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Hirabayashi, Toshi (Ph.D., Aerospace Engineering Sciences)

Structural Stability of Asteroids

Thesis directed by Prof. Prof. Daniel J. Scheeres

This thesis develops a technique for analyzing the internal structure of an irregularly shaped

asteroid. This research focuses on asteroid (216) Kleopatra, a few-hundred-kilometer-sized main

belt asteroid spinning about its maximum moment of inertia axis with a rotation period of 5.385

hours [97], to motivate the techniques. While Ostro et al. [117] reported its dog bone-like shape,

estimation of its size has been actively discussed. There are at least three different size estimates:

Ostro et al. [117], Descamps et al. [36], and Marchis et al. [102]. Descamps et al. [36] reported

that (216) Kleopatra has satellites and obtained the mass of this object. This research consists

of determination of possible failure modes of (216) Kleopatra and its subsequent detailed stress

analysis, with each part including an estimation of the internal structure. The first part of this

thesis considers the failure mode of Kleopatra and evaluates the size from it. Possible failure modes

are modeled as either material shedding from the surface or plastic failure of the internal structure.

The surface shedding condition is met when a zero-velocity curve with the same energy level as

one of the dynamical equilibrium points attaches to the surface at the slowest spin period, while

the plastic failure condition is characterized by extending the theorem by Holsapple (2008) that

the yield condition of the averaged stress over the whole volume is identical to an upper bound for

global failure. The prime result shows that while surface shedding does not occur at the current

spin period and thus cannot result in the formation of the satellites, the neck may be situated near

its plastic deformation state. From the failure condition, we also find that the size estimated by

Descamps et al. (2011) is the most structurally stable. The second part of this thesis discusses finite

element analyses with an assumption of an elastic-perfectly plastic material and a non-associated

flow rule. The yield condition is modeled as the Drucker-Prager yield criterion, which is a smooth

shear-pressure dependent condition. The result shows that the failure mode highly depends on
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the body size. As the body size increases, the failure mode transits from a compression-oriented

mode to a tension-oriented mode. This asteroid should have a cohesive strength of at least 200

kPa to keep its original shape, although we argue that its cohesion may be less. In addition, the

upper bound technique for structural failure and the dynamical analysis for surface shedding are

also applied to 21 different shapes to determine their failure modes (either surface shedding or

structural failure) on the assumption of zero-cohesion. Finally, we apply these concepts to analyze

the breakup event of main belt comet P/2013 R3.
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Chapter 1

Introduction

1.1 Research Background

In the last few decades, scientists have revealed that many asteroids have unique charac-

teristics. The most remarkable feature of these asteroids includes (i) that they are gravitational

aggregations of small geological materials, usually called rubble piles, and (ii) that they have their

unique shapes.

One of the remarkable examples is (25143) Itokawa, a near-earth asteroid with dimensions

of 535 m by 294 m by 209 m, which was observed by the Hayabusa spacecraft (ISAS/JAXA) [48].

As seen in Fig. 1.1, Itokawa is a rubble pile and its shape looks like a peanut. Currently, scientists

believe that the shape of Itokawa came from a catastrophic collision of its parent body followed by

a soft contact of two aggregates [48]. The bulk density of this object is estimated as 1.9 g/cm3 [48],

which is much lower than the material densities of geological materials, and the porosity reaches

up to 40 % [1]. The Hayabusa spacecraft brought the Itokawa sample to the Earth in 2010, and

the sample included particles with sizes ranging from 1 µm to 100 µm [180].

Rubble pile asteroids change their configuration over their lifetime due to several different

effects. Such a process may be through their mutual, catastrophic impacts. This causes them to

scatter, to re-accumulate, and to form a new configuration. The time scale of an accretion process

due to a catastrophic impact is probably less than several days [106], negligibly shorter than the life

time of asteroids. The collisional probability of a main belt asteroid larger than 50 km in diameter

is 2.86× 10−18 km−2 yr−1, while that of a near-earth asteroid is 15.34× 10−18 km−2 yr−1 [11, 10].
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Another possibility is the YORP effect, solar radiation torque that causes an asteroid to have a

semi-static spin-up and to change its structural figurations (e.g., [134, 181]). Remarkable examples

of the latter case are active asteroids P/2013 P5 [83] and P/2013 R3 [82]. P/2013 P5 includes a

0.24± 0.04 km radius nucleus that is losing mass probably due to rotational instability (Fig. 1.2),

while P/2013 R3 is breaking up into multiple components (Fig. 1.3). Interestingly, the spin states

of many asteroids are very close to the gravitational bound [127]; therefore, such failure modes may

be common in our solar system.

However, regardless of scientists’ efforts in developing theoretical and numerical models, the

mechanisms of these configuration changes have been poorly understood. Since the late 1800s,

elastic analyses have been popular to study the stress state of the internal body (e.g., [30, 31,

94, 37, 185]). The main issue of elastic theory, however, is that the elastic solutions ignore any

possibility of residual stresses and therefore do not include all possible equilibrium stress states.

Recently, theoretical developments using plastic theory have made some contributions to

understanding permanent deformations of rubble pile asteroids. Davidsson [34] considered the

zero-tension condition of stress-average over a cross section to determine the condition when a

body experiences catastrophically permanent deformation somewhere (later, known as structural

failure). Holsapple [70] used limit analysis to construct a condition at which upper and lower bounds

for structural failure of a uniformly rotating ellipsoid are the same. Holsapple [63] developed a

technique for taking moments of the stress equilibrium equation and confirmed that this averaging

technique gave the same solutions as his limit analysis method [70]. Holsapple [64] analyzed the

condition of structural failure with cohesion to explain the mechanism of the gravitational barrier

[127]. Holsapple [65] numerically investigated the relation between actual structural failure and

limit analysis for a rod, a disk, and an ellipsoid.

Numerical techniques have also been developed to better understand the formations of fluid

bodies and rubble asteroids. Eriguchi et al. [42] studied deformation processes of a uniformly

rotating incompressible fluid ellipsoid. Using a soft-sphere discrete element method, Sánchez and

Scheeres [137] analyzed shape changes of a sphere and of an ellipsoid due to a YORP-type spin-up.
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The mechanisms of re-aggregation after a high-velocity impact have also been studied (e.g. [105],

[104], and [41]).

For the mechanism of surface shedding, scientists have preferred to use dynamical analyses.

Scheeres [146] revealed that as an increment of the total angular momentum causes surface particles

to move to a different stable spot. Guibout and Scheeres [52] investigated stability of the motion

of a particle on the surface of a uniformly rotating ellipsoid. Note that these analyses implicitly

assume zero-cohesion.

1.2 Size Uncertainty and Formation of (216) Kleopatra

These earlier analyses focused on simple shapes such as spheres and ellipsoids. However, as

seen in Fig. 1.1, the shape of an asteroid is neither a sphere nor an ellipsoid. The main purpose of

this research is to develop a technique for evaluating the shape effect of an asteroid on its failure

condition due to rotational instability.

Asteroid (216) Kleopatra, classified as a M-type in the Tholen taxonomy [176] or as a Xe-type

in the Bus taxonomy [17], has been of interest for the last few decades because of its odd shape

and fast spin period (Figs. 1.4 and 1.5). Since it is orbiting in the main belt and asteroids of

this type have not been targeted yet, this asteroid has not been well understood. Although we

have significant information on (216) Kleopatra including the shape, the spin period, and the mass

(Table 1.1), not as certain, and subject to different interpretations, is its total size. In addition,

since this asteroid was also observed to have satellites [36], scientists have been interested in their

formation as well.

1.2.1 History of Observations

Past researches have investigated the shape of this asteroid with different observational tech-

niques. From lightcurve observations, Scaltrity and Zappalá [138] confirmed shape elongation of

this asteroid and small differences of the magnitudes at the maxima and the minima (see Fig.4

in their paper). They pointed out that those differences came from either different reflectivity
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or a shadowing effect. Weidenschilling [186] argued that (624) Hektor might be a nearly contact

binary that is in its hydrostatic stable equilibrium. Then, with this model, he concluded that (216)

Kleopatra has a (624) Hektor-like lightcurve and an amplitude of 3.3 slightly exceeds the value of a

contact binary, but a contact binary model with its spin period recovers a reasonable density of 3.9

g/cm3. Lightcurve observations by Zappalá et al. [196] revealed that a triaxial ellipsoid model fits

their observations. On the other hand, Cellino et al. [23] found that a binary model is compatible

with their lightcurve data. They also pointed out that the amplitude, 0.9, by Zappalá et al. [196]

is an estimation, while the amplitude of this asteroid highly depends on the phase. Occultations by

Dunham et al. [39] estimated the size dimensions to be 230 km by 55 km. Furthermore, Mitchell

et al. [109] performed radar observations; however, although they obtained the Kleopatra echoes

which are similar to those of bifurcated asteroid (4769) Castalia, their coarse data set precluded

them from determining the shape. They also attempted to detect the shape from occultation data;

however, since the model used was simplistic, they could obtain no evidence for a bifurcation.

From comprehensive radar observations, Ostro et al. [117] constructed a three-dimensional

bi-lobed polyhedral shape model with dimensions of 217 km by 94 km by 81 km, although they

indicated that the absolute size uncertainty was up to 25 %. On the other hand, from the Fine

Guidance Sensors (FGS) aboard HST, Tanga et al. [174] confirmed that their shape model is

consistent with radar observations by Ostro et al. [117]. Hestroffer et al. [56] showed that a

larger and more elongated model is consistent with the occultations, the photometric and the

interferometric HST/FGS results. Adaptive optics observations by Hestroffer et al. [57] showed

that their model is consistent with the Ostro et al. model, although these observations could not

rule out the possibility that this asteroid is a binary asteroid. With the binary model by Cellino et

al. [23], the contact binary model by Tanga et al. [174], and the polyhedron model by Ostro et al.

[117], Takahashi et al. [173] performed lightcurve simulations to report that while the binary model

and the contact binary model fit their lightcurve simulations, the Ostro et al. model could not. It

is worth noting that for simulations using the Ostro et al. model, they used the size estimated by

Ostro et al. [117], which may be smaller than the actual size.
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1.2.2 Exact Mass and Size Uncertainties

From the mutual gravity interaction between (216) Kleopatra and its satellites, Descamps et

al. [36] calculated the mass as 4.64×1018 kg. Kaasalainen and Viikinkoski [86] attempted to con-

struct a new shape model with multiple observation data (photometry, adaptive optics, occultation

timings, and interferometry); however, they mentioned that the data were not compatible and thus

further analyses are necessary. We look forward to their new shape model.

In contrast to the exact mass by Descamps et al. [36], there is an uncertainty of the size

estimations. So far, at least three estimates have been reported. Ostro et al. [117] estimated

the equivalent diameter1 as 108.6 km by radar observations and the surface bulk density as 3.5

g/cm3 from the surface reflectivity. Note that the latest version of the shape model provides a

volume of 7.09 × 105 km3, which is equal to an equivalent diameter of 111.1 km. Tedesco et al.

[175] reported the IRAS equivalent diameter as 135.07 km, while the estimation by Descamps et

al. [36] is consistent with the Tedesco et al. size [175]. On the other hand, from observations with

Spitzer/IRS, Marchis et al. [102] derived the equivalent diameter as 152.5 km by the Near-Earth

Asteroid Thermal Model (we referred to Table 5 in their paper). Figure 1.6 shows the comparison

between the estimated size scale and the bulk density. Scale size means an equivalent diameter

relative to that of the Ostro et al. (2000) size, i.e., 55.3 km [117]. The Ostro et al. (2000) size

is 1.00, the Descamps et al. (2011) size is 1.22, and the Marchis (2012) et al. size is 1.37. For

the Ostro et al. (2000) estimation, we only show the error bar of the size scale (the region of the

horizontal axis). Note that the Ostro et al. (2000) density is based on their surface reflectivity

estimation.

From these backgrounds, it seems that the Ostro et al. (2000) shape has been confirmed by

other researches, but that the size has not. Given a constant mass, variations in the size cause

(216) Kleopatra to have different densities, stronger centrifugal forces and weaker gravitational

forces. Because of its fast spin period, as the size increases, the internal structure becomes closer

to structural failure. This study investigates possible failure modes of (216) Kleopatra dynamically

1 An equivalent diameter is a diameter of a sphere with the same volume as the shape.



6

and structurally with hope for evaluating the size. Here, the shape is fixed as the Ostro et al.

(2000) shape.

1.2.3 Satellite Formation

(216) Kleopatra was observed to have two small satellites (Table 1.2) [36]. To obtain relevant

orbit solutions for the satellites, Descamps et al. [36] gave a hypothesis that the orbital planes of

the satellites are parallel to the equatorial plane of (216) Kleopatra2 . They also pointed out that

these satellites might result from surface shedding, although the detailed analysis has not been

reported yet. The present study investigates a possible formation scenario of these satellites.

1.3 Research Goal and Outlines

The goal of this research includes (i) a better understanding of a possible failure mode of (216)

Kleopatra, (ii) a determination of a structurally stable size of this body, and (iii) an investigation

into possible formations of its small satellites. We consider surface shedding and structural failure

(defined in the later sections) to be common failure modes and investigate these conditions for

(216) Kleopatra. The condition of surface shedding is determined by zero-velocity curves, which

are quasi-energy contours. On the other hand, the condition of structural failure is obtained by

limit analysis, a technique for giving lower and upper bound conditions, and by finite element

analysis. For a calculation of an upper bound, we assume that (216) Kleopatra is symmetric about

the principal moment of inertia axes.

We focus on (216) Kleopatra to establish analytical techniques. This study is organized as

follows. First, we introduce a method for obtaining the spin period of surface shedding (Chapter

2). Second, we discuss techniques for determining lower and upper bound conditions for structural

failure (Chapter 3). Third, we develop a finite element analysis technique for calculating a more

precise failure condition (Chapter 4). Then, we investigate (i) a structurally stable size of (216)

2 With the data of stellar occultations in 1980, they could interpret the reported secondary event from their simple
solution (Descamps, 2013, personal communication).
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Kleopatra, (ii) a possible formation scenario of its satellites, and (iii) detailed failure modes of this

object (Chapter 5). The present technique will enable us to give stronger constraints on its internal

structure once further observations are carried out.

The technique is also applied to other objects. First, we use the upper bound technique and

the dynamical analysis established here to determine the failure modes of 21 different shapes on

the assumption of zero-cohesion (Section 6). Second, main belt comet P/2013 R3 has undergone a

recent breakup event, and we give constraints on the internal structure based on this event (Section

7).
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Figure 1.1: Image of (25143) Itokawa taken by the Hayabusa spacecraft (ISAS/JAXA).
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Figure 1.2: Mass loss of P/2013 P5 [83].
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Figure 1.3: Breakup mode of P/2013 R3 [82].
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Figure 1.4: Three-dimensional shape of (216) Kleopatra by Ostro et al. [117]. This shape model
consists of surface points (vertices) and the order of surface elements (faces). The size scale of this
plot is 1.22, i.e., the Descamps et al. (2011) size.
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Figure 1.5: Projection of (216) Kleopatra. The upper plot shows the projection onto the x − y
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Table 1.1: Constant properties of (216) Kleopatra

Property Value Units Reference

Mass 4.64 × 1018 kg [36]
Period 5.385 hr [97]
Shape - - [117]

Table 1.2: Physical properties of (216) Kleopatra’s satellites. The spin pole of (216) Kleopatra is
given as λ = 76± 3◦ and β = 16± 1◦ in J2000 ecliptic coordinates [36].

Property Satellite (outer) Satellite (inner)

Diameter [km] 8.9± 1.6 6.9± 1.6
Orbital period [days] 2.32± 0.02 1.24± 0.02
Semi-major axis [km] 678±13 454± 6
Orbit pole right ascension [deg] 74± 2 79± 2
Orbit pole declination [deg] 16± 1 16± 1



Chapter 2

Surface Shedding

This chapter introduces a method for determining the spin condition of surface shedding. A

change of the size of (216) Kleopatra causes a variation of the gravitational and centrifugal forces.

Thus, the location of the dynamical equilibrium points1 also move. The present study assumes

the shape of (216) Kleopatra to be constant. We first introduce the definition of surface shedding.

Then, we discuss a technique for determining the spin condition of surface shedding.

2.1 Definition

Consider a uniformly rotating rubble pile asteroid affected by gravitational and centrifugal

forces. Surface shedding is a process where small particles on the surface are shed due to the

centrifugal force exceeding the gravitational force (Fig.2.1). This first occurs when a dynamical

equilibrium point off the asteroid touches the asteroid surface. This condition is considered to be

a necessary condition of surface shedding.

We use the method by Guibout and Scheeres [52] to determine the spin condition of surface

shedding. The Guibout and Scheeres method [52] considered the stability of motion of a massless

particle on a rotating ellipsoid by the following methods. The first technique was a linear stability

analysis about the dynamical equilibrium points on the surface, and the second technique was to

analyze Hill’s stability by zero-velocity curves.

Surface shedding and landslides may be related. This fact may cause the actual spin of surface

1 Dynamical equilibrium points are the points where all the external forces are balanced.



16

shedding to be earlier than the condition calculated by the present technique. Landslides could

occur if a plastic flow propagates over a plane beneath, but near, the surface [91, 55]. Considering

the effect of landslides on the stability of an asteroid’s shape, Minton [108] and Harris et al. [54]

explained the formation of equatorial ridges on an asteroid (e.g., 1999 KW4). However, the major

issue of their studies was that their analyses reach a singular point on the equator of a body. Walsh

et al. [183] reported that the YORP effect could cause landslides, which may shed small particles

from the surface, and a secondary body could gravitationally form in the cloud of these particles.

Although these studies imply strong correlations between surface shedding and landslides,

we do not consider the effects of landslides on the first spin of surface shedding in this study. It

means that the condition calculated here becomes more conservative than the actual condition.

Our future work will improve this aspect of our research.

2.2 Methods for Determining Surface Shedding

Classically, the gravity slope analysis that determines the direction of the total force acting

on small elements on the surface has been used to analyze surface conditions (e.g., [119]). The

direction is given as the angle between the force direction and the normal vector pointing inward.

Consider the gravity slope at some point on the surface. If the angle is 0◦, a small particle sitting

on there does not move from the original point. As the angle increases, it could start moving from

this point. Once this angle reaches 90◦, the small particle is about to take off the surface.

This study tracks the locations of the dynamical equilibrium points to determine the condition

where one of these points attaches to the surface first. This method has an advantage in terms of

clear visualizations of (i) the location of surface shedding and (ii) the trajectories of small particles.

Specifically, we calculate the locations of the dynamical equilibrium points and obtain the zero-

velocity curves on the equatorial plane. This section introduces the technique for obtaining the

locations of the dynamical equilibrium points and the zero-velocity curves on the equatorial plane.

We use the Scheeres method [150] to calculate the zero-velocity curves about an irregular shape.
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2.2.1 Zero-Velocity Curves and Dynamical Equilibrium Points

Consider an irregular body uniformly spinning about its maximum moment of inertia axis.

r = (x, y, z) and v are a position vector and a velocity vector in a frame rotating with the body,

respectively. ω is the angular velocity of the spin. Dots over a letter indicate time derivatives. The

absolute value of v is denoted as v. The x, y, and z axes lie along the minimum, intermediate, and

maximum moment of inertia axes, respectively.

