AAS 99-139

GAIAA.

American Institute of

>
[

—

P S

Ameriﬁgnﬂstronautical Society

Aeronautics and Astronautics

MATLAB TOOLBOX FOR RIGID BODY
KINEMATICS

Hanspeter Schaub and John L. Junkins

9th AAS/ATAA Astrodynamics

Specialist Conference

Breckenridge, CO February 7-10, 1999
A AS Publications Office, P.O. Box 28130, San Diego, CA 92198

AAS 99-139

MATLAB TOOLBOX FOR RIGID BODY KINEMATICS

Hanspeter Schaub* and John L. Junkins'

A MATLAB toolbox is presented which provides many commonly used func-
tions in rigid body kinematics. Transformations between the direction cosine
matrix, Euler parameters, Gibbs vector, modified Rodrigues parameters, prin-
cipal rotation vector and the 12 sets of Euler angles are provided. Whenever
possible, direct analytical transformations between these sets are used to pro-
vide computationally efficient code. Furthermore, the ability to perform two
successive rotations and compute the resulting overall attitude vector is pro-
vided for each attitude coordinate choice. Similarly, the toolbox allows for
the relative attitude vector between two given attitude vectors to be com-
puted. Finally, subroutines are provided that compute the matrix relating
the attitude parameter rates to the body angular velocity vector, along with
the analytic inverse of this matrix. With these routines the attitude vector
time derivative is computed for a given body angular velocity vector.

INTRODUCTION

MATLAB is a very popular tool among engineers to quickly develop numerical simulations
of dynamical systems and analyze the resulting motion. The capabilities of MATLAB are
expanded by installing toolboxes which provide additional functionality. In attitude control
problems, commonly used toolboxes include the Control Toolbox and the Robust Control
Toolbozx.

When developing numerical simulations involving rigid body rotations, numerous pos-
sibilities exist to describe the orientation or attitude of this body. While each attitude
description has its strengths and weaknesses, some are clearly superior to others. Often
the programmer may only be familiar with a few attitude coordinate choices and/or may
not be aware of several direct transformations of these coordinates. For example, using
any one of the 12 Euler angle sets it is difficult to describe arbitrary rotations, since Eu-
ler angles are never more than a 90 degree rotation away from a singularity. Despite this
short-coming, Fuler angles are a very popular set of attitude coordinates since they are
easy to visualize for small rotations. Therefore, many times a job description asks for the
attitude time history to be shown in terms of a particular set of Euler angles. However, if
the final output is required to be in these Euler angles, it may be more convenient to use
other, less singular attitude coordinates within the simulation and translate the output to
the desired Euler angles. The presented rigid body kinematics MATLAB toolbox aims to
provide a library of the commonly used rigid body kinematics functions which will facilitate
this task of using various attitude coordinates. In particular, functions providing kinematic

*Post-Doctoral Research Associate, Aerospace Engineering Department, Texas A&M University, College Sta-
tion TX 77843.

fGeorge Eppright Chair Professor of Aerospace Engineering, Aerospace Engineering Department, Texas A&M
University, College Station TX 77843.

relationships between the direction cosine matrix (rotation matrix), the Euler parameters
(quaternions), the Gibbs vector (classical Rodrigues parameters), the Modified Rodrigues
Parameters (MRPs), the Principal Rotation Vector (PRV) and the 12 sets of Euler angles
are examined. Providing direct transformations between various sets of attitude coordi-
nates makes it possible to use whatever coordinates make numerically the most sense for
the application and then translate the resulting attitude description to the desired attitude
coordinates which are easier to visualize.

Another common requirement in attitude kinematics is the addition of two successive ro-
tations. If the body orientation is known relative to some reference frame, and the reference
frame orientation is known relative to an inertial frame, it may be required to compute the
direct orientation description of the body attitude relative to the inertial reference frame.
Unfortunately, adding two attitude vectors is not a simple task as it is in translational
kinematics. One method to add or construct the composition of two successive rotations is
to first translate the respective attitude vectors into direction cosine matrices. After eval-
uating the overall direction cosine matrix, the desired attitude vector describing the body
frame to the inertial frame is extracted from the corresponding direction cosine matrix.
While this method is relatively straight forward, it isn’t very efficient computationally. The
attitude vector addition subroutines in this toolbox make use of compact attitude additions
algorithms when they exist for the selected attitude coordinates. This speeds up the task
of computing an overall attitude vector.

