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The scientific return of spacecraft missions that explore solar system small bodies can be

increased through the inclusion of surface exploration with deployed probes. In this dissertation,

a methodology is presented that allows for fast, parallel simulation of bouncing trajectories of

arbitrary-shaped ballistic probes in the small-body environment. This enables planning of probe

deployment and operation, and supports their inclusion on future missions.

The coarse small-body shape is modeled using an implicit signed distance field (SDF) that

allows for fast collision detection. Statistical features are included onto the SDF using procedural

generation techniques. The small-body gravity field is captured using a voxelization of the classical

constant-density polyhedron. Surface interactions between a probe and the surface are accounted

for using a hard contact model that takes into account restitution and friction. These models are

implemented in a GPU environment to allow for the parallel execution of multiple trajectories.

The developed simulation framework is applied to perform parametric investigations of probe

deployment, which quantify the effects of relevant properties of a probe and its target small body.

The probe shape and internal mass distribution are found to strongly affect its deployment dynam-

ics, with near-spherical probes dispersing over greater regions than more distorted shapes. The

effect of the surface interactions coefficients on the different shapes variants is quantified. The

presence of statistical surface features is also shown to further influence probe dynamics.

Finally, the framework is applied to perform a pre-arrival deployment analysis of the MINERVA-

II rovers onboard the Hayabusa-2 spacecraft. This analysis identified challenges in the rover de-

ployment and was used to redesign aspects of the nominal rover release sequence. These models

will be used to inform the target site selection and follow-on analysis for the Hayabusa-2 mission

rover deployments.
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Chapter 1

Introduction

1.1 Small bodies

Comets The scientific interest in comets as targets for large space missions is not surprising,

given their rich observational history among which the earliest records date back more than two

millenia. Since comets are visible with the naked eye, prehistoric man must surely have wondered

about these bright-tailed objects crossing the sky. The first recorded observation of a comet is

found on Chinese oracle bones form the fourth century B.C. and suggests that early civilizations

primarily interpreted comets as astrological phenomena [152]. Ever since, comet apparitions are not

uncommon in written history and are frequently associated with important events. Halley’s comet

(1P/Halley) is easily the most (in)famous of the comets, as it is the only known short-period comet

that is visible to the naked eye at perihelion, roughly every 75 years. Though orbital perturbation

prevent reliable back-propagation beyond roughly a thousand years, Halley’s apparitions can be

traced back several millennia in the written record [147]. The most dramatic association made with

Halley’s apparitions may be that of 1066 A.D. as represented on the famous Bayeux Tapestry. This

230-foot long tapestry (see Fig. 1.1) depicts the events of the Norman conquest of England and

shows Halley’s comet in the sky during the coronation of King Harold II of England. It is included

as an omen, heralding Harold’s defeat at the infamous Battle of Hastings [83].

It was not until several hundred years later that comets started to be recognized as astro-

nomical, rather than astrological objects, thereby paving the way for exploration with spacecraft.

The International Cometary Explorer (ICE/ISEE-3) was the first to intercept a comet when it
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Figure 1.1: Halley’s comet, as (left) shown on the 11th-century Bayeux Tapestry and (right) imaged
by the Giotto spacecraft in 1986 [52].

passed through the plasma tail of Giacobini-Zinner (21P/Giacobinni-Zinner) in 1985 [137]. It veri-

fied the “dirty iceball” hypothesis that assumed comet nuclei to be a mix of dust, rocks, water ice,

and other frozen gases. Various spacecraft studied Halley’s comet during its 1986 apparition, with

ESA’s Giotto spacecraft being the first to image a comet nucleus, see Fig. 1.1 [38]. The contrast

between Halley appearing as an omen on the Bayeux tapestry and as an object of scientific study in

Giotto’s observation is staggering, and is an exhilarating example of man’s innate drive for explor-

ing the unknown. Two other noteworthy comet explorers from the early 2000’s are NASA’s Deep

Impact and Stardust missions. Deep Impact sent an impactor onto the nucleus of comet Tempel

1 (9P/Tempel) in 2005, and imaged the impact with a flyby spacecraft, see Fig. 1.3 [2]. Stardust

returned samples of the coma of comet Wild 2 (81P/Wild) in 2006 [15].

Easily the most comprehensive case of comet exploration was ESA’s Rosetta mission, which

explored comet 67P/Churyumov-Gerasimenko between 2014 and 2016 and obtained a wealth of

new observations [18]. Perhaps the most notable measurement made by Rosetta was that of the

isotope ratio of outgassed water: the deuterium-to-hydrogen ratio of its water was found to be three

times that of terrestrial water, disproving the hypothesis that the water on Earth was delivered

through bombardment by comets. The spacecraft also deployed the Philae lander, which performed
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a swath of surface measurements revealing, among other things, a hard ice layer covered with a

regolith layer approximately 25 cm thick [11]. Some highlights from the Rosetta mission are shown

in Fig. 1.2 which shows, from top left to bottom right: comet 67P/C-G in August 2014, one of

Rosetta’s final descent images in September 2016, Philae on the comet surface in September 2016,

and Philae’s landing leg in November 2014.

In an interesting turn of events, NASA is currently investigating a return to 67P/C-G with

the CAESAR spacecraft, which proposes to return samples from the comet surface to Earth as part

of the New Frontiers program [108]. In the spring of 2019, NASA will decide whether or not to

pursue the mission.

Figure 1.2: Highlights of the Rosetta mission (image courtesy ESA, see rosetta.esa.int).

Asteroids The observational history of asteroids is far shorter than that of comets, with

Ceres being discovered as the first asteroid by Giuseppe Piazzi on the 1st of January, 1801. In

the first half of the nineteenth century, astronomers realized that an entire ‘belt’ of asteroids exists
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between the orbits of Mars and Jupiter, and the number of observations has skyrocketed since

[28]. Several hundred thousand asteroids, spread throughout the entire solar system, have been

categorized. The Galileo probe was the first to closely image an asteroid, providing photos of

asteroid 951 Gaspra in 1991 while en-route to Jupiter [9]. Galileo also visited 243 Ida and revealed

the existence of the small satellite (243 Ida I) Dactyl, thereby discovering the first ever binary

asteroid system. Several missions to asteroids have been flown since and are planned for the future.

The NEAR-Shoemaker spacecraft explored asteroid 433 Eros as the first mission in NASA’s

Discovery program [135]. It investigated the composition, mineralogy, mass distribution, and mag-

netic field of Eros, eventually landing on its surface at the end of the mission in 2001 (see Fig. 1.3).

The Japanese Hayabusa probe performed a similar study of asteroid 25143 Itokawa and returned

samples from its surface to Earth in 2010. It revealed that Itokawa is a “rubble-pile” asteroid:

an aggregate of many large boulders, smaller rocks, and tiny regolith particles, see Fig. 1.3 [34].

Asteroid exploration is steadily continuing beyond these first missions: the Japanese Hayabusa-2

and American OSIRIS-REx spacecraft successfully launched and are en-route to the carbonaceous

asteroids 162173 Ryugu and 101955 Bennu, respectively [125, 56]. Both missions will extensively

study their targets and return surface samples to Earth in the early 2020s. Hayabusa2 also plans

to deploy three small “Micro/Nano Experimental Robot Vehicle for Asteroid - II ”(MINERVA-II)

rovers and one “Mobile Asteroid Surface Scout” (MASCOT) lander to Ryugu’s surface [125, 43].

Additionally, both the Lucy and Psyche missions were recently selected as part of NASA’s

Discovery program. Lucy plans to perform flybys at several of the Trojan asteroids following

launch in 2021 [58]. Psyche will explore the metallic asteroid 16 Psyche, thought to be the exposed

core of a proto-planet, following a planned launch in 2022 [82]. NASA also plans to launch the

Double Asteroid Redirect Test (DART) in late 2020 or early 2021, which will impact the small

secondary of the binary asteroid system 65803 Didymos in 2022 at a velocity of approximately

6 km/s [19]. Through observations of the orbital changes of the binary body with Earth-based

telescopes, the mission enables validation of kinetic impactors for planetary defense. ESA is also

currently investigating its proposed Hera mission, which would orbit Didymos in order to better
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examine the resulting crater and asteroid orbit change [66]. At the time of writing, Hera has not

been fully funded yet.

Figure 1.3: (left) The impact of Deep Impact on comet Tempel 1 [1], (middle) the surface of Eros
as seen during the descent of NEAR-Shoemaker [136], and (right) Itokawa as seen by Hayabusa
[33].

Small-body exploration Together, asteroids and comets are known as the small bodies

of our solar system. They are considered interesting targets for exploration with space missions for

three main reasons:

(1) It is commonly accepted that asteroids and comets are leftover ‘building blocks’ from the

early solar system. They have experienced a rich history over the past 4.5 billion years,

with (relatively) frequent collision, fission, and re-accretion events [67, 50]. Small bodies

therefore provide a window through time into these early conditions and can teach us lessons

about the formation and evolution of our solar system. All of the mentioned missions have

contributed to this goal in some form.

(2) The asteroid impact risk is regarded as one of the major long-term threats to human

civilization. Consider for example the Chicxulub impact that is thought to have caused the

mass extinction of dinosaurs around 66 million years ago, or the Tunguska event. The latter

is thought to be the result of the atmospheric disruption of a stony asteroid, amounting to

the largest impact event in recorded history and flattening a forest area of approximately

2,000 km2 in 1908 [21, 126]. More recently, the Chelyabinsk superbolide injured about
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1,500 Russian residents in 2013, mostly through damage from glass that shattered when

the bolide exploded [60]. Events like these are a stark reminder of the damage that can be

caused by such impacts; small-body exploration allows for the development and validation

of planetary defense strategies that mitigate the impact risk. This was demonstrated most

notably by the Deep Impact spacecraft and is planned to be explored in further detail by

the DART impactor.

(3) Asteroids and comets contain large amounts of water, metals, and complex carbon molecules;

resources which could be harvested and used in situ. The collection of water is especially

promising, as it can be electrolyzed into rocket propellant using solar energy. A small body

placed in Earth orbit could thus become an orbital fuel station and significantly reduce

the cost of spaceflight. Exploratory missions to small bodies provide a proving ground for

these (exotic) new technologies [59]. Although the proper ‘mining’ of asteroids remains a

far-off goal, it is receiving increasing attention from private companies such as Planetary

Resources and Deep Space Industries, both of which have received notable support from

the government of Luxembourg [16].

1.2 Small-body surface exploration

The missions mentioned above have been successful in establishing our current understanding

of the origins, characteristics, and evolution of asteroids and comets. They primarily addressed

the three goals listed above through remote sensing observations with orbiting spacecraft. The

return of such a mission can be significantly increased by including lander/rover probes capable of

sampling the small-body (sub-)surface in situ. This was demonstrated most notably by Rosetta’s

Philae lander, which investigated the surface of comet 67P/C-G. As mentioned, Philae revealed

the existence of a high-strength ice layer covered with soft regolith [13]. The lander was equipped

with thrusters and harpoons to anchor itself to the comet’s surface. However, both of these active

landing systems did not activate, which caused the lander to rebound off the comet’s surface
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following an initial touchdown. Subsequent bounces eventually brought the lander to rest far away

from the targeted landing site. It settled at an angle of approximately 30 deg against a cliff or

crater wall that significantly restricted insolation. As a result, Philae’s secondary batteries could

not be recharged and contact with the lander was lost after three days, though approximately 80%

of the planned science operations were successfully performed [11]. In a more dramatic turn of

events, the MINERVA hopper onboard the Hayabusa mission was improperly released while the

mothership ascended from asteroid Itokawa. The craft was subsequently lost to space [150]. These

two examples illustrate the challenges inherent in the delivery of landers to the small-body surface.

This is one reason why they have often been perceived as high-risk mission elements, despite their

potential for increasing the scientific return of a mission.

Fortunately, small scientific packages are now more commonly being considered as secondary

payloads for small-body exploration missions. Most notably, the Japanese Hayabusa2 spacecraft

that is set to arrive at asteroid Ryugu in June/July of 2018 carries a total of four deployable

payloads. These include the three Japanese MINERVA-II rovers, each with a mass of approximately

1 kg and carrying simple scientific instruments. The rovers are also equipped with momentum

exchange mechanisms that, if operated successfully, will allow them to demonstrate (intentional)

surface mobility on the surface of an asteroid [125]. Hayabusa2 also carries the European MASCOT

lander with a mass of approximately 10 kg, which contains a multitude of instruments for surface

exploration as well as a swinging arm that enables surface mobility [43]. A similar craft (MASCOT-

II) was investigated for ESA’s AIM mission, though its cancellation put an end to this study [19].

Nevertheless, MINERVA-II and MASCOT are testament to the increasing interest in small-body

surface exploration. Though they were not selected, the BASiX and MarcoPolo-R also proposed

to deploy payloads to the surfaces of their targets [6, 41].

In order to further advance lander/rover spacecraft from small secondary payloads to primary

missions systems, mission designers must be convinced of their reliability and low inherent risk to

a mothership. This confidence can be (partially) provided by high-fidelity simulation software,

in which the many complexities of the small-body environment are accounted for, and which can
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predict the settling distribution of a lander/rover spacecraft. Since the complexity of the small-

body environment renders the ballistic bouncing motion of a spacecraft chaotic, it is impossible to

precisely predict its settling behavior. However, by performing many simulations while accounting

for relevant uncertainties, it is possible to provide an accurate prediction of the spacecraft settling

statistics. These simulations have two major applications. First, they allow for the direct applica-

tion to relevant mission scenarios, such as the deployment of the rover/lander spacecraft onboard

Hayabusa2. By taking into account all relevant uncertainties in the mothership navigation and

rover release, combined with high-fidelity models of Ryugu’s shape, gravity, and surface properties,

it is possible to predict the rover settling statistics. This allows for the development of a deploy-

ment strategy, i.e., a strategy for where and how the rovers can be released in order to target

some landing zone, while complying with relevant mission requirements. The latter may include

line-of-sight requirements, restrictions to exclude certain surface regions, or ensuring sufficient inso-

lation. High-fidelity simulation software enables informed discussion between spacecraft operators

(that set mission constraints) and scientists (that wish to maximize the scientific return of a de-

ployed payload). Second, if such software is capable of performing a large number of simulations

in sufficiently small amount of time, it allows for parametric studies to be carried out. In this, a

single parameter of the lander spacecraft or small-body environment is varied and its effect on the

resulting spacecraft motion investigated. This allows for a quantification of the effects of, e.g., sur-

face interaction coefficients, lander shape, or lander mass distribution. The resulting insights can

provide design guidelines for lander/rover probes meant to, e.g., settle on the small-body surface

with minimal surface dispersion.

The goal of this thesis is to establish an efficient methodology for such high-fidelity simulation

of small-body surface exploration probes. This will be applied to perform broad parametric studies

that establish the factors governing lander motion, as well as a pre-arrival deployment analysis of

rovers onboard the Hayabusa2 spacecraft. Before providing a detailed outline of the thesis, the

literature relevant to this topic is first reviewed.
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1.3 Literature review

Several authors have investigated the bouncing motion of payloads in the small-body envi-

ronment. A brief overview highlighting the contributions of the relevant works follows:

(1) The first author to consider this problem are Sawai et al. In their 2001 paper “Development

of a target marker for landing on asteroids,” they simplify the problem by studying the

motion of a simple pointmass, bouncing on a rotating ellipsoid [100]. This work assisted

in the mechanical design of the target markers deployed by Hayabusa to asteroid Itokawa,

but is too limited in its modeling techniques to allow for reliable landing predictions or

broader analyses.

(2) Yoshimitsu et al. detail their design of the MINERVA-I rover onboard Hayabusa in the

1999 and 2004 papers “Hopping rover “MINERVA” for asteroid exploration” [151] and

“Development of autonomous rover for asteroid surface exploration” [148]. This work fo-

cuses mostly on the mechanical design and experimental testing of the hopping mechanism.

Since the rover was designed to operate without knowledge of its location on the surface,

the authors do not attempt to perform simulations of its motion across the small-body

surface. For a discussion on MINERVA’s failure to reach Itokawa’s surface, the reader is

referred to [150].

(3) Ogawa et al. extended the work by Sawai et al. on the target marker design to the

Hayabusa2 mission in their 2010 paper “Precise landing of space probes on asteroid using

multiple markers” [81]. In this, they consider the use of multiple target markers, but

continue to use a highly simplified planar model for the asteroid surface and pointmass

probe model.

(4) Tardivel et al. were the first to consider the global motion of a (spherical) lander probe

bouncing on the polyhedron shape of a small body, in their 2014 paper “Contact motion

on surface of asteroid” [118]. They observed chaotic probe dynamics and linear-angular
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velocity couplings that cannot be captured by simplified dynamical models. In addition to

this first step towards the accurate modeling of surface interactions, they also gave signif-

icant attention to the selection of initial descent orbits that guarantee the surface impact

of a lander [116, 114, 115]. Finally, the authors performed a preliminary investigation of

the effects of rocks on the small-body surface, noting that they may significantly effect the

deployment of spherical probes. The rocks were accounted for using a simplified stochastic

impact model. This work culminated in a Ph.D. thesis carried out at the University of

Colorado Boulder [120].

(5) Hockman et al. approach the challenge of operating a hopping payload from a different

direction and focus on the mechanical design and stochastic motion planning of a cube-

shaped hopper, in their 2017 papers “Design, Control, and Experimentation of Internally-

Actuated Rovers for the Exploration of Low-gravity Planetary Bodies” [45] and “Stochastic

Motion Planning for Hopping Rovers on Small Solar System Bodies” [44]. They account for

the small-body shape and gravity using the polyhedron model, but do not use high-fidelity

models for the surface interactions of an arbitrary-shaped lander.

(6) The deployment of the Philae lander was only studied down to the point of first impact,

since the probe was designed to anchor itself to the surface of comet 67P/Churyumov-

Gerasimenko, see for example the 2012 paper “Philae Descent Trajectory Computation and

Landing Site Selection on Comet Churyumov-Gerasimenko” by Canalias et al [17]. This

analysis is therefore not relevant to the problem at hand, although the reconstruction of

Philae’s trajectory sheds some light on the dispersive properties of the comet surface [13].

(7) Finally, some studies have been performed regarding the deployment of the European MAS-

COT lander onboard Hayabusa2. In the 2017 paper “Mascot: Analyses of the descent and

bouncing trajectories to support the landing site selection,” Lorda et al. perform a deploy-

ment analysis of MASCOT to the coarse, pre-arrival shape model of asteroid Ryugu [62].

Again, this work is restricted to using pointmasses to represent the more complex lan-
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der shape, with a statistical model for bouncing. For a detailed discussion of MASCOT’s

mechanical design, the reader is referred to [43].

In summary, the problem of bouncing payload motion in the small-body environment has

been investigated by various authors. However, all published works are limited to the motion

of either pointmass or spherical lander models. This is a severe limitation; non-spherical shapes

exhibit fairly chaotic bouncing motion akin to a die being thrown on a table. Furthermore, none

of the studies available in literature are implemented in a manner that allows fast simulation of

a large number of trajectories. This is necessary in order to perform statistically sound mission

analysis or any type of broad parametric study. Finally, only one author considered the inclusion

of statistical surface features. Even though this used a fairly limited stochastic model, it was able

to indicate the importance of including such features in simulation.

1.4 Thesis outline

The above literature review reveals the lack of a methodology to simulate the bouncing motion

of payloads in the small-body environment. It must be able to handle both targets and probes with

an arbitrary shape, but also account for features such as rocks on the target surface. It should

be integrated in a simulation framework that allows for the fast simulation of many trajectories,

to enable broad studies and application to realistic mission scenarios. This is the goal of the

thesis, which builds upon the work of [118] by extension to complex lander shapes and surfaces.

The resulting framework is used to perform investigations into lander motion and is applied to a

deployment case study of rovers onboard Hayabusa2. This thesis consists of 5 chapters.

Chapter 2 presents the modeling methods applied in the thesis. This first consists of a

presentation of the general problem set-up and the equations of motion that describe the motion of

a spacecraft in the small-body environment. The methods for modeling the shape and gravitational

field of a small body are then discussed, as well as the contact interactions between a spacecraft

and the surface. Next, the procedural generation of statistical features on the surface is discussed,
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as well as the presence of a regolith layer. Finally, the numerical implementation of these models

in a parallelized computation environment is presented.

Chapter 3 discusses the surface motion of a vehicle and is specifically concerned with es-

tablishing speed limits for tangential motion of the vehicle, called the lift-off velocity. A general

derivation for this velocity is first presented, as well as provide methods for the computation of

the surface curvature of a body, which is a primary determinant of the lift-off velocity. This is

then applied to some generic bodies such the sphere, ellipsoid, and plane in order to investigate

some general properties of lift-off behavior. Finally, lift-off velocity distributions are provided and

discussed for asteroids 1999 KW4 Alpha, Bennu, Eros, as well as the Mars moon Phobos.

Chapter 4 provides the first application of the simulation framework, namely, parametric

studies of lander motion. This begins with an investigation of how a spherical lander is affected by

the surface interaction coefficients, its mass distribution, and the presence of rocks on the surface.

This is followed by a similar investigation for landers with a more complex shape, that discusses

how the shape and mass distribution of a complex lander affects its motion. This is compared and

contrasted with the trends observed for spherical probes. Finally, the effects of surface topography

on lander motion are investigated. This consists of the inclusion of realistic variations to the ‘hard’

surface layer as well as a model to account for the existence of surface regolith.

Chapter 5 then presents the second application, that is, the investigation of a specific mission

scenario. The simulation framework is applied to perform a pre-arrival deployment analysis of

the MINERVA-II rovers onboard the Hayabusa2 spacecraft. The mission set-up is discussed first,

followed by some simple simulations to the spherical Ryugu model. This reveals some challenges in

the nominal deployment sequence; modifications that increase the chances of successful deployment

are suggested. Those lessons are then applied when performing simulations to the full Ryugu

training model, which reveal the effect of variations in the terrain on corresponding deployment

trends. This results in further recommendations for the rover release. Finally, the effects of changes

in the asteroid mass on the rover dynamics are briefly investigated. The conclusions of this thesis

are provided in Chapter 6, which also includes suggested pathways for future work.



Chapter 2

Modeling

This chapter presents the modeling applied in our simulation framework and is structured as

follows. It begins by establishing the relevant reference frames with respect to which the motion

of the lander/rover spacecraft is tracked and develop the corresponding equations of motion in

Section 2.1. This is followed with a discussion of the three different small-body shape models

applied in this work in Section 2.2. First is the spherical harmonic shape model, used primarily

in the lift-off velocity chapter. Second, the polyhedron model, which is the classical small-body

shape model. Finally, the signed distance field, an implicit shape model that enables fast distance

evaluations. These shape models represent relatively smooth surface devoid of features such as

rocks and boulders. Section 2.3 presents methods to efficiently generate such features. The chapter

then goes on to review our gravity field modeling in Section 2.4. After a brief overview of some

commonly-used models, the constant-density polyhedron model is first reviewed. This is followed by

a discussion of the voxelization of this model, which allows a body’s gravity field to be pre-computed

and enables cheap run-time interpolations. Next, a methodology for modeling contact interactions

between a spacecraft and the small-body surface is presented, in Section 2.5. This begins with

an overview of the contact geometry and then goes into detail on the evaluation of (impulsive)

collisions. This is followed by the derivation of a corresponding model for contact motion, in which

the spacecraft is in continued contact with the surface. A simple model for regolith deformation

is then presented in Section 2.6. The chapter concludes with a discussion our parallelized GPU

implementation that allow for fast simulation of a large number of trajectories, in Section 2.7.
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2.1 Equations of motion

The motion of some rigid spacecraft with arbitrary shape and inertia is modeled. This

spacecraft moves in the neighborhood of a targeted small body (the “target,” assumed to be an

asteroid, comet, or small moon), also with arbitrary shape, in uniform rotation. In order to describe

the motion of the spacecraft, the three reference frames illustrated in Fig. 2.1 are used. The first

is the inertial frame N with orthonormal axes {n̂1, n̂2, n̂3}. Second, the rotating target frame T ,

with its origin at the target center of mass and orthonormal axes {t̂1, t̂2, t̂3} aligned with the target

principal axes of inertia. This frame is assumed to have zero translational velocity relative to the

inertial N -frame. Finally, the rotating spacecraft frame S, with origin at the spacecraft center of

mass and orthonormal axes {ŝ1, ŝ2, ŝ3} that are aligned with the spacecraft principal axes of inertia.

Figure 2.1: The applied inertial (N ), target (T ), and spacecraft (S) frames.

The state X of the spacecraft-target system is represented using six vectors that add to a

total of 20 variables:

X =

[
x v qS/T ωS/T QT /N ΩT /N

]T
(2.1)

The x and v vectors are the spacecraft center of mass position and velocity relative to the target,

and together capture the motion of that center of mass. The spacecraft attitude is expressed
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relative to the target using the quaternion qS/T and corresponding angular velocity ωS/T . Both

vS and ωS/T express velocities relative to a rotating, non-inertial reference frame. As a result,

the corresponding equations of motion will contain virtual acceleration components. This type

of expression was chosen because the contact forces exerted on the spacecraft drive these relative

velocities to zero. If the velocities were expressed relative to, e.g., the inertial N -frame, their values

‘at rest’ would be non-zero and location-dependent. The chosen approach allows the spacecraft to

intuitively come to rest at v = ω = 0. In addition to these four spacecraft-related vectors, the

attitude of the target is also trakced relative to the inertial N -frame, using its quaternion QT /N

and corresponding angular velocity ΩT /N . Note that the capitalized symbols (q and ω) refer to

the target body, while the non-capitalized symbols (Q and Ω) refer to the spacecraft. The time

rate of change of the system state is described by the following equations of motion:

Ẋ =
dX

dt
=



ẋ

v̇

q̇S/T

ω̇S/T

Q̇T /N

Ω̇T /N


=



v

g − [Ω̃T /N ][Ω̃T /N ]x− 2[Ω̃T /N ]v + 1
mFc

1
2 [B(qS/T )]

[
0 ωS/T

]T
see Eq. 2.5

1
2 [B(QT /N )]

[
0 ΩT /N

]T
−[IT ]−1[ω̃T /N ][IT ]ωT /N



(2.2)

The quaternion equation of motion makes use of the classical [B(q)] matrix:

[B(q)] =



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


(2.3)

In these equations, [˜ ] is the cross-product tensor notation. Furthermore, g is the gravitational

attraction of the target on the spacecraft, Fc is the net contact force on the spacecraft, and m is the

spacecraft mass. In the equation for the spacecraft acceleration, notice the −[Ω̃T /N ][Ω̃T /N ]x and

−2[Ω̃T /N ]v accelerations, which are respectively the (virtual) centrifugal and Coriolis accelerations
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that result from the expression of the spacecraft position and velocity vectors relative to the rotating

T -frame. For completeness, Eq. 2.2 includes the equation of motion for Ω̇T /N that should be applied

when the target is not in a uniform rotation. Since uniform target rotation is assumed throughout

this thesis, it holds that Ω̇T /N = 0.

In order to derive the equation of motion for the spacecraft angular velocity ωS/T , this

relative angular velocity is first defined as:

ωS/T = ωS/N − ωT /N (2.4)

Applying the transport theorem [101], the rate of change of this angular velocity is found as:

ω̇S/T = −[IS ]−1[ω̃S/N ][IS ]ωS/N + [IS ]−1Lc(X)− [ω̃S/N ]ωS/T (2.5)

in which [IS ] and [IT ] are the inertia matrices of respectively the spacecraft and the target, and Lc

is the net contact torques on the spacecraft. The angular velocity ωS/N can be computed using

Eq. 2.4. Since the target is assumed to be in uniform rotation, the fact that Ω̇T /N = 0 was used.

It is noted that the uniform rotation assumption is not true for all small bodies; indeed,

various bodies such as 4179 Toutatis and 253 Mathilde are observed to be non-principal axis rotators

[46, 90]. In order to study deployment to such complex rotators, one should account for this rotation

and apply Euler’s rigid body rotational equations to account for the Ω̇T /N term. For our purposes,

it is assumed that any nutation in the small-body rotation is small enough to have a negligible

effect on the statistics of the considered lander deployment scenarios. This assumption likely holds

for slow complex rotators such as Toutatis, whose effective slope changes by less than 0.1 degree

over the course of a rotation period, but may be invalid for fast-rotating bodies [103].

2.2 Shape

Small bodies such as asteroids and comets are not sufficiently large to be shaped into spheres

by self-gravitation [121], such that a more complex model is required to capture these bodies’

irregular shape. Here, the three models used to capture small-body shapes in this work are reviewed.
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2.2.1 Spherical harmonics

The spherical harmonic expansion uses the spherical coordinate set (r, φ, λ) to represent the

position of some surface point r. In this, r is the radius, φ is the latitude, and λ is the longitude of

r. The transformation between Cartesian and spherical coordinates can be performed with:

r =
√
x2 + y2 + z2

φ = arcsin
(
z
ρ

)
λ = arctan

( y
x

)
⇔ r(φ, λ) = r(φ, λ) ·


cosφ cosλ

cosφ sinλ

sinφ

 =


x

y

z

 (2.6)

In the spherical harmonics model, the radius r of a surface point is expressed as a Fourier series

function of its latitude and longitude, as [142]:

r(φ, λ) =
J∑
j=0

j∑
k=0

(Ajk · cos (kλ) +Bjk · sin (kλ)) · Pjk(sinφ) (2.7)

in which Ajk and Bjk are the degree j and order k spherical harmonic coefficients, and J is the

maximum degree of the considered shape model. Furthermore, Pjk is the degree j order k associated

Legendre function. These functions are most effectively computed using recursion, where the first

three terms are given as:

P0,0(x) = 1 and P1,0(x) = x and P1,1 =
√

1− x2 (2.8)

The other terms can be computed with the following recursion rules [128, p. 593]:

Pn,0 =
(2n−1)xPn−1,0−(n−1)Pn−2,0

n if n ≥ 2

Pn,m = Pn−2,m + (2n− 1)
√

1− x2Pn−1,m−1 if m 6= 0,m < n

Pn,n = (2n− 1)
√

1− x2Pn−1,m−1 if n 6= 0

(2.9)

It is noted that this spherical harmonic expansion is a continuous representation of a surface; it

can be evaluated at any arbitrary (φ, λ) and thus produce a shape of arbitrary resolution (though

the degree J of the model is limited by numerics). As an example, the J = 45 spherical harmonic

model of the Mars moon Phobos, as developed by [143], is shown on the left side of Fig. 2.2.
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Figure 2.2: (left) Spherical harmonic and (right) polyhedron shape model of Phobos

The spherical harmonic shape model works well for small bodies that are fairly spherical in

shape; in this case, relatively few Ajk and Bjk coefficients are sufficient to capture the global body

shape, and relatively little memory is required. Note that changes in the value of a single Ajk or

Bjk globally affect the shape of a body. Therefore, the inclusion of an additional surface feature on

top of an existing model generally requires reconfiguration of all coefficients. In other words, when

updated measurements need to be included into a spherical harmonic model, this generally requires

a re-fitting of all measurement data. This is a disadvantage of the spherical harmonic model for

shape model representation.

2.2.2 Polyhedron

The polyhedron model captures the shape of a small body as a collection of vertices with

three-dimensional coordinates, connected by triangular facets. Each facet consists of three edges,

with each edge being shared by two facets. This model has been used extensively in the field of

graphics and visualization, but has also become the most commonly used small-body shape model.

One of the model’s advantages is that it can be used to evaluate the gravitational field of a small
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body; a discussion of these techniques is provided in Section 2.4. For a quick visualization, the

right side of Fig. 2.2 illustrates a sample polyhedron shape model of Phobos and clearly shows the

model’s triangular facets. The resolution of a polyhedron model depends on the number of vertices

and facets of the considered model, which are likely to differ depending on the purpose of the model.

Regardless of the model resolution, Euler’s criterion states that for a closed polyhedron:

nV + nF − nE = 2 (2.10)

in which nV , nF , and nE are respectively the number of vertices, facets, and edges of a considered

polyhedron [93, pp. 66]. As noted above, each facet of a closed polyhedron consists of three edges,

with each edge shared by two facets. Therefore, the number of unique edges of a closed polyhedron

with triangular faces is equal to nE = 3
2nF . Substituting this into Eq. 2.10 results in:

nF = 2nV − 4

nE = 3nV − 6

(2.11)

This is a powerful formula that can be used to verify the consistency of a polyhedron model; this

should be done whenever an externally-provided shape model is to be used in simulation. If a given

model does not satisfy Eq. 2.11, it may contain holes, duplicate vertices, or non-manifold vertices

and/or edges. These defects can be repaired using the open-source MeshLab software [22].

The polyhedron model of Phobos previously shown in Fig. 2.2 is of relatively low resolution, so

as to allow for individual facets to be visible. Although low-resolution models are useful for gravity

representation (as will be discussed in Sec. 2.4), it is necessary to use high-resolution models for

shape representation. This is because low-resolution models may not sufficiently capture terrain

details, such as craters or hills, that can create basins of attraction or rejection for lander/rover

spacecraft. As an illustration, consider the high- and low-resolution models of asteroid Itokawa

shown in Fig. 2.3. Many of Itokawa’s smaller hills and boulders have clearly disappeared in the

low-resolution models; use of this model in simulation may bias the motion of deployed payloads.

The use of the polyhedron model for shape representation in lander/hopper simulations re-

quires computation of the minimum distance between the two, in order to detect collisions and con-
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Figure 2.3: (left) High- and (right) low-resolution polyhedron shape model of asteroid Itokawa.

tact between the two. This involves iteration over all features of that shape (vertices/edges/facets),

which is numerically burdensome when näıvely applied to a high-resolution model. This burden

can be reduced significantly through the application of two techniques: the division of the ‘global’

target surface into a number of smaller ‘local worlds’ and the use of bounding spheres. Although

the former was developed by Tardivel et al. [118, 120], it will play a central role in the generation

of polyhedral rocks on the small-body surface; it is therefore discussed in some detail. Our use

of bounding spheres is a novel development that significantly accelerates the collision detection

between a deployed probe and the (possibly rocky) small-body surface.

Atlas Prior to performing simulations, the atlas of the targeted small body is constructed.

This is done by creating a latitude-longitude grid where individual cells contain those target surface

features that fall within the cells’ coverage, taking into account some small additional angular

margin. In order to establish a consistent grid size across the surface, one atlas is created relative

to the rotation axis of the target (‘Z-atlas’) and a second relative to an axis in its equatorial plane

(‘X-atlas’). Each of the two atlases spans ±45◦ of respective latitude, thus covering the entire small

body surface with cells of similar size.

Fig. 2.4 illustrates the atlas, showing the coverage of the Z-atlas on the left, of the X-atlas in

the middle, and the features included in a sample local world on the right. In this sample world,

the solid black lines mark the latitude-longitude grid, the dashed line shows the margin applied to
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Figure 2.4: Illustration of the grids that comprise (left) the Z-atlas, (middle) the X-atlas, and
(right) the features included in a sample local world.

the central cell, the white triangles are the underlying faceted surface, and the red triangles are

those facets included in the local world of the central cell. Assuming a fixed probe shape, this atlas

needs to be pre-computed only once and can simply be loaded prior to running simulations, thus

decreasing the necessary overhead (though this does carry an additional memory cost).

When propagating probe motion, the simulation continuously updates the ‘active’ local world

based on the current probe latitude and longitude1 . The distance computation necessary to achieve

collision detection then only requires iteration over the handful of features in the active local world,

rather than iteration over all features of the entire small-body surface. This significantly reduces

the computational cost of performing collision detection with a high-resolution surface. Fig. 2.5

illustrates a simple two-dimensional example of how the active local world is updated throughout a

ballistic arc, with the simulation eventually converging on a probe-surface collision at time tc. The

collision convergence is carried out using a simple bisection method.

Note that although our twin-atlas method ensures consistent latitude-longitude grid sizes,

the number of facets per local world is not necessarily uniform. This is especially true for strongly

elongated or strongly non-convex targets. As an illustration of this fact, consider the three sample

worlds of asteroid Itokawa shown on the left side of Fig. 2.6. Although the angular size of all worlds

is the same, their surface coverage is significantly different, in particular for ‘world C’ on Itokawa’s

1 If the probe position corresponds to local worlds in both atlases, either can be used.
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Figure 2.5: Illustration of local world switching during collision convergence.

neck region. This is further illustrated on the right side of Fig. 2.6, where the number of facets on

the local worlds of Itokawa’s Z-atlas is plotted. Please note that, in this example, the size of the

local worlds has been exaggerated for visual purposes; local worlds typically contain about a dozen

facets. The figure shows that local worlds containing parts of the neck region indeed contain more

facets than those corresponding to other regions on the body. Although this phenomenon does not

hamper the collision detection process on asteroid Itokawa, it may reduce the computational gain

of the atlas on strongly non-convex targets, such as comet 67P/C-G. On such targets, a different

shape modeling approach may be considered, as will be discussed shortly.

Figure 2.6: Illustration of local world sizes on the polyhedron model of asteroid Itokawa.

Bounding spheres The efficiency of collision detection with respect to a polyhedral shape

model can be increased even further through the use of bounding spheres; one such sphere is
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defined for each local world, and fully encompasses that world with some radius Ri. Following this

definition, collisions between a probe and the active world are possible only when the probe has

crossed into the respective bounding sphere. Therefore, it is sufficient to simply compute the ‘coarse’

distance between the probe and the bounding sphere in most cases; the ‘fine’ distance computation

between the probe and all features of the local world is only carried out when the bounding sphere

has been crossed. This process is illustrated for a two-dimensional case in Fig. 2.7, where the

coarse bounding sphere computation is sufficient at t2, but where the fine feature computation is

necessary at t7. As this technique significantly reduces the number of times the computationally

expensive fine distance computation has to be performed, it reduces the overall computational cost

of collision detection. Note that the bounding spheres shown in Fig. 2.7 have their aforementioned

margins shown.

Figure 2.7: Illustration of bounding sphere usage in collision detection with a polyhedron model.

2.2.3 Signed distance field

Despite the extensive use of the polyhedron model in small-body research, it suffers from

some limitations that largely stem from its discrete and explicit nature. As previously mentioned,

collision detection and contact evaluation between a spacecraft and some surface requires distance

computations between the two. When performed naively with a polyhedron, the numerical burden

of these computations may be significant due to the resolution of the involved models. Although

local subdivisions of the surface (such as the longitude-latitude atlas discussed above) may reduce
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some of this burden, collision detection using polyhedra remains a significant cost in the simulation

of small-body probes. Furthermore, even high-resolution models are limited in terms of the smallest

surface features that can be captured and cannot account for smaller rocks and boulders on the

surface, even though these may significantly affect the motion of a lander. Although it is possible

to populate the surface with polyhedral rocks (as discussed further on), this inevitably further

increases the computational cost of collision detection.

As a third and final shape model, consider now the signed distance field (SDF), which has

seen frequent use for general visualization purposes but (to the best of our knowledge) has not

been used for small-body shape modeling. Prior to discussing the SDF, some general properties of

signed distance functions are reviewed, of which the SDF is one.

Signed distance functions Given some closed and bounded set Ω ⊂ R3, one can distin-

guish between the interior and exterior portions of the domain R3, denoted respectively Ω− and

Ω+. The border between the interior and exterior portions is known as the boundary or interface,

∂Ω [84]. These regions are illustrated in Fig. 2.8.

Figure 2.8: The signed distance function of a closed two-dimensional object.

When using the polyhedron model, this interface is represented explicitly as a collection of

vertices, edges, and facets. In contrast, a signed distance function represents the interface ∂Ω
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implicitly through some d(x) with the following properties:

d(x) = sgn(x) · min
∀cε∂Ω

‖x− c‖ with sgn(x) =



+ if x ε Ω+

0 if x ε ∂Ω

− if x ε Ω−

and ‖∇d(x)‖ = 1 (2.12)

in which ‖x−c‖ =
√

(x− c)T (x− c) is the Euclidean or L2 norm. In words, this function provides

the signed minimum distance between a point x and the interface ∂Ω. The distance is signed

because the function indicates whether x lies in the interior Ω− or exterior Ω+ portion of the

domain. The interface point corresponding to this minimum distance is denoted c∗, which can be

found from x and the signed distance function as [84]:

c∗ = x− d(x) · ∇d(x) (2.13)

In other words, the gradient ∇d(x) of the signed distance function corresponds to the surface

normal N̂ through both c∗ and x. As a simple example of a signed distance function, consider the

sphere with radius R and center at (0, 0, 0). The signed distance ds from a point x = (x, y, z) to

the surface of the sphere is easily found as:

ds(x) =
√
x2 + y2 + z2 −R =

√
xTx−R (2.14)

By differentiating Eq. 2.14, its gradient ∇ds is found as:

∇ds(x) =
x√
xTx

(2.15)

This gradient indeed has norm ‖∇ds(x)‖ = 1. The behavior of this signed distance function is

illustrated in Fig. 2.9, which shows three arbitrary sections of ds(x) around a sphere with radius

R = 5 m. As expected, the function has value ds = 0 at the surface of the sphere and increases in

value when moving away from the surface. Though not shown, the inverse behavior takes place on

the interior of the sphere, where the signed distance function takes on negative values.



26

Figure 2.9: Sections of the signed distance function ds(x) of a sphere.

The signed distance field When using a simple shape such as the sphere shown above,

the corresponding signed distance function is relatively simple. The spherical harmonics shape

model discussed above is an example of a more complex signed distance function. Although this

can be used to capture the shape of more irregular targets, it holds that arbitrary-shaped objects

such as comet 67P/Churyumov-Gerasimenko (shown in Fig. 2.11) do not have a simple analytic

surface expression that can be molded into a distance function. In this case, one can make use of

a signed distance field (SDF). An SDF is a three-dimensional grid around an object with its mesh

points storing the minimum signed distance between that object and the respective points [51]. An

interpolation method can then be used to sample the distance field at intermediate points. Here,

a simple tri-linear interpolator is used. To illustrate the application of this interpolator, generic

4× 3× 4 voxel (volumetric pixel) field is shown on the left side of Fig. 2.10.

A few points xi,j,k of the field are highlighted. In principle, the voxels can be cuboids with

different dimensions along the X, Y, and Z axes. Here, it is assumed that the voxels are cubes

with side ∆x. It is further assumed that the signed distance field d(x) has been evaluated at all
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Figure 2.10: Illustration of the tri-linear SDF interpolation.

xi,j,k and simply wish to linearly interpolate the field at some point x = (x, y, z). To perform this

interpolation, the eight grid values that surround x with a single cube are selected, as illustrated

on the right side of Fig. 2.10. Within this cube, the grid point with minimum coordinates along the

X, Y, and Z axes (on the ‘bottom left’ of the cube) defines the (x0, y0, z0) coordinates. To evaluate

d(x), the non-dimensionalized coordinates x̂ within the selected voxel are first computed:

x̂ =


x̂

ŷ

ẑ

 =


x−x0
x1−x0

y−y0
y1−y0

z−z0
z1−z0

 (2.16)

in which the subscripts 0 and 1 refer to respectively the minimum and maximum values encountered

among the eight corners of the cuboid. This ensures that 0 ≤ {x̂, ŷ, ẑ} ≤ 1. Using the tri-linear

interpolator, d(x) can then be found as [91, 14]:

d(x) = κ0 + κ1x̂+ κ2ŷ + κ3ẑ + κ4x̂ŷ + κ5ŷẑ + κ6x̂ẑ + κ7x̂ŷẑ (2.17)
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in which the κi values are equal to:

κ0 = d(0, 0, 0)

κ1 = d(1, 0, 0)− d(0, 0, 0)

κ2 = d(0, 1, 0)− d(0, 0, 0)

κ3 = d(0, 0, 1)− d(0, 0, 0)

κ4 = d(0, 0, 0)− d(1, 0, 0)− d(0, 1, 0) + d(1, 1, 0)

κ5 = d(0, 0, 0)− d(0, 1, 0)− d(0, 0, 1) + d(0, 1, 1)

κ6 = d(0, 0, 0)− d(1, 0, 0)− d(0, 0, 1) + d(1, 0, 1)

κ7 = −d(0, 0, 0) + d(1, 0, 0) + d(0, 1, 0) + d(0, 0, 1)

−d(1, 1, 0)− d(0, 1, 1)− d(1, 0, 1) + d(1, 1, 1)

(2.18)

Additionally, the partial derivatives of Eq. 2.17 yield the gradient of the scalar field d(x), as:

∇d(x) =
1

∆x


κ1 + κ4ŷ + κ6ẑ + κ7ŷẑ

κ2 + κ5ẑ + κ4x̂+ κ7x̂ẑ

κ3 + κ6x̂+ κ5ŷ + κ7x̂ŷ

 (2.19)

The 1/∆x factor is included in order to obtain the gradient of the field in dimensional coordinates,

rather than the normalized x̂ coordinates. Finally, the Hessian (or second-order gradient) of the

field can be found from Eq. 2.19 as:

∇∇d(x) =
1

∆x2


0 κ4 + κ7ẑ κ6 + κ7ŷ

κ4 + κ7ẑ 0 κ5 + κ7x̂

κ6 + κ7ŷ κ5 + κ7x̂ 0

 (2.20)

By using Eqs. 2.16 through 2.19, the pre-computed values of the SDF can be interpolated at some

intermediate x point, yielding both the minimum distance between x and the small-body surface,

as well as the corresponding normal. Although it was stated in Eq. 2.12 that signed distance

functions satisfy ‖∇d(x)‖ = 1, the application of a linear interpolator breaks this property. The
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surface gradient obtained with Eq. 2.19 must therefore be normalized in order to obtain the surface

normal N̂ at x, i.e.:

N̂ =
∇d(x)

‖∇d(x)‖
(2.21)

Similarly, Eq. 2.13 must be iterated in order to converge on the surface crossing c∗ along some

surface normal, when using the SDF.

Discussion One important detail that has not yet been addressed is the generation of the

initial SDF mesh point values d(i, j, k). Fortunately, extensive literature exists on the conversion of

polyhedron models into signed distance fields, see for example Osher and Fedkiw [84], Sigg, Peikert,

and Gross [107], or Jones, Bærentzen, and Šránek [51]. Here, the open-source SDFGen tool by Batty

[8] is used. This allows for a sampling of the signed distance function of some polyhedron model

at the desired mesh points, and the construction of the corresponding signed distance field. The

resulting SDF can then be interpolated during simulation. As an example, slices of the equivalent

SDF model of 67P/C-G are shown in Fig. 2.11.

Figure 2.11: Sections of the SDF of comet 67P/C-G.
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At first glance, this approach may appear to be a simple recasting of the polyhedron model.

However, consider the following: when using a polyhedron shape model, distance computation re-

quires iteration over a set of surface features, either the entire shape or some subset of the shape.

Generally speaking, the numerical burden of this iteration scales with r3 when the resolution r of the

underlying shape is increased. In contrast, when using the SDF, a distance computation involves

only a single, cheap evaluation of the tri-linear interpolant with Eq. 2.17. The cost of this compu-

tation is independent of the resolution of the SDF. Although the use of a higher resolution SDF

will increase the pre-computational cost, the simulation-time effort of a low- and high-resolution

model will be the same, assuming no procedural noise is added.

On a final note, consider briefly the physical shape of the surface that is represented by an

SDF. For a polyhedron, the shape is obvious: it is simply a collection of flat, triangular faces. For

the SDF, the shape is not obvious. Indeed, Lopes and Brodlie point out that the use of a tri-

linear interpolator may result in complex shapes [61]. The particular shape of the isosurface within

any given voxel will differ depending on which of its eight di,j,k values are positive and which are

negative. As an example, consider Fig. 2.12, taken from [61]. This shows that the SDF is indeed

capable of representing quite complex shapes. However, given the relative smoothness of global

small-body shape models, most of the voxels in a small-body SDF take the form of examples 1, 2,

5, or 8 from Fig. 2.12, and are relatively (though not perfectly) flat. This makes sense, since the

SDF shape models are constructed from a base polyhedron shape with flat facets.

2.3 Statistical features

The small-body shape models discussed in Section 2.2 are able to capture the complex and

irregular shape that many of these bodies have. Any such model has a corresponding resolution r

that relates to the smallest surface detail resolved by the model. The resolution of a polyhedron

model is quantified by the size of its facets, though it is possible for this facet size to vary significantly

across any given shape. For an SDF, the resolution is simply expressed by the size of its voxels.

At low resolutions, these models must have smooth surfaces without small features suck as rocks,
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Figure 2.12: Surface shapes captured by a tri-linear interpolator. Taken from [61].

boulders, or cliffs. In order to resolve these features, the model resolution must be decreased. When

the model resolution is halved, it generally holds that the number of model elements multiplies

eightfold. This is most clear for the SDF, where the number of voxels r ∝ r3. As a result, the

memory storage requirements of a small-body shape model grow strongly as it is built to resolve

smaller and smaller features. At some limit feature size, the model will occupy so much computer

memory that simulation of surface exploration probes is no longer possible. A second, more external

limit on the best-available model resolution also exists: in order to resolve small surface features

such as rocks, a spacecraft must image the small-body surface from low altitude. This operation is

often perceived as risky, such that high-resolution imagery is only taken at a few sites of interest and

is not available globally; shape models therefore cannot include small rocks on the target surface.

Even if the high-resolution imaging could be performed risk-free, the sheer physical size of the

produced image files could not be returned to Earth in any practical amount of time.
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Nevertheless, the presence of small surface features may significantly affect the motion of a

deployed payload. This is obvious from intuition on Earth: a basketball thrown onto a flat surface

displays distinctly different bouncing motion compared to a ball thrown onto a boulder field. This

poses a challenge: how can the presence of rocks, boulders, and similar features on the small-body

surface be accounted for during simulation, without exceeding the available computer memory, or

without information on the precise location of such features?

One solution to this problem is the use of a stochastic rock model, as done by Tardivel et al.

