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Spacecraft have been exploring the celestial bodies of our solar system for more than half

a century. Despite the distances they have crossed, spacecraft remain in great part tethered to

Earth for navigation and control purposes. As humankind continues to explore the solar system,

the need for autonomous operations with minimal ground contact grows. The communication

delays can be much larger than the required spacecraft response time such as during an orbit

insertion maneuver or during entry decent and landing phase. Additionally, enhancing autonomy

in navigation will continue to lighten the load on mission operations. When possible, performing

navigation functions onboard circumvents light-time and human related delays, reduces the load

on ground stations, and enables certain mission designs that are intractable without on-board

decision-making. Optical Navigation in astrodynamics refers to the use of images taken by an

onboard camera in order to determine the spacecraft’s position. The images contain solar system

bodies and therefore provide relative position, velocity and attitude information. The work in this

dissertation focuses on the guidance, navigation, and control algorithms that allow for probes to

travel the solar system. It revolves primarily around the autonomous navigation capabilities that

optical navigation provides. By directly using the local environment, optical measurements can aid

in spacecraft orientation and orbit determination and guidance, as well as science. The work in

this thesis presents advances in heading determination filters, robust orbit determination methods

using space imagery, fault detection cases, and machine learning for astrodynamics. The research

is enabled by the initial development of an open-source software package, and presents research

interests on its own. Applications of this thesis include mission design, Monte-Carlo analysis, and

spacecraft autonomy.
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Chapter 1

Introduction

1.1 Background and Motivation

Spacecraft have been exploring the celestial bodies of the Solar System for more than half

a century. Space missions have taught humankind much about the world and has enriched fields

from planetary science to medicine and philosophy. Deep space exploration tugs on the limits of

human knowledge all the while propelling it. Given the wealth of natural objects in the solar

system, the variety in robotic and crewed missions have only been limited by available technology

and appropriated resources.

For any mission goal to be achieved, many engineering challenges must be overcome in order

to bring the craft safely to its target. Expeditions have included flybys, orbit insertion, landings,

and sample-returns, all in support of a broad spectrum of science goals. One of the fundamental

challenges resides simply in knowing the position of the spacecraft throughout its mission (orbit

determination) and controlling its trajectory and attitude according to objectives. The determina-

tion of a spacecraft’s states is traditionally done on earth using standard radiometric tracking data

— two-way Doppler, two-way range, and Delta-DOR — with the occasional use of onboard optical

data (images taken by the spacecraft camera and sent to Earth for analysis).17

As spacecraft continue to explore the solar system, the need for autonomous operations with

minimal Earth contact continues to grow.195 The communication delays can be much larger than

the required spacecraft response time such as during an orbit insertion or during entry decent and

landing (EDL). Additionally, enhancing autonomy in navigation will continue to lighten the load
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on mission operations. Figure 1.1 shows some the many orbits that the Cassini spacecraft flew in

the Saturn system. If missions of this complexity are to become more frequent and more daring,

they must become more autonomous.

Figure 1.1: Cassini’s “Ball of Yarn” Credit: NASA/JPL-Caltech

When possible, performing navigation functions onboard circumvents light-time and human

related delays, reduces the load on ground stations, and enables certain mission designs that are in-

tractable without on-board decision-making. Optical Navigation (OpNav) in astrodynamics refers

to the use of images taken by an onboard camera in order to determine the spacecraft’s position.167

The images contain solar system bodies and therefore provide relative position and attitude informa-

tion. Commonly, OpNav measurements are combined with radiometric data or other measurements

to compute a navigation solution. Nonetheless, the images can provide all the necessary information

to estimate the spacecraft states which makes OpNav a good candidate data type for autonomous

navigation.

The work in this dissertation focuses on the guidance, navigation, and control (GNC) algo-

rithms that allow for unmanned and manned probes alike to travel the solar system. It revolves

primarily around the autonomous navigation capabilities that OpNav provides when applied to

known celestial bodies that appear resolved on the camera (therefore relatively near the space-
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craft). By directly using the local environment, OpNav can aid in attitude (spacecraft orientation)

determination and guidance, orbit determination, as well as science.

1.1.1 Historical Context for Spacecraft Navigation

The 1960s was the century that saw spacecraft navigation flourish. The conjunction of the

Apollo100 programs, Gemini program (which in 1965 flew the first OpNav instrument194), and

the advent of Kalman filtering111 in 1960 were the technological stepping stones that eventually

lead to the moon landings in 1969. Further advances during Apollo paved the way towards the

robotic missions of today. Since then, the field of statistical orbit determination has grown and

links the general theory of state estimation and practical spacecraft orbit determination in the

face of uncertainties. It also opens the door to rigorous fault mitigation through statistical outlier

detection.

Crewed spaceflight has continued since Apollo. Space Shuttle flew astronauts to Low Earth

Orbit (LEO), and allowed the construction of the International Space Station (ISS). Although LEO

does not require extensive navigation capabilities, it does provide testing grounds for instruments

and techniques before being used in deep-space.217 The ISS is the most expensive international

project to date124 and a display of both the challenges of space exploration and the unwavering

curiosity that drives mankind to explore.

Aside from crewed missions, robotics missions have been on the forefront of space exploration.

Voyager 1 and 2 have now left the solar system117 and used a conjunction of radiometric data from

Deep Space Network (DSN) stations and OpNav. OpNav provides a direct measurement of the

relative position of the spacecraft with the objects of interest, and therefore is not affected by

uncertainties in ephemerides. These are some of the events that have led to the wide use of OpNav

for interplanetary navigation which has now been utilized in a number of past missions like Cassini19

and Rosetta,31 as well as current missions such as New Horizons,87 Osiris-REx ,125 and Hayabusa

2.209

OpNav is indeed particularly useful when navigating small bodies. With poorly known shape-
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models, gravity fields, and ephemerides, OpNav provides in-situ measurements of the spacecraft

states.16 Throughout robotics missions, navigation has allowed for bold mission developments

including Cassini ’s Grand Finale64 which saw the spacecraft dive between Saturn and its rings.

Reference 46 contains a complete history on optical navigation methods for more details.

Several different measurements can be used for optical navigation. Among these are star

horizon,166 centroid and apparent diameter,41 star occultation,173 and landmark tracking.133 Each

of these have specific application scenarios depending on the object they require to track, and the

distance at which they do so. Centroid and apparent diameter measurements, for instance, find

the limb of a body and use the knowledge of its actual size and shape. By extracting direction and

distance, the spacecraft’s location relative to the body can be determined.42

With only a few exceptions, all OpNav is done on the ground. The current state-of-the-art

method for small body navigation is Stereo-Photoclinometry76 (SPC) which allows the spacecraft to

map and navigate the spacecraft environment with high precision. SPC combines stereo techniques

with photoclinometry to derive the tilt of a surface. Once the surface tilts covering the body

are obtained, the shape of the surface across each image are determined by integrating over the

resulting tilts. The individual surface maps are then collated together to produce a shape model.

Nonetheless, it relies very heavily on Earth contact for its intensive image processing algorithms.

The advent of small and nano satellites around the turn of the century, notably as Puig-Suari

of Cal Poly and Twiggs of Stanford proposed a reference design for the CubeSat in 1999, has largely

democratized the access to space. With an increase in frequent low-cost missions comes the need

to provide publicly available, accessible, and robust methods for spacecraft navigation.

1.1.2 Roadmap to New Technologies

Navigation with ground in the loop has been fundamental to nearly all successful robotics

missions to date, but carries intrinsic limitations. The most fundamental limitation is caused by

the delay related to signals traveling to and from Earth-bound stations to the spacecraft. Radio

signals travel at the speed of light, and while for most Earth orbiters light-time delay incurred is
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not impactful, interplanetary missions can see minutes to hours of communication lag. In addition,

the time spent processing measurements, convening over results, and deciding on future maneuvers

can be time-consuming. Total ground-in-the-loop time can take over a week, down to roughly eight

hours for very time-critical events.17

The NASA Deep Space Mission System (DSMS) — amalgam of the DSN and the Advanced

Multi-Mission Operations System (AMMOS) — are paramount to communicating with spacecraft

throughout the solar system but are strained.145 Simultaneously, missions will hopefully continue

to grow more common and more reliable, which indicates a need to reduce the load on the ground

systems in place even routinely.

In addition to technological limitations, the National Aeronautics and Space Administration

(NASA) 2019 budget1 has shown almost an order of magnitude increase in Advanced Exploration

Systems within Deep Space Exploration Systems: 97 to 889.0 million dollars from 2017 to 2019.

Although this increase shows ungoing support from the United States government to explore the

solar system, it potentially takes away financial support from other systems such as Exploration

Systems Development which has seen a decrease of 5.43% (212.2 million dollars) over the same time

frame.

The increase of autonomous capabilities for deep space exploration has been identified by

NASA as a key enabling technology. Spacecraft ground-independence opens the door to entirely

new missions designs all the while enhancing safety in case of communication failures. As navigation

technology is central to interplanetary mission success, it is therefore applicable to many of the

NASA Technology Area Breakdown Structure (TABS)2. Several of the most relevant items to this

research are summarized in Table 1.1. The right column of the table explain very briefly how

autonomous OpNav fits in to the

The advancement of robotics and autonomous systems will be central to transition space

missions from ground-in-the-loop architectures to self-sustainable, independent systems: a nec-

1www.nasa.gov/content/fy-2019-budget
2www.nasa.gov/offices/oct/taxonomy
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Table 1.1: Deliverables Relative to NASA Interests

TAB Objectives and Deliverables

5.4.3
Sensors and

Vision Processing Systems

Autonomous optical navigation requires
image processing, feature detection

5.4.2
Onboard Auto

Navigation and Maneuver

Autonomy is tested in rigorous unit
and integrated scenarios.
Fully coupled simulation

environments enable flight-like

4.1.2
State Estimation

Optical Navigation uses celestial bodies
for state estimation.

4.5.1
Vehicle Systems Management
and Fault Detection Isolation

and Recovery (FDIR)

By generating faulty measurements
the simulation environment
allows FDIR development

4.6.2
Relative Guidance Algorithms

OpNav uses relative measurements

essary step for outer-planet exploration. NASA’s Road Map of crosscutting technologies, places

Autonomous Systems on the top of the list, illustrating their versatility in NASA’s first strategic

objective 1.1 to expand human presence into the solar system. This intent is mirrored in technol-

ogy areas TA 5 “Communications, Navigation, and Orbital Debris Tracking and Characterization

Systems” and TA 4 “Robotics and Autonomous Systems.”

Paired with a enhanced use of images and image processing —“Image processing is an in-

creasingly vital part of new sensor systems, and significant work needs to be done in extracting the

maximum amount of information from these images” — OpNav seems to continue to provide many

capabilities in line with technology roadmaps. Furthermore, increasing precision in guidance navi-

gation and control is also an objective in TA 4.1.2 State Estimation which “provides multi-sensor,

vision-aided pose and velocity estimation.”

Interests in visiting the icy moons of our solar system also presents development opportunities.

In January 2018 NASA published a call for proposals C.29 Astrodynamics in Support of Icy Worlds

Missions (solicitation NNH18ZDA001N-ADYN) to develop open-source code for mission analysis.

This not only illustrates the desire to navigate remote bodies of the solar system, but also encourages
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shared code-bases.

1.1.3 Summary of Applications

In recent years, open-source software packages have also broadened the impact of develop-

ments in specific fields. Robotics and AI have become a widely used in part with the help of

freely available software libraries, papers, and documentation. Although space is emerging as an

increasingly popular domain, a few of these components are missing. Within the confines of the

law, notably the International Traffic in Arms Regulations (ITAR), astrodynamics can still provide

a shared algorithm base widely available in the literature.

Simultaneously, developing autonomous algorithms for OpNav requires a specific environ-

ment. OpNav requires a simulated camera, and environment. This means a camera simulator must

generate images as would be seen by a navigating craft. Since these images change dynamically as

autonomous commands are triggered, the environment must generate images fluidly and quickly

for realistic Flight Software (FSW) testing. Then, in order to test autonomous algorithms, several

best-practices are suggested. The most fundamental one is to fly the same FSW than was developed

and tested. Although seemingly trivial, the wide variety of tools and environments that a FSW

stack encounters before flight often generates multiple versions of code, sometimes in different lan-

guages.54 Furthermore, faults must be easy to incorporate into the simulation in order to challenge

the limits of the algorithms. All this should be provided in analysis-capable speeds.

The underlying drivers for the OpNav developments that follow in this dissertation are listed

as follows:

• Public Availability: Provide open-source code, in a rigorous software environment.

• Resource Attainability: Do not require the use of high-end computation capabilities.

• Robustness: Prioritize robust methods in order to remain favorable to autonomy and wide

instrument capabilities

• Generalizability: Create general tools that can be reused for other purposes
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Applications that stem from available, robust, and general tools are plentiful. An example,

could be the C.29 proposal which aims to navigate icy moons harnessing open-source software

packages. Navigation around these objects almost necessarily require some form of OpNav, and if

the methods are to be reused, they must be general enough.

Figure 1.2: Juno Approach of Jovian System, Credit: NASA/JPL

Small sats and CubeSats are also a target type of craft for this technology. Often developed

in universities with limited resources, development is often speedy and instruments are sometimes

of limited capability. For OpNav, a single low-cost star tracker could greatly simplify spacecraft

design by avoiding the need for multiple sensors. The ability to maintain attitude tracking during

moon incursions has been demonstrated66 and is an important milestone in that direction. This also

ties strongly with technology development TA 5.4.3.3 “Miniature, High-Accuracy, Multi-Function

Star Tracker,” which paired with vision-based navigation could support missions such as MarCO,

or CubeSats of the Cube Quest Challenge. Low resolution images might not generate many visible

surface features, and can contain artifacts that are less common to be found in high-end navigation

instruments. Images taken from the Juno star tracker are displayed in Figure 1.2. These display

the kinds of images that are intended to be used for navigation in this dissertation.

Finally, open-source, fast, and realistic spacecraft simulations open the door to harnessing

Machine Learning (ML) techniques. OpNav algorithms paired with ML can be be integrated in

the greater context of spacecraft GNC. Indeed, with the possibility of creating vast data sets of
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synthetic images, as well as continuous testing of spacecraft performance, ML can take hold in the

field of astrodynamics and presents a state-of-the-art implementation of the goals listed above.

1.2 Optical Navigation for Autonomy

Autonomy relies on different techniques depending on the mission to which it is applied. For

instance, low earth orbit missions have access to Global Position System (GPS) measurements, as

well as telemetry data from various sources. On the other hand, deep space missions rely heavily on

range and range rate measurements from the Deep Space Network (DSN). Yet there is increasing

demand to use the network with limited bandwidth and operational capabilities. OpNav uses

images of visible celestial bodies to extract position and velocity information. Therefore, it can rely

solely on the spacecraft’s interaction with the deep space environment instead of relying on Earth

contact, provided that the algorithms used are computationally tractable.

The proposed research will focus on navigation in proximity to celestial bodies rather than

in deep space. There is first a focus on relative attitude determination using Coarse Sun-Sensor

(CSS) based sun-heading estimation paired with planet centroid headings. Secondly, Centroid and

Apparent Diameter (CAD) orbit determination about well known bodies is developed. Together

these methods strive to extend the current state of the art of autonomous navigation, both through

sequence planning and using Machine Learning (ML).

The choice of these algorithms is also motivated by developing hardware and imaging meth-

ods. Event-based sensors are inspired by a biological retina and only detect changes in the image.53

Operating in a significantly different way to traditional CCD-based imaging sensors, these innova-

tions aim to service the field of imaging, processing, and Artificial Intelligence (AI). At the same

time, Star Tracker developments continue to improve with High-Dynamic-Range (HDR) imagery

and miniaturization110 which continue to broaden instrument capabilities and intends to support

visual navigation.15

Autonomous OpNav intersects vision processing systems, auto-navigation and maneuver, and

state estimation. This research seeks to harness sensors and vision processing systems to improve
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image acquisition and processing, and to increase the amount of useful data that is extracted for

navigation. Simultaneously, flight software algorithms must be developed for onboard use, providing

robust state estimation and allowing for failure detection. These algorithms interact heavily with

the space environment. Testing them reliably therefore requires high-fidelity andcomputationally

fast simulations that allow simulated crafts to navigate visually. Reinforcement Learning (RL)

trains guidance laws that are adaptable to this environment, all the while paving the way for more

fault detection capabilities through error classification. Neural networks can provide powerful image

processing solutions that have been under tremendous development in recent years. Developing

new processing methods such as neural nets can broaden the capabilities of previous navigation

algorithms and enhance autonomy as a whole.

Autonomous OpNav is one of the components that leads to an increase in spacecraft autonomy

as it provides measurements that can be gathered in deep space (without contacting Earth). Yet

these measurements are often noisy, imperfect, and sometimes do not fully observe the spacecraft’s

states. Through the development of novel filters, uncertainty mapping; the design of fast, modular,

open-source tools; and the exploration of OpNav’s limitations and the capabilities of machine

learning, the proposed research aims to enhance autonomous OpNav.

1.2.1 Previous and Ongoing Developments

Aside from optical measurements, other autonomous navigation methods are in development.

X-ray navigation using pulsars to estimate the spacecraft’s position190 was recently flown on the

International Space Station (ISS).217 The Deep Space Atomic Clock (DSAC),65 is also being tested

to permit one-way radio-frequency measurements sent from the Deep Space Network (DSN). Fi-

nally, StarNAV 44 aims to develop a new sensor system to detect relativistic perturbations in the

wavelength and direction of observed stars to measure spacecraft velocity. Although just one in

many methods, this research focuses on enhancements to autonomous OpNav for spacecraft state

estimation. This has also seen developments and is notably planned for use on Orion’s Exploration

Mission 1,99 as well as for Jupiter and Saturn exploration using the planet satellites.21 Autonomous
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OpNav remains a sought-after navigation method as it requires only cameras (which can be both

light-weight and used for other purposes) and fundamentally relies on imaging the object that is

being studied and orbited as opposed to Earth-based data, or distant pulsars.

Past missions such as Deep Space 1 ,108 Stardust, and Deep Impact123 relied heavily on OpNav.

Nevertheless, only Deep Space 1 and Deep Impact used autonomous OpNav (AutoNav108): as a

technology experiment and mission enabler respectively. Deep Space 1 used a first implementation

of AutoNav in order to determine its orbit within the solar system, while Deep Impact used another

implementation of AutoNav in order to ensure contact with the asteroid Tempel 1. The first

implementation uses beacons (planets and certain stars) in order to triangulate its location. The

second version used a center of brightness algorithm in order to instruct the guidance algorithms on

the proper impact trajectory. Both were successful and built confidence in the potential use-cases

for autonomous navigation. Optical images are also used for Entry Descent, and Landing (EDL),

as seen in practice with the DIMES 35 system used to land Mars rovers. These use cross-correlation

methods29,143 developed specifically for EDL. These missions are examples of using autonomy as a

mission enabler: the goals would otherwise not be attainable due to round-trip light time.

As stated previously, another advantage to autonomy is the reduction of costs by lightening

the load on the ground resources doing navigation operations. Autonomous OpNav has up to

now been only used for small body missions. There are not only more mission scenarios (deep-

space formation flying or rendezvous) which require autonomous guidance, navigation, and control

(GNC), but also no developments for on-orbit autonomous optical navigation for routine station-

keeping. Currently radiometric doppler data is the preferable measurements used on-orbit.

OpNav has been tested and used since the 1960s in the Gemini and Apollo missions. The

most recent missions that have used state of the art, on-board, autonomous OpNav have used

AutoNav.108,121,123 Many other missions such as New Horizons are using OpNav.86 This is most

frequently taking the form of OpNav campaigns168 many months ahead of an encounter to pro-

gressively narrow down on the position of the object and the B-plane parameters. In contrast,

the proposed research focuses on autonomy in proximity to a known planet using AutoNav as a
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baseline, emphasizing autonomy on shorter time-frames.

1.2.2 Areas of Active Research

1.2.2.1 Simulation Developments for Closed-Loop Optical Navigation

Currently, the field does not provide an open-source software package with fully coupled

spacecraft dynamics and Flight Software (FSW) capabilities, especially for OpNav mission scenar-

ios. Although many simulation packages are available, few are paired with a high-fidelity, fast,

open-source dynamics engine that can read in images and modify a spacecraft’s trajectory; there-

fore changing future detected images. This does not preclude testing development of high-end

GNC algorithms, but it requires the making of specific simulations for each algorithm. Testing

algorithms piecewise is also a method for successful simulation,146 yet it doesn’t generalize well

to other problems and scenarios. All the work presented seeks to make the novel contribution of

a closed loop software-in-the-loop OpNav simulation package. The most competitive simulation

packages to date are listed as below:

• DARTS24 paired with DSENDS, Dshell, or ROAMS1 provides high-fidelity dynamics and visu-

alization capabilities.132 These tools are developed in a closed software environment that are

not generally extensible by researchers outside of the Jet Propulsion Laboratory. Furthermore,

although DARTS provides closed-loop dynamics and control, it does not suggest the use of a

visualization for image processing and OpNav.

• AGI-EOIR2 is an STK-based visualization tool that uses physics based radiometric sensor and

target image simulation. This software can provide highly accurate sensor images, but these

are exported to file and not integrated into a closed-loop simulation. Although AGI-EOIR is

not open-source, AGI is developing Cesium,3 a realistic mapping and visualization package. Yet

1https://dshell.jpl.nasa.gov
2http://www.agi.com/EOIR
3https://www.cesium.com

https://dshell.jpl.nasa.gov
http://www.agi.com/EOIR
https://www.cesium.com
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nothing suggests this new software can support high-fidelity dynamics or closed-loop environment

interaction.

• Astos Solutions1 is a European based company developing software and equipment for space

applications. In the past, they have provided support for missions,206 and have recently developed

a Camera Simulation in addition to their astrodynamics software. Astos describes a configurable

dynamics and environment simulator running on a dSPACE 2 real-time platform and a LIDAR

and camera simulator.109 This software is written in Matlab/Simulink, which provides modularity

but is not open-source and does not scale well when doing Monte-Carlo analysis.

• In the field of robotics, ROS4,175 and its sister software package Gazebo are open source and

provide hardware-in-the-loop capabilities. Yet, the applications and design are very robotics

focused and do not provide sufficient spacecraft models and features. An open and extensible

software solution like ROS has not existed for the spacecraft community in the past.

The above tools provide a wealth of solutions for simulation and visualization. Yet none of them

provide the full functionality that is required for an OpNav simulator. The required simulation

must provide faster than realtime, high-fidelity dynamics; have FSW integration and filter im-

plementation, as well as hardware in the loop capabilities; be OpenSource for broad use in the

astrodynamics field; and with closed-loop visual feedback.

The presented tool consists of the Basilisk1,113 astrodynamics framework interfacing with

a Unity-based Vizard219 visualization that provides a synthetic image stream of a camera sensor.

Basilisk has been developed around high-performing dynamics which are high-fidelity, fully coupled,

and faster than realtime.8

1https://www.astos.de
2https://www.dspace.com/en/inc/home.cfm

https://www.astos.de
https://www.dspace.com/en/inc/home.cfm
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1.2.2.2 Attitude Determination in Optical Navigation

The current ubiquitous, affordable, and high performing instrument for attitude determina-

tion is the star tracker.131 Using well-known distant stars, spacecraft can determine their inertial

attitude anywhere in the solar system (provided the instrument is not occulted). This will remain

the de facto method for inertial attitude determination in the foreseeable future.

Heading based attitude determination — using CSS measurements161 or OpNav measure-

ments13 — are still in development nonetheless.141,157 Headings provide a secondary attitude

measurement which can be used for flight software robustness checks and fault detection, while also

being used for their primary purpose: in pointing modes (Sun-point, science-point, Earth-point,

etc.). Indeed, heading based attitude determination methods provide relative attitude to their

targets. Depending on the scenario, the position of the target might not be well known in the

inertial frame: when pointing at an asteroid or at a science target. In this case, relative attitude

is paramount to accurate pointing. In scenarios where the target’s inertial position is well known,

relative attitude allows to solve for offsets in the camera position and orientation. By combining

CSS measurements for sun-heading with OpNav measurements of a nearby planet, a full attitude

estimate can be extracted. Therefore, the proposed work attempts to add an attitude component

to autonomous OpNav methods such as AutoNav.

1.2.2.3 Orbit Determination and Image Processing Uncertainties

Centroid and Apparent Diameter (CAD) measurements find the limb of a body and use the

knowledge of its actual size and position. By extracting direction and distance, range information

is extracted from planet images.13,42 These methods require minimal image processing power, and

are relatively fast to implement. CAD detection has continued to be used and improved,20 while

recent papers have mapped uncertainties for Cholesky factorization space49 (CFS) and iterative

horizon reprojection47 (IHR) methods.97

Other OpNav methods also yield accurate navigation results. Measurements derived from
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landmark observations,133 point distribution methods,203 or crater detection170 are some of many

feature tracking methods which provide promising results. However, they come at a computa-

tion cost. Indeed, the current state of the art for OpNav is Stereo-Photoclinometry178 (SPC) which

allows the spacecraft to map and navigate the spacecraft environment with high precision. Nonethe-

less, it relies very heavily on Earth contact for its intensive image processing algorithms. With the

goal of autonomy, this research will focus on on-board methods for image processing. Similarly,

ORB-SLAM155,156 and other cross-correlation methods29,143 are commonly implemented in GNC

research. These hold great promise for small body autonomous orbiting and relative spacecraft

navigation. For preliminary developments, the proposed research will focus on simple CAD, with

the intent of allowing more intensive image processing methods in the future.

Current filter developments have given pixel and line measurements (angles on a camera

defined by pixel location) as measurements for filters.166 This has worked successfully on numerous

OpNav missions.46 The proposed research first seeks to provide a more modular solution to the

Autonomous OpNav problem using simple, off-the-shelf circle fitting algorithms. In order to do

this, the filters will take in as measurements their relative pose vector, agnostic of what image

processing algorithm provided it. The same filters can be used with different image processing

algorithms, and the latter can determine the quality of it’s measurement prior to use for filtering.

Secondly, the work aims to implement Hough Circles for the first time in a end-to-end navigation

toolbox. Celestial bodies can generally be approximated as ellipsoids, while most planets can be

approximated as spheres under certain assumptions. Both ellipsoids and spheres mathematically

project to ellipsoids on a camera plane. This has forced ellipse fitting to become the de facto way

to fit limbs for navigation. In this framework, clustering methods such as Hough transforms are too

numerically complex and slow and have been discarded for navigation though discussed.41,129,225

This research aims to prove that circle fitting can provide similar results in ideal cases.
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1.2.2.4 Closed-Loop Autonomous Scenarios under Uncertainty

The current state of the art regarding autonomous navigation remains the AutoNav algorithm

used for Deep Impact.121,122 To this day, it remains the only algorithm to have been flown for on-

board attitude and trajectory modifications using OpNav measurements.46 AutoNav developments

came with the many challenges that arise when targeting asteroids of unknown shape, position, and

size.123 Its success has encouraged further developments in this direction. These extensions have

been primarily focused on flybys and landings on small bodies,18 as well as approaches to Mars.21

The fifth chapter aims to simulate an enhanced, more general, version of AutoNav in Basilisk.

The first novel addition will be the generalization of the applications: AutoNav has been used

for flybys (Deep Space 1 ) and for impact (Deep Impact). This work will have similar guidance

algorithms — which determine position and attitude and correct drifts and errors — generalized to

orbit scenarios. The second novel component is in image processing: AutoNav has only used Center-

of-Brightness for targeting. The challenge of robustness greatly motivates the use of Hough Circle

transforms which are very resilient to image noise and corruptions. This research implements CAD

methods which provide more information and ultimately allow the generalization to simultaneous

orbit and attitude control.

1.2.2.5 Applying Machine Learning to Astrodynamics

Although pre-computed sequences have led to mission success in the past (Deep Impact),

they remain vulnerable to failures and unexpected errors. A growing number of RL and ML

methods are appearing in the literature, mostly focusing on the application of learning approaches

to control problems in uncertain environments. Several works have considered RL in the context

of autonomous aerobraking planners,51,91 with mixed results; others explore ML techniques for

asteroid proximity operations79 or autonomous lunar landing.179 In contrast, this work explicitly

examines applications of RL to high-level spacecraft planning and decision-making problems that

have traditionally been the domain of rigid expert policies or optimization-focused strategies.
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In similar developments, neural networks have shown promising results in countless fields.

Neural nets take many forms ranging from Artificial Neural Networks (ANN) and Feed-Forward

Neural Networks (FFNN),199 to Convolutional Neural Networks (CNN),164 Boltzmann Machines198

and Bayesian Networks.34 As universal function approximators138 which learn under supervision

(based on example input-output pairs provided) they have seen a great success in fields ranging

from medical imagery150 to digit recognition.188 In navigation, CNNs are recently used for depth

mapping149 and Terrain Relative Navigation (TRN).179

1.3 Research Overview

1.3.1 Thesis Goals

The proposed research combines Software and Simulation development with GNC. In order

to enable robust testing of these developments, there is a need to create a realistic simulation

that allows for the implementation and testing of OpNav methods. The first goal revolves around

attitude determination, more specifically on using OpNav measurements for heading determination

while avoiding unobservability. The second goal, in the context of relative orbit determination,

is to analyze and develop the use of robotic’s inspired algorithms. Algorithms instantiated here

have been discounted in the past either due to speed or a lacking measurements quality. This is a

novel goal as Hough transforms for circle finding have not been used for ellipses given prohibitively

lengthy processing times. By fully linking and analyzing these algorithms in a closed-loop fashion,

they can be tested next to higher fidelity methods. In a third goal, fault detection can be performed

and robustness can be evaluated. These goals will together enhance capabilities of AutoNav to on-

orbit orbit determination with a resolved planet. This motivates the use of circles-fitting with a

clustering method such as Hough Circles. Indeed the research aims to demonstrate the robustness

of the method in the presence of difficult measurements. Finally, Machine Learning methods are

implemented in order to provide solutions to astrodynamics problems. Such developments aim to

improve decision-making for spacecraft autonomy are tested and developed. Neural networks are
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also explored for lower-level image processing improvements. The goals of each research topic are

found in the following chapters:

• Chapter 2: Provide a closed-loop dynamic-visualization software package for OpNav sim-

ulations. This allows for realistic and accurate closed-loop OpNav testing.

• Chapter 3: Develop a robust attitude relative heading filter which uses CSS data or visual

measurements.

• Chapter 4: Implement Centroid and Apparent diameter OpNav filters for state estimation

using the Hough transform and compare performance to state-of-the-art methods.

• Chapter 5: Design fault injection into the simulation and analyze method robustness.

Provide fault detection algorithm that combines method strengths to enhance autonomous

capabilities.

• Chapter 6: Develop reinforcement learning methods applied to spacecraft decision making

in the context of OpNav, and train neural nets for image processing.

1.3.2 Outline of Contributions

The following dissertation presents contributions to the field of aerospace engineering sciences

in several regards. The first contribution is the development of an open-source closed-loop dynamic-

visualization software package for OpNav simulations. The designed tool provides the backbone

simulation used throughout this work, but remains available and general to a wide variety of other

use-cases.

Another contribution lies in heading determination and filtering with limited measurements.

By leveraging work done on sun sensors, heading determination for OpNav is also enhanced. The

filters implemented, dubbed Switch-Filters, choose between different kinematic representations of

the state in order to avoid singularities.
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This is followed by a contribution to centroid and apparent diameter for orbit determination.

The work analyzes the use of circle finding through the use of the Hough transform on orbit about

known celestial bodies. Unlike previous work, this research moves away from ellipse-fitting in

order to implement a more robust clustering method in a fully closed-loop environment. Results

show that performance is on par with conic-fitting methods even in ideal cases. This work is

subject to some assumptions, notably in situations where the planet is not largely oblate and a

pointing algorithm allows it to remain centered on the image plane. The research then explores fault

detection algorithms that can stem from the use of robust methods. These developments are found

between Chapter 4 and 5. Chapter 4 includes the end-to-end analysis of the Hough transform

for OpNav orbit determination and pointing. Then, in Chapter 5, fault detection algorithms

implemented with two methods as inputs to test against the result of environmental and camera

corruptions.

The last contributions lie in the use of machine learning methods for autonomy. Although

these methods are under ongoing development, the core capability is displayed. The applications

range from high-level autonomy for decision making to optimizing neural nets for image processing.