On the assumption that only the gravitational and centrifugal forces affect the orbital motion

of a small particle, the equation of motion is written as

ẍ− 2ωẏ = −Ux(r) + ω2x,

ÿ + 2ωẋ = −Uy(r) + ω2y, (2.1)

z̈ = −Uz(r),

where U is the gravitational potential and the subscripts of U mean the partial derivatives with

respect to position. The Jacobi integral J(r,v) is given as

J(r,v) =
1

2
v2 − 1

2
ω2(x2 + y2) + U(r). (2.2)

For a given value of the Jacobi integral C, the following inequality is obtained:

C +
1

2
ω2(x2 + y2)− U(r) ≥ 0. (2.3)

This inequality comes from v2 ≥ 0 and indicates constraints on the motion of a small particle as

a function of position. In other words, a small particle is prohibited to enter any areas where this

inequality is violated.

Define the function of f(r) = ω2(x2+y2)/2−U(r) ≥ 0. Then, Eq. (2.3) becomes f(r) ≥ −C,

which provides constraints on where motion can occur. If C ≥ 0, there are no constraints. However,
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if C is negative, the motion may be constrained. Define an equilibrium point r1 such that

Ux(r1)− ω2x = 0,

Uy(r1)− ω2y = 0, (2.4)

Uz(r1) = 0.

We denote the Jacobi integral at r1 as C1. We extend this discussion to other equilibrium points

ri for i = 1, ..., n, where n is the total number of the equilibrium points in the system. If ri is an

extremum, when C > Ci, the motion is restricted on the place centered at ri. On the other hand,

if ri is a saddle point, as C(< Ci) comes close to and is finally equal to Ci, non-allowable regions

connect with each other at this point. We define the indices of the dynamical equilibrium points

so that f(ri) > f(rj) (i > j).

On zero-velocity curves, the gradient of a contour curve represents the force as well. When

a massless particle is on a zero-velocity curve, the force direction is normal to the curve and

toward the allowable region and its magnitude is the same as the absolute value of the gradient

(Eq.(2.1)). Figure 2.2 shows the zero-velocity curves in the restricted three-body problem. It

describes constraints on the motion of a small particle having a energy level equal to L3. The

shaded area is the allowable region.

2.2.2 Numerical Search for the Spin Period of Surface Shedding

This paper uses the Werner and Scheeres algorithm [189] to obtain the gravitational force

from an irregular body. Since their algorithm includes the second order partial derivatives of the

potential, it is useful to obtain dynamical equilibrium points.

The method for searching for the dynamical equilibrium points uses a Newton-Raphson

method to solve Eq.(2.4). Consider some size scale of this body and assume that a test solu-

tion rn is close to the actual solution r∗. Since r∗ = rn + ∆rn, where ∆rn is the relative position

of r∗ from rn, we rewrite Eq. (2.4) as

∇U(r∗) + ω2r∗ = ∇U(rn + ∆rn) + ω2(rn + ∆rn) = 0, (2.5)
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Figure 2.1: Surface shedding due to a static spin-up.
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Figure 2.2: Zero-velocity curves in the restricted three body problem. The ratio of a smaller mass
to the total mass is 0.2. The blue solid curves indicate the lines with energy levels of L2 and L3.
These curves intersect these equilibrium points. If a massless particle has the same energy of L3,
it is allowed to move in the shaded area. The arrows show the directions of the forces acting on a
massless particle on the curve.
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and thus

∇U(rn) +∇⊗∇U(rn)∆r + ω2(rn + ∆rn) = 0, (2.6)

where ∇ is the nabla operator, i.e., i∂/∂x + j∂/∂y + k∂/∂z (i, j, and k are orthogonal unit

vectors.), ⊗ is the dyad operator, and ω is an angular velocity matrix defined as

ω =


ω 0 0

0 ω 0

0 0 0

 . (2.7)

Finally, the relative position ∆rn is given as

∆rn = −(∇⊗∇U(rn) + ω2)−1(∇U(rn) + ω2rn). (2.8)

We iterate this process (∆rn should be added to update the test solution) until the equilibrium

condition is satisfied with an acceptable degree of precision. There are at least four equilibrium

points, besides with additional symmetry may have more, but always an even number. To find

all the equilibrium points, we set a large number of external points near the surface as the initial

conditions.

We calculate the condition of surface shedding by the following iteration scheme. First, we

search for all the dynamical equilibrium points at a given condition and check if all these points

are outside the body. Second, we calculate zero-velocity curves at the same condition to determine

constraints on the motion of a massless particle and to evaluate the force direction. If one of these

points touches the surface, then the iteration ends. If none of them attaches to the surface, then

we change the spin period of the asteroid and iterate these processes until one of the equilibrium

points touches the surface.



Chapter 3

Structural Failure: Limit Analysis

Chapters 3 and 4 discuss methods for determining the condition of structural failure. We

characterize structural failure by plastic theory. This chapter gives the definition of structural

failure and methods for determining lower and upper bounds for structural failure, while chapter 4

discusses a finite element model for plastic deformation. In this chapter, we first define structural

failure and the rheology of materials and second describe techniques for determining lower and

upper bound conditions of structural failure.

3.1 Definition

As a body experiences slow changes in its configuration, it may deform somewhere, but may

not fail plastically if the stress configuration balances between plasticity and elasticity. If plastic

regions are unloaded, the stress configuration comes back to elastic states and residual stresses

sustain these regions [24]. Once plastic deformation propagates across the majority of the body,

such regions experience catastrophic permanent deformations, leading to a dramatic change of the

original shape.

We consider structural failure as a case when plastic deformation propagates over a critical

cross section in a body. Again, we only take into account the gravitational and centrifugal forces.

In such a case, these forces mainly affect the stress configuration across the minimum moment

of inertia axis. Thus, we focus on the condition of structural failure of a slice perpendicular to

this principal axis. The scenario of this mode is permanent deformation over the slice and may
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eventually lead to a breakup into two smaller components (Fig. 3.1). Note that we will use the

term “structural failure of a total volume” with the same meaning as the term “global failure”

often used by Holsapple.

3.2 Rheology of Materials: Mohr-Coulomb Yield Criterion

The yield condition defines the limit of elastic behavior. Here, the yield condition of a material

of an asteroid is considered to depend on hydrostatic pressure and shear. For the limit analysis

technique, we use the Mohr-Coulomb (MC) yield criterion, which is written as

g(σ1, σ3, φ) = (σ1 − σ3) secφ+ (σ1 + σ3) tanφ ≤ 2Y, (3.1)

where φ is a friction angle and Y is cohesive strength [28]. σi (i = 1, 2, 3) is the principal stress

component and satisfies σ1 > σ2 > σ3. This condition indicates a slope attaching to the Mohr

circle centered at (σ1 + σ3)/2 with a radius of (σ1 − σ3)/2 in the hydrostatic pressure-shear stress

space (Fig.3.2). If we assume zero-cohesion, then Y = 0 and the slope intersects the origin. The

angle between the slope and the σ axis is identical to friction angle φ. The inequality shown in

Eq.(3.1) describes that if the stress state is within that region, it is elastic.

In a principal-stress space, the MC envelope becomes a hexagonal cone opening to the neg-

ative side in the hydrostatic pressure direction. This cone is discontinuous at the tension and the

compression meridians. Since this paper considers real shapes, stress conditions at these meridians

may not appear in general.

3.3 Computation of Body Forces

This study considers that only the gravitational and centrifugal forces act on the internal

structure of a body. Since the shape is irregular, it is necessary to discretize the body to calculate the

body forces. We make a high resolution mesh so that its elements are small enough to model body

force calculation. In this case, since we can use a classical two-body problem for each interaction,



23

the gravitational acceleration of element s is described as

bsg = −Gρ
∑
t6=s

Vt
r3st

(rs − rt), (3.2)

where G is the gravitational constant, V is the volume of an element, and element t does not overlap

s. r is a position vector from the origin to an element, and r is the Euclidean norm of r. Here, the

density ρ is assumed to be constant everywhere in the body. The centrifugal acceleration is simply

described as

bsc = −Ω×Ω× rs = Ω2


xs1

xs2

0

 . (3.3)

where Ω is the spin vector Ω[0, 0, 1]T . With index notations, the body force is now given as

bi = bsgi + bsci. (3.4)

3.4 Theorems for Limit Analysis

Limit analysis provides a technique for determining lower and upper bounds for structural

failure. For a uniformly rotating ellipsoid, Holsapple (e.g., [70, 65]) constructed lower and upper

bounds that are the same. We assume that materials in a body follow elasticity-perfect plasticity

and its plastic deformation is small. The condition of elasticity-perfect plasticity idealizes the

behaviors of materials. The critical features of this assumption include zero-hardening and zero-

softening. The assumption of small deformation allows for the use of the virtual work principle:∮
A
Tiu
∗
i +

∫
V
Fiu
∗
i dV =

∫
V
σijε

∗
ijdV, (3.5)

where A means area, V is the volume, Ti is the surface traction force, Fi is the body force, σij is

the stress component, εij is the strain component, and ui is the displacement. A dot over a letter

indicates the rate of the quantity. Quantities with ∗ are associated with the virtual work. The

following sections discuss the lower and upper bound theorems, based on the earlier studies (e.g.,

[28], [24], [70], and [65]). The present study will use the upper bound theorem to find an upper

bound for structural failure.
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3.4.1 Preparatory Theorem

Theorem 1. If a load reaches the limit condition, then the deformation proceeds under a constant

load, all stresses remain constant, and only plastic (not elastic) increments of strain occur [28].

Proof. Consider the rate form of the virtual work equation:∮
AT

Ṫ ci u̇
c
idAT +

∮
Au

Ṫ ci u̇
c
idAu +

∫
V
Ḟ ci u̇

c
idV =

∫
V
σ̇cij ε̇

c
ijdV, (3.6)

where AT and Au are the boundary conditions of Ti and ui, respectively. We use superscript c to

emphasize that this equation satisfies an actual collapse state. u̇ci should be zero on Au. At the

limit load, since Ḟ ci = 0 in V , Ṫ ci = 0 on AT , and u̇ci = 0 on Au, the left-hand side becomes zero:∫
V
σ̇cij ε̇

c
ijdV =

∫
V
σ̇cij(ε̇

ec
ij + ε̇pcij )dV = 0. (3.7)

We used the fact that the total strain rates εcij consist of elastic and plastic parts. The associated

flow rule yields σ̇cij ε̇
pcij = 0. Finally, we obtain∫

V
σ̇cij ε̇

ec
ij dV = 0. (3.8)

However, from Drucker’s stability postulate, for elastic materials, the work done by any systems

on elastic deformation is always positive definite. We obtain σ̇cij = 0, and thus εecij = 0.

3.4.2 The Lower-Bound Theorem

Theorem 2. If an equilibrium distribution of stress σEij can be found which balances the body

force Fi in V and the applied loads Ti on the stress boundary AT and is everywhere below yield,

f(σEij) < 0, then the body at the loads Ti, Fi will not collapse [28].

Proof. Assuming that the body at the loads will collapse, we give the contradiction of this assump-

tion. If the body is at this load, there exists a collapse condition represented by the actual stress

σcij , the strain rate ε̇cij , and the displacement rate u̇ci . The displacement rate is zero on Au, i.e.,
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u̇cij = 0. From the statement, two equilibrium states may exit, i.e.,∮
A
Tiu̇

c
i +

∫
V
F ci u̇

c
idV =

∫
V
σcij ε̇

c
ijdV, (3.9)∮

A
Tiu̇

c
i +

∫
V
F ci u̇

c
idV =

∫
V
σEij ε̇

c
ijdV, (3.10)

These equations yield ∫
V

(σcij − σEij)εcijdV = 0. (3.11)

At the limit load, all deformation is plastic (see Theorem 1). Therefore,∫
V

(σcij − σEij)ε
pc
ij dV = 0. (3.12)

However, for perfect plasticity, because of convexity and normality, (σcij − σEij)ε
pc
ij > 0, which

contradicts the assumption.

3.4.3 The Upper-Bound Theorem

Theorem 3. Assume that the zero-displacement condition u̇p∗i = 0 on Au. Then, the loads Ti and

Fi determined by the virtual work equation∮
AT

Tiu̇
p∗
i +

∫
V
Fiu̇

p∗
i dV =

∫
V
σp∗ij ε̇

p∗
ij dV. (3.13)

will be either higher than or equal to the actual limit load. σp∗ij is a stress state that yields ε̇p∗ij . The

left-hand side is called the work by the external forces, while the right-hand side is called the rate

of internal dissipation [28]: ∫
V
Ḋ(εp∗ij )dV =

∫
V
σp∗ij ε̇

p∗
ij dV. (3.14)

Proof. Assume that the condition is neither higher than or equal to the actual limit load. From the

lower-bound theorem, in this condition, there exits an equilibrium distribution of elastic stresses

σEij that satisfy f(σEij) < 0 everywhere:∮
AT

Tiu̇
p∗
i +

∫
V
Fiu̇

p∗
i dV =

∫
V
σEij ε̇

p∗
ij dV. (3.15)
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Since Eq. (3.13), ∫
V

(σp∗ij − σ
E
ij)ε̇

p∗
ij dV = 0. (3.16)

However, since (σp∗ij − σEij)ε̇
p∗
ij > 0, the statement leads to a contradiction.

3.5 Lower Bound for Structural Failure of a Body

We use the lower bound theorem (Sec. 3.4.2) to obtain a lower bound for structural failure.

The theorem indicates that if an elastic solution is always below the yield condition everywhere,

then the stress configuration is below the lower bound. This study develops a finite element model

of (216) Kleopatra to calculate its elastic stress solution and check whether or not the stresses at

all the nodes are below the yield condition.

3.6 Upper Bound for Structural Failure of a Partial Volume

Based on Sec. 3.4.3, the present study considers an upper bound condition for structural

failure of a partial volume in a body to approximate the condition of structural failure. This

technique enables us to compare sensitive volumes to structural failure and to find a possible mode

of this failure. We assume that the shape of a body is symmetric about the intermediate and

maximum moment of inertia axes. In such a case, the minimum moment of inertia axis is the most

sensitive to structural failure because of the symmetry of the body forces. Thus, we choose a slice

perpendicular to the minimum moment of inertia axis as a partial volume. Based on the theorem

by Holsapple [65], this section shows that for such a slice, there is a condition at which an upper

bound for its structural failure is identical to the yield condition of the averaged stress over this

volume.
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3.6.1 Calculation of The Partial Volume Stress

3.6.1.1 General Expression

Consider an irregularly shaped body spinning about the maximum moment of inertia axis

in free space (Fig. 3.3). The maximum, intermediate, and minimum moment of inertia axes are

defined as the x1, x2, and x3 axes, respectively. These axes are identical to the x, y, and z axes

defined in the previous chapters, respectively.

Then, cut this body at two different locations so that the given cross sections SA and SB are

always perpendicular to the x1 axis (Fig. 3.3). This operation creates three partial components,

and we take the middle one, which is shaded in the figure (later, simply called the “slice”). The

partial volume stress is defined as the averaged stress over the slice:

σ̄ij =
1

V

∫
V
ρxjbidV +

1

V

∮
S
xjtidS, (3.17)

where V is the volume of the slice, S is the whole area of the cross sections, i.e., S = SA + SB,

and bi is the body force. A traction ti = lσi1, where l is the direction cosine normal to the cross

sections perpendicular to the x1 axis (the outward direction is positive), is not affected by other

direction cosines. ρ is the bulk density, which is currently assumed to be constant over the whole

volume. σij , where i and j are indices varying from 1 to 3, indicates the stress component of a

small element.

Consider the off-diagonal components of the partial volume stress. In a static condition, since

a planetary body experiences neither motion nor deformation in the rotating frame, the torques on

a given slice along the xk axis (k = 1, 2, 3)

τk =

∫
V
ρ(xjbi + xibj)dV +

∮
S

(xjti + xitj)dS, (3.18)

where tj is a traction on the cross sections and the indices satisfy i 6= j 6= k, are always zero.

However, the right hand side is equivalent to σ̄ij + σ̄ji. Then, in the static case, σ̄ij = σ̄ji, so

σ̄ij = σ̄ji = 0. Therefore, all the off-diagonal components are always zero in general cases. This

indicates that the partial volume stresses of any arbitrary slices correspond to the principal stresses.
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On the other hand, the diagonal components are nonzero. For σ̄11, since xj = x1 in Eq.

(3.17), it comes out of the surface integral:

σ̄11 =
1

V

∫
V
ρx1b1dV +

x1A
V

∮
SA

t1dS +
x1B
V

∮
SB

t1dS, (3.19)

where x1A and x1B are the x1 components of SA and SB, respectively. Since the surface integrals

of the second and third terms on the right-hand side in Eq. (3.19) correspond to the forces acting

on the cross sections, this component can be determined without solving the equilibrium equation.

For σ̄kk (k = 2, 3), the surface integral term cannot easily be calculated because it includes the

integrand xktk. However, if the slice is symmetric (the detailed definition is given in the next

section), these components can also be obtained.

3.6.1.2 Symmetry Assumption

Hereafter, we define the x1, x2, and x3 axes as the minimum, intermediate, and maximum

moment of inertia axes, respectively. Also, it is assumed that a body is uniformly spinning about

the x3 axis. To determine σ̄22 and σ̄33, we introduce the symmetric assumption that a slice defined

by SA and SB is symmetric about the x2 and x3 axes (Fig. 3.3).

For cross section SA(x1, x2), the symmetric assumption is defined as follows; that is x3 =

SA+(x1, x2) = SA+(x1,−x2) = −SA−(x1, x2) = −SA−(x1,−x2), where SA+(x1, x2) for x3 ≥ 0 and

SA−(x1, x2) for x3 < 0. The symmetry assumption is also applied to cross section SB(x1, x2).

These cross sections are not necessarily identical; in other words, the shape of the cross section can

vary along the x1 axis.

3.6.1.3 Body Forces and Stress States

We assume that the body is affected by the gravitational and centrifugal forces. The gravity

force at rc is written as

bg = −
∫
V

Gρ(rc − r)dV

‖rc − r‖3
, (3.20)

= [bg1 bg2 bg3]
T , (3.21)
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where r is the position vector of the internal element and G is the gravitational constant. The

centrifugal force at rc is described as

bc = ω × ω × rc,

= [bc1 bc2 bc3]
T , (3.22)

where ω = [0 0 ω]T is the angular velocity vector. Thus, the body force is described as b =

bg +bc = [b1 b2 b3]
T . Because of the symmetry assumption, the body forces at r′c = [x1c −x2c x3c]T ,

r′′c = [x1c x2c − x3c]T , and r′′′c = [x1c − x2c − x3c]T can also be described as

b1(rc) = b1(r
′
c) = b1(r

′′
c ) = b1(r

′′
c ),

b2(rc) = −b2(r′c) = b2(r
′′
c ) = −b2(r′′′c ), (3.23)

b3(rc) = b3(r
′
c) = −b3(r′′c ) = −b3(r′′′c ).

The symmetry assumption allows for giving the symmetry of the stress solution. Given the

equilibrium equation, which is written as

∂σij
∂xj

+ ρbi = 0, (3.24)

we obtained stress states at rc, r
′
c, r

′′
c , and r′′′c . The off-diagonal components are

σ12(rc) = −σ12(r′c) = σ12(r
′′
c ) = −σ12(r′′′c ),

σ13(rc) = σ13(r
′
c) = −σ13(r′′c ) = −σ13(r′′′c ), (3.25)

σ23(rc) = −σ23(r′c) = −σ23(r′′c ) = σ23(r
′′′
c ),

and the diagonal components are

σii(rc) = σii(r
′
c) = σii(r

′′
c ) = σii(r

′′′
c ). (3.26)
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3.6.1.4 Calculation of σ̄22 and σ̄33

Equation (3.25) yields∮
S
tkxkdS =

∮
SA

σk1xkdS −
∮
SB

σk1xkdS,

=

∮
SA++SA−

σk1xkdS −
∮
SB++SB−

σk1xkdS,

=

∮
SA+

σk1(xk − xk)dS −
∮
SB+

σk1(xk − xk)dS,

= 0. (3.27)

The operation from the second row to the third row used the relations of σ12(rc) = −σ12(r′c)

and σ13(rc) = −σ13(r′′c ). This indicates that the surface integrals over SA and SB become zero,

respectively. Therefore,

σ̄kk =
1

V

∫
V
ρxkbkdV. (3.28)

where k = 2, 3.