Similarly, it may be required to compute the relative attitude vector between two given
attitudes. To reuse the previous example, consider the case where both the body attitude
and reference frame attitude are known relative to the inertial frame. In this case it is
important to compute the relative attitude vector from the reference frame to the body
frame. In translational kinematics this would be equivalent to subtracting two position
vectors to compute the relative position error. In rotational kinematics, this task could be
done by mapping all attitude descriptions first into the direction cosine matrix. However,
to improve computational efficiency, the corresponding MATLAB routines use the compact,
direct algorithms unique for each attitude description.

Finally, the rigid body kinematics MATLAB toolbox provides the necessary functions to
compute the time derivative of the various attitude coordinates. An intermediate result
of this is finding the matrix [B] which relates the orthogonal components of the body
angular velocity vector w to the various attitude coordinate rates. For all presented attitude
coordinates compact closed form solutions exist for computing the inverse of [B], which
enhances the numerical efficiency of this common operator.

All MATLAB m-files have comment lines which explain the purpose of each operator.
The user can invoke help for a particular command by typing help command. Further,
all MATLAB m-files in this rigid body kinematics toolbox are listed alphabetically in an
appendix and the end of this paper along with a brief description of each operator.

ATTITUDE COORDINATE TRANSFORMATIONS

This paper assumes that the reader is already familiar with the various attitude coordi-
nate choices discussed here. Each type of attitude parameters are briefly discussed below

to illustrate the notation used. Euler’s principal rotation theorem states that any instanta-
neous orientation can be described through a corresponding principal rotation angle ¢ and
a unit principal rotation axis €. The principal rotation vector -y is then defined as

v =oé (1)

The non-singular, redundant Euler parameter (quaternion) vector 3 = (3o, 41, B2, 33)7 is
defined through the principal rotation elements as

o)
By = cos 3 B; = é;sin 3 fori=1,2,3 (2)
By increasing the dimension of the attitude vector by one, the Euler parameters are able
to describe any orientation without encountering singularities. Note that 3 is not unique.
Both 3 and —f3 describe the same orientation and obviously 373 = 1. The Gibbs (classical
Rodrigues parameter) vector q is defined as!-2

g =tan —é (3)

N |

Clearly q is singular as ® — +180 degrees. The MRP vector o is defined as'3

o = tan ?é (4)
4

It is singular whenever ® — £360 degrees. However, as is the case with the Euler param-
eters, the MRPs are not unique. They have a corresponding “shadow” set o which has
a different singular behavior. The o vector is singular as ® — 0 degrees. By switching
between the two feasible MRP sets it is possible to obtain a minimal attitude description
which is non-singular, but discontinuous during the switching. The mapping between o
and o is®6

1

By switching whenever |o| > 1, the current MRP vector with |o| < 1 always indicates the
shortest rotational distance back to the origin. The corresponding MATLAB routine to
perform this MRP switch is MRPswitch(q,S), where q is the 3 x 1 MRP vector and S is a
positive scalar number, typically set to 1. If the magnitude of q exceeds S, then the MRP
vector is mapped to the corresponding alternate shadow set.

A very common set of attitude coordinates are the Euler angles. There exist 12 distinct
sets of Euler angles which differ in the sequence of successive rotations made to describe
the current orientation. Each Euler angle vector is labeled as 8 = (61,65,603)7 in this
development. Symmetric sets of Euler angles have rotation sequences such as (i, j,4), where
the first and last rotation are about the same instantaneous body axis. Asymmetric sets
have rotation sequences such as (i, j, k) where a single-axis rotation is performed about each
of the body axes. The integers i, j and k are either 1, 2 or 3 and none are repeated for the
asymmetric case.

Direction Cosine Matrix

The function ...2C(q) returns the 3 x 3 direction cosine matrix corresponding to the
particular choice in attitude coordinates. Instead of ..., the user adds what type of attitude
vector q is. For Euler parameters, an EP is added. If q is a Gibbs vector, then Gibbs is
added. The MRP vector simply has MRP added, while the principal rotation vector has PRV
added. If q is an Euler angle vector, then Eulerijk is added where ¢, j and k are replaced
with the appropriate rotation sequence. Therefore, if q is a (3-2-1) Euler angle vector, then
the corresponding direction cosine matrix is found through the command Euler3212C(q).
The attitude coordinate appreviations introduced here are used throughout the MATLAB
subroutines.