Chapter 2

Closed-Loop Optical Navigation Simulation Package

2.1 Overview

In this chapter, a software architecture provides a realistic environment to develop, run, and

test novel and autonomous visual spacecraft navigation and control methods. This architecture

harnesses two main components: a high-fidelity, faster-than-real-time, astrodynamics simulation

framework in concert with a sister software package to dynamically visualize the simulation envi-

ronment. Autonomy in OpNav requires a simulation that closes the loop between the astrodynamics

simulation and image generation; this allows for realistically emulated maneuvers such as fly-bys

and orbit insertions, as well as on-orbit autonomous activities. Yet, there are no open-source

software packages that provide fully coupled spacecraft environments and FSW enabling these mis-

sion scenarios. A solution for dynamic simulations is the interfacing of the Basilisk astrodynamics

framework with a Unity-based visualization Vizard. The coupled software tools generate a stream

of synthetic images from a simulated camera sensor. This modular and extensible framework allows

optical GNC algorithms to be run in a closed-loop format purely in software. The optical measure-

ments are generated in the visualization and passed to the simulation, allowing for real-time control

and FSW decision making. The Vizard software has the ability to import shape-models, planet

maps, and move into an instrument point-of-view. Paired with open-source image processing li-

braries, these combined components provide all the necessary pieces to fully simulate autonomous,

closed-loop, OpNav scenarios in a faster-than-real-time configuration. The tool establishes the

foundation for progress in the autonomy sector. It makes full-fledged FSW testing with real fight
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environments possible. Furthermore, this enables more realistic and extensive testing of the soft-

ware, which in turn increases reliability of the GNC methods as they are refined. This chapter

presents the Basilisk and Vizard interface architecture, its performance, and develops a example

scenario. The image processing methods are displayed and the visualization scenes are validated

for pointing purposes, which develops an autonomous pointing algorithm developed in the software

environment.

2.2 Motivation and Previous Work

As previously described in Chapter 1, future space exploration requires autonomy as a key

technology enabler.195 Reducing the frequency of ground-in-the-loop communication allows for less

expensive mission support systems. Aside from alleviating ground-based tracking, autonomous

GNC with ground-in-the-loop navigation supplies the system with redundancy if communica-

tion fails or when maneuver time and spacecraft distance make ground based control impossible.

Whether it be for robotic exploration of the solar system, manned spaceflight, or small satellite

development, autonomy opens the door to new mission concepts.108,121,123

One key enabler for autonomy is on-board optical navigation, as it provides measurements

that can be gathered without contacting Earth. Furthermore, it provides direct information on what

is often the subject of the mission’s scientific objectives. This chapter outlines a novel framework

which seeks to combine navigation algorithms within a simulated spacecraft environment. These

algorithms require a reliable and extensible testbed to be developed and refined. This simulation

testbed must provide realistic spacecraft simulations, model the local space environment, and create

three-dimensional visualizations of both the spacecraft and the environment. Since the guidance and

control development typically involves extensive Monte-Carlo sensitivity analysis, computational

speed is of paramount importance.

High-fidelity dynamics simulations provide a vital test environment for spacecraft and robotics

development. Existing tools such as DARTS24 paired with DSENDS, Dshell, or ROAMS1 provide

1dshell.jpl.nasa.gov
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high-fidelity dynamics and visualization capabilities.132 These tools are used in a closed software

environment that are not generally extensible by researchers outside of the Jet Propulsion Lab-

oratory. Furthermore, although DARTS provides closed-loop dynamics and control, it does not

permit the use of visualization snapshots for image processing and OpNav. AGI-EOIR1 is an STK-

based visualization tool that uses physics based radiometric sensor and target image simulation.

This software can provide highly accurate sensor images, but these are exported to file and not

integrated into a closed-loop simulation. In the field of robotics, ROS4,175 and its sister software

package Gazebo2 are open source and provide hardware-in-the-loop capabilities. Yet, these are tai-

lored for ground-robotics applications and do not provide sufficient spacecraft models and features.

An open and extensible software solution like ROS has not existed for the spacecraft community

in the past.

Stand-alone highly-realistic visualizations are also in development. With increasing image

generation capability, pioneered notably by the video-game industry, space imaging is given more

and more tools for creating synthetic camera data. This is seen for instance with the development

of PANGU 3144 which has the ability to model the surfaces of planetary bodies such as Mars, the

Moon, Mercury and asteroids using real and synthetic data. PANGU is designed to provide a high

degree of realism yet only operating at near real-time speeds. Similarly OpenSpace4 and Airbus’

SurRender5 software both provide highly realistic simulations. Issues arise when taking speed

of image generation into account, as well as open-source codebases. Indeed, only OpenSpace is

free to use. Nonetheless, the interface described in this chapter is applicable to a wide variety of

simulation-visualization pairs and can be ported to other software packages. If other simulations

or visualizations have more advantageous features in the future, this work will generalize well to

include them.

1www.agi.com/EOIR
2gazebosim.org/
3pangu.software
4www.openspaceproject.com
5www.airbus.com/space/space-exploration/SurRenderSoftware.html
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OpNav simulations have focused either on the image processing component,128 on the estima-

tion component,40,43 or on using mission data.61 These provide valuable insight on many facets of

the problem; yet no common open-source software package exists that provides modularity and re-

peatability while bringing together contributions from many developers. Furthermore, most current

simulations do not couple spacecraft dynamics and control into OpNav measurements.133 Camera

models are linked to the image processing and filter performances,42 but this does not loop back

to the spacecraft control algorithms.

Figure 2.1: Mars Orbit Insertion Scenario with Astrodynamics Simulated by Basilisk and Visualized

in Vizard219

One example scenario is an orbit insertion maneuver, which occurs in close proximity to the

body of interest during a short time span (too short for ground intervention) and is central to

mission success. A spacecraft’s on-board use of optical measurements can provide assurance of

proper maneuver execution, and notably, if faults occur. Another example is the New Horizons

Pluto fly-by. The mission studied the likelihood of having Pluto in the image frame,186 whereas

autonomous pointing could have provided more confidence by centering Pluto in the image frame.89
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Both these examples showcase the potential for more autonomy in the chain between OpNav,

attitude control, and trajectory modifications.

Basilisk1,113 is a highly modular astrodynamics simulation framework that allows for the

rapid simulation of complex spacecraft dynamics.8 Key astrodynamics features include solar radia-

tion pressure,114–116 imbalanced reaction wheels,3 imbalanced control moment gyroscopes,2 flexible

solar panels,7 fuel slosh,6,26 depletable mass,169 as well as multiple body gravity and gravitational

spherical harmonics. The sensor simulation and actuator components couple with the spacecraft

dynamics through a publish-subscribe (pub-sub) messaging system.113 A state engine allows for

complex spacecraft dynamics to be setup without having to develop and code any dynamics dif-

ferential equations.5 An associated visualization is built using the Unity gaming engine, is called

Vizard, and was developed by Jennifer Wood.219 This dissertation focuses on the required interface

with Basilisk to achieve OpNav simulation capabilities. Here the simulation messages are streamed

directly to the visualization to illustrate the spacecraft simulation and environment states. Fig-

ure 2.1 shows a Mars Orbit Insertion (MOI) performed in Basilisk and visualized inside the Vizard

software. As ROS and Gazebo do for the robotics community, combined Basilisk and Vizard provide

an open and extensible software architecture to both simulate and visualize spacecraft dynamics

and control scenarios for the astrodynamics community.

This work explores a new software architecture where Vizard is not just used to visualize

the Basilisk simulation states, but becomes itself a visual sensor module for Basilisk, thus allowing

for closed-loop visual control simulations to be performed. This allows for visual guidance and

control algorithms to be tested in a faster-than-real-time software platform that is also suitable for

Monte-Carlo type sensitivity studies. The created visualization images are controlled and shared

via a new two-way connection between Basilisk and Vizard. This is a challenge as it requires

frame synchronization such that any type of camera resolution can be simulated while maintaining

synchronization with the dynamics simulation. Furthermore, it is desirable to design a flexible

communication interface between two software packages such that they can be run on a single or

multiple computers.



25

This new Basilisk-Vizard software integration has the ability to support many scenarios at

the cutting-edge of autonomy; these include optical deep space navigation, formation flying, close

proximity and servicing applications, as well as visual navigation about small celestial bodies such

as asteroids. Because Basilisk also allows for formation flying capabilities,165 formation flying

dynamics have the potential to be paired into an OpNav framework for relative formation control.

This allows for true-scale spacecraft models to be used for visual control, with features like self-

occultation and realistic camera model. Furthermore, implemented star-maps could be used for

realistic attitude determination and control, all within a closed loop software framework. For

entry, decent, and landing (EDL) and asteroid missions’ safety, these developments can add an

important element of reliability by providing a testbed for autonomy and quantifying performance.

Simultaneous Localization And Mapping (SLAM) and cross-correlation methods could also be

implemented and tested in a realistic spacecraft environment. These algorithms are currently

being developed for novel navigation purposes notably within NASA and ESA.29

This chapter details the new software architecture that allows the Vizard software to become

a highly configurable visual sensor module for Basilisk. First, the numerical performance and

computational cost of the communication overhead is explored; second, the visualization optical

sensor module is validated for specific OpNav purposes; finally, a pointing scenario is developed in

order to showcase the architecture’s performance.

2.3 Software Interface Architecture

2.3.1 Overview of the Basilisk and Vizard Software

Basilisk is an open-source astrodynamics framework being developed by the University of

Colorado Autonomous Vehicle Systems (AVS) lab and the Laboratory for Atmospheric and Space

Physics (LASP). By implementing high-fidelity, faster-than-real-time dynamics, it allows to sim-

ulate spacecraft in realistic flight conditions. The inherent speed of the framework and its multi-

process Monte-Carlo capability provides high-end analysis tools. In the Basilisk simulation, FSW
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and spacecraft models are placed into different Processes (or Task Groups) to isolate their individ-

ual messages. By communicating through the pub-sub messaging system, blocks of code can be

added and contribute to the simulation without necessary knowledge of other blocks, as seen in

Figure 2.2. This interface allows for closed loop control algorithms and simulations to be developed

and tested in a highly modular manner where each component has its own unit and integrated

tests.

Python Layer
Simulation Setup, Module Initialization, Results and Logging

Process 
Interface

Shared 
Messages

Dynamics

Task Group: ENV

RWA

Flexible Panels

Sensors 0.1 Hz

100 Hz

Camera

Data Read

Task Group: FSW

Star Tracker

Camera

Att Nav 2 Hz

10 Hz

Att UKF

Figure 2.2: Schematic Illustration of the Basilisk Architecture1,113,140

Alongside this effort, Vizard219 receives Basilisk messages and dynamically displays these

states. Vizard has the ability to import shape-models and planet maps, as well as display and

render instrument point-of-view windows. Paired with open-source image processing libraries,

such as OpenCV 1, these combined components provide the necessary software components to fully

simulate autonomous, closed-loop OpNav or other visual sensing and control scenarios. This thesis

develops the software architecture that allows Vizard to be integrated into Basilisk as a visual

sensor module. As a fully open-source project, Basilisk -Vizard allows for any user to contribute to

the code base, and therefore centralizes progress within astrodynamics.

1opencv.org
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The modularity of Basilisk comes from the fact that modules publish and subscribe without

requiring knowledge of other existing modules. Processes (or Task Groups) as pictured in Fig-

ure 2.2 are containers that allow their internal Tasks to communicate, but prevent inter-Process

communication. These message containers can also interface to allow inter-Process communica-

tion which helps manage the separation of FSW and simulation models. This naturally welcomes

another actor: the visualization. By creating a module with access to the required messages, the

communication between the software nodes is established.

2.3.2 Faster-Than-Real-time Interfacing

In this thesis, a the term ‘realtime’ is used to describe simulations that run at the same speed

as the physical system being modeled. Although running one order of magnitude faster-than-real-

time can be a clear speed up, it is often not enough for Monte-Carlo capabilities. Therefore the

term ‘faster-than-real-time’ is reserved for a two order of magnitude speed-up or more.

The software architecture of Basilisk allows Vizard to capture information from the space-

craft’s environment and communicate it to Basilisk mid-run. Vizard then creates a three-dimensional

visualization of the space environment including planets, moons, stars, other spacecraft, all from the

perspective of the current spacecraft location and orientation using a specific body-relative camera

frame perspective. After rendering this view the resulting image bitmap must be transferred back

to Basilisk as an image message.

Implementation of the Vizard to Basilisk interface produces several key challenges. The first is

making two heterogeneous software entities written in different programming language of C/C++

and C# communicate. Next, the simulation must execute faster-than-real-time to be suitable

for navigation and control sensitivity analysis. Finally, these heterogeneous components must be

integrated while maintaining synchronous operation of the modules through each integration time

step. Two types of connections between Basilisk and Vizard are considered: the direct connection,

and a connection via Black Lion.54,140
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Figure 2.3: Interactions Between Basilisk, Black Lion, and Vizard

2.3.2.1 Black Lion

First consider the case where Vizard and Basilisk are part of a larger distributed spacecraft

simulation which uses the Black Lion architecture54,140 to communicate across simulation nodes.

The benefit of this approach is that Vizard and Basilisk can be distributed simulation environments

and on different machines, at the cost of additional central controller software. The Black Lion

package developed in the AVS Lab is middleware that ensures proper interfacing between nodes

in a heterogeneous, possibly distributed spacecraft simulation. Essentially the message passing

interface concept of Basilisk is expanded to function across a range of heterogeneous simulation

components such as a flight processor emulation or ground software system. For the scope of this

paper the Black Lion nodes are Basilisk and Vizard as illustrated in Figure 2.3.

In summary, Black Lion ensures :

• The transport of binary data via a transport layer (Transmission Control Protocol or TCP).

Although User Datagram Protocol (UDP) provides a faster connection, the three-packet

exchange provided by a TCP provides the high-reliability necessary for physical simulations.

This ensures the camera image is received at the correct time by Basilisk.

• The marshaling (or translation) of binary data. Each node must know how to convert the

received bytes into structures that can be managed internally.

• The synchronization of nodes to keep all the nodes in lock-step during the simulation run.
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The central controller acts as a master in the synchronization of the nodes, and a broker in the

data exchanges.

Google Protobuffers1 are used to provide a platform and language agnostic translation layer

library to facilitate marshaling and unmarshaling of data between the two simulation applications.

By creating these Protobuffer structures, both the C++ code in Basilisk and the C# code in Unity

can read in and write out the necessary content. This method is currently in use at LASP for real-

time Basilisk -based flat-sat testing while integrating the Vizard visualization. It notably allows

running distributed simulations over a network. Users can distribute nodes across machines, use

hardware in the loop, or run the Vizard on a computer with a high-end graphics card. This provides

a wealth of optimization strategies with the slight added complexity of interfacing with middleware.

Because Black Lion enforces synchronization across modules, the synthetic visual sensor images are

guaranteed to remain in sync with the spacecraft dynamics simulation in Basilisk. This method is

primarily aimed at more mature mission concepts. By using hardware in the loop, the faster-than-

real-time aspect is lost, but more critical tests can be run.

2.3.2.2 Direct Communication

When performing fast analysis or making design choices, it is desirable to run Basilisk and

Vizard on the same machine without having to synchronize with other spacecraft simulation com-

ponents, such as ground software. In order to simplify the interface, a direct communication is

implemented which allows for a two-way communication between Basilisk and Vizard without

using Black Lion as a middle-ware interface layer. In the absence of a central controller, the

vizInterface module written in C++ takes on the synchronizing responsibilities. Nevertheless

the same methods and tools seen in the Black Lion-based implementation are used:

• The transport layer used is a TCP, implemented with ZeroMQ2.

• The translation layer uses the same Protobuffer structure.

1developers.google.com/protocol-buffers
2zeromq.org
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• The synchronization is enforced in the simulation through a blocking communication inter-

face: Basilisk waits for critical responses from Vizard through ZeroMQ before continuing

the simulation.

The direct communication protocol utilizes a separate thread to spawn Vizard from the python

layer to start a request-response pattern. In this direct communication scenario, there are two

main modes that the interface can work in: a lock-step mode and a performance mode. The core

difference between these is the frequency of communication between the two nodes.

(1) Lock-step: In the lock-step mode, Basilisk sends updates at every time-step whether or

not an image is requested. Lock-step provides a fluid visualization, and renders both

the spacecraft camera and Unity ’s main camera to screen allowing for user-feedback on

the simulation setup and initialization. This also opens the possibility of controlling the

simulation from the visualization, as it will always wait for a message verifying Vizard has

received the simulation message. In lock-step mode, Basilisk always waits for a message

from the Vizard saying it can move forward. This keeps the synchronicity as the message

queues looks the same on each side and the visualization always has the latest message.

(2) Performance: In performance mode, the visualization and the interface are simplified. On

the Vizard side, the spacecraft camera becomes the main camera. Furthermore, Vizard

only places and updates simulation states if an image is requested and vizInterface only

sends a simulation update when an image will be requested. This brings down the number

of TCP pings to the camera image rate, instead of the simulation time step. A separate,

OpNav-specific application is developed for this purpose. Paired with Unity ’s ‘batchmode’

command-line argument — which makes the Unity application a rendering engine without

initializing a user interface — the application can stay silent and run in the background

effectively reducing the Vizard application to a simulation module.
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Figure 2.4: Direct Communication using the Viz Interface

2.3.2.3 Interface Implementations

Figure 2.3 shows the interaction between the major software nodes for both interface sce-

narios: via Black Lion (blue arrows) or directly (red arrows). Figure 2.4 outlines the details of

the interfaces of the direct communication option. As stated previously, Basilisk modules pub-

lish and subscribe to messages via the Process (or Task Group) message memory space without

any knowledge of other existing modules. Basilisk contains a new C++ Vizard interface module

which reads the required Basilisk messages, writes them as protobuffers, and sends them via Black

Lion or Vizard directly. The Visualization interface then unpacks the protobuffers in order for the

rendering engine communication controller to use the data.

These design choices reflect the desire for a modular yet robust architecture. The use of

Google Protobuffers allows for platform independent communication; Unity provides a user friendly

and vast community for environment development; Black Lion is the middleware that connects and

applications and synchronizes them across separate machines. Alternatively, the direct communi-

cation is created between the visualization and Basilisk for the ability to debug, test, and analyze

simulations to greater effect. These tools provide the building blocks for the framework presented

in this thesis.
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2.3.3 Information Flow

In both simulation communication configurations (BlackLion or direct communication), the

information flows back and forth between the two nodes. The main points of the information flow

are detailed below and shown in Figure 2.5. The schematic presents an example simulation to

showcase the general capabilities of the framework, and represents only a fraction of the possible

implementations. This architecture’s greatest strength is its potential to support further complexity

and development, thus making it extensible. This section shows an example of the data flow that

can be achieved with the architecture.

Task-Group Interface

Viz Interface

Direct Communication Controller

ENV

Image 
Processing

FSW Att & Orbit
Navigation

Guidance & 
Control

Unity Simulation 
Update

Unity Image 
Render

Vizard

Basilisk

Figure 2.5: Information Flow Between the Visualization and the Simulation

(1) The vizInterface module in Basilisk checks for new information in the simulation. If any

data has changed at a simulation time-step, the protobuffer message is updated. In the

absence of change, the module will do nothing.

(2) The protobuffer is passed to Unity (black arrow next to ZMQ logo) and packed in a

dictionary. This allows for a simulation update on the game engine side and an image

render if requested.

(3) If an image is requested—this can be done through the presence of an image request message
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in the simulation, or if the simulation time is a multiple of the camera render rate—

Vizard renders the texture viewed by its internal camera according to specifications. The

camera position and orientation are sent to Vizard, and the camera frame is rotated by

σ =
[

1
3 ,

1
3 ,−1

3

]T
(rotation represented as an MRP) in order to abide by the Unity camera

definition (which points out of the −X direction). This is then sent back to Basilisk in a

bit-map format while the simulation awaits the return message.

(4) The received image is unpacked in the vizInterface module, the endianness is swapped

(discrepancy with incoming image), and repacked in a C structure for the rest of the

Basilisk simulation to use (with relevant information such as time of capture and camera

used). FSW modules are traditionally written in C, therefore the bitmap is recast to a

void pointer in Basilisk. This prevents numerous copy operations of the image data and

requires no dynamic allocation (which requires a malloc in C).

(5) This image will be read by the image processing module, which will extract spacecraft

relative position with Centroid and Apparent Diameter (CAD) algorithms. Figure 2.5 could

also picture camera models for additional realism. This can include the CCD’s sensitivity

to certain colors, realistic jitter using true attitude variations, etc.

(6) This value is next sent to an Orbit Determination filter or Attitude Guidance module

along with the associated covariance as a measurement for position estimation. These

FSW-specific exchanges are seen in Figure 2.5 with the blue arrows which represent the

pub-sub messaging system calls.

(7) With an updated state estimate, the spacecraft can now control its attitude, position, and

velocity.

(8) These updated states are tracked by the vizInterface and sent back to Vizard for a new

sim update in the visualization.

Unity can save images to an external file. This allows for a log of the images that were taken to
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be saved for debugging and validation. The vizInterface module also saves all the protobuffers

from a run to file, this allows for playback capability on every simulation run.

2.3.4 Challenges of Memory Management

As discussed previously, one of the core advantages of this framework is its modularity.

Therefore, the data flow between the software nodes and within Basilisk must adapt to the modular

structure of the simulation.

2.3.4.1 Transferring Image Data

One of the difficulties that arise when passing images between modules is the potentially

large amount of data that needs to be copies or formatted. Furthermore, the Basilisk messaging

system is C-based in order to translate well to FSW algorithms, which limits the available types

(interfaces, functors, classes etc.).

In order to mitigate the frequent manipulation of large blocks of data, messages contain the

memory address which points to the image instead of the image itself. As the image first enters the

astrodynamics simulation through ZMQ, the pointer to the image is owned by the ZMQ thread.

For memory management, ZMQ will free the memory at a deterministic but arbitrary time, and

so the address must be allocated by Basilisk modules for proper internal memory management.

Every module that manipulates the image (starting with the viz interface) must therefore own

a pointer to the images memory which must be freed after every new call. At every update, the

image message is populated with a new pointer to the image that has just been manipulated without

copying it.

In order to not require OpenCV library be included across the entire Basilisk codebase, the

image is formatted as a compressed bitmap (portable network graphics or PNG). By transferring

a void pointer — which is a pointer that has no associated data type with it — each module to

unpack the bitmap, and recast it to any desired format. This also allows for flexibility in the format

and future development of the codebase as the void pointer will adapt well to any image type.
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Algorithm 1 Image Memory Management

1: Initialize newPointer ← NULL
2: Begin Simulation
3: if newPointer != NULL then
4: free(newPointer)
5: newPointer ← NULL
6: if ImageMsg is valid then
7: vector(uchar) buffer
8: buffer ← ((char∗)ImageMsg.pointer,(char∗)ImageMsg.pointer
9: +ImageMsg.length))

10: image ← decode(buffer)
11: modified ← edit(image)
12: outBuffer ← encode(modified)
13: newPointer ← address(outBuffer)
14: msgOut ← (newPointer, size(outBuffer))
15: writeMsg(msgOut)

In summary, every module that manipulates the image must recast the void pointer to an

unsigned character (or uchar) vector, decode it (into a CV Mat in most cases), manipulate it, then

encode it and pass the pointer to that memory slot. This is written in pseudo code in Algorithm 1.

2.3.4.2 Manipulating Image Data

Another difficulty that arises when developing image processing modules is the treatment of

memory allocation on the stack or heap.

Stack allocation happens on contiguous blocks of memory.11 The size of stack memory to be

allocated is known to the compiler and its variables get memory slots on the stack when the function

is called. This memory is then deallocated automatically when the function call is completed.

Allocating stack memory is easy, fast, and robust to memory leaks; yet, it only provides a small

amount of memory (commonly less than 10 MB) which can easily be overflown when manipulating

large amounts of data.

Heap memory is allocated during execution and is done so manually by the programmer. If

this memory is not handled well — by being appropriately freed — memory leaks can occur in the

program. Heap memory allocation incurs a performance cost because it cannot be optimized in
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the same way as stack allocation during the code compilation stage. In contrast, heap allocations

provide far more memory (limited by virtual and physical memory of the machine).

When manipulating large data sets, notably for image processing, stack versus heap memory

allocation can become an issue. This issue has been seen in the course of this work, most notably

when computing covariances matrices of OpNav estimates. Discussion on this issue are added

throughout the following chapters where applicable.

2.3.5 Closed-loop Simulation and Performances

In the case that closed-loop simulations are to be used for Monte-Carlo analysis and Ma-

chine Learning, the software architecture presented must allow for faster-than-real-time speeds. As

explained in the above subsection, there are two different modes that can be used, with different

performance goals. The speed of both implementations are illustrated by running separate analyses.

Figure 2.6 plots simulated time divided by run times (averaging over 5 runs) for varying camera

quality and render rates. The x-axis represents the image size and although the ticks read total

number of pixels, the scale is linear (square-root of the tick labels) for legibility. The Figure 2.6a

shows the results of the lock-step mode, while Figure 2.6b shows the performance-mode results. All

tests are run on a MacBook Pro running macOS Version 10.13.6, a 3.5 GHz Intel Core i7 processor

with 16GB of memory, and Intel Iris Plus Graphics 650 graphics card.

The simulation used in this section is an OpNav-point scenario developed in the final section of

this chapter. This 100min simulation has a 0.5s integration time step, and implements a spacecraft

dynamics module alongside FSW algorithms for attitude control running at the same 2Hz. The

spacecraft searches for Mars and points to it when able using an MRP-feedback control law derived

in Example 8.14 of Reference 184.
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Figure 2.6: Performance of Both Closed-Loop Implementations

The architecture provides speeds that allow for Monte-Carlo analysis and machine learning

scenarios to be run in a reasonable amount of time. The first thing to notice is that performance-

mode provides an order of magnitude speed-up relative to its ‘Lock-Step’-mode predecessor. This

difference shows the main slow-down incurred comes from Basilisk needing to wait for Unity ’s up-

dates. Furthermore, Figure 2.6b shows that if the sim moves forward with minimal communication,

the rendering of the image becomes the expensive operation.

Figure 2.7: Camera View as the Spacecraft Moves the Simulation
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Images in Figure 2.7 show the images that are received by the simulation for processing.

This is done with a 60s camera render-rate in order to capture the motion of Mars. The planet is

not initially visible from the camera’s perspective, but the search algorithm brings the planet into

the camera frame. In the second half of the run (bottom line), the planet is fully in view of the

spacecraft. These images are from the scenario described in the last section of this manuscript, and

can import a wide variety of Mars surface maps1.

2.4 Optical Navigation Example

Optical navigation tracks planet and moon centroids and dimensions to determine the space-

craft location. Several optical navigation methods exist, such as star horizon,166 centroid and

apparent diameter,41 star occultation,173 and landmark tracking.133 Each of these have their spe-

cific application scenarios depending on the object they are required to track.

Centroid and apparent diameter measurements find the limb of a body and use the knowledge

of its actual size and position. By extracting direction and distance, range and position information

is extracted from planet images. The shape of the partially illuminated moon alone permits the

estimation of the direction vector to the sun using just a star tracker.66 With the knowledge of the

body in sight, its ephemeris, and its size, determination of both the spacecraft’s orbit and attitude

can be achieved. These methods require minimal image processing power, are relatively fast to

implement, and provide a wealth of extractable information from images. The use of OpenCV

has helped accelerate module design. For these reasons they will be the baseline methods used in

simulating autonomous OpNav.

However, other OpNav methods yield better navigation results. Measurements derived from

landmark observations,133 point distribution methods,203 or crater detection170 are some of the

many feature tracking methods which provide promising results. The real-time component of this

framework creates a realistic environment to quantify and run more computationally extensive algo-

rithms. Future work will include higher-fidelity star-maps in order to do star-horizon detection,166

1celestiamotherlode.net/catalog/mars.php
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amongst other methods that have been described in the literature.

This software framework allows for rapid and high-fidelity testing, and can centralize progress

from other fields within astrodynamics. In the aerospace field this has been seen with ORB-SLAM

development155,156 and cross-correlation methods.29,143 These hold great promise for small body

autonomous orbiting and have already proven to be useful on missions such as ESA’s Rosetta

and ongoing missions such as OSIRIS-REx. Although implementing such methods in Basilisk are

currently advanced goals, this architecture allows for these additions. Vizard allows users to upload

shape models for any celestial body as seen in Figure 2.8 with Vesta1. This provides the opportunity

to train and test shape model reconstruction methods by using fully coupled spacecraft attitude

and orbital dynamics.

Centroid tracking and apparent diameter measurements are the baseline OpNav methods in

this design. In parallel, developments for feature tracking will be added in along with more image

processing capabilities.

Figure 2.8: Vesta Shape Model Uploaded into Vizard

2.4.1 Camera models and validation

In order to realistically model OpNav scenarios, the images generated by the visualization

software must be sufficiently accurate for the image processing accuracy: if sub-pixel resolution is

1nasa3d.arc.nasa.gov/detail/asteroid-vesta
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not used by the algorithms, it should not en enforced to the visualization. Unity provides a large set

of lighting libraries that can simulate self-shadowing and model lighting on imported shape-models.

This allows for the generation of complex lighting scenes. By extension, it allows for the reading

in of partially lit planets, showing crescent lighting. This lighting is seen in the visualization in

Figure 2.11a.

Figure 2.9: Pinhole Camera Model

In order to speed up the simulation as much as possible, Unity camera models are used

to simulate a realistic camera model which is a pinhole model seen in Figure 4.4. A Basilisk

camera model can be created as well in order to add more complicated errors. Lens-flaring or

lens-distortion52 can distort images and can be compensated for in post-processing.196 Though not

a method in Unity 2018, the modularity of the software package allows for such additions.

Figure 2.10 shows the visualization compared to true data taken by the Epic camera on

DSCOVR. On the left is an image taken from Lagrange 1 on October 23rd at 4:35:25 UTC. The

image is obtained from the Epic website1 which also provides the camera specifications. These are

provided in Table 2.1, and were used as such in the Unity camera model. Sensor size and field of

view lock in the focal length, while the resolution and sensor size lock in the pixel size. Therefore

all the needed information is provided regarding the camera.

1epic.gsfc.nasa.gov/?date=2018-10-23
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(a) DSCOVR image (b) Raw Vizard Image

Figure 2.10: Comparing Vizard Images to Real Data

Table 2.1: Epic Camera Parameters

Parameter Field of View [◦] Resolution [pixels] Sensor Size [mm]

Value 0.62 2048× 2048 [30.72 , 30.72 ]

Table 2.2: DISCOR Position

Parameter Earth-S/C [km] Sun-S/C [km] Sun-Earth [km] Sun-Earth-S/C angle [◦]
Value 1, 405, 708 147, 451, 774 148, 846, 039 7.28

Regarding the spacecraft position, the source provides distance between DSCOVR and Earth,

DSCOVR-Sun distance, Earth-Sun distance, as well as the Sun-Earth-Craft angle. These values

are provided in Table 2.2. It is important to note that they do not provide a unique possible

position for the spacecraft. The spacecraft therefore lies on a circle off the Sun-Earth direction by

7.28◦. Since the exact position is not made public, the simulation placed the spacecraft exactly on

the Earth-Sun direction, with the expectation of seeing some differences. The Earth and Sun were

placed in the simulation using SPICE 1, which provides the Sun and Earth’s ephemerides, as well

as Earth’s rotation in the inertial frame.

1naif.jpl.nasa.gov/naif/
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Figure 2.10 illustrates that the actual mission image and the synthetic Vizard image look very

similar as the Earth has the same apparent location and size in the photo, and the continents are

lined up correctly as well. Only a slight shift can be seen in the Earth’s relative position: Australia

seems to be more to the South-West on the real image. This is certainly due to the 7.28◦ error

in the camera’s position. Besides this, the only significant differences are seen in the contrast and

texture quality. It would seem that the colors seen by epic are more matte. This can be improved

and modeled in the visualization as no color sensitivity is modeled, but for the purpose of centroid

and apparent diameter, the results are sufficiently accurate.

A simple CAD algorithm provides a center point at the pixel coordinates (1023.71, 1023.03)

and an apparent radius of 859 pixels for the real data. By running the same algorithm the simulation

predicted a planet center at (1023.50, 1027.68), and a radius of 854 pixels. This represents a relative

error of 0.46% pixels on the center’s position and 0.58% error on the radius. These are relatively

small errors given the uncertainty in the spacecraft ephemeris information.

More camera modeling will be detailed in the Chapter 5 regarding autonomy. True cameras

do not provide the crisp images that come out of Unity and therefore an effort must be dedicated

to modeling the noise and artifacts present it common spacecraft imagery.

