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1 Problem Statement
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Fig. 1: Problem Statement.

The problem statement for the single-axis translating rigid body is illustrated in Figure 1. The inertial
frame is represented by N with origin at point N. The spacecraft comprises a rigid body connected
to a rigid hub through a single translation axis. The hub has a body-fixed frame B with origin B, and
its center of mass is at point B.. The mass of the hub is mp,p, and its inertia tensor about point B
is [Ihub,B]. The translating rigid body has the F frame attached to it with its origin at point F'. The
center of mass of the effector is located at point F.. The mass of the spinner is mg, and its inertia tensor
about its center of mass is [Ir r,|. The effector is parameterized by the variable p, which corresponds
to the single-degree-of-freedom translation along the f axis. The FO frame, which has an origin point
FO, corresponds to the F frame when p = 0. The combined center of mass of the system is located at

point C'. The translation axis f is constant, as seen by the F frame, and passes through points F' and
FO.

2 Translational Equations of Motion
Using the Super Particle Theorem, we get

Fe = mSCIi;C/N = msc'i';B/N + mscC (1)

where ¢ = r¢/p. Using the definition of the center of mass of the system, we get

MscC = MhubTB./B + MFTF./B (2)



Using the transport theorem, we can express the inertial time derivative in body-frame derivatives as

¢=c +wgyxc (3)
é:c/’—i—wB/Nxc—i—wB/Nxc’—i—wB/Nxé ()
="+ 2w/ X €+ wpn X € +wpn X (Wpn X ©)
we can expand 7, /p into the following expression and then take derivatives
TEB = TEJF + TR/Fo T TRop = TR p + pf + Trosp (5)
T%C/B = Pf (6)
T}/'“C/B = p.f (7)

As for the body-frame time derivatives, we can take advantage of the fact that the rp_,p vector is fixed
with respect to the B frame (TSBC/B =0) to get
mscC” = mef (8)
because f is fixed in the B frame. Finally, we can combine all these terms to get
msch/N — Msc [é]wB/N + mFﬂf = Fext — 2misc [‘:’B/N]C, — Msc [‘;JB//\/] [‘:’B/N]C (9)

3 Rotational Equations of Motion

The rotational differential equation given about point B, which is not the system’s center of mass, is
given by

Hy p=Lp+msTp/n %X cC (10)

wp/N = wr/p because the translating body does not have any self-rotation. The angular momentum
about point B is

Hy p = Hyp p + Hpyel.B (11)
= [Ihub,B.JwB/A" + MhublTB./BITB. /B + LIF,F.]ws/n + ME[TF/BlTF./B (12)

The inertial time derivative of the total angular momentum can then be expressed as

Hs  =[Inub,B.Jws/n + (@A ] [Thub,B. Jw/n + Mhub[TB,/B]TB./B (13)
+e rlws/n + [@/a ) Fws/n + mE[Tr, BlTE.B (14)

The mpu[7p./B]7TB./B term can be expressed as
mhub|7B,/BITB./B = —Mhub| T8, Bl[TB,./Blws/n + [TB,./Bllws/N][@ws/N]TB./B (15)
Using the Jacobi identity to rewrite the above equation allows it to be combined into an inertia term in
the total angular momentum equation. The same can be done for the mF[fFC/B]fFC/B term to produce
Heep = [Ise Bloop iy + [@5/n ) [Tse. 8lwp i + me(Fr, plpf + 2melFr. pl[@s 1, 5 (16)
The final term can be split, and once again, using the Jacobi identity, can be written in terms of [IL ;].
2me[7r, 8l @8 N]TE, 5 = —IF lwsx — me[@p N [T R B]TE, 5 (17)

Combining these results into the rotational equation of motion and equating it to the first relation for
angular momentum, we get

msc[€]7 5N +[Ise, Blws/n + me[Fr,plif = L

. 8 s (18)
—[@p ], Blws/n — [Lsc slws/a — me[@pn )7 B]7F, /5
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4 Effector Equation of motion

The equation of motion for the effector is
mF’I:FC/N =F (].9)

Beginning with 7/, it can be expressed as

Tr, /N =TB/N +TF./B (20)
TE/N = TB/N + Tr g+ WBN X TE/B (21)
Fr N = TB/N + Thp + WeN X TEB + 2Wp)N X Tp, 5 + Wa/n X (WE/N X TE,/B) (22)

Noting that T%C/B = pf, we get

mep =F — mF’i';B/N + mFT’FC/B X LUB/N — 2meB/N X T/FC/B — meB/N X (wB/N X TFC/B) (23)

Since a minimal coordinate set is used, equation(19) is projected onto the minimal coordinate space,
which means that both sides are dotted with f, which yields:

.. AT AT~ ) 7 F AT~ AT~ -
p= _fTT'B/N + fT[rFC/B]wB//\/ + mefF - 2fT[wB/N]7°3rC/B - fT[wB/N] [WB/N]TFC/B (24)

5 Backsubstitution

The Backsubstitution Method is defined in Reference . The effector contributions are

a, = —f (25)
by = [7r./5]f (26)
cp = —2fT[@p N1 5 — T @p N [@s N T E B (27)

The hub contributions are

[A] = msc[I3x3] — mea,? (28)
[B] = —msc[€] — me fb, (29)
[C] = msc[€] + me[Fr, ] fag (30)
[D] = [Is,B] + mF[FFc/B]be (31)
and
Virans = Fext — 2msc [‘:JB/N]CI — msc|wpn][wp/nle — meCp (32)

~

Viot = Lp — [0p/n][Lse,lwpin — [Lec, glwsn — mel@sn][Fr. 8]7E, 5 — melFr Bl fe,  (33)
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