The following equations were used to compute the corresponding direction cosine matrix
[C]. To speed up numerical efficiency, each matrix element is defined directly. In terms of
the Euler parameters, [C] is defined as

Ba+B7—B3—063 2(BiB2+ BoBs) 2(BiB3 — Bob)
[C(B)] = |2(B1B2— PoBs) Be—Bi+65—063 2(B285+ Bobh) (6)
2(618s + BoB2) 2 (B2B3—FoB1) Ba—BF — Bi+53

In terms of the Gibbs vector q, [C] is defined as

1+ -3¢ 2(qge+aq3) 2(qugs — q2)
2(eq1 —q3) 1-F+E -6 2(qeqs +q1) (7)
2(@3q1 +q2) 2(@3q2 —q1) 11— —G3+d3

[C(q)] = T+q’q

In terms of the MRP, [C] is defined as

1 4 (U%—U%—ag) + 32 o109 + 4032 80103 — 409X
[C(o)] = — 8o90; — 403X 4 (—a%%—a%—ag) + ¥2 80903 + 401 %
(1+0?) o301 + 409X 8ogog — 40X 4 (—O’%—O’%—FO’%) + 32

(8)

where ¥ = 1 — o' 0. Using ® = |v| and é = ~v/®, the direction cosine matrix [C] is written
in terms of the principal rotation vector v as

6%2 + c® e1eaX + e3P ejezd — eqsd
[C] = |e2e1Z —e35® 3 +c® egezX +e1s5P (9)
eze1X + easP egzerX —e1sP e%E + cP

The direction cosine matrix [C] in terms of the (3-2-1) Euler angles 032, is

092 691 092 801 —892
[0(0321)] = 593592601 — 693891 593892591 + 693091 303692 (10)
c3s0oc01 + sO3s01 clzs03501 — sO3ch1 cl3chs

where cf; and s#; stand for cos6; and sin6; respectively. Similar equations are used to
compute the remaining 11 Euler angle transformations.

The direction cosine matrix [C] is translated back to various attitude coordinate vectors
using the command C2... (C) where ... is replaced with the previously discussed attitude

coordinate appreviations. To translate the direction cosine matrix [C] back to the corre-
sponding Euler parameters, the robust algorithm by Stanley in Ref. 7 is used. Both the
Gibbs and the MRP vectors are found by first translating [C] into Euler parameters and
then to the desired coordinates using' 4

qi = bi fori=1,2,3 (11)
Bo
op = Bi fori=1,2,3 (12)
1+ Bo

The principal rotation vector ~ is obtained through

P = cos ! (Trace([f’])—l) (13)
> (Caz — C32)

7= 55n0 | (Ca1—Cus) (14)
(Cr2 — Ca1)

The various transformations to any of the 12 Euler angle sets have been well documented
in the literature. A convenient table listing these mappings is found in Reference 2.

Euler Parameter Vector

To translate an Euler parameter vector q to another attitude parameter vector, the com-
mand EP2...(q) is used. The Euler parameters are transformed into classical Rodrigues
parameters (Gibbs vector) using Eq. (11) or into MRPs using Eq. (12). To map to the
principal rotation vector, the inverse of Eq. (2) is used.

All these mappings are rather simple since all attitude coordinates involved are essentially
derived from the principal rotation elements ® and é. However, how to translate Euler pa-
rameters into corresponding Euler angles is less obvious. Junkins and Turner in Reference 2
outline an elegant method to obtain compact, analytical expressions which transform the
Euler angle sets into corresponding Euler parameters. For the case where the desired Eu-
ler angles are symmetric sets, compact inverse transformation are possible mapping Euler
parameters back to Euler angles. For example, for the (3-1-3) case, the transformation is

6, = tan~! (gi) + tan ! (gi) (15)

6y = 2cos! (\/53 + 5%) (16)

63 = tan~! (gi) — tan~? (gi) (17)

Note the range of the symmetric Euler angles is chosen such that —m < 61,03 < 7 and
0 < 0y < w. However, for the asymmetric Euler angle case, it is not attractive to invert
the Euler angle to Euler parameter relationship in Ref. 2. Instead, the Euler parameters
are used to compute the necessary direction cosine matrix elements and then use standard

techniques to map [C] to the required Euler angles. For example, to obtain the (3 —2 —1)
Fuler angles from Euler parameters, we would then compute