[118] for spherical probes. In this model, a large number of test simulations on a small, flat, and

rocky surface are used to generate statistics of spacecraft-rock collisions, such as the distribution of

the impact point across the probe shell. These statistics are then used in deployment simulations

to impose a justified degree of randomness on surface collisions. Using this strategy, it is possible

to account for the presence of surface rocks without requiring creation and storage of any rocks. In

other words, the stochastic model uses virtual rocks that impose a justified degree of randomness

on the impulses imparted on the lander during collision. A similar technique can be used to account

for the presence of rocks during continued contact motion, using the mean free path traveled by a

surface exploration probe before impacting a rock. Unfortunately, stochastic models have a number

of drawbacks, the most important of which relates to the conditions under which a probe can settle

on the small body surface; Fig. 2.13 is used to illustrate this point.

When instead using a persistent rock model that spawns rocks onto the small-body surface,

it is possible for a probe to become lodged against a rock and settle on some steep slope δ, as seen

on the left side of Fig. 2.13. When using a stochastic model instead, the probe does not encounter

a solid rock, but is instead subjected to a random impulse that will likely send it on a brief ballistic

arc, as shown on the right side of Fig. 2.13. The probe cannot settle on the steep slope, as there

is no surface against which it can become lodged; the simulation effectively ‘forgets’ about the

existence of the rock as soon as the impulse has been applied. As a result, the stochastic model

is biased towards settling regions with a low slope. Similarly, it is possible for grazing impacts to

be ignored when using a stochastic model, whereas a collision with a rock would be detected if
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instead using the persistent rock model. This is illustrated in Fig. 2.14. These limitations should

be most prominent when the range of motion of the probe, i.e., its velocity is small, but may

significantly affect the settling statistics of a batch of simulations. This will be shown further on,

in Section 4.1. In order to generate the proper level of simulation fidelity, it is thus considered

necessary to use some form of persistent rock modeling in our simulations. An additional reason

to prefer the use of a persistent rock model over a stochastic one relates to the manner in which

the latter is constructed. Given that stochastic rock models are defined using results from some

sample set of simulations with a specific probe and rock field, the model cannot be easily adjusted

to account for other probes and rock fields. Instead, the sample simulations must be repeated and

statistically fitted to some distribution. This is an impractical process when one attempts to do

broad studies in which both the probe shape and rock field are continuously adjusted.

Figure 2.13: Stochastic rock models bias lander settling towards low-slope regions.

Figure 2.14: Stochastic rock models may fail to capture grazing impacts.
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2.3.1 Polyhedral rocks

As mentioned, it is numerically infeasible to generate and store rocks on the entire polyhedron

model of a small body. Fortunately, our subdivision of the global surface into smaller local worlds

using the atlas discussed in Section 2.2.2 may be exploited to enable a suitable rock generation

method. Recall that a probe can only collide with the active local world; it is therefore sufficient

to only create and place rocks on the active world. Rock distributions on Earth typically follow

a power law; this relationship was also observed by the Hayabusa spacecraft on asteroid Itokawa

[68]. The total number of rocks K larger than some size smin per unit surface area is given by a

power law with power index α as [118]:

K = k0

(
s0

smin

)α
(2.22)

in which k0 is the number of rocks larger than some size s0; these two numbers effectively ‘initialize’

the distribution governed by α. Given the surface area of each triangular facet in the active local

world, Eq. 2.22 determines the number of rocks larger than some size s on that facet. The size of

each rock is described by a Pareto random number, which can be computed from a uniform random

number y = U(0, 1), as [118]:

s =
smin

(1− βy)1/α
with β = 1−

(
smin

smax

)α
(2.23)

in which smin and smax are the minimum and maximum allowed size of the rocks. Each rock

is initially shaped as a regular icosahedron with diameter s, whose vertices are then randomly

deformed following a Gaussian deformation with zero mean and standard deviation σ along each

Cartesian axis. The rocks are then randomly rotated and randomly placed on the considered facet.

Finally, the rocks are sunk to some random depth, uniformly generated between rmin and rmax,

which are expressed as a ratio of the corresponding rock size s. By repeating this process for all

rocks on all facets of the active local world, a local world can be populated with rocks following a

particular distribution. The creation process is illustrated for a single rock in Fig. 2.15; a sample

rock-populated local world is shown on the right side of Fig. 2.16.
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Figure 2.15: Illustration of the rock creation algorithm.

Figure 2.16: (left) Itokawa’s rocky surface [74] and (right) active local world with procedurally
generated rocks.

This technique is effective at quickly populating a local world on a polyhedron model, based

on a handful of parameters and a series of random numbers. In order to ensure consistent and

repeatable generation of rocks, the random number generator (RNG) is reinitialized before gen-

erating rocks on each facet. The seed of this initialization is equal to the identifying number of

the considered facet. As that number is unique to each facet, this RNG initialization ensures that

the same set of rocks will always be generated on the same facet, across all simulated trajectories,

without needing to ‘remember’ previously generated rocks in memory. The rock distribution is

effectively stored in the algorithm used to generate the (pseudo-)random numbers.

In order to minimize the computational effort required to detection collisions between a probe

and rocks on a local world, each rocks given its own bounding sphere, in analogy with the local

world bounding spheres discussed in Section 2.2.2. These bounding spheres are again used to switch

between coarse and fine distance checks. The use of bounding spheres is extremely important in



36

this case, as a local world may contain a large number of rocks, such that performing fine distance

checks to each individual rock would be resource-consuming.

2.3.2 Fractal noise

The procedural rock creation algorithm discussed above can be used to create explicit, poly-

hedral rocks. Although this technique is successful, it carries a significant computational load, in

particular when the considered rock distribution includes many features. When discussing small-

body shape models in Section 2.2, the use of the implicit SDF shape model was found to provide

significant advantages over the commonly-used explicit polyhedron shape model. In a similar sense,

it is possible to instead use implicit models to account for small features on a given surface. For

this, procedural modeling techniques are used. We quote Ebert et al. from their book on procedural

modeling and repeat the following: “One of the most important features of procedural techniques is

abstraction. In a procedural approach, rather than explicitly specifying and storing all the complex

details of a scene, they are abstracted into a function or algorithm (i.e., a procedure) and evaluate

that procedure when and where needed. We gain a storage savings, as the details are no longer ex-

plicitly specified but implicit in the procedure, and the time requirements for specification of details

are shifted from the programmer to the computer. This allows us to create inherent multi-resolution

models and textures that we can evaluate to the resolution needed.” [30, p. 2].

Procedural techniques are used extensively for the generation of a variety of digital features,

including, but not limited to: textures, flowers, trees, and terrain. The application of procedural

techniques for the generation of one- or two-dimensional terrain features typically takes the form

of a height field. In this, we start with some externally-defined base terrain; in the simplest form,

this is a flat plane with height z = 0 everywhere. Some procedural technique is then employed

to modify the height field and generate some z(x, y) to introduce certain features onto the plane.

A variety of such procedures exist, though the some of the most commonly applied ones make

use of fractals. This is because fractals allow for the creation of realistic terrain features, since

most natural features on Earth are of fractal nature and display a high degree of self-similarity.
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For example, the relative roughness present in large ridges on a mountainside is also present at

a smaller scales in boulders on that mountain, and again in smaller rocks, and again in grains of

sand. Effectively, this kind of fractal geometry consists of a repetition of some pattern at different

scales. To illustrate how these fractals may be used to generate surface features on a small body,

a simple one-dimensional example is first examined.

Uniform noise field Consider a simple flat line, as marked with dots on the top of

Fig. 2.17. Sixteen uniform random numbers U(−0.5, 0.5) are generated, which provide height val-

ues above the line of 16 points spaced ∆x = 1 m apart. When one linearly interpolates between

these points along the x-direction, a series of jagged peaks appears, as done on the top of Fig. 2.17.

In order to generate smoother features, a higher-order interpolant could be used. Although this

is relatively straightforward in this one-dimensional example, higher-order interpolation in three

dimensions becomes quite mathematically involved and may significantly slow down collision detec-

tion during simulation. Instead, the interpolator is therefore modified with a quintic function that

smooths the values of the height field [48]. This results in the smoother terrain features shown in

the middle of Fig. 2.17. For clarity, the equations used to linearly interpolate the random numbers

are provided, both without (lerp) and with (qlerp) the quintic smoother:
h̄lerp(x) = h0 + t · (h1 − h0) with t = x−x0

x1−x0

h̄qlerp(x) = h0 + tq · (h1 − h0) with tq = t3 · (t · (6t− 15) + 10)

(2.24)

Note that the application of the quintic curve does not change the extremum values of this

random ‘noise’ field; it merely smooths the peaks and values such that they do not appear as jagged.

Finally, also note that in the top two plots of Fig. 2.17, the vertical scale has been exaggerated.

The true scale is visible in the plot at the bottom of the figure. In summary, this simple example

shows how a small set of random numbers can be used to perturb a flat line into a noisy, bumpy

surface. Using the modulo operator, this piece of surface can be easily repeated without needing to

store any additional random numbers. This is also illustrated in Fig. 2.17, where blue lines indicate

a repetition of the original 16-meter domain covered by the 16 random numbers.
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Figure 2.17: Interpolation of a one-dimensional noise field.

Amplitude and frequency modulation Fig. 2.17 illustrated a base noise field in which

random numbers were placed ∆x = 1 m with a maximum height different of ∆h = 1 m. This fixes

the horizontal and vertical sizes of the created features. The same set of 16 random numbers may

also be used to create features of different sizes, by modulating the original noise field with some

amplitude A and frequency f , as:

hqlerp(x) = A · h̄qlerp(f · x) (2.25)

Figs. 2.18 and 2.19 illustrate the effect of using, respectively, different A and f values on the resulting

noise field. In other words, the size of the generated features can be controlled by adjusting A and

f , in order to match some realistic distribution observed on a small body.

Fractional Brownian motion The above discussion illustrated independent variation of

the amplitude A and frequency f in order to modulate some source noise field. By adjusting these

two parameters at the same time, it is possible to generate features of varying sizes. In Fig. 2.20,

four (individual) octaves of noise corresponding to different sets of (A, f) are illustrated.
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Figure 2.18: Interpolation of a one-dimensional noise field for varying A, with fixed f = 1 m−1.

Figure 2.19: Interpolation of a one-dimensional noise field for varying f , with fixed A = 1 m.
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Figure 2.20: Interpolation of a one-dimensional noise field for varying (A, f) pairs.

Although it is possible to arbitrarily changeA and f between successive octaves, the commonly-

used fractional Brownian motion algorithm specifies that the amplitude Ai and frequency fi of the

i-th octave of noise are given by:

Ai = A0 · L−Hi

fi = f0 · Li
(2.26)

in which L is called the lacunarity and H is the fractal increment. Barnsley et al. note that

“the value H ∼ 0.8 is empirically a good choice for many natural phenomena” such as mountain

ranges, coastlines, cliffs, boulders, rocks, and pebbles [31]. Furthermore, Ebert et al. note that a

lacunarity of L ∼ 2 works well for most purposes [30]. In order to avoid overlapping the frequencies,

an irrational lacunarity of L = 2π/3 ≈ 2.0744 is chosen. Using these values restricts the number of

free parameters to the initial amplitude A0, the initial frequency f0, and the number of octaves n to

consider. When multiple of these octaves are added together of noise, as is illustrated in Fig. 2.21,

the result is a random-looking surface that does not repeat, but is nevertheless parametrizable with

only three numbers. In terms of memory storage, it only requires storage of the 16 initial random

numbers to be modulated (this number can be increased at will to further increase the degree of

randomness of the surface).
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Figure 2.21: Interpolation of a one-dimensional noise field for increasing number of octaves.

Extension to 2D and 3D Fractional Brownian motion can also be applied in a straight-

forward manner to generate surface detail in two dimensions. Starting with a flat plane, a two-

dimensional grid of random numbers can be modulated and interpolated, analogous to the one-

dimensional example shown above, to generate a height field above the plane. This is illustrated in

Fig. 2.22, where a standard basketball is included for scale.

Figure 2.22: Interpolation of a two-dimensional noise field for increasing number of octaves.
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Finally, in order to apply fractional Brownian motion to a three-dimensional object, the

signed distance field can be used. A three-dimensional grid of random numbers is first generated,

which is then interpolate linearly in analogy with our previous discussions. The interpolated noise

field is then superimposed onto the SDF, such that the signed distance to the noisy surface is

computed as:

d(x) = dSDF (x) + dfBm(x) with dfBm(x) =

n∑
i=0

Ai · u(fi · x) (2.27)

in which u(...) is the function that samples and linearly interpolates the three-dimensional random

number grid. If this grid is built on random numbers U(−0.5, 0.5), the mean noise perturbation

must be zero. In other words, the expected value of the target volume remains unchanged by this

creation of random surface features. As a final illustration, Fig. 2.23 shows how the small-body

surface changes as an increasing number of noise octaves are added.

Figure 2.23: Interpolation of a three-dimensional noise field for increasing number of octaves..

Noise resolution Using fractional Brownian motion, it is possible to generate surface

detail of arbitrarily large or small size. It is therefore natural to ask: what is the size range across

which features should be generated on a small body? An upper size limit can be established by

determining the resolution of the small-body shape model on which features are to be generated.

Given that our SDF implementation is generated from polyhedron shape models, it is instructive

to examine the resolution statistics of such a model. The surface area Af of a triangular facet can
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be computed as:

Af =
1

2
(P1 −P0)× (P2 −P0) (2.28)

in which P0, P1, and P2 are the three vertices of the considered facet. Assuming that the facets

are equilateral triangles, their corresponding side length sf is found as:

sf = 2

√
Af
3

(2.29)

As an example, Fig. 2.24 provides histograms of the facet area and side length distribution of

Itokawa’s 320,000-facet model. The figure also graphically shows the distribution of the facet

areas. The mean side length is s̄ = 1.61 m, with a standard deviation of σs = 0.50 m. The facets

tend to be larger in the relatively flat Sagamihara and Muses Sea regions. These statistics suggest

that the SDF of asteroid Itokawa will approximately match the resolution of the source polyhedron

model when using a voxel resolution of ∆x = 1.6 m.

Figure 2.24: Facet resolutions on Itokawa.

Based on this resolution, one may be inclined to generate surface features up to 1.6 m in size

on Itokawa’s surface. However, the shape models of most small bodies only account for surface

features several times larger than their actual spatial resolution. Hudson et al. state this in their

paper on the development of a shape model of asteroid Toutatis, by saying that “It is much more

likely that Toutatis does not have structure that is evident in our model: we have chosen to prefer

understating relief rather than to risk overstating it.” [47] In other words, small-body shape models

tend to have an actual resolution several times greater than what is implied by the facet size. For
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Itokawa, features up to 3 · s = 4.8 m in height and width are therefore included onto the asteroid’s

base shape model. In order to select the fBm parameters that generate features up to some hmax

in size, recognize that this hmax is a simple geometric series:

hmax = A0 +A0 · L−H +A0 · L−2H +A0 · L−3H + ... (2.30)

This series can be rewritten as:

hmax = A0

n∑
i=0

L−Hi =
A0 · L−Hi

(
LH(n+1) − 1

)
LH − 1

(2.31)

Rewriting this expression, the initial amplitude A0 that should be used to generate a maximum

height of hmax in n octaves can be determined, given some lacunarity L and fractal increment H:

A0 =
hmax

(
LH − 1

)
L−Hi

(
LH(n+1) − 1

) (2.32)

Probe resolution Section 2.5 detailed the contact model used to evaluate collisions and

continued contact motion between a surface exploration probe and the small-body surface. The

contact forces exerted on the probe by the surface act at the vertices of the former. In other words,

the surface effectively only ‘sees’ the vertices of the probe shape model. This is not so much a

choice made in the development of the applied contact model, but rather a result from the use

of the implicit SDF shape model. As previously illustrated in Fig. 2.12, the surface expressed by

an SDF is rarely every perfectly flat, even if the underlying polyhedron model from which it is

constructed is flat. As a result, it is generally not possible for e.g. an edge of the spacecraft to be

fully in contact with the SDF surface, without allowing penetration of that surface. Nevertheless,

it is possible for any point along the considered edge to be in contact with the surface. As a result,

the number of vertices distributed across the shell of a considered probe affects that probe’s ability

to ‘resolve’ surface features of a given size. This is more clearly illustrated in Fig. 2.25, which

depicts the surface impact of two different probes: one low-resolution probe with vertices only at

its corners, and one high-resolution probe with additional vertices distributed across its faces. It

can be seen that surface features smaller than the probe are able to penetrate the shell of the

low-resolution probe quite significantly before contact is detected. In contrast, the high-resolution
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probe interacts much more realistically with the surface feature. Furthermore, the low-resolution

probe must always impact on its corners, while the high-resolution probe can impact in the middle

of an edge or facet. Although such impacts do not occur for smooth surfaces that undulate at

spatial periods several times greater than the probe size, they may occur often for surfaces with

small surface features.

The reason for this is that with the SDF, because of the shape it has, you cannot have a hard

contact with an entire edge or facet. It’s because the SDF surface is almost never perfectly flat.

Furthermore, it’s easy to know what geometry between a triangular facet and the edge of a lander

actually touches along the edge. This isn’t true for the SDF, because the edge is a continuous

object. But the SDF varies, so the intersection between e.g. an SDF and a plane is not obvious.

Figure 2.25: (left) Low- and (right) high-resolution probe models resolve surface impacts differently.

It is clear from the above illustration that the geometry between the surface normal N̂ and

the collision vector r will differ between low- and high-resolution probe shapes when small surface

features are included. For the particular example shown, note that the normal force creates a

clockwise (negative) torque on the low-resolution model, but a counterclockwise (positive) torque

on the high-resolution model. It is stressed again that the consideration of probe resolution is only

relevant when the target surface contains features smaller than the probe itself.
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In order to properly resolve collisions when this occurs, the probe shapes are tessellated using

a midpoint triangulation. Fig. 2.26 illustrates the generation of additional vertices across the shell

of the octahedron as repeated tessellations are performed. To quantify the tessellation level required

to resolve surface features of a given size, the mean distance between adjacent vertices of the five

platonic solids with m = 5 kg and ρ = 500 kg/m3 is computed. These are plotted in Fig. 2.27 for

increasing tessellation levels. This shows that the vertex resolution decreases exponentially as with

respect to the tessellation level.

Figure 2.26: Progressive tessellation of an octahedron.

Figure 2.27: Vertex resolution as a function of the tessellation level for the platonic solids.

The trends of this figure suggest that the tetrahedron requires 2 additional tessellations in

order to achieve the same vertex resolution as the dodecahedron. This result makes intuitive sense:

near-spherical shapes such as the dodecahedron have a lower area-to-mass ratio than less spherical

shapes such as the tetrahedron. If a shape has lower surface area, it also requires fewer vertices to

achieve some inter-vertex distance than a shape with higher surface area.
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Even when using a tessellated probe shape, one final issue must be addressed in order to

properly resolve impacts on a noisy surface; Fig. 2.28 is used to illustrate this. Consider the left

side of the figure, where a rectangular probe impacts a tiny surface feature. Although the probe is

tessellated to allow for the resolution of small features, the considered feature is still small enough

to partially penetrate into the probe before impact is detected. As a result, the use of the surface

normal N̂0 is incorrect: if the vertex resolution were infinitely small such that no penetration

occurs, the surface normal at impact would be equal to the normal N̂1 of the impacted edge. One

final adjustment to our collision resolution is therefore made: whenever an impact is detected, the

vector N̂, that defines the normal and tangential directions in which respectively restitution and

friction act, is selected based on the ‘type’ of probe vertex that is impacted:

Impact on a



corner vertex: use the surface normal N̂0 = ∇d(x)

edge vertex: use the modified surface normal N1 = N̂0 −
(
N̂0 · ê

)
ê

facet vertex: use the negative facet normal − N̂F

(2.33)

Note that the modified surface normal N1 in Eq. 2.33 must be normalized before use. On the right

side of Fig. 2.28, the three vertex types are illustrated on a tessellated cube.

Figure 2.28: Modification of the impact normal.
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2.3.3 Procedurally seeded rocks

The two previous sections have detailed different ways of including statistical surface features

onto the small-body surface. The first, the polyhedral rock model, can be easily tuned to match

observations of some target body, as made by an orbiting spacecraft. This rock model is explicit :

the individual rocks consist of vertices and facets; collision detection is expensive for such models

This is especially true when the rocks are very densely distributed across the surface, or if very

small rocks (of which there may be very many) are considered. Furthermore, this type of explicit

model is incompatible with the implicit SDF shape model. This makes it poorly adaptable to fast,

parallelized simulations. The second model, using fractional Brownian motion, is a fully procedural

technique that generates surface features at very low computational cost. However, due to the

‘random’ nature of the model, it is not obvious how the fBm parameters may be tuned in order

to match surface observations. Furthermore, fBm affects the entire small-body surface, whereas in

reality the surface may be flat with dispersed rocks placed on top of that flat surface.

Having demonstrated the use of both techniques, it is natural to wonder: is there some way

in which the polyhedral rock and fractional Brownian motion models can be combined, in order to

produce a fully procedural, yet tuneable rock model? In other words, is it possible to convert the

polyhedral rock model into a distance field-like procedure?

Seeded textures The fractional Brownian motion features are constructed from an ini-

tial ‘texture’ consisting of uniform random numbers. By modulating these numbers at different

amplitudes and frequencies, and simply summing the different octaves of noise to the SDF model,

small surface features can be generated. Instead of using random numbers to construct the noise

texture, let us consider applying a more structured approach, and make use of the distance field

around a set of rocks. To understand this process, consider first a two-dimensional example, similar

to that shown previously in Fig. 2.22 for the fBm noise. This example is shown in Fig. 2.29, which

visualizes the height field corresponding to a population of spherical rocks on a flat plane. This

texture is also shown from a top view on the left side of Fig. 2.30.
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The texture is constructed with periodic boundaries, such that it can be tiled indefinitely

to populate an infinite plane with rocks, as shown on the right side of Fig. 2.30. By adjusting

the size and spatial density of rocks in the small initial texture, the rock population can be tuned

to match some particular distribution. This is a promising results, though it is obvious that the

periodic tiling does not generate a ‘realistic’ population of rocks; a real rock field will be much more

randomized.

Figure 2.29: Height field of a spherical rock field.

Figure 2.30: Periodic tiling of the spherical rock field.
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To mitigate this issue, the methodology by Quilez [49] to aperiodically tile a two-dimensional

texture is followed; the method easily extends to the three-dimensional case as well. For the mo-

ment, though, let us continue to investigate the two-dimensional example. In order to aperiodically

tile the rock texture, a second texture that contains uniform random numbers between 0 and 8

is first sampled. These random numbers are used to establish some texture index, i, across the

considered surface, as illustrated on the left side of Fig. 2.31. This index will have some integer

part, k = floor(i) and some fractional part, q = i− k.

Eight distinct tilings of the noise texture are now defined. Although all eight tilings are

periodic, they are performed with some pseudorandom offset. That is, the noise texture sampling

at position x is performed at position xk in the respective eight tilings:

xk = [C(k)] (x + ok) (2.34)

in which the rotation matrix [C(k)] is defined as:

[C(k)] =

 cos (k) sin (k)

− sin (k) cos (k)

 (2.35)

and in which the offset vector ok is defined as:

ok =

sin (3k)

sin (7k)

 (2.36)

In these expressions, the sine function effectively acts as a hashing that generates a random offset

and orientation for each of the eight periodic tilings of the rock texture. In other words, they

produce eight versions of the right side of Fig. 2.30, each of which has a random offset and rotation.

Using these eight periodic tilings, an aperiodic tiling can be achieved by sampling each of the

eight versions of the texture in the respective regions defined by the integer part, k, of the texture

index i. By using the fractional part, q, of the index, it is possible to smoothly blend between the

eight periodic tilings, in order to obtain the aperiodic tiling shown on the right side of Fig. 2.31

and in Fig. 2.32. For more detail on the blending algorithm, the reader is referred to [49].
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Although the tiling will still repeat over the scale of the random number texture from which

the tiling indices i are obtained, the sampling frequency of this texture is generally low enough such

that that spatial period of repetition is very large. The repetition will therefore not be noticeable

over the scale of probe deployment simulations.

Figure 2.31: (left) Texture index and (right) corresponding aperiodic tiling of spherical rocks.

Figure 2.32: Three-dimensional view of the aperiodic tiling of spherical rocks.
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Extension to 3D The extension of the two-dimensional to a three-dimensional rock pop-

ulation is achieved by following the same approach of the fBm, namely, by replacing the height

field with a distance field. In order to do so, the distance function to some complexly-shaped rock

is required. Although it is possible to construct the distance field around a set of polyhedral rocks,

it is simpler to use the generalized distance functions by [4], which are given as:

dpsr(x) =

(
b∑
i=a

|ni · v|p
)1/p

−R with v = [C] (x− x0) (2.37)

In this expression, x0 is the center of the considered rock, [C] expresses its attitude as a direction

cosine matrix, and R is its radius. Furthermore, ni are a set of unit vectors that can be found in [4].

The shape of the resulting rock is determined by the range [a, b] of vectors ni that are considered

in the series of Eq. 2.37. A few sample shapes are shown in Fig. 2.33. Finally, the value of the

norm p determines the ‘sharpness’ of the considered shape, as illustrated in Fig. 2.34.

Figure 2.33: Realization of generalized distance fields of various shapes with p = 100.

Figure 2.34: Distance field of an icosahedron (a = 4 and b = 13), for different values of the norm p.
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It is possible to construct a distance field around a set of rocks using Eq. 2.37. On a two-

dimensional texture with surface area A, Eq. 2.22 can be directly used to determine the number of

rocks across that texture. For a three-dimensional texture, it becomes necessary to distribute the

rocks three-dimensionally. For this, the average diameter d̄ of the rocks of the considered population

is first computed, using Eq. 2.23. Assuming that the K rocks on the two-dimensional area A fill

d̄L2 of volume, an equivalently-filling population within a cube of volume L3 must then contain

K3 = K2
L
d̄

rocks. The K3 rocks are then each given a diameter d, using Eq. 2.23, and placed with

random position and attitude in the three-dimensional texture. The generalized distance functions

are then used to compute the corresponding distance field, which is again made periodic. As an

example, Fig. 2.35 shows a sample distance field around a set of rocks. Only the points with

negative distance value are shown; the points are also colored according to their z-coordinate for

increased perspective. Side views along the three planes can also be found in Fig. 2.36.

Figure 2.35: Three-dimensional view of a distance field used to generate procedurally seeded rocks.
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Figure 2.36: Two-dimensional view of a distance field used to generate procedurally seeded rocks.

In order to include these procedurally seeded rocks (PSRs) onto a signed distance field shape

model, it is necessary to restrict the corresponding rock texture to contain only negative distance

values; all positive distance values are set to zero. To illustrate why this is necessary, considered

Fig. 2.37. The left side of the figure illustrates PSRs generated with an unmodified distance texture.

It can be seen that such a texture generates a ‘continuous’ rock population, in which rocks always

touch one another, and under which the original surface is no longer visible. Reviewing the right

side of the figure, which uses a strictly negative distance texture, the desired behavior is seen,

with dispersed rocks that leave the original surface visible. This approach is preferable for obvious

reasons, but does have one downside: it distorts the shape of the considered rocks.

Figure 2.37: PSRs generated using (left) an unmodified and (right) a strictly negative distance
field.
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To understand why this distortion occurs, consider the simple example of Fig. 2.38. This

shows the height field above a simple line (shown in black), and around a circle (shown in red), in

the two leftmost subplots. The remaining subplots shown, in red, the circle placed at three different

altitudes, and in black, the resulting surface when its height value is added to that of the line. This

illustrates how the use of a strictly-negative distance field distorts the shape of the considered rocks.

Nevertheless, it is considered to be an efficient method for generating tuneable rock distributions.

As an illustration, Fig. 2.39 shows the SDF surface of asteroid Itokawa, with procedurally seeded

rocks generated on top. Four models are shown, with different minimum considered rock sizes dmin.

As expected, more rocks are visible when the minimum rock size is decreased. A detailed view of

the densest rock field is also shown in Fig. 2.40 for additional visualization.

Figure 2.38: Illustration of the distortion of rock shapes by a strictly negative distance field.

On a final note, remark that the blending algorithm given in Eqs. 2.34 through 2.36 was

two-dimensional. It is easily extended to the three-dimensional distance field by instead using the

following rotation matrix (chosen arbitrarily as a combined z- and x-rotation) and offset vector:

[C(k)] = [Cx(k)][Cz(k)] =


cos k cos k sin k sin2 k

− sin k cos k cos k cos k sin k

0 − sin k cos k

 (2.38)

and in which the offset vector ok is defined as:

ok =


sin 3k

sin 5k

sin 7k

 (2.39)
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These rotation matrix and offset vector definitions were applied to generate the aperiodic three-

dimensional tiling of procedurally seeded rocks shown in Figs. 2.39 and 2.40. This model can be

used to populate the small-body surface, represented with a signed distance field, with procedurally-

generated rocks, in accordance to some observed surface distribution.

Figure 2.39: Procedurally seeded rocks with varying minimum rock size dmin.

Figure 2.40: Detailed view of procedurally seeded rocks with dmin = 0.10 cm.
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2.4 Gravity

Given that all mass has a gravitational field, it holds that irregular distributions of mass

have irregular gravitational fields. Although the spherical and ellipsoidal harmonic models have

useful applications to orbits about a small body, these models fail when evaluated within the

circumscribing (or Brillouin) sphere around a target body. This renders them unusable for the

simulation of small-body surface exploration. Instead, the constant-density polyhedron developed

by Werner and Scheeres [140] is used, which converges both inside and outside of a small-body shape.

It is stressed that this gravity field model is applied separately from the shape modeling, i.e., it

is possible to model a body’s shape with the SDF while modeling its gravity with a polyhedron.

The equations that evaluate the polyhedron gravity are first reviewed, followed by a quantification

of the effects of the corresponding model resolution. Finally, the voxelization of the polyhedron

gravity model is investigated, in order to reduce the run-time cost of gravity field evaluations.

2.4.1 Constant-density polyhedron

The constant-density polyhedron gravity model yields the gravitational field around some

polyhedron model with nV vertices, nE edges, and nF facets. Prior to setting the model up for

evaluation, its consistency should be checked using Euler’s criterion for polyhedra as given by

Eq. 2.11. If the model passes this verification check, its edge dyads Eij and facet dyads Fijk can

be computed as [140]:

Eij = N̂ijkM̂
T
l + N̂ijlM̂

T
k

Fijk = N̂ijkN̂
T
ijk

(2.40)

in which N̂ijk is the outward-pointing normal of the facet connecting vertices i, j, and k. These

normals can be easily computed with the open-source MeshLab software [22]. The M̂k vector is the

unit vector perpendicular to the edge eij and through the vertex Pk. These vectors are illustrated

for two sample facets that share an edge, in Fig. 2.41. Given that the dyads Eij and Fijk are

invariant (for a fixed shape), they can be pre-computed to reduce the computational overhead.
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Figure 2.41: Vectors used in the evaluation of the constant-density polyhedron model.

The evaluation of the gravitational field at some position x first requires computation of all

per-edge factors Lij and per-facet factors ωijk [140]:

Lij = ln

(
ri + rj + eij
ri + rj − eij

)
ωijk = 2 arctan

(
ri · (rj × rk)

rirjrk + ri (rj · rk) + rj (rk · ri) + rk (ri · rj)

) (2.41)

in which ri is the vector from vertex Pi to x, i.e., ri = x−Pi, and ri = ‖ri‖. Finally, eij = ‖eij‖

is the length of the edge connecting vertices i and j. Using this, the gravitational potential U ,

gravitational attraction g, and gravity gradient matrix Γ can finally be evaluated at x as [140]:

U(x) =
1

2
Gρ
∑
∀nE

rij ·Eij · rij · Lij −
1

2
Gρ
∑
∀nF

rijk · Fijk · rijk · ωijk

g(x) = −Gρ
∑
∀nE

Eij · rij · Lij +Gρ
∑
∀nF

Fijk · rijk · ωijk

Γ(x) = Gρ
∑
∀nE

Eij · Lij −Gρ
∑
∀nF

Fijk · ωijk

(2.42)

in which rij and rijk are, respectively, the vectors from x to any vertex of the edge connecting

vertices i and j, and to any vertex of the facet connecting vertices i, j, and k. Finally, G is the

gravitational constant, while ρ is the density of the considered body. As implied by the name

constant-density polyhedron model, the latter is assumed to be constant throughout the body.
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When using high-resolution polyhedra such as that shown on the left side of Fig. 2.3, the

corresponding gravity field evaluations are computationally expensive and therefore prohibitive to

the speed of spacecraft simulations. In order to reduce this computational cost, two techniques are

used.

2.4.2 Linearization

The first of these techniques is the linearization of the gravity field, as introduced by Tardivel

et al. [118]. When the spacecraft velocity or integration step size is small (as is the case during

continued spacecraft-target contact), the spacecraft moves only a small distance between successive

integration steps. As a result, the gravitational field may be approximated at some x using a

previous evaluation at some x0, provided that the distance ∆r = ‖x− x0‖ is small. When this is

true, the gravitational potential and attraction at x are approximately equal to:

U(x) ' U(x0) + (x− x0) · g(x0) + (x− x0) · Γ(x0) · (x− x0)

g(x) ' g(x0) + (x− x0) · Γ(x0)

(2.43)

2.4.3 Model resolution

Second, it holds that small features on the body surface (which have negligible mass) have a

negligible effect on the global gravitational field. A low-resolution polyhedron shape can therefore

be used to approximate the ‘true’ gravitational field of a target body. The selection of the resolution

of the considered polyhedron model is effectively a trade-off between computation cost and accuracy.

In order to provide order-of-magnitude estimates of the inherent error of various model resolutions,

the gravity fields of the three considered bodies are investigated. The open-source MeshLab software

is used to reduce the high-resolution shape models of three sample bodies into lower-resolution

models with a smaller number of facets [22]. This is done using a boundary-preserving, topology-

preserving, normal-preserving quadratic edge collapse method. In Figs. 2.42 through 2.44, the

shape models with nF = [1.25, 10, 80] × 103 of the considered target bodies are shown, namely,

asteroid Itokawa, comet 67P/C-G, and Phobos.
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Figure 2.42: Itokawa shape models.

Figure 2.43: 67P/C-G shape models.

Figure 2.44: Phobos shape models.

The error resulting from the approximation of the small-body gravity field with a low-

resolution model is now quantified. For this, the gravitational acceleration g0 yielded by the

highest-resolution model is treated as as the ‘true’ acceleration, while the ‘approximated’ g is eval-

uated with one of the lower-resolution models. Both accelerations are evaluated across the surface

of the considered bodies; the relative error of each low-resolution model is defined with respect to

the ‘truth’ provided by the highest-resolution model as:

ε =
‖g − g0‖
‖g0‖

(2.44)
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Fig. 2.45 plots the cumulative density function of the relative gravity error distribution of each

low-resolution model. This provides a straightforward visual comparison of the performance of

the various models. In the figure, the 1% relative error is also marked with a dashed line. This

value is used to judge what model resolution provides a sufficiently good approximation of a body’s

true gravity field. The 1% threshold is selected as an acceptable error, since even high-resolution

polyhedron gravity models incur an error from to the constant-density assumption. It is argued that

local density variations are likely to cause surface gravity variations of at least 1% and thus accept

that same error in the low-resolution approximation to allow us to move forward with analysis.

For a more detailed discussion of why this error level may be considered acceptable, the reader is

referred to [113].

Figure 2.45: Gravity error of various polyhedron model resolutions.
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This figure shows notable differences between the three considered bodies. The size differ-

ences between Itokawa, 67P/C-G, and Phobos are stressed. These bodies have volumetric radii of

respectively 1.6× 102, 1.6× 103, and 1.1× 104 m. For a given number of facets, the Phobos model

performs best; even the lowest-resolution 1,250-facet model has a relative error just barely exceed-

ing 1%. This excellent performance is attributed to Phobos’s near-spherical shape, which can be

captured with relatively few facets. Asteroid Itokawa performs worse and requires a model with

20,000 facets to achieve maximum relative surface gravity error of 1%, due to its more irregular

and less spherical shape. Finally, comet 67P/C-G performs the poorest and requires a 50,000-facet

model to achieve the threshold of 1% maximum relative error, as it has a strongly irregular shape.

If the error criterion is slightly modified by requiring only 95% of facets to achieve a relative error

smaller than 1%, the required model resolutions do drop significantly. In this case, the 5,000-facet

Itokawa and 20,000-facet 67P/C-G models perform sufficiently. As mentioned, the difference be-

tween these models can be explained from the complexity of their shapes. A useful characteristic

in this is the sphericity ψ of a shape, which was originally defined by [138] and expresses the ratio

of the surface area of a sphere with equal volume as the considered body to the surface area of the

considered body. It can be computed as:

ψ =
π1/3(6V )2/3

A
(2.45)

Evaluating this expression for the three considered bodies, Phobos is found to have a high sphericity

of ψ = 0.95, Itokawa has intermediate ψ = 0.81, and 67P/C-G has low ψ = 0.68. Note that

these values were computed with surface models of similar resolution, since the surface area of

a shape with fractal-like properties (such as a small body) is dependent on the resolution of the

considered shape model, in analogy with the coastline paradox (see [63] for an explanation of

this phenomenon). As a final summary, the maximum relative surface gravity error is plotted

as a function of the considered polyhedron model resolution, for the three considered bodies, in

Fig. 2.46. This figure repeats the result that, for a given model resolution, Phobos has the lowest,

Itokawa has intermediate, and 67P/C-G has the highest relative error.
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Figure 2.46: Maximum relative gravity error for various polyhedron model resolutions.

2.4.4 Voxelization

Although the use of reduced-resolution polyhedron models can significantly limit the com-

putational cost of gravity field evaluations, this cost may still be relatively high when performing

evaluations ‘on the fly’ during simulation. Instead, it is possible to pre-compute the gravity field

at the mesh points of a voxel grid and perform cheap run-time interpolations to obtain the gravi-

tational acceleration in a simulation. Three voxelization schemes are considered:

(1) Voxelization of the gravitational potential U(x); the gravitational acceleration g(x) is found

as the gradient ∇U(x) of this field. This requires storage of a single value at each mesh

point.

(2) Voxelization of the gravitational acceleration g(x). This requires storage of three values at

each mesh point.

(3) Voxelization of the gravitational perturbation ∆g(x) = g(x) − µ

‖x‖3 x. This also requires

storage of three values at each mesh point.

Although the first field (voxelized potential) requires the least storage space per mesh point,

the derivative operation required to obtain the acceleration g(x) incurs an error. The voxelized

potential field is therefore intuitively expected to require a higher voxel resolution (i.e., smaller

∆x) in order to achieve the same accuracy as the second field (voxelized acceleration). This results
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in the obvious question: which of the two fields requires the least memory storage to achieve the

same gravity field accuracy, the voxelized potential or acceleration? This question will be answered

below.

Finally, the voxelized perturbation is considered as a third field. When far away from even

an irregular body, its gravitational field can be reasonably approximated by a central gravity field.

When closer to the body or on its surface, the gravity field is often strongly perturbed from this

central term. We therefore investigate the accuracy of a voxelized gravitational field where only the

difference from the respective central gravity term is interpolated. This interpolation is expected to

outperform the voxelized acceleration for a given ∆x when far away from the considered body, but

is of uncertain performance closer to or on the body surface, where the gravitational acceleration

can be very non-central.

Acceleration vs. perturbation Given that small-body gravity fields tend to be more

irregular on the surface than far away from a body, the inherent error of voxelization is quantified

by evaluating the three fields on the small-body surface. However, in order to help clarify the

differences between the g(x) and ∆g(x) voxelizations, a model test is first performed in the greater

neighborhood around a body. More specifically, both the g(x) and ∆g(x) models are evaluated

in the XY-plane surrounding Phobos. The two interpolated gravitational accelerations are then

compared with those computed with the original polyhedron gravity model. Fig. 2.47 plots the

relative gravity error of both voxelizations, as well as the difference between the two. In the

latter, yellow indicates that the ∆g(x) voxelization performs better, while green indicates that

the g(x) voxelization performs better. Note that this example uses a relatively large voxel size of

∆x = 1, 000 m for visual reasons.

The results show that the ∆g(x) voxelization performs best when away from Phobos’s surface.

On the surface, the g(x) voxelization performs best. When decreasing the voxel size to a more

realistic value, both models are found to perform equally well when evaluated on the surface,

while the ∆g(x) voxelization continues to perform best when evaluated away from the surface.

Since the two schemes have matching memory storage requirements for matching ∆x, these results
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suggest that it is more beneficial to use the ∆g(x) voxelization than the g(x) voxelization. The

model performance away from the surface will then greatly exceed the maximum surface error with

respect to which the voxel resolution is selected.

Figure 2.47: Relative gravity error of voxelized acceleration and perturbation models of Phobos.

Voxel resolution To investigate the effects of the gravity voxel size ∆x on the inherent

interpolation error, the value is non-dimensionalized using the effective radius R of the considered
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target bodies as ∆x = η · R. The gravitational acceleration on the surface of the target bodies is

then evaluated using different η values and compare the g values with those computed with the

original polyhedron gravity model. As discussed above, the surface accelerations of the g(x) and

∆g(x) voxelizations are equivalent; Figs. 2.48 through 2.50 there compare only the U(x) and g(x)

voxelizations. On the top of these figures, the cumulative distribution function of the relative error

on the facets of the considered body is again plotted. On the bottom of each figure, the maximum

encountered error is plotted as a function of the η parameter. As expected, the relative error

decreases when the voxel size ∆x = η · R is decreased. In agreement with the trends previously

discussed, Phobos is found to have the lowest relative error for a given η. Itokawa has a larger error

and comet 67P/C-G has the largest error. When plotted on a log-log scale, a strongly linear trend

between the maximum relative error and the voxel size of an interpolation is found.

Further reviewing these results, the U(x) voxelization with some ∆x is found to have ap-

proximately the same relative error as the g(x) with 2∆x. In other words, the voxelized potential

requires twice the voxel resolution as the voxelized acceleration in order to achieve the same inter-

polation accuracy. Given that the U(x) voxelization stores only a single value at each mesh point,

while the g(x) voxelization stores three values at each mesh point, it is natural to wonder which

scheme minimizes the required memory size.

For this, n is defined as the number of voxels along one dimension needed to achieve some error

criterion when using g(x) voxelization. Along three dimensions, n3 voxels are thus required when

using g(x) voxelization. Per our observations from Figs. 2.48 through 2.50, the U(x) voxelization

requires (2n)3 = 8n3 voxels to achieve the same accuracy. Given that the U(x) voxelization stores

only a single value at each mesh point, this scheme therefore requires NU = 8n3 stored values. In

contrast, since the g(x) voxelization stores three values at each mesh point, it requires a total of

Ng = 3n3 stores values. However, in order to track the energy of a spacecraft, knowledge of the

potential U is also necessary. Therefore, this voxelization must store four values at each mesh point,

leading to a total of Ng = 4n3. This shows that it is optimal, from a memory storage perspective,

to apply the g(x) voxelization; it requires precisely half the memory of the U(x) voxelization.
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Figure 2.48: Itokawa relative surface gravity error for varying voxel grid size.

Figure 2.49: 67P/C-G relative surface gravity error for varying voxel grid size.

Figure 2.50: Phobos relative surface gravity error for varying voxel grid size.



68

2.5 Contact

The previous sections have provided the equations of motion governing a deployed spacecraft,

detailed a technique for detecting the contact between such a spacecraft and an implicitly-defined

surface, and provided efficient methods for modeling the small-body gravitational field. As a final

module required to simulate probe motion in this environment, a model for the forces and torques

present during contact must therefore be included. Before proceeding with a derivation of our

applied contact model, some challenges in the evaluation of contact between a spacecraft and

target body with arbitrary shapes are highlighted. This is illustrated using Fig. 2.51.

Figure 2.51: Alignment of the collision vector in central and eccentric collisions.

Consider first the spherical probe shown on the left side the figure. When this probe impacts

a surface, the collision vector r that points from the probe center of mass to the contact point must

always be parallel to the surface normal. This is true regardless of the topography of the underlying

surface; it holds even when the spherical probe impacts a sharp rock. This kind of collision, in

which r × N̂ = 0 is known as a central collision. Central collisions are relatively easy to resolve,

because the normal forces FN and tangential forces FT typically modeled in impact mechanics are

uncoupled in such collisions. Although the classical Coulomb friction force is dependent on the

applied normal force, the uncoupling of the two forces imply that they can be computed separately.

This allows for algebraic collision laws, such as those applied by Tardivel et al. [118], which allow

for a fast and straightforward resolution of spacecraft-target impacts. For complex probe shapes
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such as that shown on the right side of Fig. 2.51, the situation is far more complicated: r and N̂

are not parallel (i.e. r× N̂ 6= )), such that any normal force imparts a torque on the probe, which

changes the tangential velocity of the contact point. The reverse holds for forces applied in the

tangential direction: they change the normal velocity of the contact point. This creates a coupling

between normal and tangential forces that renders the collision resolution non-trivial. Precisely how

this coupling appears in the mathematics of the collision resolution will be discussed shortly. We

suspect that this force-coupling is one of the reasons why we have not found attempts by previous

authors to fully account for complex probe shapes in simulations to small-body environments.

Many different rigid- and soft-body collision models exist. Ahmad, Ismail, and Mat provide

an excellent overview of different models, with a strong focus on the definition of the commonly-used

coefficient of restitution [3]. The first coefficient of restitution model was developed by Newton,

with his kinematic definition relating the incoming and outgoing velocities of a pointmass under

impact. Poisson used a more involved kinetic definition, relating to the applied impulse at impact.

Most recently, Stronge developed an energetic definition of the coefficient of restitution, which is

the most appropriate definition currently available, according to some authors [3].

In light of Philae’s interaction with both a soft regolith layer and an underlying hard surface

layer on comet 67P/C-G, one may be inclined to include separate models for these two layers. A

high fidelity modeling of the regolith layer may be achieved through discrete element modeling

(DEM), in which individual regolith grains are accounted for, and both their mutual interactions

as well as their interaction with a deployed probe simulated. For example, consider the hard-sphere

model by Richardson et al. [92] or the soft-sphere model by Sánchez and Scheeres [96]. Although

such models can achieve significant simulation fidelity, their integration into our surface exploration

framework is problematic due to two distinctly different reasons:

(1) Granular DEM models require the tracking of several thousand particles at any given time.

Accounting for all particle-particle and particle-lander interactions in such a system carries

a computational burden that significantly reduces the speed at which simulations can be
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performed. For example, Thuillet et al. use the pkdgrav N-body gravity tree code to

simulate the interaction between the MASCOT lander and a granular surface, see also

Fig. 2.52. Simulation times of this magnitude prevent the type of broad study that is

attempted with our work. Furthermore, it is not obvious how a highly localized DEM

model can be integrated onto a global small-body shape model.

Figure 2.52: Snapshots of MASCOT impacting a granular surface, as simulated by Thuillet et al.
[122]

(2) Even when using hard-sphere DEM models that are governed only by a particle-particle

restitution and friction coefficient, selecting the particular values of these coefficients re-

mains a significant challenge. In particular, it is not obvious whether these coefficients

should have equal values for particle-particle collisions at different velocities and particles

size and for particle-probe collisions. If a hard surface layer is added underneath a soft

regolith layer, this introduces an additional interface along which collisions occur. Fur-

thermore, these DEM simulations require knowledge of the particle size distribution on the

relevant target surface. Given that our current knowledge of these properties is extremely

limited, it is difficult to justify the significant effort required to implement a DEM model

into our simulation framework.

In light of these two limitations, we instead choose to abstract away the complex impact mechanics

that occur between a surface exploration probe and the small-body surface, hard or soft. This is

done by using a hard contact model with impulsive collisions and continued contact motion. The

model is based on the work by Stronge [110]; it is developed for generic purposes, with certain

simplifications applied in order to extract both an impulsive collision and a continued contact
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model. The models are optimized for evaluation on parallelized GPU hardware. This ‘simplified’

model allows us to investigate how the net effects of different surface properties affect the motion of

surface exploration probes. For example, if a thick regolith layer is expected to dissipate significant

energy upon impact, the coefficient of restitution can be set to some particularly low value.

Finally, note that it should be possible to implicitly merge high-fidelity DEM models into

our simplified contact model. With a separate DEM simulation framework similar to that of [122],

it should be possible to simulate probe impacts at different velocities and attitudes. The net

restitution and friction coefficients can be extracted from these simulations and empirically fitted

to produce a statistical coefficient model. This model could then be implemented into our global

simulation framework in order to (statistically) mimic the impact behavior observed in the DEM

simulations. The main difficulty of such an approach is accounting for all relevant variables, such

as angle of impact, initial velocities, initial attitude, etc., creating an unfeasibly large parameter

space. This is considered beyond the scope of the current thesis, but recommended as a piece of

future work.

2.5.1 Geometry

In our contact model, the spacecraft shape is defined as a set of vertices. At the beginning

of a contact phase, the spacecraft touches the target surface at some contact point with position

vector H relative to the target frame, and collision vector r relative to the spacecraft frame. In

other words:

H = x + r (2.46)

This contact geometry is illustrated in a simple two-dimensional setup in Fig. 2.53. This is done

purely for visual purposes; all derivations are performed for the full three-dimensional setup.

The SDF can be evaluated at the contact point to yield the corresponding surface normal N̂

using Eq. 2.19. The contact point has a net velocity υ relative to the target, resulting from the



72

Figure 2.53: Illustration of the contact geometry.

combination of the linear and angular spacecraft velocities, as:

υ = v + ωS/T × r (2.47)

The contact frame C is now defined with origin at the contact point and orthonormal axes {û1, û2, N̂}.