2.4.2 Image processing methods

The biggest advantage of the software framework presented is its modularity. Certain state-of-

the-art limb-fitting algorithms for pose-estimation are on-board capable43 and can be implemented

with Basilisk and used in the simulation. This allows for computational speed tests as well as

better general performance understanding. In this dissertation, OpenCV 1 is chosen as an open-

source computer vision library, which saves development time by utilizing a robust software library

with widely tested functionality. The transformation used here is a Hough transform for circle

finding, which exists in many derivative forms.126,171 Figure 2.11 displays the transformations that

an image from the visualization is put through in order to extract apparent diameter and centroid

1opencv.org
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(a) Raw image (b) Gray scale

(c) Blur and Threshold (d) Canny edge detection (e) Hough circle

Figure 2.11: Extracting center and apparent diameter from visualization image using OpenCV

information. The raw image is turned into grey-scale (Figure 2.11b) before being fed into the

HoughCircles function. This function then blurs and thresholds (Figure 2.11c) the image within a

call to the Canny edge detection transform (Figure 2.11d). This is then the image used in order to

accumulate votes63 on the possible existing circles in the image. Figure 2.11e shows overall good

performance by the algorithm. Other examples using images of the Moon and Enceladus are shown

in Figure 2.12. It can be seen in some of the images in Figure 2.12 that although the algorithm is

generally quite robust, sometimes the radius of the planet is underestimated. This is seen notably

in Figure 2.12b. Image processing imperfections emphasize the necessity to output a measure of

uncertainty with the Hough transform. More details on the development and use-case for this

method are in Chapter 4.
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(a) Slim Moon cresent (b) Enceladus

(c) Partial Jupiter (d) Saturn Moons

Figure 2.12: Hough circle finding on several real images (Courtesy NASA/JPL-Caltech)

2.4.3 Attitude Guidance and Control Example

In this section, an example scenario is developed in order to illustrate the Basilisk -Vizard

capabilities. A spacecraft is on orbit around Mars and seeks to align its camera bore-sight with the

planet center. It takes images periodically for attitude guidance and control, and uses the Hough

algorithm to extract the center and the apparent diameter of the planet being observed. The pixel

data is pre-processed before being used to determine the planet direction. Initial conditions for the

simulation are given in Tables 5.2-5.3, while simulation and flight software parameters are given in

Tables 4.4-2.6. All modules listed are currently available on the Basilisk bitbucket repository1 with

additional documentation. The main assumption in these models is that the reference is static, in

this case that the planet does not move in the camera frame. This scenario puts this assumption

to the test.

The Pixel and Line Transformation module performs the simple transformation from pixel

1bitbucket.org/avslab/basilisk
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Table 2.3: Spacecraft Initial States

σBN ωBN Orbital Elements (a, e, i,Ω, ω, f)[
0 0 0

]T [
0 0 0

]T
18000 km, 0, 20◦, 25◦, 190◦, 100◦

Table 2.4: Camera Parameters

σCB BrC [m] Resolution [pixels] Sensor Size [mm][
0 0 0

]T [
0 0.2 0.2

]T [
512 512

]T [
10 10

]T
Table 2.5: Simulation Parameters

Simulation Modules Instantiated Necessary parameters at initialization

Spacecraft Hub Inertia [I] = diag(900, 800, 600) kg·m
mass M = 750 kg

Gravity Effector/Eclipse December 12th 2019 at 18:00:00.0 (Z)
µmars = 4.28284 · 104km3/s2

Simple Navigation Star Tracker Attitude error σatt = 1/3600◦

Rate error σrate = 5 · 10−5◦/s

Reaction Wheel Effector 4 Honeywell HR16 Wheels1

Wheel orientations Elevation 40◦, Azimuths angles 45◦, 135◦, 225◦, 315◦

B-Position [m]
[
0.8, 0.8, 1.79070

]T [
0.8,−0.8, 1.79070

]T[
−0.8,−0.8, 1.79070

]T [−0.8, 0.8, 1.79070
]T

Table 2.6: Flight Software Parameters

Flight Software Modules Instantiated Necessary parameters at initialization

Image Processing param1 = 300, param2 = 20, minDist = 50
(arguments for HoughCirlcle method2) minRadius = 20, dp = 1, maxRadius = 409

OpNav Point minAngle = 0.001◦, timeOut = 100s

ωsearch = [0.06, 0.0,−0.06]◦/s, Chc = [0, 0, 1]m

Pixel Line Transform Planet Target is Mars

MRP Feedback RW K = 3.5 , P = 30 (no integral feedback)

RW motor Torque Control axes are
B[
b1, b2, b3

]

data to spacecraft relative position. This scenario feeds raw measurements of the planet center

(xc, yc) in pixels to the guidance module, with the knowledge of the camera parameter. Notably

the pixel size is given by X = SensorSizex
Resolutionx

and Y =
SensorSizey
Resolutiony

in mm/pixel.

CrBN = −
[
X
f · (xc − Resolutionx

2 + 1
2) Y

f · (yc −
Resolutiony

2 + 1
2) 1

]
(2.1)



46

where CrBN is the relative vector of the camera bore-sight with respect to the celestial center,

where the left superscript represents the frame a vector is projected onto. f is the camera field of

view, and the transformations on the measurements also re-center the pixels.13,166,167 Since the

measurements in this scenario are given raw to the guidance module and without consideration of

covariance, this completes the measurement transformation.

2.4.3.1 OpNav Point Guidance

This simulation specifically uses the OpNav-Point module for guidance. The attitude guid-

ance module has the goal of aligning a commanded camera-fixed spacecraft vector ĥc with the

measurement vector h. Here, ĥc is the camera bore-sight, and so the attitude tracking errors seek

to align the camera towards the target and achieve relative pointing.

Figure 2.13: OpNav Pointing Scenario

In the following developments, all vectors are assumed to be taken with respect to a camera-

fixed frame C if a frame is not specified. The attitude of the camera relative to the target reference
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frame R is written as a principal rotation from R to C. The target R is defined simply by the

vector ĥc and body frame vectors. The body frame is defined as B : {b̂1, b̂2, b̂3}.

At the start of the simulation, the camera does not have the planet in sight. In this situation,

a search rate is requested: Bωsearch. Once the planet is found, and measurements are provided, the

requested rate is zeroed to keep the spacecraft at rest. The module also has the ability to request

a rotation about the camera bore-sight for stability. This module is designed for simplicity and

robustness. In order to be independent from a orbit determination solution, the inertial reference

frame acceleration ω̇R/N is set to zero. This means the guidance will need to constantly adjust

to a moving reference. Figure 2.13 pictures the spacecraft once Mars has been found and is being

tracked.

Similarly to a sun-safe point guidance law, this module does not establish a unique target-

pointing reference frame. Rather, it simply aligns ĥc with h, which is an under-determined 2 degree

of freedom condition. If these two vectors are nearly collinear, numerical instabilities can occur,

hence the minAngle variable set by the user.

The associated principal rotation vector ê and angle Φ between ĥc and h are

ê =
h× ĥc
|h× ĥc|

Φ = arccos

(
h · ĥc
|h|

)
(2.2)

If Φ is less then the module parameter minAngle, it is assumed that no valid planet heading vector

is available and the attitude tracking error σC/R is set to zero. For valid planet headings, this

rotation from R to C is written as a set of MRPs through

σC/R = tan

(
Φ

4

)
ê (2.3)

The set σC/R is the attitude error of the output attitude guidance message. If the spacecraft is to

be brought to rest, ωR/N = 0, then the tracking error angular velocity vector is computed using:

ωB/R = ωB/N − ωR/N ω̇R/N = 0 (2.4)

The attitude guidance message must specify the inertial reference frame acceleration vector. This
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is set to zero and is the assumption that needs to be justified as it can be poorly representative of

reality.

This concludes the module description, which is summarized in the following algorithm. The

details of the implementation are currently available on the Basilisk open source package in the

folder fswAlgorithms/attGuidance/opNavPoint/.

Algorithm 2 OpNavPoint

1: OpNavMeas ← read(PixelLine)
2: firstPass ← True
3: timeOut ← False
4: if OpNavMeas is valid or (!firstPass and !timeOut)

then
5: if OpNavMeas is valid then

6:
C
ĥ← read(OpNavMeas)

7: save(
N
ĥ)

8: firstPass ← False
9: else if !firstPass and !timeOut then

10:
C
ĥ← [CN ]

N
ĥ

11: angleError ← arccos(
C
ĥc ·

C
ĥ)

12: if angleError ≤ minAngle then
13: σguid ← 0
14: else
15: ê ← cross(

C
ĥ,
C
ĥc)

16: σguid ← tan(1
4angleError)ê

17: ωguid ← ωBN − ωRN
18: else if Search then
19: σguid ← 0
20: ωguid ← ωsearch

2.4.3.2 OpNav Relative Pointing Results

Running this scenario using the Basilisk -Vizard interface shows interesting control results,

which test the validity of the assumption stated previously. The spacecraft finds the planet after

40mins of searching with a slow search rate defined in Table 2.6. The assumption of holding the

target frame static in the inertial frame holds well with dense measurements. Furthermore, with

a fast run-speed, it is easy to test different setups and tailor the simulation to a specific goal or
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Figure 2.14: Attitude Control Results

requirement. The control plots once the planet is in sight are pictured in Figure 2.14; which shows

the attitude error norm and rate tracking error once the planet is found, for a constant 1minute

gap between consecutive images.

Although the attitude error in Figure 2.14a shows that the algorithm is constantly surprised

by the new images, the error stays close to 10−3. Figure 2.14b shows that the rates mirror this lag

with the X and Y components oscillating to control the spacecraft onto the target.



50

50 60 70 80 90 100

245

250

255

260

265

270

X
[p

x]

Truth Xpix

X-center

ImagProc Xpix

(a) X-pixels

50 60 70 80 90 100

Time (min)

250

260

270

Y
[p

x]

Truth Ypix

Y-center

ImagProc Ypix

(b) Y-pixels

Figure 2.15: OpNav Pointing Scenario Measured Pixels vs Expected Pixels

Finally, Figure 2.15 shows the true pixels as crosses, alongside the pixels measurement by the

HoughCircle transform as dots. It is important to note that this simple transform is performing well

as its estimates are very close to expected values, which are computed with the true and noiseless

spacecraft attitudes and positions. Furthermore, the measurements show the gap that is seen in

Figure 2.14a: each new measurement appears off-center. This is due again to a changing reference

frame that the guidance module needs to constantly keep up with. Despite this, the planet stays

in frame throughout the control and pixel offsets, as long as they are representative of the truth

and do not hinder orbit determination. In a situation akin to the New Horizons Pluto fly-by, this

simulation can provide a test environment for autonomous pointing algorithms.
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2.5 Conclusions

This software architecture provides a testbed for a modern simulation framework to research

visual navigation and control applications, including optical navigation and other novel navigation

methods. Through the closed loop, coupled interaction between the simulation and the visual-

ization, scenarios provide high-fidelity data at fast rates. Amongst other future endeavors, this

architecture opens the door to Machine Learning techniques and Monte Carlo analysis. The open

source nature of the project allows for continuous validation from the community, and contributions

from developers around the world. Using a simulated camera, optical navigation methods, and the

closed loop visualization-simulation interaction, these visual control spacecraft scenarios are tested

in a relative pointing scenario. The simulation framework allows a user to make, test, and verify a

hypothesis with ease, showcasing the ability for fast and robust analysis.

The tool described in this section is both open-source and novel to the greater visual naviga-

tion community. The coming chapters in this dissertation rely heavily on the use of this tool and

display the research that can be developed and tested within it.



Chapter 3

Attitude and Body-Rate Determination using Headings to Celestial Bodies

The previous chapter has shown possible attitude guidance using OpNav measurements di-

rectly. Although this provides a possible solution to a pointing problem, filtering the measurements

allows to fluidly propagate the heading, and to better handle noisy data. Heading determination

fits in to the general field of reduced attitude estimation, and has been developed in order to ac-

commodate different data types. The first measurement type is a pyramid of Coarse Sun Sensors

(CSS) for sun-heading determination, while the second is a generalized heading measurement which

can be produced by OpNav instruments.

Whether pointing a camera towards a celestial body for navigation or a sensor towards the

sun, this chapter will describe a novel filter formulation in order to estimate a heading that is

inertially fixed. This estimate will then drive the guidance and control modules in order to point

a desired instrument at the sun, or any other celestial body.

3.1 Overview

Heading determination algorithms are part of an area of active research, whether it be for

attitude or pointing. In the case of CSS sun-heading estimation it is desirable to use only one

measurement for heading determination. If the gyros are not sufficiently accurate, as might be the

case with low-cost microelectromechanical systems rate gyros, using one measurement allows for a

more robust sensor to determine attitude independently.38,208 Setting aside issues of observability,

not using dynamics or rate-gyros allows for minimalist and robust sun-heading estimation. Mass
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properties change during the mission, particularly between trajectory correction maneuvers or

insertion maneuvers. By being agnostic to mass properties, one filter can provide sun-heading

information throughout a mission. This development is then extended to the determination of any

heading.

A single inertial heading does not provide fully-observable measurements for sun-heading or

body-rate determination: the rotation rate about the heading is geometrically unobservable. This

chapter discusses novel improvements in attitude and body-rate determination with the limited

information that heading provides. The progress made on the sun-heading estimation front is

then generalized to planet centroid measurements from OpNav. Novel developments implemented

revolve around avoiding and extracting the non-observable components of the spacecraft state and

are discussed in detail. Finally, the measurement generalization is tested in order to understand

the validity of assumptions made for inertially fixed targets.

Measurement types can be paired with rate gyros in order to estimate headings and spacecraft

rotation rate. Relying solely on one measurement type is advantageous in scenarios where reliance

on the fewest number of devices is desired. Here the challenge is to find a robust method for heading

determination relying neither on rate gyros nor on spacecraft dynamics. In such a scenario, the

rotation rate of the spacecraft is estimated in order to provide state derivative control or simply

for better heading estimation. The simple filter inputs and outputs are a driving feature which

provides mission longevity and produces a nearly atomic filter which doesn’t rely on the accuracy

of modules upstream.

A novel sun-heading filter is derived which estimates only the observable components of the

body rate vector as the rate about the sun-heading axis remains unobservable. The filter elegantly

switches between kinematic formulations to avoid singularities of a single description, and it provides

significantly improved sun-heading estimates, as well as a partial body rate estimate. The new

filter is compared with two filters for gyro-less sun-heading estimation. One comparison filter uses

a projection method to remove the unobservable rate component and another comparison filter

uses numerical heading differences to estimate a rotation rate. The filters vary in state vectors,
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kinematics, and filter types, yet both have the goal of controlling or removing non-observability.

3.2 Heading Determination for Sun Pointing

Spacecraft pointing is an essential component to any mission scenario, whether it be to point

a science instrument towards a target, or a sun sensor towards the Sun. Three-axis attitude es-

timation has been studied at length57,127 with the use of a combination of many measurement

types.58,158 Although the star tracker provides a ubiquitous solution for inertial attitude point-

ing,37,78 many applications require relative pointing or secondary measurements to ensure the

quality of the default instruments. This often leads to the problem of conducting reduced-attitude

estimation,134 which can then lead to guidance and control schemes.172 This work first develops a

novel filter formulation in order to estimate a sun-heading that is inertially fixed, using only Coarse

Sun-Sensors as measurements, while also estimating the observable component of the body rate

vector.

Coarse sun sensors are small, relatively inexpensive, and regularly used for sunline heading

determination. Cosine-type CSS devices output a voltage/current depending on the angle between

the sensor normals and the sun direction. Although used in many micro and nano-satellite mis-

sions,9,73 they are also widely used in cis-lunar missions including during safe-mode.200 More

generally, heading determination provides target directions for the use of spacecraft pointing200 or

to solve for attitude.142 As a 2-degree-of-freedom measurement, one heading does not provide full

attitude or rate information on its own. Previous work has efficiently used both rate gyros and

CSS measurements74 for efficient sun-heading determination, notably during periods of eclipse. The

gyros help to forward integrate the sun-relative orientation until the spacecraft exits the eclipse.

With enough CSSs—traditionally two pyramids of four with large fields of view—a spacecraft can

always have at least one activated CSS, and frequently several activated devices. The resulting

CSS data is sufficient for sun-heading determination during normal spacecraft operations. Outisde

of sun-heading estimation, gyros are often used successfully for attitude and body-rate determina-

tion36,55,104 while compensating for known or estimated drifts22 and biases.81 Other work focuses
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on single-gimbal moment gyro control,224 and attitude tracking with unknown gyro bias148

In contrast, some attitude determination modes use vector measurements207 or quaternions221

without gyros. If the gyros are not sufficiently accurate, as might be the case with low-cost mi-

croelectromechanical systems rate gyros, a more robust sensor should determine attitude inde-

pendently. Setting aside issues of observability, in a safe-mode scenario, it would also reduce the

chances of using compromised measurements, and would reduce the additional sensors’ associated

power draw. Spacecraft dynamics properties have been used to observe the full rate vector208

through gyroscopic coupling. Yet, not using such dynamics also allows for minimalist and robust

estimation. Mass properties change during the mission, particularly between trajectory correction

maneuvers or insertion maneuvers. By being agnostic to mass properties and current actuator

use one filter can provide sun-heading information throughout a mission. In a safe-mode context,

the desire remains to use as little information as possible and to reduce complexity of devices and

methods. If any actuators malfunction and their properties are hard-coded in the filter, its state

estimation will be compromised because the filter dynamics will be incorrect.

In the absence of rate gyros, it is preferable to estimate spacecraft rate, both for better

state estimation and eventually for control. However, the desire to use only CSS measurements for

sun-heading determination exposes two observability issues. The first issue is that the spacecraft

rotation vector’s component about the sun-heading direction is unobservable. In order to use it

more reliably in safe-mode, there needs to be progress made on this front: notably by decoupling

the unobservable component from the states and eventually observing it through novel methods.

Caution must be exercised regarding limited rate estimation using such measurements. Lessons

learned from the malfunction and loss of the LEWIS spacecraft10,107 show that unobservable rate

components can build up without the attitude determination algorithm realizing it. If it is desirable

to do full rate estimation using CSSs only, the dynamics must be added to couple the unobservable

rate through Euler’s equation.38 This does require the use of potentially changing dynamics in the

filter, which is undesirable for a minimalist and robust formulation.

The second challenge is specific to CSSs, especially those with small fields of view: the cone
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in which each individual sensor can be activated by incoming sunlight. Indeed, the system can

suffer from a more general lack of observability; this is due to the nature of CSS measurements,162

as they only provide angular information between the sensor normal and the sun-heading. This

means that one CSS yields a cone of possibilities for the sun direction, two sensors lead to two

possibilities, and only with three or more activated sensors is full observability provided instanta-

neously. If the sensors have a limited field of view, the spacecraft can go through time-spans with

little information—not enough to determine the sun-heading uniquely.

Given these two challenges, this work develops a novel kinematic formulation for sun-heading

estimation. This formulation decouples the unobservable rate from the state vector. In previous

works38,161 the spacecraft body rate relative to the inertial frame is not estimated by the filter. In

order to estimate at least a part of the body rate vector, a frame switching paradigm is implemented

in order to avoid singularities, similarly to how Modified Rodrigues Parameters (MRPs) switch

between alternate representations.182 This implies rotating the states and covariance matrix when

singularities are approached, and tracking the frames of interest, as well as deriving a mapping of

the state noise compensation on the covariance.

After illustrating the observability problem at hand, this section derives five filters and com-

pares their performances. The first filter only estimates the sun-heading vector, and computes a

partial solution to the satellite rotation rate at every step using the sun-heading estimates. The

second and third subtract the unobservable components out of the states in an Extended Kalman

Filter (EKF) and a square-root unscented Kalman Filter (SR-uKF), respectively. In the final for-

mulation, the kinematics of the problem are reduced to a five-by-one vector estimating the sun

direction and the observable rotation rate by tracking two different frames: a minimal state vector

with no unobservable states and is the main contribution. By switching between two frames, the

singularities can be avoided. As a novel derivation, it presents a promising approach to decoupling

one of the observability problems in heading filters. This formulation is implemented in an EKF

and a SR-UKF, and are referred to as Switch filters.
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Figure 3.1: Spacecraft Equipped with a CSS

3.2.1 Scenario Description

This study analytically develops five filters, of which two are new sequential sun-heading and

rate estimators and compares their performance to the three other gyro-less filter implementations.

To compare the filters, a scenario is created where a spacecraft is tumbling in deep space, and

attempts to determine its sun-heading direction and rotation rate vector.

The sun-heading vector is estimated as a non-unit vector due to scale factors from the in-

struments.163 Indeed, d = Cd̂ where C is an instrument scale factor determined during ground

testing using a calibration flux. It is not desired to estimate C in this work, therefore d is estimated

directly. The sun-heading vector in the body frame is written Bd, its inertial derivative is ḋ, and

its body frame derivative is d′. The direction cosine matrix from an arbitrary S frame into the

spacecraft body frame B will be [BS], and the inertial frame is labeled N . Finally the rotation rate

between two frames is noted ωBN , and the [ω̃] represents the skew-symmetric matrix such that for

any a ∈ R3, [ω̃]a = ω × a The filtering notation used complies with Chapter 4 of Reference 202,

and the dynamics notation complies with Reference 183.
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Table 3.1: CSS Constellation

CSS Group Bn̂1
Bn̂2

Bn̂3
Bn̂4

1
[√

2
2 ,−0.5, 0.5

]T [√
2

2 ,−0.5,−0.5
]T [√

2
2 , 0.5, 0.5

]T [√
2

2 , 0.5, 0.5
]T

2
[
−
√

2
2 ,−0.5, 0.5

]T [
−
√

2
2 ,−0.5,−0.5

]T [
−
√

2
2 , 0.5,−0.5

]T [
−
√

2
2 , 0.5, 0.5

]T

3.2.2 Observability

One way to quantify the linear observability of a dynamical system is to compute the observ-

ability Grammian. The rank of this matrix determines the observability over a specified period of

time: if it is full rank, the system is observable, if not, there are unobservable states in the system.

In a linear discrete-continuous context, the equation for the Observability Grammian is given in

Equation (3.1). In this equation [Φ] represents the state transition matrix and [H]k represents the

linearized measurement model evaluated at step k, while tm and tn are times.

∀(n,m) ∈ N,m < n, [G](tm, tn) =

tn∑
tk=tm

[Φ](tn, tm)T [H]Tk [H]k[Φ](tk, tm) (3.1)

This equation provides a linear observability analysis. Although non-linear observability analy-

sis95180 provides a valid extension, this section attempts to illustrate the problem, not to perform

an end-to-end analysis. For this purpose, the state transition matrix and measurement model used

are derived in detail in subsection 3.2.4.2 and are shown here:

[H] =


Bn̂T1 [01×(3)]

...
...

Bn̂TN [01×(3)]

 (3.2)

[Φ̇] = [A]Φ (3.3)

The matrix [A] is discussed and defined in Equation 3.11. Throughout this chapter, a double

pyramid of four CSS devices each is used. The normals for each of the sensors are displayed in

Table 3.1 this allows a maximal sensor coverage. The field of view of each of these sensors will

dictate the number of sensors that are activated for a specific attitude.
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Figure 3.2: Rank of Observability Grammian and Number of Observations

Figure 3.2 shows simultaneously the number of activated sensors, and the observability Gram-

mian defined in Equation (3.1). The term “field of view” is used to describe the half-angle to the

cone of visibility for each individual sensor. In the case where the sun sensors have a half-angle

field of view of 60◦, seen in Figure 3.2a, the Grammian is not always full rank. Because the rank

value depends on the number of filter states, it is indicated with the yellow dotted line. For this

plot, the sliding window used to compute the Grammian is of 10s, meaning tm− tn = 10s. Because

the measurements are read at 2Hz, this sliding window used for the Grammian contains 20 mea-

surements. This figure shows us that for a tumbling spacecraft there are several periods in which

the states are not observable. This is corroborated by the coverage plot in Figure 3.3a.

Nevertheless, fields of view can reach 85◦ with better quality sun-sensors and the results with

this field of view can be seen in Figures 3.2b, 3.3b. This leads to a much higher number of activated

sun-sensors at every instant, as seen in Figure 3.2. The observability Grammian is always full rank

as the periods with only two activated CSS are brief, which is again corroborated by Figure 3.3b.

It is key to remember that this observability issue occurs in addition to the rate component

being unobservable. There are therefore two issues: the sparsity of measurements at times which

leads to a partially observable state, and a physically unobservable rate component along the sun-

heading direction. Figures 3.2a, 3.2b only speak to the former. The latter is the target of the

kinematics derived in this work.
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Figure 3.3: CSS Coverage Map Illustrations (CSS Normals are Shown as Red Dots

3.2.3 CSS Measurements

The measurement model is given in Equation (3.4), and the linearized measurement model

[H] is defined as [H] =
[
∂G(X)
∂X

]∗
, where X is the corresponding filter state vector, and G is the

measurement model. In the following filters, the only measurements used are from the N CSS
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devices. For the ith sensor, the measurement is simply given by the dot product of the sunline

heading and the normal to the sensor, which defines each of the components of G:

Gi(X) = n̂i · d (3.4)

In this application, the normals are listed in Table 3.1. This yields the partial derivatives for the

[H] matrix:

[H] =


Bn̂T1 [01×(n−3)]

...
...

Bn̂TN [01×(n−3)]

 (3.5)

where the rows contain the transposed normal vectors of the sensors that received measurements.

The left-exponent notation indicates the frame with respect to which the vector components are

taken. Hence the [H] matrix has a changing size depending on the amount of measurements.

Additionally the size of [H] matrix depends on the number of states n as seen in Equation (3.40).

3.2.4 Overview of Comparative Filters Kinematics

There are many possible implementations of gyro-less sun-heading filters.160,205 This sub-

section describes the formulations of previously implemented filters. This development sets up the

mathematical frame work of CSS filters and illustrates the particular challenges of these solutions.

The EKF algorithm used in these developments is explained and derived in Reference 202.

3.2.4.1 Sun-Heading EKF

The sun-heading EKF (‘Sun-EKF’ in following numerical simulations) is developed to use rate

gyro measurements if they are available. In the case in which they are not, the rate is computed

with the two previous sun-heading estimates. The state vector of this filter only contains the sunline

vector in body frame components: X = Bd. Given the nature of the filter, there is no unobservable

state component as the body frame derivative of d is not estimated. This solution is very simple

yet has been shown to provide suitable sun-pointing performance in a safe-mode scenario.162 This
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filter is included in the performance comparison as it provides an interesting benchmark to compare

the more sophisticated filters again.

The propagation function F is given in Equation (3.6), and is discretized using an Euler

integration in Equation (3.7) with k indicating a time-step indice. This provides a simple and fast

integration scheme. As a reminder, the tilde operator in Equation (3.6) is the matrix representation

of the cross operator.

X ′ = F (X) =
B
d′ = −[ω̃B/N ]Bd (3.6)

Bdk+1 = Bdk −∆t [ω̃B/N ]Bdk (3.7)

Next the state dynamics matrix [A] is found through:

[A] =

[
∂F (d,ti)

∂d

]
= −

[
ω̃B/N

]
(3.8)

Gyro measurements are not being read by the filter but can be approximated38,161 by logging an

extra time step of the sun-heading vector estimate d.

ωk =
1

∆t

dk × dk−1

‖dk × dk−1‖
arccos

(
dk · dk−1

‖dk‖‖dk−1‖

)
(3.9)

Equation (3.9) uses the shorthand notation ω to signify ωB/N . Aliasing or noise issues are inherent

to such a formulation. If the measurement times are too far apart with regard to the rate of change

of the system, the rate may be poorly represented. On the other hand, if measurements are very

close in time, the two vectors that are being crossed are nearly co-linear. This will lead to noise

being amplified and an incorrect estimate of ω. This method is not expected to produce good

estimates for rate, yet it has still be used successfully for attitude control in the literature.160,161

It is therefore presented as a method of comparison.

3.2.4.2 Subtracting unobservability

The second filter derivation (called ‘EKF’ and ‘SR-uKF’ in the following numerical simula-

tions) solves the rate unobservability by subtracting, from the state, the rate component along the
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sun-heading axis. The states that are estimated in this filter are the sunline vector, and its rate of

change in the body frame X =

[
Bd Bd′

]T
.

The dynamics are given in Equation (3.10). Given the nature of the filter, the rotation

about the d axis remains unobservable. In order to remedy this, the states are projected along this

axis and subtracted, in order to measure only observable state components. This is seen in the

subtraction of (d · d′) · d after normalization in both heading and heading-rate terms.

X ′ = F (X) =

F1(d)

F2(d′)

 =

d′ − (d · d′) d
||d||2

−2(d · d′) d′
||d||2

 (3.10)

Using [I] as a standard notation for the identity matrix, the associated state dynamics matrix [A]

is found through:

[A] =

∂F1(X,ti)
∂d

∂F1(X,ti)
∂d′

∂F2(X,ti)
∂d

∂F2(X,ti)
∂d′

 (3.11)

=

−
(
d′dT

||d||2 + (d · d′) ||d||2[I]−2ddT

||d||4
)

[I]− ddT

||d||2

−2
(
d′d′T
||d||2 − 2(d · d′)d′dT

||d||4
)

−2dd′T−(dd′)[I]
||d||2

 (3.12)

In order to implement another type of filter for state-estimation comparison, a square-root unse-

cented Kalman Filter is implemented using the same formulation. The implementation of this filter

is denoted as EKF or SR-uKF according to the algorithm used. The SR-uKF has no need for partial

derivative calculation which simplifies the code development to implement seen in Equation (3.11),

and is used routinely for attitude determination.56 The uKF uses α = 0.02 as a constant determin-

ing the spread of the sigma points.210 The prior knowledge of the probability distribution of the

state is set with β = 2 (which is optimal for Gaussian distributions).

The challenge with this filter is that the algorithms creates sun-heading rate d′ estimates

at first assuming it is fully observable, then uses a projection to force the unobservable velocity

component to be zero. Of interest is a filter that directly addresses this partial observability, and

see how this filter peforms relative to these earlier filters.
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3.3 Switch Filter Formulation

This section derives the new switch-filter formulation (labeled ‘Switch-EKF’ and ‘Switch-

SRuKF’ in the numerical simulations). This novel kinematic formulation utilizes the ability to

switch between two frames to avoid singularities of the heading vector parameterization.

3.3.1 Frame Definitions

The switching filter attempts to avoid subtracting any terms from the estimate rate vector,

while still enforcing the unobservable rate component is zero. In order to do this, an appropriate

sensor frame S : {ŝ1, ŝ2, ŝ3} must be defined as pictured in Figure 3.4 alongside the body frame

B : {b̂1, b̂2, b̂3}.

In order to not track the rate component alongside the sunline direction, a frame is defined

such that the sunline direction is one of the basis vectors. Without loss of generality the sun-heading

measurement direction d is chosen to be the aligned with the first base vector ŝ1

ŝ1 =
d

|d| (3.13)

b̂2

ŝ1

B

S

ŝ2

ŝ3

b̂1

b̂3

= d̂

= d̂⇥ b̂1

= ŝ1 ⇥ ŝ2

Figure 3.4: Frame Built off the Body Frame for Switch Filters

Thus the rate component about ŝ1 is unobservable. The second and third S-frame base vector

are arbitrary as any choice keeps the unobservable rate component along ŝ1. A simple choice is to
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define

ŝ2 =
ŝ1 × b̂1

|ŝ1 × b̂1|
(3.14)

ŝ3 = ŝ1 × ŝ2 (3.15)

The problem that arises is the singularity that occurs when b̂1 and d are aligned as this switch

frame S is then undefined. To avoid this singularity an alternate sensor frame S̄ is defined which

also has the first base vector aligned with the sun-heading direction d. This approach is similar

in spirit to how the QUEST attitude estimation algorithm193 avoids a singularity by switching

between two kinematic descriptions, or how the Modified Rodrigues Parameters switch between

two alternate attitude representations.182,183 The underlying idea being that when approaching an

ill-defined frame S definition, a second frame S̄ is used. This frame S̄ = {ˆ̄s1 = ŝ1, ˆ̄s2, ˆ̄s3} cannot

be singular at the same time as S: it uses the same first vector, but constructs ˆ̄s2 using b̂2 of the

body frame. The last vector, once again, completes the orthonormal frame.

ˆ̄s2 =
ŝ1 × b̂2

|ŝ1 × b̂2|
(3.16)

ˆ̄s3 = ˆ̄s1 × ˆ̄s2 (3.17)

By switching between the S and S̄ frames the kinematic singularities are always avoided. The

perpendicularity of b̂1 and b̂2 results in either S or S̄ being nonsingular at all times. For example,

whenever the sunline d gets within a cone of 30◦ of b̂1, the frame is switched to S̄ which is not

singular since the body vectors are orthonormal. Similarly, when d approaches b̂2 the frame is

switched back to S.

Because the two frames share the sunline vector d, both frames have the unobservable rate

component along the first axis. Further, the sun-heading to be estimate is the same first base

vector. The vector components are mapped between the body frame B and the two sensor frames
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S and S̄ using the following Direction Cosine Matrices or DCMs:

[BS] =

[
Bŝ1

Bŝ2
Bŝ3

]
(3.18a)

[BS̄] =

[
Bˆ̄s1

Bˆ̄s2
Bˆ̄s3

]
(3.18b)

[S̄S] = [BS̄]T [BS] (3.18c)

Given a sun-heading vector estimate d all these base vectors are know at any given time.

3.3.2 Filter Kinematics

The body rate relative to the inertial frame is projected onto the B frame and the S frame

ωB/N = ω1b̂1 + ω2b̂2 + ω3b̂3 (3.19)

= ωs,1ŝ1 + ωs,2ŝ2 + ωs,3ŝ3 (3.20)

The rates of S relative to the body and inertial frame are related as such: ωS/N − ωS/B = ωB/N .