4 (C (2 +
6; = tan~! (Ci> = tan~ ! <63(i1§%2—ﬁ§0—ﬁ;§) (18)
0 = sin~! (=C13) = sin~" (=2 (8183 — Bofa)) (19)
oG\ 1 2(B2B5+ Bobh)
03 = tan (C’33> = tan <6§—ﬁ% - ﬁ%+ﬂ§> (20)

The asymmetric Euler angle range is chosen such that —7 < 01,65 < 7 and —7/2 < 03 <
/2. Analogous transformations are used to map the Euler parameters into the remaining
10 Euler angle sets.

Gibbs Vector

To translate a Gibbs vector q (classical Rodrigues parameters) into other attitude coor-
dinates, the command Gibbs2... (q) is used. All of these transformations will inherently
be singular as ® — 180 degrees due to the singular nature of the Gibbs vector itself. The
mapping from a Gibbs vector to an Euler parameter vector is accomplished using

ﬂ°:1+1qTq Bi:l—q:qTq fori =1,2,3 (21)
A MRP vector is obtained through?
1
o= 1+\/1——|-Wq (22)

while the principal rotation vector is obtained by solving Eq. (3). To obtain any one of the
12 Euler angle sets, the Gibbs vector is first mapped into an Euler parameter vector and then
into the corresponding Euler angles. All the attitude coordinates which are derived from the
principal rotation elements can trivially be obtained from the Euler parameters. Therefore,
since an efficient algorithm exists to map between Euler angles and Euler parameters,
translating to or from the Euler angles is typically done via the Euler parameters.

Modified Rodrigues Parameter Vector

To translate a MRP vector q to another attitude coordinate set, the command MRP2. .. (q)
is used. The Euler parameters are obtained through

1-— 0‘2 20@ .
ﬂozm ﬂl:m fOI"l:].,2,3 (23)
where the notation 02 = ¢”¢ is used. The Gibbs vector is computed through?
2
1= 7729 (24)

The principal rotation vector = is obtained by solving Eq. (4), while the various Euler angle
sets are computed by first mapping the MRP vector into Euler parameters and then into
respective Euler angles.

Principal Rotation Vector

To translate the principal rotation vector q into another attitude coordinate set, the
command PRV2... (q) is used. To obtain Euler parameters, classical or modified Rodrigues
parameters, the 3 x 1 principal rotation vector is first decomposed into the principal rotation
elements ® and € using the command PRV2elem(q). Then Eqgs. (2) through (4) are used to
compute the appropriate attitude coordinates. The Euler angles are once again obtained by
first mapping the principal rotation vector into Euler parameters and then into the Euler
angles.

Euler Angle Set Vectors

To translate an (i,j,k) Euler angle set q=(61, 62, 03) into another attitude coordinate set,
the command Eulerijk2... (q) is used. Excluded here are transformations between various
Fuler angle sets. These could be computed by first mapping the given set into another set
of attitude coordinates such as the direction cosine matrix or the Euler parameters. To
translate Euler angles into Euler parameters, the compact direct transformations in Ref. 2
are used. Transformations for two commonly used Euler angle sets are shown below. For
the (3-1-3) set, the transformation is

By = cos % cos <91 i 93) (25a)

b1 = sm 22 cos () (25b)

B2 = Sln 22 sin <91 5 93) (25¢)

O3 = cos 22 gin <9 1+0) (25d)

For the (3-2-1) set, the transformation is

0 03 6 6 6

Bo = cos 51 cos 52 cos o + sin 51 sin 52 sin 53 (26a)
6 6 6 6 6

B1 = cos 51 cos 52 sin 53 — sin 51 sin 52 cos 53 (26b)
6 6 6 6 6 6

(B2 = cos 51 sin 52 cos 53 + sin 51 cos 52 sin 53 (26¢)
6 6 6 6 6 6

[3 = sin 51 cos 52 cos 53 — cos 51 sin 52 sin 53 (26d)

The remaining 10 transformations are listed in Ref. 2. The transformations from Euler
angles to the classical or modified Rodrigues parameters or the principal rotation vector are
all performed via the Euler parameters.

