set is very
fundamental, dealing with the motion of a single rigid body. The second set of
results address the controlled motion of a class of multi-body systems. The final
set of results apply to spacecraft having variable speed control moment gyroscopes.
For the dynamics and control of a rigid body, a novel family of attitude parameters
(the stereographic parameters) is presented, including their general transformations
to and from the Euler parameters. The SPs are not unique, but have a corresponding
shadow or image set which can typically be used to avoid singularities. The exception
to this are the classical Rodrigues parameters, a particular set of symmetric SPs, for
which the original and shadow set are identical. The modified Rodrigues parameters
are the most promising set of SPs and are studied in more detail. Unsaturated and
saturated MRP feedback control laws are presented that work well for arbitrarily
large attitude errors. Further, since the closed loop equations are nearly linear, the
linearized feedback gain design provides an accurate performance prediction even
when the spacecraft is performing very large rotations. To allow the MRPs along with
their shadow sets to be used as globally non-singular attitude parameters in optimal
control problems, the MRP costate switching condition is presented. Whenever the
MRP vector is switched to the alternate set, the corresponding attitude costate vector
is analogously mapped onto an alternate set. Using MRPs in optimal control problems
allows solutions to have general rotations without resorting to the use of the redundant
set of Euler parameters.

For a class of nonlinear multi-body dynamical systems, the Lagrange equations of

motion in terms of the eigenfactor quasivelocities was presented. Their form provides
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a natural “splitting” of dynamics and kinematics similar to what is commonly done
in rigid body dynamics. While this formulation does have numerical advantages for
particular systems, generally it was found that the computational cost of calculating
the eigenfactor derivatives was too high. However, the EQV do appear to make good
velocity feedback coordinates. EQV feedback control laws are presented for which the
exponential energy decay rate can easily be controlled. For systems containing chains
of rigid links such as found in robotic arms, the use of the EQV feedback control law
resulted in the motion of each link being controlled in a “decoupled manner”.

In the last chapter, the equations of motion of a rigid body containing several
variable speed control moment gyroscopes is developed. While classical single-gimbal
CMGs contain singular orientations, the VSCMG use their reaction wheel mode to
drive through these orientations. This allows for a prescribed trajectory to be accu-
rately followed. However, the RWs typically are far less efficient energy wise than the
CMGs. To actually drive the VSCMGs through a CMG singularity might require a
relatively large RW control input. The RW feedback control motor found on single-
gimbal CMGs would have to be enlarged to accommodate such maneuvers. To avoid
CMG singularities altogether, it is possible to reorient the gimbal angles initially such
that the resulting maneuver is singularity free. A VSCMG null motion is discussed
which allows for such reorientations to be performed in a more general manner than
was previously possible with single-gimbal CMGs. The resulting RW motor torques
required are typically small and feasible with the existing RW feedback motor found
in existing CMGs. This VSCMG null motion can be used to generally redistribute
the internal VSCMG cluster momentum vector. Therefore it is also possible to use

this to change the RW wheel speeds if so desired.
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APPENDIX A
JACOBI METHOD OF GENERATING EIGENFACTORS

Jacobi presented a very elegant method in 1846 in Ref. 50 which diagonalizes a
symmetric matrix [M] and thus generates the corresponding eigenvalues and eigen-
vectors. This Jacobi method has been used for over a century because of its simplicity
and stability. It finds the eigenvalues and eigenvectors of a symmetric matrix [M] by
pre- and postmultiplying it by successive orthogonal single-axis rotation matrices [P]
as is briefly outlined below.?!

Let [P] be the i-th rotation matrix and [Ax] be the matrix obtained after pre-

and postmultiplying [M] by the first £ rotation matrices.
[P" . [PT[R)TIMN[ P[P - [Pe] = [Ax] (A1)

As k — oo the matrix [A;] becomes diagonal with its entries being the eigenvalues of
[M]. The eigenvector matrix [C] as defined in Eq. (3.15) is approximated at the k-th

step as
[Cl=[n]" ... [A] [R] (A.2)

The orthogonal single-axis rotation matrix [P41] is defined such that the 7,j-th entry
of [Ag] is zeroed. The matrix [Py11] is the identity matrix except for the i-th and j-th
diagonal elements being cosf. The only two non-zero off-diagonal elements are the
1,7-th element being —sin# and the j,i-th element being sin#. The rotation angle ¢

is defined as

1 2AL
0= 5 arctan W (A3)
2 73
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if the diagonal elements A;; and A;; are distinct or as

0= (A4)

T
4
if the diagonal elements are equal. Once the off-diagonal elements are small in magni-
tude, the procedure is shown to have quadratic convergence.?! Thus for near diagonal
mass matrix, we expect very rapid convergence.