In other words, the third component spans the normal direction at the contact point, while the

first and second components together span the tangential plane. This contact frame is included in

Fig. 2.53. The two tangential unit vectors are defined as:

û1 =
N̂× t̂3∥∥∥N̂× t̂3

∥∥∥ and û2 = N̂× û2 (2.48)

During contact, the spacecraft is subject to a contact force Fc that acts at the contact point and

creates an associated torque Lc = r×Fc. The force and torque change both the linear and angular

velocity of the spacecraft, and thus also of the contact point. The change in the contact point

velocity υ can be expressed by taking the derivative of Eq. 2.47, as:

υ̇ = v̇ + ω̇S/T × r + ωS/T × ṙ (2.49)

The above expression consists of three terms, which are reviewed separately. The first term corre-

sponds to the change in spacecraft linear velocity, which was given in Eq. 2.2 as:

v̇ = g(x)− [Ω̃T /N ][Ω̃T /N ]x− 2[Ω̃T /N ]v +
1

m
Fc (2.50)
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The second term, corresponding to the change in spacecraft angular velocity, can be expanded using

Eq. 2.5 as:

ω̇S/T × r = −[r̃]
(
−[IS ]−1[ω̃S/N ][IS ]ωS/N + [IS ]−1Lc − [ω̃S/N ]ωS/T

)
= [r̃][IS ]−1[ω̃S/N ][IS ]ωS/N − [r̃][IS ]−1[r̃]Fc + [r̃][ω̃S/N ]ωS/T

(2.51)

Note that if the target is not in uniform rotation, this equation must include an additional term to

account for that rotation (see Eq. 2.5). Finally, the third term relates to the change of the contact

point position r. Since this vector is fixed in the S-frame, one may write that:

ωS/T × ṙ = [ω̃S/T ][ω̃S/T ]r (2.52)

Substitution of Eqs. 2.50, 2.51, and 2.52 into Eq. 2.49 yields for the contact point velocity change:

υ̇ = g(xS)− [Ω̃T /N ][Ω̃T /N ]xS − 2[Ω̃T /N ]vS +

(
1

m
I3 − [r̃][IS ]−1[r̃]

)
Fc

+[r̃][IS ]−1[ω̃S/N ][IS ]ωS/N + [r̃][ω̃S/N ]ωS/T + [ω̃S/T ][ω̃S/T ]r

(2.53)

in which I is the identity matrix. In this expression, the terms from Eqs. 2.50 and 2.51 that contain

the contact force Fc have been combined. Grouping some terms, this expression can be rewritten

as:

υ̇ = g(x) + C + W + [M]Fc (2.54)

in which:

C = −[Ω̃T /N ][Ω̃T /N ]x− 2[Ω̃T /N ]v

W = [r̃][IS ]−1[ω̃S/N ][IS ]ωS/N + [r̃][ω̃S/N ]ωS/T + [ω̃S/T ][ω̃S/T ]r

[M] =
1

m
I3 − [r̃][IS ]−1[r̃]

(2.55)

Eq. 2.54, though simple in form, lies at the basis of our contact model development. The C term

combines accelerations resulting from the non-inertiality of the target frame. Similarly, the W term

accounts for the rigid body dynamics at play within the spacecraft frame. More important is the

[M] matrix, which Stronge denotes as the “inverse inertia matrix [110].” This name is somewhat

confusing, since [M] is not simply the inverse of the inertia matrix [I]. Instead, it is related to the
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inverse of the total inertia matrix that combines the mass m and inertia matrix [I] of the considered

body.

The [M] matrix expresses how some force, applied at the contact point, changes the velocity

of that contact point. It takes into account both the changes in the spacecraft linear velocity (from

the force) and the spacecraft angular velocity (from the corresponding torque). This matrix is used

by Stronge in his derivation of a collision model, though he only provides an element-wise definition

and does not make mention of our more intuitive understanding of the physical meaning of [M]

[110]. In fact, our expression for the inverse inertia matrix can be generalized, i.e., one may define

an [Mij ] that expresses how a force applied at some point rj on the spacecraft changes the velocity

of some other point ri, as:

[Mij ] =
1

m
I3 − [r̃i][IS ]−1[r̃j ] (2.56)

The inverse inertia matrix used in Eq. 2.54 is a ‘special case’ in which ri = rj = r.

2.5.2 Collisions

We distinguish between two phases of contact: contact motion during which the spacecraft

remains in continued contact with the target surface and ‘rolls’ across its surface, and impulsive

collisions during which the spacecraft velocities are changed in an infinitesimally short impact on

the surface and after which the spacecraft is returned to ballistic flight. The majority of the energy

dissipation required for a spacecraft to come to rest occurs during collisions; they are therefore

discussed first.

Our model includes a restitutive normal force and a tangential Coulomb friction force. As

previously mentioned, a central collision occurs when r and N̂ are parallel. Mathematically, this

implies that the inverse inertia matrix [M] in Eq. 2.54 is diagonal when expressed in the contact

frame, such that the restitution and friction forces are uncoupled. For three-dimensional collisions

that are generally eccentric (or non-central), [M] is not diagonal, such that the two forces are

coupled. In order to evaluate such a collision, recognize that the net contact force Fc acting at H
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during a collision applies an impulse P on the spacecraft, for which it can be written that:

dP = Fc · dt (2.57)

Assuming that the collision takes place in an infinitesimally short amount of time, the spacecraft

position and attitude remain fixed over the course of the collision. Furthermore, recognize that

the normal component p = PT N̂ of the applied contact force must monotonically increase during

a collision, because the normal force FN is compressive. In other words, the normal force can

only ‘push’ the spacecraft away from the surface, it can never ‘pull’ it onto the surface. Because

of this monotonic increase, the applied normal impulse p can be used as an independent variable

with respect to which the velocity changes during collision can be expressed. Applying these

simplifications to the spacecraft equations of motion, one can write for its velocity change during

collision that:
dv

dp
=

1

m

dP

dp

dωS/T

dp
= [IS ]−1[r̃]

dP

dp

(2.58)

Correspondingly, the contact point velocity change is reduced from Eq. 2.54 to:

dυ

dp
= [M]

dP

dp
(2.59)

During a collision, two deformable objects are driven together under an initially negative relative

normal velocity. The objects will deform, reducing the relative normal velocity and storing the

corresponding energy as internal mechanical energy. After this ‘compression’ has stopped, part of

the stored energy is returned to the bodies during ’restitution,’ with the collision eventually ending

with the two bodies having some positive relative normal velocity.

Each collision is evaluated in analogy with the illustration above, and consists of two phases:

a compressive phase during which the normal contact point velocity increases from some negative

value to zero, followed by a restitutive phase during which it is returned to some positive value. In

order to determine when the collision ends, the variable ξ is tracked, defined as the integral of the

υ3(p) curve. In other words, ξ represents the work done on the spacecraft by the normal impulse.
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Over the course of the compression phase, the normal force performs a total ξc < 0 of work. The

collision is then defined to end once the restitution phase has performed a total ξr ≥ 0 of work,

with ξr defined relative to ξc as [110]:

e2 = −ξr
ξc

⇐⇒ ξr = −e2ξc (2.60)

in which 0 ≤ e ≤ 1 is the coefficient of restitution. Note that Eq. 2.60 provides an energetic

definition of the coefficient, as opposed to the classical kinetic definition of e = −υ+
3 /υ

−
3 , in which

υ+
3 and υ−3 are the normal contact point velocities at the end and start of the collision, respectively.

It is important to note that the two definitions (kinetic and energetic e) are equivalent for central

collisions. This is not true for eccentric collisions. In fact, the use of a kinetically-defined coefficient

of restitution may lead to energy increases in the resolution of eccentric collisions. Again, it is

stressed that for arbitrary eccentric collisions, it holds that:

−ξr
ξc
6=
(
υ+

3

υ−3

)2

(2.61)

The energetic definition of the coefficient of restitution, as introduced by Stronge [110], is thought

by some to be “the most consistent and applicable” [3]. Nevertheless, note the lack of experimental

measurements of the energetic coefficient of restitution of complex shapes in low-gravity environ-

ments. This is an area of basic research that should be performed as part of the validation of the

applied impact model, which is a piece of suggested future work that will be discussed further on.

Slip Eq. 2.59 relates the change in contact point velocity to the total impulse applied at

the contact point. As mentioned, all variables are expressed in the contact frame C. In other words,

the contact point velocity υ has the following components:

υ =

[
υ1 υ2 υ3

]T
(2.62)

in which υ3 = υ ·N̂ is the normal contact point velocity, and in which υ1 = υ ·û1 and υ2 = υ ·û2 are

the two components of the tangential contact point velocity. The latter two can also be expressed
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using the sliding velocity s and direction φ relative to the û1 axis, as:
s2 = υ2

1 + υ2
2

tanφ = υ2
υ1

(2.63)

Equivalently, it may be written that: 
υ1 = s cosφ

υ2 = s sinφ

(2.64)

As mentioned, our contact model includes both a restitution and Coulomb friction impulse. The

normal impulse acts to reduce υ3 from some negative value at the start of a collision, to some

positive υ3 at the end of the collision. The Coulomb friction impulse acts against υ1 and υ2 in an

attempt to reduce s → 0 and to maintain s = 0 once it is reached. When s > 0, the Coulomb

friction impulse acts against the tangential contact point velocity with magnitude dPF = f · dPN ,

in which f is the coefficient of friction and dPN is the magnitude of the normal impulse. Using

this, the combined impulse from restitution and friction can be written as [110]:

(
dP

dp

)
slip

=


−f cosφ

−f sinφ

1

 (2.65)

whenever s > 0. When this is true, the contact point is said to be in slip. By substituting Eq. 2.65

into Eqs. 2.58 and 2.59, one can integrate υ, v, and ωS/T as the restitution and friction impulses

are applied.

Stick Once the sliding velocity s reaches zero, friction is applied at some reduced magnitude

dPF = f∗ · dPN with f∗ ≤ f and in direction φ∗, in order to maintain s = 0. In other words,

friction is applied at some critical f∗ and φ∗ such that ṡ = 0. The latter implies that υ̇1 = υ̇2 = 0
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during stick. To compute the corresponding f∗ and φ∗, start from Eq. 2.59:

(
dυ

dp

)
stick

= M


−f∗ cosφ∗

−f∗ sinφ∗

1

 =


0

0

υ̇3



⇐⇒


−f∗ cosφ∗

−f∗ sinφ∗

υ̇3

 = −


M11 M12 0

M21 M22 0

M31 M32 1


−1 

M13

M23

M33



(2.66)

Writing out the inverse, it holds that:
−f∗ cosφ∗

−f∗ sinφ∗

υ̇3

 = M∗


M22 −M12 0

−M21 M11 0

M21M32 −M22M31 M12M31 −M11M32 1




M13

M23

M33

 (2.67)

in which:

M∗ =
−1

M11M22 −M12M21
(2.68)

Dividing the second component of Eq. 2.67 by the first component, the critical φ∗ is found as:

tanφ∗ =
sinφ∗

cosφ∗
=
M11M23 −M21M13

M22M13 −M12M23

⇐⇒ φ∗ = arctan

(
M11M23 −M21M13

M22M13 −M12M23

) (2.69)

Similarly, by summing the squares of the first and second components of Eq. 2.67, the critical

coefficient of friction f∗ is found as:

(f∗)2 =

(
M12M23 −M22M13

M11M22 −M12M21

)2

+

(
M21M13 −M11M23

M11M22 −M12M21

)2

⇐⇒ f∗ =

√
(M12M23 −M22M13)2 + (M21M13 −M11M23)2

(M11M22 −M12M21)2

(2.70)

In summary, the friction impulse during stick is expressed as [110]:

(
dP

dp

)
stick

=


−f∗ cosφ∗

−f∗ sinφ∗

1

 (2.71)
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with the critical friction coefficient and direction given by Eqs. 2.69 and 2.70.

Slip reversal If the coefficient of friction is sufficiently high, friction will drive s → 0

during a collision. Once s = 0 is achieved, two situations are possible, depending on the value of

the critical coefficient of friction f∗. In the large majority of cases, it holds that f∗ ≤ f , such that

friction is sufficiently strong to maintain stick at s = 0. If instead f∗ < f , friction is not sufficiently

strong to maintain s = 0 and slip resumes in a final phase of slip reversal.

It was shown by [110] that the slip direction φ̂ during slip reversal is constant. The direction

of slip reversal φ̂ can be found by solving for dφ = 0 with ds > 0 [110]. In order to do so, expressions

for ds and dφ must first be obtained. From Eq. 2.63, one may write that:

s2 = υ2
1 + υ2

2

⇐⇒ 2s
ds

dp
= 2υ1

dυ1

dp
+ 2υ2

dυ2

dp

⇐⇒ ds

dp
= cosφ

dυ1

dp
+ sinφ

dυ2

dp

(2.72)

and:

tanφ =
υ2

υ1

⇐⇒ 1

cos2 φ

dφ

dp
=

1

υ1

dυ2

dp
− υ2

υ1

dυ1

dp

⇐⇒ dφ

dp
=

cosφ

s

dυ2

dp
− sinφ

s

dυ1

dp

(2.73)

We wish to solve for the φ̂ that satisfies dφ = 0. However, notice the appearance of s in the

denominator of Eq. 2.73. Since this expression is being evaluated at the instant when stick is

reached, i.e., when s = 0, Eq. 2.73 becomes singular. To avoid this, we multiply both sides by s

and solve for sdφ = 0, i.e.:

h = sdφ = cos (φ̂)dυ2 − sin (φ̂)dυ1 = 0

⇐⇒ 1

2
f (M11 −M22) sin (2φ̂)− fM12 cos (2φ̂) +M23 cos (φ̂)−M13 sin (φ̂) = 0

(2.74)

in which the root φ̂ must satisfy ds > 0 for slip to resume. Thus, it must satisfy that:

g = ds = cosφdυ1 + sinφdυ2 > 0

⇐⇒ M13 cosφ+M23 sinφ− fM11 cos2 φ− 2fM12 cosφ sinφ− fM22 sin2 φ > 0

(2.75)
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It can be shown that Eq. 2.74 has three roots, of which only one satisfies Eq. 2.75 [110]. Classical

iterative root-finding methods work well when using an initial guess of φ̂0 = φ∗; a third-order

Householder method is applied to accelerate the convergence rate on the proper root. In this, φ̂ is

iteratively solved for as:

φ̂i+1 = φ̂i −
6hh′′2 − 3h2h′′

6h′3 − 6hh′h′′ + h2h′′′
(2.76)

in which the hi partials can be found from Eq. 2.74 as:

h′ =
∂h

∂φ
= −M13 cosφ−M23 sinφ+ f(M11 −M22) cos (2φ) + 2fM12 sin (2φ)

h′′ =
∂2h

∂φ2
= M13 sinφ−M23 cosφ− 2f(M11 −M22) sin (2φ) + 4fM12 cos (2φ)

h′′′ =
∂3h

∂φ3
= M13 cosφ−M23 sinφ− 4f(M11 −M22) cos (2φ)− 8fM12 sin (2φ)

(2.77)

In practice, three steps of this iteration are found to be sufficient to achieve convergence. In

summary, if slip reversal is detected, the spacecraft state can be integrated for the remainder of

the collision with:

(
dP

dp

)
rev

=


−f cos φ̂

−f sin φ̂

1

 (2.78)

in which the direction of slip reversal φ̂ can be iteratively found using Eq. 2.76.

To understand what physically happens during a collision with slip reversal, consider the

three sample velocity hodographs shown in Fig. 2.54. In all three subplots, the horizontal axes

express the two tangential contact point velocities, υ1 and υ2. All collisions begin with some initial

sliding velocity si > 0 and end with some final sliding velocity sf . In these hodographs, the friction

impulse always points at the origin, since friction aims to reduce the sliding velocity to zero. The

normal impulse points in some other, fixed direction, in this case towards the positive υ1 axis. If the

friction coefficient f is sufficiently large (as shown on the left side of the figure), friction dominates

the collision and draws the sliding velocity s → 0; it achieves stick. If f is small (as shown in the

center of the figure), the normal impulse dominates the collision; the contact point is unable to

achieve stick, but instead continues sliding throughout the entire collision. In the rare case where
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the normal impulse happens to point at the origin of the hodograph (as shown on the right side of

the figure), both of the impulses draw the sliding velocity to the s = 0 point (the origin). However,

assuming that f is small enough, the normal impulse will ‘overpower’ the friction impulse and

simply continue pushing the s curve, away from the s = 0 point. This latter example is precisely

how slip reversal occurs, though the hodographs have been simplified for visualization purposes.

Figure 2.54: Illustration of velocity hodographs for different slip/stick behaviors.

Numerical implementation In light of the collision dynamics detailed above, one may

be inclined to integrate the following collision state Xc:

Xc =



υ

P

v

ωS/T

ξ


with

dXc

dp
=



[M]dP
dp

Eq. 2.65 or Eq. 2.71 or Eq. 2.78

1
m

dP
dp

[IS ]−1[r̃]dP
dp

υ3


(2.79)

in which ξ is used to determine when the collision ends. However, a näıve implementation of these

equations will be numerically unstable. More specifically, the collision integration will begin in slip,

and the onset of stick must be converged on using Eq. 2.65 until s = 0, after which Eq. 2.71 must

be used. As both υ1 and υ2 approach zero as s→ 0, the direction of slip φ will become ill-defined,

resulting in oscillations that make it difficult to properly converge on s = 0. To avoid this problem,

a change of variable is first performed, by replacing υ1 and υ2 with the equivalent s and φ in the
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collision state, such that instead:

Xc =

[
s φ υ3 P v ωS/T ξ

]T
(2.80)

Note that we do continue to use the normal contact point velocity υ3. The differential equations

expressing the change in s and φ were given in Eqs. 2.72 and 2.73. By itself, this change of

variables does not alleviate the challenge of converging on s = 0. For this, the approach by Bhatt

and Koechling is followed, by introducing the stretching variable τ , which is defined as [10]:

dτ =
f

s
dp ⇐⇒ dp

dτ
=
s

f
(2.81)

The coefficient of friction f is included in this expression in order to pseudo-normalize the ‘velocity

flow,’ as previously illustrated in Fig. 2.54, such that impacts with different f values experience

similar ranges of τ . Bhatt and Koechling use this definition in order to perform detailed studies of

the velocity flow that occurs during eccentric rigid-body collisions, but they note that τ can also be

used “to guide the numerical integration as the point of sticking is reached, making the integration

of the equations defining the impact process more robust” [10]. This is precisely how the stretching

variable is applied. During slip, the collision equations of motion are integrated with respect to τ

rather than with respect to p. The reason for doing so is clear from Eq. 2.81: when s approaches

zero, dp/dτ also approaches zero. As a result, even though s = 0 is achieved at some finite p that is

difficult to numerically converge on, it is reached at infinite τ . The use of τ as integration variable

therefore avoids having to actively converge on s = 0. Instead, we continue to integrate along τ

towards infinity, until the sliding velocity reaches below some small tolerance s < ε at some finite

τ . When this occurs, we switch to integrating sticking motion using p instead, since dp/dτ = 0

during stick. Given the equations of motion for the contact state with respect to dp, the equivalent

expression with respect to dτ are easily found using the chain rule. For any variable k, it holds

that:

dk

dτ
=

dk

dp
· dp

dτ
=

dk

dp
· s
f

(2.82)

In order to minimize the amount of switch statements2 required for a numerical implementation

2 The reason for preferring this minimization is discussed in Section 2.7



83

of collision evaluation that distinguishes between slip and stick, the variable η is therefore used,

which is defined as:

η =


s/f during slip⇒ integration wrt. τ

1 during stick and slip reversal⇒ integration wrt. p

(2.83)

The collision state is then propagated with respect to the integration variable σ as:

Ẋc = η ·



ds
dσ

dφ
dσ

dυ3
dσ

dP
dσ

dv
dσ

dω
dσ

dξ
dσ



= η ·



cosφdυ1
dp + sinφdυ2

dp

cosφ
s

dυ2
dp −

sinφ
s

dυ1
dp

dυ3
dp

Eq. 2.65 or Eq. 2.71 or Eq. 2.78

1
m

dP
dp

[IS ]−1[r̃]dP
dp

υ3



with
dυ

dp
= [M]

dP

dp
(2.84)

The integration variable σ takes on two variants: during stick, it holds that σ = p. During slip and

slip reversal, it holds that σ = τ . Using this implementation, the only type of ‘switch’ statement

to be implemented in a numerical propagator are a simple if/else switch on η, using Eq. 2.83),

and the three cases for dP/dp (as given by Eqs. 2.65, 2.71, and 2.78). On a final note, remark that

the f∗, φ∗, and φ̂ values are invariant over the course of any given collision. They must therefore

only be computed once, at the start of each collision.

Rolling resistance The contact model presented above includes both restitution and

Coulomb friction. This model works well for shapes that naturally resist rolling motion, such as a

cube or tetrahedron. The resistance or ability to roll can be empirically related to the angular defect

at the vertices of a considered shape. This will be shown in Section 4.2 when the motion of different

shapes is compared. When a shape does have the ability to roll, such as a sphere or disk, the contact

model above is deficient. This is because both restitution and Coulomb friction cannot dissipate

any more energy once a shape has settled into ‘rolling’ on a flat surface. Intuitively, we know that

a ball rolling on a flat surface does eventually come to a halt; the phenomenon responsible for
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the corresponding energy loss is known in literature as rolling friction or rolling resistance during

continued contact motion [130, 26]. Although the implementation of rolling resistance into our

simulation framework has been verified, it is not nominally it during collisions. Nevertheless, the

implementation is detailed below.

In order to account for rolling resistance during collisions, the collision model shown above

is augmented by including a torque dLRR,roll that opposes the angular velocity of the spacecraft:

dLRR,roll
dp

= −[CRR]R
ωS/T

ωS/T
(2.85)

in which [CRR] is a matrix containing the coefficients of rolling resistance. All of [118, 130, 26]

consider the rolling resistance of a sphere, which has the same resistance to rolling about all three of

its axes. In that case, [CRR] = CRR · I3 with CRR analogous to the coefficient of friction. However,

certain shapes are able to roll in one direction while resisting rolling in other directions, such as

a cylinder. In this case, rolling resistance should only be applied along the axis of rolling, such

that the diagonal3 entries of [CRR] are no longer identical. For example, a cylinder with the z

axis as axis of revolution could have [CRR] = diag(0, 0, 1). Indeed, CRR = 0 in the directions in

which natural rolling behavior does not occur. Finally, note that in Eq. 2.85, R is the radius of the

spacecraft in the direction of rolling.

In analogy to the Coulomb friction force, rolling resistance acts with some fixed magnitude

as it drives ωS/T → 0. Once ωS/T = 0, it acts with some reduced magnitude to keep this angular

velocity at zero. The torque dLRR,lock required to maintain ωS/T = 0, a state which we we denote

as lock, can be computed from Eq. 2.58 as:

dωS/T

dp
= [IS ]−1[r̃]

dP

dp
+ [IS ]−1 dLRR,lock

dp
= 0

⇐⇒
dLRR,lock

dp
= −[r̃]

dP

dp

(2.86)

Although another stretching variable could be used to handle the ωS/T → 0 approach, the simul-

taneous use of two stretching variables is not trivial. Instead, we make use of the regularization

3 The directions of rolling are assumed to be aligned with the axes of the spacecraft frame, such that [CRR] is
always diagonal when expressed in the spacecraft frame.
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variable λRR. This variable is defined as:

λRR =
min (ωS/T , ω

∗)

ω∗
(2.87)

It is equal to 1 when ωS/T ≥ ω∗ and linearly reduces to zero as ωS/T → 0 while ωS/T < ω∗. Using

this variable, rolling resistance is regularized as:

dLRR
dp

= λRR
dLRR,roll

dp
+ (1− λRR)

dLRR,lock
dp

(2.88)

which avoids numerical oscillations as the angular velocity approaches zero. When the torque of

Eq. 2.88 is applied by itself, the contact point velocity υ is changed. This introduces a coupling be-

tween rolling resistance and respectively restitution and Coulomb friction, such that the respective

coefficients can no longer be independently defined. This issue is highlighted in [130] and [118]. We

follow their approach and also include a rolling resistance force, applied at the spacecraft center of

mass, such that the net effect on the contact point velocity is nullified. To obtain an expression

for this force, we start from the equation for the contact point velocity change resulting from some

force and torque:

dυRR
dp

=
1

m

dPRR

dp
− [r̃][IS ]−1 dLRR

dp
(2.89)

Equating this to zero and solving for the corresponding linear impulse:

dυRR
dp

= 0 ⇐⇒ dPRR

dp
= m[r̃][IS ]−1 dLRR

dp
(2.90)

In summary, the inclusion of rolling resistance updates the collision equations of motion to:

Ẋc = η ·



cosφdυ1
dp + sinφdυ2

dp

cosφ
s

dυ2
dp −

sinφ
s

dυ1
dp

dυ3
dp

Eq. 2.65 or Eq. 2.71 or Eq. 2.78

1
m

dP
dp

[IS ]−1[r̃]dP
dp

υ3


N+F

+ η ·



0

0

0

dPRR
dp

1
m

dPRR
dp

[IS ]−1 dLRR
dp

0


RR

(2.91)



86

2.5.3 Contact motion

The motion of a rectangular payload deployed to the surface of some body is illustrated in

Fig. 2.55. The probe is released above the surface at some t0, ballistically descends towards the

surface, and first impacts it at t1. A number of successive impacts occur, some of which are single

bounces and some of which are multiple bounces in which the probe performs touches the surface

several times before ‘flying’ up into another ballistic arc.

Figure 2.55: Illustration of the different phases in the rover deployment to a small body.

During each collision, the energy of the spacecraft is reduced, until the normal contact point

velocity reaches below some small threshold value at the start of a collision. When this is detected,

two situations are possible:

(1) If the external normal acceleration of the contact point is negative, this implies that the

surface must continuously apply a normal force in order to enforce the non-penetration

constraint. One final collision with e = 0 is then performed, such that the normal contact

point velocity υ3 = 0 at the end of the compression phase. Contact motion then begins, in

which the spacecraft is in continuous contact with the small-body surface.

(2) If the external normal acceleration is positive, this implies that the accelerations on the

spacecraft are such that the contact point will move upwards from the surface, of its own

accord. Contact motion does not start, and the spacecraft is returned to another ballistic

arc instead. This typically only happens when the coefficient of restitution is very low, at

roughly e < 0.05.
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The contact motion phase is different from a collision in that it is not evaluated impulsively. In

other words, time continues to run during contact motion, while it was paused during the evaluation

of a collision. As an example of contact motion, consider the ‘rolling’ of the rectangle on one of its

vertices on the right side of Fig. 2.55. Although contact motion is a negligible phase for objects

that oppose rolling (such as a cube or tetrahedron), it can be much more significant for objects

that do roll (such as a sphere or disk). This will be shown through simulation in Section 4.2.

During contact motion, the spacecraft is subject to the same surface interactions as dur-

ing collision phases. First, a normal force is applied in order to prevent the contact point from

penetrating through the small-body surface. Second, a classical Coulomb friction force resists the

tangential contact point velocity. Finally, rolling resistance acts against the spacecraft angular

velocity. Starting from the expression for the contact point velocity change, as given by Eq. 2.54,

the equations of motion for contact motion are now derived. Similar to the approach for collisions,

expressions for the normal and friction forces during respectively stick and slip are first obtained.

Rolling resistance is then included into the model. As mentioned, the normal force enforces the

non-penetration constraint during contact motion, i.e., it enforces:

υ̇N =
d

dt

(
υ · N̂

)
=

dυ

dt
· N̂ + υ · dN̂

dt
= 0 (2.92)

This expression holds regardless of whether the contact point is in stick or slip.

Stick If the contact point is in stick, it holds that also its tangential velocity υ̇T = υT = 0.

Combining this with the non-penetration constraint, it holds that during sticking contact motion,

υ̇ = 0. From Eq. 2.54, the corresponding force to be applied at the contact point can therefore be

obtainted:

υ̇ = g + C + W + [M]Fc,stick = 0

⇐⇒ Fc,stick = −[M]−1 (g + C + W)

(2.93)

This force can be broken up into its normal and tangential components with respect to N̂ to yield
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the normal and friction forces, as:
FN,stick =

(
FT
c,stickN̂

)
N̂ = N̂N̂TFc,stick

FF,stick = Fc,stick − FN,stick =
(
I3 − N̂N̂T

)
Fc,stick = [T]Fc,stick

(2.94)

in which the tangential projection matrix [T] is defined as:

[T] = I3 − N̂N̂T (2.95)

During sticking contact motion, both N̂ and [T] remain fixed.

Slip Although the normal contact point velocity remains zero during sliding contact mo-

tion, its tangential velocity is allowed to change. In order to derive expressions for the corresponding

normal and friction forces, the normal and tangential contact point velocities are first expressed

(vectorially) as:

υN = N̂N̂Tυ and υT =
(
I3 − N̂N̂T

)
υ = [T]υ (2.96)

In contrast to sticking contact, the surface normal N̂ can change during sliding contact. As a result,

both the normal and tangential directions change, which affects the magnitude of the contact forces.

Our methodology of evaluating the change in surface normal will be addressed shortly.

When the sliding velocity υT is non-zero, the friction force acts with magnitude FF = f ·FN

opposite the direction of slip. It can thus be written as:

FF,slip = −fFN,slipυ̂T (2.97)

To obtain the magnitude of the normal force during sliding contact, Eq. 2.54 is substituted into

Eq. 2.92. This yields for the change in normal contact point velocity that:

υ̇N =
(
g + C + W + [M]FN,slipN̂ + [M]fFN,slipυ̂T

)
· N̂ + υ · dN̂

dt
= 0 (2.98)

Rewriting, this yields the following normal force magnitude:

FN,slip = −
[(

[M]N̂ + f [M]υ̂T

)
· N̂
]−1

(
υ · dN̂

dt
+ (g + C + W) · N̂

)
(2.99)

which yields a (vectorialized) normal force of FN,slip = FN,slipN̂.
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Changes to the normal Eq. 2.99 for the normal force during sliding contact contains

the term dN̂/dt. Indeed, as mentioned, the surface normal N̂ changes during sliding contact.

Although the SDF voxel size is typically such that changes to N̂ within any given voxel are small,

they cannot be ignored when computing contact forces. The reader is referred back to Fig. 2.12 for

an illustration of how the surface normal can change within a given voxel.

In order to derive an expression for the rate of change of the surface normal, it is repeated that

the surface normal is obtained as the gradient of the signed distance field. However, as mentioned

in Section 2.2, it is necessary to normalize this gradient, as the linear interpolant does not preserve

the distance function property that ‖∇d(x)‖ = 1. The surface normal is thus computed as:

N̂ =
∇d(x)

‖∇d(x)‖
=

N

N
(2.100)

in which ∇d(x) is obtained using Eq. 2.20. The rate of change of this expression is found using the

chain rule as:

dN̂

dt
=

dN

dt

1

N
− N

N2

dN

dt
(2.101)

which consists of two terms. Applying the chain rule again, the first term of Eq. 2.101 is found as:

dN

dt
=

dN

dx

dx

dt
= ∇∇d(x)v (2.102)

To obtain the second term of Eq. 2.101, start from the definition of N2:

N2 = N ·N

⇐⇒ 2N
dN

dt
= 2

dN

dt
N

⇐⇒ dN

dt
= N̂ · ∇∇d(x)v

(2.103)

Substituting Eqs. 2.102 and 2.103 into Eq. 2.101, the rate of change of the surface normal is found

as:

dN̂

dt
=

1

N

(
I3 − N̂N̂T

)
∇∇d(x)v =

1

N
[T]∇∇d(x)v (2.104)

This can be substituted into Eq. 2.99 in order to obtain the normal force during sliding contact.

Regularization Analogous to the collision evaluation, it is necessary to detect and con-

verge on the onset of stick. However, since the both surface normal N̂ and the tangential direction
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change as the contact point slides, the sliding magnitude s and direction φ change in a non-trivial

way. As a result, the approach using the stretching variable τ is not well applicable to continued

contact motion. Instead, the net contact force from normal and friction interactions is regularized,

analogous to what was done for rolling resistance in collisions. The regularization variable λF is

defined as:

λF =
min (υT , υ

∗
T )

υ∗T
(2.105)

This is then used to compute the regularized net contact force from normal and friction as:

Fc = λFFc,slip + (1− λF )Fc,stick (2.106)

The use of this regularization effectively avoids the need for a transition between sliding and sticking

contact phases, but rather allows some very small υT to exist in order to smooth the stick/slip

behavior without requiring active convergence on the precise transition time.

Rolling resistance Finally, the contact model is extended by including a rolling resistance

model. Again, this model is not nominally active during simulations, but has been implemented

and verified. As done before, rolling resistance is accounted for through a rolling resistance torque

that acts to reduce the angular velocity of the spacecraft. When the spacecraft is rolling, this

torque is defined in analogy with the collision evaluation as:

LRR,roll = −[CRR]RFN
ωS/T

ωS/T
(2.107)

When the spacecraft angular velocity is in ‘lock,’ the corresponding torque required to maintain

ωS/T = 0 can be derived from Eq. 2.5, as:

LRR,lock = [ω̃S/N ][IS ]ωS/N + [IS ][ω̃S/N ]ωS/T (2.108)

This is regularized using the familiar scheme, as:

LRR = λRRLRR,roll + (1− λRR)Llock (2.109)

in which λRR is the rolling regularization variable, given before by Eq. 2.87. Finally, a corresponding

force is applied at the spacecraft center of mass to ensure that rolling resistance does not affect the
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contact point velocity, again in analogy with our rolling resistance model during collision evaluation.

This can be derived from Eq. 2.54 as:

FRR = m[r̃][IS ]−1LRR (2.110)

2.6 Regolith

One of the major discoveries made by the Hayabusa spacecraft was that asteroid Itokawa

is “covered with unconsolidated millimeter-sized and larger gravels” [72, 123]. This observation is

important for the modeling of spacecraft-target interactions: when a spacecraft impacts a regolith-

covered surface, it will interact with and ‘dig through’ the small regolith grains, dissipating energy

in the process. This was witnessed most notably during the deployment of the Philae lander

onboard the Rosetta mission. As previously mentioned, Philae’s active landing systems failed to

anchor the lander to the surface of comet 67P/C-G, after which the craft bounced away and settled

in a poorly-lit location on the surface. Imaging of the initial touchdown site before and after

impact revealed that two smaller craters had appeared after the impact. This is illustrated in

Fig. 2.56, taken from [11], in which the ‘B’ and ‘C’ crater features are respectively 10 and 20 cm

deep with a depth of approximately 2 m. The corresponding excavated masses are respectively 60

and 120 kg. Detailed reconstruction of Philae’s descent trajectory and of the first impact indicated

that “the comet surface is strongly damping: 50 to 80% of the lander’s kinetic energy before TD1

was dissipated in the comet soil.” [11] In other words, Philae experienced a kinetic coefficient of

restitution of 0.2 to 0.5. The reconstruction also showed that, after penetrating the 20 cm regolith

layer, the lander interacted with a hard surface layer underneath the regolith.

As discussed prior to our contact model development, we chose to abstract away the complex

granular mechanics that occur between surface regolith and a deployed spacecraft, such as Philae’s

‘cratering’ illustrated above. Instead, effective coefficients of restitution and friction are used, that

are easily tuned and allow for fast simulation of a large number of spacecraft trajectories. We

also discussed how localized, high-fidelity DEM simulations could be used to empirically obtain
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Figure 2.56: Surface morphology changes at Philae’s first impact site [11].

expressions for the coefficients of restitution and friction as a function of impact conditions. Al-

though this process is beyond the scope of the current thesis, there is one simple ‘modulation’ of

the coefficient of restitution that may be applied, in light of Philae’s bouncing behavior and some

relevant experimental results.

Impact experiments Projectile impacts in Earth gravity have received considerable ex-

perimental attention, see for example the work by Uehara et al [127], Newhall and Durian [79],

Ambroso et al. [5], Goldman and Umbanhowar [37] and Walsh et al. [139]. The amount of research

in low-velocity, micro-gravity impacts is far smaller. Colwell and Taylor performed experiments on

Space Shuttle and the ISS, during which they shot small spheres into various sands and JSR (a

regolith simulant). They observed particularly low restitution coefficients of e = 0− 0.1 at impact

velocities of V0 = 10 − 100 cm/s [24]. These results were repeated in successive experiments, in

which they observed notably higher e ∼ 0.3 at particlarly low impact velocities of V0 ∼ 5 cm/s

[23]. Murdoch et al. performed experiments with an Atwood machine in a drop tower to simulate

a wide range of microgravity values g = 0.2− 1.0 m/s2. Dropping a 10 cm sphere into quartz sand

at velocities of V0 = 2− 40 cm/s, they also did not observe any rebounds [78]. These observations

run counter to the bouncing motion of Philae on comet 67P/C-G. It is possible that the Earth

soils experienced more significant packing, which would affect the amount of energy dissipated

during collisions with the regolith. In any case, Murdoch et al. note that the shape and angle at
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which an object impacts regolith can strongly affect its rebounding behavior. Indeed, all of the

aforementioned experiments were performed for (approximiately) normal impacts.

To the best of our knowledge, Nishida et al. are the only authors to have investigated oblique,

low-velocity impacts into granular materials. They performed experiments at 1g with small spheres

between 6 and 20 mm in diameter and of different materials, impacting different granular materials.

They varied the impact angle θ, as illustrated on the left side of Fig. 2.57. The impact angle θ is

thus defined as:

θ = arcsin

(
−υ · N̂
‖υ‖

)
(2.111)

Figure 2.57: Definition of the impact angle for (left) a pointmass and (right) a complex probe.

Nishida et al. found significantly different behaviors at different impact angles [80]. More

specifically, at low (tangential) θ, the spherical particles rebounded with some restitution coefficient

e > 0. As the impact angle was increased towards more normal impacts, the corresponding restitu-

tion coefficient decreased. When θ was increased beyond some transition θE , the spheres no longer

rebounded but instead penetrated the granular surface. Combining multiple sets of experiments

with different spheres and granular materials, they obtained the following empirical relation for the

critical θE [80]:

θE =

(
ρt
ρp

)1/2

·
(
Dt

Dp

)2/3

· 210 deg (2.112)

in which ρt and ρp are the (bulk) densities of respectively the granular material and the projectile.

Dt and Dp are the corresponding diameters.

Restitution modulation Eq. 2.112 can be used to mimic the effect of a granular layer
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on the small-body surface on the resulting probe motion. Indeed, the coefficient of restitution may

be modulated based on the effective impact angle of a probe as it collides with the small-body

surface. In this, one may be inclined to simply set e = 0 when θ > θE and to scale the restitution

coefficient when θ < θE . However, this kind of modulation is counter to an important real-world

result, namely, the dynamics observed in the bouncing motion of the Philae lander. Despite its

near-normal first impact on comet 67P/C-G, Philae rebounded with an (energetic) coefficient of

restitution e between 0.2 and 0.5 [13]. This occurred because the granular layer on the comet

surface had a limited thickness of approximately 20 cm; Philae penetrated this soft layer and then

impacted the hard surface layer underneath. In order to simulate such a surface environment, some

lower limit e0 on the coefficient of restitution is therefore applied, such that e = e0 whenever the

impact angle θ > θ0. When the impact angle is reduced below its critical value, e is then increased

up to some maximum e1 in the limit of a tangential impact where θ = 0 deg. This modulation is

illustrated in Fig. 2.58 and can be expressed as:

e = e1 +
min (θ, θE)

θE
(e0 − e1) (2.113)

Figure 2.58: Modulation of the coefficient of restitution e as a function of impact angle θ.

Eq. 2.113 provides a simple model that modulates the restitution coefficient in order to

account for the presence of surface regolith on top of a hard, rocky layer. Although far more

advanced models based on, e.g., the impact velocity or probe shape could be implemented, this

would require extensive experimental work. Given that the model presented here can be used to
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match the few relevant experiments, it is considered a good first attempt at accounting for regolith

presence in global small-body simulations.

2.7 Numerical methods

The above sections have detailed our methods for modeling the small-body environment

and the motion of a ballistically-deployed probe through this environment. Here, our numerical

implementation used to actually simulate that motion is discussed. Some general characteristics

and techniques applied in the numerical propagator are first presented. This is followed by a

summary of how such an integrator can be classically implemented in a sequential manner that

is executed on the CPU. Finally, details are provided on how the integration can be parallelized

through implementation on the GPU, which allows for the simultaneous propagation of multiple

simulations and significantly increases the speed at which a batch of simulations can be performed.

2.7.1 Trajectory propagation

During simulation of a probe’s trajectory, a distinction between three ‘phases’ is made: flying

motion in which the probe (ballistically) moves above the asteroid surface, contact motion in which

the probe moves while in contact with the surface, and collision evaluation in which impulsive

target-probe collisions are handled. The spacecraft state X propagated during flying and contact

phases was previously given in Eq. 2.1. This state is propagated using the equations of motion

in Eq. 2.2. During collision evaluation, the collision state Xc as given in Eq. 2.80 is propagated

instead, using the equations of motion in Eq. 2.91.

These equations of motion are integrated numerically using a Runge-Kutta (RK) integrator,

which is a form of Gauss quadrature that approximates the state X1 at some time t1 = t0 +h based

on an initial state X0 at t0, with h the applied step size [75]:

X1 = X(t0 + h) = X0 + ∆X ≈ X0 + h

p∑
i=1

biki (2.114)

In this expression, bi are coefficients of the applied quadrature rule; the reader is referred to [75]
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for their values. Furthermore, the ki are evaluations of the equations of motion Ẋ(...) at different

times t and states X, given generally as:

ki = Ẋ(t0 + h · ci,X0 + h ·
i−1∑
j=1

aijkj) (2.115)

in which aij and ci are quadrature coefficients similar to the aforementioned bi and that can also be

found in [75]. Furthermore, it holds that k0 = 0. The upper limit p of the sum in Eq. 2.114 is called

the order of the applied integration method. The use of higher-order methods allows for larger step

sizes h while still achieving some accuracy, but does require additional evaluations of the equations

of motion. Here, the RK5(4) scheme is applied, which uses a fifth-order method for propagation

purposes. Additionally, the scheme uses a fourth-order method to estimate the accuracy of the

integration. Based on the accuracy of an integration with step size h, it is possible to estimate the

step size h∗ necessary to achieve some particular tolerance ε. If X1 is the updated state computed

with a high-order method and X∗1 is that state computed with a lower-order method, the new step

size h∗ can be computed as [75]:

h∗ = h ·
(

ε

max (|X1 −X∗1|)

) 1
p+1

(2.116)

In our propagation, a relative tolerance of 10−10 is used. After each integration step, the spacecraft

and target attitude quaternion are normalized. This is then followed by an event check that

evaluates some even function to obtain the event vector E(X) of size Q×1, where Q is the number

of tracked events. Each of the vector elements ei quantifies some criterion about the spacecraft

state X. For the spacecraft-target collision event, this element is equal to the minimum distance

min (d) between the target and the spacecraft, as computed from the SDF with Eq. 2.17.

Using this event vector, an event is detected when the sign of any of the event vector elements

changes between successive time steps. When this occurs, the main integration loop is adjusted

and event convergence begins, in which the simulation converges on the particular time te at which

the event takes place. A flowchart of the event convergence algorithm is provided in Fig. 2.59.

Effectively, this algorithm continues to reduce the time step h while evaluating the event function,
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until h ≤ ∆te. Once this happens, the simulation has converged on the event, such that its effect

may be evaluated.

Figure 2.59: Flowchart of event convergence algorithm.

2.7.2 Sequential simulation on the CPU

In a standard implementation of this integration algorithm, simulations are performed se-

quentially. In this, the computer handles a single simulation at any given time. The overall

algorithm applied in this sequential simulation is illustrated in Fig. 2.60. The relevant shape, grav-

ity, and spacecraft models necessary to enable simulation are first set up. The first simulation is

then initialized with some set of initial conditions (position, velocities, and attitude). The sim-

ulation then consists of a single integration loop in which repeated RK5(4) integration steps are

performed, followed by an event check and (if necessary) event handling. Once the spacecraft has

settled on the target surface, the simulation outputs are saved. The algorithm then initializes the
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second simulation, propagates it, and saves the corresponding outputs. This is repeated for all N

simulations.

Figure 2.60: Flowchart of serial simulation algorithm.

2.7.3 Parallel simulation on the GPU

Although the sequential integration discussed above is relatively straightforward to imple-

ment, it is slow to evaluate a sizable amount of simulations. This is because the sequential prop-

agation is limited to handling a single simulation at any given time. To increase the speed at

which simulations can be performed, the simulation methods are adjusted to allow for parallelized

implementation on a GPU, which may have several thousand computation cores and are thus able

to simultaneously perform several thousand simulations. Although such an implementation has the

potential of significantly increasing the simulation speed, parallelization requires efficient memory

management. More specifically, it holds that the CPU (where models and simulations are initial-

ized) and GPU (where simulations are actually performed) have separate memories. Any exchange

of variables between the two memories must be commanded in code. Although the GPU is efficient

at performing computations, memory exchange (both read and write) operations are much slower

and should therefore be avoided whenever possible.
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In a naive implementation, one may be inclined to simply have each of the GPU cores handle

a single simulation by executing the inner loop of the sequential simulation algorithm, as previously

illustrated in Fig. 2.60. However, this approach severely limits the computational efficiency due

to the manner in which GPU cores execute a piece of code (a kernel). All cores that execute a

given kernel simultaneously step through that kernel’s lines of code. When a branching statement

occurs, only one branch of the statement can be executed at a given time. Consider the following

example: when an if/else statement is included in a GPU kernel, all cores that follow the if

branch will execute first, while those following the else branch are stalled. Only after the if

branch is completed does the other set of cores execute the else branch, during which time the

former set of cores is stalled. As a result, such branching statements significantly limit the effective

‘duty cycle’ of the GPU cores. In our small-body probe simulations, the simultaneous execution of

flying motion, contact motion, and collision evaluation should therefore be avoided within any given

group of GPU cores. Instead, the simulations that are in those three phases should be grouped

together and allocated to separate groups of cores. Our GPU implementation therefore includes

three separate integration kernels (the ‘fly’ kernel, the ‘collision’ kernel, and the ‘contact’ kernel)

that can be executed independently and therefore simultaneously.

Fig. 2.61 illustrates our parallelized simulation implementation. The algorithm works as fol-

lows: first, the relevant models are loaded and written onto the GPU memory. Next, the initial

conditions of the simulations to be performed are loaded. Given the GPU capabilities, several hun-

dred thousand trajectories are often simulated. Due to the limitations on available GPU memory,

it holds that a large part of that memory will be taken up by the target shape and gravity mod-

els, with limited space remaining for trajectory data. Furthermore, typical GPUs have only a few

thousand computation cores. As a result, not all N initial conditions to be simulated are loaded

onto the GPU memory at any given time. Instead, the GPU only ever handles n < N ‘active’

simulations at any given time.

At the first initialization of the simulation code, all n active simulations are prepared for the

propagation of flying motion. The ‘flying’ kernel that is executed on the GPU performs integrations
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for all active simulations that are in the ‘flying’ mode. Whenever one wishes to investigate or

visualize the entire trajectory of a bouncing probe, the probe state should be stored at each time

step provided by the integrator. This requires the CPU to read the GPU memory after every time

step and thus implies a significant computational cost, relative to the overall speed of GPU code

execution. Furthermore, in most cases one is only interested in the critical information of each

simulated trajectory, namely, the velocity changes occurring in each target-spacecraft collision, and

the final spacecraft settling state. In these cases, the kernel can be allowed to perform multiple

integration steps before the GPU memory is read by the CPU. In order to allow for these two

modes of propagation, a parameter kfly is set and determines the number of integration steps to

be executed by the kernel before the GPU memory is read by the CPU. When this data reading

is finished, the CPU determines which simulations should continue flying propagation and which

simulations should switch to respectively contact motion and collision evaluation. The code then

continues (often simultaneously) performing kfly, kcontact, and kcollision integration steps for the

respective modes of motion. After the completion of each respective set of integration steps, the

CPU determines which simulations should switch propagation mode. The CPU controller also

checks how many of the n simulations have been completed. Whenever ndone ≥ nupdate, the kernel

integrations are paused and new simulations are added from the global list of N simulations to

be performed onto the active list of n simulations currently active. This process repeats until all

simulations have been completed.

In summary, the parallel GPU implementation offers a simulation speedup of roughly 100

times relative to a serial CPU implementation, for typical scenarios. On a 2018 high-performance

machine with a NVIDIA GeForce GTX 1080 TI GPU, typically 20 simulations per second can be

performed. This enables broad studies of lander deployment, which would be impossible with the

more classical serial CPU implementation.
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Figure 2.61: Flowchart of parallel simulation algorithm.



Chapter 3

The lift-off velocity

In June or July of 2018, the Japanese Hayabusa-2 spacecraft will arrive at asteroid Ryugu and

begin exploration of the asteroid. During its stay at the asteroid, the spacecraft will deploy three

hoppers (MINERVA-II) and one lander (MASCOT) [125, 43, 148]. These payloads are deployed by

the spacecraft from an altitude of approximately 55 m, after which they descend to the surface and

performed several bounces before coming to rest. The rovers are equipped with several scientific

instruments that allow them to obtain in situ measurements of the surface, which are relayed

to Earth via the Hayabusa-2 mothership. The probes also carry internal momentum exchange

mechanisms, that allow them to ‘hop’ across Ryugu’s surface. By performing repeated hops, the

probes are able to obtain measurements from multiple sites, which greatly increases the return of

their surface exploration operations.