SUCCESSIVE AND RELATIVE ATTITUDE VECTORS

When working with multiple reference frames, it is often required to form the composition
of two successive rotations. For example, if the attitude of a free-floating robot is known

relative to the space station, and the space station attitude is known relative to some inertial
reference frame, then, in order to find the robot attitude relative to the inertial frame, the
two relative attitudes have to be summed. Let the generic attitude vector q’ describe the
orientation of the B frame relative to the N frame, while q” describes the orientation of the
F frame relative to the B frame. The attitude of F relative to A is given by q. If this were
a translational problem, then q = q” + q/. However, adding rotations is not this simple. A
very fundamental method to add rotations is to use compositions of successive rotations in
terms of the direction cosine matrices:

[FN(q)] = [FB(¢")][BN(q')] (27)

In fact, all of the compact successive rotations algorithms listed below are derived from this
equation. While using Eq. (27) directly to sum two attitude vectors is relatively straight
forward to program, it isn’t very efficient numerically. For most attitude coordinate cases
more compact transformations are possible that will directly compute q from the two relative
vector ¢’ and q”. The command to add two successive rotations is add... (q1,q2) where
ql is the first rotation vector and g2 is the second. Note that these commands assume that
both relative attitude vectors are of the same type (i.e. Euler parameters, MRPs, ...).

In other applications it is often required that the relative attitude vector q” is found
given q and q’. For example, in a attitude tracking problem, assume there is a commanded
reference frame and the body reference frame. These two frames are typically given at any
point of time, but the feedback control law requires the relative attitude error vector from
the commanded frame to the actual body frame. If this were a translational problem, this
would simply involve subtracting one position vector from another through q” = q — q'.
For rotations, the relative vector must be solved differently. Using Eq. (27) we find

[FB(q")] = [FN(@))[BN(q')]" (28)

While this matrix equation can be used to compute q”, for many attitude coordinates the
“rotational subtraction” algorithm can be reduced to a more compact form. Since this
process in essence subtracts one rotational vector from another to find the relative attitude
vector, the corresponding MATLAB command command is called sub. .. (q1,92). Here the
relative attitude vector from g2 to q1 is computed.

A very attractive property of the Euler parameters is that solving Eq. (27) for the overall
Euler parameters leads to a very elegant, bi-linear relationship. Performing the successive
rotations B’ and B” leads to!:?

Bo By =B =By —B5| [(B)
65 By By By —bi 5
B3 By =By Br Bl \5§

Since the matrix relating 3 to 3" is orthogonal, “subtracting” @’ from 3 is simply

N[g s] ([
|- B B =B (&
AT A A &
o e s ol s

These simple bi-linear formulas form the basis for developing corresponding formulas for
the classical or modified Rodrigues parameters and the principal rotation vector.
Given two Gibbs vectors ¢’ and q”, their rotational sum q is computed through' 8

/

_q”—l—q'—q”Xq
- 1—q”~q’

(31)

while the relative vector ¢” is found through

y_9—qd+axq

32
l1+q-4 (32)

Summing two MRP vectors o’ and o” takes on a slightly more complex form than the
Gibbs vector algorithm.!

(1 _ |o,/|2)o_// + (1 _ ’0’”|2)0'/ — 920" x o'

o = 1+ |0”|2’0'”|2 — 920 - o (33)
The relative MRP vector o” is computed through
o — (1—|o'>)o— (1 —|o|?)o’ +20 x o’ (30)

1+ |o')?|o)?+ 20" - o

To sum two principal rotation vectors <1 and -ys, they are first translated into their
corresponding principal rotation elements (®1, €;) and (P, €2). The sum v = ®é of v; and
~s is then computed through'

_ D4 QD Dy,
® =2cos ! [cos — cos — — sin — sin — & - é9 (35)
2 2 2 2
. cos % sin ‘I’l €1 + cos (bl sin % €9 + sin q>1 sin (1’2261 X €9
‘- 1 (36)
sin

2

The relative principal rotation vector 2 = ®2€5 is found through

) (02 P D,
®y = 2cos ! [cos = cos — +sin — sin — & - é; (37)
2 2 2 2
cos 2L sin 26 — cos 2 sin ‘I)lel + sin 2 gin 2Lé x é1
5 2 2 2 2 2 (38)
€ = Ty
sin =