Let [C] be a close approximation of the actual eigenvector matrix [C]. During
numerical simulations, the eigenvectors of the mass matrix at the previous time step
would still be available. Since the time steps are typically small, the eigenvectors

would not have changed much between integration steps. Let [Ao] be found through
[CIM]IC]" = [Aq) (A.5)

Since [C] # [C]. the matrix [Ag] will have some small non-zero off diagonal terms.
Instead of resolving a general eigenvalue, eigenvector problem for the current mass
matrix, a Jacobi sweep could be performed. A Jacobi sweep sequentially sweeps
through all the off-diagonal terms of [A] and zeros them. Since [C] is already close
to [C] and the Jacobi method has quadratic convergence, one sweep is usually all it
takes to obtain the current eigenvalues and eigenvectors within machine accuracy. To
cancel the first off-diagonal element of [AO], the rotation matrix /| is constructed and

used to obtain [A,].
[P [Ao][P1] = [Ad] (A.6)

This process is then repeated to cancel the second off diagonal element of [A] and so

on. Assuming the matrix has £ significant off-diagonal elements, the current eigen-
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vector matrix [C] is found through
[Cl=[P]"...[P])'C (A7)

The final [A;] matrix contains the current eigenvalues on the diagonal. Note that each
[P][C] update does not involve a full matrix multiplication. Actually only two eigen-
vectors are linearly combined (i.e. rotated) to form the new eigenvectors. Thus given
an initial estimate of the eigenvectors, with one Jacobi sweep the actual eigenvectors

and eigenvalues of the symmetric [M] matrix are found.
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APPENDIX B

DERIVING VSCMG EQUATIONS OF MOTION USING
LAGRANGIAN METHOD

The equations of motion of a rigid spacecraft containing one VSCMG given in
Eq. (4.32) was developed using classical Newtonian and Eulerian Methods. To verify
this equations, the same equations of motion along with expressions for the RW and
gimbal motor torques u, and u, are rederived in this appendix using a Lagrangian

method. The kinetic energy of a rigid body with one VSCMG is given by

1 1 1
T= §WT[IS]W + §IWS (9w + Q)Q + §IG5 (ggw)Q
1

2Jg (ggTw + 7)2 (B.1)

1 .
+ §Jt (g;‘rw)z +

Since there is not potential energy in this dynamical system, the Lagrangian £ is

simply the kinetic energy.
L=T (B.2)

Let p be a fictitious attitude vector such that p = w and let the angle x be the
orientation angle of the RW about its spin axis such that £ = 2. The system state

vector @ is then defined as

The spacecraft equations of motion are found by evaluating the expression

Nd (oL oc
(%) %" .
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where L is the external torque vector. Since dL/dp = 0 only the first expression of
Eq. (B.4) needs to be calculated. Noting that p = w, the partial derivative of £ with

respect to w is

oL R R . . . .
50 = e + I, (97 + Q) g, + I, (] w) gs + J: (9/ w) §:

+Jy (ng + 7) g, (B.5)

The inertial derivative of Eq. (B.5) is

Nd (9[, . - T T - . N ~T .
5 <8—w> = [L|w + [@][I ]w + I, (gs w+glw+ Q) gs + Iw, (gl w+Q) g,

T AT . ~ ~ o T A ~ ~
+ I, (gs + ng) gs+Ig, (glw) g, + J; (gt w+ gtTw> g: + Ji (9/ w) g,

2T AT - ) A A .
0y (9gw+ g0 +5) 9.+, (5w +7) 9, (B6)

After substituting Eqs. (4.20) and (B.6) into Eq. (B.4) and performing some algebraic
manipulations, the equations of motion of a rigid spacecraft with one VSCMG given

in Eq. (4.32) are found.
1> = (@] — g, (i + Iw. 2 = (e = Jy) i)
— g0 (Jowe + Iy, ) 4 — (Jy + J,) we + Ty, Quw,) (B.7)
— Gy (J5 — Iw.Qu;) + L

To find the RW motor torque u, the following Lagrange equation of motion is

solved.

Nd (oL oL
E(%) N (B.5)

where £ = Q. Note that 0L/Jdx = 0 for this system. The partial derivative of £ with
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respect to L is

oL
— =TIy (g" Q B.9
20 W, (gsw + ) (B.9)
whose time derivative is given by
d aﬁ T AT - -

After substituting Eqs. (4.20) and (B.10) into Eq. (B.8), the RW motor torque given

in Eq. (4.26) is found.
us = I, (Q +g.w+ ”Wt) (B.11)

The gimbal motor torque u, is found by solving the Lagrange equation of motion

Nd (oLC oL
(7)) -5 1

The partial derivative of £ with respect to v is non-zero in this case and is given by

oL . 0g." 06" oy 0G "
— =7 Tw+0) == I (g! u J (gl w) ==
87 144 (gsw+ ) a,y w + Gs (gsw) 87 w + t(gt (.(J) 8’)/ +
7 . 8§gT
Jg (gew +7%) B (B.13)
After making use of
ags .
agq; = G, (B.14a)
9G: .
— = —gs B.14b
5 = (B.14b)
g,
— =0 B.14
> (B.14c)
and the inertia definition in Eq. (4.28), this is simplified to
oL
= (Jq — Jt) Wilg + ]WSth (B15)

ay



166

The partial derivative of £ with respect to 7 is

oL X .
> =Jg(ggw+7) (B.16)

After making use of Eq. (4.20), the time derivative of Eq. (B.16) is found to be

d (0L ST
()i

Combining Egs. (B.15) and (B.17) in Eq. (B.12) the gimbal motor torque in Eq. (4.29)

is found.

ug = Jg (grw +74) — (Jo — Jy) wswy — Iy, Qo (B.18)

g
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