The first vector of S is the sun-heading which is considered to be constant in the inertial frame

over the period of time required for heading determination. Hence, the only component of ωS/N

that can vary is the rate about the sun-heading: SωS/N =

S[
ωS/N · d̂ 0 0

]T
Since the sunline

rotation is impossible to extract from CSS measurements, the spacecraft rotation about the sun-

heading axis is set to zero by the filter. This rate component is fundamentally unobservable and it

is therefore set to zero.

In Equation (3.20), the previous statement leads to ωs,1 = 0. It’s important to note that

no spacecraft rotation assumption is made, rather the filter zeros the component that it can not

observe geometrically. The body rate vector with the previous assumption is defined as follows:

ω∗ = ωB/N (ωs,1 = 0) = ωs,2ŝ2 + ωs,3ŝ3 (3.21)

Sω∗ =

S[
0 ωs,2 ωs,3

]T
(3.22)

Zeroing this term prevents all motion of the S frame relative to the inertial frame, as it was the only

possible motion given ḋ = 0. Hence, as far as the filter can see, Equation 3.22 leads to ωS/N = 0,
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and the rate relationship becomes −ωS/B = ω∗. No spacecraft rotation assumption is made, but

the kinematics of the filter are simplified given the constraints of observability. In summary:

• Since ḋ = 0 and d̂ is the first component of S, ωS/N can only rotate about d̂.

• This rotation about d̂ is precisely the rotation that can not be observed by the spacecraft.

Without any possible knowledge of this motion, the switch filters set this motion to zero

in the kinematics.

• In the filter kinematics, this zeros ωS/N and ωS/N − ωS/B = ωB/N therefore becomes

−ωS/B = ω∗, where ω∗ also zeros the rate about the sun-heading.

This filter feature that the unobservable rate component is set to zero is ideal for the sun-

pointing control application as the control solution should not try to control any rates about the

sun-axis.

The filter state is therefore X =

[
Bd ωs,2 ωs,3

]T
and the kinematics are given by

X ′ = F (X) =


Bd′

ω̇s,2

ω̇s,3

 =


−Bω∗ × Bd

0

0

 =



−[BS]

S
0

ωs,2

ωs,3

× Bd
0

0


(3.23)

[A] =

[
∂F (d,ti)
∂X

]
=

−[Bω̃∗] − ˜[d]

[
Bŝ2

Bŝ3

]
[0]2×3 [0]2×2

 (3.24)

The 3×2 matrix in the dynamics matrix corresponds to the truncated DCM [BS], and ω̇ is the time

derivative of the scalar component ω. Equation 3.42 shows the zeroed sunline rotation component

in the filter kinematics.

This formulation leads to simple kinematics, much simpler than those of the filter which

subtracts the unobservable states, yet can actually estimate the two observable vector components
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of the rate, instead of using past estimates of d. In regard to the SR-uKF version of this filter, the

same coefficients are used: α = 0.02, and β = 2.

3.3.3 Switching Frames

The challenge that comes with the novelty of using two frames for the kinematics is switching

between them. The new states X̄ and covariance [P̄ ] after the switch are

X̄ = [W ]X [P̄ ] = [W ][P ][W ]T (3.25)

Where X and [P ] represent the state and covariance in the S̄ frame. The [W ] matrix maps the rate

components from the S frame to the S̄ frame when a switch occurs. The matrix [W ] is computed

with

[W ] =


[I]3×3 [0]3×2

[0]2×3

ˆ̄s2 · ŝ2 ˆ̄s2 · ŝ3

ˆ̄s3 · ŝ2 ˆ̄s3 · ŝ3



 (3.26)

using the previously computed S and S̄ frame base vectors. The sun-heading vector d is unmodified,

while the rates are rotated into the switched frame. This equation assumes the switch is going from

the S frame to S̄ (the reciprocal is equivalent), andˆ̄s2 · ŝ2 ˆ̄s2 · ŝ3

ˆ̄s3 · ŝ2 ˆ̄s3 · ŝ3

 (3.27)

corresponds to the bottom left 2 × 2 submatrix of [S̄S]. Equation (3.26) therefore provides a

first order frame change for the covariance, allowing for the filter to continue its state estimation

nominally.

3.3.4 Process Noise for Switch-EKF

Another nuance that arises when writing EKFs is the process noise formula. This is addressed

by deriving the [Γ] matrix that transports the noise to the state space given the new state vector.

The time update of the error covariance matrix [P ] from time tk to tk+1 (∆t = tk+1 − tk) is
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given in Equation (3.28).202 The process noise matrix [Q] is added via the [Γ] matrix defined

in Equation (3.29).202 The [B] matrix seen in the integral maps the process noise only on the

accelerations, meaning that [B] =

[0]3×3

[I]3×3

 when there are 6 states.

[P ]k+1 = [Φ](tk+1, tk)[P ]k[Φ](tk+1, tk)
T + [Γ](tk+1, tk)[Q][Γ](tk+1, tk)

T (3.28)

[Γ](tk+1, tk) =

∫ tk+1

tk

[Φ](tk+1, τ)[B](τ)dτ (3.29)

In the earlier filters (the EKF and the SR-uKF), the second half of the state vector is a direct

derivative of the sun-heading vector. Regarding state noise compensation, this allows the approx-

imation in Equation (3.30), along with the fact that measurements are received frequently with

regard to the evolution of the dynamics.

[Γ](tk+1, tk) = ∆t

∆t
2 [I]3×3

[I]3×3

 (3.30)

This does not hold for the switch filter as [Φ] is a 5 by 5 matrix, hence the development of

the following section. In order to simplify the notation of partials in this section, ω̄ will represent

the 2× 1 matrix

[
ωs,2 ωs,3

]T

[Φ](tk+1, τ) =

[Φ1]3×3 [Φ2]3×2

[Φ3]2×3 [Φ4]2×2

 =

 ∂d(tk+1)
∂d(τ)

∂d(tk+1)
∂ω̄(τ)

∂ω̄(tk+1)
∂d(τ)

∂ω̄(tk+1)
∂ω̄(τ)

 (3.31)

Equation (3.31) uses the fact that [Φ](tk+1, τ) =
∂X(tk+1)
∂X(τ) , and that X =

[
d ω̄

]T
. With this,

Equation (3.30) can be re-written as Equation (3.32).

[Γ](tk+1, tk) =

∫ tk+1

tk

[Φ1]3×3 [Φ2]3×2

[Φ3]2×3 [Φ4]2×2


[0]3×3

[I]3×3

dτ =

∫ tk+1

tk

[Φ2]3×2

[Φ4]2×2

dτ (3.32)

These submatrices of the state transition matrix now need to be approximated. As before,

assuming dense tracking data, [Φ4]2×2 =
∂ω̄(tk+1)
∂ω̄(τ) ≈ [I]2×2. Then, by defining the [J ] matrix as

[J ] =

[0]1×2

[I]2×2

 (3.33)



70

Table 3.2: Simulation Parameters

Parameter σ(t0) ω(t0) (◦/s) [I] (kg/m2) Mass (kg) simulation time (s)

Value [0, 0, 0]T [0.5,−0.5,−1]T diag(900,800,600) 750 500

The rate notations are reconciled through Sω∗ = [J ]ω̄. Without specifying a frame, the

propagation function yields

dk+1 − dτ = (tk+1 − τ) ˜[dτ ]ω∗ (3.34)

By then moving into the body frame,

∂Bd(tk+1)

∂ω̄(τ)
= (tk+1 − τ) ˜[Bdτ ][BS][J ] (3.35)

[Φ2]3×2 = (tk+1 − τ) ˜[Bdτ ]

[
Bŝ2

Bŝ3

]
(3.36)

Therefore, assuming the state does not vary over the time between two updates, [Φ2]3×2 can be

integrated to approximate [Γ].

[Γ](tk+1, tk) =

∫ tk+1

tk

[Φ2]3×2

[Φ4]2×2

dτ = ∆t

∆t
2

˜[Bdk]
[
Bŝ2

Bŝ3

]
[I]2×2

 (3.37)

This leads to the new [Γ] matrix in Equation (3.37), which is used for state noise compensation.

3.4 Sun-Heading Estimation Results

Five filters were developed out of the three kinematic formulations described in the previous

section. The subtraction of the unobservable states formulation is written into a square-root un-

scented Kalman Filter (SR-uKF), and an Extended Kalman Filter (EKF). The formulation which

only estimates the sunline direction is implemented in an EKF (Sunline-EKF). Finally the novel

formulation is written in a EKF and SR-uKF (Switch-EKF, and Switch-SRuKF).
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Figure 3.5: State Error and Covariance Plots of Switch-EKF, FOV: 85◦

The simulation used is created using the Basilisk Software Package1,1131. All runs simulate

a tumbling spacecraft in deep space, at 1AU from the sun. The problem assumes that the time

needed for control is much smaller than the time needed to orbit around the sun, meaning that

ḋ ≈ 0. The satellite is therefore not put on orbit around the sun, but kept in a constant position

in the inertial frame. The simulations inputs are listed in Table 3.2. This framework allows for a

1http://hanspeterschaub.info/bskMain.html
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fully coupled dynamic simulation, and the runs use the same physical scenario (including noise),

with only the filters changing between runs. The general simulation parameters used outside of

Monte-Carlo analysis are summarized in Table 3.2.
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Figure 3.6: State Error and Covariance Plots of Switch-SRuKF, FOV: 85◦

For all of the results, the filters retain the same process noise which is listed in Table 3.3.

These values are chosen by reducing the post-fit residuals to noise at slow spacecraft rotation
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rates which is the most common state for a controlled spacecraft. It is then desirable to test the

robustness of these filters as such in order to determine which ones are the best overall.

Table 3.3: State Noise Compensation (SNC)

Filter Sunline-EKF EKF SR-uKF Switch-EKF Switch-uKF

SNC on d 10−2 N/A 10−3 N/A 10−3

SNC on rates N/A 2 · 10−4 2 · 10−4 8 · 10−4 8 · 10−4

First the Switch filters are examined to ensure proper implementation and behavior. Second,

all the implementations are compared in a scenario in order to observe overall performance and

covariance behavior. Finally, the best filters are run in Monte-Carlo simulations with low and high

observability to show the best overall performing filters.

3.4.1 Switch Filter Results
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Figure 3.7: Post Fit Residuals for Switch-SRuKF, FOV: 85◦



74

This subsection examines the implementation of the Switch-EKF and Switch-SRuKF. These

results are created using the simulation parameters of Table 3.2, which initialize the spacecraft in

a mild tumble. Figure 3.5 shows the state error and covariance for the Switch-EKF filter, while

Figure 3.6 shows the Switch-SR-uKF. Both these filters perform well as the state errors are within

the covariance bounds and unbiased.

This is seen more specifically with the post-fit residuals seen in Figure 3.7 from the Switch-

SR-uKF run. The measurements are brought down to noise, with the expected standard deviations

which is expected since the simulation doesn’t have any un-modeled forces acting on the spacecraft.

The Switch-EKF post-fits are not displayed, but are nearly identical and provide confidence that

the filter is working optimally. The gaps in the post-fits corresponds to changing number of sensors

which can observe the sun. With this CSS pyramid, there are always 2 active sensors, with only

brief passages down to 3 or 4 sensors.

0 100 200 300 400 500
Time (s)

0.010

0.005

0.000

0.005

0.010

BN
 in

 S
 (r

ad
/s

)

s, 2

s, 3
Switch-EKF
Switch-SRuKF

Figure 3.8: Switch Filters Tracking the Rates in the S Frame

Figure 3.8 shows one of the novel components of the Switch filters: direct body rate esti-

mation. The filters can be seen tracking the true body rates in the S frame (disregarding the

unobservable component which the filter ignores). Although just two components of this vector

does not yet allow to fully estimate the body rate without extra information, it proves that the

filters are functioning. This plot also shows the filter starting off in the middle of the singularity

(heading and body frame vector aligned), switching frames, and pursuing the estimation with no
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more singularities encountered. Furthermore, if additional headings were tracked and fused full

body rate estimation would be achievable.

3.4.2 General Results

The simulation runs the filters with good and low quality measurements. As described

previously, the filters are calibrated for their post-fit residuals to be noise at low speeds. With a

field of view of 85◦ on each sensor, the problem has good observability, as seen in Figures 3.2b, 3.3b.

Table 3.7 shows the post fit residuals’ means and standard deviations for each of the activated

devices. All the means are near zero which indicates no biases, while standard deviations are

very close to the measurement noise of the instruments. These specific results are plotted in this

section. The lower quality measurements (Figures 3.2a, 3.3a) are studied as well in the Monte-Carlo

subsection. The results are summarized in Table 3.8 with the same initial conditions as the higher

quality measurements.

ḋ = 0 = d′ + ωBN × d (3.38)

These filters are compared by plotting their off-pointing in degrees and the norm of the error

on d′ in Figures 3.9. For the switch filters (which do not estimate d′) the rate is mapped back

using the transport theorem as seen in Equation (3.38). Knowledge of d and d′ does not allow

identification of the body rate uniquely due to the rank deficiency of the cross operator. Hence,

the current estimate of the sun-heading and the observable components of the body rate are used

to compute d′. The data is smoothed using a Savitzky-Golay algorithm181 in order to differentiate

between the curves more easily. This algorithm does lead to a spike at the end of Figure 3.9a and

Figure 3.9b.
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Table 3.4: RMS Errors from Truth, FOV: 85◦

Filter Sunline-EKF EKF SR-uKF Switch-EKF Switch-uKF

d RMS Pointing Error (◦) 2.388 0.678 0.315 0.304 0.334
d′ RMS Error (-) N/A 0.089 0.087 0.055 0.056
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Figure 3.9: Comparative Performance of the Filters, FOV: 85◦

Figure 3.9a shows the off-pointing errors of all the filters and Figure 3.9b displays the rate

error. Tables 3.4 and 3.5 show the computed RMS errors for the filters in both the 85◦ and 60◦ FOV
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Table 3.5: RMS Errors from Truth, FOV: 60◦

Filter Sunline-EKF EKF SR-uKF Switch-EKF Switch-SRuKF

d RMS Pointing Error (◦) 7.651 4.695 3.003 3.568 2.151
d′ RMS Error (-) N/A 0.168 0.139 0.17 0.117

cases. The results show that the Switch filters outperforms the others both in rate and heading

estimation. Due to the process noise on the body rates, the Switch filters sun-heading errors are

slightly higher than some other results at low-speed tumbles. Yet at these speeds, all the filters

provide errors that are less than half of a degree off. This can be seen more clearly in Figure 3.10a.

3.4.3 Monte-Carlo Analysis

In this subsection, the a Monte-Carlo analysis is run on the scenario. The dispersed param-

eters are the initial conditions to the spacecraft tumble: initial attitude and attitude rate. This

general study allows one to ensure that the better performance of a specific filter is not attributed

to favorable initial conditions. The dispersions are applied in 3 different scenarios. The first being

Table 3.6: Monte-Carlo Dispersions

Parameter σ(t0) ω(t0) (◦/s)

Fast Distribution U [0, 2π] ±N [0.45, 0.55]
Nominal Distribution U [0, 2π] ±N [0.05, 0.15]

Slow Distribution U [0, 2π] ±N [0.001, 0.01]

a slowly rotating spacecraft scenario. This is the scenario to which all the filters are calibrated.

The second scenario is a nominal rotation, akin to a slow maneuver. The third scenario is a fast

rotation spacecraft similar to a tumble. The dispersions applied in each of these cases are listed in

Table 3.6.
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Figure 3.10: Average of 10 MC Runs, FOV: 85◦

Figure 3.10 shows the results of 10 Monte-Carlo runs in the high-observability scenario. For

clarity, the Sunline-EKF filter—which was not performing as well as the others—is removed from

this analysis. This allows for a more focused analysis on the best filters. These runs show that

the Switch-uKF performs consistently better than its competitors. At slow speeds the difference

between all the filters is hard to gauge since this is the run that calibrated the process noise.

It does seem that despite overall excellent performance, this is the only realm where the Switch

formulations do not estimate sun-heading better than the others. Yet the Switch formulations, and

more notably the Switch-SRuKF, handle the faster spacecraft rates considerably better than the

other filters.
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Figure 3.11: Average of 10 MC Runs, FOV: 60◦

Figure 3.11 shows the results of 10 Monte-Carlo runs in the low-observability scenario. The

Monte-Carlos at low speeds also contain very low observability scenarios where no more than two

or three sensors are activated, which yield high errors. With fewer measurements all the filters

perform less well, yet once again the Switch-SRuKF consistently yields the smallest heading errors.

This shows the value of this formulation: in the event of component failure, the Switch filters

will provide consistently better sun-heading estimates. This contributes to the robustness of the

attitude determination system.

3.4.4 Sun-Heading Conclusions

The results shows the comparative performances of several filters and formulations attempting

to solve the CSS-only heading determination problem. In order to provide a better more robust

algorithm, kinematics akin to MRPs shadow set switching are implemented. This leads to a change
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Table 3.7: Post Fit Residuals in nominal case, FOV: 85◦

Filter Statistics Obs 1 Obs 2 Obs 3 Obs 4

Sunline-EKF
Means -0.0007 0.0023 -0.009 0.0139

Standard Deviations 0.0331 0.0313 0.0508 0.0351

EKF
Means -0.0019 0.0004 0.0001 -0.0021

Standard Deviations 0.0181 0.0198 0.0186 0.0182

SR-uKF
Means 0.0013 0.0027 0.0029 0.0096

Standard Deviations 0.0187 0.0244 0.0344 0.0692

Switch-EKF
Means -0.0026 -0.0004 0.0006 -0.0012

Standard Deviations 0.0191 0.033 0.0356 0.0175

Switch-SRuKF
Means 0.0 0.001 0.0025 0.0096

Standard Deviations 0.0186 0.0243 0.0343 0.0692

Table 3.8: Post Fit Residuals in nominal case, FOV: 60◦

Filter Statistics Obs 1 Obs 2 Obs 3 Obs 4

Sunline-EKF
Means -0.0001 -0.0011 -0.0027 0.0256

Standard Deviations 0.0359 0.0362 0.0524 0.0311

EKF
Means -0.0014 -0.0062 -0.0094 -0.0118

Standard Deviations 0.0203 0.0363 0.0457 0.0226

SR-uKF
Means 0.0021 0.0023 0.0036 0.0068

Standard Deviations 0.0188 0.0295 0.0628 0.0786

Switch-EKF
Means -0.0039 -0.0033 -0.0058 -0.0138

Standard Deviations 0.0219 0.0388 0.0604 0.0273

Switch-SRuKF
Means 0.0001 0.0011 0.0051 0.0067

Standard Deviations 0.0187 0.0291 0.0623 0.0786

in the process noise derivation for an EKF, and requires a switch in the covariance on the rate

states as well. At slow rates, all filters perform approximately the same. Then at higher rates, the

switch formulations provide better results than all other filters implemented on the problem.

The Switch-SRuKF performs the best all around, whether the CSS have a narrow or wide field

of view. The non-linear propagation of sigma points combined with the novel switch-formulation

provides a good propagation step and allows for full utilization of the measurements despite in-

herent unobservability. In fact, Switch filters have removed the problem of the unobservable rate

component from the estimation entirely. If combined with wide field-of-view CSS instruments it

does not suffer from any observability issues, numerical or analytical.
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3.5 Generalizing Switch-Kinematics to OpNav Headings

The results presented for sun-heading estimation encourage generalization of this filter for

heading determination. In OpNav, heading estimates have several utilities. On the one hand,

they provide a secondary attitude measurement. This can be used for flight software robustness

checks and fault detection, while also being used for their primary purpose: in pointing modes

(Science-point, Earth-point, etc.). Indeed, heading based attitude determination methods provide

relative attitude to their targets. Depending on the scenario, the position of the target might not

be well known in the inertial frame: when pointing at an asteroid, or at a science target such

as 486958 Arrokoth.90,137 In this case, relative attitude is paramount to accurate imaging. In

scenarios where the target’s inertial position is well known, relative attitude still allows to solve for

offsets in the camera position and orientation. Furthermore, one method of OpNav uses distant

objects or beacons to determine position through triangulation.108 This was done by Deep Space 1

when demonstrating the AutoNav FSW. Finally, in an attitude determination context, combining

CSS measurements for sun-heading with OpNav measurements of a nearby planet, a full attitude

estimate can be extracted.

This heading filter is generalized as the Switch-SR-uKF, which was the highest performing

filter in the previous section. The state vector is X =

[
Bd ωs,2 ωs,3

]T
, and the dynamics of the

filter are given by Equation (3.41) and (3.42). It is used in order to complete the GNC system for

the attitude guidance and control module displayed in the previous Chapter.

3.5.1 OpNav Measurements

The measurement model is given in Equation (3.39), and the linearized measurement model

[H] is defined as [H] =
[
∂G(X)
∂X

]∗
, where G is the new measurement model. In all of this work, the

measurement models are extracted from the filter to compare and contrast methods. This means

the measurements input to the heading filter are rBN . This measurement is normalized for heading
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determination, giving the following G function:

Gi(X) = Br̂BN (3.39)

This yields the partial derivatives for the [H] matrix:

[H] =

[I3×3]

[02×3]

 (3.40)

This filter can therefore work with a set of different measurement models which output the same

measurement type. In this section, the Hough Cirlces algorithm is used and is described in more

detail in subsection 2.4.2. Since the measurement vector is normalized, the only component of the

image processing method that are used are the center points. In this regard, other image processing

methods such as center-of-brightness finding would perform similarly.122

3.5.2 Kinematics and Assumptions

The generalized switch filter uses the same kinematic formulation as the sun-heading version.

The propagation equations are recapitulated here:

X ′ = F (X) =


Bd′

ω̇s,2

ω̇s,3

 =


−Bω∗ × Bd

0

0

 =



−[BS]

S
0

ωs,2

ωs,3

× Bd
0

0


(3.41)

[A] =

[
∂F (d,ti)
∂X

]
=

−[Bω̃∗] − ˜[d]

[
Bŝ2

Bŝ3

]
[0]2×3 [0]2×2

 (3.42)

The main assumption made in the previous section was the ḋ, the inertial derivative of the heading

vector being estimated, was constant and equal to zero. This lead to the fact that the only possible

rate between the S and N frame was along the unobservable direction. This was therefore ignored

by the kinematics as it was impossible to parse from the measurements. In an OpNav context, the
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planet is likely to be moving in the inertial frame. For instance, if the body being observed is close

or if the spacecraft is on a low orbit. In such a case, since |ḋ| > 0, the rate about the second and

third axis of the S frame will be non zero:

SωS/N =

S[
0 ωSN ,2 ωSN ,3

]T
(3.43)

Equation (3.43) has the about-heading rate zeroed since it is the un-observable component, as done

previously. A natural idea would be to fully generalize these equations the main modification that

must be made is in this assumption:

ḣ = ṙMars − ṙBN (3.44)

This would provide the movement of the spacecraft about the planet, and therefore would allow to

compute all the terms for the rate relation ωS/N −ωB/S = ωB/N . This presents a number of issues

nonetheless:

• In the case of a non-inertial pointing target, the position of the target must be know and

added to the filter.

• Knowledge of the the spacecraft position produces a coupling between an orbit determina-

tion solution and the attitude solution.

Both of these points imply that the heading solution is tethered to other estimates, spacecraft

states, and environment states. It therefore breaks the simple and minimal formulation that the

Switch Filter Kinematic proposes. If this is to be the case, adding other sensors in order to resolve

the rate un-observability would be a simpler solution than implementing this filter. In order to

remain in a simple input paradigm, the filter is tested to see how well the zero-inertial heading rate

assumption holds. This is to say: although |ḋ| > 0, does the filter still converge and at what rates

does the assumption no longer hold.

Feasibility of this method for on-board, autonomous use requires guidance and control in

the loop. Therefore, the primary means of validating the assumption is done with scenarios that
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include guidance and control with the filter solution. De-coupled estimation and control scenarios

are also run to ensure that they perform better than the control cases and therefore that the fully

simulated cases are bounding.

3.5.3 Filter Results

The filter performance has been evaluated for distant beacons such as the sun. In order to

evaluate the filter quality of the estimate, a similar scenario than the guidance example shown in

Chapter 2 is developed. The Basilisk simulation modules implemented are identical and can be

found in Tables 4.4 and 5.3. Tables 3.9 and 3.10 show the simulation parameters used for these

specific test cases. These are similar to previous simulations, except for a few points.

Table 3.9 shows the three main scenarios run which differ only by the semi-major axis values

a. The first case is a 28, 000km orbit, which is at a high altitude and therefore slow moving.

For reference, Areosynchronous Orbits (ASO) have semi-major axes of approximately 20, 400 km.

The second orbit is lower and used nominally throughout this thesis, with a = 18, 000km, or an

altitude of about 14, 600km. Finally, a close orbit with semi-major axis a = 8, 000km and altitude

of 4, 600km is tested.

Table 3.9: Scenario Parameters

Scenario σBN ωBN Orbital Elements (a, e, i,Ω, ω, f) Camera FOV

Distant (1)
[
0 0 0

]T [
0 0 0

]T
28, 000km, 0, 20◦, 25◦, 190◦, 100◦ 20◦

Nominal (2)
[
0 0 0

]T [
0 0 0

]T
18, 000km, 0, 20◦, 25◦, 190◦, 100◦ 40◦

Proximity (3)
[
0 0 0

]T [
0 0 0

]T
8, 000km, 0, 20◦, 25◦, 190◦, 100◦ 80◦

In order to see the differences in orbital rates, Kepler’s third law can be applied, where

µMars = 4.28284 · 104km3/s2

T = 2π

√
a3

µ
(3.45)

This yields the values in Table 3.11 using the identity 2π = Tω. These rates give some insight

into the sensitivity of the filter to a rotating inertial frame. Given a time-step of 0.5 seconds on

the filter, the moving planet will prescribe errors up to 0.009◦ for the Proximity scenario in one
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Table 3.10: Flight Software Parameters

Flight Software Instantiated Necessary parameters at initialization

Heading Filter ProcNoise = 10−12[I]5×5, HeadingCovar = 0.2[I]3×3,
RateCovar = 0.005[I]2×2, α = 0.02, β = 2, κ = 0,

noiseSF = 1.001

Image Processing param1 = 300, param2 = 20, minDist = 50
(arguments for HoughCirlcle method1) minRadius = 20, dp = 1, maxRadius = 409,

noiseSF = 0.5

OpNav Point minAngle = 0.001◦, timeOut = 100s

ωsearch = [0.06, 0.0,−0.06]◦/s, Chc = [0., 0., 1]m

Pixel Line Transform Planet Target is Mars

MRP Feedback RW K = 3.5 , P =30 (no integral feedback)

RW motor Torque Control axes are
B[
b1, b2, b3

]
Table 3.11: Mars Orbit Scenarios

Scenario T (hours) ω (◦/s)

Distant (1) 39.51 0.0025
Nominal (2) 20.37 0.0050

Proximity (3) 6.035 0.0166

time-step. These errors on the estimate are outside the fact that the rate will also have difficulty

converging given that the kinematics do not account for this motion.

The following subsections provide results for each of the scenarios including the reaction

wheel control law and OpNav guidance law derived in Chapter 2. The result summary also shows

results for the pure navigation case where the control does not influence the future images and

therefore excludes any induced oscillations. In these results, all parameters outside of camera field

of view and semi-major axis are unchanged. The time step for FSW algorithms and simulation

algorithms is held constant at 0.5 seconds.

3.5.3.1 Distant Planet Case

In this distant case, at a = 28, 000km, the results are promising and show that the filter has

no issue converging. This is seen notable by looking at the state error and covariance plots seen

in Figure 3.12 where the covariance comes down as the measurements are processed. The noise
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scale-factor (noiseSF) seen in Table 3.10 helps slow down the collapse of the covariance. This is

applied on the covariance during the update and not directly to the measurement as suggested by

filtering best practices.27
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Figure 3.12: State Error and Covariance Plots of Heading-SRuKF, FOV: 20◦, a = 28, 000km

These results are all presented in the camera frame. This explains why the ĥ3 component

shows almost no error, and the slight oscillation in the ĥ2 term comes from the spacecraft sweeping
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over the planet along that axis. This is the only trace of the assumption in these results.

The camera used for this scenario has a field of view of 20◦. This is a nominal value for a

space imaging camera that has been used in the literature46,59,71 which can provide both a detailed

map of a close object, all the while having a wide enough field of view to scan for distant bodies

and resolve full disks.

Figure 3.13 show the results from the guidance and control modules. These indeed show that

the spacecraft stabilizes and that the attitude comes to a Mars-pointing frame within seconds. The

gaps in the propagation are due to the spacecraft halting the control when close to the target in

order to avoid bouncing.
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Figure 3.13: Control Results for Heading-SRuKF, FOV: 20◦

Finally, Figure 3.14 show post fit residuals seen by the filter on the first and second axes of

the measurement.
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Figure 3.14: Post Fit Residuals for Heading-SRuKF, FOV: 20◦

These are mostly noisy, and despite a slight over-estimation of the measurement noise about

the first axis, they do not display any clear signal. This shows that the spacecraft movement about

the orbit is not significant enough to disturb the filter. This scenario shows positive results. It is

far from a beacon detection orbit in which the assumption would hold all the more, yet it functions

as expected.

3.5.3.2 Nominal Planet Case

In the nominal planet case, the spacecraft is on an orbit with semi-major axis a = 18, 000km.

The camera used for this scenario has a field of view of 40◦. The field of view of the camera must

increase as the spacecraft’s orbit comes closer to the surface in order to image the entire disk. This

is indeed a wider field of view camera that is better suited for imaging a full planet.

In this scenario, the filter still converges but displays more symptoms of a broken assumption.

This is seen notably in Figure 3.15b where the oscillation along the moving axis is more prominent.

This is accentuated by the guidance and control algorithm and could be accounted for in several

ways. At this altitude, it could be interesting to take more frequent images for measurements, or

the filter could run on a shorter time step in order to not see the errors as much.
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Figure 3.15: State Error and Covariance Plots of Heading-SRuKF, FOV: 40◦, a = 18, 000km

In the interest of seeing limits of the assumption, all simulation pararmeters kept identical to

the previous scenario. This allows to show the edge where the filter converges easily but oscillates

around a zero error significantly.
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3.5.3.3 Proximity Case
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Figure 3.16: State Error and Covariance Plots of Heading-SRuKF, FOV: 80◦, a = 8, 000km

In the proximity planet case, the spacecraft is on an orbit with semi-major axis a = 8, 000km.

The camera used is now very wide angled with a 80◦ field of view. At this altitude, a narrower

angle would not allow to image the planet. Although not unreasonable for entry decent and landing
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— which have cameras with 70◦ fields of view59,71 — this camera would rarely be used for these

purposes. Indeed at this altitude, a camera with a more narrow field of view69 and higher resolution

would allow for Terrain Relative Navigation (TRN) through feature tracking.151

Figure 3.16 shows the now limited behavior of the fully coupled navigation, guidance, and

control scheme. Indeed the oscillations of the filter are more notable than before and the post fit

residuals in Figure 3.17 show the structure tied to this unmodeled rotation.
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Figure 3.17: Post fit Residuals for Heading-SRuKF, FOV: 80◦, a = 8, 000km

It is valuable to note, nonetheless, that the filter converges with the control. The oscillations

are likely due to the control misguiding the spacecraft due to state errors, as seen in the next

section. A separate study could continue this work in order to identify the coupling between the

control and navigation solution.

3.5.4 OpNav Heading Results Summary

This section summarizes the results of the OpNav pointing scenarios. The off-pointing errors

and covariance are provided for the previous scenarios as well as for de-coupled scenarios in which

the control does not use the measurements.

Figure 3.18 summarizes the performance of the implemented filter in all three orbit cases.

This shows the increasing sensitivity to the fast changing orbit dynamics, and suggests the limits
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of the current ADCS system.
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Figure 3.18: Off-Pointing Results in Coupled Control-Navigation Scenarios

Figure 3.19 shows the performance of the filter in all three orbit cases without using the

measurements for control. This shows that the filter performs better without the feedback of the

control and the estimate. This figures shows that the performance is not limited at this proximity

case, as an more adapted control law could provide better results.
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Figure 3.19: Off-Pointing Results in De-Coupled Control-Navigation Scenarios

3.6 Conclusions

Using switch-kinematics to avoid un-observability is a novel solution for heading estimation.

Through these more complex kinematics, the Switch formulations analytically extract rate unob-

servability. This provides confidence in regard to the numerics of the filters as well as the overall

state error. Furthermore, these results generalize well to OpNav scenarios. Hence, these filters

provide a general solution to the array of problems that come from heading estimation.

The filter also performs well on cases that are outside of it’s nominal operating range. Using

the listed cameras for limb-based image processing at those altitudes is uncommon. Indeed, at that

stage of a mission, much better results can be found by doing terrain relative navigation. This

shows that not only does the filter perform well within it’s assumptions, but it also needs to violate

them significantly in order to see a dip in performance.
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This chapter also displays the capabilities of the simulation developed in Chapter 2. Indeed,

the last results show that a de-coupled attitude scenario does not provide full insight on the stability

of the issue.