3.6.2 Error Analysis

Since we apply the Mohr-Coulomb yield criterion to determine a limit condition of a partial

volume, neglecting the surface integral of x3t3 causes an error of σ̄33.

Consider the surface integral of x3t3 over SA. Since∮
SA

x3t3dS =

∫ x2+

x2−

[x3+f(x3+)− x3−f(x3−)]dx2 −
∮
SA

t3dS, (3.29)

where x3− and x3+ are the minimum and maximum distance from x3 = 0 at given x2 on SA,

respectively, and f is an indefinite integral given as

f(x3) =

∫
t3dx3, (3.30)

the following inequality is obtained:∮
SA

x3t3dS <

∫ x2+

x2−

[x3maxf(x3+)− (−x3max)f(x3−)]dx2 −
∮
SA

t3dS,

= (x3max − 1)

∮
SA

t3dS, (3.31)
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where x3max is the maximum position in the x3 direction in the whole volume. The inequality of

the first row appears on the assumption that x3max > ‖x3min‖ > 0. If ‖x3min‖ > x3max, where

x3min is the minimum position in the x3 direction in the whole volume and is always negative,

x3max is replaced with ‖x3min‖. Since this formulation can also be obtained for the other cross

section SB, the absolute value of the surface integral for the total cross section S = SA + SB is

given as

‖
∮
S
x3t3dS‖ < x3max‖

∮
S
t3dS‖. (3.32)

For σ̄33, we only calculate the body integral term, which can be obtained accurately. Based

on Eq. (3.32), the error of this stress component is defined as

ε =
x3max‖

∮
S t3dS‖

‖
∫
V x3b3dV ‖

. (3.33)

Since σ33 does not depend on the centrifugal force, ε is constant.

3.6.3 Upper Bound Theorem

The previous section showed that under the symmetry assumption, the volume integrals over

a partial volume, i.e., the slice, and the surface integrals over its cross sections can yield the partial

volume stresses. With this fact, the upper bound theorem determines the condition at which

structural failure must occur. Keeping the symmetry assumption, this section constructs such a

condition for the slices defined above. We assume that (i) mechanical behavior of materials can be

modeled by elasticity-perfect plasticity and (ii) plastic deformation is negligibly small and follows

the associated flow rule. We use the Mohr-Coulomb yield criterion (Eq. 3.1). Note that from Sec.

3.6.1.1, for the partial volume stresses, σ1 = σ̄11, σ2 = σ̄22, and σ3 = σ̄33. The following discussion

focuses on the principal stress components and keeps these notations without confusion.

We introduce a kinematically admissible velocity field such that the rate of internal dissi-

pation is equal to the rate of the external work (the upper bound theorem). A kinematically

admissible velocity field is characterized as a compatibility condition that the stress state satisfies
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the equilibrium equation anywhere, and the rate of plastic deformation is zero at any velocity

boundary conditions, i.e., u̇p(x) = 0, for ∀x ∈ Au, where Au is the boundary condition space of

plastic deformation. If a suitable kinematically admissible velocity field is found, the condition

obtained is identical to an upper bound [28].

In the present study, since elastic and plastic parts can coexist in the whole volume at some

critical period, Au is not an empty space there. To avoid the complexity of Au, we consider that

the assumed plastic region is slightly thicker than the slice so that in the slice Au is an empty space

(Fig. 3.4). This idealization process can also remove any discontinuities between elastic and plastic

regions and allow for the use of the Holsapple [65] result.

The symmetry assumption guarantees the symmetry of the body force and the stress state

(Sec. 3.6.1.3), implying that a static spin-up does not break the symmetry of the stress state

and any plastic deformations are also symmetric. Also, the gravitational and centrifugal force are

mainly affecting the x1 direction and could cause deformation along this axis. Since we use the

Mohr-Coulomb yield criterion, the associated flow rule indicates that the rate of the plastic strain,

ε̇pi , is constant:

ε̇pi = λ̇
∂g(σj)

∂σi
,

= [mλ̇ 0 − λ̇]T , (3.34)

where λ̇ is the rate of a scale factor and m = (1 + sin θ)/(1 − sin θ). Thus, with the symmetric

assumption, we choose a kinematically admissible velocity field as

u̇p1 = (x1 − x10)mλ̇, u̇p2 = 0, u̇p3 = −x3λ̇, (3.35)

where x10 is a constant value representing the location of the slice. The choice of this velocity field

is based on the Holsapple [65] result.

Consider the rate of the internal energy dissipation, Ḋ, and the rate of the external work,
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Ẇ . With the use of Eq. (3.17), Ḋ is written as

Ḋ = V

3∑
i=1

σ̄iε̇
p
i ,

=
3∑
i=1

[
ε̇pi

∫
V
ρxibidV + ε̇pi

∮
S
xitidS

]
. (3.36)

On the other hand, Eq. (3.35) yields Ẇ as

Ẇ =
3∑
i=1

[∫
V
ρu̇pi bidV +

∮
S
upi tidS

]
,

=
3∑
i=1

[
ε̇pi

∫
V
ρxibidV + ε̇pi

∮
S
xitidS

]
. (3.37)

The process from the first row to the second row on the right-hand side eliminates the terms

including x10 because of the symmetry assumption. Therefore, Ḋ = Ẇ . This shows that the yield

condition of the partial volume stress is identical to an upper bound for structural failure. We

emphasize that choices of the slice and the deformation mode may not correspond to actual failure

states; therefore, it is necessary to compare the upper bounds of several slices that may experience

structural failure.
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Figure 3.1: Structural failure mode. When the spin of an asteroid reaches the condition of structural
failure, a plastic region spreads over the cross section in the middle. If the asteroid spins up further,
it eventually breaks up into multiple components.

Figure 3.2: Mohr-Coloumb yield envelope and Mohr circle. The slope touching a Mohr circle is the
Mohr-Coulomb yield envelope. The inclination depends on a material’s properties. If a stress state
is within the Mohr-Coulomb envelope, it is elastic. If a stress state is on the envelope, it is plastic.
σ is the normal stress and τ is the stress stress.
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Figure 3.3: Partial volume of a planetary body, here simply called the “slice”, and its symmetric
assumption. Consider an arbitrary coordinate frame having the x1, x2, and x3 axes. The slice is a
volume given by two arbitrary cuts through cross sections perpendicular to the x1 axis (the shaded
area). The cross sections on the positive and negative sides are denoted as SA and SB, respectively.
The symmetry assumption defines the symmetry of any cross sections perpendicular to the x1 axis.
For cross section SA, for example, by defining the functions x3+ = SA+(x1, x2) for x3 ≥ 0 and
x3− = SA−(x1, x2) for x3 < 0, SA+(x1, x2) = SA+(x1,−x2) = −SA−(x1, x2) = −SA−(x1,−x2).
These cross sections are not necessarily identical, e.g., SA 6= SB.
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Figure 3.4: Possible plastic deformation mode of a symmetric body. We consider that the assumed
plastic region is wider than the slice. By doing so, we avoid any discontinuities and the velocity
boundary condition Au. For this case, there may be a linear velocity field in the location.



Chapter 4

Structural Failure: Finite Element Analysis

This chapter discusses a finite element analysis for structural failure. Since the model in-

cludes plastic deformation, it can determine a more precise condition of structural failure of (216)

Kleopatra and its failure mode. First, we summarize finite element modeling. Second, the rheology

of materials used in the present finite element model is introduced. Third, we define the boundary

conditions. Then, we introduce the load steps and parameter representations given in this study.

The following sections introduce our modeling by focusing on (216) Kleopatra.

4.1 Finite Element Modeling

The present finite model includes plastic deformation. The behavior of materials is supposed

to be elastic-perfectly plastic and to follow a non-associated flow rule. Also, plastic deformation is

assumed to be small. The assumption of elasticity-perfect plasticity is an idealized condition that

materials do not have hardening and softening. For plastic solutions, load paths change the final

plastic solutions.

This study uses commercial finite element software ANSYS (Academic research 14.0) to

calculate finite element solutions. The theories of computational techniques on ANSYS are given

in standard textbooks and ANSYS tutorials (http://www.ansys.com/). For static cases, ANSYS

solves the following equations:

Ku = F , (4.1)

where K is a stiffness matrix, u is a nodal displacement vector, and F is a force vector.
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4.2 Rheology of Materials: Drucker-Prager Yield Criterion

To model the rheology of materials in the finite element model, we use the Drucker-Prager

(DP) yield criterion, which is described as

f(I1, J2) = αI1 +
√
J2 − k, (4.2)

where

I1 = σ1 + σ2 + σ3, (4.3)

J2 =
1

6
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]. (4.4)

α and k change in cases. This yield criterion is smooth. Because of α and k, the size of the envelope

cannot be determined uniquely. Usually, α and k are chosen such that the DP envelope touches

some points on the MC envelope. If the DP envelope touches at the compression meridian of the

MC envelope,

α =
2 sinφ√

3(3− sinφ)
, (4.5)

k =
6c cosφ√

3(3− sinφ)
. (4.6)

If at the tension meridian, α and k are written as

α =
2 sinφ√

3(3 + sinφ)
, (4.7)

k =
6c cosφ√

3(3 + sinφ)
. (4.8)

We will use the DP yield criterion to compute plastic solutions by finite element analysis

on ANSYS. In the present finite element analysis, we newly define α and k to consider the failure

condition based on pure pressure and pure shear. Take σ2 = (σ1+σ3)/2 to charcterize pure pressure

and pure shear [67]. Then, α and k are given as

α =
sinφ

3
, (4.9)

k =
c sinφ

1− sinφ
. (4.10)
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We use the dilatancy angle κ to describe non-associated flow. A typical soil has a change of

its volume below the ideal yield point. This parameter is an effective angle that describes the ratio

of the actual volume change to the ideal volume change due to associated flow [28]. The plastic

strain rate ε̇pij , where i and j are indices, is defined as the rate of an arbitrary coefficient λ times

the partial derivative of a stress function f with respect to the stress tensor σij , which is given as

ε̇pij = λ̇
∂f(σij , κ)

∂σij
, (4.11)

In this study, f is characterized by the Drucker-Prager yield criterion and the dilatancy angle.

4.3 Boundary Conditions

In the present finite element model, we constrain six degrees of freedom of the node displace-

ments. In nature, when seen globally, planetary bodies are spinning in free space, so there are no

constraints on their deformation and motion. However, discrepancies of numerical settings violate

force balance, which may provoke rotational and translational motions. Therefore, it is necessary

to constrain the displacements of the nodes so that the solutions can converge appropriately. A

typical method for avoiding this problem is to consider a part of a symmetric body and to insert

proper boundary conditions. However, since (216) Kleopatra is not globally symmetric, its whole

body has to be taken into account in the simulation. Here, to fix such motions, we constrain six

degrees of freedom: three degrees of freedom being for its rotational motion and the other three

degrees of freedom being for its translational motion. Specifically, the displacements in all the

directions of the node at the origin are fixed to constrain the translational motion; on the other

hand, the displacements in the y and z directions of the surface node along the x axis (the positive

side) and the displacement in the z direction of the surface node along the y axis (the positive side)

are fixed to remove the rotational motion.

The zero-traction condition over the surface is also considered. Since this condition comes

from the free-spin condition mentioned above, it should be satisfied over the surface. In our finite

element model, since the loads are defined at each node, including the surface nodes, the stresses
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on the surface are not exactly zero. However, we confirmed that the stresses on the surface is about

10 % of the stress at the center of the knob1 . Based on a stress solution by Holsapple [70], the

scale of the stress distribution can be described as

σr
σ0
∼ 1− r2

a2
, (4.12)

where σ0 is the stress at the center of the knob, σr is the stress at radius r from the center, and

a is the apparent radius of the knob. Since σr/σ0 ∼ 0.1 and the radius of the knob, a, is on the

order of 50 km, r ∼ 47.5 km. Therefore, the surface stress computed in the present model may be

the actual stress appearing 2.5 km beneath the surface, which is the same order of the element size

used here.

4.4 Load Steps

A plastic solution depends on a loading path that represents evolutional history; however,

the history profile is usually unknown. To model the evolutional history of (216) Kleopatra, it

is assumed that the body experiences zero body forces initially and then the load is incremented

linearly. This profile assumes that the current configuration of (216) Kleopatra results from an

accretion due to a catastrophic disruption that gives the gravitational and centrifugal forces simul-

taneously. The time scale of the accretion process due to a catastrophic impact is probably less

than several days [106], negligibly shorter than the life time of asteroids. The collisional probability

of a main belt asteroid with larger than 50 km in size is 2.86× 10−18 km−2 yr−1, much lower than

that of a near-earth asteroid, 15.34× 10−18 km−2 yr−1 [10, 11].

The YORP effect, thermal reemission causing torque on an irregularly shaped body [134],

could not change the spin state over the age of this body. Since this effect is highly dependent on

the size, (216) Kleopatra, having a few hundred kilometers in diameter, may not spin up sufficiently.

In fact, to double the spin period of (216) Kleopatra, it takes more than 1000 Gyr, much longer

than the age of the solar system, ∼4.6 Gyr [181].

1 As seen in Fig. 1.4, the shape looks like two chunks connecting each other. Hereafter, we call these parts
”knobs”.
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On the other hand, small impacts could cause a quasi-static spin-up. It is reported that the

debris trail of asteroid P/2012 A2, orbiting in the main asteroid belt, was observed and its origin

could probably be a non-catastrophic collision [170, 84]. However, since small impacts would input

the spin acceleration randomly, it may be difficult to explain the present principal axis mode of (216)

Kleopatra’s rotation. For these reasons, assuming that an accretion process due to a catastrophic

disruption originates the formation of (216) Kleopatra, we choose the linear-loading profile defined

above.

4.5 Parameter Representations

We develop a 3-dimensional finite element model of (216) Kleopatra on ANSYS academic

research, ver. 14.0. The constant properties used here are shown in Table 1.1. The Ostro et al.

shape model will be fixed in the following analysis, but we will investigate the stress configurations

for three difference size scales, i.e., the Ostro et al. size, the Descamps et al. size, and the Marchis

et al. size. The rotation period and the mass were obtained by Magnusson [97] and Descamps et

al. [36], respectively. Based on a typical soil on the earth, the friction angle is considered to be

35◦ [91], while the dilatancy angle is chosen to be half of the friction angle [28]. For the elastic

computation, Young’s modulus is defined as 1.0× 102 MPa, allowing for elastic deformation within

1% of its total size, while Poisson’s ratio is fixed at 0.25, giving compressibility of the volume. Note

that different Poisson’s ratios do not change the trends of elastic solutions.

In the following discussions, the ratio of the current stress to the yield stress, later known as

the stress ratio [89], is used to describe the plastic state. The equivalent stress, which represents

the current stress, is written as

σe = αI1 +
√
J2, (4.13)

where I1 and J2 are calculated by the current stress. On the other hand, the yield stress is defined

as

σy = k, (4.14)
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where k is given in Eq. (4.10). Using σe and σy yields the stress ratio, N :

N =
σe
σy
. (4.15)

Elements having N = 1 are in a plastic state.

Theoretically, the stress ratio does not exceed 1.0, equal to the condition at which the stress

configuration is the same as the yield stress. However, since numerical errors cause the ratio to

violate the theoretical condition, we monitor the present finite element model so that its error at

the final step is always within 1 %, i.e., the maximum value of the stress ratio is always below 1.01.



Chapter 5

Application to Asteroid (216) Kleopatra

Using the established techniques in the previous chapters, we consider (i) size estimation of

(216) Kleopatra, (ii) formation of its satellites, and (iii) possible failure modes due to different

sizes. In this study, we consider surface shedding and structural failure to be common failure

modes. Given the spin period (5.385 hr), the Ostro et al. shape model (Table 1.1), and the

mass, we investigate these points dynamically and structurally. First, assuming that materials are

cohesionless, we discuss a structurally stable size of (216) Kleopatra by the limit analysis technique

introduced in Chapter 3. To apply this technique, we will define three different parts and compare

the upper bounds of these volumes to determine a closer condition to the actual failure point.

Second, by using the dynamical analysis discussed in Chapter 2, we analyze a possible formation of

the small satellites. In this analysis, we consider a possibility of surface shedding of (216) Kleopatra

and formation of the small satellites. Then, we use the finite element model developed in Chapter

4 to investigate detailed failure modes of this object. In the finite element model, we do not apply

the zero-cohesion assumption used in the limit analysis technique.

For this analysis, we appreciate Dr. Pascal Descamps for the information about the estimation

for the orbits of the satellites and Dr. Petr Pravec for useful discussion about the spin barrier for

large elongated asteroids.
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5.1 Definition of Slices

The body of Kleopatra is separated into five different slices and we take three of them (Fig:

5.1). Slices 1 and 3 includes the knobs on the left and right sides, respectively. Slice 2 is the

bifurcation part. These slices are perpendicular to the minimum moment of inertia axis. The

definition of these slices allows us to characterize the effect of the knobs and the bifurcation part

on structural conditions.

5.2 Structurally Stable Size

In this section, we show the results given in the range of the size scale from 1.0 to 1.5. In the

following section, we call this range the test scale range.

5.2.1 Structural Failure as a Function of Size by Limit Analysis Technique

First, we discuss a lower bound for structural failure of this body. Since elastic solutions

are independent of Young’s modulus, we set the modulus as 10 GPa, which may be larger than

usual geological materials on the Earth. On the other hand, since different Poisson’s ratios provide

different solutions, we consider two different Poisson’s ratios. The one is 0.2, while the other is

0.333. These Poisson’s ratios are in a compressive region. In the experiments, we investigate 25

size scales in the test scale range, i.e., α = 1.00, 1.02, 1.04, ..., 1.50. We find that for all the size

scales stress states violate the MC condition even when φ = 90◦, corresponding to the condition

where a material is resistant to the shear stress. Therefore, (216) Kleopatra has plastic deformation

of some small elements somewhere in all the test scale range and its internal structure is above a

lower bound for structural failure.

Figures 5.2 through 5.4 show elastic solutions for the cases with α = 1.00, α = 1.30, and

α = 1.50, respectively. Each case shows Poisson’s ratios of 0.2 and 0.333. In these figures, the

regions with φ > 50◦ by stars and those with φ = 90◦ by circles. The dots describe the shape of

(216) Kleopatra. The finite element analyses indicate the following results. First, although different
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Figure 5.1: Definition of slices. The projection plot is based on Fig. 1.5.
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Poisson’s ratios give different trends, the stress solutions are not significantly different. In Fig. 5.2,

the stars appear around the surface of the neck, while the circles are scattered on the whole surface.

In Fig. 5.3, the stars are around the surface of the neck, but on the opposite side of α = 1.00. In

Fig. 5.4, the stars and the circles are condensed around the neck.