To sum two Euler angle sets, the symmetric and asymmetric sets must be considered
separately. Let the first rotation be expressed by the Euler angle vector 6 = (61,62, 63) and
the second rotation by the vector ¢ = (¢1, g2, ¢3). The rotational sum of these two attitude
coordinates is given by the Euler angle vector ¢ = (¢1, 92, ¢3). In Reference 9 Junkins and
Shuster show very elegantly using spherical triangles that symmetric Euler angle sets all
have the identical rotational summation formula. Therefore, if @ and ¢ are symmetric Euler
angle vectors, then the summation of these two rotations is given by!?

sin 0 sin ¢ sin(f3 + ¢1)
€OS ¢pg — €08 B2 oS Y2

01 =6 +tan! < (39)

9

02 = cos 1 (cos B cos ¢ — sin B sin ¢y cos(03 + ¢1)) (40)
sin 0 sin ¢ sin (63 + 451))

€08 o — cos 2 €OS Yo

p3 = ¢3 + tan ! ((41)

The relative orientation vector ¢ is found through

_1 (sinfysin gy sin(p; — 61)
= —f03 +tan" ! 42
1 3+ tan < cos 62 cos o — cos Y3 (42)

¢y = cos™! (cos 03 cos g + sin s sin @y cos(p1 — 601)) (43)
0, s . 0

b5 = w3 — tan~! sin 0 sin 9 sin(py — 01) (44)
cos g — cos ¢ cos pa

Unfortunately, no such simple transformations are known to exist for the asymmetric
Euler angles. In these cases, finding the sum or the relative attitude vector is performed
indirectly using the direction cosine matrix formulations in Eqs. (27) and (28).

DIFFERENTIAL KINEMATIC EQUATIONS

The body angular velocity time history w(t) is typically solved using some kinetic differ-
ential equation such as Euler’s equation of motion. Given some initial attitude vector q(tp)
and this w(t) vector, the time evolution of the attitude vector q is found by solving the
corresponding kinematic differential equation. Note that while the kinetic differential equa-
tion is often an approximation, the kinematic differential equation is exact. The attitude
coordinate rate vector g is related to w through a matrix [B(q)].

q = [B(g)lw (45)

The MATLAB command d... (q,w) computes the time derivative of the attitude vector q
for a given body angular velocity vector w. For example, if q is a (1-2-3) Euler angle vector,
then the command dEuler123(q) would be invoked. Subroutines are also provided that
compute just the [B(q)] matrix and it’s inverse. All attitude coordinates discussed have
compact analytical inverse formulas for [B(q)]. The [B(q)] matrix is computed with the
command Bmat. .. (q) and its inverse with Binv... (q).

For the Euler parameters, the differential kinematic equation is written as

b= 5B (46)
with the 4 x 3 matrix [B(8)] defined as
—B1 —P2 —Ps
BEI=| T (a7)
—B2 B Bo

Since [B(3)] is a 4 x 3 matrix, talking about its inverse is not completely proper. In this
context BinvEP(q) returns a 3 x 4 matrix [Bi(3)] such that

w = 2[Bi(B)]8 (48)

10

with [Bi(3)] defined as

61 Bo B3 —pB2
[Bi(B)|=|-B2 —Bs Lo B (49)
—B3 B2 =B Bo

Note that [Bi(8)] = [B(8)]". The differential kinematic equation of the Gibbs vector is
written as

i = 3lBl@)w (50)

with the 3 x 3 matrix [B(q)] defined as

1+¢ -6 g+
B(@)]=|ea+ta 1+¢ @e-—a (51)
GO —q¢ GBert+qa 1+4¢

The factor § is extracted from [B(q)] such that linearizing [B(g)] about g = 0 provides
[B(q)] = I3x3. The inverse of [B(q)] is given by!

L 1 1 qs —q2
B@| =—— |- 1 « (52)
1 T
taa @2 —q 1

The kinematic differential equation of the MRPs is given by

with the 3 x 3 matrix [B(o)] defined as
1—0%+20% 2(0102—03) 2(0103+ 09)
[B(a)] = |2 (0201 +03) 1—02+202 2(0903—01) (54)
2

(0301 — 02) 2(0309+01) 1— 02+ 203

The [B(o)] matrix has the remarkable property that it is near-orthogonal. To within a

scaling factor, it’s inverse is equal to its transpose.® 19
-1 1 T
[B(o)]™ = W[B(U)] (55)

The principal rotation vector differential kinematic equation is written as

¥ = [B(y)w (56)

with the 3 x 3 matrix [B()] given by!