An important consideration in the design of these (hopping) mobility operations is the velocity

imparted on a probe by its momentum device, which in turn determines the distance covered and

time spent hopping [134, 118]. When a hopper is given a velocity normal to the local surface, it is

guaranteed to lift off from that surface and perform a (possibly brief) hop, of which the complex

dynamics are difficult to predict analytically. If the probe instead moves tangential to the local

target body surface, lift-off is no longer guaranteed but requires some minimum velocity. Indeed,

an arbitrary location on the small-body surface has some associated tangential velocity at which

a moving particle will locally lift off from that surface and enter a period of ballistic flight. This

velocity is defined as the lift-off velocity and varies as a function of the desired lift-off direction.
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Although mobile platforms in small-body environments are likely to employ both a tangential and a

normal velocity in their hopping operations, the assumption of a strictly tangential velocity permits

an analytic definition and study of the lift-off velocity, which can be used in the determination of

preliminary hopping parameters. The velocity is also useful in establishing ‘speed limits’ for surface

operations of wheeled vehicles in more gravitationally tractable environments, if lift-off is not to

occur. Finally, the lift-off velocity determines when rocks or dust particles, moving on a small

body, will cease contact with its surface after being made mobile by geophysical processes such as

landslides.

The concept of the lift-off velocity was first introduced by Staley, who studied lift-off from

the long ends of a rotating asteroid in his article Man on asteroid [109]. Staley suggests performing

“a much more extensive analysis at other locations on an asteroid.” The current chapter of this

thesis presents precisely that analysis and is structured as follows. First, a general formulation for

the lift-off velocity on the surface of an arbitrary body is derived, in Section 3.1. This formulation

is reduced to three distinctly different cases: lift-off from a curved surface, a sharp ridge, and a flat

plane. The magnitude of the lift-off velocity is found to be strongly dependent on the local surface

curvature of a considered body. Section 3.2 therefore details methods to compute this surface

curvature for various small-body shape models. The resulting lift-off velocity expressions are then

applied to some simple shapes in Section 3.3, in order to establish general trends in the distribution

of the lift-off velocity magnitude across the surface of a body. Finally, the expressions are applied

to several small bodies of the Solar System in Section 3.4, in which global velocity distributions are

provided for asteroids 1999 KW4 Alpha, Bennu, and Eros, as well as the Mars moon Phobos.

3.1 Deriving the lift-off velocity

We define the lift-off velocity, Vθ, as the tangential surface velocity given to an object on a

body with arbitrary shape, rotation, and gravity, at which the object will locally lift off from that

body’s surface in some desired direction, b̂θ. The geometry of this set-up is illustrated on the left

side of Fig. 3.1.
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Figure 3.1: (left) Full and (right) departure plane geometry applied in the derivation of the lift-off
velocity.

3.1.1 Geometry

Following the geometry of Fig. 3.1, two orthonormal reference frames are defined: the inertial

frame I and the rotating departure frame B, as:

I :
{

C | î1, î2, î3
}

B :
{

P | b̂∗ρ, b̂θ, b̂δ
} (3.1)

in which the î3 axis is aligned with the rotation axis Ω of the target body. The considered object,

with radius vector R, has its center of mass at some r relative to the center of mass of the target

body, and is in contact with that body at the departure point P. The radius vector R points from

the departure point to the object center of mass, such that r = P + R. With this definition, our

theory holds for objects with an arbitrary shape, although Fig. 3.1 depicts a sphere for simplicity.

The object is (inertially) subjected to an external acceleration aE , which consists chiefly of

the gravitational acceleration g(r) from the target body, but may also include other contributions

such as solar radiation pressure or tidal effects. It is also subject to an acceleration aN from the

surface normal force. The Coriolis and centrifugal accelerations are not included in aE but will

instead appear in the final lift-off velocity expression through our choice of reference frame.
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When the object is given some surface velocity V, its motion will be bound to the osculating

departure plane that is spanned by V and the net acceleration aE on the object. This plane varies

as a function of the direction b̂θ of the surface velocity V = V b̂θ, which can be freely chosen

through rotation over some azimuthal angle η around the local surface normal N̂, but must always

be perpendicular to that normal. The departure plane is shown in red in Fig. 3.1.

Although the target body may have an arbitrary shape, its surface can be approximated

within the departure plane and at the departure point with some radius of curvature, ρ, and

corresponding center of curvature, S. The vector from the center of curvature to the object center

of mass defines the b̂∗ρ axis; the b̂δ axis right-handedly completes the rotating B : {r | b̂∗ρ, b̂θ, b̂δ}

departure frame and is normal to the departure plane. The target body is assumed to be uniformly

rotating about the î3 axis of the inertial I : {C | î1, î2, î3} frame with angular velocity Ω = Ωî3,

though the results can be generalized to non-principal-axis rotators.

In Fig. 3.1, the object center of mass, departure point, and center of curvature are shown as

collinear for simplicity; these points are not aligned in the general case. Furthermore, it can be seen

that the object center of mass is located at some distance ρ∗ from the center of curvature S. The

value of this ρ∗, denoted effective radius of curvature, will be some combination of ρ and R that

will be commented on shortly. Finally, in order to properly define the lift-off velocity, it is assumed

that the net acceleration on the stationary object is such that it does not lift off from the small

body surface by itself, i.e., that N̂ · ([Ω̃][Ω̃]r− aE) ≥ 0, in which [Ω̃] is the cross-product tensor of

Ω. This expression simply states that the combined external and centrifugal accelerations must be

directed against the (outwards-pointing) local surface normal, i.e., that these accelerations do not

pull the particle off the surface.

3.1.2 General expression

The object, located initially at r(0) = P + R, is given a velocity V along b̂θ and will be

displaced over some infinitesimal distance s after a time dt. Since the particle velocity V is aligned
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with s, one may write that:

ṡ = ṡb̂θ = V = V b̂θ (3.2)

Applying the transport theorem to obtain the derivative of Eq. 3.2, the second derivative of s is

found as:

s̈ = V̇ b̂θ + ω × (V b̂θ) (3.3)

When the particle is given the proper lift-off velocity Vθ, it will track the surface curvature corre-

sponding to {S, ρ∗} and perform a circular motion about the center of curvature. It therefore holds

that, at lift-off, ω = (Vθ/ρ
∗)b̂δ. Substitution of this rate into Eq. 3.3 yields:

s̈ = V̇θb̂θ −
V 2
θ

ρ∗
b̂∗ρ (3.4)

Combining the planar geometry on the right side of Fig. 3.1 with the full geometry on the left

side,the particle position at time dt can be expressed as:

r = r(dt) = P + R + s (3.5)

Applying the transport theorem, the inertial derivative of r is found as:

ṙ = Ṗ + Ṙ + ṡ + Ω× (P + R + s) (3.6)

As the departure point P is fixed to the target body, it must hold that Ṗ = 0. Assuming that the

object is rigid, it also holds that Ṙ = 0. Substituting this into Eq. 3.6 and making use of the tensor

notation Ω̃ to express the vector cross product and · to express the vector dot product, one may

write that:

ṙ = ṡ + [Ω̃] (P + R + s) (3.7)

Applying the transport theorem once more, the inertial acceleration of the object is found as:

r̈ = s̈ + [Ω̃]ṡ + [
˙̃
Ω] (P + R + s) + [Ω̃]

(
Ṗ + R + ṡ

)
+ [Ω̃][Ω̃] (P + R + s) (3.8)

At the exact instant of lift-off, the infinitesimal displacement s → 0. Using also that Ṗ = Ṙ = 0,

and assuming that the body is in uniform rotation such that Ω̇ = 0, Eq. 3.8 reduces to:

r̈ = s̈ + 2[Ω̃]ṡ + [Ω̃][Ω̃] (P + R) (3.9)
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This expression is similar to the equations of motion of a particle in a rotating reference frame,

though the set-up combining P, R, and s is somewhat unique to our application. Recognize the

appearance of the Coriolis acceleration 2[Ω̃]ṡ and the centrifugal acceleration [Ω̃][Ω̃] (P + R). These

virtual accelerations result from our use of the rotating, non-inertial departure frame.

A particle on the surface of a gravitating body is subject to both an external acceleration aE

and an acceleration aN from the normal force. Applying Newton’s second law of motion to Eq. 3.9,

and substituting the kinematic expressions from Eqs. 3.2 and 3.4 for ṡ and s̈, one may write that:

r̈ = aN + aE = V̇θb̂θ −
V 2
θ

ρ∗2
ρ∗ + 2Vθ[Ω̃]b̂θ + [Ω̃][Ω̃] (P + R) (3.10)

This can be rewritten to yield the normal acceleration as:

aN = V̇θb̂θ −
V 2
θ

ρ∗2
ρ∗ + 2Vθ[Ω̃]b̂θ + [Ω̃][Ω̃] (P + R)− aE (3.11)

Eq. 3.11 expresses the acceleration required to prevent the particle from penetrating the body

surface. By inspecting the direction of this acceleration with respect to the surface curvature, one

can determine whether or not the particle will lift off when moving with some velocity Vθ. If the

surface is locally convex, it holds that lift-off occurs when b̂∗ρ · aN ≤ 0. Taking the dot product of

b̂∗ρ onto Eq. 3.11, it holds that:

−V 2
θ − 2ρ∗Vθb̂θ[Ω̃]b̂∗ρ + ρ∗b̂∗ρ ·

(
[Ω̃][Ω̃] (P + R)− aE

)
≤ 0 (3.12)

in which it was used that ρ∗ = ρ∗b̂∗ρ and ρ∗ ·ρ∗ = ρ∗2. This expression shows that, for finite values

of ρ∗, there always exists some Vθ such that Eq. 3.12 indeed yields a negative value. The minimum

velocity required for lift-off in the b̂θ direction is found from the limit case in which b̂∗ρ · aN = 0.

Setting Eq. 3.12 equal to zero and solving for the lift-off velocity Vθ yields:

Vθ = ±
√
ρ∗2
(
b̂θ[Ω̃]b̂∗ρ

)2
+ ρb̂∗ρ ·

(
[Ω̃][Ω̃] (P + R)− aE

)
− ρ∗b̂θ[Ω̃]b̂∗ρ (3.13)

The scalar triple product in this equation can be rewritten as:

b̂θ[Ω̃]b̂∗ρ = Ω ·
(
b̂∗ρ × b̂θ

)
= Ω · b̂δ = b̂δ ·Ω (3.14)
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Note the appearance of Ω without the cross-product tensor in this expression. This allows us to

simplify Eq. 3.13 as:

Vθ = ±
√
ρ∗2
(
b̂δ ·Ω

)2
+ ρ∗b̂∗ρ ·

(
[Ω̃][Ω̃] (P + R)− aE

)
− ρ∗b̂δ ·Ω (3.15)

Eq. 3.15 provides a vectorial, frame-independent expression for the lift-off velocity at de-

parture point P and in direction b̂θ. Two solutions are possible, as the square root is preceded

by a ± sign. Although the lift-off direction b̂θ does not explicitly appear in this expression, its

choice directly determines the b̂∗ρ and b̂δ vectors. The two solutions correspond to lift-off along the

departure plane in respectively the +b̂θ and −b̂θ direction.

3.1.3 Lift-off from a curved surface

The computation of the effective radius of curvature ρ∗ in Eq. 3.15 from ρ and R is not

obvious for arbitrary geometries, and complicates an evaluation of the lift-off velocity. Fortunately,

the case in which the body radius of curvature ρ is much larger than the object radius R permits a

reduction of ρ∗ that simplifies the lift-off velocity expression and provides useful insight. In order

to carry out this simplification, the geometry of the object and the corresponding departure plane

is inspected, while viewed along the b̂θ axis, as illustrated in Fig. 3.2.

Figure 3.2: Geometry viewed along the b̂θ axis.
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We note again that although the illustration shows a spherical object, the following derivation

holds for any object shape with radius vector R from the departure point to the object center of

mass. Although the dimensions of this figure are exaggerated, this illustration shows that the

departure plane and frame differ slightly when computed at respectively r or P. This is true in the

general case where S, P, and r are not collinear. Correspondingly, the departure plane and frame

will also change slightly when the object radius R is varied. These factors introduce a dependence

of the lift-off velocity on the object radius R, which makes its computation somewhat involved. To

simplify, the law of cosines is applied to Fig. 3.2, which yields for the radius of curvature ρ:

ρ2 = ρ∗2 +R2 − 2ρ∗R cosα (3.16)

in which ρ∗ is again the effective radius of curvature. Assuming a locally convex surface, Eq. 3.16

can be rewritten to yield ρ∗, as:

ρ∗ = R cosα+

√
ρ2 −R2 sin2 α (3.17)

Dividing by the radius of curvature ρ that is computed at P, the curvature ratio can be written as:

ρ∗

ρ
=
R

ρ
cosα+

√
1− R2

ρ2
sin2 α (3.18)

This expression can be expanded around R/ρ = 0 with a Taylor series as:

ρ∗

ρ
(R) = 1 +

R

ρ
cosα+O(

R

ρ
)2 + H.O.T. (3.19)

which provides a first-order approximation to the curvature ratio for an object whose radius is small

relative to the surface curvature it is resting on. The small bodies that are envisioned as targets

for lander/rover missions are many orders of magnitude larger than the craft that would operate

on their surfaces. For realistic scenarios, it therefore holds that the R/ρ ratio must indeed be very

small, and it is found from Eq. 3.19 that ρ∗ ' ρ, i.e., that the effective radius of curvature is, to

first order, equal to the radius of curvature. Note that this approximation is not valid at sharp

edges where ρ is small, as in that case the R/ρ ratio is not small; this situation will be addressed
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shortly. In a similar manner, it can be shown that the b̂∗ρ axis is approximately equal to the b̂ρ

axis, by again applying the law of cosines to find an expression for the δ angle:

R2 = ρ∗2 + ρ2 − 2ρρ∗ cos δ (3.20)

Using the earlier result that ρ∗ ' ρ, the above can be rewritten as:

cos δ ' 1− 1

2

(
R

ρ

)2

(3.21)

Since R/ρ is very small, it holds that cos δ ' 1, such that δ ' 0, and b̂∗ρ ' b̂ρ. In words, the results

that ρ∗ ' ρ and b̂∗ρ ' b̂ρ state that, when the object radius is very small compared to the target

body surface curvature, it holds that the departure plane, departure frame, and radius of curvature

can be computed at the departure point P instead of the object center of mass r. This effectively

removes the dependence of these quantities on the object radius R. Furthermore, it allows for

Eq. 3.15 for the lift-off velocity to be reduced to:

Vθ = ±
√
ρ2
θ

(
b̂δ ·Ω

)2
+ ρθb̂ρ ·

(
[Ω̃][Ω̃]P− aE

)
− ρθb̂δ ·Ω (3.22)

in which was applied, by analogy, that also P + R ' P. Once again, this shows that the radius

of the object may be ignored when computing its lift-off velocity, as long as it is much smaller

than the surface radius of curvature. Eq. 3.22 also shows that the lift-off velocity magnitude is

chiefly determined by this radius of curvature; the task of generating lift-off velocity distributions

across the surface of a target body therefore primarily consists of computing the radius of curvature

distribution across that surface.

Properties of the solution The lift-off velocity expression given by Eq. 3.22 is extremely

versatile: it does not restrict the shape, rotation, or gravitational model of the target body from

which an object is lifting off. Instead, it merely requires a two-dimensional averaging of the body

surface along the desired departure plane, which is spanned by the local gravitational acceleration

vector (including rotation effects) and the desired departure direction. Due to the rotation and

non-central gravity of the target body, the object will generally not remain bound to this departure
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plane. Nevertheless, the plane constructed following the above strategy corresponds to the osculat-

ing plane of motion to which the object will remain closely bound as it moves in the neighborhood

of the departure point. The rotation and gravity of the target body are included in the expression

simply as vectors, allowing for the application of any desired gravitational model and rotation axis.

As mentioned before, the aE term may include accelerations from sources other than the target

body, such as third-body attraction, tidal effects, and solar radiation pressure. Finally, it is noted

note that the derivation did assume the body surface to be locally convex. This assumption, and

the lift-off dynamics on concave surface, will be further discussed further at the end of this section.

The lift-off expression provides two solutions, for which the square root is taken respectively

with a positive or negative sign. These two solutions correspond to lift-off in the local east and

west directions along the desired departure plane, respectively along and against the local surface

rotational velocity. The two solutions will have different magnitudes for the general case in which

b̂δ ·Ω 6= 0, i.e., when the body rotation has a component along the axis normal to the departure

plane. Fig. 3.3 shows the variation of the two lift-off velocities at an arbitrary position on the

surface of a rotating ellipsoid.

Figure 3.3: (left) Variation of the two lift-off velocities at an arbitrary position on a rotating
ellipsoid, and (right) illustration of the azimuthal angle η.

In this plot, the azimuthal angle η expresses the departure direction, which is varied over 360◦

starting from some initial value. The methodology applied to obtain the actual curves are discussed

in detail in Section 3.3; the present discussion is focused on the relative behavior of the two curves.
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The two curves are mirror images of one another that are shifted by 180◦ along the η axis. This

phenomenon is easily explained: a particular departure direction and plane are associated with

some positive and negative lift-off velocities of different magnitude. When this direction is rotated

by 180◦, the departure plane remains unchanged but the b̂θ axis, which indicates the direction of

a ‘positive’ velocity, is flipped. Therefore, the magnitude of the new Vθ,1 assumes the opposite

value of Vθ,2 at the initial orientation, and vice versa. From this analysis, it can be seen that if the

minimum and maximum lift-off velocities encountered at some point are to be computed, one may

either study the variation of Vθ,1 over 0 ≤ η ≤ 360◦, or study the variation of both Vθ,1 and Vθ,2

over 0 ≤ η ≤ 180◦. The former strategy will be used in this work.

On a final note, it is repeated that the condition for lift-off used in the earlier derivation was

b̂ρ · aN ≤ 0. This condition sets the motion of a particle with a purely tangential velocity apart

from that of particles with a normal velocity component; indeed, when a particle is given some

normal velocity, this criterion is always satisfied.

3.1.4 Lift-off from a ridge

As discussed, Eq. 3.22 is applicable only when ρ is large relative to R. However, the case

where ρ is small relative to R is also relevant, as ρ→ 0 when the object is moving on a sharp ridge

or asperity on the target body. Although lift-off from such an asperity is likely to result in only

a very brief ‘air time,’ the minimum velocity required to do so provides an important measure to

the surface motion of a vehicle: if the surface is rough, for example when it is covered with small

rocks, the vehicle will no longer be in continuous contact with the surface if it exceeds this ‘ridge’

lift-off velocity, VR. This has implications to the friction experienced by the vehicle, as well as to

the traction it can exert on the surface. In fact, it can be argued that the ridge velocity measure

is more relevant to the motion of a surface vehicle than the curved lift-off velocity. This is true

because the curved velocity is an averaged measure, which cannot be achieved on a real body with

a wheeled vehicle. Indeed, as a vehicle exceeds the ridge lift-off velocity, the reduced traction will

prevent it from achieving speeds as high as the curved lift-off velocity. The ridge lift-off velocity
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therefore provides a much more relevant and applicable speed limit. The geometry of the set-up

used to compute this velocity is illustrated in Fig. 3.4, where the object is seen rolling on an edge

between two flat faces.

Figure 3.4: Geometry of spherical object rolling on the edge between two facets.

In order to express this ridge lift-off velocity, we return to Eq. 3.15 and remark that the

surface radius of curvature ρ = 0, such that ρ∗ = R. Correspondingly, the b̂∗ρ axis is equal to the

normal N̂. Meanwhile, it still holds that P + R ' P. This reduces Eq. 3.15 to:

VR = ±
√
R2
(
b̂δ ·Ω

)2
+RN̂ ·

(
[Ω̃][Ω̃]P− aE

)
−Rb̂δ ·Ω (3.23)

Although Eq. 3.23 has two solutions, it is only the +
√

(...) solution that is relevant, as it corresponds

to lift-off in the positive b̂θ direction. From Fig. 3.4, it is easy to see why the −
√

(...) solution

is dismissed: this case corresponds to lift-off when the object is rolling from facet F2 onto facet

F1, while the relevant problem is lift-off with the object rolling from facet F1 onto facet F2.

Furthermore, it can be seem from Fig. 3.4 that the normal vector N̂ changes with the angle θ, as

the object proceeds to ‘roll’ on the edge. It is mostly the extremum values that are encountered

at θ = 0 and θ = θmax that are interesting, in which case correspondingly N̂ = N̂1 and N̂ = N̂2.

The former case, in which the object exits the body surface upon encountering the edge between

the two facets, is independent of the angle between the two facets.
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Comparing the two expressions Although Eqs. 3.22 and 3.23 are highly similar in form,

they express distinctly different types of lift-off; this difference results from the curvature metrics

that are applied in the two expressions. The curved lift-off expression as given by Eq. 3.22 yields

the velocity required for an object to track or lift off from the averaged body surface, through

its use of the radius of curvature. In contrast, the ridge lift-off expression as given by Eq. 3.23

provides the velocity at which an object moving off a small convexity or protrusion will experience

a brief ‘air time.’ The latter is a much more localized definition, for which the object is expected

to re-impact the body surface shortly after lift-off. As an analogue on Earth, consider a car driving

on a road with a speed bump: the ridge lift-off provides the velocity the car needs to just barely fly

off the bump (and impact the road again shortly after), on the order of 10 m/s. In contrast, the

curved lift-off velocity yields the speed required for the car to track the global shape of the Earth,

approximately 7,900 m/s.

The simple example given above suggests that the curved and ridge lift-off velocities are of

distinctly different magnitude. It can be shown that the respective lift-off velocity expressions are

dominated by the
√
ρb̂ρ · aE and

√
RN̂ · aE terms. Although the N̂ and b̂ρ vectors are generally

not aligned, the angle between the two can be assumed small. To first order, the ratio between the

two lift-off velocities can therefore be estimated as:

VR
Vθ

=

√
R

ρ
(3.24)

Given that the R/ρ ratio is small for realistic scenarios, the lift-off velocity ratio must also be

small, i.e., the two lift-off velocities are of very different magnitude. Again, it is holds that the

curved lift-off velocity is an averaged velocity that is mostly applicable to smooth surfaces that are

unlikely to exist on real bodies. For those, the ridge lift-off velocity is far more relevant. In fact, the

phenomenon of ridge liftoff is precisely what limits the practical applicability of the curved lift-off

velocity.

Finally, the earlier statement that both expressions have a dominant term is repeated; this

dominance is particularly present in the ridge lift-off expression. As an example, consider Fig. 3.5,
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which compares the lift-off velocity on an arbitrary location on asteroid Itokawa, computed with

both the full expression as given by Eq. 3.23 and with the reduced form:

VR =

√
−RN̂ · aE (3.25)

Figure 3.5: Comparison of full and reduced ridge lift-off velocity expressions on Itokawa.

The two expressions are indeed observed to yield highly similar results, in particular for the

radii representative of small-body mission hardware (R < 1 m). For such objects, it holds per

Eq. 3.25 that the VR/
√
R ratio is approximately constant, allowing for pseudo-normalization of

the ridge lift-off velocity and for plots that are independent of the object radius R. This reduced

expression will therefore be used in the subsequent results. In the curved lift-off velocity expression

given by Eq. 3.22, the dependence on the azimuthal direction appears in the form of b̂θ. As this

vector does not appear in the reduced ridge lift-off velocity expression of Eq. 3.25, the reduced

velocity is independent of the azimuthal direction η. This expression also does not contain the

± that biased the curved lift-off velocity relative to the local surface rotational velocity. Because

of this lack of direction-dependent terms, the reduced ridge lift-off velocity expression does not

display any extrema, and is independent of the azimuthal direction η. Finally, it is noted that on

a vertex-facet polyhedron model, each facet with normal N̂1 has three adjacent facets with normal

N̂2. However, the normals of adjacent facets are generally closely aligned, such that it is sufficient

to simply compute the lift-off velocity with the central facet normal N̂1.
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3.1.5 Lift-off from a plane

In our derivations for the lift-off velocity from an arbitrary surface, it was implicitly assumed

that the radius of curvature ρ of the local surface was some finite quantity. In the limit, the case

where ρ→∞ is also relevant. This corresponds to a geometry in which the body surface is locally

represented by a plane that rotates at some rate Ω. This setup is illustrated in Fig. 3.6, in which

the ‘surface’ plane from which the object lifts off is shown in gray and the departure plane to which

this motion is initially contained is shown in red.

Figure 3.6: Geometry for the lift-off from a rotating plane.

Reduced expression The normal acceleration experienced by an object on an arbitrary

surface was previously derived as:

aN = V̇θb̂θ −
V 2
θ

ρ∗2
ρ∗ + 2Vθ[Ω̃]b̂θ + [Ω̃][Ω̃] (P + R)− aE (3.26)

which is valid for a surface with radius of curvature ρ. As discussed above, in the limit case where

the particle is moving on a plane, this curvature ρ→∞. Substituting this into Eq. 3.26, it can be

seen that the V 2
θ term disappears, reducing the normal force expression to:

aN = V̇θb̂θ + 2Vθ[Ω̃]b̂θ + [Ω̃][Ω̃]P− aE (3.27)

in which it was again used that P + R ' P. For the object to lift off from the plane, it must hold

that N̂ · aN ≤ 0, in which N̂ is the normal to the plane that replaces the b̂ρ vector in the B-frame
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and is normal to both b̂θ and b̂δ. Taking the dot product of N̂ onto Eq. 3.27 and solving for Vθ,

yields:

Vθ,∞ =
N̂ · [Ω̃][Ω̃]P− N̂ · aE

2b̂δ ·Ω
(3.28)

Properties of the limit solution Contrary to our previous results on a curved surface,

Eq. 3.28 has only a single solution and states that lift-off from a rotating plane is only possible in

the +b̂θ direction, i.e., when moving along the direction of the surface rotational velocity. If b̂θ is

chosen such that it points agains the surface rotation, Eq. 3.28 will simply yield negative Vθ.

When the body rotation does not have a component normal to the departure plane, or when

the body is entirely non-rotating, it holds that 2b̂δ ·Ω = 0, such that lift-off is impossible in both

directions, as Vθ →∞. This result can be explained through inspection of the general equation of

motion of a particle in a rotating frame fixed to the target body at its center of mass:

r̈ = aE − [Ω̃][Ω̃]r− 2[Ω̃]ṙ (3.29)

in which −[Ω̃][Ω̃]r and −2[Ω̃]ṙ are respectively the centrifugal and Coriolis accelerations that

result from the use of a rotating, non-inertial reference frame. It is this Coriolis acceleration, the

only term dependent on the particle velocity ṙ, that is responsible for the planar lift-off behavior.

The properties of this Coriolis acceleration are investigated in the simple geometry of a particle

moving along a plane attached to the equator of a rotating sphere, as illustrated on the right side of

Fig. 3.7. When the particle velocity ṙ is directed along the surface rotational velocity vr = Ω× r,

the resulting Coriolis acceleration has a normal component directed upwards from the plane. In

contrast, when ṙ is directed against vr, the Coriolis acceleration points into the plane. Additionally,

the other two accelerations terms always yield a combined acceleration into the plane.

When moving in the direction of vr, there will exist some ṙ at which the Coriolis acceleration

cancels out the other acceleration terms, yielding a net acceleration that pulls the object off the

plane. However, when moving against vr, all acceleration components are directed into the plane,

such that the object cannot leave the plane, no matter the magnitude of its velocity ṙ. This

phenomenon is illustrated on the left side of Fig. 3.7, in which the particle shown in red moves
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Figure 3.7: Illustration of a particle lifting off from a rotating plane in (left) 2D and (right) 3D,
where the green arrow indicates low lift-off velocity, the orange arrows indicate intermediate lift-off
velocity, and the red arrows indicate infinite lift-off velocity.

along an infinite plane attached to a rotating disk.

Due to the disk rotation, the left end of the plane moves downward, while the right end

moves upward. As the gravitational attraction of the disk points towards its center, the particle

trajectory must curve down regardless of the direction and magnitude of its velocity, as shown by

the dashed lines. When the particle moves with sufficient velocity in the Vθ,1 direction, the plane

will dip down faster than the particle trajectory does, such that the particle locally lifts off from

the plane. However, when the particle moves in the Vθ,2 direction, the plane moves up while the

particle is trying to move downwards; lift-off is therefore impossible in this direction. Finally, when

the disk is non-rotating, the plane is stationary and all trajectories will curve down into the plane,

making lift-off impossible in all directions.

This simple, two-dimensional example can be extended to the full, three-dimensional case,

in which lift-off is only possible if the angle between the desired lift-off direction b̂θ and the local

surface rotational velocity vr is smaller than 90◦. In this case, Vθ has a finite value. As the angle

is increased towards 90◦, the body rotation component Ωδ → 0, such that Vθ → ∞. At precisely

90◦, lift-off is again impossible in both directions, as in that case Ωδ = 0. This is also illustrated
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on the right side of Fig. 3.7. The familiar lift-off velocity curves were computed on the surface of

an ellipsoid, for both the planar and curved cases. The ratio between the two is shown in Fig. 3.8.

Figure 3.8: Ratio of planar-to-curved lift-off velocities at an arbitrary position on a rotating ellip-
soid.

This clearly shows the planar lift-off velocity growth towards infinity as the lift-off direction

approaches η = 90◦, parallel to the rotation axis of the plane. The curves also illustrate that planar

lift-off is indeed only possible when the particle departs along the local surface rotational velocity,

when −90◦ < η < 90◦. This is visible from the fact that the lift-off velocity ratio has a negative

magnitude when 90◦ < η < 270◦. These numerical results confirm our analysis. The planar lift-off

velocities are observed to have much greater values than their curved counterparts, even in areas

where the planar velocity is well-behaved. This makes the planar lift-off velocity poorly applicable

to the flat facets of a polyhedron model, instead, one must account for effective curvature that

these models express, as will be discussed in Section 3.2.
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Simulations To further verify the above analysis, a simple simulation of a particle moving

along a plane rotating with Ω = 1.5 × 10−4 rad/s, located 100 m above a pointmass with µ = 2.5

m3/s2, was performed. Fig. 3.9 shows the resulting motion for particles departing along with and

against the rotational velocity of the plane. It can be seen that the trajectories of particles moving

against the rotation indeed move into the plane and fail to achieve lift-off.

Figure 3.9: Simulated lift-off of particles on a rotating plane.

Inspecting the trajectories of the particles moving along with the rotation, it can be seen that

the particle with 0.9× Vθ moves into the plane as well; the dynamics are such that this trajectory

eventually does leave the plane, though this is not physically possible due to the presence of the

plane. The trajectory with 1.0× Vθ only just achieves lift-off; the trajectory with 1.1× Vθ lifts off

from the plane at a faster rate. This behavior matches our analysis of the planar lift-off velocity

expression.

3.1.6 Lift-off from a concave region

One of the major assumptions made in the preceding text was that the surface from which

the particle lifts off is locally convex. If it is instead locally concave, the condition for lift-off given

in Section 3.1 changes to b̂ρ ·aN ≥ 0. The limit velocity at which lift-off is just possible is found by

again setting this inequality to zero, which yields the same result previously given for lift-off from



121

a convex surface:

Vθ = ±
√
ρ2
(
b̂δ ·Ω

)2
+ ρb̂ρ ·

(
[Ω̃][Ω̃]P− aE

)
− ρb̂δ ·Ω (3.30)

in which, contrary to the convex case, the ρb̂ρ · ([Ω̃][Ω̃]P− aE) term must be negative due to the

requirement that a stationary particle may not already lift off due to the external acceleration and

rotation of the target body. For the radical of Eq. 3.30 to be real, the ρ2(b̂δ ·Ω)2 term, which is

always positive, must therefore be sufficiently large. This will always be possible for a sufficiently

large radius of curvature ρ. However, as ρ is decreased, there will be some limit at which the

quantity in the radical is equal to zero. This is the minimum concave radius of curvature at which

lift-off is just barely possible; if ρ becomes any smaller, the radical no longer has a real solution

and lift-off is impossible. This minimum radius ρconcmin can be found by setting the radicand equal

to zero:

ρconcmin =
b̂ρ ·

(
aE − [Ω̃][Ω̃]P

)
(
b̂δ ·Ω

)2 (3.31)

This expression is dominated by the Ω2
δ term in the denominator; as Ωδ is on the order of 10−4

for most small bodies in the Solar system, the resulting ρconcmin will have a very large value. This is

consistent with the discussion in the previous paragraph. The corresponding lift-off velocity can

also be found from Eq. 3.30, by setting the radicand to zero and substituting for the minimum

concave radius of curvature, as:

V conc
θ = −ρb̂δ ·Ω =

b̂ρ ·
(

[Ω̃][Ω̃]P− aE

)
b̂δ ·Ω

(3.32)

The result that lift-off from a concave surface is only possible for very large ρ values intuitively

follows from the discussion on planar lift-off situations. In particular, consider the planar lift-off

simulation shown in Fig. 3.9. Comparing the scales of the x- and y-axes, it can be seen that although

a particle can indeed lift off from a plane, it does so at an extremely shallow angle, despite the

already large velocity given to the particle. Even if the particle velocity is increased further, there

exists a limit to the upward curvature of the particle trajectory. In fact, if the velocity is increased

much beyond the red trajectory, the resulting trajectory actually becomes flatter again. This is
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consistent with the previous discussion, and indicates that lift-off from a concave surface is only

possible for very limited geometries in which the radius of curvature ρ is sufficiently large.

The spheres, ellipsoids, and planes studied in this work are fully convex, such that there is

no ambiguity on whether lift-off is possible. The small bodies of our Solar System have a more

complex shape with locally convex or locally concave regions; some form of numerical averaging

will be required to obtain the local curvature of the discrete models available for these bodies. In

agreement with earlier results, lift-off is expected to be possible in all directions η on a locally

convex region, and is expected to be (mostly) impossible on a locally concave region. Additionally,

it is also possible for a region to be locally convex in some η directions, and locally concave in

others, when the region is a local saddle point. In this case, lift-off is expected to be possible

in the directions with convex curvature, and (mostly) impossible in the directions with concave

curvature. This is illustrated in Fig. 3.10, which shows the variation of the radius of curvature

and corresponding lift-off velocities on an arbitrary convex region, and an arbitrary convex-concave

saddle point region. The fully concave case is not included, as in this case lift-off is generally

impossible.

Figure 3.10: Radius of curvature and lift-off velocity variation for a (left) convex and (right) convex-
concave region.
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3.2 Surface curvature

The evaluation of the lift-off velocity on a curved surface requires knowledge of that surface’s

radius of curvature. This section reviews some general properties of surface curvature and applies

them to develop a methodology to compute the curvature of ellipsoids and of spherical harmonics

shape models. It also summarizes an existing technique for the computation of polyhedron surface

curvature, which is well documented in literature.

3.2.1 General properties

Consider the warped cylinder shown on the left side of Fig. 3.11. At each point P where

the surface is continuous, there exists one surface normal N̂ which defines the plane tangent to

the surface through P. This tangent plane is spanned by two orthonormal vectors ê+ and ê−,

which can be used to express some unit vector ê(η) = cos (η) · ê+ + sin (η) · ê− that lies within the

tangential plane.

Figure 3.11: Illustration of (left) general properties of curvature and (right) Meusnier’s theorem,
on a warped cylinder.

Combined with the surface normal N̂, any ê(η) vector spans a plane that intersects the surface

along some arbitrary curve. This intersection curve can be approximated in the neighborhood of P
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with an osculating circle that has an associated curvature κ(η). This curvature varies as a function

of the azimuthal angle η and achieves some maximum κ+ and minimum κ−, known as the principal

curvatures. The principal directions in which these extrema occur are denoted ê+ and ê− and

must always be perpendicular [111, p. 80]. As such, they may be used as orthonormal basis for the

tangent plane. Using the principal curvatures, it is also possible to define the mean curvature H

and Gaussian curvature K at P [111, p. 83]:

H =
1

2
κ+ +

1

2
κ−

K = κ+ · κ−
(3.33)

The reverse transformation is found as:

κ± = H ±
√
H2 −K (3.34)

The curvature in some direction η measured from ê+ can be computed from the principal curvatures

using Euler’s theorem, as [111, p. 81]:

κ(η) = κ+ · cos2 (η) + κ− · sin2 (η) (3.35)

All curvatures mentioned so far are normal curvatures, i.e., they are curvatures in a plane containing

the surface normal N̂. However, the departure plane within which the curvature is computed for lift-

off velocity purposes generally does not contain the surface normal. As such, the surface curvature

in some plane offset from the normal is needed. This is illustrated on the right side of Fig. 3.11,

in which the green plane and circle match the normal curvature in direction η, and the red plane

and circle match the corresponding curvature of some departure plane offset at an angle δ from

the local surface normal. In order to compute this curvature, Meusnier’s theorem is applied [111,

p. 75]:

κ(η, δ) =
κ(η)

cos (δ)
(3.36)

Finally, the curvature κ and radius of curvature ρ are simply eachother’s inverse, such that the

conversion between the two can be achieved as:

ρ(η, δ) =
1

κ(η, δ)
(3.37)
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This has effectively reduced the task of computing the radius of curvature ρ to that of computing

the mean and Gaussian curvatures, H and K. A parametric technique for doing so will be discussed

shortly; we first briefly comment on some further properties of surface curvature.

Given that both principal curvatures κ+ and κ− can be independently positive or negative,

three cases are possible: a surface can locally be fully convex (with κ+ > 0 and κ− > 0), fully

concave (with κ+ < 0 and κ− < 0), or convex in certain directions and concave in others (with

κ+ > 0 and κ− < 0). It was mentioned before that lift-off is generally only possible when κ(η) > 0.

As a result, lift-off can be possible in all η directions, impossible in all η directions, or possible

in some η directions and impossible in others. In the latter case, there will exist some finite

minimum lift-off velocity but no maximum velocity, as the lift-off velocity grows to infinity when

κ(η) transitions from positive to negative values. Mathematically, this phenomenon occurs because

the radicand in Eq. 3.22 is negative. On arbitrary bodies, certain regions where lift-off is partially

or fully (with respect to η) impossible are therefore expected.

As mentioned, computation of the radius of curvature across some body can be reduced to

computation of that body’s mean and Gaussian curvatures. If the body surface is represented para-

metrically as some r(φ, λ), then H and K can be obtained from the two fundamental forms of the

surface. These two-dimensional matrices are a function of the partial derivatives of the parametric

surface function r(φ, λ) with respect to the two coordinates φ (latitude) and λ (longitude), as [111,

p. 58]:

I =

E F

F G

 =

rφ · rφ rφ · rλ

rλ · rφ rλ · rλ

 (3.38)

and:

II =

L M

M N

 =

rφφ · N̂ rφλ · N̂

rφλ · N̂ rλλ · N̂

 (3.39)

in which the partial derivatives rφ = ∂r/∂φ, rφλ = ∂2r/∂φ∂λ, etcetera. Furthermore, N̂ is the

normal to the surface, which can be computed from the partial derivatives of r(φ, λ) as [111, p. 62]:
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N̂ =
rφ × rλ
‖rφ × rλ‖

=
rφ × rλ√

rφ · rφ + rλ · rλ + (rφ · rλ)2
(3.40)

The Gaussian and mean curvatures of the surface can be computed from the coefficients of the first

and second fundamental form as [111, p. 83]:

K =
LN −M2

EG− F 2

H =
LG− 2NF +ME

2 (EG− F 2)

(3.41)

Although the principal curvatures κ± can be established by combining Eqs. 3.41 and 3.34, the

respective directions of curvatures are also required. For this, the s matrix [111, p. 80] is used:

s = [I]−1[II] =
1

F 2 − EG

FM −GL FN −GM

FL− EM FM − EN

 (3.42)

The eigenvalues of this matrix are κ+ and κ−; the corresponding two-dimensional eigenvectors

t̂+ = [t+1 , t
+
2 ] and t̂− = [t−1 , t

−
2 ] are the principal directions expressed in the (rφ, rλ) basis; they can

be converted into the Cartesian (x, y, z) basis to yield the ê± directions as:

ê± = t±1 · r̂φ + t±2 · r̂λ (3.43)

This finally allows us to compute the radius of curvature within some arbitrary plane (spanned by

the external acceleration aE and some chosen lift-off direction b̂θ at some departure point P) and

to obtain the corresponding lift-off velocity, assuming that some parametric (rφ, rλ) representation

of the body surface is available.

3.2.2 Ellipsoid

The curvature computation methodology outlined above is easily applied to tri-axial ellip-

soids. The surface of such a shape can be parameterized as:

r(φ, λ) =


a cosφ cosλ

b cosφ sinλ

c sinφ

 (3.44)
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in which a, b, and c are the ellipsoid semi-axes, and φ and λ are the latitude and longitude of some

surface point. Computation of the mean and Gaussian curvatures requires the first-order partial

derivatives of this radius equation, which are found as:

rφ =
∂r

∂φ
=


−a sinφ cosλ

−b sinφ sinλ

c cosφ

 and rλ =
∂r

∂λ
=


−a cosφ sinλ

b cosφ cosλ

0

 (3.45)

Similarly, the second-order partials are found as:

rφφ =
∂2r

∂φ∂φ
=


−a cosφ cosλ

−b cosφ sinλ

−c sinφ

 and rλλ =
∂2r

∂λ∂λ
=


−a cosφ cosλ

−b cosφ sinλ

0

 (3.46)

rφλ =
∂2r

∂φ∂λ
=


a sinφ sinλ

−b sinφ cosλ

0

 (3.47)

These expression can be substituted into Eq. 3.40 to yield the surface normal and into Eqs. 3.38

and 3.42 to obtain the surface curvatures on a tri-axial ellipsoid. This method will be used in the

analysis of the lift-off velocity distribution across the surfaces of various ellipsoids, in Section 3.3.

3.2.3 Spherical harmonics

The spherical harmonics shape model was introduced in Section 2.2. Recall that this model

parameterizes the shape surface with a harmonic series as:

r(φ, λ) = r(φ, λ) ·


cosφ cosλ

cosφ sinλ

sinφ

 (3.48)

in which the radius r(φ, λ) is computed as:

r(φ, λ) =

J∑
j=0

j∑
k=0

(Ajk · cos (kλ) +Bjk · sin (kλ)) · Pjk(sinφ) (3.49)
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We repeat that Ajk and Bjk are the degree j and order k spherical harmonic coefficients, while

J is the maximum degree of the considered shape model. Furthermore, Pjk is the degree j, order

k associated Legendre function. This function is most efficiently computed recursively, as [128,

p. 593]: 

Pn,0 = 1
n ((2n− 1)xPn−1,0 − (n− 1)Pn−2,0) n ≥ 2

Pn,m = Pn−2,m + (2n− 1)
√

1− x2Pn−1,m−1 m 6= 0,m < n

Pn,n = (2n− 1)
√

1− x2Pn−1,m−1 n 6= 0

(3.50)

in which the first three terms are equal to [128, p. 593]:

P0,0(x) = 1 and P1,0(x) = x and P1,1 =
√

1− x2 (3.51)

This spherical harmonic expansion is a continuous surface representation: it can be evaluated at

any (φ, λ) and thus produce a shape of arbitrary resolution (even though the degree J of the

model is limited by numerics). In analogy to the ellipsoid, the surface curvature on a spherical

harmonics shape can be computed by substituting the partial derivatives of the parametric r(φ, λ)

into Eqs. 3.38 and 3.42. Taking the partial derivatives of Eq. 3.48, it is found that:

rφ =


∂r
∂φcφcλ− rsφcλ

∂r
∂φcφsλ− rsφsλ

∂r
∂φsφ+ rcφ

 and rλ =


∂r
∂λcφcλ− rcφsλ

∂r
∂λcφsλ+ rcφcλ

∂r
∂λsφ

 (3.52)

rφφ =


cφcλ

(
∂2r
∂λ2
− r
)
− 2 ∂r∂λcφsλ

cφsλ
(
∂2r
∂λ2
− r
)

+ 2 ∂r∂λcφcλ

∂2r
∂λ2

sφ

 and rλλ =


cφcλ

(
∂2r
∂λ2
− r
)
− 2 ∂r∂λcφsλ

cφsλ
(
∂2r
∂λ2
− r
)

+ 2 ∂r∂λcφcλ

∂2r
∂λ2

sφ

 (3.53)

rφλ =


∂2r
∂φ∂λcφcλ− ∂r

∂φcφsλ− ∂r
∂λsφcλ+ rsφsλ

∂2r
∂φ∂λcφsλ+ ∂r

∂φcφcλ− ∂r
∂λsφsλ− rsφcλ

∂2r
∂φ∂λsφ+ ∂r

∂λcφ

 (3.54)
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in which cφ = cosφ and sφ = sinφ. The radius r = r(φ, λ) can be computed by Eq. 3.49; its partial

derivatives are found as:

∂r
∂φ =

∑J
j=0

∑j
k=0

[
Ajk · c(kλ) +Bjk · s(kλ)

]
· ∂Pjk(sφ)

∂sφ · cφ

∂r
∂λ =

∑J
j=0

∑j
k=0

[
−kAjk · s(kλ) + kBjk · c(kλ)

]
· Pjk(sφ)

∂2r
∂φ2

=
∑J

j=0

∑j
k=0

[
Ajk · c(kλ) +Bjk · s(kλ)

]
·
[
∂2Pjk(sφ)

∂s2φ
· c2φ− ∂Pjk(sφ)

∂sφ · sφ
]

∂2r
∂λ2

=
∑J

j=0

∑j
k=0

[
−k2Ajk · c(kλ)− k2Bjk · s(kλ)

]
· Pjk(sφ)

∂2r
∂φ∂λ =

∑J
j=0

∑j
k=0

[
−kAjk · s(kλ) + kBjk · c(kλ)

]
· ∂Pjk(sφ)

∂sφ · cφ

(3.55)

Finally, the evaluation of these r partial requires the partial derivatives of the Legendre polynomials.

From Eqs. 3.50 and 3.51, the first derivatives may be found as:

∂P0,0

∂x
= 0 and

∂P1,0

∂x
= 1 and

∂P1,1

∂x
=

−x√
1− x2

∂Pn,0

∂x = 1
n

(
(2n− 1)Pn−1,0 + (2n− 1)x

∂n−1,0

∂x − (n− 1)
∂Pn−2,0

∂x

)
if n ≥ 2

∂Pn,m

∂x =
∂Pn−2,m

∂x − (2n− 1) x√
1−x2Pn−1,n−1 if m 6= 0,m < n

+(2n− 1)
√

1− x2 ∂Pn−1,m−1

∂x

∂Pn,n

∂x = −(2n− 1) x√
1−x2Pn−1,n−1 + (2n− 1)

√
1− x2 ∂Pn−1,n−1

∂x if n 6= 0

(3.56)

Similarly, the second derivatives are found as:

∂2P0,0

∂x2
= 0 and

∂2P1,0

∂x2
= 0 and

∂2P1,1

∂x2
=

−1

(1− x2)3/2

∂2Pn,0

∂x2
= 1

n

(
2(2n− 1)

∂Pn−1,0

∂x + (2n− 1)x
∂2Pn−1,0

∂x2
− (n− 1)

∂2Pn−2,0

∂x2

)
if n ≥ 2

∂2Pn,m

∂x2
=

∂2Pn−2,m

∂x2
− (2n− 1)(1− x2)−3/2Pn−1,m−1 if m 6= 0,m < n

−(2n− 1) x√
1−x2

∂Pn−1,m−1

∂x − (2n− 1) x√
1−x2

∂Pn−1,m−1

∂x

+(2n− 1)
√

1− x2 ∂
2Pn−1,m−1

∂x2

∂2Pn,n

∂x2
= −(2n− 1)(1− x2)−3/2Pn−1,n−1 − (2n− 1) x√

1−x2
∂Pn−1,n−1

∂x if n 6= 0

−(2n− 1) x√
1−x2

∂Pn−1,n−1

∂x + (2n− 1)
√

1− x2 ∂
2Pn−1,n−1

∂x2

(3.57)
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In order to obtain the correct sign of these functions, the results of Eqs. 3.50 through 3.57 must be

multiplied with the term (−1)m, as [128, p. 593]:

Pjk(x) = (−1)m · Pjk(x)

∂Pjk(x)

∂x
= (−1)m ·

∂Pjk(x)

∂x
∂2Pjk(x)

∂x2
= (−1)m ·

∂2Pjk(x)

∂x2

(3.58)

3.2.4 Polyhedron

Although a computation of surface curvature across a spherical harmonics shape model is

fast and provides a continuous distribution, this type of model is not available for most solar system

small bodies. Indeed, as mentioned in Section 2.2, the discrete polyhedron model is most frequently

applied to capture the shapes of the small bodies of our Solar System. Although it is possible to

convert from this model to spherical harmonics, such a conversion has some limitations (that will

be discussed shortly). In order to directly apply the polyhedron model to obtain surface curvatures,

the method by Meyer at al. [65] to compute the curvature across a polyhedron shape is therefore

summarized. This method yields the Gaussian, mean, and principal curvatures at every vertex Pi

of a given polyhedron shape, as illustrated in Fig. 3.12.