Next, we determine an upper bound condition for structural failure of the body by the par-

tial volume technique developed in the previous sections. Assume that a material of the body is

cohesionless. Figure 5.5 describes upper bound conditions for structural failure, especially, the min-

imum friction angle that keeps the original shape, as a function of the size scale. The narrow solid,

dashed, and dotted lines show upper bounds for structural failure of slice 1, 2, and 3, respectively.

The upper bold solid line shows the upper bound for the partial volume given by a comparison of

these slices, while the lower bold solid line is the upper bound for the whole volume. The shadow

area is a structurally stable region. Calculation of the upper bound condition for the partial volume

reveals that the narrow solid and dotted lines are always lower than the condition for slice 2, so the

upper bound for the partial volume (the bold solid line) corresponds to that for slice 2. The result

implies that the bifurcated part is the most sensitive to structural failure. This may be because

the bifurcation part is a smaller area and has to hold stronger (either tensional or compressional)

stresses.

The shadow region in Fig. 5.5 indicates that the stable region highly depends on the size

scale. If the body size is equal to the Ostro et al. (2000) size, then the critical friction angle is 37◦.

As the size scale increases, the critical friction angle decreases down to 10◦. However, if the size

scale is larger than 1.3, the critical friction angle dramatically increases and reaches 90◦ at a size

scale of 1.36. Note that since the shape is not perfectly symmetric, σ3 maximumly includes 14 %

error, i.e., ε = 0.14.

A friction angle of a typical geological material depends on the porosity of a material [160].

(216) Kleopatra’s surface properties are comparable to lunar soil, and the surface bulk density is 3.5

g/cm3, consistent with either a solid enstatite-chondritic surface or a metallic surface with porosity

of less than 60 % [117]. However, since the earlier studies argued that the surface material may
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be highly metallic, the latter hypothesis is more reasonable. For simplicity of our discussion, we

assume the porosity of this asteroid to be 44 %, the mean of lunar soil (33 - 55 %), and the friction

angle to be 32◦ (Figures 5(a) on p.309 in Scott [160]). Thus, the structurally stable region for this

asteroid is more constrained and is now the area enclosed by the critical friction angle (the upper

bold solid line) and a friction angle of 32◦ (the bold dot-dashed line). This actual stable region

includes the size scale ranging from 1.08 to 1.34.

This gives a constraint on the size scale. (216) Kleopatra cannot hold the current neck part

unless the actual size is between 1.08 and 1.34. This implies that the Ostro et al. (2000) size, 1.00,

may be too small, while the Marchis et al. (2012) size, 1.37, may be too large. Thus, only the

Descamps et al. (2011) size is a reasonable size that can allow the original body to be structurally

stable. In addition, since this range of the size scale gives a bulk density from 2.9 to 3.8 g cm3,

our estimation is consistent with the surface reflectivity by Ostro et al. (2000) and with the mass

estimation by Descamps et al. (2011).
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Figure 5.2: Elastic solutions for α = 1.00. The stars describes the stress states of which friction
angle exceeds 50◦. The circles mean that the stress states cannot be in the elastic region, even when
the friction angle is 90◦. The dots describe the shape of (216) Kleopatra. Figure 5.2(a) indicates
the solution for Poisson’s ratio = 0.2, while Fig. 5.2(b) shows the solution for Poisson’s ratio =
0.333. It is found that different Poisson’s ratios give different results, but they have the similar
features. The stars mainly appear around the surface of the neck, while the circles are scattered
on the whole surface.
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Figure 5.3: Elastic solutions for α = 1.30. We use the definitions given in Fig. 5.2. The stars
assemble on the surface of the neck; however, in contrast to α = 1.00, their locations are the
opposite side of the neck. The circles also appear near the stars.
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Figure 5.4: Elastic solutions for α = 1.50. Again, we use the definitions given in Fig. 5.2. In this
case, the stars and circles spread out the whole neck.
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5.2.2 Surface Shedding by Dynamical Analysis

5.2.2.1 First Shedding Condition

Consider the Descamps et al. (2012) size. Figure 5.6(a) shows the zero-velocity curves at the

current spin period, while Fig. 5.6(b) describes those at the spin period at the surface shedding

condition (2.85 hr). In these figures, the red dots describe the shape projection onto the equatorial

plane, each contour curve indicates the same energy level, the asterisks give dynamical equilibrium

points. This body has four different dynamical equilibrium points: two saddle points along the

minimum moment of inertia axis and two center points along the intermediate moment of inertia

axis. At the current spin period, a massless particle on the surface is in Kleopatra’s gravity dominant

region and cannot fly off because none of the dynamical equilibrium points touch the surface (Fig.

5.6(a)). At a spin period of 2.81 hr, since the saddle point on the left side touches the surface,

small particles there should take off.

We note that Yu and Baoyin [194, 195] used the same technique given above to investigate

the zero velocity curves and the equilibrium points of (216) Kleopatra. However, we emphasize that

our computation results are different from their results by the following reason. This paper uses a

constant mass of 4.64× 1018 kg based on comprehensive observations by Descamps et al. [36]. On

the other hand, although Yu and Baoyin [194, 195] stated that Descamps et al. [36] obtained an

accurate mass, they utilized the estimations by Ostro et al. [117], i.e., a volume of 7.09× 105 km3

and a density of 3.6 g/cm3. Table 5.1 describes computational comparison between Yu and Baoyin

[194, 195] and our calculation.

Next, we discuss the spin period at the surface shedding condition in the test scale range.

Figure 5.7 indicates the relation between the spin period at the surface shedding condition (the

dotted line) and the current spin period (the dashed line). It shows that the spin period at the

surface shedding condition is always faster than the current spin period. To compare surface

shedding with structural failure, we also plot the spin period of upper bounds for the total volume,

always faster than that for the partial volume, with friction angles of 0◦, 45◦, and 90◦ by solid lines.



52

Stable region

T
o
ta

l 
V

o
lu

m
e

Solid: Slice 1

Dahsed: Slice 2

Dotted: Slice 3

P
a
rt

ia
l 

V
o
lu

m
e

Friction angle = 32o

1.0 1.1 1.2 1.3 1.4 1.5
0

20

40

60

80

Scale Size

F
ri

ct
io

n
A

n
g

le
@d

eg
D

Figure 5.5: Upper bounds for structural failure of the whole volume and the partial volume. The
narrow solid, dashed, and dotted lines show upper bounds for structural failure of slice 1, 2, and
3, respectively. The upper bold solid line shows the upper bound for the partial volume given by a
comparison of these slices, while the lower bold solid line is the upper bound for the whole volume.
The bold dot-dashed line gives a friction angle of 32◦. The shadow area is a structurally stable
region.
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Table 5.1: Comparison of the equilibrium points by Yu and Baoyin [194, 195] and our computations.
Notations Ei (i = 1, .., 4) are based on Table 1 in Yu and Baoyin [194]. We recovered their results
by our code. The outputs are slightly different from their values in Table 1 in [194] because of our
convergent threshold defined in our code.

Property Yu and Baoyin [194, 195] our computation

Volume [km3] 7.09× 105 7.09× 105

Density [g/cm3] 3.6 6.5
Mass [kg] 2.55× 1018 4.64× 1018

Equilibrium [km]

x 1.43× 102 1.66× 102

E1 y 2.44 2.27
z 1.18 7.91× 10−1

x −1.45× 102 −1.67× 102

E2 y 5.19 4.97
z −2.72× 10−1 −5.47× 10−2

x 2.22 1.26
E3 y −1.02× 102 −1.31× 102

z −2.72× 10−1 1.71× 10−1

x −1.17 −1.59
E4 y 1.01× 102 1.30× 102

z −5.46× 10−1 −3.32× 10−1
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Since the spin period at the surface shedding condition is always faster than that of upper bounds

for structural failure of the total volume, the body experience structural failure first. The current

spin period cannot be faster than the spin period at the surface shedding condition in the test scale

range.

Although the spin period at the surface shedding condition is obtained numerically, the force

balance between the gravity and the centrifugal force, i.e., rOstroαΩ2
cr ∝ GM/(rOstroα)2, gives an

analytical trend as

Tcr ∝ α3/2, (5.1)

where rOstro is the distance between the origin and the surface of (216) Kleopatra with the Ostro

et al. (2000) size, M is the mass, α is the size scale, Ωcr is the spin rate at the surface shedding

condition, and Tcr = 2π/Ωcr.

5.2.2.2 Hypothesis of the Origin of the Satellites

This section discusses the formation of the satellites. Descamps et al. [36] argued that these

satellites may be byproducts of a spin-up process leading to surface shedding. We use the technique

for determining the surface shedding condition. Since we have already seen the zero-velocity curves

of this asteroid earlier, we only track the location of the equilibrium points. The physical properties

of the satellites are introduced in Descamps et al. [36] (Table 1.2) and the orbital planes of the

satellites are assumed to be parallel to the equatorial plane of (216) Kleopatra.

We consider the satellites to be small, uniform spheres and call these satellites the test bodies.

Initially, the test bodies are located at the edges along the minimum moment of inertia axis. The

conservation of the total angular momentum gives the initial spin period, implying that we neglect

any mass ejection other than surface shedding forming the satellites. On the assumption of zero

eccentricity, the initial spin rate of (216) Kleopatra, ω0, is given as

ω0 =
Izωc +m1R1Ω

2
1 +m2R2Ω

2
2

Iz + (m1 +m2)r2Ostroα
2
, (5.2)
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where mi and Ri, (i = 1, 2), are the mass and the current distance from the center of mass,

respectively. Iz is the moment of inertia of the z axis. ωc is the current spin rate. Substitutions of

the physical values on Table 1.2 into this equation determines the initial spin period as 5.086 hr.

In this model, if the shedding condition of the test bodies satisfies, it is possible for these

bodies to initiate the satellites’ formation. This is equivalent to the condition where the saddle

points are closer to the surface than the center of mass of the test bodies at this spin period.

However, in this analysis, to make a stronger condition, we define that the test bodies lift off

when the distance between the saddle points and the surface is less than the sum of these bodies’

diameters, i.e., 15.8 km.

Figure 5.8 shows the distance of the saddle points from the surface (the solid lines) and a

distance of 15.8 km (the dashed line). Since surface shedding may occur on the left and right

sides at almost the same rotation period, we track the distances of both of these points. The

saddle point on the left side is always closer to the surface. The result shows that in the test scale

range, the distances between the saddle points and the surfaces are never shorter than 15.8 km,

and the test bodies cannot lift off the surface. It implies that the satellites do not result from

surface shedding due to static spin-up, but may involve other processes such as reaccumulation of

an impact-generated debris disk.

5.3 Plastic Deformation Modes by Finite Element Modeling

In the previous section, we used limit analysis to determine lower and upper bounds for

structural failure. To determine a lower bound condition, we calculated elastic solutions by finite

element model. To consider an upper bound condition, we investigated the yield condition of the

averaged stress over a target volume. These analysis techniques are useful when used to estimate

rough conditions for structural failure. However, these techniques may be limited to determine

detailed failure modes of structural failure. Using the finite element model developed in the previous

section, we analyze detailed failure modes of (216) Kleopatra. Here, we set a friction angle of 35◦,

which is different from the setting used for the upper bound calculation, i.e., 32◦. However, this
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difference is negligible for the finite element model, especially, determination of cohesive strength.

The results are tabulated in Table 5.2.

Consider the Ostro et al. (2000) size, i.e., the body with a size scale of 1.00. The bulk density

for this case is 6.7 g/cm3. Figure 5.9 shows the stress ratio of the solution from different views and

the total mechanical strain, i.e., the sum of plastic strain and elastic strain. Figures 5.9(a) through

5.9(c) describe the surface, the cross section normal to the y axis, and the cross section normal to

the x axis, respectively. In these plots, the red regions show the stress ratio, N , ranging from 0.95

to 1.01, while the different-colored regions describe elastic regions, i.e., N < 0.95. Figure 5.9(d)

shows the total mechanical strain in the x axis. This plot indicates that the bottom of the neck

experiences strong negative strain, while the top of the neck does not; therefore, the failure mode

would result from a moment bending the body downward and a strong compression of the neck.

The critical cohesive strength is 1.77 × 103 kPa. If cohesive strength is lower than this value, the

solution cannot converge because the plastic region expands over the cross section of the neck and

the body collapses.

The Descamps et al. (2011) size is the body with a size scale of 1.22. For this case, the bulk

density is calculated as 3.6 g/cm3. Figure 5.10 describes the stress ratio and the total mechanical

strain for this case. Compared to the Ostro et al. (2000) size, the Descamps et al. (2011) size

does not have strong strain in the internal body (Fig. 5.10(d)), but experiences plastic deformation

on the majority of the surface (Figs. 5.10(a) through 5.10(c)). This indicates that although the

internal structure is stable, the majority of the surface is quite sensitive to structural failure. In

other words, the internal structure is elastic and can still hold the shape of the body. The critical

cohesive strength for this case is 2.54×102 kPa, a factor of ∼ 7 less than that of Ostro et al. (2000)

size.

For the Marchis et al. (2012) size, i.e., the body with a size scale of 1.36, the bulk density is

2.5 g/cm3. The critical cohesive strength is computed as 6.85× 102 kPa, 2.5 times as large as that

of the size scale 1.22. With this cohesive strength, the top of the neck deforms plastically (Figs.

5.11(a) through 5.11(c)). The mechanical strain is tensile over the neck, especially, at the top of the
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neck (Fig. 5.11(d)). Therefore, the failure mode of this size would result from a moment bending

the body downward and a catastrophic stretching of the neck.

The previous section concluded that under the assumption that materials of (216) Kleopatra

are cohesionless, (1) only the Descamps et al. (2011) size is structurally stable and (2) the neck is

the most sensitive part to structural failure. Specifically, applying limit analysis to the cross section

of the neck, they investigated its sensitivity to structural failure. From the present study, on the

other hand, we give new implications of possible failure modes of (216) Kleopatra.

Although in the previous section we assumed that materials of the body are cohesionless,

we confirm that for the shape model used here, cohesive strength cannot be ignored to keep its

shape. To obtain converged solutions, the Ostro et al. (2000) size, the Descamps et al. (2011) size,

and the Marchis et al. (2012) size need minimum cohesive strength of 1.77 × 103 kPa, 2.54 × 102

kPa, and 6.85 × 102 kPa, respectively. This indicates that it is necessary for this body to have

cohesive strength on the order of 100 kPa - 1000 kPa to keep the original shape. Our results may

show that cohesive strength needed for asteroids is higher than that predicted by the preceding

studies. Sánchez and Scheeres [135] reported that for a hundred-meter-sized asteroid the order of

cohesive strength may be less than a few hundred pascals. Considering the mutual dynamics and

breakup condition, Hirabayashi et al. [58] (see Chapter 7) also obtained cohesive strength of main

belt comet P/2013 R3 (about hundred meters in size) as 40 - 210 Pa.

The first explanation for this difference is that our analysis calculates not true cohesive

strength but apparent cohesive strength, which depends on pressure. For the second explanation,

different pressures would change the mechanism of cohesive strength. For a small body with a few

hundred meters in size (on the surface, the gravitational acceleration is on the order of 1 × 10−4

m/s2), since internal packing may be loose, it may be reasonable to model cohesive strength by

van der Waals forces [135]. However, for a large body with a few hundred kilometers in size (on

the surface, the gravitational acceleration is on the order of 1× 10−2 m/s2), the internal structure

would have much higher pressure, probably causing tighter bonding and additional attractive forces,

which may give stronger cohesive strength. In fact, as seen in Sullivan et al. [172], packing effects
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may cause additional cohesion.

On the other hand, referring to Housen and Holsapple [71], Holsapple [64] proposed size-

dependent cohesive strength. Based on impact experiments of Georgia Keystone granite specimens,

he formulated it as κr−1/2, where κ is a constant value and r is the radius of an asteroid. This

formula shows that cohesive strength decreases as the size increases. Applying this formula with

κ = 2.25 × 108 dynes/cm2 = 22.5 MPa, defined by Holsapple [64], we obtain cohesive strength of

a body of similar size to (216) Kleopatra on the order of 100 kPa, the same order as obtained in

the present analysis. Furthermore, Lambe and Whitman [91] noted that the cohesive strength of

overconsolidated clay is on the order of 1000 kPa, so cohesive strength on the order of 100 kPa -

1000 kPa is still in the realm of loose materials. Therefore, it is still reasonable to consider (216)

Kleopatra to be a rubble pile.

While the previous section pointed out that the stress state at the neck transits from compres-

sion to tension as the size increases, the present finite element model shows a detailed deformation

process for each size scale. With a bulk density of 6.7 g/cm3 and cohesive strength of 1.77 × 103

kPa, the Ostro et al. (2000) size could have compressive failure at its neck. For this case, because

of the high density, since the gravitational force exceeds the centrifugal force, the neck, the narrow-

est part in the body, has to hold stronger compressive stresses. The deformation process results

from a moment bending the body downward (Fig. 5.9(d)). While the top of the neck experiences

mild compression and its stress state is elastic, the bottom fails plastically and cannot hold the

original shape. On the other hand, the Marchis et al. (2012) size, the body with a bulk density

of 2.5 g/cm3, has strong tension at the top of the neck due to the centrifugal forces exceeding the

gravitational forces if cohesive strength is less than 6.85× 102 kPa. For this case, the failure mode

would result from strong tension at the top of the neck, causing downward-bending of this body

and a catastrophic stretch eventually.

The Descamps et al. (2011) size has a bulk density of 3.6 g/cm3. Although the previous

section stated that this size may be structurally stable, with cohesive strength of 2.54 × 102 kPa,

we identify structurally unstable regions over the surface. Since the propagation of the yield
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Table 5.2: Critical failure mode conditions.

Property Small size Intermediate size Large size

Size scale 1.00 1.22 1.36
Mean radius [km] 55.3 67.5 75.3
Density [g/cm3] 6.7 3.6 2.5
Cohesive strength [kPa] 1.77× 103 2.54× 102 6.85× 102

Max. stress ratio 1.004 1.008 1.002
Failure mode Compression Landslides Tension

condition over an arbitrary slope triggers landslides [112, 55], a body with this size and with this

critical cohesive strength would probably experience large-scale landslides, but would not have

catastrophic structural failure. Note that the current regions of “landslides” could be made stable

by small variations in the slope of the body due to the uncertainties in the shape model. Thus, an

improved shape model could have the potential to decrease the critical cohesive strength necessary

to keep the current slope at the Descamps et al. (2011) size.

5.4 Conclusion

This chapter showed the application of the dynamical analysis for determining surface shed-

ding and the averaged technique for giving an upper bound condition of structural failure to (216)

Kleopatra to determine a structurally stable size of this object. Also, we used a finite element

model that takes into account plastic deformation. The result showed that a structurally stable

size ranges between 1.08 and 1.34, which is consistent with the size estimated by Descamps et al.

[36]. The formation of the satellites of (216) Kleopatra may not result from not surface shedding

but, probably, reaccumulation due to an impact. The finite element analysis indicated that (216)

Kleopatra has to have cohesion to keep its original shape and could have different failure modes

with respect to its size. The Ostro et al. (2000) size, the Descamps et al. (2011) size, and the

Marchis et al. (2012) size required apparent cohesive strength of 1.77 × 103 kPa, 2.54 × 102 kPa,

and 6.85× 102 kPa, respectively. For the failure modes of (216) Kleopatra, the Ostro et al. (2000)

size would experience compression of the bottom of the neck, the Descamps et al. (2011) size would
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have global landslides on the surface, but would not have internal failure, and the Marchis et al.