B = |1+ 30+ g3 (1- 5 eot (5)) 5] (57)

where ® = ||y||. The inverse of [B(~)] is

B = [1- (St) e () e (58)

The kinematic relationships between the Euler angle rates and the body angular velocity
vector have been well studied in the literature. Ref. 2 provides a complete list of all 12
[B(0)] matrices and their inverses. The general Euler angle differential kinematic equation
is written as

6 = [B(6)|w (59)

For the (3-1-3) Euler angle case, the [B(6)] matrix is written as'»?

sin 03 cos O3 0
[B(6313)] = — o, | cos f3sinfy —sinf3sin by 0 (60)
SIU2 1 gin 03 cosfy — cosf3cosby sinby

The inverse of [B(6313)] is given by

sinf3sinfy; cosfz 0O
[B(0313)] ' = |cosf3sinfy —sinfs 0 (61)
cos b0 0 1

The [B(0)] and [B(6)]~! matrices for the remaining 11 Euler angle sets are computed in an
analogous manner.

CONCLUSION

A rigid body kinematics toolbox is presented. Transformations between the direction
cosine matrix, the Euler parameters, the Gibbs vector, the modified Rodrigues parameters,
the principal rotation vector and the various Euler angle sets are provided. These com-
mands facilitate switching between various types of attitude coordinates and more easily
allow the programmer to use whatever attitude coordinates are proper numerically. Also,
subroutines are provided to composite two successive rotations and to compute a relative
attitude vector. Care is taken to provide numerically efficient routines by avoiding when-
ever possible having to intermittently translate attitude coordinates to the direction cosine
matrices. Finally, subroutines are provided that compute the various time derivatives of
the attitude coordinate vectors, along with their mapping matrix and its inverse.

REFERENCES

[1] Shuster, Malcom D., “A Survey of Attitude Representations,” Journal of the Astro-
nautical Sciences, Vol. 41, No. 4, 1993, pp. 439-517.

[2] Junkins, John L. and Turner, James D., Optimal Spacecraft Rotational Maneuvers.
Amsterdam, Netherlands: Elsevier Science Publishers, 1986.

12

[3] Schaub, Hanspeter, Novel Coordinates for Nonlinear Multibody Motion with Applica-
tions to Spacecraft Dynamics and Control. PhD thesis, Texas A&M University, College
Station, TX, May 1998.

[4] Schaub, Hanspeter and Junkins, John L., “Stereographic Orientation Parameters for
Attitude Dynamics: A Generalization of the Rodrigues Parameters,” Journal of the
Astronautical Sciences, Vol. 44, No. 1, Jan.—Mar. 1996, pp. 1-19.

[5] Tsiotras, Panagiotis and Longuski, Jams M., “A New Parameterization of the Attiti-
tude Kinematics,” Journal of the Astronautical Sciences, Vol. 43, No. 3, 1996, pp. 342—
262.

[6] Marandi, S. R. and Modi, V. J., “A Preferred Coordinate System and the Associated
Orientation Representation in Attitude Dynamics,” Acta Astronautica, Vol. 15, No. 11,
1987, pp. 833-843.

[7] Stanley, W. S., “Quaternion from Rotation Matrix,” AIAA Journal of Guidance and
Control, Vol. I, No. 3, May 1978, pp. 223-224.

[8] Federov, F., The Lorentz Group. Moscow: Nauka, 1979.

[9] Junkins, John L. and Shuster, Malcolm D., “The Geometry of Euler Angles,” Journal

of the Astronautical Sciences, Vol. 41, No. 4, 1993, pp. 531-543.

[10] Tsiotras, Panagiotis, Junkins, John L., and Schaub, Hanspeter, “Higher Order Cay-
ley Transforms with Applications to Attitude Representations,” Journal of Guidance,
Control and Dynamics, Vol. 20, No. 3, May—June 1997, pp. 528-534.