Figure 3.12: Geometry applied in the computation of polyhedron curvatures of vertex Pi.
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This figure shows the 1-ring neighborhood of vertex Pi, which consists of all edges Ej and

facets Fj that contain vertex Pi. Each of the facets has an associated area Aj (highlighted in

green), which is computed differently depending on the shape of the facet [65]:

Aj =



1
8 ·
(
‖bj‖2 cotβj + ‖cj‖2 cot γj

)
if Fj is non-obtuse

1
4 · ‖bj × cj‖ if αj > π/2

1
8 · ‖bj × cj‖ if βj > π/2 or γj > π/2

(3.59)

The area Ai associated with vertex Pi is then simply computed as the sum of the areas Aj of all

facets Fj from the 1-ring neighborhood of Pi [65]:

Ai =
∑
∀Fj

Aj (3.60)

Using this area and the angle αj defined in Fig. 3.12, the Gaussian curvature Ki of vertex Pi can

be computed through a summation over the facets from its 1-ring neighborhood, as [65]:

Ki =
1

Ai

2π −
∑
∀Fj

αj

 (3.61)

Similarly, the mean curvature Hi can be found through a summation over all edges Ej in the 1-ring

neighborhood of Pi. To obtain Hi, the mean curvature normal Hi is first computed as [65]:

Hi =
1

2Ai

∑
∀Ej

‖Pj −Pi‖ (cot θj + cotψj) (3.62)

This mean curvature normal contains information about both the vertex normal N̂i and the mean

curvature Hi, which are found as [65]:

N̂i =
Hi

‖Hi‖
and Hi =

‖Hi‖
2

(3.63)

We note that this vertex normal N̂i is the discrete counterpart of the normal vector computed with

spherical harmonics in Eq. 3.40. The principal curvatures are then found from Ki and Hi as [65]:

κ±i = Hi ±
√

∆i with ∆i = max
(
H2
i −Ki, 0

)
(3.64)
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We note that this expression matches Eq. 3.34 for the principal curvatures. In order to compute the

associated principal directions, the symmetric curvature tensor Bi of vertex Pi is first computed,

which is found by minimizing the error Ei [65]:

Ei =
∑
∀Ej

wj

(
d̂Tj Bid̂j − κj

)2
with Bi =

ai bi

bi ci

 (3.65)

In this expression, d̂j is the two-dimensional unit projection of the edge Ej = Pj − Pi onto the

tangent plane of Pi; the latter is normal to N̂i. Furthermore, κj is the normal curvature of the

surface at Pi in the direction of the edge Ej , which can be computed as [65]:

κj =
2 (Pi −Pj) · N̂i

‖Pi −Pj‖
(3.66)

Finally, the weights wj are defined as [65]:

wj =
1

Ai

[
1

8
(cot θj + cotψj) · ‖Pi −Pj‖2

]
(3.67)

Once the curvature tensor Bi has been determined by this minimization, the principal directions

are found as the eigenvectors of Bi. Meyer et al. note that although the eigenvalues of Bi are the

corresponding principal curvatures, the numerical accuracy of these eigenvalues is typically lower

than that of Eq. 3.64 [65]. Eq. 3.64 is therefore used to compute the principal curvatures and obtain

the corresponding directions from Bi.

Comparison with spherical harmonics In theory, the spherical harmonic and poly-

hedron shape models of a given body should yield matching curvatures. However, this is not

necessarily true in practice, where it is found that the possible difference between the two models

depends on the resolution of the considered models. This resolution is quantified for the spherical

harmonic model by the maximum degree and order J of the shape model; for the polyhedron model

it is represented by the total number of vertices in the model. In order to illustrate these differences,

thee degree and order J = 17 model of the Mars moon Phobos is used, as developed by [142]. The

corresponding polyhedron model can be constructed by sampling the spherical harmonic model; a

comparison of the two models was previously shown in Fig. 2.2.
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We have computed the relevant curvatures of Phobos’s spherical harmonic model using the

previously derived expressions. These computations were then repeated on the corresponding poly-

hedron model, sampled at various resolutions. To illustrate the convergence of the curvatures of

the two models, the difference in Gaussian curvature between the spherical harmonic model and

the various polyhedron models is shown in Fig. 3.13. These differences are scaled by the Gaussian

curvature of Phobos’s reference sphere. It can be seen that the differences shrink as the resolution

of the polyhedron model is increased, though a fairly high resolution is required to obtain differ-

ences on the order of 1% (from top left to bottom right, the models have a resolution of 642, 2,562,

10,242, and 40,962 vertices). This is an intuitive result: in order to capture information about very

local changes on a discretized surface, it must be sampled at a correspondingly fine resolution.

Figure 3.13: Scaled differences in Gaussian curvature between the spherical harmonic and various
polyhedron models of Phobos.
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In this application to Phobos, the spherical harmonics model was available beforehand; the

corresponding polyhedron shape models could be sampled to verify its convergence to the ‘true’

spherical harmonics shape. However, in most cases the opposite situation is true: only the poly-

hedron shape model exists, and the corresponding spherical harmonics model must be constructed

in order to apply it to compute curvature distributions at an arbitrary location on the surface. To

carry out this model conversion, a multipass iterative residual fit (MIRF) was developed, which

fits the spherical harmonic coefficients Ajk and Bjk as used in Eq. 3.49 to a set of (x, y, z) vertices.

This MIRF was implemented following the strategy by Shen & Chung [106], who applied it to a

different form of the spherical harmonic expression. For more information, the reader is referred

to their work. The implementation of this filter was verified by sampling the spherical harmonic

shape model of Phobos, and recovering the coefficients from the sampled shape with our filter.

In this test, the filter is fed a polyhedron shape constructed from spherical harmonics without

the addition of any noise. As a result, the finite number of coefficients of the original model can

be recovered to numerical precision. This is not true for arbitrary shapes, which may require an

infinite number of coefficients. However, as a limited number of vertices are available as input

data to the filter, aliasing issues may occur when trying to fit high-degree coefficients. Due to the

non-uniform spacing of most small-body polyhedron shape models, this limit is difficult to predict

analytically [98]. Instead, numerical tests are used when applying our filter to fit polyhedron shape

models.

Finally, it is repeated that one main difference between the two models relates to their con-

tinuity. As the spherical harmonic shape model is continuous, it can provide the surface curvature

at any given point on the surface. The polyhedron model, which is a discrete shape, can only do

so at the vertices of the considered shape model. This makes the spherical harmonic model more

fit for producing smooth distributions.
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3.3 Applications to simple shapes

Following the derivation of the lift-off velocity on a curved body, some general properties of

the expression that apply to any curved body were discussed. This discussion is now extended by

investigating the global lift-off velocity distribution across some simple shapes, namely, the sphere

and several tri-axial ellipsoids, in order to gain further insight into the properties of the lift-off

velocity.

3.3.1 Applications to the sphere

The curved lift-off velocity expression, as given by Eq. 3.15, can be simplified significantly

when studying departure from the surface of a sphere rather than some arbitrary body. On a

sphere, the radius of curvature ρ is always equal to the radius of the sphere and the departure

point P = ρb̂ρ. Ignoring external sources other than the gravity of the (uniform-density) sphere,

the acceleration aE must always be aligned with the b̂ρ axis, such that b̂ρ · aE = g.

Reduced expression Substituting these simplifications into Eq. 3.15 allows us to write

for the lift-off velocity on the surface of a sphere:

Vθ,s = ±
√
ρ2
(
b̂δ ·Ω

)2
+ ρ2b̂ρ ·

(
[Ω̃][Ω̃]bρ

)
− ρg − ρb̂δ ·Ω (3.68)

which can be reduced to:

Vθ,s = ±
√
−ρ2Ω2

θ − ρg − ρΩδ (3.69)

In this, the angular velocity components are equal to:

Ωρ = Ω sinφ and Ωθ = Ω sin η cosφ and Ωδ = Ω cos η cosφ (3.70)

in which φ = sin−1 (z/ρ) is the latitude of the departure point and the azimuthal angle η indicates

the departure direction. In Fig. 3.14, the effect of changes in φ and η on the resulting departure

plane orientation is illustrated. Substituting the angular velocity components of Eq. 3.70 into

Eq. 3.68 finally yields for the lift-off velocity on the surface of a sphere:

Vθ,s = ±
√
−ρ2Ω2 sin2 η cos2 φ− ρg − ρΩ cos η cosφ (3.71)
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Figure 3.14: Lift-off plane geometry on the surface of a sphere for variations in (left) departure
point latitude φ with fixed η = 0◦ and (right) departure direction η with fixed φ = 30◦.

The dwarf planet Ceres is approximately spherical with a mean radius ρ = 473 km, g =

−0.29 m/s2, and Ω = 1.923× 10−4 rad/s. Using Eq. 3.71 to compute the lift-off velocity on Ceres’s

equator, where φ = 0◦ and η = 0◦, as:

Vθ,s,eq = ±
√
−ρg − ρΩ⇒


Vθ,1 = +279 m/s

Vθ,2 = −461 m/s

(3.72)

These velocities are respectively the prograde and retrograde velocities, relative to Ceres’s surface,

that correspond to an inertial velocity of 370 m/s, which is the circular velocity Vc =
√
µ/ρ at

Ceres’s equator. In a similar fashion, at the poles it holds that φ = ±90◦. Substituting this into

Eq. 3.71 yields for the polar lift-off velocity on Ceres:

Vθ,s,pol = ±
√
−ρg ⇒


Vθ,1 = +370 m/s

Vθ,2 = −370 m/s

(3.73)

These two solutions are equal in magnitude and opposite in direction. This result is expected, as

a particle located at the poles of a sphere is not imparted any velocity by the sphere’s rotation,

and therefore does not experience the directionality bias that is present when lifting off from the

equatorial plane.
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Simulations To further validate our results for the lift-off velocity on the surface of a

sphere, several simulations of the motion of a particle on a rotating sphere are performed, with

ρ = 200 m, µ = 2.5 m3/s2, and Ω = 1.5 × 10−4 rad/s. Fig. 3.15 shows the motion of particles

departing from an arbitrary position on this sphere. It is noted that these results (as all others

shown in this chapter) are plotted in a body-fixed, rotating reference frame.

Figure 3.15: Simulated lift-off of a particle from the surface of a rotating sphere.

This figure shows trajectories of particles with 0.9Vθ, 1.0Vθ, and 1.1Vθ, lifting off in both

the +b̂θ and −b̂θ directions. It can be seen that the particles with the lower and higher velocities

respectively move into and away from the sphere surface. The particles that are given exactly 1.0Vθ

indefinitely track the surface, although the trajectories that do not move in the equatorial plane

slowly curve away from the targeted lift-off plane. This behavior is expected, and is the result

of the rotation of the sphere. As all of the simulations with 1.0Vθ track the sphere surface, it is

concluded that the expressions correctly capture the lift-off velocity on a sphere.

Lift-off velocity distribution With Eq. 3.71 validated, a more broad investigation of the

lift-off velocity distribution across the surface of a sphere may be performed. To that end, Fig. 3.16

shows the variation of the lift-off velocity Vθ as a function of the azimuthal angle η, for a number

of latitudes φ.
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Figure 3.16: Lift-off velocity curves for variations in φ and η on the surface of a rotating sphere.

These results show that, when the particle is located on either poles of the sphere (where

φ = 90◦), the lift-off velocity is constant and independent of the angle η. As the particle position is

shifted away from the poles, a minimum and maximum lift-off velocity appear; they occur when the

particle velocity is directed parallel to the equatorial plane, respectively along with or against the

local rotational velocity. The magnitude difference between the extrema increases as the departure

point is shifted closer to the equator. This, too, is expected, as a particle closer to the equator on a

sphere is located further from the body rotation axis and experiences a greater rotational velocity

from the body surface, thus decreasing the minimum and increasing the maximum lift-off velocities.

Finally, the lift-off velocity across the surface of the sphere is computed, while varying the

departure direction η between 0◦ and 360◦ and determine the minimum and maximum velocity

encountered at each surface point. The distributions of these minima and maxima, as well as the

difference between their magnitudes, are shown in Fig. 3.17, plotted on a latitude-longitude grid.

As expected, the lift-off velocity distribution is symmetric with respect to the equatorial plane and

independent of the departure longitude λ, due to the sphere’s symmetry properties.
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Figure 3.17: (left) Minimum lift-off velocity, (right) maximum lift-off velocity, and (bottom) ex-
tremum difference distribution across the surface of a rotating sphere. The arrows indicate the
directions in which the respective extrema occur.

Furthermore, the minimum lift-off velocity increases with increasing latitude, whereas the

maximum velocity decreases, due to the aforementioned distribution of the rotational velocity

across the body surface. The largest differences between the minimum and maximum velocity

occur at the equator; the difference is zero at the poles. All minimum velocities occur when η = 0◦;

the maximum velocities occur for η = 180◦, in agreement with the earlier statement that the

minima and maxima occur when the lift-off velocity is directed respectively along or against the

local rotational velocity.

3.3.2 Applications to ellipsoids

The results presented above for the lift-off velocity distribution on a rotating sphere provide

a great validation point for our formulations, but are not particularly applicable to the motion of

particles on the surface of actual small bodies, due to their characteristically non-spherical shapes.
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A more pragmatic application is the (tri-axial) ellipsoid, which is frequently used as a first estimate

of the shape of a small body and has been used by previous authors to study the surface motion on

small bodies [39]. In Section 3.2, the partials of the parametric r(φ, λ) necessary to compute the

curvature across an ellipsoid were provided. The gravitational acceleration of a constant-density

ellipsoid with its axes aligned with an {x, y, z} axis system may be computed as [102]:

gx = −3µx

2

∫ ∞
Λ(r)

du

(a2 + u)∆(u)

gy = −3µy

2

∫ ∞
Λ(r)

du

(b2 + u)∆(u)

gz = −3µz

2

∫ ∞
Λ(r)

du

(c2 + u)∆(u)

(3.74)

in which µ is the gravitational parameter of the ellipsoid. The parameter Λ(r) is defined through

Φ(r, λ) = 0 in which:

Φ(r, u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
(3.75)

On the surface of the ellipsoid, it holds that Λ(r) = 0. Finally, the ∆(u) function is defined as:

∆(u) =
√

(a2 + u)(b2 + u)(c2 + u) (3.76)

This model may be evaluated using Carlson’s elliptic integrals; for a more detailed discussion, the

reader is referred to [102]. Combined with the method for curvature computation, this allows for

an evaluation of the lift-off velocity across the surface of an elliposoid.

Simulations To verify whether the strategy outlined above indeed yields the correct veloc-

ity, several simulations of particles departing from a rotating ellipsoid were performed, with a = 200

m, b = 100 m, c = 50 m, µ = 2.5 m3/s2, and Ω = 1.5× 10−4 rad/s. Once again, each simulation is

performed with 0.9Vθ, 1.0Vθ, and 1.1Vθ. The results can be found in Fig. 3.18.

In all cases, the trajectories with 1.0Vθ provide the best surface tracking; both the trajectories

with 0.9Vθ and 1.1Vθ diverge from the local surface faster. This behavior matches that of particles

lifting off from the surface of a sphere; however, the trajectories of particles with 1.0Vθ do show some

differences. As the radius of curvature of a sphere is constant across its surface, the 1.0Vθ particles

indefinitely track that surface. A particle lifting off from a generic ellipsoid instead experiences a
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change in the local radius of curvature as it moves across the ellipsoid surface. As a result, the

1.0Vθ lift-off will track the surface only in some neighborhood of the initial departure point. As the

particle moves away from this departure point, its trajectory will diverge from the surface, as is

visible near the edges of the simulations of Fig. 3.18. The rate of divergence depends on the rate of

change of ρ and on the local gravity, both of which vary across the ellipsoid surface. Nevertheless,

it is concluded from these simulations that the provided strategy correctly yields the lift-off velocity

on a general ellipsoid.

Figure 3.18: Simulated lift-off for particles on the surface of a general ellipsoid.
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Lift-off velocity distribution The lift-off velocity variation across the surface of three

ellipsoids is studied: an oblate ellipsoid with a = b = 200 m and c = 100 m, a prolate ellipsoid

with a = b = 150 m and c = 200 m, and a general ellipsoid a = 200 m, b = 100 m, and c = 50 m.

The three ellipsoids are illustrated (at the same scale) in Fig. 3.19 and are given µ = 2.5 m3/s2,

and Ω = 1.5 × 10−4 rad/s. The distributions of minimum and maximum radius of curvature are

shown on a longitude-latitude grid in Figs. 3.20 through 3.22, in which the respective directions

of extremum curvature are marked with arrows. In all ellipsoids, there are points at which the

minimum and maximum ρ have similar values, and points where there is a very large difference

between the two. Due to the multiplier-like effect of ρ in Eq. 3.15, the surface distribution of the

lift-off velocity on these ellipsoids is expected to closely follow that of the radius of curvature.

Figure 3.19: The tested oblate, prolate, and general ellipsoids.

Figure 3.20: (left) Minimum and (right) maximum ρ across the surface of the oblate ellipsoid.
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Figure 3.21: (left) Minimum and (right) maximum ρ across the surface of the prolate ellipsoid.

Figure 3.22: (left) Minimum and (right) maximum ρ across the surface of the general ellipsoid.

Using the ρ distributions, the lift-off velocity Vθ is computed on the three ellipsoids while

varying η to obtain the extremum velocities encountered at each point, as well as the respective

directions in which they appear. The resulting distributions are shown in Figs. 3.23 through 3.25.

Several patterns can be distinguished, in particular when inspecting the directions in which the

respective extrema occur. Similar to the lift-off velocities on the surface of a sphere, the minimum

and maximum velocities are observed to always have a component respectively along or against

the local surface rotational velocity. However, contrary to the sphere, the directions of the velocity

extrema are not necessarily parallel to the equatorial plane. Furthermore, it is found that the

extremum direction varies as a function of latitude on the oblate and prolate ellipsoids, and as a

function of both latitude and longitude on the general ellipsoid. On the general ellipsoid, a clear

pattern in the minimum lift-off velocity direction as a function of the leading/trailing edges of the

body is also seen, with the lowest velocities occurring on the far ends of the body. Due to the

ellipsoid’s symmetry with respect to the equator, the minimum/maximum lift-off velocity holds for

lift-off in both a north and south direction.
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Figure 3.23: (left) Minimum and (right) maximum Vθ across the surface of the oblate ellipsoid.

Figure 3.24: (left) Minimum and (right) maximum Vθ across the surface of the prolate ellipsoid.

Figure 3.25: (left) Minimum and (right) maximum Vθ across the surface of the general ellipsoid.

To further investigate these phenomena, the variation in lift-off velocity and radius of curva-

ture is plotted as a function of the azimuthal angle η, for a number of latitudes on the considered

ellipsoids. This is first done for the oblate spheroid in Fig. 3.26, in which the lift-off velocity is

independent of the longitude λ of the departure point. In it, the minimum and maximum lift-off

velocities for each considered latitude are marked with respectively dots and diamonds.
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From the Vθ distribution, all maximum lift-off velocities are observed to occur at η = 180◦;

the direction opposite the local surface rotational velocity, which happens to also be the point

where the greatest ρ values are encountered. The behaviour of the minimum Vθ points is more

complex. At high latitudes, the minima occur at η = 0◦. Inspecting the ρ curves, it is found that

at such high latitudes, there is little variation in the radius of curvature when η is changed. As a

result, the lift-off velocity is mostly dependent on the local rotational velocity, with η = 0◦ being

aligned with the that velocity. When moving to lower latitudes, a minimum is observed in the the

radius of curvature curves near η = 90◦. However, this does not correspond to the Vθ minimum. It

appears that the minimum lift-off velocity results from a more intricate combination of the radius of

curvature and local surface rotational velocity, and matches the trends previously seen in Fig. 3.23.

Figure 3.26: (top) Vθ and (bottom) ρ vs. η on the surface of the oblate ellipsoid.

A different behavior is seen in the Vθ distribution of the prolate ellipsoid, as shown in Fig. 3.27,

where the minimum lift-off velocities occur at minimum ρ with η = 0◦, and the maximum velocities

display a more complex behavior. Finally, the curves corresponding to the general ellipsoid are
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shown in Fig. 3.28. Here, a complex behavior in the maximum lift-off velocity is seen, though it

still closely adheres to the ρ distribution, and matches the trends seen in Figs. 3.24 and 3.25.

Figure 3.27: (top) Vθ and (bottom) ρ vs. η on the surface of the prolate ellipsoid.

Figure 3.28: (top) Vθ and (bottom) ρ vs. η on the surface of the general ellipsoid.
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3.4 Applications to Solar System bodies

The simple applications to the sphere and ellipsoids provided above have yielded insight into

the general properties and trends of lift-off velocity distributions. With this understanding, the

lift-off velocity on actual solar system bodies can be investigated. Here, such investigations were

performed for the asteroids 1999 KW4 Alpha, Bennu, and Eros, as well as the Mars moon Phobos.

3.4.1 1999 KW4 Alpha

The 1999 KW4 binary asteroid system consists of a fast-spinning, diamond-shaped primary

and a smaller, tidally locked secondary. As the system is thought to be representative of the binary

asteroid population, results of the lift-off dynamics on its bodies are of interest to a lot of these

systems. Furthermore, 1999 KW4 is the only binary asteroid system to have been mapped at an

appreciable resolution, using radar imagery from an Earth flyby [86]. The resulting shape model

lends itself to an application of the lift-off theory, with a particular application to the primary body,

known as (1999 KW4) Alpha. This interest stems from Alpha’s high spin rate, which causes its

equatorial region to rotate at near-orbital velocity. 1999 KW4 Alpha is therefore expected to exhibit

relatively low lift-off velocities for an object of its mass. Table 3.1 provides Alpha’s properties [85].

Table 3.1: Characteristic properties of asteroid 1999 KW4 Alpha [85].

Parameter Symbol Value

Gravitational parameter µ 157.04 m3/s2

Rotation period T 2.7645 hr
Semi-major axis a 708.5 m
Semi-intermediate axis b 680.5 m
Semi-minor axis c 591.5 m
Vertices in shape model nP 4,586
Facets in shape model nF 9,168

Polyhedron shape Fig. 3.29 provides the minimum and maximum lift-off velocities com-

puted on each of the 4,586 vertices of 1999 KW4 Alpha’s polyhedron shape model. In this compu-

tation, effects from the small and distant Beta body were ignored. The color coding of the facets

in this figure is indicative of the corresponding lift-off velocity magnitudes. When the region sur-
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rounding a vertex is black, lift-off is impossible, i.e., the region is concave. If a region is black in

plots of both the minimum and maximum velocities, the region is fully concave (with both κ+ < 0

and κ− < 0). If a region is black only in the maximum velocity plot, the region is mixed con-

vex/concave (with κ+ · κ− < 0). The ridge lift-off velocity distribution is also shown in Fig. 3.30.

These results will be discussed shortly.

Figure 3.29: (left) Minimum and (right) maximum Vθ across the polyhedron model of 1999 KW4

Alpha.

Figure 3.30: Ridge lift-off velocity across the polyhedron model of 1999 KW4 Alpha.
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Spherical harmonics shape In order to apply the expressions for spherical harmonic

curvature to 1999 KW4 Alpha,the spherical harmonic shape model must first be constructed from

the polyhedron model with the MIRF. As previously discussed, there will be some optimum degree

J at which the spherical harmonic shape provides the ‘best’ fit to the polyhedron shape. In order

to quantify the quality of our fit, 100 polyhedron vertices are excluded from the ‘training’ set that

is fed to the filter. The MIRF is then run to obtain the Ajk and Bjk coefficients and combine

those with Eq. 3.49 to construct the spherical harmonic equivalent of the excluded polyhedron

vertices. By computing the RMS of the radius difference of the excluded points while varying J ,

the accuracy of the spherical harmonic fit can be quantified. Fig. 3.31 plots the RMS of both the

vertices included in the fit and the vertices excluded from the fit.

Figure 3.31: RMS error of spherical harmonics fit of 1999 KW4 Alpha.

Inspecting this figure, one can see that the RMS of the vertices included in the MIRF fit

continues to decrease as higher spherical harmonic degrees J are fit. This could indicate that the

quality of the fit is improving when these higher degrees are added. However, the RMS of the

excluded points shows a minimum at degree J = 32 at an RMS error of 3.1 m. This indicates

that aliasing problems occur when higher degrees are used; the analysis is therefore done with the

degree-and-order 32 spherical harmonic model. Fig. 3.32 plots both the original polyhedron shape

model and the J = 32 spherical harmonic model of 1999 KW4 Alpha. The two indeed appear very

similar at this scale.
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Figure 3.32: (left) Polyhedron and (right) J = 32 spherical harmonic model of 1999 KW4 Alpha.

For a more detailed comparison, consider to the XZ-plane intersection shown in Fig. 3.33.

This reveals that the spherical harmonic shape indeed mostly matches the polyhedron, though

there are some local variations that are averaged out by the spherical harmonics. Due to this,

correspondingly small local differences are expcected in the surface curvatures and lift-off velocities

computed on the spherical harmonic model, though the general trends should certainly be preserved.

The minimum and maximum lift-off velocity distribution across 1999 KW4 Alpha’s surface as

computed with the J = 32 spherical harmonic model can be found in Fig. 3.34.

Discussion Reviewing the minimum lift-off velocity distributions, lift-off is found to be

possible, in at least some local tangential directions, from most regions on 1999 KW4 Alpha’s

surface, at velocity magnitudes between roughly 0.1 and 0.5 m/s. The majority of the regions have

lift-off velocities on the lower end of this range; this is especially true for the equatorial ridge, which

has a very small lift-off velocity. This is the result of 1999 KW4 Alpha’s high rotation rate: its

equatorial ridge rotates at near-orbital velocity, such that very little additional ‘push’ is required for

an object to lift off. Also due to this high rotation rate, the maximum lift-off velocity is much higher

and in the 1.0 to 1.5 m/s range. As the surface radius of curvature in the north-south direction is

small on the equatorial ridge, this region’s maximum lift-off velocity is correspondingly low. Finally,

it is found from the maximum velocity distribution that roughly half of 1999 KW4 Alpha’s surface
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Figure 3.33: XZ-plane intersection of the polyhedron and spherical harmonic model of 1999 KW4

Alpha.

Figure 3.34: (left) Minimum and (right) maximum lift-off velocity across the spherical harmonic
model of 1999 KW4 Alpha.

has local directions in which lift-off is impossible. This indicates that the respective regions are

locally concave in some azimuthal directions η. If a region appear black in both the minimum and

the maximum lift-off velocity distributions, this region is locally concave in all azimuthal directions.

The relative ease with which an object on the ridge may displace itself and enter an orbital arc can
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be both advantageous and disadvantageous. From a geophysical point of view, these results indicate

that dust particles or rocks displaced from mid-to-high latitude regions and moving towards the

equatorial region are very likely to lift off, as their velocity will be naturally increased due to the

geopotential difference between the respective regions.

Lift-off from a ridge or asperity is possible from all locations on the surface, regardless of

their convexity. This makes sense: even in a locally concave region, it is possible for an object to

roll off a small rock and experience a very brief air time. The reader is reminded that Fig. 3.30

displays the pseudo-normalized form of the ridge lift-off velocity, such that the lift-off for an object

with radius R = 1 m will occur at roughly 1.80 cm/s, but at only 0.57 cm/s for an object with

radius R = 0.1 m. Although this might be high enough for the operation of a wheeled surface

vehicle, the general challenge of delivering a payload to the surface of such a fast-rotating asteroid

remains. It is repeated that it will be difficult for the vehicle to achieve speeds much greater then

VR; the reduction in traction at speeds greater than VR will limit the maximum speed that can be

achieved using the wheels. Finally, it is noted that the ratios between the ridge and curved lift-off

velocities agree with those predicted by Eq. 3.24.

Comparing the lift-off velocities computed on 1999 KW4 Alpha’s polyhedron with their spher-

ical harmonic counterparts, matching magnitudes and general trends are observed. However, small

local differences between the two models exist, and lift-off from a particular position may be pos-

sible on one model but impossible on the other. This dichotomy is a result of the inherent surface

smoothing applied in the spherical harmonic fit, as previously illustrated in Fig. 3.33. Nonetheless,

the spherical harmonic model is useful as it provides a continuous distribution of the lift-off velocity,

while the polyhedron model can only provide velocities at the model vertices.

Fast-spinning asteroids such as 1999 KW4 Alpha tend to be oblate in shape, resulting in

a lower geopotential at the equator than at the poles. Indeed, as mentioned above, a particle

displaced from a high latitude will naturally tend to move towards the equatorial region. It is

therefore logical to ask what the minimum latitude is from which a particle must have departed,

given that it lifted off before reaching the equatorial region. Here, this question is addressed by
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constructing a minimum latitude of release map, for which we first cycle over a grid of longitudes

and compute the minimum north-south lift-off velocity for each longitude point, by varying the

latitude. On 1999 KW4 Alpha, the line connecting these points follows the equatorial ridge, as

marked by the dashed line in Fig. 3.35. For each point along this minimum line, we then compute

the latitude from which an object must have departed in a north-south direction in order to have

lifted off by the time it reaches the point of minimum lift-off velocity along that longitude, by

making use of the Jacobi constant J :

J =
1

2
ṙ · ṙ− 1

2
(Ω× r) · (Ω× r)− U(r) =

1

2
V 2 −W (r) (3.77)

in which U(r) ≥ 0 is the gravitational potential and W (r) = U(r)+ 1
2Ω2

(
x2 + y2

)
is the geopotential

(assuming uniform rotation about the z-axis). When a particle departs from rest from some r0

and moves to a position r1 with lower geopotential, it will have gained a velocity v1 that can be

computed by equating the Jacobi constants at both positions, i.e.:

W (r0) =
1

2{
V 2

1 +W (r1) (3.78)

in which 0 < { ≤ 1 expresses an energy loss due to friction when converting geopotential energy

into kinetic energy. At { = 1, there is no energy loss. Rewriting Eq. 3.78 for the velocity V1 yields:

V1 =
√

2{ (W (r0)−W (r1)) (3.79)

By setting V1 equal to the minimum north-south lift-off velocity, the latitude where W (r0) satisfies

Eq. 3.79 can be found. This allows for a computation of the line of minimum latitude of release for

a given value of {. Fig. 3.35 shows some sample lines of minimum latitude of release for 1999 KW4

Alpha. For each considered value of {, the corresponding line shows the minimum latitude from

which an object, such as a grain or rock, must have departed if it lifted off before or when reaching

the equatorial ridge. When { is decreased, the object loses more energy due to friction, such that it

can depart from a higher latitude and experience a greater change in geopotential before achieving

lift-off velocity. Quite large changes in { are required for the lines to shift to higher latitudes; this is
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due to the fact that 1999 KW4 Alpha’s equatorial region is at much lower geopotential than its polar

regions, due to the fast rotation rate of the former. Although the matching between the dissipative

parameter { and more intuitive parameters such as the coefficient of friction and restitution is not

obvious, these results suggest that objects departing from 1999 KW4 Alpha’s polar regions can be

expected to lift off before reaching the equator.

Figure 3.35: Lines of minimum latitude of release on 1999 KW4 Alpha.

3.4.2 Bennu

Asteroid Bennu was discovered in 1999 and is a potential Earth impactor, as it is expected

to perform several close passes to Earth in the coming century. The asteroid can be reached from

Earth with a relatively low ∆V and is the target of OSIRIS-REx, the third New Frontiers mission.

This mission is set to perform remote sensing operations at Bennu in 2019, culminating in the

acquisition of a sample that will return to Earth in 2023 [57]. Bennu has been observed extensively,

resulting in a medium-resolution shape model that can be used for lift-off velocity computations.

Although OSIRIS-REx will not perform surface mobility operations, the lift-off velocity results are

still relevant to geophysical processes. Table 3.2 provides Bennu’s characteristic properties [105].

As the strategy applied to compute the lift-off velocity distributions of Bennu is identical
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Table 3.2: Characteristic properties of asteroid (101955) Bennu [105].

Parameter Symbol Value

Gravitational parameter µ 5.2 m3/s2

Rotation period T 4.29746 hr
Semi-major axis a 258.5 m
Semi-intermediate axis b 250.0 m
Semi-minor axis c 230.0 m
Vertices in shape model nP 1,348
Facets in shape model nF 2,692

to that applied for 1999 KW4 Alpha, the relevant figures are simply presented, followed by a

brief discussion afterwards. The minimum and maximum lift-off velocities computed on Bennu’s

polyhedron model can be found in Fig. 3.36. Similarly, the pseudo-normalized ridge velocity can

be found in Fig. 3.37. The spherical harmonic fitting of the polyhedron shape model displays a

minimum RMS of 2.49 m at J = 16; the RMS variation as a function of the degree J can be found

in Fig. 3.38. Finally, the spherical harmonic lift-off velocity distributions are shown in Fig. 3.39.

The minimum lift-off velocity on Bennu is similar across most of its surface at roughly 0.1 m/s,

save for a few fully concave regions where lift-off is impossible in all directions. Interestingly, this

matches the minimum velocity on 1999 KW4 Alpha, despite the latter being roughly 30 times more

massive than Bennu. This again illustrates the fast rotation rate of 1999 KW4 Alpha: the relatively

high mass and fast rotation of 1999 KW4 Alpha result in the same minimum lift-off velocity as on

the relatively low mass and slow rotation of Bennu.

Although Bennu also has an equatorial ridge, it is much less pronounced than 1999 KW4

Alpha’s with no distinctly lower lift-off velocities. The maximum lift-off velocity is on the order of

0.5 m/s, much lower than on 1999 KW4 Alpha; its distribution shows that again about half of the

surface is locally concave in some directions. The equatorial ridge is more visible in the ridge lift-off

velocity, which is found to be lower on Bennu’s ridge than on the rest of the body. For an object

with radius R = 1 m, this velocity is approximately 9 mm/s, for an object with radius R = 0.1 m

it reduces to 2.8 mm/s. The velocities computed on the spherical harmonic models again match

those computed on the polyhedron, though distinctly fewer concave regions exist on the former.
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Figure 3.36: (left) Minimum and (right) maximum Vθ across the polyhedron model of Bennu.

Figure 3.37: Ridge lift-off velocity across the polyhedron model of Bennu.

Figure 3.38: RMS error of spherical harmonics fit of Bennu.
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Figure 3.39: (left) Minimum and (right) lift-off velocity across Bennu’s spherical harmonic model.

The lines of minimum latitude of release were also constructed, using the spherical harmonic shape

model, as shown in Fig. 3.40. Inspecting this figure, it is found that objects lifting off at the equator

can originate from relatively high latitudes, in particular when compared to 1999 KW4 Alpha.

Figure 3.40: Lines of minimum latitude of release on Bennu.
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3.4.3 Eros

Asteroid Eros is the second largest near-Earth asteroid and was explored by the NEAR-

Shoemaker spacecraft in 2000. This mission extensively mapped the asteroid’s surface, resulting

in a global, high-resolution shape model which reveals its highly non-spherical shape. Table 3.3

provides the characteristic properties of Eros [69, 70]. Following the same approach taken for the

previous bodies, the minimum and maximum lift-off velocity distribution were computed across

Eros’s polyhedron shape model, as shown in Fig. 3.41, and the ridge lift-off velocity in Fig. 3.42.

Table 3.3: Characteristic properties of asteroid (433) Eros [69, 70].

Parameter Symbol Value

Gravitational parameter µ 446,250 m3/s2

Rotation period T 5.2703 hr
Semi-major axis a 17.35 km
Semi-intermediate axis b 8.70 km
Semi-minor axis c 7.00 km
Vertices in shape model nP 25,350
Facets in shape model nF 49,152

When applying the MIRF to fit a spherical harmonic model to Eros’s polyhedron shape

model, it is found that the RMS error remains large, for both low and high considered degree J .

This phenomenon is illustrated in Fig. 3.43, where the original shape model is shown, as well as the

J = 18 and J = 40 spherical harmonic fits. Although both fits coarsely capture Eros’ shape, severe

aliasing issues are present, which deteriorate as J increases. This seems to suggest that spherical

harmonics cannot be used to represent a body as non-spherical as Eros.

In an attempt to mitigate these aliasing issues, Eros’s polyhedron model is divided into five

sectors (see Fig. 3.44); one spherical harmonic fit is performed for each separate sector. The RMS

error of the resulting spherical harmonic fit is shown in Fig. 3.45, where a number of vertices were

again excluded from the fit in order to quantify its performance. A minimum error of approximately

48 m is observed at degree J = 24; the corresponding shape model can be found in Fig. 3.46. This

sectored spherical harmonic model indeed matches the original polyhedron model, save for a few

small artifacts. Fig. 3.47 shows the lift-off velocity distributions computed with this model.
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Figure 3.41: (left) Minimum and (right) maximum lift-off velocity across Eros’s polyhedron model.

Figure 3.42: Ridge lift-off velocity across Eros’s polyhedron model.

Reviewing the polyhedron lift-off velocity results, it is found that lift-off is possible in at least

some directions from most regions on Eros’s surface, at minimum velocities between 1 and 2 m/s,

with the lowest velocities occurring at the far ends of the body. The maximum lift-off velocities

are on the order of 5 m/s, though large portions of the surface are partially or fully concave, such

that lift-off is not possible in at least some azimuthal directions. The distributions appear quite

‘spotty,’ due to the high resolution of the shape models and corresponding local shape variations.



160

Figure 3.43: (left) Polyhedron, (middle) J = 18, and (right) J = 40 spherical harmonic model of
Eros.

Figure 3.44: Sectors of the Eros polyhedron shape that are separately fitted.

Figure 3.45: RMS error of five-sector spherical harmonics fit of Eros.
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Figure 3.46: (left) Polyhedron and (right) J = 24 sectored spherical harmonic shape model of Eros.

Figure 3.47: (left) Minimum and (right) maximum lift-off velocity across the J = 24, sectored
spherical harmonic model of Eros.

From the ridge lift-off velocity distribution, it is found that a brief air time is possible at

roughly 7 cm/s for an object with R = 1 m and at roughly 2 cm/s for an object with R = 0.1 m.

This ridge velocity varies more distinctly than on the previously discussed bodies, with distinctly

lower velocities occurring inside craters, where the local surface slope is high.

Finally, reviewing the results on the spherical harmonic shape model, much larger differences

than those observed in comparisons on the previous bodies are found. The minimum velocity
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distribution appears less spotty, having much more clustered regions where lift-off is impossible.

This is a direct result from the inherent smoothing in the construction of the spherical harmonic

fit. However, it is also noticed that the velocity magnitude is on average about a meter per second

higher than on the polyhedron model. The transition zones between two adjacent sectors are

distinctly visible as having a lower lift-off velocity than the surrounding regions. In an attempt to

make the model more continuous at the boundaries, the separate sector fits were fed some vertices

from outside of their boundaries, but this did not significantly improve our results. It appears

that, due to Eros’s strongly non-spherical shape, the surface smoothing inherent in the spherical

harmonic filtering is stronger than in the previously studied, more spherical bodies.

3.4.4 Phobos

As a final application, the lift-off velocity distribution is computed across Phobos’s degree-

and-order J = 45 shape model. In this, the Hill-Clohessy-Wiltshire equations are used to capture

the gravitational effects from Phobos as well as the tidal force from Mars:

r̈ = ω2
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Figs.3.48 and 3.49, provide the minimum and maximum lift-off velocity distribution on Phobos’s

surface. A global minimum lift-off velocity vθ,min = 1.60 m/s is found. In other words, any surface

vehicle operating on the surface of Phobos can safely achieve a surface velocity of 1.60 m/s without

ceasing contact with the averaged surface. Most of Phobos’s surface has a minimum lift-off velocity

of at least 2 m/s. These minimum velocities generally occur for motion towards the east, along the

rotational velocity of Phobos’s surface. When an object moves towards the west, against the surface

rotation, the lift-off velocity is much higher. In fact, most of Phobos’s surface has a maximum

velocity upwards of 10 m/s, well in excess of the L1 return velocity. This suggests that vehicle

can operate at relatively high velocities in directions opposite Phobos’s surface. Additionally, the

normalized ridge lift-off velocity distribution is also provided in Fig. 3.50. From this, it is found
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that a wheeled vehicle with R = 0.1 m has VR ≈ 2 cm/s, while an astronaut with hip height

R = 0.9 m has VR ≈ 6 cm/s. As mentioned before, it is this ridge lift-off velocity that is limiting

to the operation of a surface vehicle: it will begin to briefly cease contact with the surface at this

velocity, and will have difficulties reaching higher speeds due to a reduction in surface traction.

Figure 3.48: Minimum lift-off velocity on Phobos’s surface.

Figure 3.49: Maximum lift-off velocity on Phobos’s surface.

Figure 3.50: Normalized ridge lift-off velocity on Phobos’s surface.



Chapter 4

Parametric studies

The integration of the modeling elements summarized in Chapter 2 yields a framework capable

of performing high-fidelity simulations of probes with an arbitrary shape that are deployed to

some target small body, complete with statistical surface features. These simulations have various

applications, the most obvious of which is the validation of a deployment strategy. Given the release

conditions of a probe, i.e., its position, velocity, attitude, and corresponding uncertainties, a set

of Monte Carlo-type simulations can predict the success rate at which that deployment strategy

delivers probes to the small-body surface. Analyzing the resulting trajectories in further detail, one

may similarly predict relevant deployment statistics such as the settling time and surface dispersion

of the considered probe. Such studies are useful when investigating specific mission scenarios, e.g.,

the deployment of the rovers onboard Hayabusa2, for which the combined effects of uncertainty in

all environmental parameters can be predicted. This application is considered the next chapter.

Utility also lies in the individual variation of the relevant environmental (and probe) param-

eters, as those results may guide the probe design and surface modeling methods. For example,

by studying the effects of the internal mass distribution of a probe on its motion, guidelines for

the mechanical design of surface exploration probes may be obtained. Similarly, by individually

studying the effects of, e.g., the surface coefficient of restitution or the density of surface rocks, the

relative strength with which they affect the probe deployment statistics can be determined. This, in

turn, may help prioritize studies and observations of the corresponding surface parameters. These

parametric studies are the focus of the present chapter, which is structured as follows.



165

Section 4.1 investigates the motion of spherical landers. Although surface exploration probes

can and do have more complex shapes (that can be handled by the provided simulation method-

ology) this shape restriction significantly reduces the probe design space, thereby reducing the

number of parameters to be considered in the parametric studies. More specifically, the effect of

the surface interaction coefficients and the presence of (polyhedral) surface rocks are investigated.

The resulting trends in the motion of a spherical probe provide a basis from which more detailed,

shape-varying investigations of complex probes may depart. This is the focus of Section 4.2, which

provides a detailed analysis of how probes with different shapes behave when deployed to the small-

body surface. For these shapes, the surface interaction coefficients are also varied and their effects

compared to those observed for spherical probes. The effect of the internal mass distribution of

the complex probes on their settling behavior is then investigated. As a third and final part of this

chapter, Section 4.3 investigates the effect of local surface topography on the motion of a deployed

probe. Although a simple study investigating the effect of polyhedral rocks is included in Sec-

tion 4.1 on spherical probes, Section 4.3 uses fully procedural features and investigates how their

presence affects the motion of the complex probes. Finally, the section also provides an analysis

of how the presence of regolith on the small-body surface influences deployment statistics, using a

simple restitution-modulation scheme.

4.1 Spherical probes

Small-body exploration probes can and do have arbitrary shapes; expressions for the contact

interactions between such a probe and the small-body surface are complex, as discussed in Chap-

ter 2. The collisions of spherical probes, on the other hand, are far simpler since such collisions

must always be central. The distinction between central and eccentric collisions was introduced in

Section 2.5; a central collision occurs when the collision vector r points through the spacecraft cen-

ter of mass. As a result, the normal and friction forces are decoupled. This significantly simplifies

the impact behavior compared to eccentric collisions, in which these forces are coupled.
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The spherical probe, assumed rigid and undeformable, can thus be described entirely using

only a radiusR, massm, and inertia matrix [I]. As the latter is assumed to be spherically symmetric,

it must be a scalar matrix of the form:

[I] = jmR2 · I3 (4.1)

in which I is the identity matrix. The reduced inertia j describes the internal mass distribution

of the sphere. It holds that 0 ≤ j ≤ 2/3 for a spherically symmetric body, with j = 0 for a point

mass and j = 2/3 for a thin shell. Both j and [I] increase when mass is moved outwards from

the center of the sphere towards its shell. Fig. 4.1 illustrates the probe structure for varying j

values, assuming a constant lander mass m. Given the radius R of some spherical probe and a set

of internal components, j is dependent on the internal arrangement of these components. Lower j

values may be achieved by placing high-density components, such as batteries, at the center of the

probe, and vice versa.

Figure 4.1: Illustration of mass configurations of a spherical probe.

Due to variations in small-body morphology, strategies that result in successful deployment

to some target may fail when näıvely applied to some other target. To establish the ‘difficulty’ of

deploying a probe to the surface of a given body, the amended potential field can be used. More

specifically, when the zero-velocity curve of the minimum amended potential lies relatively far away

from the surface, the corresponding environment is favorable for lander deployment [117]; asteroid

25143 Itokawa is an excellent example of such a target. Itokawa will be used for sensitivity analyses

in dynamically favorable environments; two nominal deployment scenarios to this target are first

set up.
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4.1.1 Nominal scenarios

Asteroid Itokawa was visited by the Hayabusa spacecraft in 2007 when it performed remote

sensing operations at various altitudes and carried out a touch-and-go sample acquisition maneuver.

It produced a global, high-resolution shape model of the asteroid, which is one reason why Itokawa is

an excellent target environment for high-fidelity simulation of surface exploration probes. Table 4.1

provides some characteristic properties of the body [35]; the shape model was obtained from Gaskell

et al. [36]. Table 4.2 also lists the nominal spacecraft, surface interaction, and rock parameters

that are used in simulation. Unless noted otherwise, the interaction coefficients of the spacecraft

with respect to the rocks are equal to those of the spacecraft with respect to the polyhedral surface.

The nominal rock distribution parameters correspond to K ≈ 14 rocks larger than smin = 5 cm

per square meter of surface area. Two different scenarios will be investigated; 1,000 simulations are

performed for each scenario. These simulations use the polyhedron model for shape representation,

with procedurally-generated polyhedral surface rocks.

Table 4.1: Characteristic properties of asteroid 25143 Itokawa [35, 36].

Parameter Value Parameter Value

Gravitational parameter µ 2.341 m3/s2 Semi-major axis a 268 m
Density σ 1.90 g/cm3 Semi-intermediate axis b 147 m

Rotation period T 12.132 hr Semi-minor axis c 105 m
Vertices in shape model nP 98,306 Facets in shape model nF 196,608

Table 4.2: Nominal spacecraft and environmental parameters.

Parameter Value Parameter Value

Lander mass m 5 kg Rock power index α 2.8
Lander radius R 0.125 m Minimum rock size smin 0.05 m

Lander reduced inertia j 0.40 Maximum rock size smax 0.50 m
Coefficient of restitution e 0.65 Rock initialization number k0 2.50×10−3

Coefficient of friction f 1.00 Rock initialization size s0 2.50 m
Coefficient of rolling resistance CRR 0.035 Minimum rock sink ratio rmin -0.4

Maximum rock sink ratio rmax 0.25
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Table 4.3: Deployment parameters of Itokawa scenarios.

Parameter High-altitude value Low-altitude value

Release position x [500, 0, 0] m [0, 0, 200] m
Position 3σ uncertainty ∆x [30, 30, 30] m [15, 15, 15] m

Release velocity v [−0.03, 0, 0] m/s [0, 0, −0.05] m/s
Velocity 3σ uncertainty ∆v [0.01, 0.01, 0.01] m/s [0.01, 0.01, 0.01] m/s

Figure 4.2: Overview of the nominal Itokawa deployments.

High-altitude deployment In the high-altitude deployment scenario, probes are released

approximately 200 m above Itokawa’s surface (≈ 1 body radius), resulting in first impacts centered

around its neck region. This scenario corresponds to probes being released from a mothership on

a (low-velocity) hyperbolic flyby; the corresponding deployment parameters are listed in Table 4.3.

The results of this nominal deployment are included in Figs. 4.2 through 4.4 and are briefly reviewed

here. The release, first impact, and settling locations are shown in three-dimensional form on the

left side of Fig. 4.2. Corresponding two-dimensional latitude-longitude maps are shown on the left

side of Fig. 4.3, in which a heat map shows the clustering of final settling positions and a countour

map shows the relevant locations as scattered points. In all plots except the heat map, the surface

coloring is indicative of the local geopotential, computed as V = Ω2(x2 +y2)−U(x), that represents

the energy of the local surface. Dark regions have a high geopotential, while bright regions have a

low geopotential. Due to the natural dynamics of the small-body environment, particles will tend

towards areas of low geopotential, similar to how a ball will settle at the bottom of a hill rather

than on its crest. This is clearly visible in Fig. 4.3, in which the concentration of probe settling
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locations is densest near the (λ = −20◦, φ = −20◦) region. This low-slope region is known as Muses

Sea and is covered with fine regolith particles [73]. In the two-dimensional maps, Muses Sea is the

large area covering the bottom half of the plot.

Figure 4.3: Heat map and position scatter plot of nominal Itokawa deployments.

Figure 4.4: Statistics of nominal Itokawa deployments.
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Nevertheless, significant scattering of the settling positions across Itokawa’s surface is ob-

served; this illustrates the chaotic nature of motion near/on the small-body surface. The first

impact time t1 and settling time tf distributions shown on the left side of Fig. 4.4 tend towards

a Gaussian distribution. The first impact times are more clustered, i.e., that they have a smaller

standard deviation than the settling time. Finally, the settling slope of the simulated trajectories

is measured. This slope is defined as the angle between the net acceleration on the probe, as given

by Eq. 2.2, and the surface normal N̂ of the closest facet to which the probe comes to rest. If the

probe comes to rest while in contact with two facets, the average of the two corresponding surface

normals is used. Note that this may be different from the ‘effective’ settling slope at which a probe

rests, which is created through the local geometry of the surface features, including rocks, that the

probe is touching. The settling slope distribution shows that most probes come to rest on slopes

less than 15◦, though some settle in higher-slope regions.

Low-altitude deployment In the low-altitude deployment scenario, probes are released

approximately 70 m above Itokawa’s rotation axis (≈ 0.35 body radii); this mimics release from

a hovering mothership. The relevant initial parameters are included in Table 4.3; the results

can be found in Figs. 4.2 through 4.4. Note that since the settling positions are clustered around

Itokawa’s north pole, a standard latitude-longitude (φ, λ) plot is visually poor. Instead, an alternate

definition (φ∗, λ∗) centered around the Z-axis (north pole) is used. As expected, the low-altitude

simulations settle on the surface much quicker than the high-altitude scenario, which is visible in

the statistics of Fig. 4.4. As a result, the probes’ range of motion is much smaller, such that their

settling locations are more densely clustered, which is clear from Fig. 4.3. Since the nominal release

point lies above the Sagamihara low-slope, low-geopotential region, the probes’ settling positions

remain restricted to this region. The settling slopes are correspondingly small, particularly in

comparison to the high-altitude deployment. The settling time and slope distributions shown in

Fig. 4.4 are unimodal, with the settling time distributions resembling a Gaussian and the settling

slope distributions more similar to a gamma distribution. For conciseness, standard boxplots are

therefore used to represent these distributions in the following parameter variations.
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4.1.2 Effect of surface interaction coefficients

The applied target-spacecraft contact model accounts for forces and torques generated by

restitution, friction, and rolling resistance. The magnitude of these interactions is chiefly determined

by their respective coefficient, i.e., by e, f , and CRR. This simple model is an abstraction of the

much more complex interactions that occur between the probe and the granular, regolith-covered

small-body surface. In order to investigate precisely how the deployment statistics are affected by

these coefficients, the two nominal scenarios are repeated while independently varying the three

coefficients. The provided results include the settling time and settling slope statistics, collated in

respectively Figs. 4.7 and 4.8, in which the high-altitude results are shown solid and the low-altitude

results are transparent. Heat maps of the settling positions are also provided in Figs. 4.9 through

4.11, in which the high-altitude scenario is shown on the left and the low-altitude results are shown

on the right. These results are now reviewed.