(2012) size would fail due to tension of the top of the neck.
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Figure 5.6: Zero-velocity curves for a size scale of 1.22, i.e., the Descamps size. Figure 5.6(a) shows
the curves for the current spin period, i.e., 5.385 hr, and 5.6(b) describes those for a spin period of
2.81 hr at which the equilibrium point on the left reaches the surface.
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Figure 5.7: Spin period of the surface shedding condition (the dotted line) and upper bound condi-
tions for structural failure of the partial volume (the solid lines). For the upper bound conditions,
we show the cases with φ being 0◦, 45◦, and 90◦.
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Figure 5.8: Relation between the distance of the equilibrium points from the surface (the solid
lines) and the minimal distance where material shedding does not occur, i.e., 15.8 km (the dashed
line). This plot shows the case of a spin period of 5.086 hr. The period is obtained by Eq. (5.2).
The necessary condition of material shedding originating the satellites is that the equilibrium point
on the left goes below the minimal distance.
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(a) (b)

(c) (d)

Figure 5.9: Compressional failure mode for the size scale 1.00. Figures 5.9(a) through 5.9(c) show
the stress ratio, defined in Eq. (4.15), from different views. If the stress ratio is 1.0 within a 1
% error, the regions are considered to have plastic deformation. Figure 5.9(d) describes the total
mechanical strain in the x axis.
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(a) (b)

(c) (d)

Figure 5.10: Surface failure mode for the size scale 1.22. Similar to Fig. 5.9, Figs. 5.10(a) through
5.10(c) show the stress ratio from different views. Figure 5.10(d) describes the total mechanical
strain in the x axis.
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(a) (b)

(c) (d)

Figure 5.11: Tensional failure mode for the size scale 1.36. Figures 5.11(a) through 5.11(c) show
the stress ratio, while Fig. 5.11(d) indicates the total mechanical strain in the x axis.



Chapter 6

Application: Survey

This chapter explores the first failure mode of 21 asteroid shape models due to a YORP-

type spin-up. Specifically, we determine the spin rate and the friction angle for the first failure,

considering two body failure modes: material shedding from an asteroid’s surface and structural

failure of a body. We assume that asteroids’ materials are uniformly distributed (i.e., constant

density) and cohesionless and the friction angle is 40◦. The friction angle used here is different

from that defined in the previous chapters. However, since the friction angle of a typical geological

material ranges between 25◦ and 45◦ degrees, the value chosen here is still useful to consider the

internal structure of an asteroid. We only take into account the centrifugal and self-gravitational

accelerations. This chapter studies those failure modes by using different techniques. Surface

shedding is given by the spin rate at which one of the equilibrium points touches an asteroid’s

surface, while structural failure is investigated by limit analysis, which provides the upper bound

of structural failure. Using these methods, we determine the first failure mode of real shapes. The

results show that real shapes are quite different from ellipsoids. All ellipsoids experience structural

failure first, while real shapes may not. To determine the failure modes of each asteroid, we also

propose a shape classification of asteroids according to their shape types (‘sphere’, ‘ellipsoid’, and

‘bifurcation’) and the two failure modes. It shows that all the asteroids settle into four different

classes: (i) a spherical body undergoing structural failure, (ii, iii) ellipsoidal bodies experiencing

either structural failure or surface shedding, and (iv) a bifurcated body failing by structural failure.

Furthermore, for asteroids spinning near the spin limit, our technique re-evaluates their bulk density
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estimated by earlier works. Specifically, some bifurcated shapes are sensitive to structural failure,

so their bulk density can be constrained.

6.1 Outline of the Present Chapter

This chapter focuses on failure modes due to a YORP effect. Note that some asteroids are

too large to be influenced by a YORP-induced spin. Those asteroids’ spins may be accelerated

by different mechanism such as small impacts and tidal effects. We do not discuss how they can

accelerate. The main contributions of this chapter is (i) to develop a way to determine the first

failure mode of general asteroids’ shapes and (ii) to classify 21 shape models according to their

shapes and the first failure modes.

This chapter considers two failure modes: dynamical failure due to shedding of loose mate-

rial from the surface and structural failure due to plastic collapse of a body. Surface shedding is a

process wherein surface particles are lofted from the surface due to centrifugal accelerations over-

coming gravitational accelerations. This mode causes a body to lose material from its extremities,

where it undergoes further evolution. We compute the first condition of this mode by tracking

the dynamical equilibrium points. On the other hand, structural failure occurs when uncontained

plastic flow propagates over a large area that connects the surface. This failure mode causes a body

to catastrophically deform and eventually break into smaller components. To find the condition, we

calculate the upper bound condition in terms of limit analysis. Note that some researches reported

that these two modes are highly correlated. However, understanding this correlation is beyond this

chapter, so we will study it in the future.

We have notes for the present research. (i) This analysis only takes into account self-gravity

and centrifugal forces. (ii) We assume that a body spins in a principal axis mode, has a homoge-

neous density distribution, is cohesionless, and has a friction angle of 40◦, which is within usual

friction angles ranging 25◦ between 45◦. (iii) We consider uncertainty of the density if the mass

was accurately determined; otherwise, we assume that the density is 2.5 ± 1.5 g/cm3. (iv) the

shape models are downloaded from Asteroid radar research (http://echo.jpl.nasa.gov) and from
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the planetary data system (http://sbn.psi.edu/pds). Those shapes and sizes are supposed to be

accurate, so we fix them in this analysis. (v) We assume that materials of all asteroids discussed

here are elastic-perfectly plastic. (vi) For (29075) 1950 DA, there are two available models: the

prograde and retrograde models. Busch et al. [19] obtained these models due to uncertainty of

the pole direction. Because of the large uncertainty in the pole directions (±20◦), if the prograde

pole direction is changed one way, the model needs a larger equatorial extent to match the echo

bandwidth, so it becomes closer to the nominal retrograde shape. Likewise, less oblateness is con-

sistent with retrograde rotation if the pole is shifted from the retrograde nominal (Busch, 2013,

personal communication). Since studying several possible models for one asteroid is also of interest,

we analyze these models as different objects.

We outline the discussions of this chapter. First, we introduce techniques for determining

surface shedding [52] and for obtaining structural failure [65]. Second, we use these techniques to

recover the earlier studies about an uniformly rotating cohesionless ellipsoid (see [70, 52]). Note

that we use a technique for determining structural failure of general bodies, so Holsapple’s limit

analysis [70] for an ellipsoid cannot be used. Instead, to determine the upper bound in terms of

limit analysis, we apply the theorem by Holsapple [65]. Technically, this method is identical to a

first moment average technique; however, since the theorem comes from limit analysis, it guarantees

the upper bound of structural failure. Last, as a new scientific contribution, this chapter classifies

21 asteroid shape models according to their shape and failure modes.

6.2 Analytical Parameters for Shape Investigation by the Upper Bound

Technique

In this section, we define four parameters used in the analysis of real shapes. The first and

second parameters are related to structural failure, the third parameter represents the first shedding,

and the last parameter characterizes the zero-tension condition in terms of the area stress.

To define the parameters related to structural failure, we review the MC yield criterion first.

In Eq.(3.1), we described the criterion as a function of the friction angle and the principal stress
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components of the stress-average. However, the stress-average only depends on the spin rate ω, the

density ρ, and the shape geometry Θ. Since the present study considers the condition of a constant

density, we can remove ρ from our discussion. Therefore, Eq.(3.1) is now rewritten as

g(ω,Θ, φ) ≤ 0. (6.1)

Note that Θ is usually complex and cannot easily be expressed.

The first parameter is the minimal friction angle associated with the stress-average. We

obtain this parameter by considering the upper bound theorem. This friction angle, which depends

on the choice of the stress-average, is identical to the minimal friction angle where the original

body does not experience structural failure of either the entire volume or the partial volume. This

friction angle φ∗h, where index h is either t or p, can be obtained as

φ ≥ φ∗h = Ψ1(ω,Θ), (6.2)

where Ψ1(ω,Θ) is a function given based on the equation g(ω,Θ, φ) = 0.

The second parameter is the threshold of the spin rate associated with the stress-average.

Any spin rate above this threshold leads structural failure. In contrast to the first parameter, it

cannot be obtained uniquely because of φ in g(ω,Θ, φ), which is usually unknown. Here, we choose

a constant value φF for φ. We will show φF in the next section. On this assumption, the maximal

spin rate can be obtained as

ω ≤ ω∗h = Ψ2(Θ), (6.3)

where Ψ2(Θ) is given by the equation g(ω,Θ, φF ) = 0. Since this equation is a function of shape

geometry, this parameter is useful to express it. For this reason, this chapter will use ω∗t to

characterize bodies’ shapes by the failure modes and call this value an effective shape. Comparing

the effective shape of real shapes with that of ellipsoids allows us to visualize the shape dependency

of failure modes.

The third parameter is based on the first shedding. We define the spin rate at which material

shedding starts. Any spin rate above this condition causes a body to experience surface shedding.
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We can express the spin rate of the first shedding ω3 as

ω ≤ ω3 = Ψ3(Θ), (6.4)

where Φ3(Θ) can be obtained by considering the equilibrium condition of Eq.(2.1).

The fourth parameter is the spin rate at which the area stress experiences zero-tension some-

where except for the edges along the minor principal axis. The area stress, T̄ a11, is the averaged

stress over a cross section perpendicular to the minimum moment of inertia axis and is a function

of the location of the cross section x, as well as ω and Θ. The details are described in Sec. 6.3.2.3.

Then, the zero-tension condition can be written as

ω ≤ ω∗a = Ψ4(Θ, x), (6.5)

where Ψ4(Θ, x) is a function given by T̄ a11(ω,Θ, x) = 0. x must be xmin + ε ≤ x ≤ xmax − ε, where

xmin and xmax are the location of the edges (leftmost and rightmost) and ε is an infinitesimal

positive constant.

6.3 Surface Shedding and Structural Failure of a Uniformly Rotating Ellip-

soid

Before studying surface shedding and structural failure of real shapes, we consider those of

a uniformly rotating cohesionless ellipsoid. Since an ellipsoid is geometrically simple, the results

obtained here are trivial, which, again, is obvious from the analysis by Holsapple [70]. However,

comparing these results with real shapes is useful to show that simple theories for an ellipsoid can

not be applied to real shapes any more.

We use normalized values in the following text. Let us consider an ellipsoid with dimensions

of 2a by 2b by 2c, where a > b > c, spinning with the spin rate ω. Dimensionless lengths are

given dividing the dimensional lengths by a. The normalized size of an ellipsoid is described

as (1, β, γ) = (a/a, b/a, c/a). Similarly, normalized positions are denoted by (x1, x2, x3). The

dimensionless spin rate of ω is denoted by Ω = ω/
√
πρG. Dimensionless potential U is defined
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using dimensional potential Û : U = Û/πρGa2. Also, the body force component bi and the stress

component σij are normalized by πρGa and πρ2Ga2, respectively. Without confusion, we keep

using the same notations to express these quantities.

According to MacMillan [96], U can be expressed as a quadratic form with shape parameters

Ak (k = 0, x1, x2, x3):

U = −A0 +A1x
2
1 +A2x

2
2 +A3x

2
3, (6.6)

where

A0 = βγ

∫ ∞
0

du

∆
, (6.7)

A1 = βγ

∫ ∞
0

du

(u+ 1)∆
, (6.8)

A2 = βγ

∫ ∞
0

du

(u+ β)∆
, (6.9)

A3 = βγ

∫ ∞
0

du

(u+ γ)∆
, (6.10)

where

∆ =
√

(u+ 1)(u+ β)(u+ γ). (6.11)

Note that we fix these parameters as constant values.

bi consists of two terms: the gravitational and centrifugal accelerations. The gravitational

acceleration is given as

−∂U
∂xi

= −2Aixi. (6.12)

The centrifugal acceleration is given as Ω2[x1, x2, 0]T . Summing these accelerations, we obtain the

components of the body force as 
b1

b2

b3

 =


(−2A1 + Ω2)x1

(−2A2 + Ω2)x2

−2A3x3

 . (6.13)
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6.3.1 Surface Shedding Condition

For a rotating ellipsoid, there are four equilibrium points: two saddle points along the minor

principal axis and two center points along the intermediate principal axis [140]. As a solid ellipsoid

spins faster, the centrifugal acceleration on the surface increases. The first shedding occurs when

the saddle points touch the surface. Here, we can determine this condition by considering bi = 0

at the extremities along the minimal principal axis. Since those extremities are [±1, 0, 0], the x2

and x3 components are always zero. On the other hand, the x1 component gives the first shedding

condition:

Ω ≤ Ω3 = Ψ3(A1) =
√

2A1. (6.14)

6.3.2 Structural Failure

The following sections introduce limit analysis associated with the volume-average stresses.

We emphasize that the present chapter considers a zero-cohesion condition, which guarantees that

theoretically, the lower and upper bounds of structural failure are identical. It implies that for an

ellipsoid, any average techniques give the same results. However, in real shapes, this feature can

no longer hold. The purpose of this section is to demonstrate the analysis technique used for real

shapes.

6.3.2.1 Total Volume Stresses

We consider limit analysis associated with the total volume stress to determine the upper spin

limit of structural failure of the entire volume. Here, we derive two important physical parameters:

the minimal friction angle φ∗t and the maximal spin rate Ω∗t to keep the original shape. We use φ∗t to

determine the constraints given by the upper bound for the entire volume. On the other hand, Ω∗t

was given by Holsapple [63] who stated, “at all points, the maximal and minimal principal stresses

satisfy the yield criteria; so integrating over the body, the average maximal and minimal principle

stresses satisfy the same criteria.” Again, this statement is true only if one considers a rotating
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cohesionless ellipsoid.

The use of Eq. (3.17) yields the averaged stress over the whole volume of a uniformly rotating

ellipsoid, later known as the total volume stress, which is written as (see e.g., [63]):

σ̄t1 =
1

5
(Ω2 − 2A1),

σ̄t2 =
1

5
β2(Ω2 − 2A2), (6.15)

σ̄t3 = −2

5
γ2A3.

Substituting the total volume stress into the MC yield criterion, we obtain the relation

between the friction angle and the spin rate:

∆1 secφ+ ∆2 tanφ ≤ 0, (6.16)

where

∆1 = Ω2 − 2A1 + 2γ2A3,

∆2 = Ω2 − 2A1 − 2γ2A3.

From Eq.(6.16), we obtain the minimal friction angle that the body does not experience structural

failure. Therefore, this inequality yields

φ ≥ φ∗t = arctan

[
Ω2 − 2A1 + 2γ2A3

2
√
−2γ2(Ω2 − 2A1)A3

]
. (6.17)

When the equality satisfies, the stress states of all the elements in the body are on the MC yield

envelope. Since Ai and γ are constant, φ∗t is a function of Ω. Equation (6.17) gives an interesting

insight of the stress state. In the denominator, since there is only the square root part, the inside

of it should be positive. From γ ≥ 0 and Az ≥ 0, the following condition must be satisfied:

Ω2 − 2A1 ≤ 0. (6.18)

On the other hand, in the numerator, since φ∗t ≥ 0,

Ω2 − 2A1 + 2γ2A3 ≥ 0. (6.19)
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Those conditions are the necessary condition of φ∗t ≥ 0.

Let us depict φ∗t . Figure 6.1 shows φ∗t as a function of Ω∗t . Figure 6.1(a) and 6.1(b) indicate

β = 0.4 and β = 0.95, respectively. Each line is for different γ. The results show that there is a

point where φ∗t = 0, which can be written as

Ω�t = Ω(φ∗t = 0◦) =
√

2(A1 − γ2A3), (6.20)

under Ω2 − 2A1 < 0. We denote this point by Ω�t . Since Ω�t is a function of A1, A3, and γ, it only

depends on the shape. At this point, the curves flip over non-smoothly and change the sign of their

inclination. Hereafter, we call the region Ω < Ω�t Region 1 and the region Ω ≥ Ω�t Region 2.

φ∗t varies according to γ. If γ � β, φ∗t keeps high values in both Region 1 and Region 2, but

has high slopes near Ω�t to reach zero degrees. On the other hand, if γ ∼ β, φ∗t keeps low values,

which may be near zero degrees, in Region 1, while it gradually increases as Ω gains in Region 2. It

can be found that for any shapes, the body structure relaxes near Ω�t , while it can be constrained

at both fast and slow rotations. Note that we use a term “relax”, when the minimal friction angle

keeps low values.

Similarly, Ω∗t can be given as

Ω∗t =

√
2(A1 − γ2A3) + 2(A1 + γ2A3) sinφ

1 + sinφ
. (6.21)

As mentioned earlier, Holsapple [63] derived a generalized form of limit spin. According to Table

1 in his paper, Eq.(6.21) is identical to the form for Case 6 where σ3 < σ2 < σ1. Note that the

friction angle in this equation is defined as the actual friction angle φF , so Ω∗t becomes a function

of the shape information.

Let us discuss the relation between structural failure and surface shedding. The first shedding

condition was given in Eq.(6.14), while the structural failure condition was shown in Eq.(6.21). Let

us take a limit of Ω∗t , as φ approaches 90◦:

lim
φ→90◦

Ω∗t =
√

2A1. (6.22)
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Figure 6.1: φ∗t vs. Ω∗t for an ellipsoid. (a) is for β = 0.4 and (b) is for β = 0.95.
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This result is identical to Ω3. It means that both structural failure and surface shedding occur at

the same time only if φ = 90◦. Consequently, we obtain the relation:

Ω∗t ≤ Ω3. (6.23)

We show this relation by using Holsapple’s well-known limit spin plot (Fig.6.2). The blue

lines describe Ω∗t (equivalent to the results by Holsapple [63]), while the dashed red line indicates

Ω3. Figure 6.2(a) and 6.2(b) show the cases of γ = 0.9β and γ = 0.5β, respectively. Note that the

plots only show tension regions. It is clear that for both cases, the first shedding is equivalent to

structural failure at φ = 90◦.

We also introduce the first shedding condition of a perfect sphere. Since A1 = A3 = 2/3 and

γ = 1, the limit spin Ω∗sph can be obtained analytically:

Ω∗sph =

√
8

3

sinφ

1 + sinφ
. (6.24)

Ω∗sph is always greater than or equal to Ω∗t of any ellipsoidal shapes:

Ω∗sph ≥ Ω∗t . (6.25)

As mentioned earlier, this study assumes that asteroids are composed of materials with a

friction angle of 40◦, i.e., φ = φF = 40◦. Therefore, Ω∗t can be rewritten as

Ω∗t = 0.78
√

3.29A1 − 0.71γ2A3. (6.26)

On the other hand, Ω∗sph can be

Ω∗sph ∼ 1.07. (6.27)

Those results must hold the relation by Eq.(6.25). For a sphere, Ω∗t is equivalent to Ω∗sph ∼ 1.07.

Therefore, if Ω∗t ∼ 1.07, the shape can be considered a body that may fail like a sphere; otherwise,

the failure will look differently. Later, we classify the shapes of real asteroids based on Ω∗sph.
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6.3.2.2 Partial Volume Stress

The partial volume stress is a stress-average over a given slice perpendicular to the minor

principal axis, which can be written in Eq.(3.17). This study considers a slice given by slicing

through two different cross sections, x = ξ− and x = ξ+, where ξ− < ξ+. We choose the middle

component as the slice. The partial volume stress over the slice is now given as

σ̄p1 =
1

4
(Ω2 − 2A1)ψ(ξ+, ξ−),

σ̄p2 =
1

4
β2(Ω2 − 2A2)ψ(ξ+, ξ−), (6.28)

σ̄p3 = −1

2
γ2A3ψ(ξ+, ξ−),

where

ψ(ξ+, ξ−) =
ψ1 − 2

3ψ3 + 1
5ψ5

ψ1 − 1
3ψ3

. (6.29)

ψ1, ψ3, and ψ5 are described as

ψ1 = ξ+ − ξ−,

ψ3 = ξ+3 − ξ−3,

ψ5 = ξ+5 − ξ−5.