APPENDIX: LIST OF MATLAB COMMANDS

addEP(q1l,q2) Sum the two Euler parameter vectors.
addEulerijk(ql,q2) Sum the two (i-j-k) Euler angle vectors.
addGibbs(ql,q92) Sum the two Gibbs vectors.
addMRP(ql,q2) Sum the two MRP vectors.
addPRV(ql,q2) Sum the two principal rotation vectors.
BinvEP(q) Compute the inverse of [B(3)].
BinvEulerijk(q) Compute the inverse of [B(6;;1)].
BinvGibbs(q) Compute the inverse of [B(q)].
BinvMRP(q) Compute the inverse of [B(o)].
BinvPRV(q) Compute the inverse of [B(7)].

BmatEP (q) Compute the matrix [B(8)]
BmatEulerijk(q) Compute the matrix [B(0;;)]
BmatGibbs(q) Compute the matrix [B(q)]

BmatMRP (q) Compute the matrix [B(o)]
BmatPRV(q) Compute the matrix [B(7)]

C2EP (C) Extract the Euler parameters from [C].
C2Eulerijk(C) Extract the (i-j-k) Euler angles from [C].
C2Gibbs (C) Extract the Gibbs vector from [C].
C2MRP (C) Extract the MRP vector from [C].

13

C2PRV(C)
dEP(q,w)
dEulerijk(q,w)
dGibbs(q,w)
EP2C(q)
Eulerijk2C(q)
Gibbs2C(q)
MRP2C(q)
PRV2C(q)

dMRP (q,w)
dPRV(q,w)
elem2PRV(q)
EP2Eulerijk
EP2Gibbs

EP2MRP

EP2PRV
Eulerl(theta)
Euler2(theta)
Euler3(theta)
Eulerijk2EP(q)
Eulerijk2Gibbs(q)
Eulerijk2MRP (q)
Eulerijk2PRV(q)
Gibbs2EP(q)
Gibbs2Eulerijk(q)
Gibbs2MRP (q)
Gibbs2PRV(q)
MRP2EP (q)
MRP2Eulerijk(q)
MRP2Gibbs (q)
MRP2PRV (q)
MRPswitch(q,S)
PRV2elem(q)
PRV2EP (q)
PRV2Eulerijk(q)
PRV2Gibbs (q)
PRV2MRP (q)
SubEP(q,q1)
subEulerijk(q,ql)
subGibbs(q,ql)
SubMRP (q,q1)
subPRV(q,ql)

Extract the principal rotation vector from [C].

Compute the Euler parameter time derivative.

Compute the (i-j-k) Euler angles time derivative.

Compute the Gibbs vector time derivative.

Translate the Euler parameters into [C].

Translate the (i-j-k) Euler angles into [C].

Translate the Gibbs vector into [C].

Translate the MRP vector into [C].

Translate the principal rotation vector into [C].

Compute the MRP vector time derivative.

Compute the principal rotation vector time derivative.
Translates the (®,é;, é9,€3) into the principal rotation vector.
Translate Euler parameters into (i-j-k) Euler angles.
Translate Euler parameters into a Gibbs vector.

Translate Euler parameters into a MRP vector.

Translate Euler parameters into a PRV vector.

Returns the elementary rotation matrix about the first body axis.
Returns the elementary rotation matrix about the second body axis.
Returns the elementary rotation matrix about the third body axis.
Translate the (i-j-k) Euler angles into Euler parameters.
Translate the (i-j-k) Euler angles into the Gibbs vector.
Translate the (i-j-k) Euler angles into MRPs.

Translate the (i-j-k) Euler angles into the principal rotation vector.
Translate the Gibbs vector into Euler parameters.

Translate the Gibbs vector into (i-j-k) Euler angles.

Translate the Gibbs vector into MRPs.

Translate the Gibbs vector into the principal rotation vector.
Translate the MRPs into Euler parameters.

Translate the MRPs into (i-j-k) Euler angles.

Translate the MRPs into the Gibbs vector.

Translate the MRPs into the principal rotation vector.

Switch the MRP vector such that |o|? < S.

Translates the principal rotation vector to (®,é;, éa, é3).
Translates the principal rotation vector to Euler parameters.
Translates the principal rotation vector to (i-j-k) Euler angles.
Translates the principal rotation vector to the Gibbs vector.
Translates the principal rotation vector to MRPs.

Compute the relative Euler parameter vector from q1 to q.
Compute the relative (i-j-k) Euler angles vector from q1 to q.
Compute the relative Gibbs vector from q1 to q.

Compute the relative MRP vector from q1 to q.

Compute the relative PRV vector from g1 to g.

14