Coefficient of restitution The nominal high- and low-altitude deployment scenarios are

repeated with coefficient of restitution values e = [0.35; 0.50; 0.65; 0.80]. Inspecting the settling

time statistics of Fig. 4.7, it is clear that the coefficient of restitution has a strong effect on the

probe dynamics. More specifically, high e values are found to correspond to long settling times and

vice versa. This is true for both the high- and low-altitude scenarios; both show variations in the

mean settling time of up to 100% within the range of tested e values. This strong effect is expected:

the coefficient of restitution dictates the amount of normal velocity damping during collisions, with

lower e values indicating that more energy is dissipated in each collision, such that probes settle

more quickly. Before reviewing the settling slope statistics in Fig. 4.8, consider the heat maps of

Fig. 4.9. These maps show a stronger clustering of settling positions when e is decreased. This

matches the settling time statistics: if probes settle faster, their range of motion will be smaller,

such that the settling locations are more clustered. In both Itokawa scenarios, the probes are drawn

towards regions of low geopotential.
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Figure 4.5: Settling time statistics for varying surface interaction coefficients.

Figure 4.6: Settling slope statistics for varying surface interaction coefficients.

In the high-altitude scenario, this region is Muses Sea. When e is low, probes have a limited

range of motion, such that few simulations actually reach Muses Sea; the majority settle just north

of the region. When e is increased, the probe range of motion follows and simulations are drawn into

Muses Sea. In Fig. 4.9, this behavior is reflected in the bright, densely-clustered spots of settling

locations, which move south into Muses Sea when e increases. For high e values, this clustering

is accompanied by significant scattering across the rest of Itokawa’s surface. Similar trends are

present in the low-altitude scenario, although the clustering is consistently denser than in the high-

altitude scenario, as probes deployed from lower altitude naturally have a smaller range of motion.

The settling positions remain constrained to the Sagamihara low-potential region; their scattering



173

increases with increasing e. These heat maps provide a useful background when inspecting the

settling slope statistics of Fig. 4.8. In it, the mean settling slope increases when e is decreased.

This result matches the settling position trends: when e is low, the probe range of motion is small

and few simulations reach the relatively flat Muses Sea. They instead settle (often against rocks) in

higher-sloped regions. When e is increased, the range of motion increases, and landers are drawn

towards the flat Muses Sea. This explains why the mean settling slope deceases when e increases.

These results show the strong effect of the coefficient of restitution on probe deployment statistics.

Coefficients of rolling resistance and friction The coefficient of rolling resistance CRR

governs the rate of angular velocity and rotational energy dissipated during collisions and contact.

Reviewing Figs. 4.7 through 4.10 for the effects of CRR = [0.018; 0.035; 0.070] variations, it can be

seen that they are similar to those observed when varying e, although the relationship is inverse.

Indeed, higher CRR values are found to lead to faster landings and correspondingly more densely

clustered settling positions and higher settling slopes. These results match our expectations: when

CRR is higher, the rate of rotational energy dissipation is higher, such that probes settle faster.

The Coulomb friction force and torque drive the linear and angular lander velocity into a

no-slip state where v = ω×r. The magnitude of f dictates how quickly this synchronization occurs:

at low f , synchronization will take longer to occur than at high f . Nonetheless, when reviewing

the results of f = [0.2; 1.0; 2.5] variation in Figs. 4.7, 4.8, and 4.11, no distinguishable difference

between the low, intermediate, and high values of f are found. This indicates that even low f ≈ 0.2

is sufficient to achieve stick in all collisions.

Surface heterogeneities In the nominal deployment scenarios, the interaction coefficients

and rock distribution are assumed constant across the target surface. However, this assumption

does not necessarily hold. For example, the Muses Sea and Sagamihara low-geopotential regions

on asteroid Itokawa were observed to be significantly smoother than the rest of the surface and

covered with fine regolith. Given this dichotomy in surface composition, it is reasonable to expect

Muses Sea and Sagamihara to interact with a lander differently than other, more rocky regions.

Here, it is investigated whether surface heterogeneities such as those encountered on Muses
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Figure 4.7: Settling time statistics for varying surface interaction coefficients.

Figure 4.8: Settling slope statistics for varying surface interaction coefficients.

Figure 4.9: Heat map of settling locations for varying e.
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Figure 4.10: Heat map of settling locations for varying CRR.

Figure 4.11: Heat map of settling locations for varying f .

Figure 4.12: Shaded Muses Sea and Sagamihara regions on Itokawa.
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Sea affect the statistics of probe deployment. Using the surface geopotential, it is straightforward

to select the Muses Sea and Sagamihara regions, as marked in Fig. 4.12. The two regions are

given a coefficient of restitution of e = 0.35 and a rock initialization number of k0 = 0.625× 10−3;

the latter indicates a rock density a quarter that of the nominal scenarios. The high-altitude

deployment scenario is then repeated; the results are shown in Figs. 4.13 and 4.14. It is stressed

that the intention in doing this is not to model the actual heterogeneities on Itokawa, but rather

to investigate the effects, if any, of the presence of heterogeneous areas on probe deployment.

Figure 4.13: (top) Settling time and (bottom) settling angle on nominal and heterogeneous Itokawa
surfaces.

Figure 4.14: Settling position heat maps of nominal and heterogeneous Itokawa surfaces.
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Reviewing the settling time distribution of Fig. 4.13, it is found that probes settle slightly

faster in the heterogeneous scenario than in the nominal scenario. This is expected: it was shown

earlier that the high-altitude scenario draws probes into the Muses Sea region. As this region is

given a lower coefficient of restitution in the heterogeneous scenario, probes therefore settle faster.

Due to this lower e value, probes are also more likely to settle in Muses Sea, as is obvious from

Fig. 4.14. This is true despite our earlier observations that shorter settling times generally result in

probes settling before reaching Muses Sea. It is easy to see why Fig. 4.13 makes sense regardless:

the lower e values that result in shorter settling times are present only in Muses Sea. In other

words, probes have a relatively large range of motion across most of Itokawa’s surface, but a much

smaller range of motion in Muses Sea. Once they reach the region, they are therefore unlikely to

escape. This is further supported by the settling slope distributions: the mean settling slope of the

heterogeneous scenario is lower, matching the geography of Muses Sea. These results show that

local variations in the surface interaction coefficients and rocks can indeed affect lander dynamics,

and may change the degree to which certain regions act as a basin of attraction or rejection.

Discussion: Surface interaction coefficients Our simulations show that the coefficient

of restitution is by far the most significant determinant of trends in the deployment of spherical

probes, with higher energy dissipation rates resulting in faster landing with smaller surface disper-

sion. These results suggest that, at a minimum, it is important to obtain an accurate estimate

of the e value on the surface of a considered target. Deviation from the true value may result in

simulation trends that are biased in terms of settling time, settling slope, and surface dispersion.

Furthermore, it was seen that local variations in the coefficient of restitution may transform regions

into basins of rejection or attraction. One possible approach to account for these regional variations

would be to use visual observations of the small-body surface to estimate the e distribution across

the surface, based on the surface brightness.

Although the coefficient of rolling resistance has a similar effect on the settling statistics,

its influence is smaller. This suggests that, although it is relevant to obtain an accurate CRR

estimate, priority should be given to studies of the coefficient of restitution. De Blasio and Saeter
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experimentally measured rolling resistance coefficient values for small beads on Earth [27]. Van

wal et al. have performed similar experiments for spherical objects in the size range of small-body

landers, rolling on a granular bed [130].

On a final note, it is repeated that no distinguishable effects on deployment statistics (of

these spherical probes) were found when varying the coefficient of friction f . This suggests that

even relatively small f values are sufficient to drive the tangential contact point velocity into stick

where v = ω× r. It thus appears that, with regard to deployment of a spherical probe, little to no

priority should be given to studies of friction on the small-body surface.

4.1.3 Effect of surface rocks

The discussion of the persistent polyhedral rocks model in Section 2.3 provided various details

on the advantages that such a model offers over simpler stochastic models. In their work, Tardivel

et al. performed a simple comparison in which a single deployment scenario was performed both

with and without their stochastic rock model. They found that between the two sets “the basins of

the final resting positions are completely different” and concluded that “the presence of small rocks

for surface motion on an asteroid [...] cannot be neglected” [118]. It will be verified whether this

claim holds when using a persistent rock model. Furthermore, it will be investigated in more detail

how the density of surface rocks affects probe deployment. This is of interest to mission planning, as

an understanding of these effects may provide requirements on the accuracy of orbital observations

by a mothership from which the rock distribution parameters are obtained. For example, if the

particular number of rocks has little influence on deployment statistics, a coarse estimate of the

rock field density may be sufficient.

One advantage of the persistent rock model over the simpler stochastic model is the capability

to easily tweak the rock distribution parameters. In a stochastic model, this would require re-

running numerous simple simulations, analyzing the statistics, and then using those to perform

the full simulations. With the persistent model, one can simply adjust the value of the relevant

parameters, proceed with simulation, and investigate the effect on probe dynamics, as done here.
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Number of rocks To investigate how the number of surface rocks affects lander de-

ployment, the k0 parameter in Eq. 2.22 is simply varied. This determines the number of rocks

K per unit surface area; the two deployment scenarios are repeated for different values of K =

[4; 7; 14; 28; 56; 86] rocks/m2. Fig. 4.15 illustrates what the small-body surface looks like for the

tested K values; the spherical probe with R = 0.125 m is included for scale. The statistics of

deployment for these cases can be found in Figs. 4.16 through 4.18.

Figure 4.15: Small-body surface for varying number of rocks.

Figure 4.16: Settling time and slope statistics for varying K.
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Figure 4.17: Heat map of settling locations for varying K in high-altitude Itokawa scenario.

Figure 4.18: Heat map of settling locations for varying K in low-altitude Itokawa scenario.

Reviewing the settling time statistics, the presence of rocks on the small-body surface is

indeed seen to have a strong effect on probe deployment, in agreement with Tardivel et al. [118].

More specifically, notice the settling time decreasing as the number of rocks, K, increases. This

result may be explained using geometrical arguments: when a spherical probe performs repeated

impacts on a smooth surface, each collision is performed relative to (approximately) the same surface

normal. The restitution impulses that damp the probe’s normal velocity therefore always act in

the same direction. Any tangential velocity must be damped by rolling resistance, which dissipates
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energy at much slower rates. When rocks are added onto the flat surface, successive collisions

generally occur with different surface normals, such that restitution is able to dissipate velocity in

different directions. This increase in dissipation is far greater than what can be dissipated by rolling

resistance. The restitution impulse thus dissipates energy much faster on a ‘rough’ surface than on

a smoother surface. As a result, an increasingly rocky surface yields shorter probe settling times,

which is clearly visible in both the high- and low-altitude scenarios. This trend is present through

a range of increasing K values, though a limit appears beyond which any further increase in K no

longer affects the settling time statistics. Indeed, the results of Fig. 4.16 suggest that this limit lies

around K ∼ 57 rocks/m2. Returning to the sample surface topographies of Fig. 4.15, it can be seen

that this K value roughly corresponds to surface-rock saturation relative to the spherical probe

size. In other words, at values beyond K ∼ 57 rocks/m2 for the applied rock model, there are no

gaps in which the spherical probe can fit without touching any rocks. When K is small, the probe

mostly impacts only the polyhedral small-body surface. As K increases, the probe impacts both the

polyhedral surface and rocks on that surface. When K reaches its saturation limit, the probe can

no longer impact the polyhedral surface, and instead always impacts a rock. Any further increase

in K thus no longer effects any change, such that the settling time trends remain unchanged.

Inspecting the settling slope statistics of Fig. 4.16, it is found that it increases as the number

of rocks is increased. This result makes sense, as shorter settling times were found to correspond to

steeper settling slopes in our previous sensitivity analyses. This effect is likely reinforced by the fact

that a persistent rock model allows probes to settle on steep slopes while resting against (a) rock(s),

see also our previous illustration in Fig. 2.13. In agreement with the settling time results, a further

increase in K beyond its saturation limit does not notably change the settling slope statistics.

Interestingly, reviewing the surface dispersions in Figs. 4.17 and 4.18, opposite trends are

found when comparing the K variations in the high- and low-altitude scenarios. More specifically, it

can be seen that for the high-altitude scenario, the lander dispersion decreases when K is increased.

In the low-altitude scenario, the opposite occurs and the dispersion increases when K is increased.

This difference is somewhat surprising, as the trends in settling time and settling slope statistics
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do agree between the two scenarios. This behavior is explained as follows: in the high-altitude

scenario, the first impacts occur at relatively high velocities, such that probes have a fairly large

range of motion. The inclusion of surface rocks increases the energy dissipation rate, thus reducing

the settling time and the probe range of motion. The surface dispersion thus decreases with higher

K values. In contrast, probes in the low-altitude scenario impact the small-body surface with

a much lower velocity that is mostly normal to the surface due to the relative flatness of the

Sagamihara region on Itokawa. The trajectories thus naturally show little tangential motion, as

visible in the sample trajectory of Fig. 4.2. When rocks are added to the surface, they ‘perturb’ the

smoothness of Sagamihara, such that probe trajectories show much more tangential motion. This

effect appears to outweigh the increased energy dissipation rate from the denser rock field, as the

dissipation increases with growing K. In both scenarios, the saturation K value is again apparent,

as the dissipation trends for K = 57 rocks/m2 and K = 86 rocks/m2 are very similar.

Rock interaction coefficients In the sensitivity analysis of the rock number K, both

the small-body surface and the rocks on that surface were given the same interaction coefficients

e, f , and CRR. Although this is a useful assumption in the type of ‘mock’ scenarios used in our

sensitivity analyses, it is unlikely to match the true topography of a target body. Furthermore,

as mentioned in Section 2.3, there are various reasons why the regolithic surface and monolithic

rocks may be excpeted to have different coefficients of restitution. Although the development of an

accurate localized model is well beyond the scope of this paper, we do wish to obtain an estimate

of what the effects of these local variations may be. As a test, the high- and low-altitude scenarios

are therefore repeated with varying coefficient of restitution on the rocks, while maintaining the

nominal e value on the polyhedral surface. For conciseness, only show the settling time variation is

shown as result, in Fig. 4.19. Note that this plot merges the results for varying rock restitution with

those presented earlier where e is varied globally. More specifically, the solid boxplots correspond

to the global variation of e, whereas the transparent boxplots correspond to simulations where e is

varied only on the rocks. The high- and low-altitude scenarios are shown on respectively the top

and bottom of the figure.
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Figure 4.19: Settling time statistics for global and rock-only variation of e.

The probe deployment trends observed when performing the rock-only variation of e match

those seen when varying the coefficient globally. More specifically, higher e values correspond to

longer settling times, in both the high- and low-altitude scenarios. The shift in settling time distri-

bution is not as dramatic for the rock-only variation as it is for the global variation. These results

make sense when returning to Fig. 4.15 and inspecting the surface samples with an intermediate

number of rocks. In the corresponding simulations, probes alternate between impacting rocks and

impacting the polyhedral surface. It is therefore expected that a rock-only e variation has less

effect on the deployment statistics than a global variation. Nevertheless, these results show that

differences in interaction coefficients between the polyhedral surface and its rocks may indeed have

a significant effect on the motion of a probe. This illustrates that accurate maps of the interaction

coefficient variation may be important in order to obtain accurate statistics on probe deployment.

Discussion: Rocks The results of our sensitivity analysis of the effects of surface rocks on

lander deployment agrees with the (coarse) results of Tardivel et al. and confirm that the presence

of surface rocks indeed strongly affects the motion of a probe. In our detailed investigations, it

was found that if rocks are ignored in the surface modeling of a small body, the effective rate at

which energy is dissipated along a spherical probe’s deployment trajectory will be biased towards

lower rates, due to reduced variability in the surface normal. As a result, the expected settling
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time will be longer, with observed variations of up to 33% in two sample scenarios on asteroid

Itokawa. Furthermore, a lack of surface rocks prevents probes from settling in high-slope regions,

as previously illustrated in Fig. 2.13. As the small-body surface becomes more and more densely

populated with rocks, probes are able to settle in increasingly steeper regions on that surface. This

behavior continues up to a limit K value, where the surface becomes saturated with rocks relative

to the size of the probe, i.e., the probe can no longer ‘touch’ the surface but always impacts a rock.

Although these trends appear in both the high- and low-altitude Itokawa deployment scenarios, the

observed probe dispersion trends of these scenarios shows some differences. In the high-altitude

scenario where probes have a large range of motion, the dispersion decreases as more rocks are

added. In the low-altitude scenario where probes have a much smaller range of motion across a flat

and slow-sloped region, the inclusion of rocks increases the probe surface dispersion. This suggests

that the effects of surface rocks on probe dispersion are dependent on the considered deployment

scenario and the topography of the targeted landing area.

Given that interaction heterogeneities may exist between the regolithic small-body surface

and the more monolithic rocks on that surface, a simple sensitivity analysis was also performed, in

which the coefficient of restitution, e, is given different values on the polyhedral surface and on its

rocks. Our results show that such a dichotomy may indeed affect deployment statistics. Combining

this with the ‘surface heterogeneity’ results presented earlier, this indicates that accurate maps of

the variation in interaction coefficients and rock population across the small-body surface may be

necessary in order to obtain accurate estimates of the lander deployment dynamics. For deployments

in which probes have a small range of motion, for example after release from a mothership hovering

at low altitude, such a variation may be small and unlikely to significantly affect the dynamics.

However, for high-altitude release where probes have a large range of motion, localized variations

in interaction coefficients and rock density will create basins of attraction or rejection, such that

localized modeling may be required. Mothership observations of the surface brightness could be

combined with computations of the surface slope and geopotential to this end. Nonetheless, the

resolution to which such local variations should be determined remains an open question. Many
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further details regarding the surface rock model may be considered, but go well beyond the modeling

techniques applied in this paper. For example, Hayabusa observed clear trends in the orientation

of rocks on certain regions of the Itokawa surface [73].

4.1.4 Summary: Deployment sensitivities in favorable environments

Slowly rotating bodies such as asteroid Itokawa present a favorable environment for the

deployment of a scientific lander package. Its amended potential field is such that low-energy

releases of a lander can be carried out from appreciably high altitudes that yield a minor risk

to an orbiting mothership. Deployment is similarly possible from a mothership that is hovering

inertially. For both scenarios, sensitivity analyses were performed to investigate how relevant

environmental parameters that describe the probe-target system affect the dynamics of a spherical

probe deployed to Itokawa. Investigating the effects of surface interaction coefficients, it was found

that the coefficient of restitution, e, is the major determinant of lander deployment statistics. This

suggests that, from a probe-deployment perspective, studies estimating the interaction properties

of small-body surfaces should focus on developing accurate models of the coefficient of restitution.

Although a similar argument can be made for the coefficient of rolling resistance, its effect is of

lesser magnitude. No notable effects were found when varying the coefficient of friction, suggesting

that little to no priority should be given to studies to determine its particular value.

Similarly, it was shown that the presence of rocks on the small-body surface significantly

affects the motion of a lander, confirming preliminary results by Tardivel et al. Using our sensitivity

analyses, it was found that the density of surface rocks, i.e., the number of rocks per unit surface

area, strongly correlates with the expected probe settling time. Probes settle faster when the small-

body surface is more densely populated with rocks, as they effectively create a randomization of

the surface normal. This increases the probe energy dissipation rate, resulting in faster settling.

Similarly, the presence of rocks enables probes to settle on steeper slopes, as they effectively ‘get

stuck’ between rocks. A saturated rock density appears, at which the small-body surface appears

completely covered in rocks relative to the probe size. A further increase in rock density beyond
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this saturation limit does not further affect the deployment statistics. Investigating heterogeneities

in the coefficient of restitution and number of rocks, it was found that local variations can have

a significant effect on the deployment statistics and appearance of any basins of attraction and

rejection. These results indicate the value of constructing maps of the surface interaction coefficients

and rock model across the small-body surface.

4.1.5 Deployment sensitivities in challenging environments

The above discussion revealed how the small-body surface properties affect the motion of a

deployed probe. These sensitivity analyses were performed on asteroid Itokawa, whose dynami-

cal environment is favorable for probe deployment. Both the high- and low-altitude scenarios are

energetically guaranteed to settle on the small-body surface, without significant orbital motion

around the body. When deploying to this kind of target, variations in the relevant environmental

parameters simply increase or decrease deployment statistics such as the settling time and surface

dispersion. Many other targets have dynamical environments that are far more challenging; consider

for example the binary system 1999 KW4. This system consists of a fast-spinning, diamond-shaped

primary body and a smaller, tidally locked secondary. Although deployment to the secondary is

feasible, the delivery of a probe to the surface of the primary body, known as Alpha, is challenging

due to its fast rotation rate. Indeed, 1999 KW4 Alpha’s equatorial region rotates at near-orbital

velocities, such that a small velocity increase is sufficient to (temporarily) launch a particle away

from the surface. In such environments, näıve deployment strategies may fall short, and carefully

designed strategies are necessary in order to successfully deploy a probe to the surface. Further-

more, as small velocity increments may significantly alter the success rate of deployment to these

challenging targets, high deployment sensitivities to variations in the environmental parameters

may be excepted. These sensitivities will not only affect statistics such as the settling time, but

will likely determine the overall success rate of a deployment strategy. In this section, simple anal-

yses are used to investigate how to optimally deploy in a dynamically challenging environment,

verify the criterion using simulations, and probe some of the deployment sensitivities. This is done
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with asteroid 1999 KW4 Alpha as target; some of Alpha’s characteristic properties are provided in

Table 4.4 [85, 87]. Note that 1999 KW4 is the only binary asteroid system to have been mapped

at appreciable resolution, using radar imagery from an Earth flyby, which makes it an appropriate

target for high-fidelity simulations using our methodology.

Table 4.4: Characteristic properties of asteroid 1999 KW4 Alpha [85, 87].

Parameter Value Parameter Value

Gravitational parameter µ 157.04 m3/s2 Semi-major axis a 708.5 m
Density σ 1.974 g/cm3 Semi-intermediate axis b 680.5 m

Rotation period T 2.7645 hr Semi-minor axis c 591.5 m
Vertices in shape model nP 4,586 Facets in shape model nF 9,168

Tools required to examine this problem The dynamical environment of 1999 KW4

Alpha is indeed very different from Itokawa’s, due to its fast rotation and axisymmetric shape.

As a result, the inner realm of the asteroid, i.e., the region of space energetically bound to the

asteroid, just barely extends beyond the surface of the body. 1999 KW4 Alpha’s poles are in fact

energetically “free” to escape the asteroid. Deploying from the inner realm, as done in the Itokawa

scenarios, would thus require a mothership to descend to only a few dozen meters above the equator

of the asteroid. Such proximity operations are often seen as hazardous to the mothership spacecraft

and are therefore unlikely to be considered in a mission.

To further illustrate this challenging environment, consider a position on the equatorial ridge,

where the surface rotational and circular orbital velocities are nearly equal. Using an equatorial

radius of R ≈ 730 m, a surface rotational velocity Vs = ΩR = 0.4607 m/s and a surface circular

velocity Vc =
√
µ/R = 0.4638 m/s are found. In practice, this near-balancing causes the equatorial

surface slopes to be considerably high and somewhat randomly oriented, pointing along the direction

of the residual acceleration, generally north or south. This phenomenon makes it difficult, if not

impossible, for an object to settle on 1999 KW4 Alpha’s equatorial ridge. The surface slopes across

1999 KW4 Alpha’s facets are shown in Fig. 4.20; these slopes were computed using a polyhedral

gravity model. Relatively flat regions can be found just south of the equatorial ridge, which

are promising for the deployment of a probe. This sub-equatorial region, which sits at a radius
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of R ≈ 690 m, indeed shows a wider gap between the surface rotational and orbital velocities

Vs = 0.4355 m/s and Vc = 0.4755 m/s. These numbers, although computed with a point-mass

gravity assumption, suggest that a particle is indeed much more likely to settle in the sub-equatorial

region than it is on the equatorial ridge.

Figure 4.20: Surface slopes on 1999 KW4 Alpha.

These topographical aspects are lost when using a simplified model such as a (smooth) sphere

or ellipsoid. A sphere with the density and rotational period provided in Table 4.4 does not present

a particular challenging environment: its equatorial region is well-suited for landing. This trend

persists when using an ellipsoid. A simple spin-up of these bodies in order to mimic the difficulty

of landing does not modify this situation; the centrifugal acceleration will ‘instantly’ overcome

the the gravitational acceleration in the equatorial region, rather than showing distinct differences

between the equatorial ridge and the rest of the surface. This is contrary to what is evidenced

when inspecting the variation in slopes on 1999 KW4 Alpha. Hence, a simplified model wrongfully

concludes that landing is either straightforward or impossible.
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1999 KW4 Alpha presents a challenging target for landing precisely because of the combina-

tion of its bicone shape and fast rotation rate. Research has shown that this shape in fact results

from the rotation rate [104]. Although certain models may yield insight into deployment to bodies

such as 1999 KW4 Alpha, simulation with a high-fidelity model is necessary in order to properly

exploit 1999 KW4 Alpha’s details: the potential field irregularities, slope variations, and random

surface asperities. These details determine whether a probe is grounded or returned into orbit.

Impact geometry Though not mentioned explicitly, our previous deployment results on

asteroid Itokawa showed that a probe’s first impact on the small-body surface is responsible for the

majority of the energy dissipation along a trajectory. In order for a probe to successfully settle on

the surface of 1999 KW4 Alpha within some acceptable time, it is thus argued that the first impact

must dissipate sufficient energy. Given 1999 KW4 Alpha’s challenging dynamical environment as

discussed above, we wish to investigate which impact geometries maximize the first-impact energy

dissipation, and test the resulting criterion numerically using our simulation framework. Although

it was noted that simple, analytical models cannot uniquely determine if landing is possible, they

may provide insight into the dynamics of a single impact and into what constitutes a better or

worse deployment strategy. To illustrate what is considered as impact geometry, consider Fig. 4.21.

Figure 4.21: Velocity hodograph for impacts on a (left) flat and (right) rocky surface.
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Both sides of this figure illustrate the geometry of a particle impacting a flat surface with (the

same) incoming velocity V1. The small-body surface rotates with some velocity Vs, which defines

the local horizontal. For fast rotators such as 1999 KW4 Alpha, the surface rotational velocity Vs is

only slightly smaller than the surface orbital velocity Vc. Inertial velocities are shown as solid lines,

while surface-relative velocities are shown as dashed lines. During impact, the normal component

of the surface-relative probe velocity is damped by restitution; effects from friction and rolling

resistance are ignored. As the surface normal N̂ differs in the flat and rocky scenarios of Fig. 4.21,

the energy dissipation in the two scenarios is expected to differ correspondingly. In other words, it

is argued that the outgoing probe velocity V2 is dependent on both the initial release conditions

as well as the local surface geometry at which the first impact occurs. This impact geometry is

generalized for equatorial impacts to a spherical target with point-mass gravity in Fig. 4.22.

Figure 4.22: Geometry of first impact of a particle onto a rotating, spherical target.

In order to compute the energy dissipated during first impact of a particle, it is assumed that

the particle is released at apoapse rA > R of some Keplerian orbit with periapse rP < R below

the target surface. This orbit is illustrated on the left side of Fig. 4.22. For such an orbit, the true

anomaly θ at impact may be computed as:

θ = arccos

(
a(1− ε2)−R

R

)
with a =

rA + rP
2

and ε =
rA − rP
rA + rP

(4.2)
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in which a and ε are respectively the semi-major axis and eccentricity of the release orbit. The

flight path angle α is the angle between the inertial incoming particle velocity NV1 and the local

surface horizontal. It can be computed using the ε and θ as:

α = arccos

(
1 + ε cos θ√

1 + 2ε cos θ + ε2

)
(4.3)

in which, at impact, it must hold that α < 0. The inertial incoming velocity magnitude NV1 can be

found from the orbital energy equation. Combining this with the flight path angle α, the inertial

incoming velocity vector can be written as:

NV1 =

√
µ

(
2

R
− 1

a

)
·
[
cosα sinα

]T
(4.4)

At the point of impact, the target surface is inclined at some angle β relative to the local horizontal.

The corresponding surface normal and tangent directions may be written as:

N̂ =

[
− sinβ cosβ

]T
and T̂ =

[
cosβ sinβ

]T
(4.5)

The surface-relative incoming particle velocity SV1 is computed using the inertial surface rotational

velocity NVs as:

SV1 = NV1 − NVS with NVS =

[
ΩR 0

]T
(4.6)

During impact, restitution damps the normal component of this velocity, such that the surface-

relative outgoing particle velocity is equal to:

SV2 =
(
SVT

1 T̂
)

T̂− e
(
SVT

1 N̂
)

N̂ (4.7)

in which e is the coefficient of restitution. It is assumed that the settling time and surface dispersion

of the particle are minimized when SV2 is minimized. To gain insight into what release conditions

minimize this velocity, the surface inclination β is fixed. The velocity SV2 is then computed while

varying the periapse and apoapse radii of the release orbit. This analysis is performed using the

parameters of 1999 KW4 Alpha, for which R is set at R = 690 m; this is the approximate radius of

1999 KW4 Alpha’s sub-equatorial, low-sloped region. Contour plots show the corresponding SV2
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values for surface inclination values of β = [0; 30; 45] deg in Fig. 4.23. These results show that when

the surface is not inclined, i.e., when β = 0 deg, SV2 is always minimized when rP = R, regardless

of the orbit apoapse. When β increases, an optimum 0.95R < rP,min < 1.0R appears. Although

the particular rP,min value shows a slight dependence on rA and β, the variation is minimal. This

suggests that, regardless of the local surface properties and release orbit apoapse, the orbit periapse

should be set just beneath the target surface. This agrees with the results of [117]. To gain further

insight into these results, the apoapse is fixed at rA = 2.0R; SV2 is computed while varying the

periapse radius rP and local surface inclination β. The results of this variation are shown in

Fig. 4.24. The region where SVT
1 N > 0 in the bottom right corner of the figure has been cut off,

as those impact geometries are not physically possible.

Two optimum lines can be found in this plot. The first optimum line β(rP ), shown with

a dashed line, indicates the surface inclination β that maximizes the energy dissipation for each

value of rP . The bottom of Fig. 4.24 plots the corresponding flight path angle α and the impact

angle η (defined in Fig. 4.22 as the angle between N̂ and SV1). All optima β(rP ) have an impact

angle η = 0 deg, indicating that these optima correspond to normal impacts. These results make

intuitive sense: by choosing some apoapse and periapse radii, the incoming particle velocity SV1

is fixed. Given that normal restitution is the only mechanism for energy dissipation, the maximum

dissipation then occurs when the surface inclination β is such that SV1 is normal to N̂. Although

friction was not included in this simple analytical model, it was previously noted that the energy

dissipation contribution of friction is much smaller than that of restitution (for a spherical probe,

if the coefficient of restitution is not particularly large); it is thus argued that these results do

not change when including friction. This optimum line provides useful guidance in the design

of deployments where the periapse radius rP is constrained by, e.g., operational and hardware

considerations. In that situation, the β(rP ) line can be used to target surface regions with a local

inclination that yields maximum energy dissipation. A second optimum line rP (β), shown with a

solid line, indicates the periapse radius rP that maximizes the energy dissipation for each β value.

In agreement with the earlier results of Fig. 4.23, it is found that these optima all occur for periapse



193

Figure 4.23: Outgoing surface-relative particle velocity for varying surface inclinations.

Figure 4.24: Outgoing surface-relative particle velocity for varying periapse and surface inclination.

values of 0.95R < rP < 1.0R. The corresponding α and η angles are plotted on the right side of

the figure. This optimum line provides slightly different guidance: if operational considerations

constrain the first-impact region, the rP (β) line provides the corresponding periapse radius that

should be used in order to maximize energy dissipation on that first impact.

Combining these results, it is seen that the highest energy dissipation occurs when both rP

and β are high. This suggests that probes should be released on orbits with a periapse just beneath

the target surface, with the first impact occuring in regions that rise up vertically relative to the

local surface horizontal and against the surface velocity. Physically, this corresponds to probes

impacting a steep cliff or large rock. Landing on fast rotators would thus benefit from the presence
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of surface rocks and boulders. Nevertheless, the dissipated energy remains nearly constant when β

decreases from 90 deg to 0 deg. This suggests that a high periapse value is the most substantial

element in guaranteeing high energy dissipation; the presence of rocks plays only a minor role at

such periapse values. Although it is preferable to release probes on a descent orbit with rP → 1.0R,

such a release is unlikely to be carried out on an actual space mission. Uncertainties in the probe

release mechanism result in errors in the apoapse velocity of a probe, such that a release with

nominal rP ∼ 1.0R may end up with a periapse outside of the target surface, resulting in failed

deployment. Probe release is therefore likely to be performed with lower periapse radii; in such

cases, the local surface inclination has a stronger effect on the dissipated energy. The optimum

β(rP ) line should then be used in the release planning and targeting procedures. Note that when

the periapse radius is decreased, regions with low surface inclination become more favorable for

landing. In other words, when deploying probes on an orbit with a lower periapse, the presence of

rocks (which may cause high β) may be detrimental to the success rate of probe deployment. This

suggests that the use of accurate release mechanisms is beneficial, as it allows for release orbits with

higher periapse radii that dissipate more energy and are much less sensitive to the local surface

topography including rocks. The observed trends remain near-constant when the apoapse radius

is increased; the SV2 values will simply be higher as probes are released with greater initial energy.

When varying the coefficient of interaction e, as illustrated in Fig. 4.25, the trends do show notable

change.

Figure 4.25: Outgoing surface-relative particle velocity for varying coefficient of restitution.
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In addition to the obvious result that lower e values result in greater energy dissipation, it

is found that the rP (β) line shifts to lower rP values when e decreases. In other words, when the

coefficient of restitution decreases, the optimum periapse also decreases. This makes it more likely

for a release mechanism to successfully target that optimum rP without risking rP > 1 with release

uncertainties. It is thus useful to target regions expected to have a low coefficient of restitution and

to use probe hardware designs that minimize the coefficient, as done in the target marker design

for Hayabusa and Hayabusa2 [100]. On a final note, notice that the optimum β(rP ) line remains

unchanged with varying e; this must be true as this optimum line is based purely on geometrical

considerations that are not affected by e.

Simulations The above analysis yields insight into the energy dissipation of a particle

impacting a fast-spinning asteroid. Although these results may be used as guidelines in the design

of a probe deployment strategy, the analysis was developed using a strong assumption whose validity

has yet to be tested: it was claimed that trends in the first-impact energy dissipation of a particle

moving in a central gravity field provide predictions about the full trajectory of a probe settling

on a small-body. In order to validate this assumption, probe deployment to asteroid 1999 KW4

Alpha is simulated using the methodology discussed in Chapter 2. Most importantly, the claim

is tested that high release-orbit periapses maximize energy dissipation, due to near-normal first

impacts on the small-body surface, resulting in faster and more successful deployment. These tests

are initially performed using a ‘smooth’ 1999 KW4 Alpha, and then repeated on a rocky version

to verify if the presence of rocks is indeed detrimental to lander deployment. Overall, our analytic

claims made above match those made by Tardivel et al. [117]. The main goal of the subsequent

simulations is therefore to validate whether these predictions continue to hold when applied to the

simulation framework discussed in this thesis, since this framework uses more advanced modeling

methods than the work by Tardivel et al.

Periapse radius Our deployment analysis suggests that probe release orbits with a low

periapse have a high initial energy and fail to dissipate it quickly enough. More specifically, low-

periapse orbits impact the surface at relatively shallow flight path angles, such that the post-impact
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tangential probe velocity remains quite high. The probe range of motion will be high, allowing them

to continue moving a significant distance across the small-body surface. To test this claim, probe

deployment to 1999 KW4 Alpha is simulated, following release along the positive x-axis with an

apoapse radius rA = 2.0R, again with R = 690 m and using 1999 KW4 Alpha’s gravitational

parameter µ = 157.04 m3/s2. In all simulations, effects from the small secondary body are ignored,

to avoid the time-variability this body introduces. Four sets of simulations are performed, with

periapse radii of rP = [0.05, 0.70, 0.90, 1.00]R. The low-periapse orbit with rP = 0.05R is released

with an inclination of i = 25 deg to target the equatorial ridge; all other releases are performed with

i = 0 deg and target the low-sloped, sub-equatorial region mentioned before. The exact position,

velocity, and corresponding uncertainties at release can be found in Table 4.5. Three hundred

simulations are performed for each of the four considered deployment scenarios. Fig. 4.26 shows

three-dimensional plots of 10 arbitrary trajectories from each scenario, in which 1999 KW4 Alpha’s

surface is colored according to its local surface slope, as previously shown in Fig. 4.20. The release,

first impact, and final positions of the four scenarios are also marked on an equal-area Mollweide

projection in Fig. 4.27.

Table 4.5: Deployment parameters of 1999 KW4 Alpha scenarios.

Release periapse rP 0.05R 0.70R 0.90R 1.00R

Release position x [m] [1380, 0, 0] [1380, 0, 0] [1380, 0, 0] [1380, 0, 0]
Position 3σ uncertainty ∆x [m] [15, 15, 15] [15, 15, 15] [15, 15, 15] [15, 15, 15]

Release velocity v [m/s] [0,−0.8034, 0.0315] [0,−0.6280, 0] [0,−0.6052, 0] [0,−0.59550]
Velocity 3σ uncertainty ∆v [m/s] [0.01, 0.01, 0.01] [0.01, 0.01, 0.01] [0.01, 0.01, 0.01] [0.01, 0.01, 0.01]

Inspecting the results of the low-periapse (rP = 0.05R) release on the top left of both

Figs. 4.26 and 4.27, observe that the corresponding first impacts indeed occur on 1999 KW4 Alpha’s

equatorial ridge, with a relatively shallow flight path angle of α ∼ 45 deg. As restitution is unable

to damp the considerable tangential component of this velocity, the post-impact tangential velocity

remains quite high. In agreement with our predictions, landers thus show considerable motion

across the asteroid surface following first impact; some trajectories even encircle the entire body

more than once. Note that in this scenario, many simulations failed to settle on the small-body
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surface altogether, within the allowed 10 hr simulated time. Some of the final position markers in

the rP = 0.05R plot are therefore projections of orbital positions onto the small-body surface.

Although some of the low-periapse trajectories do settle on 1999 KW4 Alpha’s surface within

10 hrs, this release is considered to be unacceptable for numerous reasons. Due to the large range of

motion, settling region predictions cannot be performed with any relevant accuracy. It is therefore

impossible to predict the expected illumination conditions of the landing site or to target specific

regions on 1999 KW4 Alpha’s surface. Moreover, the observed ‘circumnavigating’ trajectories

prevent the scheduling of mothership communication times. The tracking of a lander following this

type of trajectory is unlikely to be possible, requiring an active search for the eventual landing site

by the mothership. Finally, as settling times are (relatively) long, battery power on-board the probe

is effectively wasted (on, e.g., housekeeping and thermal operations) as most scientific instruments

on-board the probe can only produce relevant results once settled on the surface. These arguments

confirm our earlier claims that low-periapse lander release to fast-spinning targets results in ‘failed’

deployments.

The other scenarios with higher release periapses perform far better. Seeking to maximize

the periapse radius while guaranteeing ‘successful’ first impacts, consider the rP = 0.90R scenario

shown on the bottom left of Figs. 4.26 and 4.27. From the three-dimensional plot, it can be seen

that trajectories first impact the asteroid with a slightly (in the target frame) retrograde velocity,

though the impact is mostly normal to the local surface. As a result, restitution dissipates a

relatively high amount of energy, such that little tangential velocity remains after impact. The

probe range of motion thus remains small, with probes quickly settling following this first impact.

The settling positions shown in Fig. 4.27 for this release thus show considerable clustering.

Given that (normal) restitution is the main energy dissipation mechanism, the rP = 0.70R

scenario has been included, as probes released on such an orbit impact the surface more normally

than in the rP = 0.90R scenario. Inspecting the results, it can be seen that the rP = 0.70R

dispersion in probe settling locations is slightly increased relative to the rP = 0.90R scenario.

Although impacts indeed occur more normally with rP = 0.70R, the corresponding impact velocities



198

Figure 4.26: Sample deployment orbits to 1999 KW4 Alpha with varying periapse radius.

Figure 4.27: Surface dispersion of deployments to 1999 KW4 Alpha with varying periapse radius.
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are higher, such that the post-impact probe range of motion is also higher. Finally, we consider the

‘optimum’ predicted by our analysis and test release on an orbit with rP = 1.00R. Although the

first-impact velocity of these trajectories is reduced even further, Fig. 4.26 shows that due to the

uncertainties at release, some of the trajectories skim the surface and fail to impact the surface at

the targeted sub-equatorial region. Although other trajectories do perform very well, this risk of

‘missed’ impact renders the rP = 1.00R release unsatisfactory.

These results are also reflected in the energy trends of the considered trajectories, as shown on

the left side of Fig. 4.28. In this figure, boxplots are used to mark the energy at release (rightmost

boxes) and at first impact (leftmost boxes) of the four deployment scenarios. Inspecting the figure,

it is found that the low-periapse scenario releases probes with a significantly higher initial energy

than all other scenarios. It is therefore intuitive to expect these trajectories to have a considerably

higher range of motion and corresponding settling time. The three high-periapse trajectories have

similar energies; a clear trend of lower energies for higher periapses is seen. This agrees with the

earlier statement that although the rP = 0.70R trajectories impact the surface more normally than

the rP = 0.90R trajectories, their velocities at first impact are higher, resulting in a larger post-

impact range of motion. Finally, the angle η between the incoming (target-frame) probe velocity

and the normal vector with respect to which the first impacts occur is also plotted, as shown on the

right side of Fig. 38. The optimal scenario, with rP = 0.90R, has probes impacting at relatively

shallow angles of η ∼ 30 deg, which roughly matches the optimum conditions of the solid line

previously shown in Fig. 4.24.

Figure 4.28: Energy and impact angle for varying rP deployments to 1999 KW4 Alpha.
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Although the release trajectories would likely benefit from further fine-tuning, in particular

when taking into account effects from the secondary body KW4 Beta (see also [117]), these results

indicate that our simple, geometrical analysis of deployment to a fast-spinning body indeed provides

relevant guidelines. Despite the analysis being performed for a single impact of a particle in a

central gravity field, its conclusions extend to the global trajectory of a probe deployed to a small

body. They show that proper release trajectory design is paramount in dynamically challenging

environments such as 1999 KW4 Alpha. A low-periapse orbit, which mimics slow release from an

inertially hovering mothership, performs poorly with probes showing considerable motion around

and across the asteroid surface. Release on a high-periapse orbit results in successful deployment

with appreciable clustering of final settling positions. When choosing a high-periapse release orbit,

it is important to take into account the uncertainties at release, to guarantee probes do not skim

the surface and ‘miss’ the first impact altogether.

Presence of rocks During the earlier sensitivity analyses in Itokawa’s favorable dynam-

ical environment, the effect of surface rocks on probe deployment was investigated. In such an

environment, the (number) density of surface rocks was found to modify relevant statistics such as

the probe settling time and surface dispersion. Given the landing challenges demonstrated on 1999

KW4 Alpha, we are eager to investigate how the optimal, low-periapse release scenario is affected

by surface rocks. The analytical model predicted that an increase in the local surface inclination

β is somewhat detrimental to the energy dissipation in deployment trajectories with the optimum

rP = 0.90R. In order to verify this, the simulations are repeated while including rocks on the

surface, testing rock density numbers of K = [0, 14, 28] rocks/m2. The resulting surface dispersions

are plotted in Fig. 4.29; the measured energies and impact angles are shown in Fig. 4.30. Finally,

Fig. 4.31 also shows scatter plots relating the impact angle η and the corresponding settling times.
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Figure 4.29: Surface dispersion of deployments to 1999 KW4 Alpha with varying rock densities.

Figure 4.30: Energy and impact angle for varying rock density deployments to 1999 KW4 Alpha.

Figure 4.31: Settling time versus impact angle for varying rock density deployments to 1999 KW4

Alpha.

Fig. 4.29 shows that rocks on 1999 KW4 Alpha’s surface indeed affect the probe surface

dispersion. Although many trajectories with rocks perform similar to the rock-less scenario, in which

probes settle due west of the first impact location, several others do show circumnavigatory behavior

similar to that of the low-periapse scenario. Given that the energy at release is the same between

the three scenarios, the observed differences must result from the impact geometry. Inspecting the
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impact angle η as plotted on the right side of Fig. 4.30, the angle increases significantly as more

rocks are added to the surface, although the mean angle remains unchanged at its corresponding

smooth-surface value. This result agrees with the prediction of our analytical model that increases in

the local surface inclination β deteriorates the first-impact energy dissipation. This occurs because

trajectories with low initial energy have a high periapse and impact the (smooth) target surface

normally. When rocks are added to the surface, the effective impact normal is disturbed, such

that probes obtain an effective tangential velocity, reducing the energy dissipated on first impact.

Furthermore, the local orientation of rocks may be such that probes are scattered in a north/south

direction. This scattering may send the probes on circumnavigatory trajectories as shown earlier

following low-periapse release. The settling time trends of Fig. 4.31 are also testament to this fact:

when the number of rocks is increased, the effective impact angles spread over a wide range of

values, and more trajectories are shown to have a maximum ‘settling time’ of 10 hrs, indicating

that they failed to settle on the surface within this time.

These results indicate that the presence of surface rocks indeed affects the success rate of

a deployment scenario at a challenging target such as 1999 KW4 Alpha, confirming the results of

[117]. They may increase the local surface inclination at first impact and may also scatter probes in

a north/south direction that limits the dissipated energy and increases the probe range of motion.

This underscores the importance of properly modeling the target small-body surface, and suggests

the targeting of smooth surface regions when possible. On asteroid Itokawa, low-sloped regions

were observed to be covered with fine regolith (possibly covering up any rocks present in the area).

If the targeted low-slope, sub-equatorial region on 1999 KW4 Alpha shows the same smooth terrain,

it would make an excellent target for probe deployment from relatively high altitudes. If the region

is instead found to be rocky, it may be necessary to lower the deployment apoapse in order to

further reduce the probe energy at release and improve the deployment success rate.

Summary: Deployment sensitivities in challenging environments It was shown

that fast-rotating bodies, such as 1999 KW4 Alpha, are challenging targets for the deployment of

a probe. Due to its fast rotation rate, low-energy deployments from equilibrium points of 1999
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KW4 Alpha’s amended potential field require release from a few tens of meters above the surface;

a risky operation for a mothership. Using a simple analytical model of the gravitational field and

probe first-impact geometry, deployment from higher altitudes was investigated. Although release

orbits with a low periapse impact the surface at high velocities and fail to have probes settle within

appreciable time, orbits with a high periapse of rP ∼ 0.90R are shown to be successful. Probes

released on such an orbit impact the asteroid with a relatively low velocity that is approximately

normal to the local asteroid surface, such that the reaction restitution impulse dissipates a maximum

amount of energy. Through simulation, it was demonstrated that this simple, analytical model may

successfully predict trends in the global motion of a probe. Although higher periapses rP → 1.0R

may theoretically further improve landing success, release uncertainties render such deployments

infeasible from a practical point of view. The presence of rocks, which affects the local surface

inclination, has a detrimental effect on deployment success, as it prevents probes from normally

impacting the surface following release on a high-periapse orbit. Our results show that while näıve

release strategies may fail to successfully deliver probes to the small-body surface, with careful

design it is possible to establish reliable, low-risk strategies that are far more successful. Our

results reveal high sensitivities to deployment and environmental parameters, and underscore the

need for high-fidelity modeling.

4.2 Complex landers

The above section has provided extensive insight into the motion of spherical probes deployed

to small-body surfaces, both in favorable and more challenging environments. However, as discussed

in Chapter 1, actual small-body surface exploration payloads can and do have more complex shapes.

It is therefore highly relevant to extend the above studies to probes with other, non-spherical

shapes. This is the focus of the current section; in which the motion of the five platonic solids will

be compared and constrasted, as well as equivalents of the MINERVA-II-1, MINERVA-II-2, and

MASCOT lander/rover probes onboard Hayabusa2. We also investigate how the surface interaction

coefficients and internal probe mass distribution affect the probe dynamics and compare that with
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the behavior observed for spherical probes. These results will then be combined to establish some

simple recommendations for the physical design of small-body exploration probes.

It is, however, necessary to state a major caveat for the results discussed in this section.

Whereas the motion of spherical objects is understood relatively well, with a reasonable basis of

experimental work, this is not true for the bouncing motion of complex shapes. For such object,

there is a significant number of parameters that affect the motion, several of which are not well

understood. Most importantly, the results presented here pivot on the assumption of constant

coefficients of restitution and friction. Lacking experimental evidence of rigid-body impacts in

micro-gravity, this is a fair assumption to make. Nevertheless, the results of this section should

be read with this assumption in mind, and a series of experiments to test the assumption will be

provided further on. These experiments, in combination with further simulations in geometrically

simpler environments (e.g. a flat plane) must be used to confirm or disprove the trends observed

here.