As mentioned earlier, for a rotating cohesionless ellipsoid, any results are identical to those

of the total volume stress. Again, it comes from the fact the lower and upper bounds are the same

everywhere in the body. This feature can also be seen by the partial volume stress in Eq.(6.28).

The function ψ(ξ+, ξ−) in the components can be eliminated when substituted into the MC yield

criterion. As a result, for any ellipsoidal shapes, only the same terms as the total volume stress

remain, which leads the same results as Eq.(6.17) and (6.21):

φ∗p = φ∗t , (6.30)

Ω∗p = Ω∗t , (6.31)

where φ∗p and Ω∗p are quantities associated with the partial volume stress.
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6.3.2.3 Area Stress

The area stress is defined as the averaged stress over a cross section perpendicular to the

minimum moment of inertia axis. Here, we derive the area stress from the partial volume stress

to show that the area stress is a special case of the partial volume stress. We take a limit of the

partial volume averaged stress, as ξ− and ξ− approach ξ, where ξ is the location of a cross section.

Then, the limit of the partial volume stress is given as

σ̄a1 =
1

4
(Ω2 − 2A1)(1− ξ2),

σ̄a2 =
1

4
β2(Ω2 − 2A2)(1− ξ2), (6.32)

σ̄a3 = −1

2
γ2A3(1− ξ2).

As seen by this equation, the limit case of the partial volume stress is represented by a simple

quadratic function in terms of ξ. T̄ a11 defined above is identical to σ̄a1 .

Let us consider the MC yield condition associated with σ̄ai , which can be written as

σ̄a1 =
1− sinφ

1 + sinφ
σ̄a3 . (6.33)

σ̄a1 is now dependent on φ and σ̄a3 . As seen in Eq.(6.32), σ̄a3 is independent of the spin rate and is

a negative constant. For this reason, σa1 ≤ 0. If 0◦ ≤ φ < 90◦, then σ̄a1 < 0; on the other hand, if

φ = 90◦, then σ̄a1 = 0. Therefore, considering the condition φ = 90◦ is identical to the technique

by Davidsson [34]. This relation was also commented by Sharma [161]. For this reason, our partial

technique gives a more accurate condition of structural failure.

The condition σ̄a1 = 0 gives another important insight for the first shedding. 1− ξ2 is a non-

zero term if −1 < ξ < 1. To obtain the zero-tension condition everywhere, we have the following

condition:

Ω2 − 2A1 = 0. (6.34)

This condition is equivalent to the first shedding condition Ω3. This comes from the fact that the

zero-tension condition is given by the force balance along the minor principal axis and is identical
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to the first shedding condition. We can summarize those relations:

Ω∗a = Ω3 =
√

2A1

= Ω∗t (φ = 90◦) = Ω∗p(φ = 90◦). (6.35)

6.4 Asteroid Physical Properties

The physical properties of asteroid shape models used in the current survey are described in

this section. Table 6.1 summarizes the properties. The following analysis considers the volume and

the shape as fixed properties. For density, only a few studies estimated an accurate bulk density

of an asteroid, so the bulk density of other asteroids is assumed to be 2.5 ± 1.5 g/cm3. On the

table, an asteroid’s name is marked by ∗, if its density was estimated accurately. Each data type

is characterized by either ‘R’ or ‘S’. The former letter means radar observations, while the latter

letter indicates spacecraft explorations. Furthermore, the dimensions and the volume are calculated

based on the shape models. The following list introduces the pole direction for each asteroid by

(λ, β) for the J2000 ecliptic longitude and latitude or by (α, δ) for the J2000 right ascension and

declination.

6.4.1 (243) Ida

Using the Galileo images, Thomas et al. [177] resolved the shape of (243) Ida. The volume

is 16100± 1900 km3 and the rotation period is 4.63 hr. From orbital motion of a satellite, Belton

et al. [6] estimated the primary mass as 4.2 ± 0.6 × 1016 kg and the density as 2.6 ± 0.5 g/cm3.

Belton et al. [6] described the mass as 4.2± 0.6× 1019 kg, but it is a typo. The pole direction was

evaluated as α = 348.8◦, δ = 87.1◦.

6.4.2 (433) Eros

(433) Eros was observed by the Near Earth Asteroid Rendezvous (NEAR) mission which

determined the shape, gravity, and rotational state from radiometric tracking data, optical images,
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and NEAR laser rangefinder (NLR) data. The mass is 6.6904± 0.003× 1015 kg, while the rotation

period is 5.270 hr. The volume was obtained as 2503± 25 km3. The pole direction was estimated

as α = 11.3692±0.003◦, δ = 17.2273±0.006◦. The bulk density was estimated as 2.67±0.03 g/cm3

[107]. The shape model was derived by Gaskell [49], using NEAR MSI images.

6.4.3 (1580) Betulia

(1580) Betulia was investigated by radar observations and photometric light curves. Magri

et al. [101] confirmed that the spin period from radar observations corresponds to 6.138 hr, which

was obtained by Kaasalainen et al. [85] who inverted light curve data to determine the spin vector,

as well as a convex-definite shape model. Kaasalainen et al. [85] estimated the pole direction as

λ = 136◦, β = 22◦. From the OC albedo value, Magri et al. [101] mentioned, “the near-surface

bulk is less than 2.4 g/cm3, an upper limit that is consistent with C-class taxonomy (for lunar-like

50% regolith porosity) but is not very restrictive.” Also, their volume estimation was 82km3±30%.

6.4.4 (1620) Geographos

(1620) Geographos is considered a highly elongated shape spinning relatively fast. Magnusson

[98] estimated the spin period as 5.233 hr and the pole direction as λ = 55 ± 6◦, β = −46 ± 4◦.

From radar observations, Ostro et al. [118] concluded that the surface bulk density is between 2

and 3 g/cm3. Hudson and Ostro [72] developed a physical model of this asteroid from radar and

optical data.

6.4.5 (2063) Bacchus

Benner et al. [7] performed radar observations of (2063) Bacchus. Inducing a realistic bulk

density for this asteroid, their modeling analysis concluded that this asteroid is not a binary con-

figuration. The rotation pole was estimated as λ = 24◦, β = −26◦. They implied that the plausible

density may be less than 3.6 g/cm3 from Bacchus meteorite analogues. The side rotation period

estimated by Benner [7] is 15.0± 0.2 hr, while that by light curve observations [128] is 14.90 hr. In
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this study, the period by Pravec et al. [128] is used as a fixed value.

6.4.6 (2100) Ra-Shalom

Shepard et al. [166] investigated (2100) Ra-Shalom, a K-class asteroid, using Multi-wavelength

observations. (2100) Ra-Shalom spins with a period of 19.793± 0.001 hr. For the pole estimation,

their solution for the ecliptic longitude was λ = 75◦ ± 10◦, consistent with the pole reported by

[85], but there were two possible solutions for the ecliptic latitude, β = 16◦, 60◦. They chose the

best model with a pole of β = 16◦ consistent with the result from Kaasalainen et al. [85]. Using

the Britt et al. [12] technique, they assumed the grain density as 3.5 g/cm3 consistent with known

C-class asteroids and estimated a bulk density of 2.4± 0.6 g/cm3.

6.4.7 (4179) Toutatis

Radar observations of (4179) Toutatis revealed that this asteroid is a non-principal axis

(NPA) rotator. Hudson and Ostro [75] constructed a three-dimensional shape, a spin state, and

the principal moments of inertia. The rotation in a long-axis mode consists of a period of 128.84

hr for the spin about the long axis and a period of 176.4 hr for the averaged long-axis precession.

Scheeres [156] assumed the homogeneous bulk density as 2.5 g/cm3 from other asteroid properties.

We assume that this asteroid spins along the maximal principal axis in the following discussion.

6.4.8 (4660) Nereus

Brozovic et al. [16] investigated a physical model of (4660) Nereus, using Arecibo and Gold-

stone radar observations. They obtained an ecliptic longitude of λ = 25◦ and an ecliptic latitude of

β = 80◦. For the estimation of a shape model, they encountered an issue that all subradar latitudes

remained less than 19◦, which resulted in a number of acceptable models; therefore, they introduced

two reasonable models: their preferable model and alternative model (see Table 3 in their paper).

In our analysis, we use their preferable model. Also, to analyze its gravitational environment, they

assumed the surface bulk density as 2 to 5 g/cm3.
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6.4.9 (4769) Castalia

Radar observations by Ostro et al. [115] estimated (4769) Castalia’s rotation period as

4.07± 0.02 hr. They also discussed that possible the grain density of this asteroid would be similar

to stony iron (4.9 g/cm3) or ordinary chondritic meteorites (3.6 g/cm3) and the bulk density would

be between 2 and 5 g/cm3. The shape model was established by Hudson and Ostro [74] from

inversion of radar images. From its shape, this asteroid is considered a contact binary. Scheeres et

al. [154] used the empirical formula that relates the Fresnel power-reflection coefficient to a bulk

density to estimate (4769) Castalia’s bulk density as 2.1 g/cm3. They explain, “the value 2.1 g/cm3

corresponds to respective porosity of 60% and 40% for ordinary chondrites and stony irons, the

candidate meteorite analogs for S class asteroids like this asteroid.”

6.4.10 (6489) Golevka

Radar observations at Goldstone, Evpatoria, and Kashima established a physical model of

(6489) Golevka [76]. The asteroid’s pole direction was estimated as λ = 202 ± 5◦, β = −45 ± 5◦,

and its rotation period (sidereal) was obtained as 6.0289± 0.0001 hr. The shape is extraordinarily

angular with flat sides, sharp edges and corners. They estimated the surface density as no more than

3.7 g/cm3, while they assumed the uniform bulk density as between 2 and 5 g/cm3 to investigate

(6489) Golevka’s dynamical environment.

6.4.11 (8567) 1996 HW1

Magri et al. [100] constructed physical properties of (8567) 1996 HW1 by radar and photo-

metric observations. This asteroid is considered a contact binary because of its highly bifurcated

and elongated shape. The rotation period was estimated as 8.76243 ± 0.00004 hr and the poly

direction was detected as λ = 281± 5◦, β = −31± 5◦. To investigate the asteroid’s dynamical en-

vironment, they assumed bulk density of 2.0 g/cm3 consistent with porosity of 40% of L-chondritic

composition of which density is 3.37 g/cm3.
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6.4.12 (10115) 1992SK

Busch et al. [21] investigated (10115) 1992 SK by radar and optical observations. They

estimated the rotation period as 7.3182± 0.0003 hr. The also obtained λ = 99◦± 5◦, β = −3◦± 5◦.

With the technique by Magri et al. [99], they obtained a surface bulk density of more or less 2.3

g/cm3. In addition, the dynamical environment was investigated by assuming a uniform density of

2.3 g/cm3.

6.4.13 (25143) Itokawa

(25143) Itokawa was observed by Japanese spacecraft Hayabusa in 2005 [48]. The mass,

volume, rotation period were estimated as 3.51± 0.105× 1010 kg, 1.84± 0.092× 107 m3, and 12.13

hr, respectively. The bulk density was determined as 1.9 ± 0.13 g/cm3. The pole direction was

estimated as λ = 128.5◦, β = −89.66◦. The shape was established by Gaskell [50].

6.4.14 (29075)1950 DA

Busch et al. [19] used Arecibo and Goldstone radar data and optical lightcurves to determine

the shape and spin state. They obtained two different shape models of which material may be

nickel-iron or enstatite chondritic composition due to two possible pole directions: λ = 88.6 ± 5◦,

β = 77.7± 5◦ for the prograde model and λ = 187.4± 5◦, β = −89.5± 5◦ for the retrograde model.

They also reported that the rotation period, 2.1216 hr, is near the spin limit. From radar albedo

of this asteroid, the surface density for the prograde model and that for the retrograde model were

obtained as 3.2 g/cm3 and 2.4 g/cm3, respectively. On the assumption of zero-cohesion, they also

estimated reasonable bulk densities as 3.0 g/cm3 for the prograde model and as 3.5 g/cm3 for the

retrograde model, respectively. In this study, we investigate the failure mode of both models.

6.4.15 (33342) 1998 WT24

From radar observations at Arecibo and Goldstone, Busch et al. [18] estimated physical

properties of (33342) 1998 WT24. The pole direction was obtained as λ = 15± 5◦, β = −22± 5◦,
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while the spin period was determined as 3.6970 ± 0.0002 hr. This shape model seems have large

basins, which might be formed by impacts. Their shape model, on the other hand, may not be

compatible with the lightcurve data by [90]. [18] estimated the bulk density as 3 g/cm3 from the

fact that this asteroid, classified as E-class, may include enstatite achondrite of which bulk density

is about 3 g/cm3. They also concluded that its spin state is affected by a YORP effect and decreases

with an average rate of 2× 10−7 deg/s·yr.

6.4.16 (52760) 1998 ML14

Ostro et al. [116] modeled the shape of (52760) 1998ML14, using asteroid radar imaging data

sets with the same approach done by [75]. The shape looks almost spherical, but there are some

angular points. The pole direction was estimated as α = 292◦, δ = −31◦, while the rotation period

was determined as 14.83± 0.15 hr. They assumed the uniform bulk density as 2.5 g/cm3, which is

a S-class object (433) Eros.

6.4.17 (66391) 1999 KW4

Ostro et al. [120] obtained physical properties of (66391) 1999 KW4 by radar observations.

This asteroid is a binary system; the primary (Alpha) is oblate, while the secondary (Beta) is

elongated. In the current study, we only consider the structure of Alpha. The rotation period was

obtained as 2.7645±0.0003 hr, while the pole direction was detected as λ = 326±3◦, β = −65±3◦.

The total mass and the bulk density were estimated as 2.353 ± 0.100 × 1012 kg and 1.97 ± 0.24

g/cm3, respectively. They also pointed out that Alpha’s porosity is about 50% and its oblate shape

has an equatorial ridge at the object’s potential-energy minimum.

6.4.18 (136617) 1994 CC

This asteroid is a triple system. Similar to (66391) 1999 KW4, we only investigate Alpha here.

[47] estimated the mass by radar observations at Arecibo and Goldstone as 2.5935± 0.1× 1010 kg

(Alpha). Brozovic et al. [15] used radar, photometric, and spectroscopic observations to determine
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(136617) 1994 CC’s physical properties. Using the [47] mass and their size estimation, they obtained

a bulk density of 2.1 ± 0.6 g/cm3. Also, they obtained the pole direction as λ = 336◦, β = 22◦

consistent with [47]. The rotation period was given as 2.38860± 0.00009 hr.

6.4.19 2002 CE26

Radar observations by Shepard et al. [167] revealed that 2002 CE26 is a binary system. The

primary, 3.5 ± 0.4 km in diameter, spins with a synodic period of 3.2931 ± 0.0003 hr. The pole

direction is λ = 317◦, β = −20◦. The primary mass is 1.95± 0.25× 1013 kg, and the bulk density

is estimated as 0.9 + 0.5/− 0.4 g/cm3.

6.4.20 2008 EV5

2008 EV5 was observed by Busch et al. [20]. The pole direction was determined as λ =

180±10◦, β = −84±10◦, while the rotation period was given as 3.725±0.001 hr. The size is ∼ 150

meter in diameter. The volume estimation was 0.035 km3 ± 40%. Based on methods by Magri et

al. [99], they reported that the maximal near-surface bulk density is 3.0 ± 1.0 g/cm3. The shape

includes an impact crater around the ridge. The equatorial ridge observed implies that this body

may experience a YORP spin-up that reconfigures the shape.

6.5 Analysis for the failure modes of real shapes

6.5.1 Methods

We review the physical parameters used in this investigation. Here, we keep using dimension-

less values. Ω∗t and Ω∗p are the spin rates at structural failure of the entire volume and the partial

volume, respectively. Those parameters are given by Eq.(6.3). We also define Ω∗t as the effective

shape, which can be compared with Ω∗sph = 1.07 (a sphere case). Ω∗a is the spin rate at which T̄ a11

becomes zero-tension somewhere except for the edges first. This can be computed by Eq.(6.5). Ω3

is the spin rate at which surface shedding occurs first, which can be given by Eq.(6.4). We will also

calculate the spin rate at which the minimal friction angle of the entire volume flips over, i.e., Ω�t .
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φ∗t and φ∗p are the minimal friction angles of structural failure of the entire volume and the partial

volume, which can be obtained from Eq.(6.2). Also, we assume that the material friction angle φF

is 40◦.

This chapter computes those parameters to characterize asteroids by the failure modes. To

do so, we propose a shape classification due to the failure modes. This classification allows us to

understand how asteroids fails by a YORP-type spin-up. We give the definition of the classification

in the next section.

6.5.2 Shape Classification

We categorize the 21 sample shapes by a two-alphabetic classification. The first letter de-

scribes bodies’ shape by ‘S’, ‘E’, and ‘B’, which stand for ‘spherical’, ‘ellipsoidal’, and ‘bifurcated’,

respectively. To classify the shape into these types, we use Ω∗t and Ω∗a. A bifurcated body is deter-

mined first. Let us assume T̄ a11(x) = 0. The shape is classed as ‘B’ if, for a small quantity ε > 0,

there is another quantity δ > 0 such that T̄ a11(x± ε) < −δ < 0 at Ω∗a. This statement is equivalent

to the condition where T̄ a11 through the location of cross sections has a peak of the zero-tension,

not at the edges, at Ω∗a. This occurs when a body has a bifurcated shape. Note that this condition

is not the condition of structural failure, so we will use the partial volume stress to determine the

accurate conditions.

If the shape is not classed as ‘B’, then we go to the next step to determine it as either ‘S’ or

‘E’. If 0.97 ≤ Ω∗t ≤ 1.07, we characterize it as ‘S’. On the other hand, if Ω∗t is not in that region,

an object is considered elongated, so it is denoted as ‘E’. The threshold between ‘S’ and ‘E’, i.e.,

0.97, is defined so that a range of 10% from Ω∗sph is involved in the spherical shape.

The second letter indicates the failure modes: ‘S’ for surface shedding and ‘F’ for structural

failure. We use different definitions between a bifurcated shape and other shapes. For ‘S’ or ‘E’

type, if Ω∗t < Ω3, then structural failure occurs first, so the letter is ‘F’; otherwise, the body

deforms by surface shedding, so the letter is ‘S’. On the other hand, if the first letter is ‘B’, the

failure modes are determined by the following condition. If min(Ω∗p) < Ω3, then the body should
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reshape by structural failure, so the shape is classified as ‘F; otherwise, it should be ‘S’. Note that

for a uniformly rotating ellipsoid, structural failure of any body part is identical to that of the

whole body; on the other hand, a bifurcated body deforms at its neck, so the neck part reaches

failure earlier than the whole body. For this reason, different classifications comes from different

structural failure conditions.

We show a few examples for the classification. Let us assume that some asteroids are classified

as SS. This classification means that these asteroids’ shape is spherical, i.e., 0.97 ≤ Ω∗t ≤ 1.07, and

surface shedding occurs first, i.e., Ω∗t ≥ Ω3. On the other hand, if an asteroid is classified as BF,

the shape is bifurcated and structural failure occurs first, i.e., min(Ω∗p) < Ω3.