Future work could see the full attitude knowledge from heading information. This can be

implemented using standard methods such as TRIAD, OLAE, QUEST184 or stochastic methods.56

Full attitude using several headings fits well within the context of Wahba’s formulation212 which

uses relative weights to quantify the accuracy of each vector. Methods exist to minimize Wahba’s

cost function with one dominant measurement141,220 which could apply well to these results.



Chapter 4

Orbit Determination using Centroid and Apparent Diameter

4.1 Overview

This research goal focuses on improving orbit determination using OpNav measurements. The

errors and uncertainties from the camera, the distance from the body, and the image processing

methods directly determine the quality of the state estimation. Harnessing the designed OpNav

test-bed introduced in Chapter 2, all of these parameters can be analyzed both independently and

simultaneously.

This chapter focuses on how to extract CAD or Limb information from an image, and how to

quantify the quality of the pose result. The contribution to the field is, in part, the implementation

and end-to-end validation of the Hough Circle transform for on-orbit navigation. By allowing the

FSW to fit simple circles, the robustness of the FSW can increase while the performance is shown

to be equivalent. Error quantification needs to be done as a function of camera parameters and the

uncertainty of the fitting algorithm. This is done specifically for simple image processing algorithms

with the intent of flying on-board and in the loop.

4.2 Motivation and Assumptions

OpNav uses information in the environment as seen through an on-board camera in order

to determine spacecraft states. Although just one in many methods, this research focuses on en-

hancements to autonomous OpNav for spacecraft state estimation. Limb finding has seen recent

developments and is notably planned for use on Artemis 1 (previously referred to as Orion’s Ex-
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ploration Mission 199), as well as for Jupiter and Saturn exploration using the planet satellites.21

Autonomous OpNav remains a sought-after navigation method as it requires only cameras (which

can be both light-weight and used for other purposes) and fundamentally relies on imaging the

object that is being studied and orbited as opposed to Earth-based data, or distant pulsars.

In OpNav, measurements derived from landmark observations,133 point distribution meth-

ods,203 star-occultation methods,173 crater-tracking,170 are some of many feature tracking methods

which provide promising results. However, they come at a computation cost. Indeed, the current

state-of-the-art for OpNav is Stereo-Photoclinometry76,77,178 (SPC) which allows the spacecraft

to map and navigate the spacecraft environment with high precision. Nonetheless, it relies very

heavily on Earth contact for its intensive image processing algorithms. With the goal of autonomy,

this research will focus on on-board methods for image processing.

Similarly, ORB-SLAM61,155,156 and other cross-correlation methods29,143 are booming in

aerospace. These hold great promise for small body autonomous orbiting and have already proven

to be useful on missions such as ESA’s Rosetta and ongoing missions such as OSIRIS-REX. For

preliminary developments, the proposed research will focus on simple CAD, with the intent of

allowing more intensive image processing methods in the future.

In previous chapters, the primary information that has been extracted were centroids, which

have been used for heading determination and pointing. This chapter now intends to use the

apparent diameter in order to get a measurement of range by using the size of the fitted circles.

This goal introduces a few immediate caveats:

• In order to measure relative distance to an object using it’s apparent size, the object and

it’s physical shape must be known

• For the circle to be a good approximation of the object, it must be close to spherical

• The inertial attitude of the observer must be known in order to fully determine the position

given the symmetries of the sphere.

Addressing these issues creates the platform for the OpNav study of the chapter. Indeed, addressing
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the first point immediately narrows the applicability of these results. Knowing the properties of

the celestial body excludes visiting asteroids or comets which are not yet explored. This ties in

to the second point: most small bodies do not have sufficient mass in order to become spherical,

whereas telluric planets and dwarf planets become spherical under their gravitational pull. Finally

the last point is solved by assuming a star tracker is on-board the spacecraft. This is generally not

considered a difficult assumption to fulfill as most spacecraft fly several of these cheap and reliable

instruments.

The first two points force this application towards inner planets, icy moons, or any other

body which is roughly spherical with a known size. Table 4.1 shows that the ratio of the equatorial

and radius for the 8 planets and the Moon are generally low. In fact, apart from gas giants, all of

the planets show smaller than 1% oblateness. These contextualize the type of planets and moons

Table 4.1: Celestial Body Oblateness

Celestial Body Body Oblateness

Mercury & Venus < 0.05 %
Earth 0.3 %
Moon 0.1 %
Mars 0.7 %

Jupiter 6 %
Saturn 10 %
Uranus 2.3 %

Neptune 1.7 %

that can be used for the methods developed in this chapter. In order to constrain the simulation

possibilities, a similar orbit to the to the nominal heading situation is introduced and detailed in

subsection 4.3.3. This provides continuity and focuses on Mars navigation. Here, the autonomy

does not happen during a maneuver, but rather it is achieved on a routine level on orbit.

Routine autonomy presents a different kind of challenge than during mission-critical phases.

Both scenarios require high levels of fidelity and robustness to a wide set of conditions but with

more frequent use of the algorithms comes more exposure to potential faults. The use of such

algorithms requires commensurately thorough analysis in order to develop confidence in the long-
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term performance. One reason that makes this difficult to achieve is the difficulty in reproducing

flight-like conditions on Earth. Furthermore, a flight-like simulation must provide the analysis

capabilities required for mission design: it must enable Monte-Carlo (MC) capabilities as well as

easy scriptability to modify scenarios with ease. Finally, developing open-source code bases also

enables continuous validation, testing, and community support.

The method developed in this chapter focuses on the autonomous navigation about Mars.

In this way, this work provides an extension on the AutoNav108 framework, extending the im-

age processing to Hough Circle instead of center-of-brightness, and to on-orbit navigation instead

of deep-space cruise or impact trajectories. Furthermore, this study builds on previous chapters

and therefore couples in the pointing problem with all the results. Both the coupling of point-

ing and orbit determination, and the end-to-end performance of the Hough Circle transform are

the novel components of this work. Indeed, although this circle finding algorithm has been used

extensively in robotics, it’s applications to the spacecraft navigation field have primarily been for

crater detection213,218 and has not been applied to CAD navigation, usually for speed concerns41

for fitting conics. In order to evaluate this method, a state-of-the-art algorithm is implemented:

the Non-Iterative Horizon-Based method by Single Value Decomposition (NIH-SVD).49

This work therefore presents an implementation of a state-of-the-art limb-based OpNav

method, while simultaneously using a more basic yet robust Hough Circle171 finding algorithm.

The Hough transform technique follows the principle of maximum likelihood estimation, it can

thus be considered as a discretized version of a maximum likelihood estimation process.225 Both

ellipsoids and spheres mathematically project to ellipsoids on a camera plane. This has made el-

lipse fitting the default way to fit limbs for navigation. For ellipses, clustering methods such as

Hough transforms are too numerically complex and slow and have been discarded for navigation

though discussed.129 This research presents fully coupled Attitude-OD OpNav on orbit using circle

fitting instead of ellipse fitting, as well as comparative capabilities for different methods in a ideal

flight-like simulated environment. Given the pairing of the pointing tasks which centers the planet

on the image — hence limiting the projection errors — and the use of planets which are not largely
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oblate (see Table 4.1) the results are compared to ellipse fitting methods in order to display the

capabilities of Hough Circles for navigation.

The example scenario referenced in this research is a spacecraft on Mars orbit using only

Centroid and Apparent Diameter for OpNav.42,43 This scenario — camera images seen in Fig. 4.1

— enables testing of a full OpNav sequence, from taking images to control. Images processed are

color, though the different color channels are not used as is common in space imagery. Building

off previous work in Chapter 2204 exploring closed-loop optical navigation simulations, this work

develops a novel autonomous on-orbit OpNav architecture using Centroid and Apparent Diameter

(CAD) measurements about Mars for simultaneous pointing and Orbit Determination (OD).

Figure 4.1: Camera View as the Spacecraft Moves the Simulation

The first section will describe the architecture of codebase, which allows for the level of testing

desired. A description of the scenario implemented follows, as well as a recapitulation of the image

generation method. The two methods are then described in detail in order to highlight differences.

Results are shown in a the nominal scenario, and Monte-Carlo results are also presented. This

last section allows to discuss some the of sensitivities discovered empirically, and opens the door to

more in-depth mission analysis.
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4.3 Simulating a Mars OpNav Orbiter

4.3.1 Filter Architecture

Part of the motivation behind the development of Basilisk has stemmed from the desire to

test flight code from it’s inception all the way to flight. This is done by embedding the FSW

algorithms in virtual environments and hardware in the loop environments, and aims to fly exactly

the code that is tested. One of the key enables towards this goal is the use of modular building

blocks for algorithm creation. This allows to compare and contrast, couple and decouple, and test

the parts of the GNC chain for performance testing. This paradigm is therefore also applied to the

filtering developed for OpNav. In order to keep filters modular and agnostic of the image processing

method used. This is done by changing the filter input from pixel and line to the relative pose of

the camera relative to the body. In order to achieve this decoupling, the uncertainties of the image

processing methods must be mapped back to the measurement being extracted.

Image 
Processing

Module

Orbit 
Determination 

Filter

Measurement 
Model

Bitmap 
Image

Measurement 
& Noise
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Guidance and 

Control

New Camera 
Orientation

Features

Figure 4.2: Information Flow Between Modules

Figure 4.2 shows the OpNav FSW algorithms used in order to navigate autonomously off of

an image. Classically the image processing module directly feeds the filter measurements which are

processed in the measurement update. In this filter architecture, the measurement noise is extracted
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from the filter in order to be used for heading and orbit determination purposes. Furthermore, this

allows to exchange methods of measurements, or even filter implementations all the while comparing

all the other components. This therefore follows the paradigm described regarding testing flight

algorithms. Another tuning parameter that helps the filter convergence is the noiseSF scale factor

which is applied onto the covariance as it is updated according to the measurement noise. This

is done as suggest in Reference 27 by not scaling the measurement noise itself but the covariance

after the time update.

In this subsection, a circle-fitting algorithm extracts the centroid and the apparent diameter

of the planet being observed. Before being used for navigation, they must be translated to relative

position of the camera with respect to the body. This is seen in the top block of Figure 4.2 where

the image processing extracts centroid and apparent diameter (or limb points in the horizon-based

navigation method). These points are then transformed into a spacecraft position measurement

through the measurement model of the filter. The noise is also transformed to the proper frame to

provide measurement noise to the filter. The estimator can then reconstruct the spacecraft states.

Figure 4.2 also pictures the coupled nature of the simulation: the images processed are used for

attitude guidance and control, which then generate new images.

Extensive testing of autonomous systems — on the ground and in flight — builds trust in the

desired performance of the algorithms. Flight tests, or technology demonstrators, are rare and also

require rigorous testing in order to not endanger the main mission. Additional tests can be achieved

primarily through simulated environments. This work describes novel results achieved for simu-

lated autonomous optical navigation on orbit about Mars. The coupled nature of the simulation

enables simultaneous pointing and orbit determination with dynamic image generation. Navigation

is done solely using optical images, and by means of limb or centroid/diameter extraction. This

is applicable on a wide range of orbits depending on the camera parameters. Through the imple-

mentation of pre-existing algorithms and the development of novel optical navigation methods, a

fault detection capability is also introduced in order to test methods in off-nominal cases. This

research provides insight into achievable navigation accuracy and image processing methods, as
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well as outlier detection and mitigation for mission readiness.

4.3.2 Synthetic Images

This section reminds the simulation used for the following example scenarios. This architec-

ture harnesses two main components: a high-fidelity, faster than real-time, astrodynamics simula-

tion framework Basilisk ; and a sister software package — Vizard — to dynamically visualize the

simulation environment.204 More details are found in Chapter 2 but the general codebase design is

reminded in Figure 4.3.
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Figure 4.3: General Schematic of Simulation Framework

As a modular astrodynamics simulation framework that allows for the rapid simulation of

complex spacecraft dynamics, Basilisk provides the environment needed to run and test a wide

variety of GNC algorithms. The associated visualization named Vizard creates the sensor simulation

by emulating a camera and rendering the environment. Here again, the Basilisk simulation messages

are streamed directly to the visualization to illustrate the spacecraft simulation and environment

states.

Figure 4.4 shows the camera model and defines the coordinate frames used widely in the

literature46 and provided by Vizard. Once the images are available, different OpNav methods can

extract a variety of features from them. Although there is potential for using more computationally

intense methods on-board, this research focuses on implementing CAD autonomous OpNav. It

provides the necessary information for on-orbit navigation in the current use-case: the celestial
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Figure 4.4: Pinhole Camera Model

object is resolved but not taking up the entire field-of-view, and the assumptions described in the

introduction of this chapter are verified.

An important transform applied to the pixel measurements is given by the pinhole camera

model. Indeed in order to transform the pixels coordinates (xi, yi) to the image plane coordinates

(x, y) with the following expression:135


x

y

1

 =


f
dx
− f2α
dxdy

f2 αvp−dyup
dxdy

0 f
dx

−fvp
dx

0 0 1




xi

yi

1

 (4.1)

where f is the focal length, d is the pixel pitch (in the x or y direction according to the subscript), α

is the detector array skewness, and (up, vp) is the center point of the image. In this study, dx = dy

and α = 0.

The images are rendered in a Unity camera simulator in realistic lighting conditions using its

integrated GPU ray-tracing capability. Camera specifications, such as resolution and focal length,

are generated in the camera module as well. The simulation also provides corruption capabilities

through a Basilisk camera module in order to render faulty images which will be explored in the

following chapter. It’s important to note that images are processed in color, but none of those

channels are used. In fact, the Hough transform performs a greyscale on the image while the

Canny transform uses the between pixel intensities without differentiating Red-Green-Blue (RBG)
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channels.

The images are once again generated in a closed-loop manner: the spacecraft position and

attitude determine the image generation. Furthermore attitude and trajectory control update the

images live. This needs to be done in a fast and accurate way. The difficulty comes in providing

speeds for several-orbit simulations that tightly couple in attitude variations for image generation.

The simulation with a 0.5 second time-step taking 512 × 512 every minute for attitude control,

alongside dynamics models, flight software algorithms, and OpNav OD algorithms during a 10

hour long orbit approximately one minute (∼ 600× real-time).

Table 4.2: Camera Parameters

σCB
[
0 0 0

]T
BrCB[m]

[
0 0.2 0.2

]T
Resolution (pixels)

[
512 512

]T
Sensor Size (mm)

[
10 10

]T
Field of View (◦)

[
40 40

]T
Throughout this chapter, the camera frame is noted C, the spacecraft body frame is B, while

the inertial frame is N . Direction cosine matrices are noted [BN ] to represent the rotation from the

inertial frame to the body frame which can also be represented a Modified Rodrigues Parameters

(MRPs) σBN . The rotation rate of the body frame relative to the inertial frame is noted ωBN and

the left superscript notation indicates the frame a vector is expressed in.184 Positions are noted

r, subscript CB represents the camera position relative to the spacecraft center of the frame B,

similarly, rBN is the vector from the center of N to the spacecraft body frame.

The camera parameters are given in Table 5.3 and use a square image with a wide field of

view. The sensor size of 1cm is, equivalent to choosing a focal length of 1.373cm. The position

and orientation of the camera are arbitrary in this scenario, as long as they don’t create any

self-shadowing. This is avoided easily with the parameters implemented.
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4.3.3 Simulated Astrodynamics

The scenario simulates a spacecraft on an elliptical orbit around Mars. The conditions are de-

signed to allow for variation in the apparent size of the planet. This section specifies the simulation

parameters as well as the flight-software algorithms used.

The simulation uses SPICE 1 data, where the simulation begins on December 12th at 22:00

(GMT) 2019. Given the initial conditions of the spacecraft in orbit — seen in Table 5.2 — Mars

first appears as a waxing crescent and as the spacecraft reaches apoapse Mars becomes full. Near

the end of the simulation Mars begins to go through a waning crescent phase. This allows the

FSW algorithms to be tested along a wide variety of lighting conditions and planet sizes. The

Table 4.3: Spacecraft Initial States

σBN
[
0 0 0

]T
ωBN [rad/s]

[
0 0 0

]T
Orbital Elements (18000km, 0.6, 10◦

(a, e, i,Ω, ω, f) 25◦, 190◦, 80◦)

simulation modules assigned to modeling the spacecraft dynamics and environment are described

in Table 4.4. These modules simulate spacecraft attitude gyroscopics and gravity,5 eclipse, reaction

wheels,3 and star trackers. Eclipsing is also modeled: this usually creates a halt in the spacecraft

measurements. In a fully coupled Attitude-OD simulation this means the spacecraft enters a search

mode, which intends to allow for the modeling of a fully independent spacecraft. In this scenario,

a rough pointing to Mars can be accomplished even with inaccurate knowledge of the spacecraft

position. Therefore, in order to focus on the OD solution, the spacecraft goes through a 3 minute

guided pointing mode before starting to navigate and point using OpNav.

Table 4.4 defines the spin axes of the wheels184 in the body frame through the elevation and

azimuth angles with the equation:

Bĝs =

[
cos(el)cos(az) cos(el)sin(az) sin(el)

]T
(4.2)

1naif.jpl.nasa.gov/naif/

naif.jpl.nasa.gov/naif/
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Table 4.4: Simulation Parameters

Simulation Modules Necessary parameters
Instantiated at initialization

Spacecraft Hub Inertia [I] = diag(900, 800, 600) kg·m2

mass M = 750kg

Gravity Effector/Eclipse December 12th 2019 at 18:00:00.0 (Z)
µmars = 4.283 · 104, µearth = 0.399 · 106,

µjup = 1.267 · 108, µsun = 0.327 · 1011 [km3/s2]

Simple Navigation Attitude error σatt = 1/3600◦

Star Tracker Rate error σrate = 5 · 10−5◦/s

Reaction Wheel Effector 4 Honeywell HR16 Wheels

Wheel orientations Elevation Angles (el): 40◦

Azimuths angles (az): 45◦, 135◦, 225◦, 315◦

Pos in B [m]:
[
0.8, 0.8, 1.79070

]T [
0.8,−0.8, 1.79070

]T[
−0.8,−0.8, 1.79070

]T [−0.8, 0.8, 1.79070
]T

More specific information on the wheel specifications are available on Honeywell documents1. Ta-

ble 4.5 implements methods from the OpenCV 2 library and more information is found in their code

documentation.

Beyond the pure simulation modules, the simulation also implements several FSW algorithms.

These are all developed in C for speed, and compatibility with heritage FSW. These are broken up

in two groups: imaging FSW (summarized in Table 4.5) and Pointing/OD FSW (Table 4.5, 4.6).

The imaging modules encompass the OpNav raw measurements (limbs and circles) as well as the

measurement models to provide spacecraft position.

Table 4.6 shows the modules implemented for centroid-based pointing guidance,204 OD, and

control using MRP-Feedback seen in Example 8.14 of Reference 184.

4.4 Image Processing and Filtering

This section describes the details of the OpNav data chain from captured image to orbit

estimate. This is done more modularly by taking the measurement model outside of the filter in

order to more easily interchange models. The flow of data through the simulation is shown at a

1aerospace.honeywell.com
2docs.opencv.org/

aerospace.honeywell.com
docs.opencv.org/
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Table 4.5: Flight Software for Imaging

Flight Software Modules Instantiated Necessary parameters at initialization

Image Processing param1 = 300, param2 = 20, minDist = 50 pix
(arguments for Hough Circle method) minRadius = 20 pix, dp = 1,voteThresh = 25

Limb Finding cannyThreshLow = 50, cannyThreshHigh = 100
(arguments for Canny transform) blurSize = 5

Pixel Line Transform Planet Target is Mars

Horizon Nav noiseSF = 70 , Planet Target is Mars

high level in Fig. 4.2, and is summarized in Table 4.5.

4.4.1 Limb Detection

In recent years, with interest in applying autonomous navigation around the Moon,45 high-

fidelity image processing algorithms have been developed. With the primary application to spherical

or ellipsoidal bodies, these revolve mostly around finding a ellipse centroid,152 or fitting a limb.48

These methods provide accurate measurements of a spacecraft’s relative position to the body pro-

vided an unambiguous limb.

The baseline method chosen to measure spacecraft position is the Non-Iterative Horizon-

Based Optical Navigation by Singular Value Decomposition43,50 (NIH-SVD). This method was

chosen for its high performance not only analytically but also numerically. The method takes a set

of limb-points as an input and outputs a camera position in the planet frame. The algorithm is

briefly summarized here.
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Table 4.6: Flight Software Pointing and Orbit Determination

Flight Software Modules Instantiated Necessary parameters at initialization

OpNav Point minAngle = 0.001◦, timeOut = 100s

ωsearch = [0.06, 0.0,−0.06]◦/s, Chc = [0, 0, 1]m

relativeOD α = 0.02, β = 2, κ = 0, noiseSF = 5
rerror = [10, 10,−10]km

rerror = [0.1,−0.01, 0.01]km/s

MRP Feedback RW K = 3.5 , P =30 (no integral feedback)

RW motor Torque Control axes are
B[
b1, b2, b3

]
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Figure 4.5: Every 30th Mars Limb Fit

Assume a set of N limb point vectors sk = (xk, yk, 1) (km) are given in the camera frame

and in the image plane (normalized focal length). Pairs (xk, yk) are the position of the kth limb

point in the camera frame.

[B] = [Qm][CP] (4.3)

s̄k = [B]sk (4.4)

s̄′k =
s̄k
||s̄k||

(4.5)

Where [Qm] = diag
(

1
ra
, 1
rb
, 1
rc

)
in the planet-fixed frame, with ra, rb, rc are the radii of the poten-

tially ellipsoidal body along it’s principal axes. [B] = [Qm][CP ], where P is the planet frame. In
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this chapter the planet frame is taken as the inertial frame N , and [Qm] represents a circular Mars

with ra = rb = rc = 3396.19km. After rotation and normalization according to Equations 4.6,

these are concatenated in order to solve for

[H] =


s̄′T0
...

s̄′TN

 (4.6)

[H]n = 1N×1 (4.7)

This is done by performing a QR decomposition on [H] which constructs [QH ] orthonormal and

[RH ] upper triangular such that [H] = [QH ][RH ]. This leads to the equation [RH ]n = [QH ]T1N×1

which is solved by back-substitution. With n now given, the spacecraft position is given in the

camera frame by:

Cr̂BN = −(nTn− 1)−
1
2 [B]−1n (4.8)

The only computation left is to rotate into the desired frames. This is done using the

star-tracker estimate of [BN ] and the known camera frame [CB], and the module outputs the

covariance and estimates in the body, inertial, and camera frames for downstream use. This method

is implemented in C (under the Basilisk module name of imageProcessing/HorizonNav). The last

thing to do in order to implement this method fully is to create a limb finding method. This is done

by using the Canny transform25 implemented in OpenCV, preceded by a greyscale transform and

a 3× 3 pixel Gaussian blur. Figure 4.5 shows the limb points found (every 30 images) and used in

this image processing method during the simulated scenarios presented in the later sections of this

work. The x and y axes are pixel numbers in the focal plane, and the colors illustrate the time the

image was taken: in chronological order from dark to light shades. It illustrates the changing Mars

crescent throughout the orbit as the darker larger limbs are only quarter circles, while the brighter

points in the center are full circles.

These limb points are extracted in a separate module found in Basilisk under the folder:

fswAlgorithms/imageProcessing/LimbFinding. Given the clean images provided to it during
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these simulations, the limbs found accurately hug the planet. The simulation allows up to 2000

limb points to be extracted from a single image. This maximum is only approached for high

resolution images (106 pixels and over) in which the planet takes up a large portion of the field

of view. A difficulty in this method arises when computing the covariance around this estimate.

Indeed, computations in Reference 49 show that the covariance is given by

[Pr] = E
[
δrδrT

]
= [F ][Pn][F ]T (4.9)

Where E [] is the expectation operator, and

[F ] = −(nnT − 1)
1
2 [B]−1

(
[I]3 −

nnT

nTn− 1

)
(4.10)

[Pn] = ([H]Tdiag (σ1 . . . σn) [H])−1 (4.11)

Where [Ry] = diag (σ1 . . . σN ) is the covariance of the pixel measurement residuals. More informa-

tion can be found in the reference. The important component of these equations is that in order

to compute the [P ]r matrix, N ×N matrices must be computed, and multiplied.

This therefore requires a large matrix multiplication computation which grows as N2 (N limb

points). This is dynamically allocated memory, which in C requires the use of malloc and therefore

accesses heap memory instead of stack memory. Although not an issue in most applications, some

FSW developments are reticent to use these function calls in flight. This is because of the potential

memory leaks that can occur if heap memory is not freed, and from the potential hazard of having

erroneous inputs lead to requests for more memory than can be provided by the hardware.

4.4.2 Hough Circle Detection

The novel method for OpNav discussed in this section uses the Hough Circle transform.

This method is routinely used in robotic applications197 where measurements are plentiful. This

development attempts to apply some of these paradigms to spacecraft navigation.

The purpose of this image processing method is to find objects within a certain class of

shapes by a voting procedure. The procedure is carried out in a parameter space, and in the case of
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circles the parameter space is three-dimensional: X component of the center, Y component of the

center, and radius. Circle candidates are obtained as local maxima in this accumulator space that

is explicitly constructed by the algorithm. Therefore the algorithm builds a point cloud of possible

circles in the parameter space, and a maximum, or points above a threshold can be extracted.

Gradient detection, which extracts edges from the image, helps to reduce the search space. This

aids the computation time and reduces the number of extraneous votes, which is implemented in

OpenCV.

In the Basilisk Hough Circle implementation, a geometrical method is used to extract pose

information from center and apparent diameter information. The norm of the position vector

is given by the apparent size, it’s direction is given by the pixel and line data. Using CrBN =
C[
r1 r2 r3

]T
as the relative vector of the camera with respect to the celestial center, A as the

apparent diameter of the celestial body, D as the actual diameter:

|rBN | =
1

2

D

sin
(

1
2A
) (4.12)

1

r3

Cr1

r2

 =
1

r3

Cr̃BN =
1

f

Cx
y

 (4.13)

These equations have been used in multiple instances in studies by Battin or Owen.13,167 The third

component of rBN provides the range measurement to the body which can be extracted using the

apparent diameter measurements. Hence the definition of r̃BN which only contains the first two

components of rBN . The vector components of rBN are expressed relative to the inertial frame

assuming inertial attitude knowledge from other instruments. Using the position of the camera

on the spacecraft, this provides the measurement value for an orbit determination filter using a

circle-finding algorithm.

In the case of the geometric formula, the partials allow to quantify error due to the camera

specifications. Indeed, if X,Y are the pixel sizes (in their respective directions), x, y are the position
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on the camera, and xi, yi, ρi are the pixel values for the CAD measurements:

Cr̃BN =
r3

f

Cx
y

 =
r3

f

CxiX
yiY

 (4.14)

|rBN | =
1

2

D

sin
(

1
2A
) (4.15)

=
1

2

D

sin
(

arctan
(
ρ
f

)) (4.16)

=
1

2

D

sin
(

arctan
(
ρiX
f

)) (4.17)

Eq. (4.14) provides a simple partial with respect to the center measurement Cci =

[
xi yi

]T

∂r̃BN
∂ci

= r3

Xf 0

0 Y
f

 (4.18)

⇒ E
[
δr̃BN δr̃TBN

]
= r2

3

Xf 0

0 Y
f

 [δciδcTi ]
Xf 0

0 Y
f

 (4.19)

The partial for Eq. (4.15) is:

∂|rBN |
∂ρi

=
Ddx

2

√
f2 + ρ2d2

x

(
1

f2 + ρ2d2
x

− 1

ρ2d2
x

)
(4.20)

Equation 4.20 is validated by Monte-Carlo analysis and compared as well to an unscented transform

in Figure 4.9. This shows 10, 000 points propagated through Equation 4.12 using the camera

parameters in Table 5.3 for a range of 18, 000km with Mars offset from the image center by (23, 19)

pixels. The pixel standard deviations used are σx = σy = 0.5 and σρ = 2. Figure 4.9 shows good

accordance of the first variations to the Monte Carlos. The image processing methods used here

for center and apparent diameter are Hough Circle transforms171 instantiated with the open-source

computer vision library OpenCV. Given the scenario in which it is applied — orbit around a known

spherical celestial body — the Hough Circle Transform provides a robust solution.

Figure 4.7 shows every 30th circles found in the scenario using Hough Cirlces to fit Mars.

Similarly to Figure 4.5, the x an y axes are pixel numbers in the focal plane, and the colors illustrate
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Figure 4.7: Every 30th Mars Circle Fit

the order of the image capture: from dark to light shades. It is immediately seen that the variably

of this method is greater than that of the limb extraction. Yet under the assumption of frequent
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images, when the variations are mostly Gaussian in nature they can be handled through filtering.

In practice, the circles are given in a frame centered at the top-right corner of the frame, and the

pixel size isn’t directly given. Therefore the computation for the planet direction is given using

X = SensorSizex
Resolutionx

and Y =
SensorSizey
Resolutiony

in mm/pixel:

Cr̂BN = −


X
f · (xi − Resolutionx

2 + 1
2)

Y
f · (yi −

Resolutiony

2 + 1
2)

1

 (4.21)

Where the 1
2 centers the point on the activated pixel. The normalization by the focal length f

functionally brings the pictured spacecraft onto the image plane. This value is then scaled by |rBN |

computed in Equation 4.15, and rotated into the desired frames. This is done using the star-tracker

estimate of [BN ] and the known camera frame [CB].

4.5 Coupled Pointing Guidance and Orbit Determination

This section analyses the performance of a spacecraft on an elliptical orbit around Mars.

The initial conditions and simulations parameters are described and discussed in Tables 5.2-4.6.

This section shows the orbit error solution convergence, as well as nominal performance of other

flight-software algorithms.

The results showcase the possible results for autonomous OpNav with a spacecraft taking

numerous pictures: 1 image per minute, using Hough-Cirlces. This approach also enables coupled

pointing on a wide range of orbits and permits less accurate methods to perform despite noisy

measurements. All of the results shown have the spacecraft perform both duties, given initial

conditions that provide the planet in the field of view.

First the measurements are analyzed, then the filter parameters are listed, and finally the

results are presented.
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4.5.1 Measurements for Orbit Determination

The measurement noise is extracted from the images and rotated into the proper frame.

Figure 4.8 shows the measurement quality for each of the methods by comparing the measurements

directly to the truth value of the spacecraft position in the camera frame. Both of these methods

show that the error in the measurements stem primarily from the ranging problem. The Z direction

in the camera frame is the direction that suffers from the most errors in both methods as both

algorithms present more sensitivity to a slight variation in apparent planet size. It should be noted

that although the Hough Circle measurements provide more noise (seen in Figure 4.8a), it is not

variable over the orbit and can be handled well by the filter. Figure 4.8b shows the errors from

the limb-fitting method. A signal appears in these measurement residuals — which can also be

seen in the Hough transformation. This signal is periodic with the orbit and changes only with

the lighting conditions: if the orbit is exactly the same but the light source is displaced, the signal

changes periodically.

As the limbs and the circles are found using only the illuminated pixels, if these are scarce

and only on a side of the planet, the measurement can suffer from a slight offset. The errors are, in

both cases not necessarily due to the OpNav transforms used, but rather to the image processing

method implemented.

The filter also overestimates the noise on the measurements by a factor of 5 in order to get

the desired results. This is equivalent to modifying the scale factors on the following measurement

noises, but provides the filter with noise scaling control. These noise values are selected accordingly:

• The limb-finding algorithm takes as its pixel uncertainty the ratio of the camera width to

the number of limb-points found (N), multiplied by 70. The scaling is an empirical value

in order to get the correct order of magnitude for the noise:

σpix = 70
Resolutionx

N

• The Hough Circle algorithm uses the voting system inherent to the Hough transform. It
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Figure 4.8: Measurements from Both Methods in Camera Frame

takes the ratio of the votes accumulated for the circle by the vote threshold:

σpix =
votes

voteThresh

The HoughCircle algorithm, is compared to the expected center pair, and radius of the planet

in pixels. These truth values are computed with the camera parameters and true spacecraft position

and attitude. These results show once again how the data, despite the fact that it is noisy, provides

good results next to the truth values. The limb-finding algorithm, generates a noise given the

number of limb points found, which are plotted in Figure 4.10. These show the changing lighting

conditions. These show that there is not a direct correlation between the number of pixels found

and the measurement accuracy. If the planet is closer (as seen in the start of the scenario) there
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Figure 4.9: Pixels Found Compared to Expected Measurements

are more limb-pixels found, whereas a more distant full disk might provide a better measurement

with less pixels. The variations do, nonetheless provide information on the quality of the image

detection, and a threshold can be applied before which the data is not trusted.
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Figure 4.10: Limb Points Found in Images
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4.5.2 Filter Implementation

Now that two methods have been developed to extract measurements from images, they can

be filtered in a relative OD estimator. The field of statistical orbit determination provides a series

of potential solutions for on-board, sequential, state determination.12 In this thesis, the same filter

implementation is used for both methods, with the same values for process noise:

[Q] = diag(10−6m2,10−6m2, 10−6m2, 10−8m2/s2, 10−8m2/s2, 10−8m2/s2) (4.22)

Both the methods described provided relative position measurements for the orbit determi-

nation filter. This filter which estimates spacecraft position and velocity in the inertial frame is

implemented as a square-root unscented Kalman filter.210 This filter is used both for alongside star

tracker measurements for inertial attitude, and in conjunction with heading determination filters

using the planet’s centroid for relative attitude. The filter state is

X =

NrBN
NṙBN

 (4.23)

Where NrBN is the spacecraft position relative to the celestial body (Mars). The ‘dot’ represents

a derivative as seen by the inertial frame.184 This keeps the estimation process minimal, though

other states could be added if onboard applications allow.