4.2.1 Nominal deployment scenario

The nominal scenario used to analyze the motion of complex probes mimics the low-altitude

Itokawa deployment scenario applied in Section 4.1, with probes being released approximately 70 m

(∼ 0.35 body radius) above Itokawa’s northern pole. The applied release velocity and correspond-

ing uncertainty can be found in Table 4.6. The probes are given a random initial attitude in each

simulation. One hundred thousand simulations of a cube are performed, with mass m = 5 kg,

uniform density ρ = 500 kg/m3, and coefficients of restitution and friction of e = f = 0.5. The par-

allelized GPU simulation framework with SDF shape model is applied to perform such high number

of simulations in an appreciably short time. A single typical bouncing trajectory is illustrated in

Fig. 4.32. Although a variety of relevant statistics may be studied, e.g., the number of bounces, the

energy dissipation per bounce, the velocity change in each bounce, etc., we are primarily interested

in the most pragmatic statistics: the settling time and the surface dispersion. These two statistics

will now be examined.
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Table 4.6: Nominal release parameters of complex lander deployment to Itokawa.

Parameter Value

Release position x [m] [0, 0, 200]
Position 3σ uncertainty ∆x [m] [15, 15, 15]

Release velocity v [m/s] [0, 0, −0.05]
Velocity 3σ uncertainty ∆v [m/s] [0.01, 0.01, 0.01]

Figure 4.32: Typical deployment of a cube in the low-altitude Itokawa scenario.

Settling time The first impact time t1 and final settling time tf are easily extracted from

the simulation data. These values are plotted for all 100,000 simulations in probability-normalized

histograms on the left side of Fig. 4.33. Both distributions appear as Gaussian, such that the mean

and standard deviation of the settling time provide a good overview of the full statistics. The

corresponding probability distribution functions (PDFs) are also included on the right side of the

figure. These were constructed using Matlab’s kernel density smoother ksdensity with default

bandwidth. In our parametric investigations, both the PDF and mean/standard deviation of the

settling time distributions will be used to compare and contrast various simulation batches.

Surface dispersion Fig. 4.34 visualizes the surface dispersion of the nominal deployment

scenario. On the left side, the release, first impact, and final settling locations are marked with

respectively red, green, and blue points. One sample trajectory is plotted with a red line. To
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Figure 4.33: Settling time statistics of the nominal Itokawa deployment scenarios.

prevent the settling locations from saturating the surface, only 10% of the simulations are shown.

The surface of asteroid Itokawa is shaded with respect to local slope, where dark areas are have

low slopes and bright areas have steep slopes.

Figure 4.34: Dispersion plots of the nominal cube deployment to Itokawa.

This figure illustrates the chaotic nature of the motion of a ballistically-deployed spacecraft

bouncing on the surface of a small body. Although the settling positions remain fairly clustered

around the first-impact region, notable scattering does exist; this scattering may increase signifi-

cantly when the surface interaction coefficients or probe shape are modified. This chaotic scattering

makes it difficult for the surface dispersion of a given scenario to be properly represented with a

simple model such as a landing ellipse. This is especially true when multiple, distinct basins of

attraction exist (as will be the case in some of the future simulations, see for example Fig. 4.38).

A simple three-dimensional plot such as that on the left side of Fig. 4.34 also fails to quantify the

degree to which the landing positions are clustered, in particular when many points are plotted.
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We therefore follow the approach of [44] and use Matlab’s multivariate kernel density esti-

mator mvksdensity to generate a three-dimensional PDF that captures the distribution of settling

positions. Silverman’s rule of thumb is used for bandwidth selection. This PDF can be evaluated

across Itokawa’s surface, as shown in the intensity plot in the middle of Fig. 4.34. Although this

provides an excellent visual overview of the surface dispersion, it does not quantify the actual

area across which landers disperse. In order to obtain such a quantification, an asteroid shape

model with facets of approximately equal size is used. The PDF of the settling point distribution

is evaluated at the center of each of its facets; each density value is multiplied with the area of

the corresponding facet. We then accumulate facets, in order of descending density, until we have

accounted for 68.27% of all simulations. This defines the 1σ dispersion area. The same process

is used for the 2σ (95.45% of simulations) and the 3σ (99.73% of simulations) dispersion areas.

For an easy global view of this settling position density, Fig. 4.35 also plots the dispersion areas

on Mollweide plots. The Mollweide projection is an equal-area projection that is better suited to

visualize global distributions across a surface than classical latitude-longitude maps that do not

preserve area. Asteroid Itokawa has a strongly non-convex neck area that is poorly captured by

the Mollweide plot, but since this area is high-sloped, landers do not settle in this region. Note

that the projection cannot be used for bodies that are significantly more non-convex, such as comet

67P/C-G; in this case, it is more beneficial to stick with the three-dimensional plots of Fig. 4.34.

Figure 4.35: Mollweide projection of the dispersion plots of the nominal Itokawa deployment.
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4.2.2 Effect of probe shape

The parallelized simulation methodology presented in Chapter 2 allows us to repeat a given

scenario of many deployments of different probe shapes. When selecting a representative set

of shapes to consider, it is natural to include the three lander/rover payloads included on the

Hayabusa2 mission, since these are real-world examples of what a useful small-body surface explo-

ration probe may look like. In addition to these, the five platonic solids are included: tetrahedron,

octahedron, cube, dodecahedron, and icosahedron. These five shapes are regular, convex polyhedra

with spherically symmetric inertia and a different number of faces (respectively 4, 6, 8, 12, and

20). They provide a reasonably continuous variation in geometry and mass distribution, from the

nearly-spherical dodecahedron to the strongly warped tetrahedron. This yields a total of eight

different shapes: five platonic solids with spherically symmetric inertias and three real-world ana-

logues with a more ‘irregular’ shape. The actual mass and density of the Hayabusa2 payloads are

ignored; instead, all eight shapes are given the same density ρ = 500 g/cm3 and mass m = 5 kg;

this fixes their sizes. Effectively, each of the considered shapes thus carries the same amount of

‘malleable’ payload. The eight shapes are shown at the same scale in Fig. 4.36.

Figure 4.36: The eight considered probe shapes.
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The platonic solids can be defined in terms of their vertex radius r and side length s; the

latter is marked with a green line in Fig. 4.36. The ratio l = r2/s2 is tabulated in Table 4.7.

Together with the shape parameter v = V/s3, which can be thought of as a packing efficiency, it

can be used to determine the shape size corresponding to some combination of m and ρ. Given

these two parameters, the corresponding side length s can be computed as:

s = 3

√
m

vρ
(4.8)

By combining the computed s and the corresponding l from Table 4.7, the vertex radius r needed

to set the proper shape size can be computed. In order to perform simulations, knowledge of the

corresponding inertia [I] is also required. Given that the platonic solids have spherically symmetric

inertias, they can be expressed in the following form:

[I] = jms2 · I3 (4.9)

in which 0 ≤ j is the dimensionless reduced inertia of the shape, as introduced for the sphere in

Section 4.1. Table 4.7 includes j values for both the solid (uniform mass distribution) and shell

(with all mass concentrated at the faces) version of all five shapes. The l, v, and j values were

obtained from [99].

Given that the shapes have different side lengths s, an examination of j by itself is not

instructive when comparing their mass distributions. Therefore, Table 4.7 also includes the js2

term that yields the inertia tensor in Eq. 4.9; this is the mass-normalized inertia. Comparing

these values, notice that the dodecahedron and icosahedron have very similar js2 values. The cube

and octahedron also have similar mass-normalized inertias, that are approximately 7% greater

than those of the dodecahedron/icosahedron. Finally, the tetrahedron has even higher js2; it

is approximately 35% greater than that of the dodecahedron/icosahedron. This shows that the

dodecahedron/icosahedron have very similar mass distributions, as do the cube/octahedron. In

contrast, the tetrahedron’s mass is distributed considerably more outwards from its center of figure.
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Finally, Table 4.7 also lists the vertex defect δ of the five solids. This parameter is obtained

as the sum of all interior angles βi at a vertex, subtracted from 2π:

δ = 2π −
∑
i

βi (4.10)

We provide an example calculation of the vertex defect of a cube in Fig. 4.37. For the platonic solids,

all interior angles βi have the same value. In the case of a cube, it holds that β1 = β2 = β3 = 90 deg.

From Eq. 4.10, it is thus found that the vertex defect δ = 90 deg. This defect is directly related

to the curvature of a shape at its vertices (see Chapter 3) and will be a useful concept in the

examination of the simulation results further on.

Figure 4.37: The interior angles βi used to determine the vertex defect δ.

Table 4.7: Relevant properties of tested symmetric lander shapes.

Shape nF nV l [-] v [-] r [m] Shell j [-] Solid j [-] Core j [-] Solid js2 [m2] δ [deg]

Sphere ∞ ∞ 1.0000 4.1888 0.1337 0.6667 0.4000 0.0133 0.0071450 0
Dodecah. 12 20 1.9635 7.6631 0.1531 1.0123 0.6074 0.2025 0.0072528 36

Icosah. 20 12 0.9045 2.1817 0.1580 0.4363 0.2618 0.0873 0.0072240 60
Cube 6 8 0.7500 1.0000 0.1866 0.2778 0.1667 0.0556 0.0077360 90

Octah. 8 6 0.5000 0.4714 0.1957 0.1667 0.1000 0.0333 0.0076630 120
Tetrah. 4 4 0.3750 0.1179 0.2330 0.0833 0.0500 0.0167 0.0096548 180

Surface dispersion To investigate if the eight probe shapes behave differently, the nominal

deployment scenario presented above is repeated. This results in 100,000 simulations with the same

initial conditions, for each of the eight shapes. In Fig. 4.38, the surface dispersions of the eight

simulation batches are plotted; corresponding Mollweide plots can be found in Fig. 4.39. The

1/2/3σ dispersion areas are also provided in Mollweide projection in Fig. 4.40 and are quantified
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in Fig. 4.41. Of the five platonic solids, the tetrahedron has the smallest dispersion area, followed

by the octahedron and the cube. The icosahedron and dodecahedron have the largest dispersions,

though their values are similar. Both the MASCOT and MINERVA-II-2 probes display dispersions

highly similar to that of the cube, while MINERVA-II-1 shows the greatest dispersion of all tested

shapes. These trends will be further discussed below.

Figure 4.38: Settling position density of the considered shapes.

Figure 4.39: Mollweide projection of the settling position density of the considered shapes.
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Figure 4.40: Mollweide projection of the dispersion areas of the considered shapes.

Figure 4.41: Dispersion statistics of the considered shapes.

Settling time The settling time PDFs of the eight deployments are provided in Fig. 4.42.

At the top of the figure, all eight shapes are included in a single plot. The bottom left shows

only the five platonic solids. The bottom right shows the three Hayabusa2 lander/rover payloads.

Reviewing the distribution of the platonic solids, it is found that the tetrahedron settles the quickest,

followed by the octahedron, cube, icosahedron, and finally the dodecahedron with the longest tf .

In contrast to the surface dispersion, the icosahedron and dodecahedron have distinctly different

settling time distributions. Note that all five platonic tf distributions appear mostly Gaussian,

though the tetrahedron does show some positive skewness.
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Figure 4.42: Settling time PDFs of the considered shapes.

Inspecting the tf curves of the three Hayabusa2 payloads, it is found that the MASCOT

lander has a Gaussian tf distribution that is very similar to that of the cube; this makes intuitive

sense given MASCOT’s nearly cubical shape. The MINERVA-II-2 rover tf distribution also appears

as Gaussian; the rover settles only slightly slower than the cube. Finally, the MINERVA-II-1 rover

is found to have the most peculiar tf distribution: its PDF appears to reach a critical point at a tf

value close to the mean tf of the cube. The curve continues to climb beyond this value and slopes

out relatively gently, indicating that many simulations have higher tf .

Discussion: The effect of shape It is obvious from the deployment statistics shown

above that the shape of a small-body exploration probe strongly influences its dynamics. Our

results suggest that a more outwards mass distribution (the tetrahedron) results in shorter tf

and smaller Ad than a more concentrated mass distribution (the dodecahedron). However, when

comparing the js2 values in Table 4.7 with the trends of Fig. 4.42, is is clear that inertia alone

does not determine the settling behavior of a shape. This is clear from the observation that

the dodecahedron/icosahedron and the cube/octahedron have very similar inertias, but display

distinctly different settling behaviors. Furthermore, it is found that the tf trends persist when

the simulations are repeated while giving the five platonic solids identical inertia. This indicates
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that the physical shape of a probe, through which it interacts with the small-body surface, has an

effect on deployment dynamics that is distinct from the effect of the shape’s corresponding mass

distribution. To understand precisely how the probe shape affects its deployment dynamics, the

collision geometry in a simple, two-dimensional setup is first investigated, as shown in Fig. 4.43.

Figure 4.43: The minimum and maximum aspect angle α of various regular, convex polygons.

This figure shows a triangle, cube, and pentagon (regular, convex polygons) in contact with

a flat surface. For such convex shapes, collision with a flat surface must always occur at one of

the corner vertices. For a given impact, the aspect angle α is defined as the angle between the

surface normal N̂ and the opposite of the collision vector, −r. This angle cannot vary arbitrarily

but rather takes values between −αmax ≤ α ≤ αmax. The angle is defined ad hoc to be positive

when the shape is angled towards its linear velocity, i.e., when r ·V < 0. Since the geometry is

more complex for three-dimensional shapes, the positive/negative distinction is dropped for those

shapes; α is always defined as positive for three-dimensional shapes.

When r is parallel to N̂, it holds that α = 0. This occurs when the polygon appears to

‘balance’ on one of its vertices, as illustrated on the left side of Fig. 4.43. The maximum α occurs

when one of the polygon’s faces is parallel to the flat surface, as illustrated on the right side of

Fig. 4.43. This can happen either with the shape rotated to the right (as shown in the figure) or

to the left. It is clear from the figure that αmax decreases as the number of vertices n of a polygon

increases. It holds that a triangle (n = 3) has αmax = 60 deg, a square (n = 4) has αmax = 45 deg,

and a pentagon (n = 5) has αmax = 36 deg. In the limit, it holds that a circle (n = ∞) has
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αmax = 0. For an arbitrary convex, regular polygon, the geometry illustrated in Fig. 4.44 may be

used to find that αmax = π/n.

Figure 4.44: Geometry of a regular, convex polygon.

The area of a regular, convex polygon can be found as A = 1
4ns

2 tanβ. When given a unit

area A = 1, the corresponding radius r can be found as:

r =

√
2

n sin (2π
n )

(4.11)

When one of these polygons is dropped vertically onto a flat plane, the aspect angle at impact will

vary uniformly between −αmax and αmax. Upon impact, the orientation of the collision vector r de-

termines how the contact point velocity υ decomposes along the normal and tangential dimensions.

This is illustrated in Fig. 4.45, which shows the PDF of the two r components for polygons with

increasing n. These curves were produced by randomly generating N = 106 impact geometries and

computing the corresponding r cosα and r sinα. Four corresponding sample points of the triangle

are visualized in Fig. 4.46.

Before discussing the trends of this figure, it is important to note that the friction force

only dissipates energy whenever s 6= 0. Given that work is equal to the product of force and

displacement, friction cannot perform work (and thus, it cannot dissipate energy) when s = 0, as

in that case no displacement of the contact point occurs. In light of this fact, one may draw the

following conclusions from Fig. 4.45:

(1) The r cos (α) and r sin (α) curves show that polygons with fewer vertices n experience

greater variation in the collision vector r for random impact attitudes. As a result, they
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Figure 4.45: Distribution of collision vector composition for random 2D polygon impacts.

Figure 4.46: Selected geometries as marked in Fig. 4.45.

also experience greater variation in the contact point velocity υ = v + ω × r. Therefore,

the following is true about shapes with low n: even if friction is sufficiently strong to drive

s → 0, the ‘random’ velocity variation that results from its shape is likely to yield some

s 6= 0 at the next impact. Thus, friction is able to again drive s → 0, dissipating energy

in the process. This repeats at each successive impact, allowing friction to repeatedly

dissipate energy in each of the impacts. The opposite is true for shapes with high n: they

experience little variation in contact point velocity between successive impacts, so even if

friction drives s → 0 in some impact, it is unlikely that a large s will be present at the

next impact. Friction is therefore unable to dissipate much energy. In conclusion, polygons

with low n experience a greater energy dissipation rate than polygons with high n, due

to the greater ‘natural’ variation in contact point velocity that low-n shapes experience in

successive impacts.



217

(2) As was mentioned at the start of our contact model development, it holds for non-central

collisions (which have α 6= 0) that the restitution and friction impulses are coupled. Math-

ematically, this is represented by a non-diagonal inverse mass matrix [M] in Eq. 2.54. As

a result, the application of a normal impulse leads to a change in the tangential contact

point velocity, and the application of a friction impulse leads to a change in the normal

contact point velocity. The restitution and friction impulses may therefore either ‘help’ one

another, or counteract one another. If friction is not sufficiently strong, the restitution im-

pulse can therefore create some net ṡ > 0. This is illustrated in Fig. 4.47, where switching

the direction of the angular velocity ω results in a switch in the direction of the friction

impulse PF . On the left side of the figure, this result in (initial) alignment between the

torques from the normal and friction impulses. On the right side of the figure, the torque

are instead opposed. Effectively, this ‘tug of war’ between the normal and friction forces

results in the same behavior mentioned above: a residual sliding velocity s continues to

exist in successive impact, allowing friction to dissipate energy in most impacts, resulting

in a higher energy dissipation rate for shapes with lower n.

Figure 4.47: Sample impacts of a tetrahedron with opposing friction force direction.

This analysis can be extended from the two-dimensional polygons of Fig. 4.43 to the three-

dimensional shapes of Fig. 4.36. To substantiate that argument, N = 106 impact geometries of the

eight shapes previously used in simulation are realized, and the distribution of the corresponding
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aspect angles computed. These distributions are plotted in Fig. 4.48. Unlike the two-dimensional

polygons, the distribution of aspect angles is not uniform for these three-dimensional shapes. Fur-

thermore, any rotational velocity of the considered shapes will restrict the range of feasible α.

Therefore, the provided curves only hold for initial impacts in which the angular velocity is negli-

gible.

These distributions further indicate that the tetrahedron experiences the greatest variation

in α of the five platonic solids, followed by the octahedron, cube, icosahedron, and finally the

dodecahedron with the smallest variation in α for random impact geometries. By analogy of our

discussion of friction dynamics for two-dimensional polygons, the energy dissipation rate of the

tetrahedron will therefore be higher than that of the octahedron, etcetera. This agrees with the

trends observed in our small-body deployment simulations: the tetrahedron settles the quickest,

followed by the octahedron, etcetera. Dome sample impact geometries of the tetrahedron are

illustrated in Fig.4.49.

Figure 4.48: Distribution of aspect angles for the eight probe shapes, for random impact geometries.



219

Figure 4.49: Example aspect angles of the tetrahedron.

The distribution of aspect angles shown in Fig. 4.48 further helps explain the deployment

statistics observed for the three Hayabusa2 payloads. Given the similarity in aspect angle distribu-

tion between MASCOT and the cube, it makes sense for the two shapes to display similar dynamics;

this is expected from their similarity in shape. MINERVA-II-2 experiences slightly less variation in

α than the cube, its mean settling time is therefore slightly longer than the cube. Finally, although

MINERVA-II-1 does experience high α values between 30 and 60 deg, Fig. 4.48 shows that it is

most likely to experience far lower values, between 0 and 30 deg. This predicts that the rover will

experience some trajectories in which it settles quickly, but far more in which it settles more slowly.

This agrees with the simulation trends of Fig. 4.42.

Finally, it is noted that the range of aspect angles of the platonic solids is related to their

vertex defect δ, that was introduced in Eq. 4.10. It holds that shapes with a greater defect have

greater curvature, and thus a smaller radius of curvature1 . As a result, they are able to rotate

around a contact vertex over a greater range of α angles before touching the surface with some

other vertex. For the platonic solids, the vertex defect is therefore a good predictor of the settling

behavior; the δ values given in Table 4.7 match the order of the shapes’ mean settling times. The

concept of vertex defect and curvature is more difficult to apply to the Hayabusa2 payloads, since

1 The reader is referred to Section 3.2 for an in-depth discussion of curvature.
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their shapes are not spherically symmetric. They therefore exhibit non-uniform curvature that

changes depending on the considered ‘direction’ of curvature. For these probes, the aspect angle

distributions of Fig. 4.48 are far more instructive when ‘predicting’ their deployment dynamics.

The behavior of MINERVA-II-1 As mentioned in the discussion above, the MINERVA-

II-1 rover exhibits peculiar settling behavior: some simulations settling relatively quickly (at ap-

proximately the same tf as the cube) but most have far longer settling times (with tf exceeding

even that of the dodecahedron). This behavior can be explained using the aspect angle statistics of

Fig. 4.48. Resulting from the disk-like shape of MINERVA-II-1, the rover experiences two distinctly

different modes of motion, which are illustrated in Fig. 4.50.

Figure 4.50: Illustration of the two modes of motion of the MINERVA-II-1 rover.

The rover can rotate about either its major axis of inertia ω1 or about one of the other two

axes ω2. In the first case, the rover effectively acts as a circle that easily rolls across the small-body

surface. In this mode, the rover experiences relatively low aspect angles, because the r vector is

nearly parallel to the N̂ vector. In the second case, the rover acts as a rectangle and experiences far

greater α angles. Following the above discussion that greater α variation results in faster settling, it
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makes sense that the dichotomy of α values of MINERVA-II-1 yields a corresponding dichotomy in

deployment statistics. The two modes of motion have been marked on the bottom right of Fig. 4.48.

Two sample trajectories that display each mode are illustrated in Figs. 4.51 and 4.52. Of course,

it is possible and likely for a given simulation to exhibit both modes of motion; it is the balance

between the two that determines the simulation’s settling behavior.

Figure 4.51: Sample MINERVA-II-1 simulation in which Mode 2 dominates.

Figure 4.52: Sample MINERVA-II-1 simulation in which Mode 1 dominates.

On a flat surface, a sphere always experiences the same normal and tangential directions;

the energy dissipation rate from friction is therefore low. When bouncing on a rough surface, the

surface normal is effectively randomized at each successive impact, allowing friction to dissipate

far more energy. This results in shorter settling times and smaller surface dispersions. This is

illustrated in Fig. 4.53. This phenomenon is also expected to occur when surface features are
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included in simulations of the MINERVA-II-1 rover. Precisely how the inclusion of surface features

affects the motion of the other considered probe shapes will be discussed in Section 4.3. Given

that the tetrahedron naturally experiences a large ‘random’ variation in α, the inclusion of small

surface features is predicted to have a relatively small additional effect. In contrast, given that the

icosahedron and dodecahedron naturally experience very little α variation, the inclusion of small

surface features is predicted to artificially increase the range of α values, resulting in shorter settling

times. In this, the precise balance between the natural α variation (resulting from the probe shape)

and the artificial α variation (resulting from small terrain features) is an interesting parameter to

be investigated.

Figure 4.53: Bouncing of a sphere on (left) flat and (right) irregular terrain.

Duration of contact In the modeling of the contact interactions between a spacecraft

and the small-body surface, a distinction between impulsive collisions and continued contact motion

was made. The latter begins when a collision starts with a small normal contact point velocity

υN < −ε, with ε some small value. When this happens, one final collision with only a compression

phase is evaluated, such that υN = 0 at the end of the collision. If the normal acceleration of the

contact point, as computed with Eq. 2.54 with Fc = 0, is negative, this implies that a continuous

normal force is necessary to prevent the probe from penetrating the surface. Continued contact

has thus begun, during which Eq. 2.106 is used to propagate the spacecraft motion. If the normal

contact point acceleration is positive, the probe is simply returned to another ballistic arc.



223

The propagation of contact motion is numerically intensive, much more so than the propaga-

tion of ‘bouncing’ arcs. This is because a high number of low-velocity impacts occur before a probe

finally comes to rest, following the onset of contact motion. Given that shapes with large variation

in the aspect angle α experience large variations in contact point velocity, they must perform many

collisions before υN reaches below the ε limit and continued contact motion begins. By the time

this happens, those shapes have already dissipated most of their initial energy and are close to

coming to rest on the small-body surface. In contrast, shapes with smaller α variation are able to

enter contact motion much sooner before coming to rest.

We are therefore curious to quantify the relative importance of continued contact motion

for the tested shapes. In this,the icosahedron, dodecahedron, and MINERVA-II-1 are similarly

expected to display significant contact motion, given their limited range of natural α variation. To

investigate this, consider the results shown in Fig. 4.54. In it, solid lines indicate the tf distribution

of the complete trajectories that include continued contact motion. The dotted lines indicate

the corresponding statistics when those same trajectories are terminated at the start of the first

continued contact. Similarly, Fig. 4.55 plots the cumulative distribution function of the relative

increase in settling time when contact motion is included. That figure also plots the additional

distance that is covered between the start of the first contact motion and the final settling location.

Figure 4.54: Settling time PDFs of considered shapes, with and without continued contact.
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Figure 4.55: Changes in settling position and time when ignoring continued contact.

Reviewing Figs. 4.54 and 4.55, their results are found to support the predictions made based

on the shapes’ α variation: only the icosahedron, dodecahedron, and MINERVA-II-1 show any

significant contact motion. All other shapes are virtually unaffected by the inclusion of contact

motion, with 90% of simulations experiencing less than 0.25 m of additional movement and less than

2% increase in settling time after the first continued contact. For these shapes, it is thus appropriate

to terminate simulations at the start of continued contact. The corresponding simulations will still

provide the proper dispersion statistics. However, they may not provide the correct spacecraft

settling attitude, since the spacecraft often still complete a full rotation after the start of contact

motion. Nevertheless, this allows for a notable increase in the effective simulation speed.

A typical deployment of the cube was previously illustrated in Fig. 4.32. In it, the cube is

shown at several time steps along its bouncing trajectory. This trajectory is a succession of multiple

bouncing arcs, after which the cube eventually settles on one of its faces. In this trajectory, as is

typical for the cube, the contact phases are extremely short and occur at the bottom right of the

figure as the cube performs micro-impacts on its four bottom vertices before coming to a rest.

To contrast this typical simulation, a rare example in which the inclusion of contact motion is

important is also illustrated, in Fig. 4.56.
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Figure 4.56: Atypical deployment of a cube, in which the inclusion of contact motion results in
significant additional motion.

In this case, the motion is such that the cube skirts the side of a hill, allowing for its contact

point to reach a zero normal velocity unusually early on in the simulation. The cube then continues

to slide down the hill while spinning and eventually takes off again to perform more bounces before

eventually settling. This kind of behavior, in which contact motion is important, is extremely rare

for the cube. This does not necessarily hold for the other three shapes. The icosahedron shows more

notable increase in tf , though its additional movement is equally insignificant as that of the shapes

mentioned above. The dodecahedron dynamics are significantly affected by the inclusion of contact

motion, with 25% of simulations exhibiting an increase in tf of more than 10%. Nevertheless, their

additional surface motion remains small. Very similar results are found for MINERVA-II-1.

Suggested experiments Our simulations above revealed the significant effects of a probe’s

shape on its deployment dynamics, which could be explained from the properties of our contact

model. In this, it is critically important to stress that these observations and trends only exist

when the model’s assumptions hold. More specifically, our analysis pivots on the assumption

that the coefficient of restitution and friction are constant, i.e., that they are independent of the

impact attitude and velocity of an object. Despite the large body of research that exists on impact
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dynamics and the application of Stronge’s model, this assumption appears (to the best of our

knowledge) to remain untested. Ahmad, Ismail, and Mat performed a literature review of various

impact models and coefficient of restitution formulations [3] in which they provide three different

definitions of the coefficient of restitution: one kinematic (Newton), one kinetic (Poisson), and one

energetic (Stronge). They claim that the “energetic COR that was introduced by Stronge is the

most consistent and applicable in a wider application.” Although a large body of research exists on

the experimental measurement of the coefficient of restitution of spheres (see for example [32] and

[25]), very little work on other shapes has been performed. Indeed, Ahmad, Ismail, and Mat note

that “The experimental works to determine COR in oblique and repeated impacts are still given less

attention.” Although Stronge’s work is widely cited, the available literature appears to take the

assumption of fixed e and f as a given. The basic research that validates this assumption remains

an open area of research.

Given the importance of the fixed e/f assumption for the simulation of small-body surface

exploration, two sets of experiments are therefore proposed. Both experiments avoid the complexity

of three-dimensional impacts and restrict the geometry to two dimensions. In the first experiment,

illustrated on the left side of Fig. 4.57, two plexiglass plates are placed close to one another. Various

polygons (e.g., triangle, square, pentagon) are then cut out of additional plexiglass material, and

dropped between the two plates. The bouncing motion of the polygons is observed with a camera

at high framerates, not unlike previous experiments carried out to measure the coefficient of rolling

resistance [130]. The video material is then analyzed in order to estimate the position, attitude,

and velocities of the polygons in each frame. This results in estimates of the linear and angular

velocity change at each collision, which can be compared with Stronge’s model to (in)validate the

assumption of constant restitution and friction coefficients. It is likely necessary to develop some

sort of clamping mechanism that is able to release the polygons with a fixed initial attitude and

velocity, in order to make the experiment repeatable. Finally, it may be relevant to repeat this

experiment with various surface materials on which the polygons bounce (shown in dark blue in

Fig. 4.57), to reveal dependence on material properties. This experiment has a low cost.
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Figure 4.57: Illustration of proposed (left) plexiglass and (right) air-bearing table experiments.

The first experiment is performed in Earth gravity, even though our small-body application

takes place in zero-gravity. The first set of experiments is therefore proposed to be followed with a

second set in which an air-bearing table is used. The same polygon shapes can then be ‘launched’ at

low velocity across the table and impact a wall. The air flow cancels the gravitational acceleration,

effectively creating an artificial micro-gravity environment. By observing the impact from above

with a high-framerate camera, the velocity changes that occur over the course of an impact can

again be estimated. By varying the initial attitude and velocities and comparing the results with

simulations using Stronge’s model, one can validate if the constant e/f assumption persists in

micro-gravity environments. The table can also be slightly tilted in order to simulate a milli-

gravity environment. This second set of experiments carries a slightly higher cost than the first,

but can still be done at relatively low cost, in particular if an air-bearing table is available for use.

4.2.3 Effect of surface interaction coefficients

Our contact model is governed by the coefficients of restitution e and friction f . The values

of these coefficients determine a probe’s energy dissipation rate and thus also its settling statistics.

Section 4.1 performed a parametric study investigating the effects of variations in these coefficients

on the deployment of spherical lander probes. The restitution coefficient was found to be the

major determinant of the settling behavior. No effects from the coefficient of friction were observed

when it was varied within a realistic range; the statistics only changed when the coefficient reached
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particularly low values of f < 0.20. This was also witnessed by Tardivel et al. [119].

Here, it is briefly investigate whether the effects of restitution and friction persist for probes

with varying shapes. We repeat the nominal simulations of the tetrahedron, cube, and dodecahe-

dron while independently varying the coefficients of restitution and friction. Fig. 4.58 scatter-plots

the mean settling time t̄f as a function of the two coefficients. The plotted lines are function fits

that are discussed in further detail below. Note that different vertical axes are used on the left and

right sides of the figure.

Coefficient of restitution In agreement with the results for spherical probes, the resti-

tution coefficient is found to have a significant effect on the settling time. As argued in Section 4.1,

the settling time of a particle bouncing on a flat plane with coefficient of restitution e, in a uniform

gravity field, can be written as:

tf (e) = a0 + a1(1− e)−1 (4.12)

in which a0 and a1 are coefficients to be fit. We fit this expression to the t̄f (e) curves obtained for

the considered shapes, using a least-squares method with equal weights. These fitted curves are

the solid lines included on the left side of Fig. 4.58. As can be seen from the figure, the fitted curve

closely matches the scattered simulation data. This is surprising, given the complex dynamics that

occur in our simulations. Despite the complex probe shape, asteroid shape, and asteroid gravity,

the effect of a change in e is accurately captured by the simple scaling with (1− e)−1.

Figure 4.58: Mean deployment tf for varying (left) restitution and (right) friction coefficient.
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Coefficient of friction Varying the coefficient of friction, it is found that an increase in f

increases the mean tf for all shapes, though the effect appears much weaker for the dodecahedron

than for the cube and tetrahedron. A saturation f̄ appears, beyond which further increases in the

value of f no longer effect a change in the mean tf . This saturation limit is easily explained from

the properties of our friction model: when f is sufficiently high, the contact point reaches stick

during each collision. If f is increased further, this behavior does not change. If f is decreased, the

contact point no longer achieves stick during each collision, such that the settling time changes. As

a result, the t̄f (f) data visually appears as a sigmoid curve. We therefore attempt to fit a general

sigmoid:

t̄f (f) = b0 +
b1

1 + exp (−b2 (f − b3))
(4.13)

to the three sets of data, in which b0 through b3 are coefficients to be fit. The solid lines plotted on

the right side of Fig. 4.58 are the resulting fitted sigmoid curves. Once again, a surprisingly close

agreement between the scattered and data and the fitted curve is found.

Qualitatively, these results match the trends found for the sphere in Section 4.1: a saturation

f̄ appears beyond which t̄f no longer changes. This limit was f̄ ∼ 0.2 for a sphere. The saturation

f̄ of the three tested shapes is much higher and shape-dependent: f̄ ∼ 0.6 for the dodecahedron,

f̄ ∼ 1.0 for the cube, and f̄ ∼ 1.4 for the tetrahedron. These differences can be explained from our

analysis of the aspect angle variation for the different shapes. Given that a tetrahedron experiences

the greatest variations in α, and therefore also in its contact point velocity, it requires a greater

friction coefficient to ensure stick synchronization at each impact. Given that a more spherical

shape experiences far smaller variations in α and in its contact point velocities, a lower friction

coefficient is sufficient to achieve stick. Even if stick is not reached on the first impact, the tangential

velocity will have changed very little by the second impact, such that it can easily be achieved on

the second impact. The reason why an increase in friction coefficient somewhat counter-intuitively

results in longer settling times will be detailed furthered in our analysis of the effects of the probe

mass distribution below.
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4.2.4 Effect of probe mass distribution

Above, the effect that a spacecraft’s shape has on its deployment dynamics was demonstrated.

More specifically, it was shown that changes in the shape have two effects: first, they modify the

interface along which spacecraft-target interactions occur and, second, they modify the inertia of

the spacecraft. The former affects the collision dynamics through its control over the range of

aspect angles α (and thus, over the range of contact point velocities) that the spacecraft encounters

across all feasible impact geometries. The effect of the latter has not yet been identified, but is the

focus of the current section.

In order to investigate the effect of spacecraft inertia on deployment dynamics, the nominal

simulations are repeated for three variants of each of the platonic solids. These variants have the

same physical shape and mass but different internal mass distributions; they have different inertias.

Fig. 4.59 illustrates different mass distributions of a triangle, where the ‘shell’ variant (with all mass

concentrated on the surface), the ‘solid’ variant (with uniform density), and the ‘core’ variant are

marked. This figure is highly similar to Fig. 4.1 that illustrated different mass distributions of a

spherical probe. The reduced inertia j of the ‘shell’ variant is defined as:

jcore = 2jsolid − jshell (4.14)

Figure 4.59: Illustration of different mass configurations of a triangle.

The jsolid and jshell values were previously listed in Table 4.7. We repeat the nominal sim-

ulations for the three variants of each platonic solid and plot the corresponding settling time

distributions in Fig. 4.60. Reviewing these results, it is found for all shapes that lower inertias
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(the ‘core’ variants) experience lower settling times than higher inertias (the ‘shell’ variants). This

trend is clearly seen in the tetrahedron, octahedron, and cube. Strangely, it is found that the

differences between the solid and shell variants of the icosahedron and dodecahedron are almost

negligible; both curves nearly overlap. For the dodecahedron, this is true of its core variant as well.

These trends are curious: how can it be that the internal mass distribution affects the motion of

some given shapes, but not some other shapes? A clue to understanding this behavior lies in the

behavior of the icosahedron and dodecahedron; it seems as if some saturation inertia exists, beyond

which further increases in the inertia no longer affect the motion. This suggests that friction may

be responsible for this behavior, given that it was previously observed saturation when varying the

coefficient of friction in Fig. 4.58.

To further investigate how friction relates to the effect of inertia on probe deployment dy-

namics, the coefficient of friction f was varied for the three inertia variants of the tetrahedron,

cube, and dodecahedron. The resulting mean settling time values are collected in Fig. 4.61. Note

that different vertical axes are used in the three subplots. As with the f variation of the ‘solid’

variant previously shown in Fig. 4.58, a saturation limit f̄ appears, beyond which further increases

in f cease to have an effect. In agreement with the results of Fig. 4.58, it is found that value of f̄

changes with the considered probe shape. However, it is found that f̄ also changes with the mass

distribution of a considered probe. More specifically, f̄ decreases when the mass is moved outwards

(increased inertia) within a given shape. For example, the tetrahedron shell variant has f̄ ∼ 1.1,

while its solid variant has f̄ ∼ 1.4 and its core variant has some f̄ > 1.5. The effects of changing

the spacecraft shape and changing its internal mass distribution appear to counteract one another:

(1) Shapes with fewer vertices (that naturally have higher inertia) settle faster than shapes

with more vertices (that naturally have lower inertia).

(2) Shape variants with a more outwards mass distribution (that have higher inertia) settle

slower than shape variants with a more concentrated mass distribution (that have lower

inertia).
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Figure 4.60: Settling time distribution with varied spacecraft inertias.

Figure 4.61: Mean settling time for varying f and j of the tetrahedron, cube, and dodecahedron.
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To understand these seemingly contradictory observations, we continue to investigate the

collision dynamics that occur during deployment. Since the results from Fig. 4.61 suggest that

friction is responsible for the observed trends, we investigate the sliding velocity changes that occur

in the simulations of the cube. To this end, Fig. 4.62 shows the CDF of three relevant velocities of

the cube variants. First, the tangential contact point velocity after the first impact, s1. Second, the

initial tangential contact point velocity s̄0 of all successive impacts (i.e., all impacts excluding the

first). Finally, the tangential contact point velocity s̄1 at the end of each successive impact. In this,

micro-impacts that occur within five seconds of each other are grouped together into a single macro-

impact. These distributions are shown for simulations performed with different friction coefficient

0.40 < f < 1.20.

Figure 4.62: Tangential contact point velocity statistics for cube variants.

As might be expected, an increase in the friction coefficient f reduces the post-impact s, both

after the first and after all successive impacts. This makes intuitive sense: when f is increased,

there is a stronger friction force opposing the sliding velocity of the contact point. However, an
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additional trend can be seen that is not expected: for a given f , the core variant (with lower inertia)

shows greater pre- and post-impact s than the shell variant (with greater inertia). Given that lower

inertia implies that greater changes in the angular velocity can be made with the same friction

force/torque, one would expect the core variant to achieve stick (s = 0) more frequently than the

shell variant. To understand why the opposite is observed (i.e., why lower inertia achieves stick

less frequently), we return to Eqs. 2.59 and 2.72 that express the change in contact point velocity

υ and sliding velocity s: 
dυ
dp =

[
dυ1
dp

dυ2
dp

dυ3
dp

]T
= [M]dP

dp

ds
dp = cosφdυ1

dp + sinφdυ2
dp

(4.15)

These equations can be used to evaluate the change in sliding velocity s in response to some impulse

dP. That impulse combines both a normal component (dP3) and a frictional component (dP1 and

dP2). Since the mass matrix [M] is not diagonal for an arbitrary spacecraft shape and collision

geometry, it holds that the normal (restitution) and frictional impulses each change both the normal

and tangential contact point velocity. The resulting coupling between restitution and friction is

the reason for the unexpected behavior seen in Fig. 4.62: in shapes with lower inertia, the two

impulses perturb one another more strongly, such that greater f is necessary to achieve stick. To

illustrate this point, consider the results shown in Fig. 4.63. This figure plots the change in sliding

velocity magnitude ds at the start of some sample impact of the cube with a flat plane. We vary

the coefficient of friction f and direction of initial slip φ, and compute the resulting ds of the three

cube variants.

Reviewing this figure, it is seen that the core variant (lowest inertia) experiences the greatest

range of initial ds = [−4, 1] m/s2. In contrast, the shell variant (with highest inertia) only sees

changes between ds = [−1, 0.5] m/s2. This difference in ds magnitude is expected: lower inertia

implies that the contact point velocity changes more rapidly in response to a given force. More

importantly, it is seen that the core variant has a relatively wide range of (φ, f) that have ds > 0.

Although the solid and shell variants also exhibit such a region, it is much smaller.
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Figure 4.63: Tangential contact point rate for sample cube collision.

The fact that ds can be positive indicates that, for certain combinations of f and φ, friction

is not sufficiently strong to prevent the restitution from increasing the sliding velocity s. When

the inertia is reduced, this balance appears to shift further in favor of the restitution impulse,

with a wider range of f and φ resulting in ds > 0. Shape variants with lower inertia therefore

experience greater residual s, allowing friction to dissipate energy during more impacts. This leads

to low-inertia variants experiences greater energy dissipation rates than high-inertia variants and,

correspondingly, to low-inertia variants having shorter settling times. This is only true when the

friction coefficient is smaller than the respective saturation value, i.e., when f < f̄ . If f ≥ f̄ for

all considered variants of a shape, the resulting behavior will be approximately equal. Although

a change in shape from a ‘concentrated’ configuration (the dodecahedron) to a more ‘outwards’

configuration (the tetrahedron) inherently increases the inertia, the net effect on the shape’s de-

ployment mirrors that of a decrease in inertia. This indicates that a probe’s shape has a more

determinant effect on its dynamics than the probe’s inertia does. This implies that, when one

designs a small-body exploration probe to settle as quickly as possible, the selection of the probe

shape is more important than its internal configuration. This creates some freedom when placing

scientific instruments and designing thermal control systems; their placement within the probe is

not as important as the shape of that shell. Additionally, these results suggest that the placement

of spikes on the probe corners will further restrict the settling time and surface dispersion.
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Discussion: Deployment of complex probes Using a sample scenario of 100,000 low-

altitude deployments to asteroid Itokawa, our parallelized simulation framework was used to inves-

tigate how the shape of a probe affects its deployment dynamics. In this, the five platonic solids

were considered, as well as the three deployed payloads included on Hayabusa2. The tetrahedron

was found to have the shortest settling time and smallest surface dispersion, followed by the octa-

hedron, cube, icosahedron, and dodecahedron. The MASCOT and MINERVA-II-2 rovers showed

similar behavior to the cube, but the MINERVA-II-1 rover had a considerably longer settling time.

These trends result from the variation in the aspect angle that relates to the net contact point

velocity in spacecraft-target impacts. This not only determines the frequency with which friction

is able to dissipate energy, but also the degree to which the normal and friction forces are coupled.

The net effect of these properties is that shapes more distorted from a sphere (which experience

greater aspect angle variation) settle faster and disperse over a small surface area compared to

shapes that are more spherical (which experience smaller aspect angle variation). We also showed

that the inclusion of continued contact motion is important only for shapes with little variation in

that aspect angle, i.e., the icosahedron, dodecahedron, and MINERVA-II-1.

Next, the coefficients of restitution e and friction f that determine the magnitude of the

spacecraft-target surface interactions were varied. In agreement with previous results obtained

for spherical probes, the coefficient of restitution e was found to govern the deployment dynamics.

Higher e values result in longer settling times and greater surface dispersions, with the mean settling

time scaling as t̄f ∝ (1−e)−1. Despite the complex behavior encountered in a single trajectory, the

emergent behavior in a batch of simulations fits this simple relation surprisingly well. The same

is true for the effect of the coefficient of friction, which scales the mean settling time as a sigmoid

curve with t̄f ∝ (1+exp (f))−1. In this, higher friction coefficients result in longer settling times. A

saturation f̄ occurs, beyond which further increases in f cease to affect the deployment dynamics.

This f̄ changes for different shapes and is higher for less spherical shapes and shape variants with

a greater inertia.
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Finally, the internal mass distribution of the considered shapes was varied. When f < f̄ , it

was found that a given shape with a more outwards mass distribution (i.e., higher inertia) settles

faster than that same shape with a more inwards mass distribution (i.e., lower inertia). We showed

that this occurs because lower-inertia variants of a shape require greater f in order to overcome the

sliding velocity changes imparted by the normal force. Friction is therefore able to dissipate energy

during more collisions for lower-inertia variants than for higher-inertia variants of that shape.

The effect of moving mass outwards within a given shape and of ‘molding’ a shape outwards

are opposite. Although changes in shape imply changes in inertia, it was found that the outwards

‘molding’ has a greater effect. This implies that, if a probe is to be designed with minimal settling

time and surface dispersion, its shape should be moved outwards while its mass is moved inwards.

In the limit, the minimal settling time will be achieved by a point mass with long spikes. Either

way, it allows engineers more liberty with the internal placement of components within a probe,

as long as the probe shell within which these components are contained is properly designed. In

the following section, it will be investigated how the inclusion of surface details such as rocks and

boulders, that are not included in global small-body shape models, further affect these trends.

4.3 Surface topography

In most of the parametric studies discussed above, the considered small-body surface was

relatively smooth. Although the applied shape models (in either polyhedron or SDF form) account

for surface features such as boulders and hills down to about 5 m in size, as per our discussion in

Section 2.3, they cannot resolve smaller features. Section 4.1 investigated the effect of polyhedral

rock presence on the motion of spherical probes and found it to significantly influence the probes’

motion. In the current section, this analysis is extended to the complex probes of Section 4.2.

This is done using the various feature generation methods discussed in Section 2.3. These allow

for generation of statistical features at much lower computational cost than the polyhedral rocks

mentioned before. Finally, the effects of regolith presence on the small body are also investigated,

using the restitution modulation scheme that was presented in Section 2.6.
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4.3.1 Effect of surface noise

The inclusion of statistical surface features, which effectively ‘perturbs’ the otherwise smooth

small-body surface, has two implications for the motion of a surface exploration probe. Both of

these relate to the geometry of probe-target collisions and were hinted at in our discussion of

Fig. 2.25, which illustrated how spacecraft of different resolution (with respect to the distribution

of vertices across their shell) resolve impacts with small surface features differently. This is now

reviewed in detail. Consider the impact geometry of a tessellated rectangle impacting a surface

protrusion, as illustrated in Fig. 4.64.

Figure 4.64: Definition of the α and β angles.

This illustration defines two angles present in a collision, that will be relevant to our discussion

of the effects of surface topography. First is the aspect angle α, which was previously used in

Section 4.2 to explain the effects of a probe’s shape on its bouncing behavior. In that case, the

surface was a simple flat plane. Here, the concept of the aspect angle to arbitrary surfaces is

extended and defined as the angle between the collision vector r and the collision normal:

α = arccos


∣∣∣N̂ · r∣∣∣
‖r‖

 (4.16)

Second, the surface inclination angle β is defined as the angle between the collision normal N̂ and

the local net acceleration vector a, which combines gravitational and centrifugal surface accelera-
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tions, as:

β = arccos

(
N̂ · a
‖a‖

)
(4.17)

The variation of the α and β angles across all feasible impact geometries of a probe is not arbitrary;

both angles are subject to certain constraints that predict some of the effects of the presence of

statistical features. For this, consider Fig. 4.65, which illustrates the variation in impact geometries

for a rectangular probe impacting both a large and a small surface feature. In both cases, the impact

point is fixed, but the probe is rotated to impact at different attitudes.

Figure 4.65: Variation of α and β in impacts on (left) a large and (right) a small surface feature.

Reviewing this figure, the following trends are observed: for varying impact attitudes on a

large surface feature (the left side of the figure), the collision normal N̂ remains fixed. As a result,

the incidence angle β is invariant with respect to the probe impact attitude. The impact angle α

does vary when impacting a large feature. For impacts on a small surface feature, the situation is

opposite: the impact angle α remains fixed while the incidence angle β varies.

In Section 4.2, which examined the effects of probe shape on deployment dynamics, we

previously investigated how the statistics of the encountered impact angles α determine the rate

at which energy is dissipated in collisions. We showed that shapes with a greater range of α
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generally experience greater rates of energy dissipation, and therefore settle faster and with a

smaller dispersion area. A similar theoretical argument can be made for the effect of the surface

inclination β: when the range of β is high, the surface normal with respect to which collisions occur

is greater. This implies that the normal and tangential directions may change significantly between

successive impacts, allowing the normal and friction forces to dissipate a greater amount of energy

than they would if the surface normal remains more constant.

Fig. 4.48 of Section 4.2 investigated the distribution of the aspect angles for the five platonic

solids, dropped on a flat surface. This investigation is now extended by dropping the same probes

above a noisy surface generated by including fBm noise onto a flat surface, as previously demon-

strated in Fig. 2.22. This is done with an accumulation of noise octaves. The five spacecraft shapes

are the platonic solids used in Section 4.2, again with a mass of m = 5 kg and uniform density of

ρ = 500 g/cm3. The five shapes are dropped N = 105 times above the noisy surface; this is done

for both the untessellated shapes and for finely tessellated variants of the same shape. In each

collision, the aspect angle α and the surface incidence angle β are registered. The distributions of

these angles are shown in Fig. 4.66, in which the untessellated shapes are shown with a solid line

and the tessellated shapes are shown with a dashed line. We now review the observed trends in α

and β of this figure.