6.5.3 Results

Table 6.2 summarizes the spin limits. Ωmin and Ωmax are the minimal and maximal current

spin rates, respectively, given by the density uncertainty of each asteroid. ρ̂† is the lowest density

for which a body is stable and holds its original shape. For the shape classification, all the asteroids

are involved in four categories: ES, SF, EF, and BF. We note that we do not find the classes SS

and BS. Examples for these types are described in Fig.6.3.

6.5.3.1 Type ES

Objects of this type are elongated and the first failure mode is surface shedding. (1620) Ge-

ographos, (2100) Ra-Shalom, (4660) Nereus, (6489) Golevka, and (10115) 1992 SK are categorized

as this type.

First, Fig.6.4 shows T̄ a11 for these objects at Ω∗t . The stress (vertical axis) is normalized by the

definition given in Section 6.3 and the location of cross sections (horizontal axis) is also described

by a dimensionless value that the body edges are adjusted to ±11 . For surface shedding, T̄ a11 at

either of the edges should be above the zero-stress condition at Ω∗t . All bodies experience tension

1 Because of our discretization method, ±1 does not always correspond to the body edges perfectly. Therefore,
the area average σ̄∗

a at ±1 is not zero. However, our computation satisfies the zero surface traction condition and
this can be seen if ±1 matches the edges perfectly.
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on either side, so they should be shed at Ω∗t . (1620) Geographos has a peak around the right edge,

but not exactly at that point. This implies that surface shedding occurs relatively earlier than Ω∗t .

(2100) Ra-Shalom also seems to be able to experience surface shedding on the right side; however,

compared to (1620) Geographos, the location of material shedding is at the very end of the body.

For (6489) Golevka, since T̄ a11 at the left side is above the zero-stress condition, surface materials

may be shed at this location, which is opposite to other bodies. For (10115) 1992SK, T̄ a11 reaches

zero-tension in an area at the right edge.

Second, Fig.6.5 describes φ∗t with respect to Ω. The black dashed line shows φF = 40◦. As

seen in the analysis for an ellipsoid, for each object, there is Ω�t such that the curve is separated

into Regions 1 and 2. Note that as φF becomes smaller, Ω∗t decreases. Therefore, we can say that

ES type transits to EF type, depending on φF .

6.5.3.2 Type SF

This type includes (29075) 1950 DA (prograde), (52760) 1998 ML14, (66391) 1999 KW4,

(136617) 1994 CC, 2002 CE26, and 2008 EV5. This spherical and non-bifurcated type experiences

structural failure first.

Figure 6.6 shows T̄ a11 at Ω∗t for these objects. It is below zero-stress at all the locations and

the most compressive part is around the middle. This result is consistent with the result for a

sphere. Since they are spherical, those normalized stresses are almost the same. Note that T̄ a11 is

below zero-tension, but this does not mean that it is below the structural failure condition.

φ∗t is described in Fig.6.7. The type relaxes more than ES type. Since Region 2 extends to

a wider region, Ω∗t almost reaches Ω∗sph = 1.07 and Ω�t moves to a lower value. For (29075) 1950

DA (prograde), (136617) 1994 CC, and (52760) 1998 ML14, φ∗t around Ω�t is nearly zero, so it is

difficult to detect Ω�t correctly. Therefore, in Table 6.2, we describe such cases as ≤ 0.20 to mean

that their shape can be considered close to be a perfect sphere. Consequently, it is found that for

this type, structural failure for a whole body may occur before surface shedding.
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6.5.3.3 Type EF

Type EF is similar to Type SF, but is different in terms of the shape that is more elongated

than Type SF. This type includes (1580) Betulia, (4660) Nereus, (29075) 1950 DA (retrograde), and

(33342) 1998 WT24. The area stress for this type looks like that for Type SF, but the elongation

causes it to become less compressive (see Fig.6.8). Eq.(6.32) indicates that the area stress is a

function of A1; it becomes close to zero as A1 decreases.

φ∗t is more constrained than that of Type SF. In Region 1, φ∗t becomes larger than that of

Type SF when Ω is not close to Ω�t . In Region 2, the slope has a higher inclination, so Ω∗t shifts to

a lower value. On the contrary, (33342) 1998 WT24 has some similar trends of Type SF; therefore,

this object may be considered somewhat between SF and EF.

6.5.3.4 Type BF

Type BF is an elongated and bifurcated object that may experience structural failure first.

This type includes (243) Ida, (433) Eros, (8567) 1996 HW1, (2063) Bacchus, (4179) Toutatis, (4769)

Castalia, and (25143) Itokawa.

Figure 6.10 shows T̄ a11 of each object. The stress of this type includes a peak around the

middle, consistent with the location of its bifurcation. The peak highly depends on a body’s

rotation. It does not appear at a low spin rate, but becomes sharp as the spin rate increases.

Among the BF objets, the peak of (8567) 1996 HW1 is above zero-tension, so it experiences strong

tension at Ω∗t . (243) Ida, (25143) Itokawa, and (4179) Toutatis have similar trends as well. On the

other hand, (433) Eros, (2063) Bacchus, and (4769) Castalia have relatively weak peaks, which are

below zero-tension, but the peaks are noticeable.

Figure 6.11 indicates φ∗t and φ∗p. The solid lines are for φ∗t , while the dashed lines are for

φ∗p. φ∗t of this type looks similar to that of Type EF, while φ∗p is more constrained than φ∗t . To

enhance the effect of their bifurcation, we choose a slice so that its mean point corresponds to the

peak location and the width is 8% of the body maximal length. For all objects, Ω∗p is less than Ω∗t



92

(Table 6.2). It implies that their bifurcation part fails earlier than the whole volume. Specifically,

(4179) Toutatis, (8567) 1996 HW1, and (25143) Itokawa significantly depend on the condition of

the neck part because Ω∗p is much smaller than Ω∗t . For all but (4769) Castalia, it is found that

φ∗p > φ∗t . (6.36)

The difference between φ∗t and φ∗p can be more noticeable when an asteroid has a strong bifurcation.

Therefore, asteroids that have a large difference of these angles, such as (8567) 1996 HW1 and

(25143) Itokawa, have a strong bifurcation. On the other hand, other asteroids such as (2063)

Bacchus have a weak bifurcation.
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Figure 6.2: Limit spins (see [63]) and the first shedding. The former is given by the blue lines,
while the latter is shown by the dashed red line. The limit spin is obtained by Eq.(6.21), which is
identical to Case 6 defined by Holsapple [63]. Here, we only show the results of tension. It is found
that the first shedding is equivalent to structural failure of an ellipsoid with φ = 90◦.
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(a) (b)

(c) (d)

Figure 6.3: Shape classification. The blue, red, and green arrows are for the minimal, intermediate,
and maximal principal axes, respectively. 6.3(a) is (1620) Geographos, Type ES; 6.3(b) is (66391)
1999 KW4, Type SF; 6.3(c) is (4660) Nereus, Type EF; and 6.3(d) is (8567) 1996 HW1, Type BF.
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Figure 6.4: Area stress for Type ES at Ω∗t .
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Figure 6.5: Type ES. Minimal friction angles associated with the total volume stress.
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Figure 6.6: Area stress of Type SF at Ω∗t .
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Structural failure  HΦF = 40oL
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Figure 6.7: Type SF. Minimal friction angles associated with the total volume stress.
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Thick: (33342) 1998 WT24 (W=0.96)
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Thick: (29075) 1950 DA (retro)  (W=0.96)
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Figure 6.8: Area averaged stress for Type EF at Ω∗t .
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Figure 6.9: Type EF. Minimal friction angles associated with the total volume stress.
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Thick: (243) Ida (W=0.64)

Dashed: (433) Eros (W=0.60)

Dotted: (2063) Bacchus (W=0.71)
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Thick: (8567) 1996 HW1 (W=0.57)
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Thick: (4179) Toutatis (W=0.69)
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Figure 6.10: Area stress of Type BF at Ω∗t .
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Figure 6.11: Type BF. Minimal friction angles associated with the total volume stress (solid) and
that associated with the partial volume stress (dashed).
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6.6 Discussion

6.6.1 Ellipsoid and Real Shapes

Section 6.5 showed that the stress configurations of real shapes are different from those of

ellipsoids. These real shapes are classified according to their shape configurations and failure modes.

Here, based on these results, we summarize the difference between ellipsoids and real shapes.

First, let us discuss structural failure of a partial volume and a total volume. We introduced

the partial and total volume stresses to determine the minimal friction angles for a partial volume

and a total volume, respectively. For ellipsoids, structural failure of these averages is identical

because any place in an ellipsoid reaches yield at the same time; therefore, we have φ∗t = φ∗p and

Ω∗t = Ω∗p (see Eq.(6.30) and (6.31)). On the other hand, real shapes do not have those equivalent

relations. φ∗p and Ω∗p depend on the location of a slice. For example, let us consider a bifurcated

body. If a narrow region is chosen as a slice, φ∗p and Ω∗p are constrained more than φ∗t and φ∗p,

respectively. On the other hand, if a wider region is selected, the partial volume relaxes more than

the total volume. Since we chose narrower regions of Type BF on purpose, the partial volume

should be constrained (see Fig.6.11). We have to note the case of (4769) Castalia. There is a region

where φ∗p < φt when 0.6 ≤ Ω ≤ 0.7. This comes from several reasons. The first is that since (4769)

Castalia’s bifurcation part is twisted and lies in a small region, our experimental part may include

not only the bifurcation part but also some wider region. The second results from the simplification

for computing the partial volume stress.

Second, the area stress T̄ a11 of real shape is different from that of ellipsoids. For ellipsoids,

as shown in Eq.(6.32), the area stress can be described as a quadratic form, so the stress along

the minimal principal axis is minimum at the middle and becomes zero at the extremities. On the

other hand, for real shapes, the stress configuration does not look like that of ellipsoids. For Type

ES, bodies reach tension near the extremities, but experience compression in other regions. For

Type BF, there is a cross section experiencing a stress peak. This section usually appears around

a bifurcation region.
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Table 6.2: Results for surface shedding, total structural failure, and partial structural failure. The
following quantities are listed: Ωmin and Ωmax, the minimal and maximal spin rates across the
reported density uncertainty, respectively; Ω3, the spin condition of surface shedding; Ω∗t , the spin
rate at structural failure of a total volume; Ω�t , the spin rate at φ∗t = 0; Ω∗a, the spin rate at
T̄ a11(x) = 0; Ω∗p, the spin rate at structural failure of a partial volume; and ρ̂†, the minmal density
to keep the original shape.

Asteroid system Ωmin Ωmax Ω3 Ω∗t Ω�t Ω∗a Ω∗p ρ̂† Shape type

(1620) Geographos 0.37 0.73 0.64 0.67 0.50 0.64 - 1.3 ES
(2100) Ra-Shalom 0.096 0.19 0.91 0.92 0.55 0.92 - - ES
(6489) Golevka 0.32 0.63 0.85 0.89 0.43 0.87 - - ES
(10115) 1992 SK 0.26 0.52 0.85 0.90 0.50 0.91 - - ES

(29075) 1950 DA (prograde) 0.90 1.80 1.07 1.01 ≤ 0.20 1.08 - 3.2 SF
(52760) 1998 ML14 0.13 0.25 1.02 1.00 0.25 1.11 - - SF
(66391) 1999 KW4 (Alpha) 0.93 1.05 1.04 0.98 0.40 1.06 - 2.0 SF
(136617) 1994 CC (Alpha) 0.89 1.13 1.06 1.01 ≤ 0.20 1.10 - 2.5 SF
2002 CE26 (Alpha) 1.02 1.64 1.08 1.01 0.33 1.11 - 1.3 SF
2008 EV5 0.51 1.02 1.02 1.00 0.28 1.09 - 1.1 SF

(1580) Betulia 0.31 0.62 0.94 0.92 0.56 0.98 - - EF
(4660) Nereus 0.13 0.25 0.84 0.82 0.58 0.85 - - EF
(29075) 1950 DA (retrograde) 0.90 1.80 0.96 0.96 0.45 1.02 - 3.5 EF
(33342) 1998 WT24 0.52 1.03 1.03 0.96 0.40 1.04 - 1.2 EF

(243) Ida 0.47 0.57 0.69 0.64 0.50 0.64 0.62 - BF
(433) Eros 0.44 0.45 0.82 0.60 0.46 0.60 0.58 - BF
(4179) Toutatis 0.020 0.041 0.64 0.69 0.52 0.63 0.60 - BF
(4769) Castalia 0.47 0.93 0.83 0.74 0.54 0.76 0.72 - BF
(2063) Bacchus 0.13 0.26 0.73 0.71 0.52 0.71 0.68 - BF
(8567) 1996 HW1 0.22 0.44 0.72 0.57 0.45 0.52 0.42-0.51 0.7-1.1∗ BF
(25143) Itokawa 0.22 0.24 0.73 0.66 0.51 0.64 0.58 - BF

∗ For (8567) 1996 HW1, as seen in Fig.6.11(b), since Ω is bounded at both lower and upper limits,
ρ̂† is described as the minimal and maximal densities.



105

Next, the minimal friction angle causing the first shedding condition before structural failure

depends on shapes. For ellipsoids, the first shedding condition is equivalent to structural failure

of the total volume with a friction angle of 90◦. In such a case, materials should be resistant

to shear stress; in other words, a yield condition becomes a simple no-tension criterion. Natural

soils, however, have no such feature; therefore, an ellipsoid never experience surface shedding. On

the other hand, real shapes do not necessarily have a friction angle of 90◦ to experience the first

shedding. Our study shows that the first shedding for the ES objects occurs even when the friction

angle is 40◦. This difference comes from the fact that since those asteroids are more elongated

and sharper than perfect ellipsoids, the centrifugal force can overcome the gravity attraction more

easily.

6.6.2 Current Rotation and Bulk Density

This section discusses constraints on the bulk density of real shapes. Some asteroids shown

in this chapter experience a relatively high spin and may be close to failure modes. We compare the

current spin state ranging from Ωmin to Ωmax with the spin limit, i.e., min(Ω3,Ω∗t ,Ω
∗
p). Asteroids

constrained by the current configurations are: (1620) Geographos from Type ES; (29075) 1950

DA (prograde), (66391) 1999 KW4, (136617) 1994 CC, 2002 CE26, and 2008 EV5 from Type SF;

(29075) 1950 DA (retrograde) and (33342) 1998 WT24 from Type EF; (8567) 1996 HW1 from

Type BF. In Table 6.2, we show the minimal bulk density ρ̂† given from constraints by the current

configuration. If the actual density is smaller than ρ̂†, a body cannot hold the original shape any

longer.

The density of (1620) Geographos, an ES type asteroid, is constrained by the relation Ω3 =

0.64 < Ωmax = 0.73. This allows us to determine the lower bound of the bulk density. From

the definition of Ω, we obtain the minimal density as 1.3 g/cm3. Ostro et al. [118] estimated the

surface density as 2 to 3 g/cm3. Due to a compaction effect, interior bulk density is usually larger

than surface bulk density; therefore, we can consider that this constraint is consistent with their

conclusion. Again, we assume the uniform density distribution.
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SF asteroids, (29075) 1950 DA (prograde), (66391) 1999 KW4, (136617) 1994 CC, 2002 CE26,

and 2008 EV5, experience a fast spin almost near their spin limit. Unlike Type ES, those asteroids

fail by structural failure. Ω∗t of these asteroids are below their Ωmax. Our result for 2002 CE26

shows that the minimal bulk density obtained here is almost the upper bound of the estimation

by Shepard et al. [167], i.e., 1.4 g/cm3. Similarly, the minimal bulk density of (29075) 1950 DA

(prograde) is 3.2 g/cm3, which is slightly larger than the estimation 3.0 g/cm3 by [19] who consider

a zero-material strength condition.

EF asteroid, (33342) 1998 WT24 and (29075) 1950 DA (retrograde), are also constrained by

the current configuration. For both cases, our results correspond to the previous estimations by

Busch et al. [18] and by Busch et al. [19], respectively

The most interesting asteroid is (8567) 1996 HW1, a BF type asteroid. This highly bifurcated

body is sensitive to structural failure at the neck. Comparing Ω∗p with the current spin state, we

estimate the lower and upper bounds as 0.7 and 1.1 g/cm3, respectively. Unlike other bodies, which

only have the lower bound, the bulk density of this asteroid is bound on both sides. If the stress

state violates this small constraint, then structural failure should start from the neck. Note that

if we choose a small friction angle as φF , then the range of the bulk density given here becomes

smaller!

6.7 Conclusion

We investigated two failure modes of asteroids due to a YORP-type spin acceleration: sur-

face shedding and structural failure. The method in this chapter searched for the first shedding

condition by tracking the dynamical equilibrium points. On the other hand, we used limit anal-

ysis to determine the upper bound for structural failure of a partial volume and a total volume.

Our prime result is that the failure modes of real shapes are different from those of ellipsoids. To

emphasize this feature, we proposed a shape classification in terms of their internal properties and

failure modes and applied it to 21 test real shape modes, assuming that the actual friction angle

is 40◦. Those asteroids were categorized into four different shape types: spheroidal shapes failing
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by structural failure (Type SF), ellipsoidal shapes experiencing either structural failure or surface

shedding (Type EF or ES), and bifurcated shapes breaking into multi-components from the neck

(Type BF). Type SF and EF look similar to perfect ellipsoidal shapes. On the other hand, features

of Type ES and BF are different from those perfect ellipsoids. ES type asteroids experiences strong

tension around their extremities at the limit spin at structural failure of a total volume, which

leads the first shedding before structural failure, although ellipsoidal shapes need a friction angle

of 90◦ to experience material shedding first (or, more precisely, at the same time as structural

failure). This implies that shape diversities let the first shedding occur at lower friction angles. On

the other hand, structural failure of BF type asteroids depends on their bifurcated structure. A

body experiences a higher stress peak as its bifurcation becomes stronger. Those features plus a

fast spin rate allowed us to constrain physical configuration of asteroids situated near the failure

modes. For these objects, we determined the lower bound of their bulk density and re-evaluated

the bulk density estimations by earlier works. In particular, we highly constrained the bulk density

of (8567) 1996 HW1, a BF type asteroid, in the range between 0.7 and 1.1 g/cm3.
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Chapter 7

Application: the Breakup Event of P/2013 R3

7.1 Introduction

Recent years have seen several observations of a previously unrecognized class of small bodies,

what have been called “Active Asteroids.” These are bodies that display intermittent phenomenon

traditionally associated with comets, yet which appear for bodies that are thought to be asteroids

with no or minimal volatiles. A survey of recent observations is given in Jewitt et al. [81]; however,

since that time, there have been several additional and striking examples of this phenomenon

[83, 82]. It is important to note that the observed characteristics of these active asteroids are not

uniformly similar. An excellent example of this is the contrast between bodies P/2013 P5 and

P/2013 R3. The former was observed to have several streamers of dusty material emanating from

a single main body at several different epochs in relatively close spacing. The latter, however, was

observed to be components that were mutually escaping from each other, with these individual

components undergoing additional fractures at later epochs. While the root cause of these events

is thought to be rotational disruption [83, 82], the differing observed morphologies may indicate

different modes of failure (e.g., [61]). Specifically, while P/2013 P5 may be indicative of mass-

shedding of regolith from the surface of an asteroid, P/2013 R3 appears to be consistent with a

body breaking into multiple components. In this chapter we focus on this latter active asteroid and,

under the hypothesis that it was a single asteroid that underwent rotational disruption, develop

constraints on its physical properties.