Ẋ = F (X) =

ṙBN
r̈BN

 =

 ṙBN

− µ
|rBN |3rBN

 (4.24)

The dynamics of the filter are given in Equation (4.24). The state propagation is done using an

RK4 integrator. The following square-root uKF coefficients are used: α = 0.02, and β = 2. These

allow to vary the Gaussian nature of the noise. The filter does not know about the influence of

other gravitational bodies. These only represent slight perturbations202 which are not perceived

given the measurement errors as well as the measurement density.
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Figure 4.11: Orbit Visualized with Measurements

The measurement model is simple given the pre-processing done by the two methods de-

scribed. This is in practice, equivalent to extracting the measurement model from the filter code-

base. Therefore the measurements model in the filter is:

G(X) = NrBN (4.25)

This is done to simplify the upkeep and modularity of the filter for OpNav, but also to be able to

use different types of measurements for one same OD estimate, as was explained in prior sections.

4.5.3 Filter Results

Figures 4.12 and 4.14 show the filter results for the limb fitting method coupled with the

NIH-SVD algorithm. All percentages are computed as the norm of the difference between the

estimate and the truth, normalized by the truth norm, multiplied by 100. The covariance on the

x− y components oscillates around 200km (∼ 1.3%) error on position and 0.05km/s (∼ 7%) error

on velocity, with slightly better performance in the out-of-plane direction. The state estimates

have errors in percentages below 0.9% on position and below 2% on velocity. These errors oscillate

depending on the lighting conditions, which is seen as well in the results for the Hough Circles. In

both of these results, the rising covariance on the velocity and position are driven by the elliptical

nature of the orbit (true velocity decreases and relative distance increases).

The Hough Circle method performs well overall, as seen in Figures 4.13 and 4.15, given
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the simplicity of the algorithm and the sensitivity of the geometrical position computation. This

scenario, presents an ideal case for both methods, as the camera doesn’t contain any artifacts,

noise, or errors. Robustness to such corruptions will be seen in the next chapter.

The limb extraction paired with NIH-SVD barely outperform it, given that the Hough Circle

covariances range between 200 and 250km (∼ 1.8%) error on position and 0.05km/s (∼ 8%) on

velocity. The state estimates have errors in percentages below 1% on position and below 2% on

velocity. These errors are comparable and nearly identical to those of the more sophisticated

method. Furthermore, Hough Circles does not require a lot of memory thanks to the reduced

search space described using edge detection, and is easy to implement on smaller spacecraft that

may not need the highest levels of fidelity on the covariance values. The main way to simplify

the NIH-SVD method would be to not compute the full covariance, which is often not preferred.

Furthermore, if the interest is solely on autonomous pointing using images, Hough Circles provide

a more lightweight algorithm which performs as well as the state-of-the-art algorithm.
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Figure 4.12: Relative Errors — NIH-SVD
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Figure 4.13: Relative Errors — Hough Cirlces

It is important to remember that the use-case of NIH-SVD is broader than the Hough Circle

algorithm in that it generalizes to oblate spheroids directly. Therefore navigation about gas giants

or other oblate planets with OpNav would certainly push the results in favor of NIH-SVD with

a high-enough resolution camera. Nonetheless, in the case of telluric planets or moons, the novel

Hough Circle results present promising results.

Both the methods show a slip outside of the covariance bounds in the early stages of the

imaging process. This is seen on the second position component, and is due to the lighting conditions

and the spacecraft position at that time. Overall, the results of both methods are promising,

especially given the simplicity of the limb finding algorithm. Indeed, sub-pixel edge localization

algorithm using Zernike moments43 would allow for better results with the same images.

The post fit residuals for the HoughCircle method are seen in Figure 4.16. The filter goes

through a transient paired with difficult lighting conditions, but the residuals are brought back to

noise once enough measurements are processed. These show the expected performance from the

filter, and the quality of the noise estimates from the images. This is seen notably by the oscillations

in the noise which match with the noise extracted from the actual measurements.

The aggregate of these results show that both methods are implemented with success, and

presents the Hough Circle algorithm as a viable navigation method given the camera, planet of

interest, and orbit. This is notably achieved through a relatively fast imaging rate, which provides
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Figure 4.14: State Error and Covariance Plots — NIH-SVD

sufficient measurements to filter the noise that can be found in the processing step.

4.6 Monte-Carlo Analysis

Part of the effort put into the development of the software package to simulate complex

dynamics was driven by the desire to create a general and fast simulation. The need arises from

mission design and analysis. Indeed, most mission choices are tested and often designed through

the use of Monte-Carlo analysis. Uses include but are not limited to: pointing analysis,103 thermal

analysis,33 debris propagation,176 etc. Monte-Carlo capability may also permit higher level analysis,
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Figure 4.15: State Error and Covariance Plots — Hough Cirlces

notably the analysis of sensitive parameters153 through meta-model design.192

Reference 192 explains the applicability of Design and Analysis of Computer Experiments

Techniques (DACE) to aerospace. DACE is an adaptation for simulations of the DOE approach

(Design of Experiments) used in physical experiments on industrial processes. DOE is a statistical

method of experimentation that varies all inputs in a simulation simultaneously (not one factor at

a time) and achieves the following:

• Determines the critical inputs (those with biggest effect on output of interest)

• Quantifies the input/output relationships in an analytical form in the experimental range
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Figure 4.16: Post Fit Residuals for the Hough Cirlces

• Shows interactions between inputs

The method of DACE84 has been used extensively in the automotive and other manufacturing

sectors, but so far not in astrodynamics. DACE is used to augment the limited number of runs

of a simulation by fitting an approximate statistical model, a surrogate or Meta-Model, based on

a set of limited observation data acquired by running the simulation at carefully selected design

points, generated from a Space Filling design. These developments illustrate the ongoing work

on Monte-Carlo improvements and the need for faster simulations to produce required data. The

following simulations display capabilities that could harness such methods in the future, though do

not currently use it for sensitivity analysis.

Since there is no direct requirement to be met in this scenario, no direct validation can be

produced. Despite this boundless analysis, the sensitivity of parameters can be explored. The

notable topics of importance in this section are: the orbit initial conditions (applying the solutions
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to a wide range of orbits), filter parameter modifications (noise scaling applied to the relative OD

SRuKF), errors in the camera parameters (errors in focal lengths or field of views). In the following

subsections, the orbit parameters, camera field of view, and filter noise scale factor are always

dispersed. The values of the dispersions are detailed in the specific subsections as they focus on

one fo the specific studies.

4.6.1 Dispersions on Orbital Parameters

The first sensitivity analysis examines the orbit sensitivities of the scenario. This is done

by changing the orbit by adding dispersions to the orbital parameters. These dispersed values

are then turned back to position and velocity components in order to initialize the simulation.

The goal of this analysis is to ensure that there is not an inherent tie between the orbit chosen

and the results. In this regard, a large orbit variation of 3, 000km around the 20, 000km mean is

set which will test a variety of orbits. The eccentricity sweeps a range of 0.1 to 0.6 uniformly to

keep varying the planet size in the image. Inclination, Right Ascension of the Ascending Node

(RAAN) and true anomaly are also dispersed strongly. The filter noise stays within values that are

known to work, this ensures that covariance variations are not due to the filter, but rather to the

changing OpNav measurements. The camera field of view barely varies by ±0.001◦ in these runs.

All the parameters for the 100 Monte-Carlo runs executed are summarized in Table 4.7. Although

the parameters provide a wider set of variability than the Monte-Carlo number can validate, it

provides an illustration to the capabilities and some insight in the overall performance of the FSW

stack. Both the NIH-SVD and Hough Circles both run in roughly 45s per simulation.

Figure 4.17 shows the state error percentage for the Monte-Carlo analysis. Variations are seen

in the filter performance (notably along the velocity lines) mostly during the transient convergent

phase. Nonetheless all of the solutions come to a sub-percent error on position and below two

percent errors on velocity. This does show the variability induced by the orbit, yet also shows that

the stability of the problem remains intact for a broad set of images.

Another interesting study is the covariance analysis that can come following these Monte-
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Table 4.7: Orbital Monte-Carlo Dispersions

Parameter Dispersion

Semi-Major Axis (km) N [20, 000, 3, 000]
Eccentricity U [0.1, 0.6]

Inclination (◦) U [−60, 60]
True Anomaly (◦) U [0, 359]

RAAN (◦) U [−60, 60]
Argument of Periapses (◦) 190

Filter Noise U [5, 7]

Camera FOV U [39.999, 40.001]
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Figure 4.17: Monte-Carlo Varying orbits— NIH-SVD

Carlos. Figure 4.18 shows that the covariance stays coherent with regard to the state errors above

it, and show variations in the solution as well. A mission trade-study could provide requirements

on either state error or covariance bounds and showing variability in these values according to the
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Figure 4.18: Monte-Carlo Orbit Covariances— NIH-SVD

orbit provides deep insight into the full system.

4.6.2 Dispersions on Filter Noise

A second parameter that tends to be tuned ad hoc would be the noise scale factor on the filter

measurements. Due to the difficult nature of the uncertainty extraction from the image processing,

measurement noises tend to be over-estimated.27 A thorough analysis can provide insight on the

effect of such parameters on the state estimate of the filter. Table 4.8 summarizes the dispersions

for this case. The orbital variations have been reduced, while the filter now spans a greater number

of scale factors. Once more, 100 simulations are run in order to analyze the sensitivity.

The results in Figure 4.19 displays the results for variations in filter noise. These show that
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Table 4.8: Filter Noise Monte-Carlo Dispersions

Parameter Dispersion

Semi-Major Axis (km) N [22, 000, 3, 000]
Eccentricity U [0.2, 0.4]

Inclination (◦) U [−20, 20]
True Anomaly (◦) U [0, 180]

RAAN (◦) 25
Argument of Periapses (◦) 190

Filter Noise U [5, 9]

Camera FOV U [39.9, 40.1]

the tuning of this parameter doesn’t change the results to an important extent. This justifies the

choice of parameters and provides a range of applications for the orbit.

(a) Inertial Position Error Norm

(b) Inertial Velocity Error Norm

Figure 4.19: Monte-Carlo Varying Filter Noise— Hough Cirlces
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4.6.3 Dispersions on Camera Parameters

The last sensitivity analysis studies the camera field of view. Although many other parameters

can be analyzed, in the interest of seeing specific effects of single parameters, only field of view

variations are added. This is also analogous to changing the focal length as the sensor size stays

unchanged. The goal of this analysis is to test how sensitive our choice of parameters is to the end

goal of navigating the spacecraft. In this regard, a relatively high orbit is chosen in order to stay

relatively insensitive to the size of the planet and eclipses. The eccentricity is kept below 0.4, but

over 0.2 to keep varying the planet size in the image. Similarly the inclination varies around the

zero value, whereas the anomaly stays in the first half of the orbit.

The filter noise stays within values that are known to work, which primarily inflates the

covariance and therefore changes the state estimate. The camera field of view however varies by

±1◦ in this run. All the parameters for the 100 Monte-Carlo runs executed are summarized in

Table 4.9.

Table 4.9: Camera Monte-Carlo Dispersions

Parameter Dispersion

Semi-Major Axis (km) N [22, 000, 3, 000]
Eccentricity U [0.2, 0.4]

Inclination (◦) U [−20, 20]
True Anomaly (◦) U [0, 180]

RAAN (◦) 25
Argument of Periapses (◦) 190

Filter Noise U [4, 6]

Camera FOV U [39, 41]

Figure 4.20 displays the results for the Monte-Carlo analysis. Although the variations can be

large, it’s because they compound with the ones shown previously, and the results remain positive

regarding filter convergence. This type of analysis can be key in order to understand the pixel

accuracy and the results that the OpNav suite can provide. The speed of execution and the ease

with which variability can be added to the simulation provides large mission support capabilities.
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Figure 4.20: Monte-Carlo Varying Camera Errors— Hough Circles

4.7 Conclusions

This chapter presents novel developments on several fronts. It provides estimation results

using solely autonomous OpNav on orbit about Mars, in order to quantify the accuracy achieved

with different methods. It also introduces a Hough Circle based navigation method. Although this

method doesn’t outperform current state-of-the-art algorithms, it provides a robust alternative

with a simple implementation. The difference between state-of-the-art algorithms and the new

Hough Circles method lies in the choice of fitting ellipses or circles: yet a simple circle fit with a

spacecraft aiming to center the planet on the camera plane has shown good results. Finally the

entire study is done with an underlying pointing coupling with the orbit determination. Doing

simultaneous attitude and OD adds a level of fidelity to the simulation presented. Furthermore, it

supports the development of a high-image count OpNav framework. By taking pictures frequently
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(every minute) even a less accurate method like Hough Circles show valid results for autonomous

navigation around Mars.

The Monte-Carlo analysis for sensitivity testing, and design choices has shown how useful

these tools can be in order to evaluate methods in use. Though not applied to a direct mission —

and therefore in the abscence a set of specific requirements to verify — this analysis aims to present

which parameters are most likely to change the OD solution, as well as confirm the robustness of

the algorithms to a wide set of situations. Indeed, as any image processing algorithm and control

law is tuned, the question of hyper-parameter choices are raised. This study allows to validate these

choices and in other cases could provide specific insight on what needs to be changed to achieve a

mission target performance. Some lessons learned are given in this section: the camera parameters

strongly influence the orbit solution, while the orbit variability and filter parameters are not as

influential to the estimate.



Chapter 5

Robust Optical Navigation for Spacecraft Autonomy

The speed and modularity of the simulation presented in the first chapter allows for in-depth

fault studies. With the ability to add faults to the camera, image processing algorithms can be

tested in harsh, off-nominal conditions. Furthermore, the ability to run multiple image processing

algorithms side by side allows for on-line comparisons between methods.

This chapter presents a robust navigation framework by opposing optical navigation algo-

rithms which extract different features from images. This is seen notably by using a limb detection

method versus a circle finding method. Although the edge quality will affect both, the circle find-

ing algorithm will be naturally more robust as it will not detect any other structures in the image.

The work allows the testing novel image processing methods in flight. With a comparative frame-

work in place, image processing through neural networks or other novel methods can be run in the

background and tested directly with more reliable methods.

5.1 Overview

The overarching task in this chapter is to enhance the developments of previous results with

faults and robustness. The principle scenario remains an elliptical orbit around Mars, but with

camera errors and faults. Once more, no ground-based measurements (range or range-rate data)

will be used for navigation. The elliptical orbit will facilitate the testing of the image processing

algorithms with a variety of apparent diameters, and the determination and control interaction

with both slow and fast orbital dynamics.
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This work presents fully coupled pointing-OD OpNav on orbit, as well as comparative ca-

pabilities for different methods in a flight-like simulated environment. Realistic simulations help

define what level of complexity is needed on board for a specific requirement to be satisfied. The

framework defined and developed in previous chapters provides the ability to run several FSW

algorithms in parallel, which is useful to develop technology tests in flight where a trusted method

oversees the performance of the other. It also provides a framework for fault detection analysis in

which several methods run simultaneously in order to harness each other’s strengths.

In order to prepare and validate an autonomous OpNav algorithm, analysis of outliers and

their potential impact on the state estimate must be well understood. This is notably used to

assess the feasibility of missions utilizing autonomous or ground-based OpNav in order to simulate

hardware and software limitations. When testing and validating autonomous systems, testing

for the “off-nominal” case is crucial to understanding the limits of the performances and mission

feasibility. These situations can also arise from sensitivity analysis through Monte-Carlos allows

the comparison of expected algorithm performance against mission requirements.

5.2 Image Corruptions for Increased Realism

In order to push the envelope in autonomous algorithms, a realistic spacecraft environment

must be generated. This includes the ability to toggle and manipulate the sensors and simulation,

and the ability to inject faults into the system. In OpNav, the modeling of the environment and

faults happen primarily through the camera model.

Modeling cameras and their corruptions is a longstanding task in fields that require extracting

data from images. In fields like solar physics, the removal of both known physical phenomenon

and camera artifacts to extract information from instruments,93 while robotics has greatly pushed

the field of computer vision with stereo-vision197 modeling for legged robots120 or open-source

camera calibration software such as Calibu112 developed at University of Colorado Boulder. Some

recent navigation work even involves using camera distortions in order to improve navigation:154

by determining the attitude of the spacecraft by exploiting the offsets in the Earth observational
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imagery.

This section focuses on the types of corruptions that are predominant in the space sector.

Some basic modeling tools are implemented in order to generate noisy and imperfect data. The

goal of this chapter is not to push the state-of-the-art in camera modeling and calibration, but

rather to provide tools to test the robustness of algorithms in place. Artifacts that target a specific

algorithm’s weakness are key to developing the necessary techniques to switch between methods

and ensures a continuous and robust navigation solution.

5.2.1 Camera Modeling for OpNav

Space imaging is traditionally done using a Charged Coupled Device (CCD) sensor to cap-

ture images. CCD technology has been able to provide high-level performance for detection and

remains the first-choice technology for high-end applications. On the other hand, Complimentary

Metal Oxide Semiconductor (CMOS) chips have intrinsic advantages — low power consumption,

readout rate, noise, radiation hardness, integration capability — that make them well suited for

space applications.139 Reference 139 provides an in-depth comparison of the two sensors. The

work presented in this thesis does not make an explicit choice on which sensor is preferable or

implemented. Each provides advantages and disadvantages, and is susceptible to different types of

faults.

Different space environments require different corruption models. An asteroid may spew dust

and occult a camera as a function of particle weights, electrostatic and solar radiation pressure

forces;185 high energy particles in magnetic fields can also induce frequent Single Event Upsets

(SEU);32 while cosmic rays174 are high energy particles hit the image plane and saturate a streak

of pixels. These can happen at various frequencies depending on the shutter speed and the local

environment.

Some common camera artifacts or errors that need to be modeled in simulations (or removed

in real data) are: dark current, hot and dark pixels, colored noise, spectral variability, radial

distortions, and blur. Lenses or camera imperfections during manufacturing process can also lead
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to aberrations and static artifacts that can be modeled such as small scratches or dents on the

lens. The color characteristics of a camera sensor also vary widely depending on the instrument.

If a navigation algorithm requires contrast between features, the relative sensitivity to the color

spectrum is important to model.

This subsection focuses on some attributes that can be added to the simulated camera for

realism. The schematic in Chapter 2 for the information flow is reminded in Figure 5.1. This shows

a camera model which can harness the OpenCV library in order to alter the images. In this work,

dark current, stuck an dark pixels, noise, blur, and cosmic rays are implemented. Every image

processing algorithm will present a weakness. For instance, a limb finding algorithm either has to

ensure there are no artifacts or sharp gradients in the image outside of the limb in order to not

misplace points. The goal in this thesis is not to model cameras to the highest physical accuracy,

but rather to provide the tools in order to trip imaging processing algorithms.

Cameras developed for navigation are usually high-resolution, low noise, and well charac-

terized such as the AMICA instrument on Hayabusa,70 HRSC on ESA’s Mars Express,69 or the

Orion EM-1 flight camera.99 Previous simulation work has combined also hardware with synthetic
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images in the loop in order to test EDL capabilities.67 This section will provide a more conser-

vative model of the camera being used, and environmental perturbations in order to display fault

detection capabilities.

5.2.2 Basilisk Modeling Capabilities

In order to provide the necessary capabilities for fault detection, several perturbations were

added to the camera module. Gaussian noise generates color noise in the image which adds errors

to the features on the planet map. Corrupting details on known textures provides an interesting

tool in order to challenge feature detection and tracking. This is done by using the addWeighted

OpenCV method and scaling the noise according to the input parameter. The noise is zero-mean

with standard deviation equal to twice the gaussian noise parameter. The image is then thresholded

at the 6-σ value of the noise parameter in order to keep the background dark. In summary:

• Gaussian noise is added with a mean of zero, and standard deviation of 2×G, where G is

the input parameter to the Basilisk module.

• The image thresholds down all pixels below the 6-σ values of the noise added

A similar effect is achieved with the implemented dark current model. Dark current is due

to thermal properties of the CCD or CMOS sensor in use: as electrons are created independently

of incoming light, they are captured in the pixel potential wells and appear to be a signal. Ways to

mitigate thermal electron creation is in fact to cool actively or passively68 the sensor. Dark current

noise is the statistical variation of this phenomenon which can be modeled75 and methods exist for

it’s extraction from images.85 In Basilisk, dark current noise is added with a Gaussian noise model

with zero standard deviation and mean of 15×D, where D is another input to the module.

A blur is added to the image as well. Softening edges is crucial to any kind of Limb based

navigation as it allows to create a comparable limb to a specific camera. The size of the blur

can be toggled from the module and Figure 5.3 shows how it can be used to replicate a specific

camera quality. The blur is programmed in OpenCV by convolving the image with the filter in
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Equation (5.1) in the case of a blur parameter set to 3.

[Bl] =
1

3× 3


1 1 1

1 1 1

1 1 1

 (5.1)

Equation (5.1) only requires that the parameter be an odd number in order to have a center pixel

in the [Bl] matrix. The size of [Bl] is the only variable for blurring in the Basilisk module.

Hot and dead pixels are also implemented as a static perturbation. At the initialization of

the run, a random number generates arbitrary pixel coordinates and either saturates them dark or

light. The corrupted pixels stay the same throughout the simulation and provide an example of a

static artifact. They are chosen by uniform distrubtions of the size of the images and values are

either maximized or minimized.

Finally, cosmic rays are also implemented. Cosmic rays are ionized nuclei: 90% being protons,

9% alpha particles, and the rest are heavier nuclei. They hit the Earth’s atmosphere approximately

1000 times per square meter per second.75 Although their origins and energies are commonly studied

in astrophysics, their effect on camera sensors is also of interest. Indeed by hitting the camera sensor

with relatively high energies, they can saturate a line of pixels and corrupt the image.216 Cosmic

rays are modeled in Basilisk by randomly choosing a point on the sensor as well as second point

within a maximal distance of the first one. The abundance of cosmic rays on an image depend on

the shutter speed amongst other parameters, and the module allows to toggle the frequency and

quantity of such events. The outline of the model is described as follows and only depends on a

single variable CR:

• Cosmic rays are added with a probability of p(CR) = 1− 1
(CR2+0.02)

, where CR is the input

parameter. The threshold is defined such that CR= 1 provides roughly a 1
10 chance of

getting a ray, while CR= 10 will generate roughly 10 rays per image.

• The length of each ray is bounded by a 50× 50 pixel box, and can be modified.
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• Each call to the method adds one ray, and the model attempts to add CR cosmic rays (one

is only added with probability p(CR)).

(a) Basilisk -Vizard Image (b) Mars Express VMC Image

Figure 5.2: A Comparison of Mars Express VMC Image Versus a Synthetic Image

The Visual Monitoring Camera (VMC) is mounted on Mars Express, ESA’s deep-space probe

orbiting Mars1. It provided low-resolution images of the Beagle lander after separation, and has

been converted to a imager for the rest of the mission duration. It is neither a scientific nor

navigation instrument, but provides some examples of coarse planet images. Although it is clear

that VMC does not provide that image quality expected from a navigation camera, it does stand

as an example of low-resolution images for OpNav. Indeed, if an image processing algorithm can

be robust to such images, it not only opens the door to OpNav for smaller less-expensive spacecraft

(namely cubeSats and small-sats), but also provides a robust alternative or check for other state-

of-the-art methods.

Figure 5.2 displays some comparative images from the VMC camera and synthetic images

generated by Vizard and modified by Basilisk. With just a few of these corruptions, generated

images take on far more realistic appearances: these images are not intended to provide identical

results, but rather to show comparable features. Looking more closely, Figure 5.3 shows how the

limbs can be set to present similar gradients going from the planet to the surrounding darkness.

Other corruptions such as radial distortion are also potential candidates to add as errors, though

1http://blogs.esa.int/vmc/
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they do not provide errors specific to these methods and are more applicable to EDL and terrain

navigation.

(a) Basilisk -Vizard Limb (b) Mars Express VMC Limb

Figure 5.3: Limb Comparisons for VMC Image Versus a Synthetic Image

These images show the potential that small error cumulation has to make images more

difficult to process. In Basilisk are modeled stochastically in order to provide sufficient simulation

speed. Indeed, the caveat that the derived corruptions present is that they may not be physically

representative of the phenomena that generate them. Better models for such errors is in progress

and requires developments on both the visualization and simulation. The primary goal of this

work is nonetheless to navigate under uncertain measurements, and from that perspective the

implemented models provide sufficient accuracy.

5.2.3 Camera Corruption Modes

In the following simulations, a subset of corrupted modes are used. This is done to focus

the attention on certain facets of the navigation problem. Indeed, with just the few camera errors

implemented, a wide range of different cameras and faults can be simulated. The rest of the chapter

focuses on how to navigate in the presence of the uncertainty generated by the camera model.

The simulation can generate multiple errors, unexpected objects or artifacts, and other cor-

ruptions in the images. Figure 5.4 shows an array of different images that can be generated.
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(a) Low-noise Image

(b) Med-noise Image (c) High-noise Image

Figure 5.4: Image with Added Corruptions

Subfigure 5.8a shows an image with only a few Hot-Dead pixels, while Figure 5.8b shows a blur

value of 2, a cosmic ray value of 2 and a gaussian noise value of 2. Finally the last image in Fig-

ure 5.4c shows the simulation with Gaussian noise set to 6, dark current set to 5, hot-dead pixels

set to 5, Cosmic rays set to 5 and blur set to 6. The last image is very difficult to use for navigation

as the planet doesn’t stick out of the background, all the while presenting many false edges to

account for. Images with this amount of noise are not good candidates for spacecraft navigation,

but rather display the capabilities of the simulation. Once again, color images are produced though

the additional information is not used.
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In order to challenge image processing methods and remain realistic, three main levels of

corruption are added. The first two revolve around the addition of Cosmic Rays (from now on

noted CRs). As seen previously these are modeled as random streaks across the sensor. They

provide are expected to strongly corrupt the NIH-SVD performance. Therefore it is studied in two

main modes which only add CRs as error sources.

Other artifacts can be added to the image. Two other cameras are added called “Noise” and

“NoiseHigh” in which other parameters are turned on to further hurt the image quality. The modes

used are summarized in Table 5.1 and are reference in the rest of this section.

Table 5.1: Camera Corruption Modes

Mode Name Gaussian Dark Current Hot-Dead CRs Blur

Nominal 0 0 0 0 0
CR1 0 0 0 1 0
CR2 0 0 0 2 0
Noise 3 0 0.5 1 3

NoiseHigh 5 1 1 2 5

NoiseHigh is solely used to show the boundaries of the algorithm performances. The primary

errors are found and use in the Noise and CR cases as seen in the following sections.

5.3 Navigation Results with Corrupted Images

In order to provide consistent results, the same simulation as Chapter 4 and can be found

in Tables 4.4, 4.5, 4.6. The orbital parameters and initial conditions are reminded in Table 5.2,

while the ideal camera parameters are reminded in Table 5.3. Alongside the noise parameters in

Table 5.1, all the information defining the simulations is provided.

Table 5.2: Spacecraft Initial States

σBN
[
0 0 0

]T
ωBN [rad/s]

[
0 0 0

]T
Orbital Elements (18000km, 0.6, 10◦

(a, e, i,Ω, ω, f) 25◦, 190◦, 80◦)
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Table 5.3: Camera Parameters

σCB
[
0 0 0

]T
BrCB[m]

[
0 0.2 0.2

]T
Resolution (pixels)

[
512 512

]T
Sensor Size (mm)

[
10 10

]T
Field of View (◦)

[
40 40

]T

The NIH-SVD method relies on finding a unambiguous limb. Models which aim to under-

stand the way limbs are casted upon camera sensors such as the Kasseleinen-Shkuratov model191

and the Hapke model88 have been utilized in the literature.43 Fast subpixel edge detection meth-

ods such as Sobel-Zernike222 moments or Zernike moments80 have also been developed to better

fit the detected limb. In the interest of introducing faults for one of the two methods, the limb

finding algorithm used remains the Canny transform. This will allow some of the perturbations

discussed in the previous section to provide faults. The Canny transform is still a reliable method

and provides good results in a clean image as seen in the previous chapter.

In this section both methods are run with identical errors and environments. The results

show how each method operates at the baseline when dealing with more difficult camera models.

The study of the stand-alone methods allows to instruct the fault detection algorithms that follow

by identifying the specific behaviors of each method.

5.3.1 Adding Cosmic Rays

The results show the performance of the CR1 and CR2 modes. This is shown by the features

found in the images, the measurement quality (as compared to the truth), and the filter results.

The CR1 mode provides roughly a cosmic ray ever ten images, while CR2 generates one to two

rays every two images.

Figure 5.5 shows the measurement quality degrading for the NIH-SVD method. Without

any guard against false-limb identification, poor results are not surprising, but show the sensitivity
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(b) NIH-SVD CR1-mode
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(c) NIH-SVD CR2-mode

Figure 5.5: Cosmic Ray Effects on the NIH-SVD Measurement

of the least-squares estimate to false points in the [H] matrix:

[H] =


s̄′T0
...

s̄′TN

 (5.2)

[H]n = 1N×1 (5.3)

Equation (5.2) reminds the construction of the [H] matrix which needs to be inverted to solve for n.

Indeed, in the CR1-mode measurement errors can spike up to an order of magnitude above nominal

errors, seen by comparing Figures 5.5a and 5.5b. Figure 5.5 also displays the statistics designed in

the previous section: the spike count in the measurements are close to expected numbers though

slightly below. Finding fewer CRs in the data is due to the fact that some of them appear on the

planet disk and are not seen by the FSW algorithms. Figure 5.5c displays how harmful frequent

artifacts can be: with frequent cosmic rays hitting the sensor, the measurement quality degrades

greatly.

The impacts on the OpNav solution are notably seen in subfigures 5.5b and 5.5c of Figure 5.6
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(a) NIH-SVD nominal
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(b) NIH-SVD in CR1-mode
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(c) NIH-SVD in CR2-mode

Figure 5.6: Cosmic Ray Effects on the NIH-SVD Filters

where the filter is frequently offset by poor measurements which are difficult to identify at the time

of processing. It should be noted that the filter performs well for CR1 mode, aside from the erratic

state estimates. Figure 5.6c echoes what was seen in Figure 5.5c: the filter cannot converge with

erroneous measurements at such a high frequency. CR2 mode therefore displays a limit to the

current implementation of the limb finding algorithm.

Figure 5.7 shows the measurements achieved by the Hough Circle implementation. Once

more, it can be seen that in the Nominal case, these measurements are more noisy than ones

produced by NIH-SVD. Nevertheless, as the CR value increases, little to no impact is seen on the

measurements. This is because the circle finding method expects to find circles and not gradients

directly. Lines are therefore poorly represented in the parameter space and do not affect estimates

strongly.

The robust performance of the Hough method is confirmed in Figure 5.8 which displays the

filter results. Although there are slight changes in the fluctuations during the first hundred minutes,

and a slight error increase at the end of the simulation, there is almost no difference between the
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(b) Hough in CR1-mode
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(c) Hough in CR2-mode

Figure 5.7: Cosmic Ray Effects on the Hough Measurement
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(b) Hough in CR1-mode
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Figure 5.8: Cosmic Ray Effects on the Hough Filters

performance with and without cosmic rays present.
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Figure 5.9: Image Processing in CR2-mode

Finally, the different performances can also be illustrated by observing the output of the

image processing modules. Indeed, Figure 5.9 shows on the left the fact that the circles found

are centered and consistent with the nominal case. On the other hand, the edges found with

the Canny transform are erroneous, which also leads to the pointing algorithm’s performance to

degrade. Furthermore the planet can be seen off center because of less accurate estimates which in

turn affect the pointing.

The results shown in this subsection display how the CR modes test the limits of the Limb-

finding method, while displaying the robustness of Hough Circles. These simulations alone provide

a basis for fault detection and mitigation by using two different image processing methods.

5.3.2 Compounding Image Errors

This subsection illustrates the performances of the OpNav algorithms used on the Noise

and NoiseHigh modes. Although the CR modes generate a sufficiently rich environment for fault

detection, the two Noise modes add complexity and realism to the scenarios. This section also serves
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to show how robust a basic implementation of Hough Circles can be. Indeed, with no change to

the values of the image processing implementation in Table 4.5, the circle finding is still performant

despite being subject to wide variety of images.

Compounding small image errors interestingly shows that both methods are robust to smaller

changes, but when adding considerable noise as in cases studied in this section, only Hough Circles

provide good estimates. These results justify the assumption made in the visualization design

constraints: the limb is the primary feature of importance. It does show that the cumulative error

sources can lead to large errors with both methods, including loss of tracking in the case of the

Limb-based method.
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(a) NIH-SVD measurements in Noise-mode
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(b) NIH-SVD measurements in NoiseHigh-mode

Figure 5.10: Noise and NoiseHigh Measurements (km) - NIH-SVD

The Limb-based method suffers once again from consistent measurement errors seen in Fig-
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ure 5.10. Notably, Figure 5.10b displays the measurements in the NoiseHigh mode which not only

have large static noise but also a walking bias.
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(a) Hough measurements in Noise-mode
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(b) Hough measurements in NoiseHigh-mode

Figure 5.11: Noise and NoiseHigh Measurements (km) - Hough Circles

The Hough measurements are once again fairly consistent. Figure 5.11 shows that the quality

of the measurements decrease (nearly multiplied by three in the NoiseHigh case) and display similar

biases than in the Limb finding. Nevertheless, the impact of such drastic artifacts is not seen as

clearly.

The measurement results are corroborated by filter results in Figure 5.12. The top figure

shows that the Limb-based method once again diverges. On the other hand, subfigures 5.12b

and 5.12c show better performance of the circle-based method. Although the NoiseHigh mode

pushes the position estimate outside of the covariance bounds, error percentages are still below 5%.
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(b) Hough in Noise-mode
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(c) Hough in NoiseHigh-mode

Figure 5.12: Position Errors for Noise and NoiseHigh Cases

This section has shown the available perturbations that are added to images in a set of fault

modes. The Hough Cirlces are a good candidate for robust fault detection and mitigation as results

degrade much more slowly than in the NIH-SVD with the Canny transform.

5.4 Outlier Detection and Mitigation

The previous section has shown the strength of a direct implementation of Hough Circles.

As stated previously, although several additions can be added to the Limb detection algorithm in

order to increase the limb finding fidelity, these require image treatment and layer algorithms and

checks which all need to be validated and tested. Generally speaking, this narrows the use cases

for such methods: every subcomponent of the artifact removal and limb finding needs to be tested

and tuned to a specific application. Furthermore, the overall complexity makes it more difficult to

implement such methods on small-sats and nano-sats.

The research framework developed throughout this thesis permits the addition of faulty

measurements to the simulation and identification of poorly processed measurements. In a real
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mission scenario, corrupted measurements could be weighted less favorably than trust-worthy ones

when identified. The difference in the two image processing methods is pictured in plots such as

in Figure 5.9. The Limb-finding method has no prior on the fact that a spheroid must be found,

whereas the circle-fitting does not allow for broader shapes.

The limb processing module has room for improvement in order to protect against faulty

limbs. If the slightly weaker performance of Hough Circles has been noted in Chapter 4, it at least

provides robustness. This framework not only generates comparative results between two identical

methods, but also runs the two methods side-by-side in one simulation. This section attempts

to heighten the ability of the simulation to highlight the differences between the two primarily

methods.

5.4.1 Developing a Fault Detection Algorithm

The benefit of the Basilisk -Vizard tool beyond that of comparison, is to harness the strengths

of each implementation in order to reject faults. In this case, a comparative module for image fault

detection can reject the measurements from the limb finding method when not in accordance with

the circle-finding algorithm. Hough Circles, in their simplicity provide assurance of a certain type

of feature being processed, but remain noisy measurements. Limbs on the other hand provide much

more refined measurements, but can be more susceptible to artifacts and lighting conditions.

In order to defend against the artifacts in the images — as seen in Figure 5.9 — the algorithm

displayed in Alg. 2 is developed. Fault detection and diagnosis can take many forms as a function

of the system.62,106 In this scenario, the fault detection primarily acts as a monitoring agent for

a Multi Input Single Output (MISO) system. A previously used technique for fault detection can

be merging data from several measurements,214 which ensures that there is no mismatch between

different sensors or processing methods. This doesn’t preclude the use of methods that use multiple

different types of residuals processors to extract the probability of a fault,215 many of these methods

have been implemented on NASA programs such as SPLICE 28 or DIMES .35

The goal in this scenario is to detect when one of the two image processing methods fails and
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Algorithm 3 OpNav Fault Detection

1: faultMode ← input(FaultMode)
2: prim ← read(PrimaryNav)
3: sec ← read(SecondaryNav)
4: if prim !valid and sec !valid then
5: write(None)
6: else if prim valid and sec !valid then
7: if faultMode < 2 then
8: write(prim)
9: else if faultMode == 2 then

10: write(None)

11: else if prim !valid and sec valid then
12: if faultMode > 0 then
13: write(None)
14: else if faultMode == 0 then
15: write(sec)

16: else if prim valid and sec valid then
17: if dissimilar(prim, sec) == False and faultMode == 0 then
18: merged ← Merge(prim, sec)
19: write(merged)
20: else if dissimilar(prim, sec) == False and faultMode > 0 then
21: write(prim)
22: else if dissimilar(prim, sec) == True and faultMode == 0 then
23: write(sec)
24: else if dissimilar(prim, sec) == True and faultMode > 0 then
25: write(prim)

is therefore applied prior to being ingested by the filter. Analyzing raw measurements keeps the

detection algorithm agnostic to any dynamic models, and focuses solely on the image processing

reliability. The difficulty of identifying faults post-filtering relies in the post-fit residual analysis.

If the measurement noise is not well calibrated or indicative of the true measurement probability

density function, finding outliers will be difficult. Furthermore, outliers in post-fit residuals might be

indicative of a change in the dynamics, physical event, or highly uncommon measurement. Therefore

performing outlier detection and mitigation requires use of many measurements to provide good

statistics as well as a rigorous framework to interpret them.215 The benefit being that the detection

is statistically sound, and provides both dynamics insight as well as knowledge of the previous best

estimate.
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The algorithm implemented provides a simple, easily enhanced fault detection method. It

involves a similarity check between the two solutions given by the value of:

sign
(
L2(rBN,2 − rBN,1)− σfault

√
L2([R1] + [R2])

)
(5.4)

Equation (5.4) is what is coded in the dissimilar method used in Algorithm 3.

Because the image processing errors are highly dependent on the specific algorithms im-

plemented, overarching methodology and logic where chosen over method-specific enhancements.

Furthermore, allowing the filter to process a measurement that is faulty can effect the state estimate

and therefore compromise the overall filter performance. By not adding the knowledge of the dy-

namics, this fault detection focuses on the quality of the processed image alone. The possible issue

with such a comparison only resides in the merging good measurements: the formulas used assume

independent measurements which is not provably verified. Nevertheless, this is a improvement that

only applies to one mode and isn’t related to the detection of the fault itself. Alg. 3 is used in

three possible fault detection setups. It inputs two measurements extracted from the images and

outputs a single vector and noise matrix for the filter.

• The first mode (faultMode=0) is a merging method in which both measurements are trusted

equally. If either is present without the other, it is passed on to the filter, and if they are

both present they are merged:

[R] =
(
[R1]−1 + [R2]−1

)−1
(5.5)

rBN = [R]
(
[R1]−1rBN,1 + [R2]−1rBN,2

)
(5.6)

Where [R1] and [R2] are the noises associated to measurements rBN,1 and rBN,2 respec-

tively, and rBN and [R] are the merged measurement and noise matrix.12

• The second mode (faultMode=1) inputs a primary method and secondary method. Since

the secondary is not considered as accurate as the primary, they are not merged, but a

dissimilar check is implemented. This is done by differencing the two vectors, and checking
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that the norm for the difference is less than the sum of the L2 (or Frobenius) norms of the

noise matrices scaled by a factor σfault to control sensitivity seen in Equation (5.4).

• Finally, the last mode (faultMode=2) only uses the primary method as a measurement, but

only does so when both measurements are present and similar. Although restrictive given

the measurement input, this does ensure that no erroneous methods can be given to the

filter.

5.4.2 Results in Specific Simulation Case

In order to get a clear idea of the performance of the fault detection, a specific case is shown

in the CR1-mode. The error mode signifies that the only source of corruption comes from cosmic

rays as defined in previous sections and Table 5.1. Furthermore, this mode has been shown — in

Figures 5.5 and 5.6 — to greatly affect the state estimate of the NIH-SVD method.
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Figure 5.13: Faults Detected during Scenario

Figure 5.13 shows the faults detected and current valid measurements (zero indicates no

fault or invalid measurements, while one indicates valid or faultless updates). This is run with

faultMode= 0, σfault = 0.5, and a filter noise noiseSF = 5. The plot shows that faults are frequently

found (due to a relatively small σfault value). In this fault-mode measurements are merged together

and so faults do not signify necessarily that a method has failed entirely, rather that it is too distant

relative to the other one to be confidently merged.

Figure 5.14 shows the last mode is implemented with σfault = 0.5. It’s clear that while the
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Figure 5.14: Position Errors with and without Fault Detection

first plot shows errors that grow greatly when the artifacts are detected, the second one discards

those and waits for a proper measurement validated by both methods. The combination of both

processing methods in the fault detection algorithm greatly increases the robustness of the OpNav

stack to errors like cosmic rays.

The algorithm derived in Alg. 3 shows a solution to a specific problem that can occur during

autonomous OpNav. Detecting and protecting from probable faults on orbit is a key enabler to

routine navigation without the ground in the loop. Depending on the mission design, the specific

camera, and environment, other faults would need to be accounted for as well. The flexibility of

this framework and the ease with which faults and mitigation algorithms can be added provides

enabling capabilities to the field of spacecraft autonomy.
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5.4.3 Results for a Diverse Set of Scenarios

As stated in the previous subsection, one of the goals of the fault detection algorithm lies in

the generality it can provide. Therefore it becomes important to test a set of different camera and

FSW parameters in order to ensure the performance generalizes. This also provides a sensitivity

analysis to the results given image errors.

In order to run such an analysis, a range of different cases were designed and tested. The

cases still focus on the scenario where cosmic rays are the primary error source, but also extend to

the Noise-mode described earlier in the chapter. The important parameters that can be toggled by

an GNC engineer are primarily going to be :

• Which measurement source is primary, and which is secondary

• Which fault detection mode is in use

• What is the sensitivity to fault detection, ie the value fo σFault that defines the necessary

overlap of measurement uncertainties

• What is the filter measurement noise scaling

The first three points directly affect the fault detection implementation. Depending on the

methods used and their sensitivities, a primary and secondary measurement type is likely to be

self-evident. The choice of primary and secondary navigation sources also ties in with the fault

detection type in use. The sensitivity is less intuitive to set as it scales the L2 norm of the noise

on the measurements. The validity of the estimated uncertainty is done by the image processing

algorithms (which are here assumed to be faulty at times) and can be implemented in a variety of

ways. Finally, the noise scaling on the filters, which also ties in to the measurement uncertainties,

changes the state estimate. It must also be varied to ensure that the filter is performing as expected.

Table 5.4 provides the list of all the different cases tested. The last six cases are of interest

in order to test the most difficult cases in a decoupled environment: if the pointing also depends
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Table 5.4: Fault Cases

Case Name Primary Secondary Camera σFault Filter Noise Auto-Point

Test-Hough Hough None Clean N/A 5 On
Test-NIH-SVD NIH-SVD None Clean N/A 5 On

Test-Merge NIH-SVD Hough Clean 3 5 On
CR1-Case 1 NIH-SVD Hough Cos-Ray 1 1

3 5 On
CR1-Case 2 NIH-SVD Hough Cos-Ray 1 1

3 6 On
CR1-Case 3 NIH-SVD Hough Cos-Ray 1 1

3 7 On
CR1-Case 4 NIH-SVD Hough Cos-Ray 1 1 5 On
CR1-Case 5 NIH-SVD Hough Cos-Ray 1 1 6 On
CR1-Case 6 NIH-SVD Hough Cos-Ray 1 1 7 On
CR1-Case 7 NIH-SVD Hough Cos-Ray 1 3 5 On
CR1-Case 8 NIH-SVD Hough Cos-Ray 1 3 6 On
CR1-Case 9 NIH-SVD Hough Cos-Ray 1 3 7 On
CR2-Case 1 NIH-SVD Hough Cos-Ray 2 1

3 5 On
CR2-Case 2 NIH-SVD Hough Cos-Ray 2 1

3 7 On
CR2-Case 3 NIH-SVD Hough Cos-Ray 2 1 5 On
CR2-Case 4 NIH-SVD Hough Cos-Ray 2 1 7 On
CR2-Case 5 NIH-SVD Hough Cos-Ray 2 3 5 On
CR2-Case 6 NIH-SVD Hough Cos-Ray 2 3 7 On
Noise-Case 1 Hough NIH-SVD Noise On 3 6 On
Noise-Case 2 Hough NIH-SVD Noise On 3 7 On
Noise-Case 3 Hough NIH-SVD Noise On 3 8 On
Noise-Case 4 Hough NIH-SVD Noise On 4 6 On
Noise-Case 5 Hough NIH-SVD Noise On 4 7 On
Noise-Case 6 Hough NIH-SVD Noise On 4 8 On
OD-Case 1 Hough NIH-SVD Noise On 3 6 Off
OD-Case 2 Hough NIH-SVD Noise On 3 7 Off
OD-Case 3 Hough NIH-SVD Noise On 3 8 Off
OD-Case 4 Hough NIH-SVD Noise On 4 6 Off
OD-Case 5 Hough NIH-SVD Noise On 4 7 Off
OD-Case 6 Hough NIH-SVD Noise On 4 8 Off

on the image processing as done in all other cases, the spacecraft can lose track of the target and

not perform orbit determination any longer.

The results of each case is summarized in Table 5.5. In order to condense the results, only
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Table 5.5: Fault Case Root Mean Square Errors

Case Name Position (%) Position Covar (%) Velocity (%) Velocity Covar (%)

Test-Hough 1.003 2.833 2.605 9.884

Test-NIH-SVD 0.779 3.554 1.941 11.29

Test-Merge 0.943 2.286 2.597 8.242

CR1-Case 1 1.111 2.436 3.048 8.611

CR1-Case 2 1.215 3.718 3.023 10.91

CR1-Case 3 1.217 5.381 2.877 13.80

CR1-Case 4 0.994 2.299 2.720 8.282

CR1-Case 5 1.013 3.610 2.504 10.65

CR1-Case 6 1.125 5.308 2.647 13.63

CR1-Case 7 0.967 2.290 2.678 8.263

CR1-Case 8 0.996 3.595 2.429 10.62

CR1-Case 9 1.065 5.279 2.479 13.57

CR2-Case 1 1.138 2.694 3.003 9.559

CR2-Case 2 1.183 5.557 2.787 14.27

CR2-Case 3 1.133 2.647 2.931 9.458

CR2-Case 4 1.122 5.533 2.643 14.21

CR2-Case 5 1.299 2.586 3.348 9.317

CR2-Case 6 1.275 5.493 2.992 14.14

Noise-Case 1 9.129 3.940 26.92 11.54

Noise-Case 2 3.890 5.597 9.789 14.43

Noise-Case 3 6.799 7.684 18.29 18.18

Noise-Case 4 2.487 3.993 5.718 11.75

Noise-Case 5 2.388 5.606 5.750 14.43

Noise-Case 6 2.671 7.705 6.220 18.20

OD-Case 1 2.463 3.996 5.888 11.76

OD-Case 2 2.683 5.604 6.266 14.44

OD-Case 3 2.346 7.703 5.328 18.18

OD-Case 4 2.793 3.993 6.694 11.75

OD-Case 5 2.615 5.604 6.191 14.43

OD-Case 6 2.432 7.695 5.696 18.15

Root-Mean-Square (RMS) errors of the position and velocity estimates are noted:

RMS(rmeas) =

√√√√ N∑
i

100
|rmeas(ti)− rtruth(ti)|

|rtruth(ti)|
(5.7)

RMS([P ]) =

√√√√ N∑
i

100

√
[P ]0,0(ti) + [P ]1,1(ti) + [P ]2,2(ti)

|rtruth(ti)|
(5.8)

where r is a studied vector value with a measured and true value (indicated by subscripts) and [P ]

is the covariance matrix with subscripts indexing into it (starting with index zero). Equation (5.7)
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assumes there are N time steps in the simulation, and takes into account estimates at every time

of the simulation.

Table 5.5 also colors the results on two scales: a position scale (green at 0.7% and red at

10%) and a velocity scale (green at 1.9% and red at 27%). The results show that every CR case

run has errors below 1.3% on position and several cases dropping below 1%. Velocity estimates

are commensurate though consistently higher as seen in Chapter 4. These cases all have the NIH-

SVD as a primary method and borrow from the circle-finding method when errors are triggered.

Choosing the primary revolves around some prior knowledge of the instrument and it’s sensitivities.

The algorithm virtually lifts all faulty estimation errors from the scenario. The Noise case can prove

to be more troublesome for NIH-SVD (Figure 5.10a), but when switching the Hough estimates to

the primary navigation method and relaxing the fault criteria, good performance is achieved.

A few important comments can be made about Table 5.5. The first is that the covariance

values are very comparable are similar but generally not comparable one-to-one. This is mostly

because of the covariance scaling that is added to enhance the filter performance. Furthermore,

Noise-Case 1 and Noise-Case 3 show poorer performance than neighboring cases. In these high

noise cases, this does show a sensitivity to this noise scaling.

5.5 Conclusion

This section covers a wide range of faults that can be added to the camera module, tested

the performance of different OpNav measurements, and proposed a fault detection algorithm for

FSW. The section shows the robustness of the Hough-based image processing stack. Without

changing any parameters, a large variety of images can be processed successfully. The strength of

this analysis is still in it’s generality: different faults and algorithms can be integrated and tested

in the simulation readily.

The power of the Hough Circle transform lies in the ubiquitous and strongly general results

it provides. It should be noted that weakness do occur when very high background noise is present.

This is due to the circles in the image having cumulative votes which become drowned out by the
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many other points. This can also be re-adjusted and would signify a very large instrument change

which would certainly impact other methods as well.

The fundamental limitation of the Hough Circle algorithm, is that it is constrained to finding

circles. Therefore navigating oblate objects will bring intrinsic errors. This can be overcome by

using the Hough transform for ellipse finding, which leads to increase computational complexity

since the parameter space goes from three-dimensional to six-dimensional in general.

This chapter provides new insight on the robustness of guidance methods for spacecraft

autonomy. After more than a decade, AutoNav is still at the cutting edge of high-technology-

readiness-level (TRL) spacecraft autonomy. The proposed research harnesses the derived simulation

capabilities and presents new developments and analysis.



Chapter 6

Machine Learning for Autonomy and Optical Navigation

Previous developments in Chapter 5 have borrowed from a well developed literature and

number of pre-existing techniques. The analysis of fault cases is a key component to enhancing au-

tonomous OpNav and spacecraft autonomy in general. Similar methods have been used successfully

in space exploration and autonomy generally, and are therefore prime candidates for continuous

developed.

Nevertheless, recent years have seen the exponential development of Machine Learning (ML)

for robotic and everyday applications. This section explores how ML can be applied to spacecraft

autonomy in two different regards. The first study relates to high-level or decision-making autonomy

and rely on Reinforcement Learning (RL) while the second subsection will focus on CNNs for image

processing for OpNav.

6.1 Overview

This final technical contribution develops novel capabilities that the simulation explores.

Providing capabilities to integrate certain optimization methods that borrow from ML methods

opens new avenues in the field of aerospace. As ML continues to grow as a field, many different

derivatives are developed and applied to different problems. In this chapter, two techniques are

studied for spacecraft autonomy. The first is a high-level autonomy: learning spacecraft decision

making for a set of tasks. This is done by using Reinforcement Learning on a set of examples: a

proof of concept for an orbit insertion, and a pointing scenario using OpNav. The second is in
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neural network development, and consists of using the simulation to train a Convolutional Neural

Network (CNN) to find planet center and radius for OpNav.

With the previous developments in simulation capabilities, OpNav algorithms, and multi-

method fault detection and navigation, ML can be be integrated in the greater context of spacecraft

GNC. More notably, multi-method fault detection algorithms pave the way towards the use of novel

Machine Learning algorithms in flight by simulating exactly the FSW environment that will be

reproduced in flight. The implemented FSW can harness two methods: a trusted classical one, and

a demonstration algorithm and change fault modes in order to dictate which method navigates.

Both the sections of this chapter are vast fields of research, and the results shown are prelim-

inary. Ongoing work in the Autonomous Vehicle Systems lab at CU Boulder intends to continue

pushing the state-of-the-art. Yet introductory results in both the RL application to high-level

autonomy, and the CNN application to OpNav image processing are achieved and presented.

6.2 Introduction to Reinforcement Learning for Decision-Making

At present, examples of high-level spacecraft autonomy typically fall into two categories:

rule-based autonomy and optimization-based autonomy. Rule-based autonomy treats a spacecraft

as a state machine consisting of a set of mode behaviors and defined transitions between modes.

Pioneered by missions like Deep Impact,122 and currently used by missions such as the PlanetLabs

constellation,72 spacecraft using rule-based autonomy transition between operational and health-

keeping modes (charging, momentum-exchange device desaturation) autonomously without ground

contact. They require accurate understanding of the mission environment in order to prepare for

unwanted behavior. Additionally, rule-based approaches do not readily support the integration of

multiple competing mission objectives, and require that those trades be made on the ground with

humans in the loop before mission sequences are uploaded.

This section explores an approach to fit spacecraft autonomy into the Partially-Observable

Markov Decision Process (POMDP) framework and its general solution through model-free “Deep-

Q” RL. In this section, an example is shown for proof-of-concept in which a spacecraft autonomously
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times an orbit insertion maneuver (stationkeeping was also developed). This framework therefore

provides a better solution to the autonomous orbit problem, all the while opening the door to

novel fault detection methods and autonomous maneuvers. The work presented can extends to the

OpNav problem and the integration of results displayed in this subsection into Basilisk will provide

the ability to run previous OpNav simulations in a RL framework.

In contrast to rule-based autonomy, optimization-based autonomy typically requires large

amounts of computing power that precludes their use on-board. This method also requires realistic

models, and well developed testing environments. Examples of this work include the Applied

Physics Laboratory’s SciBox software library (used to generate MESSENGER mode sequences) and

the ASPEN mission planning suite developed by the Jet Propulsion Laboratory and applied to the

Earth Observing-1 mission.39 The simulation developed in Chapter 2 paired with the developments

in camera models of this chapter provide both the simulation efficiency and realism required to

develop RL for spacecraft decision-making. This section aims to explore the applications and

frameworks necessary to apply deep reinforcement learning to the autonomous navigation.

A small collection of other works in the application of machine learning techniques to space-

craft problems exists in the recent literature, mostly focusing on the application of learning ap-

proaches to control problems in uncertain environments. Several works such as References 91 and

51 have considered reinforcement learning in the context of autonomous aerobraking planners, with

mixed results. Others explore machine learning techniques for asteroid proximity operations79 or

autonomous lunar landing.179 Importantly, these approaches have focused on low-level control with

reinforcement learning, an area that has been traditionally been covered by conventional estimation

and control techniques with great success. In contrast, this work explicitly examines applications

of reinforcement learning to high-level spacecraft planning and decision-making problems that have

traditionally been the domain of rigid expert policies or optimization-focused strategies. Although

not directly applied to the OpNav simulations of previous chapters, this work provides the frame-

work for future RL developments to serve those mission concepts.
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6.2.1 General Problem Statement

6.2.1.1 Spacecraft as a State Machine

POMDPs compactly represent the processes facing a software agent acting in an evolving

environment according to some higher-level objective.30 The mathematics of such processes, and

challenges associated with them, are reviewed briefly here.

As in traditional Markov Decision Processes, the state in a POMDP is updated by a transition

function F , and at any given time can be computed as a function of the previous state and the

most recent action taken by the considered agent:

sk = F(sk−1, ak−1) (6.1)

This state sk (e.g. spacecraft position, phase angle, filter covariance) is observed by the agent

according to some observation function H:

ok = H(sk) (6.2)

Given an observation ok of the state, the agent then selects an action ak to influence the future

state according to some policy π:

ak = π(ok) (6.3)

While these transition functions represent physical or software-defined process dynamics, the ob-

jective of an agent is ultimately motivated by a reward function R:

rk = R(sk−1, ak−1, sk) (6.4)

The objective of a software agent within a POMDP is to select a policy π that maximizes its

realized reward.

The “true” non-linear dynamics resulting from gravity interactions are taken to follow the

two-body equations of motion in the presence of perturbing accelerations:

r̈ =
−µ
r3
r + ap (6.5)
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At the same time, a pre-defined reference trajectory obeying two-body dynamics without perturbing

accelerations is used to define the desired mission:

r̈∗ =
−µ
r∗3
r∗ (6.6)

The ignorant propagator in Equation (6.6) is also used to propagate forward the spacecraft’s current

orbital state estimate, x̂. The true state is noted x while the reference state is x∗. The resulting

state and estimate errors are defined as

es = x− x∗, eest = x− x̂ (6.7)

Likewise, the spacecraft-internal control error is defined as:

ec = x̂− x∗ (6.8)

These models, alongside a family of deep reinforcement learning agents, are implemented in

Python using the OpenAI gym framework23 to represent the spacecraft-mode POMDP interface in

a standardized manner. The deep learning agents are created using Keras 1 using Tensorflow 2

back-end.

6.2.1.2 Reinforcement Learning Methods

This subsection briefly describes the methods used for optimizing the RL agents. The two

methods used in this chapter are “Deep-Q” and “PPO2”.187 In both of these methods, the agent

begins with no knowledge of the environment. By taking actions and observing the state and

rewards, an approximation of the “Q” function can be developed:

Qπ(s, a) = E [Rtotal] = E

[∑
t

γtrt

]
(6.9)

where Rtotal represents the sum of all future rewards given the state and action, and γ ∈ [0, 1] is

the discount-rate. The concept behind Q-learning lies in approximating the Q function in order to

1https://keras.io
2https://www.tensorflow.org/

https://keras.io
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find the optimal policy:

π∗(s) = maxaQ(s, a) (6.10)

The Bellman equation130 then relates Q to consecutive time steps:

Qπ∗(s, a) = r + γmaxa′Q(s′, a′) (6.11)

Where prim values of actions and states relate to the next iteration. The loss function is the

extracted by seeking to minimize the mean squared error of the prediction term

L =
1

2

(
r + γmaxa′Q(s′, a′)−Q(s, a)

)
(6.12)

The “deep” component to neural networks reside in the fact that a neural network is used to

approximate the Q function. Gradient decent or other optimization methods can then minimize

the loss function. This then allows the policy to be backed out of the knowledge of the Q function

by maximizing the reward through action. PPO2 or other policy gradients seek to directly optimize

the policy π.

One form of the gradient estimator is given in Reference 187 is

ĝ = Ek [∇θlogπθ(ak|sk)Ak] (6.13)

Where Ak is the advantage estimate: it represents the difference between Rt (discounted rewards)

and the baseline estimate for the rewards.187 In other words, the advantage estimate characterizes

if a action provided better results than currently expected. The algorithm therefore learns the

advantage function as well as the policy in two separate neural networks. Trusted region policy

optimization, clipped surrogate objectives are other additions the enhance the performance of

PPO2.

6.2.2 Proof of Concept-Mars Orbit Insertion

6.2.2.1 Scenario Description

The first environment simulates insertion into orbit about a planet, as is represented visually

by Figure 6.1. This is an example of an interplanetary mission in which a spacecraft is flying towards
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Mars, and needs to conduct an impulsive maneuver at the correct time to enter orbit about Mars

under uncertain knowledge of its state. This type of decision is crucial to the success of many

interplanetary missions, and therefore represents an important challenge for proposed autonomy

systems. This is also an example of a timely maneuver in which any unexpected behavior could

be lethal to the mission as ground teams could not react in time. All simulations are run with an

unmodeled acceleration of Mars’ second gravitational spherical harmonic J2 for true propagation.

Figure 6.1: Trajectories during Insertion Maneuver

Three modes are available for the spacecraft to chose from, these modes define the action

space. The first mode performs orbit estimation, which is general but could be replaced with the

OpNav modes used in previous chapters of this thesis. Entering this mode reduces the uncertainty

on the state, and brings the estimated position and velocities to the true position and velocities

exponentially. The second mode is a control mode: it moves the true states of the spacecraft

towards the estimated states. For MOI, the spacecraft considers an additional mode, “thrust,”

which applies an impulsive ∆V computed with it’s estimated states at a specific time and reflects a

major maneuvers to adjust its trajectory. The challenge of the orbit insertion scenario is therefore

to ensure that this thrust is applied at the correct time to ensure orbit insertion, while at the same

time maintaining accurate position estimates and controlling towards a defined reference trajectory.

Furthermore, the knowledge of the true spacecraft states are paramount to the spacecraft thrusting
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correctly.

Figure 6.1 pictures the reference trajectory. The initial orbit is a hyperbolic fly-by with a

semi-major axis of a = −2, 000km, eccentricity of e = 2, and initial true anomaly of ν = −1.5 rad.

The goal orbit has a semi-major axis of a = 2, 000km, eccentricity of e = 0.01, inclination of 0rad,

true anomaly of ν = 0.01 rad. This scenario therefore brings a spacecraft from a hyperbolic fly-by

orbit into a captured circular orbit around it’s target planet (Mars). Each mode has a length of 2

minutes with a time step of 5 seconds.

Table 6.1: Initial Conditions Dispersons for Orbit Insertion

Parameter Dispersion

Semi-major axis of true trajectory N (-2000, 100)
Eccentricity of true trajectory N (2, 0.01)

True anomaly of true trajectory N (-1.5, 0.01)
Semi-major axis of estimated trajectory N (-2000, 100)

Eccentricity of estimated trajectory N (2, 0.01)
True anomaly of estimated trajectory N (-1.5, 0.01)

Table 6.1 shows the dispersions on the initial conditions that are used for training. This

allows to train on a wide set of errors orbit insertion introduces new challenges to overcome in

order to robustly train agents for autonomous decision-making. These challenges revolve around

the binary success criteria of the thrust maneuver. The ability to thrust is an action of equal weight

to estimation or control modes. This encourages the agent in training to use it promptly, and very

frequently fall into a local minimum that consists in thrusting immediately and attempting to

minimize further errors with the control mode.

Table 6.2: Hyperparameters used in Training the Final MOI Iteration.

Parameter Value/Type

Number of Hidden Layers 1
Hidden Layer Depth 64

Hidden Layer Activation ReLU
Output Layer Activation Linear

Learning Rate 0.01
Number of Training Episodes 10,000
Annealing Segment Length 3,000
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Table 6.3: Weights in the Orbit Insertion Reward Function

Weight Value

we -0.1
wc -0.05
wt

100
1+|tthrust−tref|

These challenges are overcome by implementing an eligibility trace and by forcing the thrust

maneuver to occur in a 5-step window, centered around the expected thrust time (8th step given

the initial conditions). This gives the RL agent the ability to optimize the thrust time, but doesn’t

require it to learn known astrodynamics facts: that the thrust-time is optimal at periapse of the

hyperbolic orbit. More details on the complete implementation can be found in Reference 92. The

reward function in this scenario consists of a term for the state error (estimated state with respect

to the reference), another term is added for control cost, and a positive reward is added for thrust

timing

r(e, c,∆V) = wee
T
c ec︸ ︷︷ ︸

state error

+

control cost︷︸︸︷
wcc + wt∆V︸ ︷︷ ︸

thrust reward

(6.14)

where e is the state error, c is the control authority used and ∆V is the norm of the thrust impulse.

Scalars we, wc, and wt are the weights corresponding to the state error, the control cost, and the

thrust respectively. The values of these weights are a key component to the success of the agents

learning. If the weight on the state error is large relative to the other costs, a poorly timed thrust

could make that penalty abruptly skyrocket. However, if it is too small (or not accounted for) the

spacecraft will not continue controlling orbit position after the thrust. Furthermore, it is difficult

for the agent to learn to be on the correct trajectory in order to thrust at the right time and

position.

Weights that allow for successful training are listed in Table 6.3, where tthrust is the time at

which the thrust action is taken by the agent, while tref is the time at which the reference changes

orbits. This form for wt allows for the aforementioned smoother, more continuous decay in the

reward for thrusting off target. The scale of 100 is for the reward to be commensurate with the

state errors penalties.
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6.2.2.2 Mars Orbit Insertion Results

In order to further help with discovered challenges, a rational agent is also run for 100 episodes

of the training. This rational agent alternates between estimation and control, and thrusts at the

8th step which is exactly when the reference changes. As in the stationkeeping environment, this

helps the agent in the initial exploration phase by guaranteeing the discovery of the global minimum.

Hyperperameters used in the Orbit Insertion scenario are listed in Table 6.2. The network inputs

are the spacecraft state error with respect to the reference trajectory, the norm of the estimator

covariance of these states, and the time to expected thrust. The first two components of the network

inputs are identical to the functioning station-keeping environments. The time to expected thrust

transmits the knowledge of the simulation time relative to the expected thrust maneuver to the

network.