Analytical modeling of this body can provide clues about the origin and mechanism of these
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events. We explore a model for the breakup of an ellipsoidal rubble pile that was firstly discussed

in Scheeres et al. [153] and that was later expanded in Sánchez and Scheeres [135]. In the present

model a body that has cohesion can be spun beyond the rate at which centrifugal accelerations

can be balanced with mutual gravitational attractions. Depending on the strength of the cohesive

bonds, which may be less than a few hundred pascals [135], at some spin rate the body may fracture

along planes of weakness, with the components then departing each other on possibly hyperbolic

orbits. The trigger for the fracture may be either a secular increase in spin rate due to the YORP

effect, or a small impact that generates seismic waves that cause bonds close to the failure limit to

fail [103].

Four images of P/2013 R3 taken at different epochs between October and December in 2013

show that this object experienced subsequent breakups [82]. It is reported that the proto-body has

broken into more than 10 components as a result of this breakup event. The maximum size of the

components may be on the order of a few hundred meters. In this chapter we assume that the

YORP effect causes the body to spin up to its critical spin, so detailed discussions of the spin-up

mechanism are omitted. Based on the observational estimates by Jewitt et al. [82], we derive the

initial spin period and the cohesive strength of P/2013 R3. Additional observations of this system

and more precise astrometric analysis of the observations may provide further constraints on the

body.

7.2 Modeling of the Breakup Process

7.2.1 Breakup Scenario

Suppose that the proto-body uniformly rotates in a principal axis mode and is only subject

to its self-gravitational, centrifugal, frictional and cohesive forces. If the proto-body spins fast

enough, it can fail structurally and break up intomultiple components. The proto-body and the

smaller components as a result of the breakup are assumed to be a biaxial ellipsoid and spheres,

respectively. If shear strength is zero over some cross section, the breakup should start from this



110

cross section. However, if shear strength is nonzero, the body will keep its shape at a faster spin

rate. Applying the Mohr-Coulomb yield criterion (e.g., [28]), we represent shear strength by a

friction angle and cohesive strength. After a breakup, the components as a result of this event are

inserted into their mutual orbits.

The breakup model shown in Fig. 7.1 defines two processes. Process 1 represents mechanical

failure of the proto-body. The condition of this failure mode will be determined by considering

the yield condition of the averaged stress over the central cross section. Process 2 describes its

subsequent orbital motion as a result of mechanical failure. In general, since each component may

be non-spherical, there is angular momentum transfer, resulting in a change of the spin vector during

the initial disruption [158]; however, the critical region for such a transfer of angular momentum is

only at distances of a few radii of each component [60]. For the case of P/2013 R3, since the initial

velocity of the components are consistent with the system escape velocity [82], the shape effect on

the transfer is negligible. Therefore, it is a reasonable simplification of the model to assume that

each component is a sphere and that the initial spin state is conserved across the breakup.

We also assume that the entire process occurs in a plane. The initial condition of the trans-

lational velocity is determined by multiplying the spin rate by the relative distance between the

centers of mass of the two components about to split, and its direction is taken to be perpendicular

to the angular velocity of the proto-body. While there is evidence that fast rotators may tumble

[126], since the normal vector of a failing cross section is always on the orbital plane, the critical

component of the spin vector is identical to the component normal to the orbital plane; therefore,

calculations of cohesive strength should be independent of other spin components and the initial

spin rate given here is equivalent to its lower bound.

It is emphasized that the terms “breakup” and “structural failure”, used by Hirabayashi

and Scheeres [61], are distinguished in this study. The term “breakup” describes that a proto-

body is split into smaller pieces, while the term “structural failure” indicates structural instability,

meaning that the original shape permanently changes due to large plastic deformation, but does

not necessarily break up into multiple components. If a body experiences centrifugal accelerations
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exceeding gravitational accelerations, any deformation may lead to break up. A single breakup is

discussed here, although the present technique can be applicable to any similar cascade of breakup

events. We note that the dispersion velocity between different components is proportional to their

relative distance. Thus, late-separate components may have split at a similar time as the main

component; however, since their speeds are less, they may not have been distinguished until later.

We suppose that the dimensions of the proto-body are 2a by 2aβ by 2aβ, where 0 < β < 1,

and the diameters of the smaller components, denoted as R, are chosen to be equal to a half of the

volume of the proto-body. The proto-body uniformly rotates with a spin rate ω along its maximum

principal axis. The density, ρ, is constant over the body.

7.2.2 Structural Breakup Condition (Process 1)

The assumption of equal sizes of the smaller components implies that the breakup occurs in

the middle of the proto-body. This comes from the fact that the central cross section normal to

the minimum principal axis is the most sensitive to failure. Table 2 in Jewitt et al. [82], showing

the effective radii of the smaller components, also indicates that the components look similar.

To obtain the breakup condition, we use the gravitational potential at an arbitrary point

inside a biaxial ellipsoid, which is written as

U(x, y, z) = πρG(−A0a
2 +Axx

2 +Ayy
2 +Azz

2), (7.1)

where

A0 = β2
∫ ∞
0

ds

∆
, (7.2)

Ax = β2
∫ ∞
0

ds

(s+ 1)∆
, (7.3)

Ay = Az = β2
∫ ∞
0

ds

(s+ β2)∆
, (7.4)

and ∆ =
√
s+ 1(s+ β2). See the details in [59].

The failure condition of the central cross section is given by considering the yield condition of

the area stress over this cross section. To calculate the area stress, we use the technique proposed
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by Davidsson [34]. The yield condition is characterized by the Mohr-Coulomb yield criterion, which

is given in Eq. (3.1). Since the friction angle of a typical soil material ranges between 30◦ and

45◦ [91], by taking the mean of these friction angles, the spin rate of the yield condition, ωp, is

approximately described as

ωp ∼

√
4Y

ρa2
+ 2πρGAx, (7.5)

where G is the gravitational constant and Ax is described in Eq. (7.3). If Y = 0, ωp =
√

2πρGAx,

corresponding to the condition at which the pressure on the central cross section becomes zero

and at which a breakup occurs. This is identical to the highest spin rate of structural failure of

a cohesionless ellipsoid [161]. At this condition, the components as a result of a breakup do not

fly off, but rest on each other without contact forces instead. We note that such configurations

are dynamically unstable and can lead to escape after an extended period of dynamical interaction

[148, 78, 124]. However, the case of P/2013 R3 is not consistent with this scenario as the components

are seen to be immediately escaping from each other. For a body with cohesion, the spin rate of

its breakup can be higher than that of any structural failure conditions and is high enough to lead

to immediate escape (see the discussion on the lower size limit of binaries in [135]).

7.2.3 Mutual Orbit After the Breakup (Process 2)

The dispersion velocity of P/2013 R3 is 0.2 - 0.5 m/s at a relative distance of 3060 km (see

Table 7.1), which is beyond the Hill sphere of the system, less than 250 km. This indicates that the

small components are likely inserted in a hyperbolic orbit. Under this assumption, the following

discussion explores the mutual orbit dynamics. The total energy conservation for irregular bodies

is written as [142],

E =

∫
B

v2

2
dm− 1

2

∫
B

∫
B

Gdmdm

r
, (7.6)

where B indicates the entire body distribution. Note that the second term in Eq. (7.6) includes

self-gravity potentials.
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Consider the initial state, i.e., the configuration where P/2013 R3 is about to break up.

Assuming that the proto-body is an ellipsoid with dimensions of a× aβ × aβ yields

Einitial =
1

2
Iω2

0 +
ρ

2

∫
V
U(x, y, z)dV, (7.7)

where ω0 is the initial spin rate, I is the moment of inertia of the proto-body, and U(x, y, z) is

given in Eq. (7.1). The first term on the right hand side in Eq. (7.7) is given as

1

2
Iω2

0 =
1

10
Ma2(1 + β2)ω2

0, (7.8)

where M indicates the mass of the whole system, i.e., M = 4πρa3β2/3. The self-potential of an

ellipsoid can be given as [143]

ρ

2

∫
V
U(x, y, z)dV = −2

5
MπρGa2A0, (7.9)

where A0 is introduced in Eq. (7.2).

For the configuration at a post-disruption epoch, assuming that the components are spheres

with the same radius R = a(β2/2)1/3, we describe the total energy as

Elast =
m1m2∆v

2

2M
+

1

2
I1ω

2
0 +

1

2
I2ω

2
0

−Gm1m2

d
− G

2

∫
m1

∫
m1

dm1dm1

r
− G

2

∫
m2

∫
m2

dm2dm2

r
,

=
1

8
M∆v2 − GM2

4d
+

1

5
MR2ω2

0 −
2

5
MπρGR2, (7.10)

where m1 = m2 = M/2, I1 = I2 = MR2/5, ∆v is the dispersion velocity, and d is the relative

distance between two components at a given epoch.

From energy conservation, Einitial = Elast, leading to,

1

5
a2(1 + β2)ω2

0 −
4

5
πρGa2A0

=
1

4
∆v2 − GM

2d
+

2

5
R2ω2

0 −
4

5
πρGR2. (7.11)

This relation can be solved for the initial spin rate ω0 as

ω0 =

√
Φ

Ψ
, (7.12)
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where

Ψ =
a2

5

(
(1 + β2)− 2

(
β2

2

) 2
3

)
,

Φ =
∆v2

4
− 2πρGa3β2

3d
− 4πρGa2

5

(
β2

2

) 2
3

+
4πρGa2A0

5
.

Assuming that Eq. (7.5) equals Eq. (7.12), the initial spin state can also be related to the minimum

level of cohesion needed for this body.

7.3 Application to P/2013 R3

The observations by Jewitt et al. [82] provide the relative velocity and the distance between

the components at some epochs (Table 7.1), although angle-of-view effects affect their plane-of-sky

projections (Jewitt, personal communications, 2014). For the diameter of the proto-body, Jewitt et

al. [82] reported that since they only measured the product, Area×Albedo = π Radius2×Albedo,

if the albedo is different, so is the estimated radius. The assumption of an albedo of 0.05 renders

radius uncertainties by a factor of
√

2. Furthermore, although there is less dust in December than

in October, there is still no guarantee that the dust has gone in December. Therefore, a radius

from 0.2 km to 0.5 km defines the lowest and highest possibility of the radius of the proto-body1 .

However, based on the estimates on December 13, 2013, it is strongly suspected that the effective

radius may be less than 0.35 km (Jewitt 2014, personal communication). On the other hand, the

aspect ratios of asteroids, β, is considered to be larger than 0.5 (c.f., the asteroid LightCurve Data

Base by Warner, Harris, and Pravec, revised on November 10, 2012). Given these estimates, the

present analysis provides lower bounds on the initial spin period and cohesive strength.

Consider the first breakup event that occurred before October 1, 2013. Equations (7.5)

and (7.12) provide the spin period of the proto-body relative to cohesive strength with different

dispersion velocities and aspect ratios (Fig. 7.2). In the figure, the solid lines show the case β = 0.5,

while the dashed lines describe the case β = 1.0. The upper curves are the possibly slowest spin

1 A radius of 0.2 km is equal to the radius of the largest component, while that of 0.5 km is computed from the
effective radii on October 1, 2013.
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periods that result from a dispersion velocity of 0.2 m/s and a size of 1.0 km, while the lower

curves are the possibly fastest spin periods that result from a dispersion velocity of 0.5 m/s and a

size of 0.4 km. The actual initial spin period should be laid between the fastest and slowest spin

periods. On a given curve, the bulk density increases as the spin period becomes shorter. The

empty triangles and squares show the cases ρ = 1000 kg/m3 and ρ = 1500 kg/m3, respectively. If

the density of this asteroid ranges between these values, then the initial spin period and cohesive

strength are further constrained. From the distribution of the triangles and squares, for P/2013

R3, the cohesive strength ranges from 40 Pa to 210 Pa, while the initial spin period is between

0.48 hr and 1.9 hr. Note that in the range of friction angles of typical soils, i.e., 30◦ and 45◦, the

cohesive strength changes up to a 20 % of the given values, while the initial spin period does not.

7.4 Discussion

Broadband optical colors show that this object may be a C-type asteroid [82]. This type of

an asteroid has relatively low bulk densities; for example, the bulk density of (206) Mathilde ranges

between 1100 kg/m3 and 1500 kg/m3 [193], while that of (101955) Bennu is on the order of 1250

kg/m3 [29]. Thus, it is reasonable to consider that the bulk density of P/2013 R3 may be between

1000 kg/m3 and 1500 kg/m3. The empty triangles and squares in Fig. 7.2 give the end points for

each curve; therefore, the actual configuration could likely be between these points. This provides

the following two interpretations.

First, although the spin curve by Pravec et al. [127] implies that the spins of asteroids ranging

from 0.4 km to 1.0 km in size may be bounded at the spin barrier, 2.2 hr, our result suggests that

the breakup of P/2013 R3 could have occurred at a shorter spin period than the spin barrier. As

shown in Fig. 7.2, the slowest spin period is 1.9 hr, occurring when ρ =1000 kg/m3, 2a = 1.0

km, and ∆v = 0.2 m/s. This condition may be an extreme case in our problem. Again, since the

effective radius measured from the October 1, 2013 data is still affected by the dust cloud, Jewitt

et al. [82] state that the 330 m effective radius measured from the December 13, 2013 data is more

accurate. Thus, we believe that a size of 1.0 km (> 2 × 330 m) may be too large. This explains
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that the initial spin of this asteroid should be faster than the spin barrier.

Second, the possible cohesive strength ranges from 40 Pa to 210 Pa. This estimate is com-

parable to that inferred for rubble pile asteroids in Sánchez and Scheeres [135]. If P/2013 R3 is

a rubble pile and the size distribution of its particles extends down to the µm level, then van der

Waals forces may supply the needed cohesive strength for such an asteroid. The cohesive strength

of a cohesive self-gravitating aggregate was determined by Sánchez and Scheeres[135] to be directly

related to the average grain size and the Hamaker constant2 . Using a Hamaker constant of ∼0.036

N/m, which is consistent with lunar regolith [123], for an asteroid with cohesive strength of 40 -

210 Pa and with a friction angle of 37.5◦, we end up with an average particle size of 1.2 - 6.1 µm,

consistent with the size range of the sample from (25143) Itokawa [180]. Therefore, it is reasonable

to believe that a rubble-pile asteroid with hundreds of meters in size could have cohesive strength

matching the values calculated through this analysis. Furthermore, the possibility that P/2013 R3

is a monolith is quite low because (i) for the present case cohesive strength is highly bounded and

(ii) cohesive strength of a typical rock is at least on the order of 10 MPa [91, 80].

Based on the observations by [82], we showed the possible ranges of the initial spin period and

cohesive strength of P/2013 R3. However, once additional observations of this asteroid are carried

out, they will provide information that can give further constraints on this breakup event. Also,

detailed analysis of the subsequent breakups in this event can also be used to develop additional

constraints on these parameters.
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Figure 7.1: A model for a breakup. The proto-body (phase A) would break into two components
(phase B) at the critical spin period, followed by orbital motions (phase C). At phase C, the different
components may also be split, but would have mutual speeds that are lower. This event consists
of two processes: process 1 being the transition from phase A to phase B and process 2 being that
from phase B to phase C.
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Figure 7.2: Possible initial spin period due to different dispersion velocities and initial sizes, i.e., ∆v
ranging from 0.2 m/s to 0.5 m/s and 2a from 0.4 km to 1.0 km (see Table 7.1). The solid lines show
the initial spin period with β = 0.5, while the dashed lines describe that with β = 1.0. The actual
spin periods should be laid between the fastest and slowest spin periods. The empty triangles and
squares indicate bulk densities of 1000 kg/m3 and 1500 kg/m3, respectively; as a C-type asteroid,
this asteroid should be between these points.
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Table 7.1: Measured Properties of P/2013 R3

Property Value Reference

Relative Distance, d, [km] (Oct. 1, 2014) 3060
Diameter of the Initial Body, 2a, [km] 0.4 - 1.0 [82]
Relative Velocity, ∆v, [m/s] 0.2 - 0.5



Chapter 8

Conclusion

This thesis research explored the internal structure of (216) Kleopatra and its failure mode.

We developed (i) a limit analysis technique for determining lower and upper bounds for struc-

tural failure of an irregular body, (ii) a dynamical analysis technique for giving a condition of

surface shedding for a cohesionless case, and (iii) a finite element model taking into account plastic

deformation.

First, on the assumption that a material is cohesionless, we considered the size effect on

dynamical and structural stability of the shape of (216) Kleopatra at the current spin period. We

separately investigated the conditions of surface shedding and structural failure. For the condition

of structural failure, we obtained lower and upper bounds for structural failure of this object. An

elastic finite element model showed that the internal stress configuration may be above a lower

bound condition. The technique for giving the yield condition of the averaged stress over a partial

volume demonstrated that the neck of (216) Kleopatra is the most sensitive to structural failure

and, for a friction angle of 32◦, a typical angle of a geological material, only the size scale ranging

from 1.18 to 1.32 allows the body to be structurally stable. This result is consistent with the size

estimate by the Descamps et al. (2011) size. For the condition of surface shedding, we constructed

zero-velocity curves of this body to find constraints on the motion and the spin period at which

the dynamical equilibrium point touches the surface. The result shows that (216) Kleopatra with

a size scale between 1.0 and 1.5 cannot experience surface shedding shedding at the current spin

period, and the satellites orbiting about this body do not result from the shedding process.
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Second, removing the assumption of zero-cohesion, we investigate structural failure of this

body by a finite element model. Focusing on the size estimates by Ostro et al. [117], Descamps et al.

[36], and Marchis et al. [102], we constructed a finite element model involving plastic deformation.

The constitutive model of plastic deformation was modeled based on a non-associated flow rule

characterized by the Drucker-Prager criterion. Because of dependency of solutions on histories, the

loading path was defined so that the gravitational and centrifugal forces were linearly incremented

over the simulation process. Although this asteroid is spinning in free space, six degrees of freedom

were artificially fixed to make calculations converge properly in our model. The prime result of this

study was that it was necessary for (216) Kleopatra to have cohesive strength to keep its current

shape. the Ostro et al. (2000) size, the Descamps et al. (2011) size, and the Marchis et al. (2012)

size required apparent cohesive strength of 1.77 × 103 kPa, 2.54 × 102 kPa, and 6.85 × 102 kPa,

respectively. For the failure modes of (216) Kleopatra, the Ostro et al. (2000) size would experience

compression of the bottom of the neck, the Descamps et al. (2011) size would have global landslides

on the surface, but would not have internal failure, and the Marchis et al. (2012) size would fail

due to tension of the top of the neck. We concluded that (216) Kleopatra could be a rubble pile,

but would be sensitive to different failure modes, depending on its sizes.

Third, we investigated the failure mode of 21 asteroids due to a YORP-type spin acceleration:

surface shedding and structural failure. Using the techniques for determining surface shedding and

for obtaining an upper bound condition of structural failure, we compared these modes of asteroids

to determine a possible failure mode of them. The prime result is that the failure modes of real

shapes are different from those of ellipsoids. We also proposed a shape classification to emphasize

the effects on their failure modes. There are four different shape types: spheroidal shapes failing

by structural failure (Type SF), ellipsoidal shapes experiencing either structural failure or surface

shedding (Type EF or ES), and bifurcated shapes breaking into multi-components from the neck

(Type BF). For some asteroids, since the current configuration may be close to their failure point,

we could also constrain their bulk density.

Fourth, we studied the internal structure of P/2013 R3 by its breakup event. We demon-
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strated that the initial spin period and cohesion can be constrained by its breakup event. The

result showed that cohesion could be between 40 and 210 Pa, which is laid in the range of cohesion

for a typical geological material and the initial spin period may range between 0.48 and 1.9 hr.

The technique will be quite useful for giving constraints on the internal structural of an

asteroid once further observations are conducted.
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