The agent is trained in the MOI environment with deterministic initial conditions and random

initial conditions. Figure 6.2a shows the results of the RL algorithms reward as a function of episode

of training in the deterministic case (smoothed using a SavitzkyGolay filter). The rational agent

appears to be optimal—with cumulative rewards of 331—and the trained agent is able to replicate

the correct maneuver despite dispersed initial conditions. Figure 6.2b shows the same reward plot

with dispersed orbits for training. In the random case, the rational agent performs far less well

with cumulative rewards averaging around -800. The trained agent outperforms the rational agent

in the end of it’s training with usually positive rewards sometimes reaching 300.

The orbit insertion environment posed challenges usually tied to the discrete nature of the

thrust command. Yet with some knowledge of the model and by preventing clearly undesirable

actions, a RL agent is able to optimize the necessary actions within 10,000 runs. Figure 6.3 shows

the state and estimation errors and thrust maneuver for one of the dispersed runs. As could be

expected, the agent first estimates to know its state error, then controls to the reference before

thrusting at the correct step (8th step). Then it continues to alternate between estimation and

control after the thrust in order to minimize reward losses. The thrust line shows the value of the
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(a) Smoothed Reward during Deterministic Training

(b) Smoothed Reward during Dispersed Training

Figure 6.2: MOI Reward as a Function of Episode in Training

thrust vector that is applied during the maneuver. The three trajectories are pictured in Figure 6.1.

6.2.3 Reinforcement Learning for OpNav

6.2.3.1 OpNav Scenario Description

Having now shown the performance of RL for astrodynamics tasks which allow to successfully

capture a spacecraft into Mars orbit, the natural next step is to perform on-orbit tasks. This is
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Figure 6.3: Mode Sequence for Dispersed Orbit Insertion

done by interfacing the OpenAI framework with the Basilisk simulation. More specifically, Basilisk

simulations are instantiated in the RL environment which gives the agent in training the power to

through the simulation taking different actions. In this framework actions become spacecraft modes

which trigger the activation of different FSW modules in order to perform a given task. The agent is

trained using Proximal Policy Optimization (PPO2)187 unlike the MOI scenario which was trained

using Deep-Q learning. PPO2 merges concepts from advantageous actor critic algorithm (A2C)

and Trust Region Policy Optimization (TRPO) to control learning speed and improve training

overall.223

This scenario assumes a spacecraft is on Mars orbit and needs to periodically point to the Sun
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in order to charge it’s batteries. In order to do so, it must first have a relatively good understanding

of its position on orbit. In order to hone in on it’s position, the spacecraft can point to the planet

and perform optical navigation using the Hough Circle method.

Table 6.4: Actions for OpNav Agent

Actions Description

Sun-Point The spacecraft points towards the Sun using CSS data
OpNav The spacecraft points towards Mars using SPICE and performs OpNav

The action of sun-point could have easily been replaced by another mode in Basilisk : Earth-

point, science-point, thrust etc. The goal of this subsection is to show the ability to train RL agents

using the developed OpNav tools in a general astrodynamics context. The expected behavior is to

see the spacecraft oscillate between getting rewards and determining orbit. It’s expected that the

agent will be able to stay in OpNav mode the number of steps necessary to bring the error down

reliably, then move to sun-point for a limited time in order to get a consistent reward.

Table 6.5: Observations for OpNav Agent

Observations Description

Sun-Mars Angle Cosine of Phase Angle (Sun-Mars-Spacecraft angle)

Normalized Covariance Diagonal terms of covariance
Diagonal Terms normalized by the norm of the state estimate

Table 6.5 describes the states that are observed by the agent. The first state allows the agent

to have insight on the lighting conditions of the planet. Assuming the sun-direction is known (using

CSS) and the planet position is known (SPICE is used in these simulations) the phase angle can be

deduced. The only other information observed is the normalized covariance output by the OpNav

filter. This will swell as long as there are no incoming measurements and is the only on-board tool

to understand the uncertainty around the OD solution.

The nominal orbit is similar to previous simulations in this thesis: a = 18, 000km, e = 0.6,

i = 10◦, Ω = 25◦, ω = 190◦, f = 80◦. The variations on the orbit are added as cartesian parameters

with dispersions given in Table 6.6.
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Table 6.6: Initial Conditions Dispersons for OpNav

Parameter Dispersion
Nrerror U(100,-100) km
Nverror U(1,-1) km/s

These errors (of 200km and 2km/s) are relatively low with respect to the orbit. As stated

previously the goal is for the agent to learn how to oscillate between the two modes in order to

keep OD errors down and get rewards on a nominal orbit. Although more data would allow for the

agent to learn over a broader set of situations, the desire is to prove the global feasibility rather

than focus on a a specific set of actions and orbits.

Table 6.6 shows the dispersions on the initial conditions that are used for training. This

allows to train on a wide set of errors orbit insertion introduces new challenges to overcome in

order to robustly train agents for autonomous decision-making. These challenges revolve around

the binary success criteria of the thrust maneuver. The ability to thrust is an action of equal weight

to estimation or control modes. This encourages the agent in training to use it promptly, and very

frequently fall into a local minimum that consists in thrusting immediately and attempting to

minimize further errors with the control mode.

Table 6.7: Hyperparameters used in OpNav Training

Parameter Value/Type

Number of Hidden Layers 1
Hidden Layer Depth 64

Hidden Layer Activation ReLU
Output Layer Activation Linear

Time in Each Mode 50 min
Learning Rate 0.04

Number of Training Episodes 100,000

A reward is only given to the agent when it goes into sun-pointing mode. This error is

inversely quadratic with the spacecraft position error (difference between the truth and the position

estimate):

r(e) =
1

1 + eTe
(6.15)
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where e is the state error. This means that the agent only sees the truth through the reward

function. Not only does this most closely represent a real scenario (in which solar panels would not

charge as well without proper OD), but it also aligns with the paradigm of providing simple cost

functions that represent the spacecraft goals directly.

6.2.3.2 OpNav Scenario Results

Combining the Basilisk -Vizard simulation with RL provides novel results to both the OpNav

and RL communities. The spacecraft successfully learns the expected behavior: it oscillates between

a sun-pointing mode and a OpNav mode. One of the components that allows this is that the agent

determines that two steps (each 50min long) allows to bring down the state estimation error through

the use of Hough Circles.

Figure 6.4: Spacecraft Changing Between Modes in order to Maximize Reward

Figure 6.4 shows the spacecraft moving between the different pointing modes while on orbit

about Mars. According to the initial goal is formulated, the agent attempts to take in a maximal

reward in the simulation time. The fear would be that the agent stays in the sun-pointing mode
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taking in rewards at every step despite a stead decrease it each reward value (this is a trivial local

minima). Nonetheless, Figure 6.5 shows the performance and mode switching in more detail: as

the state errors and covariances rise, the agent moves into OpNav mode for two steps (a total

of 100min), this brings down the covariance and state errors which leads to a high reward in the

pointing modes. The reward plot in Figure 6.5c shows the step-wise increases in the reward when

the state error is low.
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Figure 6.5: States within Mode Sequence (Yellow Shade — Sun-Point, Blue Shade — OpNav)

Figure 6.5a shows how the Hough Circle method of OpNav brings the errors down in the state

estimation. These values are normalized to be equal to one after the first step in order to show

relative changes without scaling the values. Indeed, normalized covariances are given as observables

in order to provide the agent with trends instead of physical values which are less numerically stable

for optimization.
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6.2.4 Conclusions

The work in this subsection illustrate the applicability of RL methods to spacecraft autonomy.

It is first applied to a orbit insertion scenario as a proof-of-concept before being integrated with

OpNav work developed in previous chapters. High-level autonomy designed through RL can also

lead to fault injection during the simulation in order to train the agent to detect and respond to

errors.

In the OpNav scenario, interfacing the stable-baselines1 RL implementations with Basilisk

simulations, alongside the use of Proximal Policy Optimization (PPO)187 has shown promising

results. Faster learning that better harness the environment characteristics allows for OpNav RL

for the first time. These simulations, which combine a realistic spacecraft environment alongside

flight-ready FSW stacks, are a key tool to the validation of such autonomous agents. With the

new ability of being able to test them alongside all other FSW algorithms for rigorous analysis, the

trust in their performance can increase and perhaps enable on-board use in the near future.

6.3 Convolutional Neural Networks for Center and Radius Finding

Apart from high-level decision-making, ML provides many other tools that can be harnessed

for spacecraft autonomy. This subsection focuses on a low-level task which uses neural networks

for image processing.

Supervised learning is a task in ML which parametrize models using a training dataset. The

data contains the input the agent needs to process as well as the truth values associated with each

data point. Although supervised learning has been very successful in recent years, it leads to two

key limitations. The first limitation is that the quantity of data needed for training is often large

and needs to be tagged with truth values (which can be difficult to provide). The second limitation

is generalization: if an agent “over-fits” the data, its performance will not generalize well. In

other words, the training data set may allow the net to extract undesirable features that do not

1https://stable-baselines.readthedocs.io/
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generalize well to new and real data. Space imaging suffers from both of those issue for supervised

learning in general: there are few real images to train on, and images depend largely on the camera

parameters which do not necessarily generalize. The nominal solution to poor generalization —

data augmentation — is poorly suited to space imaging because flipping, scaling, and rotational

modifications may not be realistic. On the other hand, adding noise and artifacts in the image can

be seen as a form of data augmentation specific to the OpNav application. This subsection intends

to harness previous work in order to provide new results in the field of machine learning for OpNav.

6.3.1 Introduction to Neural Networks for Image Processing

Neural networks are a structured set of connected, simple processing elements (colloquially

called neurons) operating on a given input. Through repeated non-linear transforms, a trained

network can work as a linear classifier or learn a regression task. Although originally inspired by

biology, the modern iterations have evolved into many distinct forms ranging from simple Feed-

Forward Neural Networks (FFNN),199 to Convolutional Neural Networks (CNN),164 as well as

Boltzmann Machines198 and Bayesian Networks.34 In general, these functions are trained by as-

suming that the spaces from which the input and outputs are pulled are stochastic. By defining

a differentiable metric between outputs, an independent identical distribution of the input-output

pairs is pulled from the data. In turn, the average derivative of the distribution is calculated to ap-

proximate the true gradient (output with respect to the input) to improve the networks function.189

Theoretically, a neural network with sufficiently large hidden layers — which provide intermediate

transformations between the inputs and the output — are universal function approximators.138

In the field of image processing and computer vision, CNNs have seen a great success from

medical imagery150 to digit recognition.188 In navigation, CNNs are recently used for depth map-

ping149 and Terrain Relative Navigation (TRN).179 The field is constantly growing and evolving:

developments with autoencoders118 have shown promising denoising capabilities and super resolu-

tion,211 while recent results display strong feature detection and generalization notably with the use

of deep variational autoencoders.96 Neural networks are also being developed in order to navigate
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around other spacecraft for detumbling or docking by pairing physical test-beds with simulated

environments to enhance performance.119

A common task for CNN in image processing is to locate and classify all objects in an image

and provide bounding boxes, which is known as the object detection task. In the realm of object

detection, modern variants of YOLO177 and Faster R-CNN82 are the state of the art: YOLO

operates in realtime while Faster R-CNN produces higher quality object detection at a slower

speed. These approaches operate on a image feature space produced by a large CNN known as a

“backbone”, rather then directly on a image. Residual Neural Networks94 (ResNets) were originally

tested and trained on the immense, general classification task ImageNet60 as classifiers. ResNets

allow for much deeper networks and better propagation of signal from the loss resulting in faster

learning. Due to richness of their resulting features, ResNets have become nearly ubiquitous in

the object detection and localization task as the aforementioned backbone, only losing out in the

application to constrained compute environments.101

A strong natural image prior is placed on the backbone through training with a larger dataset.

By utilizing the feature space of the trained backbone CNN, smaller networks have been shown to

learning a different task with a much smaller dataset then would normally be required. This idea

of reusing the priors of larger networks to make a new task easier is known as Transfer Learning.201

Using only real data to train a CNN for learning for space applications is practically in-

tractable due to the relative sparsity of data and absence of labeled datasets on which to train.

Transfer learning can not directly be used either because of the absence of a rich enough prior

distribution which would require a large labeled dataset similar to the one to be trained on.

If armed with an accurately simulated environment, a well simulated camera, and faster-

than-realtime speeds, CNNs for OpNav become a powerful option. CNNs allow for the processing

of raw measurements and can learn the camera parameters as well as environmental parameters

such as lightning and planetary features. Although visualizations continue to improve, the space

environment is not the most difficult to model: lighting is purely unidirectional with parallel light

rays, near celestial bodies are well mapped, and the background is very dark. With these concepts
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in mind and the tools developed throughout this thesis, a first cut at CNNs for radius and centroid

extraction are designed.

6.3.2 MarsNet Architecture

Within any network paradigm, sets of hidden layers of varying sizes (number of neurons

per layer) can be activated through different activation functions such as the sigmoid function,

hyperbolic tangent, or Rectified Linear Unit (ReLU). The activation function is responsible for

transforming the summed weighted input of each neuron into an output for downstream layers.

The ReLU activation function is a piecewise linear function that either outputs a scaled value of

the input if it is positive, or outputs zero. It is the default activation function for many types of

neural networks due to ease of training and better performances in a wide variety of applications.

Given it’s success throughout the literature — notably because it helps solve vanishing gradients14

— ReLU is the activation function chosen for CNNs in this thesis.

However, space applications offer a challenging problem which is not seen in traditional

applications of CNNs: the fact that often a non-zero part of the image is nearly black other then

the noise of the sensor. After normalization, this provides an unusual distribution of pixel intensities

as almost all are very weak or negative. For a normal ReLU, this is problematic as it will eliminate

almost all the signal in the first layer. For this application, it was found that Leaky ReLU136

performed well:

ReLU(x) = max{λx, x}, 0 < λ� 1 (6.16)

Leaky ReLU — Equation (6.16) — doesn’t completely eliminate the signal, yet has the same desired

traits of the normal ReLU. Furthermore, if the weights become predominantly negative, the slight

slope defined by λ transfers what would otherwise be strictly zero signal back to a positive domain

and prevent “dead neurons”.

Net optimization happens during the back-propagation step and where methods can either

be adaptive (as Adam, Adagrad or RMSprop) or stochastic like commonly used Stochastic gradient

descent (SGD). Although methods like Adam tend to perform well in the initial portion of training
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it is outperformed by SGD at later stages of training. Despite some downsides, Adam is chosen

for the training of the ResNets implemented given fast training speeds and high performance on

sparse datasets thanks to per-parameter step-size.

The model was implemented and trained using Pytorch1 which provides an array of test

scripts and implemented methods to facilitate development. The higher level architecture is includes

a convolutional layer, set of ResNet-sequences, and linear output layer:

• The first layer applied is a 2D-Convolution layer which takes in 3 channels, outputs 16,

with a 3× 3 kernel, 1× 1 stride and padding

• A set of five ResNet sequence blocks are then defined each followed by a 2D, down sampling

convolution (twice the depth and half the height and width).

• The output is then flattened, linearized, and activated with a “Leaky-ReLu” function de-

fined as max{λx, x} where 0 < λ� 0.

Each model trained for 40 epochs with a batch size of 14, using a learning rate scheduler

which reduces the learning rate after 5 epochs without improvement. The loss function used is

Huber loss102 because it is less sensitive to outlier predictions from the network, particularly in

earlier epochs when the prediction error is arbitrarily large in the regression task. This allows to

train with a larger learning rate without running into exploding gradients for this problem, similar

in the approach to object detection.83

For each dimension size, three ResNet blocks are applied which each perform the follow

sequence twice before summing the input and the output (identity operation central to the ResNet

design) :

• Applies a 2D-Convolution to the input

• Activates the convolved input with a “Leaky-ReLU”

• Batch-normalizes the activated layer

1https://pytorch.org/
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• Performs a 1
2 dropout. In training this means zeroing each neuron with probability one-half,

in evaluation weight each neuron output by half to get a cumulative contribution.

The details of the implementation as designed using the Pytorch library can be found in

Appendix A. The size and number of ResNet blocks are taken from the literature — notably Ref-

erence 94 — in order to ensure a efficient and performant implementation. The specific additions

are the use of Batch-normalization and Dropout. Batch-normalization makes weight normalization

a part of the model architecture as it incorporates it within the net layers. Batch-normalization

allows the use of higher learning rates engenders robustness to initialization and acts as a regular-

izer.105 Dropout arbitrarily deactivates neurons in a layer during training. Deactivation of random

neurons leads protects against overfitting by preventing intertwined feature detection.98

6.3.3 Training Data

As stated in the introduction to this subsection, the difficulty with using CNNs for OpNav

lies primarily in the data. There needs to be an easy way to generate large quantities of realistic

training data, and provide a test for the fully integrated algorithm. The simulation developed

throughout this thesis provides the ability to do so with a large control over the noise of the data

and the camera parameters.

Table 6.8: Orbital Monte-Carlo Dispersions

Parameter Dispersion

Semi-Major Axis (km) N [20, 000, 3, 000]
Eccentricity U [0.1, 0.6]

Inclination (◦) U [−80, 80]
True Anomaly (◦) U [0, 359]

RAAN (◦) U [−40, 40]
Off-pointing σ = [U [−0.05, 0.05],U [−0.05, 0.05],U [−0.05, 0.05]]

The dispersions used on the spacecraft orbit and position of the planet on the camera plane

are given in Table 6.8. These cover a wide variety of orbits with inclinations nearly reaching from

pole to pole and eccentricities going up to 0.6 to allow for many images to be generated in each
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episode. Each scenario therefore generates 100 images according to the random generation of the

orbit and position of the planet on the camera.

Depending on the goal, it is possible to vary camera parameters within the training set

randomly as well as all simulation parameters. As a proof-of-concept and first iteration, the training

data did not contain any noise and only dispersed the orbit of the spacecraft as well as the position

of the planet on the camera frame. Figure 6.6 shows the total loss during training of the CNN in
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Figure 6.6: CNN Loss During Training

squared pixels over all episodes. The training was performed by splitting the images in 40 episodes

each containing 5500 images. The plot shows the steady decline of the loss on the validation data

over the episodes, as is desirable. An ideal plot would be monotone decreasing which, outside a

few exceptions, is pictured.

Figure 6.7 shows the variety of images that the neural net has to train on. The selected

images display some of the 90,000 images that were produced. The truth values for the circles are

found by using the inverse transform used for OpNav in previous chapters. The images illustrate

the variety of perspectives that can be achieved and the ease with which the data can be generated.

It is also important to note that although Mars was chosen as a target, Vizard easily allows for

other planets or bodies to be added instead.
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Figure 6.7: Samples from the CNN Training Data
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6.3.3.1 Neural Net Integration and Initial Performance

Once trained the neural net can be tested on a subset of the data (10% isolated into the

validation set) that is kept aside. Some of those results are seen in Figure 6.8. The trained CNN,

although a first cut implementation, displays some positive results. Some of the images display very

dim if not undetectable limbs to the eye, yet the CNN often produces very accurate and precise

estimates. If no information is in the image, the algorithm guesses the center is in the middle of

the sensor and provides a radius roughly equal to half of the image width. This shows that the

CNN has learned offsets from the center and mean radius.

Figure 6.8: Trained CNN Evaluated on New Images

Figure 6.8 shows how fast the CNN was able to learn given a relatively small dataset. Some

limitations in the data set do prevent strong generalization at the moment and will be improved

upon. Before flying such an algorithm, it would be key to test it on real images or images with the

instrument hardware in the loop. At the current stage of development such results are not available

but in progress.

Once the CNN is trained in Python using the generated images, it can be incorporated as

a Basilisk module through the OpenCV DNN library. This allows to load a net (exported in an



185

200 220 240 260 280 300 320

X-axis (px)

200

220

240

260

280

300

320

340

Y
-a

xi
s

(p
x)

Figure 6.9: Circles Found by the CNN

onyx format here), and read in an image to be processed. The process is implemented in the

centerRadiusCNN module found in Basilisk under fswAlgorithms/imageProcessing. The circles

found by the CNN for the identical reference OpNav scenario of Chapter 4. Results stemming from

the simulations described in Tables 4.4, 4.5, 4.6 5.2, and 5.3 are shown in Figure 6.9 and perform

similarly to Hough Cirlces.

Finally, when integrated into the full OpNav stack, the CNN performs well overall. This is

seen in Figure 6.10 as the filter output is of the same order of magnitude as the other methods.

The net does show some varying biases that are not akin to those of the other methods. Indeed the

measurements seen in subfigure 6.10a show a large oscillation on the range which does not match

the lighting conditions affects seen by Hough or Canny. This indicates that although the center

finding is successful, the radius of the planet is not well matched.

The results leave room for improvement, but are the first of it’s kind. Neural nets for OpNav

image processing to extract radius and centroid had yet to be developed and the framework opens

the door to many more CNN architectures. By developing more nets, prior nets can be used on

new OpNav problems hence developing the zoology of such CNNs.
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Figure 6.10: Measurements and State-Error Covariances for CNN

6.3.3.2 Enhancing Training and Results

The results presented encouraged more training in an environment that allows for more

generalization. With the prior of orbit variability, the effect that needed to be added echos the

work of Chapter 5: image corruptions. By training on a new set of data with image corruptions,

the neural net can be expected to better generalize and extract more pertinent features for center

and radius finding.

Table 6.9 shows the new set of dispersions used to generate data. Although very similar to the

previous set seen in Table 6.8, these values constrain the images to be closer to the reference orbit,

and with corruptions added to the images as in Chapter 5. The data is therefore constrained to a

smaller torus surrounding the planet, notably by reaching less towards the polar orbits. Further-

more, the camera is pointed more directly at the planet which helps to generate more centered data

as the pointing scheme will naturally provide much more of these images. This data set therefore

aims to target the weaknesses of the previous iteration as it builds on the already working prior.

Most of all, the new data set adds corruptions and noise to the images. This is done with
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Table 6.9: Orbital Monte-Carlo Dispersions

Parameter Dispersion

Semi-Major Axis (km) N [18, 000, 1, 000]
Eccentricity U [0.1, 0.5]

Inclination (◦) U [−40, 40]
True Anomaly (◦) U [−90, 90]

Off-pointing σ = [U [−0.01, 0.01],U [−0.01, 0.01],U [−0.01, 0.01]]

Gaussian Blur U [0, 3]
Hot-Dead Pixels U [0, 3]

Cosmic Rays U [0.5, 2]
Blur U [1, 5]

the aim of enhancing the data and forcing the net to learn useful features rather than overfitting

certain components of the image. Having noise and blur also provides more signal in each image

to aid optimization hence partly solving the sparse data problem.

The new set of data improved the loss during training greatly. Staring from the prior of the

previously trained net, the loss continued to decrease monotonously and ending at nearly half of

the loss of the previous iteration as seen in Figure 6.11
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Figure 6.11: CNN Loss with Additional Training

The results seen in Figure 6.12 are better than any of the previous methods. While both

Hough Cirlces and NIH-SVD saw errors that reach 2% for position and 5% for velocity (Fig-

ures 4.13 and 4.12), the errors now stay within roughly 1% for both values. The covariances are

also lesser than previously notably on the velocity components. This outlines an overall better filter

performance than the previous net iteration, and better than both other methods studied.
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Figure 6.12: Measurements and State-Error Covariances for Enhanced CNN

A few important novelties are interesting with these results. With regard to robustness, the

newly trained CNN produces the same results with noisy images or clean images. This stresses the

fact that training under corrupt conditions has aided the weights to feature detection to converge

towards the key components of the image: the limb and lit disk. One of the novelties of using

Hough Circles was moving away from ellipses while centering the image in order to benefit from

the measurement robustness. The downside, nonetheless, is still that camera distortions naturally

falsify the circle positions. The net trained in this section does not suffer this default: the net

trains over expected circle position given the geometry and hence learns the camera perturbations

and distortions as a part of it’s training. Finally, when looking at fault detection, it became clear

that comparing methods with different strengths and weaknesses would help detect anomalies: if

a first method works well with crescents and poorly with full disks while the second performs

inversely well, combining them will output reliable faults and results. The CNN trained here shows

in Figure 6.12a that the lighting conditions do not affect performance as it did with other methods,

hence providing good supporting data in a multi-measurement paradigm.
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Two possible directions can be taken to keep training these CNNs, the first being to model the

camera accurately in simulation and train a net to capture its defects as well as possible, the second

would aim to use a large set of cameras and generalize the circle fitting as much as possible. Both

methods could provide interesting future results. The one caveat is that the speed of the network

evaluation is one order of magnitude slower on general purpose compute hardware: roughly 100×

faster than real-time instead of 1000×. This can be improved by decreasing the size of the network

through training a smaller network to match this function, though it is not prohibitive for on-

board use as is. However, by utilizing a hardware accelerator such as a graphics accelerator or

a Field Programmable Gate Array (FPGA), one could easily perform these computations quickly

and power efficiently. Furthermore, the use of half-precision floating point or even 8-bit integer

arithmetic would enhance speed, use less power, and theoretically show nearly identical regression

performance.159

6.4 Conclusions

The developments of both RL and CNNs for spacecraft autonomy and enhancing image

processing is presented. Although just an introduction to the wealth of possibilities, ML presents

a unique use-case that prior work in this thesis has enabled. Preliminary RL results show the

possibility of training agents for decision-making and are applied to OpNav scenarios. Training RL

agents in realistic scenarios while interacting with a simulated space environment is displayed for

the first time.

In a second part, CNNs are integrated in a full OpNav FSW stack. By training under different

camera models and orbits, the CNN has proven to outperform all other methods and has provided

a new and robust way of doing image processing. Validation using real images as well as further

training are still needed, and different net architectures can still be designed. The growing field of

ML is being increasingly applied to aerospace, these results tie in to that body of work.



Chapter 7

Conclusions and Future Work

This final chapter recapitulates some of the goals and contributions achieved in this disserta-

tion, and recommends some future work. These future efforts could not only improve the current

state of the results, but also generate new research areas. On one hand, current results could see

improvements in simulation quality, speed, and ease of use, on the other hand research areas might

require new methods and analysis to prove feasibility of certain concepts. The chapter first covers

the research deliverables that were named in the introduction, then covers some recommendations

for future work.

7.1 Research Goals

The proposed research aims to enhance spacecraft autonomy. This is is achieved through

novel filtering methods, noise quantification in image processing, novel software development, fault

detection and mitigation, guidance analysis, and machine learning. Progress in this field will allow

to manage spacecrafts on orbits such as the ones depicted in Figure 7.1 with increased autonomy.

Simultaneously, new mission designs and objectives can be imagined and attempted. Small and

nano satellites provide good test-beds to provide technology demonstration results, all the while

opening space up to more people.

Full spacecraft autonomy is incremental and the work provided in this dissertation provides a

few tools and key results that have further explored the field. Some of the goals achieved throughout

this dissertation are listed in this section.
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Figure 7.1: Cassini’s many orbits “Ball of Yarn” Credit: NASA/JPL-Caltech

The first research deliverable presented in this thesis has been the link between the astro-

dynamics simulation Basilisk and the visualization tool Vizard. As a first open-source package

of it’s kind — generating high-fidelity spacecraft dynamics and generating synthetic images for

navigation at Monte-Carlo speeds — the simulation is an over-arching contribution to the state-of-

the-art. Without an open-source OpNav simulation which provides closed-loop image generation

at faster-than-realtime speeds, none of the results could have been provided. The coupled nature

(pointing and orbit determination) of the developed scenarios provide novel results and allows to

couple attitude and orbit determination considerations in every simulation. In general, the work

carried throughout this dissertation has followed a rigorous development and implementation cycle

on par with mission ready FSW. In fact, the square-root unscented version of the Switch-Filter will

fly on an interplanetary mission. Providing open-source and nearly flight ready code, this disserta-

tion has responded to one of the goals cited in the introduction: produce robust and available GNC

developments. Simultaneously, the set of software packages designed in the AVS lab provides a full

suite of code which supports the testing and developments of FSW and simulation algorithms from

cradle to grave.

The new design of heading determination filters using either coarse-sun-sensor or OpNav
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measurements is also a contribution. By harnessing a method similar to how MRPs map to their

shadow set to avoid singular representations of attitude, the filters have shown high performance

results in a rigorous framework. The extension to OpNav in close proximity to a body being

orbited has challenged some of the assumptions made and extended the use case of such a filter.

For angles-only navigation using distant beacons, such a filter would also provide good estimates

for headings.

The analysis carried using the Hough transform has indeed shown the applicability of a

coarse, robotics inspired method to OpNav. The results approach state-of-the-art methods in ideal

conditions, but greatly outperform them in a wide variety of faulty scenarios. The contribution of

accepting the use of circle-fitting in order to use robust clustering methods and fully quantifying the

effects of this limitation is shown. The performance of circle fitting is equal to the state-of-the-art

comparative method, while speeds are matched as well. For certain OpNav cases, Hough Circles are

a valid method of navigation, while a good fault detection tool even for more refined navigation.

Monte-Carlo capability allows for sensitivity and performance analysis of the full OpNav stack,

which challenges all the acting modules of FSW.

Finally, all the previous developments have enabled direct applicability of machine learning

methods to astrodynamics. Both at a high-level with a reinforcement learning framework, and at a

low-level with CNNs for center and radius finding, ML tools have displayed their applicability to the

field. The modularity of the OpNav environment developed has also enabled seamless introduction

of these modules to FSW. Integrating and testing the models with other FSW algorithms, using

the same simulation and environment, and demanding the same level of performance is a crucial

step towards the use of ML onboard spacecraft.

7.2 Future Work

This section covers some future goals that are enable by the thesis as a whole. Some of these

goals are short-term improvements to existing results, while other will require more long-term

efforts. Some short-term goals include simulation improvements. On the python level, simulation
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architecture could provide speed boosts with less frequent updates on certain tasks. The camera

model could also contain better logic in order to not decode and encode images unnecessarily.

The heading determination module could be used on the Sun and OpNav measurement

simultaneously in order to produce a full attitude solution. While not a priority given the ubiquitous

and highly-functional star-tracker, providing a full attitude solution could be used for instrument

alignment calibration and better relative attitude guidance. In orbit determination, testing the

speed and performance of a generalized Hough transform for ellipse fitting could be valuable. If

so, improvements in the algorithm to reduce the search space could be harnessed. Regarding fault

detection, many different existing or new methods could augment the existing suite. Clustering

methods and machine learning can also be applied, providing a different approach to a well studied

problem. SLAM techniques are also ripe for implementation in Basilisk and could provide a different

approach altogether to some of the inherited navigation solutions. Already commonly used on

the ground, and now for formation flying, the use-case of SLAM for asteroid navigation or even

planetary navigation could be fruitful.

More involved additions include the natural extension of the work to Terrain Relative Nav-

igation (TRN) and Entry Decent and Landing (EDL). In this field, new filters have been recently

implemented to link features maps to detected features robustly.147 With some additions, the visu-

alization can integrate dynamic textures which will allow to keep running fast simulations with fast

changing environments. With more developments the provided simulation will allow for end-to-end

EDL simulations.

In parallel, thanks to the general nature of the Basilisk -Vizard interface, other visualization

can be paired and used on exactly the same scenarios as developed in this thesis. This can allow to

determine the robustness of the astrodynamics to visualizations and physical models of the envi-

ronment. More specific to Basilisk -Vizard, developments for small body navigation are imminent.

The Colorado Center for Astrodynamics Research (CCAR) at University of Colorado, Boulder is

a leading hub in astrodynamics and small body navigation. Combining the research of students

and professors into the framework developed in this dissertation would greatly benefit the field and
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enhance research capabilities.

Finally, the work left to do in ML is vast. The reinforcement learning component alone,

contains many challenges and are being tackled by AVS lab students as well as JPL engineers.

This thesis has provided a stepping stone towards these methods, but more work is yet to be done.

With regard to neural networks for OpNav, the number of implementations and net functions

is unlimited. Different kinds of neural nets can provide various learning speeds and capabilities,

while the training and validation data continues to be diversified. From covariance estimation, to

direct spacecraft pose-estimation off of raw data, the limits are primarily dictated by time and

computation power.
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Appendix A

Neural Net Details

About appendices:

This enumerated list displays all layers of the implemented Convolutional Neural Net for

radius and center finding. The syntax is borrowed from Pytorch 1, while the architecture is derived

from the ResNet94 paper.

(1) Conv2d(3, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

(2) 3×ResNetBlock:

Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

Conv2d(16, 16, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

Dropout(p=0.5, inplace=False)

(3) Conv2d(16, 32, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), padding mode=same)

(4) 3×ResNetBlock:

Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

1https://pytorch.org/
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BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

Dropout(p=0.5, inplace=False)

(5) Conv2d(32, 64, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), padding mode=same)

(6) 3×ResNetBlock:

Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

Dropout(p=0.5, inplace=False)

(7) Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), padding mode=same)

(8) 3×ResNetBlock:

Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

Dropout(p=0.5, inplace=False)

(9) Conv2d(128, 256, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), padding mode=same)

(10) 3×ResNetBlock:

Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), padding mode=same)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

Dropout(p=0.5, inplace=False)

(11) Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), padding mode=same)
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(12) Flatten

(13) Linear(in features=131072, out features=3, bias=True)
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