Incidence angle. Immediately, it is seen (on the right side of Fig. 4.66) that the distri-

butions are identical for all five shapes. This result makes sense, given that the five shapes have

access to the same surface, and given that the probe attitude at impact does not affect the surface

incidence angle β. When no noise is included onto the surface, the β distribution is a dirac func-

tion at β = 0 deg, though the kernel density estimator applied to generate the angle distributions

smooths this into a steep, continuous curve. As increasingly smaller noise levels are included onto

the surface, the β distribution begins to spread out towards higher values. The curves appear to

converge on a fairly uniform distribution between β = 0 deg and β = 60 deg, with a maximum

around β = 25 deg. In other words, the addition of smaller and smaller surface features has a

smaller and smaller effect on the surface incidence angles experienced by the probes.
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Figure 4.66: Variation in the α and β angles for impact with different noise levels.
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This effect is understood from geometry. As previously mentioned, impacts on very large

surface features must always occur at the corner vertices of a shape. Impacts on small surface

features are much more likely to occur at some vertex in the middle of a facet of the considered

probe, as illustrated in Fig. 4.64. Given that the surface normal in is equal to the probe facet

normal those cases, the β distribution for surfaces with features smaller than the probe shape

is effectively a distribution of the attitude of the probe itself, and is not directly related to the

surface. This also explains why the β distributions of the tessellated and untessellated shapes are

virtually indistinguishable. Only when the smallest surface features are included is there a very

slight deviation, that is due to the mismatched normal selection when only detecting collisions at

the corner vertices, as previously illustrated in Fig. 2.25.

Impact angle We now change our attention to the aspect angle distributions on the left

side of Fig. 4.66. Here, significant differences are found when comparing the α distributions of

the five shapes. This is expected given that even on a flat surface, different shapes experience

different impact angles, as discussed in Section 4.2. Despite these differences, some common trends

are observed. First of all, it can be seen that the two largest noise levels (with A = 8 m and

1/f = 16 m, and with A = 2 m and 1/f = 4 m) have a negligible effect on the α distributions.

This makes sense: in the presence of features larger than the considered probe size, the probes

continue to only experience impacts on their corner vertices, as was the case with impacts on a

flat surface. This also explains why both the tessellated and untessellated variants experience the

same α in the presence of large features: the additional vertices which the tessellated variants have

spread across their vertices never touch the surface. As smaller noise levels are included, that

generate statistical features smaller than the considered probe sizes, changes in the α distribution

finally begin to appear. Unlike the β distributions, these changes are different for the tessellated

and untessellated shape variants; they are less dramatic in the tessellated variants, the remaining

discussion is focused on them. For the tetrahedron and octahedron, the changes in α are small; the

peak of their distributions shifts ever so slightly towards lower α. For the cube, the differences are

negligible. Only the icosahedron and dodecahedron display notable changes in their α distribution;
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the curves become more spread out for both shapes. This implies that they experience greater

variation in the impact angle α. Following the observation made in Section 4.2 that shapes with

greater α variation settle faster and with smaller dispersion, the icosahedron and dodecahedron

settling time and surface dispersion are therefore expected to reduce in the presence of small

surface features.

These results are aggregated into Fig. 4.67. The left side of this figure shows the change in α

distributions between a noise-less and a noisy surface, for untessellated shapes. The right side shows

the same curves for the finely tessellated shape variants. This again underscores the importance

of sufficiently tessellating spacecraft shapes when including small surface features into simulations.

The right side of this figure indeed shows that the dodecahedron and icosahedron have significantly

affected α distribution; the central peaks at respectively 30 deg and 20 deg have shrunk and the

distributions have become more spread out. The α curves of the tetrahedron, octahedron, and

cube have change very little; only a slight shift towards lower α values can be seen. At best, one

could therefore expect their settling time and surface dispersion to increase slightly when including

statistical surface features.

Figure 4.67: Impact angle distributions for flat and noisy surfaces, (left) for untessellated and
(right) finely tessellated spacecraft shapes.

Simulations Having concluded the above analysis on the aspect and incidence angle dis-

tribution, it is now examined if the predictions made therein agree with simulations to a noisy

surface. For this the nominal low-altitude deployment scenario to Sagamihara region is repeated,

as used before in Section 4.2. This is done for the finely tessellated variants of the five platonic
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solids, with an increasing number of noise octaves. The same noise levels are ued as applied above

in the analysis of the α and β distributions. The settling time PDFs of these simulation scenarios

are shown in Fig. 4.68.

Figure 4.68: Settling time PDFs of deployments to various Itokawa surfaces.
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We examine the trends in this Fig. 4.68 for the five considered shapes:

(1) Tetrahedron. When including the largest three noise levels, the tetrahedron tf distribution

is affected very little. The central peak is preserved, with the mean tf barely shifting. Only

when the smallest features are included do the curves display notable change by flattening

out and slightly moving towards higher tf . This indicates that the presence of small surface

features increases the settling time of the tetrahedron.

(2) Octahedron. The observed changes in the octahedron tf are barely noticeable at this scale,

and probably not statistically significant. Although the curves shift ever so slightly towards

higher tf when the smallest noise features are included, the differences appear negligible.

(3) Cube. The behavior of the cube is highly similar to that of the octahedron, though opposite

in direction. When small surface features are included, the cube tf is very slightly decreased.

(4) Icosahedron. Compared to the three shapes discussed above, the icosahedron is affected far

more strongly by the presence of surface features. When only the largest surface features

are included, the tf curve is simply seen to flatten out. However, when smaller features are

accounted for, the tf curves shift notably towards lower tf values. This indicates that the

presence of statistical surface features reduces the settling time of the icosahedron.

(5) Dodecahedron. The behavior of the dodecahedron matches that of the icosahedron; its

settling time is reduced notably when surface features are included in simulation.

Given that the observed tf changes in the tetrahedron, octahedron, and cube are very small and

difficult to see at the scale of Fig. 4.68, plots of the mean tf of the considered simulations are

provided in Fig. 4.69.

Overall, the results of Fig. 4.69 agree with those listed above for the different shapes. We see

that the mean tf of the cube remains virtually unaffected. The tetrahedron and octahedron tf are

increased slightly, while that of the icosahedron and dodecahedron are reduced more significantly.
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Figure 4.69: Mean settling time trends of deployments to various Itokawa surfaces.

We provide one final visualization of these results, by plotting the tf distribution of the the five

shapes on respectively the smooth and n = 5 noisy Itokawa surface, in Fig. 4.70.

Figure 4.70: Settling time PDFs of deployments to smooth and noisy Itokawa.

The results shown in this figure agree with those mentioned above. In conclusion, they suggest

that the inclusion of statistical surface features removes some of the bias in settling statistics that

results from the shape of a deployed probe. On a smooth surface, the settling time distributions

were fairly spread out. When surface features are included, the curves shift closer to that of the

cube. In other words, the tetrahedron and octahedron (which are more ‘deformed’ than the cube,

relative to a sphere) experience increased settling times. The icosahedron and dodecahedron (which

are more spherical than the cube) experience decreased settling times. The cube itself is barely

affected by the presence of surface features. This underscores the importance of accounting for

statistical surface features when performing simulations of probe deployment to the small-body

surface. This is of particular importance when the considered probe shape is nearly spherical in

at least some of its principal axes. For example, the presence of rocks should be accounted for

when simulating an icosahedron, dodecahedron, sphere, or the MINERVA-II-1 rover. It is of lesser
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importance when simulating the tetrahedron or octahedron, and can be ignored when simulating

a cube or shapes that behave like a cube, such as the MASCOT or MINERVA-II-2 spacecraft.

4.3.2 Effect of procedural rocks

The quantification of the effects of statistical surface features given above is relevant, since

such features are typically not included in global small-body shape models. However, as discussed

in Section 2.3.3, fractional Brownian motion is somewhat limited in the type of features that are

produced. More specifically, it is difficult to tune the surface features to match observations of a

small-body surface. Furthermore, fBm distorts the entire small-body surface, whereas the presence

of rocks typically leaves parts of the base surface unaffected. Thankfully, global populations of

rocks can be generated efficiently using the procedurally seeded rocks (PSRs) algorithm discussed

in Section 2.3.3. Here, the effects of such PSRs on the motion of small-body surface exploration

craft are investigated.

For this, the nominal deployment scenario used in the probe shape variation of Section 4.2 is

repeated, with various populations of PSRs. More specifically, the Itokawa rock population observed

by the Hayabusa spacecraft is used, as discussed in [68]. This population has a power index of

α = 2.1 and can be nominally initialized using the observation that Itokawa has k0 = 2.05× 10−3

rocks larger than d0 = 5 m per unit surface area. We generate rocks between 2 m and 5 cm in

diameter, using Eqs. 2.22 and 2.23. In order to examine the effects of rock populations with a

different spatial density of rocks, the k0 parameter is varied. Effectively, this will generate rocks

with a fixed size distribution, but with varying numbers of rocks per unit surface area. Fig. 4.71

shows some sample rock populations generated with varying k0.

The same 10,000 simulations are now repeated for a range of k0 values, and the resulting

deployment statistics collected, for the eight considered shapes. The mean settling time values can

be found in Fig. 4.72; the 1/2/3σ dispersion areas are quantified in Fig. 4.73.
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Figure 4.71: Sample rock populations with varying k0.

Figure 4.72: Mean settling time of various shapes in the presence of PSRs.

Reviewing the settling time trends, it is obvious that the presence of rocks on the small-body

surface has an effect on the probe dynamics, thought the particular effect differs for different shapes.

Consider the tetrahedron: its mean settling time is virtually unaffected by the presence of rocks. If

anything, its is very slightly increased. A more noticeable effect is observed for the octahedron and

dodecahedron, which experience a decrease in mean settling time of approximately 10% between a
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smooth surface and a surface covered entirely with rocks. The Mascot and MINERVA-II-2 rovers

display the same behavior, in agreement with the results from Section 4.2.

Figure 4.73: Surface dispersion of various shapes in the presence of PSRs.

The PSR inclusion appears to have a far more dramatic effect on the motion of the icosahe-

dron, dodecahedron, and MINERVA-II-1 rover. The icosahedron and dodecahedron display very

similar trends, with a reduction in mean settling time of approximately 40% between the smooth

and rock-covered surfaces. A clear saturation limit appears: beyond k0 ∼ 3 × 10−3 rocks/m2, a

further increase in k0 ceases to significantly affect the mean settling time. We also find that most of

the change in tf occurs at low k0. In other words, even a light-to-moderately sparse rock population

is able to restrict the motion of the icosahedron and dodecahedron. The most dramatic trends are

observed for the MINERVA-II-1 rover; even the inclusion of a very sparse population of rocks is

sufficient to reduce the settling time by over 25%. A dense rock population even reduces the mean

settling time of this rover to below that of the icosahedron and dodecahedron, despite the rover’s
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natural ability to roll around its axis of major inertia. This is notably different from those shapes’

behavior on a smooth surface. Again, it is found that the inclusion of additional rocks beyond

k0 ∼ 3 × 10−3 ceases to affect the settling time statistics. The results for Minerva-II-1 agree with

our prediction made in Section 4.2 and illustrate that the inclusion of surface rocks in small-body

modeling can be critically important. If not, the settling time of shapes such as the icosahedron,

dodecahedron, and MINERVA-II-1, that are able to ‘roll’ on a smooth surface, may be greatly

overestimated. This inclusion of rocks is far less important for the Mascot and MINERVA-II-2

rovers, since they already naturally resist rolling motion.

Corresponding results are found in the surface dispersion plots of Fig. 4.73. Again, it is found

that the tetrahedron is barely affected by the presence o surface rocks. The surface dispersion of

the octahedron and cube do appear to be more affected by the rocks than their settling time is.

Again, the icosahedron, dodecahedron, and MINERVA-II-1 appear to be strongly affected by the

presence of rocks, which limits the area over which these probes are able to disperse.

As a final investigation, the deployments of the tetrahedron, cube, and icosahedron are re-

peated for various spatial rock densities, while also varying the incidence angle γ. This angle will

be defined in the subsequent section, and expresses whether the first impact of a deployment is

normal or grazing. An incidence angle of γ = 0 deg indicates a fully normal impact, while an angle

of γ = 90 deg corresponds to a fully grazing impact. Reviewing the results of Fig. 4.74, it is found

that the effects of rocks hold for both normal and more grazing impacts. Although the settling

time is dependent on the incidence angle γ, as will be detailed in the subsequent section, the effect

of varying k0 appears to be analogous for all γ values. In conclusion, these simulations indicate

that it can be important to include the presence of rocks into surface modeling of small bodies.

This is particularly true for shapes that are naturally able to roll across a smooth surface, such as

the icosahedron, dodecahedron, and MINERVA-II-1.
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Figure 4.74: Mean settling time time for various impact angles and rock densities.

4.3.3 Effect of surface regolith

Our applied contact model, as detailed in Section 2.5, assumes that the coefficients of restitu-

tion and friction are constant and independent of the spacecraft velocities and attitude at impact.

Although this is an assumption frequently made in literature [3], it is one of questionable accuracy.

The verification or rejection of this assumption would require extensive experimental investiga-

tion, such as the experiments proposed for hard surface layers in Section 4.2. The assumption

appears even more tenuous for soft regolith layers. Indeed, as discussed in Section 2.6, Nishida et

al. observed that the coefficient of restitution e experienced spherical particles impacting a gran-

ular surface is strongly dependent on their impact angle θ. More specifically, they observed that

normal impacts occur at notably lower e than tangential impacts [80]. Experiments of complex-

shape impact into granular surfaces in micro-gravity are under preparation [77], but have not been

published yet. Nevertheless, it is reasonable to expect similar behavior for non-spherical spacecraft.

For that purpose, the observations by Nishida et al. are extrapolated and modulate the coefficient

of restitution based on the effective impact angle, as discussed in Section 2.6.

Regolith model In order to apply the restitution-modulation model as presented in

Eq. 2.112, knowledge of the density and diameter of both the target small body, as well as the

impacting spacecraft, are required. We continue to use Itokawa as a sample body, which has a
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bulk density of approximately ρt = 1.9 g/cm3. Miyamoto et al. note about the asteroid that

“Grain sizes observed in close-up images range from centimeters to several tens of meters. The

finest particles are centimeter-sized pebbles, whose concentrations are found in the Muses-C smooth

terrain.” [73]. Given this observation, two regolith models are tested: one with relatively small

regolith grains of Dt = 1.0 cm and one with relatively large regolith grains of Dt = 2.5 cm. We

will investigate the motion of three spacecraft shapes on this regolith surface: the tetrahedron,

cube, and dodecahedron, as previously applied in Section 4.2. These probes have the same density

ρp = 500 g/cm3, but slightly different radii as listed in Table 4.7 with Dp = 2r. Substituting these

values into Eq. 2.112 for the critical θ angle, the values listed in Table 4.8 are obtained. To provide

a broader intuition of how the critical impact angle of these three spacecraft shapes would vary on

different regolith surfaces, consider the contour plots of Fig. 4.75.

Table 4.8: Critical impact angles θE for the tested spacecraft shapes and regolith sizes.

θE [deg] Tetrahedron Cube Dodecahedron

Dt = 1.0 cm 31.6 35.5 41.8
Dt = 2.5 cm 58.2 65.4 77.0

These plot the value of θE as a function of the regolith diameter and density, assuming fixed

spacecraft properties as given above. The figure also marks the two ‘nominal’ regolith surfaces

whose θE values were highlighted in Table 4.8. The trends observed in this figure are very similar

for the three shapes: θE varies only slightly with changing regolith bulk density ρt, but is much more

strongly dependent on the regolith grain size Dt. Larger particles have higher θE , such that the

range of θ values over which e = e0 is relatively small. This is better illustrated in Fig. 4.76, which

plots the coefficient of restitution, modulated by the effective impact angle, following Eq. 2.113.

This is done for the three tested spacecraft shapes and for both regolith surfaces.

This figure illustrates that, with the current model, the coefficient of restitution is, on average,

higher for larger regolith particles. This model makes some intuitive sense: when the regolith

particles are larger, they are more resistant to being moved around by an impacting spacecraft.

As a result, fewer grain-grain interactions occur, such that the amount of energy dissipated by
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Figure 4.75: Critical impact angle variation for the three tested shapes.

Figure 4.76: Restitution modulation in the two tested regolith surfaces.

the regolith is smaller. We now use our simulation framework to investigate regolith presence, as

mimicked by this simple e-modulation model, affects the dynamics of a deployed spacecraft.

Probe dynamics on regolith Prior to simulating spacecraft motion on a regolith-covered

surface, using the restitution modulation of Eq. 2.113, some relevant statistics about the motion on a

hard surface layer are provided. In these, e is set to be a constant. For this, several scenarios of 2,000

simulations are initialized just above Itokawa’s northern pole. In each simulation, the considered

probe is given a random attitude and a negligible angular velocity ω. This is representative of a

realistic release scenario: although probes are released by a mothership with some known attitude

and negligible angular velocity, the time to first impact is often on the order of tens of minutes.

This allows even a small angular velocity to result in a seemingly random attitude at impact. The

nominal linear velocity V is set to some fixed magnitude, though multiple scenarios are generated
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in which the direction of V varies. This is shown in Fig. 4.77, which illustrates the incidence angle

γ of the probe velocity relative to the local surface normal N̂. In other words, the incidence angle

is defined as:

γ = arccos

(
−V · N̂
‖V‖

)
(4.18)

Note that this incidence angle is different from the surface inclination angle, β, defined before

between the local surface acceleration and the local surface normal. While the incidence angle

depends on the linear probe velocity V, the impact angle θ instead depends on the net contact

point velocity υ, as defined in Section 2.6:

θ = arcsin

(
−υ · N̂
‖υ‖

)
(4.19)

Figure 4.77: Definition of the incidence angle γ.

The reason for generating scenarios with different γ angles is simple: given that the initial

angular velocity of the probes is small, the impact angle θ will be nearly equal to the complement

of γ. As proof for this claim, consider the results of Fig. 4.78, which plots the distribution of the

initial impact angle θ1 for different incidence angles γ, for the tetrahedron, cube, and dodecahedron.

Not only do we see the clear effect of γ on θ1 in these scenarios, but we also observe that the θ1

distributions are nearly identical for the three shapes. This makes intuitive sense, given that the

impact angle θ only depends on the probe shape through the inclusion of the collision vector r,

since υ = V +ω× r. However, given that the angular velocity ω is small, it holds that θ is almost

entirely determined by the linear velocity V. Given that the three spacecraft shapes are simulated

with the same initial conditions, it makes sense for them to also have the same θ1 distribution.
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Figure 4.78: Initial impact angles for different shapes and incidence angles.

More relevant to the discussion are the statistics of the impact angle at all successive impacts,

denoted θ2. These are included in Fig. 4.79. In this figure, the critical θe of the two regolith models

are marked with dashed lines, corresponding to the values of Table 4.8. Reviewing this figure, some

relevant trends are found. First of all, the θ2 statistics of the dodecahedron indicate that most

of its collisions occur with an impact angle of θ > 80 deg, in other words, that the dodecahedron

tends to collide nearly normal to the surface. The majority of impacts occur with θ > θe,1.0;

virtually all impacts occur with θ > θe,1.0. As a result, the following is expected when including the

e-modulation of the regolith model: given that most impacts occur at θ > θe, they will occur with

e = e0. The resulting simulations are thus expected to be highly similar to simulations performed

with a fixed e = e0.

For the cube and tetrahedron, the situation is more complex. The θ2 statistics of the cube

continue to display a significant number of impacts with θ2 > 80 deg, though not as dramatically

as the dodecahedron. Not only does it display more impacts with θ < 80 deg, a second peak

in the impact angle distribution is also observed at θ2 < 10 deg. This indicates that the cube
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Figure 4.79: Successive impact angles for different shapes and γ, for deployment with fixed e.

also experiences a notable number of nearly tangential impacts with the surface. As a result, the

application of the regolith e-modulation is expected to strongly bias simulations towards shorter

settling times, given that most impacts will occur with e = e0 as given by Eq. 2.113. This effect

is anticipated to be stronger for the tetrahedron than for the cube. Indeed, reviewing the θ2

distribution of the tetrahedron, it is found that many of its impacts occur with θ < θe. For low

incidence angles, a secondary peak does occur at θ ∼ 80 deg, though it is relatively small. We thus

expect the tetrahedron dynamics to be more significantly affected by the presence of regolith than

the cube.

We now proceed with simulations that include the regolith e-modulation model. We repeat

the various γ scenarios of the three shapes, while using e0 = 0.2 and e1 = 0.5, for both regolith

models. The critical θe angles are taken from Table 4.8. The resulting mean settling time values

µtf are shown in Fig. 4.80. This figure also includes the settling times of the three fixed-e scenarios

from which the incidence angle statistics of Figs. 4.78 and 4.79 were obtained. As expected, the

tetrahedron settles with shorter tf than the cube, which in turn settles with shorter tf than the
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dodecahedron. This matches the results previously shown in Section 4.2. The figure also allows

us to quantify the effect of the incidence angle γ. For both the cube and the dodecahedron, it is

found that tf increases with increasing γ, regardless of the applied coefficient of restitution, fixed

or modulated. The effect appears to be stronger for the dodecahedron than it is for the cube. The

situation is different for the tetrahedron, which appears to be only very slightly affected by γ; the

variations in tf are barely noticeable at this scale. Curiously, it is found that the settling time

actually increases with increasing γ with fixed e = 0.60.

Figure 4.80: Settling time statistics for relevant deployments to hard and regolith surfaces.

We now turn our eye from the fixed-e simulations to those with modulated e. In the case of

the dodecahedron, it is found that the tf statistics of both regolith surfaces very closely matches

that of the scenario with fixed e = 0.20. This matches the prediction made based on the θ statistics:

given that most of the dodecahedron impacts occur at θ > θe, it must hold that they occur with

e = e0. This is precisely what is observed in Fig. 4.80: the two modulated-e curves almost exactly

match the e = e0 = 0.2 curve, for all incidence angles γ.

For the cube, it is found that the regolith curves lie between the e = 0.2 and e = 0.4 curves

at low γ, but that they approach the e = 0.4 curve at high γ. This also agrees with our predictions:

given that the cube experiences both high and low θ, it is expected to experience an effect from

the regolith presence. Given that high θ1 tends to occur when γ is low, and that the first impact

often dissipates the most energy of any of the impacts encountered along a trajectory, it also makes

sense that more tangential γ results in longer settling times. Finally, it is found that tetrahedron is

most strongly affected by the presence of regolith. Its modulated-e curves coincide with the e = 0.4
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curve at low γ and grow towards the e = 0.6 curve at high γ. This indicates that, regardless of the

initial incidence angle γ, the tetrahedron experiences a relatively large number of collisions in which

e > e0. This agrees with the θ trends of Fig. 4.79 which indicated that many of the tetrahedron

impacts occur with θ < θe and are therefore quite shallow. On a final note, it is found for all three

shapes that the results from the two different regolith models are very similar, with both the 1.0 cm

and 2.5 cm curves nearly overlapping.

Effect of friction We note that the above simulations were performed with intermediate

friction coefficient f = 0.50. In Section 4.2, it was shown that all three (solid variants of the) shapes

are unsaturated with respect to friction at this f value. In other words, at f = 0.50, many of the

impacts experienced by the three shapes have some residual sliding velocity at their conclusion. To

investigate whether their behavior in the presence of regolith changes with higher f , the simulations

with f = 1.0 are repeated. At this friction coefficient, both the cube and dodecahedron collisions

are saturated; all collisions conclude in stick with s = 0. Only the tetrahedron is able to have

residual sliding velocity at this value of f . We plot the corresponding θ2 statistics in Fig. 4.81.

Comparing the θ statistics of the f = 1.0 scenarios with those shown previously in Fig. 4.79

for the f = 0.5 scenarios, the following is observed. The θ statistics of the dodecahedron are nearly

identical in the two scenarios, suggesting that it will continue to experience mostly normal impacts

even with higher f . For the cube, the situation is different: while it experienced both tangential

and normal impacts under f = 0.5, it is found from Fig. 4.81 that it mostly experiences normal

impacts with f = 1.0. In other words, its θ statistics have become very similar to that of the

dodecahedron. We therefore expect the cube with f = 1.0 to display deployment statistics that

closely approach those of fixed e = e0 simulations. Finally, it is found that the θ distribution of the

tetrahedron with f = 1.0 has become very similar to that of the cube with f = 0.5. We therefore

expect its tf statistics to match the cube with f = 0.5.
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Reviewing the settling time statistics with f = 1.0 in Fig. 4.82, it is found that its results

match our predictions based on the θ distribution. All three shapes are now heavily affected by the

presence of the regolith, since most impacts occur nearly normal. As a result, the tf curves match

those of the e = e0 = 0.2 scenarios.

Figure 4.81: Successive impact angles for different shapes and γ, deployment with fixed e.

Figure 4.82: Settling time statistics for relevant deployments to hard and regolith surfaces.

Summary We account for the presence of regolith on the small-body surface by following

the model by Nishida et al. [80]. They observed that normal impacts of spherical particles into a

granular matter occur at lower coefficients of restitution than tangential impacts. They derived an
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expression for the impact angle at which the transition occurs, as previously given in Eq. 2.112.

Using this, a simple modulation of the coefficient of restitution is implemented, that applies some

low e0 for normal impacts and transitions to some higher e1 at more tangential impacts. We applied

this model to test two different regolith models on asteroid Itokawa: one with 1.0 cm regolith grains

and one with 2.5 cm grains. We performed simulations of a tetrahedron, cube, and dodecahedron

deployed to these regolith-covered surface with modulated e, and compared them with simulations

performed to a hard surface layer with fixed e.

At high (saturation) friction coefficients, it is found the deployment dynamics of all three

shapes to match those of simulations performed with a fixed lower boundary e0. This occurs be-

cause the majority of the probe collisions occur at nearly-normal impact angles for high friction

coefficients. All three shapes are thus affected equally by the presence of regolith; they all experi-

ence the same (low) restitution coefficient. At lower friction coefficients, in which the contact point

sliding velocity is not reduced to zero, the behavior is different. Although spherical shapes (the do-

decahedron) continue to exhibit mostly normal impacts, less spherical shapes (the tetrahedron and

cube) experience more tangential impacts. As a result, the restitution coefficients experienced by

the three shapes are different. Spherical shapes continue to experience particularly low restitution,

while less spherical shapes experience a greater range of high-to-low restitution values.

Although these results are strongly model-dependent, one general conclusion persists from

this first-attempt at accounting for the presence of regolith on the small-body surface. If effectively

normal impacts are more strongly damping than effectively tangential impacts, it holds that shapes

that are more spherical will experience lower effective restitution coefficients than shapes that are

less spherical. This would limit the ‘disadvantage’ that spherical shapes have compared to more

distorted shapes, with the settling time of the former shrinking and more closely approaching that

of the latter.



Chapter 5

Case study: Hayabusa2 rovers

The Japanese Hayabusa2 asteroid sample return mission was launched in December of 2014.

The spacecraft is currently in good health and is expected to arrive at its target, asteroid 162173

Ryugu, some time between June and July of 2018 [124]. Following arrival, the spacecraft will

perform approximately one and a half year of proximity science operations at the asteroid. During

this time, Hayabusa2 will deploy three rovers: the Japanese MINERVA-II-1A, MINERVA-II-1B,

and MINERVA-II-2; as well as the European MASCOT lander. All rovers are equipped with

internal momentum exchange mechanisms, which allow them to hop across Ryugu’s surface and

perform scientific investigations at several sites [43, 54]. The spacecraft will also descend to Ryugu’s

surface three times to obtain samples that will be returned to Earth for further study, in November

or December of 2020. One of the surface samples will be obtained from a crater created by the

spacecraft’s explosive Small Carry-on Impactor (SCI), allowing for the acquisition of freshly exposed

sub-surface material [95].

During descent to the surface, the Hayabusa2 spacecraft performs autonomous surface-

relative navigation using its lidar, laser range finder, and target marker tracking. The target

markers are small retroreflective passive devices that reflect the light from a flash lamp (FLASH)

onboard the mothership. Given that the first rover deployment takes place before the first sampling

operation, there is a risk of the rover presence interfering with FLASH. The deployment should

therefore be designed in a way that provides confidence the rover will avoid the exclusion zone

around the Hayabusa2 sampling site(s). This in turn requires high-fidelity simulation of the rover
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motion. An accurate prediction of the motion may also help plan the camera scanning program

used to track the rover descent and aid the scheduling of rover-spacecraft communications. The dy-

namics of rovers operating in the small-body environment are complex, due to the bodies’ irregular

gravity, shape, and surface interactions. Rosetta’s Philae lander demonstrated that uncontrolled

probes are prone to bounce several times in such an environment, during which they may cover a

significant distance across the small-body surface [11]. Simulations of rover deployment to a small

body must be performed at sufficient fidelity in order to account for these various complexities.

Unfortunately, relatively little information is currently known about the shape, mass, and rota-

tion of asteroid Ryugu, which makes it difficult to produce accurate deployment predictions and

relevant deployment analysis prior to the arrival of Hayabusa2. Nevertheless, it is important to

perform a pre-arrival deployment analysis, in order to reveal challenges and opportunities in the

rover deployment. In this chapter,our simulation framework is applied to perform this pre-arrival

analysis. This will serve as a baseline for rigorous comparison with the ‘real’ deployment analysis

to be performed following arrival at Ryugu. The results have also adjusted the nominal deployment

operations for the Hayabusa2 mission.

Our analysis consists of two parts: in the first part, deployment to Ryugu’s reference sphere

is simulated to obtain order-of-magnitude estimates of the deployment statistics, and to examine

the effects of relevant environmental parameters. In the second part, deployment simulations are

performed using Ryugu’s training model that was developed in order to rehearse the Hayabusa2

mission operations. The training model is constructed from a low-resolution lightcurve shape

model, with artificially added rocks, boulders, and other topography that is realistically expected

on Ryugu’s actual surface [68, 71]. The chapter is structured as follows. Section 5.1 presents

the characteristics of the asteroid, lander, and release sequence that are relevant to the rover

deployment. The simulated deployment to Ryugu’s reference sphere is then reviewed in Section 5.2,

which concludes with a discussion on the suggested inclusion of a horizontal pre-release maneuver.

The lessons learned from these relatively simple simulations are then applied to the training model

in Section 5.3, which examines how lander release at two epochs and above different terrain types
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yields varying deployment statistics. Section 5.4 then investigates the effects of variations in the

asteroid mass on the rover deployment. Finally, Section 5.5 concludes the pre-arrival analysis by

summarizing the challenges and opportunities of selecting the release scenario to be carried out.

This summary also underscores how the completed analysis has adjusted the nominal deployment

operations of Hayabusa2.

5.1 The Hayabusa2 mission

5.1.1 Asteroid Ryugu

Asteroid 162173 Ryugu orbits the Sun at a semi-major axis of a ≈ 1.2 AU, with eccentricity

e ≈ 0.19 and inclination i ≈ 5.88◦ [40]. Due to the low amplitude variations in its visual lightcurves,

an Earth-based determination of Ryugu’s shape and spin properties is challenging. Müller et

al. combined various data types and sets with thermophysical models to produce best estimates

for these asteroid properties. They estimate Ryugu’s effective diameter at R = 850 − 880 m,

with a rotation period of P = 7.63107 hr and an ecliptic rotation axis orientation of (λ, β)ecl =

(340◦,−40◦). The corresponding best-fit shape model is shown in Fig. 5.1 [76].

Figure 5.1: The formally best-fit shape model of Ryugu, taken from Müller et al. [76].

This shape model is of low resolution and lacks detailed surface features such as boulders,

craters, and cliffs that are likely to exist on the ‘real’ Ryugu. As such, the best-fit shape model

has limited applicability for simulation and mission rehearsal purposes. The Japan Aerospace
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Exploration Agency (JAXA) has therefore developed a training model, by adding realistic surface

detail to the best-fit shape model, based on observations of asteroid Itokawa. The resulting model,

shown in Fig. 5.2, is being used at JAXA to carry out a broad rehearsal for the Hayabusa2 proximity

operations at Ryugu. Please note that the training model axis system differs from that shown in

Fig. 5.1. The training model has an approximate volume of V = 0.316 km3, which corresponds

to a reference sphere radius of R = 423 m. All other relevant asteroid properties have been fixed

at realistic values to enable full mission rehearsal. The training model is in uniform rotation

around its Z-axis with a period of P = 7.631 hr; the rotation pole is oriented at (λ, β)J2000EQ =

(13.67807◦,−34.77563◦). Given the uncertainties in Ryugu’s true size and density, the training

model gravitational parameter µ is assumed to vary uniformly as µ = U(11, 92) m3/s2, with a

nominal value of µ = 32 m3/s2.

Figure 5.2: The Ryugu training model.

5.1.2 Mothership and rovers

The Hayabusa2 spacecraft measures approximately 2.0 × 1.6 × 1.3 m and has a wet mass

of 600 kg. Upon arrival at Ryugu in June or July of 2018, the spacecraft will move into home

position (HP), located 20 km above the asteroid and along the sub-Earth line. It will hover at this

position for most of the 1.5-year proximity operation phase; Hayabusa2 will nominally not enter

orbit about Ryugu. Throughout proximity operation, the spacecraft maintains a fixed attitude in

which its ZSC axis is aligned with the Earth-Ryugu line. The XSC axis is oriented such that the
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Sun-Ryugu vector lies within the XSC − ZSC plane. Both this axis alignment and the spacecraft

frame definition are illustrated in Fig. 5.3.

Figure 5.3: (left) Rear and (right) side view illustrations of the Hayabusa2 spacecraft at home
position.

The mothership carries three rovers developed by a consortium of Japanese universities: the

MINERVA-II-1A and -1B rovers are encased in a single protective fairing and deployed together

along the +YSC axis. The MINERVA-II-2 rover is separately released along the −YSC axis. The

initial positions of these rovers are marked with the numbers ‘1’ and ‘2’ in Fig. 5.3. The spacecraft

also deploys the European lander MASCOT (marked with the letters ‘MT’), though this chapter

is only concerned with the deployment of the MINERVA-II rovers. The deployment of MASCOT

is under investigation by the European centers CNES and DLR [64]. The rovers are released

at different initial velocities V0 and angles γ. Note the large uncertainty on the release velocity

of MINERVA-II-2, which varies between 5 and 20 cm/s. In comparison, the release velocity of

MINERVA-II-1A/B is fixed at 20 cm/s. Table 5.1 specifies these values, as well as the respective

rover masses m, dimensions, shapes, and inertias Ix,y,z. Fig. 5.4 illustrates the polygonal shape

models used to represent these deployable payloads at the same scale. The rover inertias were

computed from these shape models by assuming a uniform density [29].
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Figure 5.4: Applied shape models of the MINERVA-II rovers.

Table 5.1: Physical properties of the MINERVA-II rovers and their release.

Rover Size [mm] m [kg] Shape V0 [cm/s] γ [deg] Ix = Iy [kg·m2] Iz [kg·m2]

MINERVA-II-1A 225× 225× 103 1.2 Hexadecagonal 20 5 0.0047614 0.0074011
MINERVA-II-1B 225× 225× 103 1.1 Hexadecagonal 20 5 0.0043646 0.0067843
MINERVA-II-2 175× 175× 200 0.88 Octagonal U(5− 20) 5 0.0080968 0.0055270

5.1.3 Rover release

As mentioned above, the Hayabusa2 spacecraft maintains a fixed position at HP, 20 km

above the sub-Earth point on Ryugu, with the asteroid rotating underneath. When viewed in an

asteroid-fixed frame over the course of the 7.631 hr rotation period, the spacecraft thus maintains

some latitude φ and sweeps out all longitudes λ. Since Earth and Ryugu have notably different

orbits, the HP latitude φ slowly changes over the course of the proximity operation phase. By

combining the (true) orbital ephemerides of the Sun, Earth, and Ryugu with the assumed rotation

pole orientation, the variation of the sub-solar and sub-Earth latitudes on Ryugu can be computed,

as plotted in Fig. 5.5.

The three MINERVA-II rovers are deployed during two release events that are carried out at

different epochs during the 1.5-year proximity operations. MINERVA-II-1A and MINERVA-II-1B

are released together; MINERVA-II-2 is deployed in a separate event. The order in which these

releases will be performed has not yet been decided. Furthermore, the actual rover deployment
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Figure 5.5: Variation of the sub-solar and sub-Earth latitudes on the Ryugu training model.

schedule is subject to the asteroid environment. The release epochs used in this analysis are

assumptions that enable simulation, with the first release epoch defined as September 20, 2018

and the second epoch defined as July 1, 2019. Both of the epochs are marked in Fig. 5.5 together

with the corresponding sub-solar and sub-Earth latitudes. These latitude values can be used to

plot the quasi-orbit that Hayabusa2 sweeps out over the course of one Ryugu rotation period.

This is shown in Fig. 5.6 for both release epochs. As this figure shows, the spacecraft has access

to Ryugu’s northern hemisphere during the first release epoch, and to the southern hemisphere

during the second epoch. Although the particular value of these latitudes is dependent on Ryugu’s

real pole orientation, this dichotomy in hemisphere accessibility must also occur during the actual

proximity operations.

At the start of the release sequence, Hayabusa2 descends from HP along the Earth-Ryugu

line at a constant descent velocity of 10 cm/s. This continues until the spacecraft lidar registers an

altitude of 60 m above Ryugu’s surface, upon which a deceleration maneuver of ∆V = 7 cm/s is

triggered to reduce the spacecraft descent velocity to 3 cm/s along the Earth-Ryugu line. As the

release sequence can be started at any longitude λ around Ryugu, there exists a line of possible

trigger altitudes that lies 60 m above the surface, as illustrated in Fig. 5.5, together with its ground

track projected along the Earth-Ryugu line. Once the deceleration maneuver has been triggered,

Hayabusa2 coasts for 140 s while waiting for its attitude control to converge. The MINERVA-II

rover(s) is/are then released with their respective release velocities as given in Table 5.1. The
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Figure 5.6: Hayabusa2 quasi-orbit about the Ryugu training model, at both release epochs.

rover release is triggered through the activation of a pyro wire cutter that opens the cover of the

release mechanism. The rover is then released using a spring, with an initial velocity equivalent to

the elastic energy of the spring. As MINERVA-II-1A/B and MINERVA-II-2 have different shapes,

masses, and release mechanisms, they have different initial velocity errors. Following release, the

mothership continues to coast for another 60 s before performing an ascent maneuver, in order

to prevent plume contamination of the rover(s). Table 5.2 repeats these values and includes the

corresponding 3σ errors.

Ryugu’s gravitational field is captured using the constant-density polyhedron model. A

volume-conserving quadratic edge collapse technique can be applied to reduce the high-resolution

1.5-million facet shape model into a low-resolution 1,000-facet model. Both models are shown in

Fig. 5.7. This resolution is chosen such that the resulting model has a maximum error of < 1% in the

norm of its gravitational acceleration, compared to the high-resolution model. Additionally, gravity

field linearization is applied to further reduce the cost of gravity field evaluations, as discussed in

Section 2.4.
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Figure 5.7: (left) High-resolution and (right) reduced-resolution training model used for gravity
evaluations.

Table 5.2: Release sequence parameters and 3σ errors.

Parameter Nominal value 3σ error

Horizontal H2 position 0 m 28.4 m
Vertical H2 position (determined by lidar) (determined by lidar)

Horizontal H2 velocity 0 cm/s 1.4 cm/s
Vertical H2 velocity -10 cm/s 1.7 cm/s

H2 Attitude error 0 deg 0.1 deg per axis
H2 Attitude rate error 0 deg/s 0.01 deg/s per axis

Lidar trigger altitude 60 m 3 m
Decelerating ∆V +7 cm/s 1.05 cm/s

M-II-1A/B release velocity 20 cm/s Unknown, assumed zero
M-II-2 release velocity 12.5 cm/s Uniform ±7.5 cm/s

M-II-1A/B release direction -5 deg from +YSC Unknown, assumed zero
M-II-2 release direction -5 deg from −YSC Unknown, assumed zero

5.2 Deployment to spherical Ryugu

Before investigating the MINERVA-II deployment dynamics on the training model, it is useful

to better understand the sensitivities of deployment to the surface interaction coefficients and the

release geometry. More specifically, it will be investigated how the coefficients of restitution and

friction, as well as the release latitude and azimuth, affect the observed deployment statistics. In

order to perform this sensitivity analysis in a simple but relevant environment, rover deployment

to the Ryugu reference sphere is simulated. This is the sphere whose volume is equivalent to that

of the training model. As mentioned before, the training model has an approximate volume of
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V = 0.316 km3; this corresponds to a sphere of radius R = 423 m. The simulations are performed

with a nominal release latitude of φ = 45 deg and a nominal azimuth of α = 90 deg. The coefficients

of restitution and friction are fixed at respectively e = 0.50 and f = 0.50. The lander release velocity

is fixed at V0 = 20 cm/s. An overview of these nominal parameters is provided in Table 5.3.

Table 5.3: Nominal parameters used in Ryugu reference sphere simulations.

Parameter e [-] f [-] φ [deg] α [deg] V0 [cm/s] µ [m3/s2] R [m]

Value 0.50 0.50 45 90 20 32 423

The reference sphere is illustrated on the left side of Fig. 5.8, together with results from

1,000 sample simulations. These simulations are performed following most of the steps of the

release strategy discussed in Section 5.1.3, using the error model of Table 5.2 and the MINERVA-

II-2 shape model shown in Fig. 5.4. However, the constraints on the mothership position and

attitude are removed, such that one is are free to choose the mothership latitude φ and the rover

release azimuth α. The latter parameter expresses the direction in which a rover is released, with

an azimuthal direction of α = 0 deg indicating a release with the +YSC axis pointing due north,

α = 90 deg indicating a release with the axis pointing due east, etcetera.

Figure 5.8: Sample simulation batch to the Ryugu reference sphere, and corresponding settling
time statistics.

In Fig. 5.8, the release, first impact, and settling positions are marked in respectively red,

green, and blue. Also shown are the three trajectories that have respectively the shortest, median,
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and maximum settling time. This sample simulation batch is reviewed in order to provide details

on our process for analyzing deployment simulations, in which we are primarily interested in the

settling time tf and surface dispersion Ad statistics. The settling time statistics are easily found

from the final epoch of each simulation and are unimodal in form. This can be seen in the settling

time histogram on the right side of Fig. 5.8. Due to the structure of this distribution, it can be

more represented more compactly using a simple boxplot, as shown on the bottom of the figure.

This will be done for all other simulation batches to be analyzed in this chapter.

Although the surface dispersion can be visually inferred from plots such as that on the left

side of Fig. 5.8, a quantification of the dispersion area Ad is not trivial. For this, the reference

sphere is tessellated into facets of near-equal area; it is then counted how many simulations settled

on each facet. To obtain the 1σ, 2σ, and 3σ dispersions, we add together the areas of the smallest

set of facets that together contain respectively 68%, 95%, and 99% of the settling locations. The

dispersion of the sample simulation batch is illustrated in Fig. 5.9, in which the two-dimensional

plot is generated using the equal-area Mollweide projection. Note that the dispersion area values

generally provide a lower bound, as is clear from the plot on the right side of Fig. 5.9. In this, it

is seen that the 2σ and 3σ areas contain some empty facets, on which one likely would see some

rover settle if additional simulations were performed.

Figure 5.9: Surface dispersion of the sample simulation batch.
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5.2.1 Effect of surface interaction coefficients

Section 4.2 showed how the coefficients of restitution e and friction f affect the motion of

probes with different shapes. More specifically, it was found that the coefficient of restitution

governs the motion, with variations in e scaling both the settling time and the surface dispersion.

Although it was found that a probe shaped like MINERVA-II-2 had deployment statistics similar

to that of the cube when deployed to asteroid Itokawa, we want to investigate whether these trends

hold when simulating deployment to Ryugu instead, which is about twice the size of Itokawa.

Furthermore, by quantifying the effects of e and f on the rover motion, the accuracy to which the

values of these coefficients should be determined for asteroid Ryugu can be determined.

Coefficient of restitution e First, the effects of variations in the coefficient of restitution

e are investigated. For this, the nominal simulation batch shown before is repeated, for different

values of e, while maintaining all other environment parameters at their nominal values as given in

Table 5.3. The resulting settling time and surface dispersion statistics are shown in Fig. 5.10.

Figure 5.10: Deployment statistics for e variation on Ryugu reference sphere.

In agreement with the results from Section 4.2, the coefficient of restitution strongly affects

the rover settling time as seen on the left side of Fig. 5.10, with lower e values resulting in shorter

settling times. The changes in tf are relatively benign when e < 0.65, with the mean tf varying

between approximately 1 and 2 hours. When e > 0.65, the increase in tf becomes much stronger,

with the mean tf increasing to beyond 4 hours at e = 0.90. The standard deviation of tf also grows
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significantly when e > 0.65, such that many simulations have a settling time much longer than

4 hours. This again agrees with the trends revealed in Section 4.2, that indicated that the settling

time of an object scales with tf ∝ (1 − e)−1. The best-fit of this proportionality to the observed

mean tf is shown in red on the left side of Fig. 5.10. The trends in this curve roughly match

the observed behavior, where the settling time increases sharply beyond e > 0.65. Reviewing the

effects on the surface dispersion on the right side of Fig. 5.10, similar scaling effects are found where

higher e values result in larger surface dispersions. Although the slope of the dispersion curves does

increase beyond e > 0.65, the increase is not as dramatic as for the settling time. These results

predict that the rover landing ellipse and settling time remain appreciably small when e < 0.65. In

order to estimate what range of e values may be expected on asteroid Ryugu, relevant results from

previous small-body exploration missions are reviewed, as well as from simulation and experiment.

The Hayabusa spacecraft touched down on the surface of asteroid Itokawa in November

2015. The coefficient of restitution of Itokawa’s surface was estimated using Hayabusa altitude

measurements, which in turn were derived from laser rangefinder data. Yano et al. used this

to estimate a coefficient of restitution of e ≈ 0.84 by fitting a free-fall parabola to the altitude

measurements, although there is a notable measurement gap of approximately 3 minutes centered

at the collision epoch [145]. They were also unable to establish an accurate estimate of the horizontal

velocity of the spacecraft. This may help explain the relatively low quality of the parabolic fit after

the impact; see also Fig. 5.11. This figure was taken from Yano et al. and edited to indicate the

measurement gap and the low-quality parabolic fit on ascent after the first impact. The accuracy

of the relatively high value of e ≈ 0.84 is therefore questionable.

The Philae lander onboard the Rosetta spacecraft touched down on the surface of comet

67P/C-G in November 2014. Due to failures in its landing systems, the lander performed several

bounces on the comet surface. Using an energy balance analysis, Biele et al. determined the

cometary surface to have a coefficient of restitution of 0.20 < e < 0.50 [13]; notably lower than the

value estimated for Hayabusa. Finally, granular mechanics simulations of the MASCOT touchdown

using pkdgrav code estimate a coefficient of restitution of 0.1 < e < 0.6 [64], while experimental
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Figure 5.11: Altitude profile of the Hayabusa spacecraft during touchdown [145].

results for this impact in a gravity-offloading setup measured values of 0 < e < 0.6 [12]. All of

the mentioned estimates are visually combined in Fig. 5.12. Excluding the questionable e value of

Hayabusa, this data suggests that the coefficient of restitution on Ryugu may indeed be expected

to be e < 0.65. This provides some careful optimism about the MINERVA-II dispersion area.

Figure 5.12: Relevant estimated coefficient of restitution values in literature [64, 145, 13, 12].

Coefficient of friction f To examine the effects of the coefficient of friction on the rover

deployment, the same strategy applied above is followed, by repeating the simulations to the Ryugu

reference sphere for varying values of 0.30 < f < 1.00, while maintaining all other parameters at

their nominal values as given in Table 5.3. The resulting settling time and surface dispersion

statistics are shown in Fig. 5.13.

Reviewing this figure, it can be seen (on the left side) that the mean settling time increases
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Figure 5.13: Deployment statistics for f variation on Ryugu reference sphere.

with higher f values, though the effect is of much smaller magnitude than previously observed for

the coefficient of restitution. The variation in mean settling time between the lowest and highest

tested f values is less than one hour. The standard deviation in tf remains approximately constant

between all tested values. A saturation limit appears at f̄ ∼ 0.80, beyond which further increases in

f do not have a notable effect on the settling time. This behavior again agrees with that observed

in Section 4.2 when examining the deployment dynamics of probes with a complex shape. Again,

it is found that greater f results in longer settling times and larger surface dispersions.

Although the coefficient of restitution has been estimated in a few relevant environments, very

little information is available on expected values for the coefficient of friction. For the touchdown of

the Hayabusa spacecraft, it was estimated as f > 0.80 [145]. The precise value of f for the Philae

lander is unknown; Roll and Witte used a range of 0.2 < f < 1.0 in their attempts to reconstruct

the lander’s trajectory [94]. In their simulation work with MASCOT, Maurel et al. set the rover’s

coefficient of friction equal to that of the applied grain-grain friction coefficient of f = 1.0 [64].

Lunar regolith models suggest grain-grain friction coefficient values of 0.36 < f < 1.20 [141]. It

must be noted that these grain-grain friction coefficient values relate to distinctly different behavior

than the object-surface friction coefficient used in our contact models. Thankfully, since our results

show that f has a minor effect on the deployment statistics, an approximate estimate of its value

suffices.
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Combined effects of e and f The separate effects of the coefficients of restitution and

friction were revealed above. To investigate whether any strong coupling effects between e and f

exist, which may be obscured in a single-parameter variation, the reference sphere simulations are

repeated while mutually varying 0.30 < e < 0.80 and 0.30 < f < 0.60. The mean settling time and

3σ surface dispersion values are plotted in Fig. 5.14. These results match the previously observed

single-parameter trends (as well as those discussed in Section 4.2) and confirm that the coefficient

of restitution remains the primary determinant of the rover deployment statistics, though friction

does play a non-negligible role.

Figure 5.14: (left) Mean tf and (right) 3σ Ad for (e, f) variation on the Ryugu reference sphere.

5.2.2 Effect of release geometry

In the nominal scenario, rovers are released at a latitude of φ = 45 deg above the reference

sphere with an initial velocity directed due east, i.e., with an azimuth of α = 90 deg. Given

that Hayabusa2 maintains a fixed attitude relative to Sun and Earth, the values of φ and α are

determined by the epoch of release. In this, it holds that the α values of MINERVA-II-1A/B and

MINERVA-II-2 differ by 180 deg, since they are released in opposite directions along the YSC axis.

To help inform the decision of which rover(s) should be released at which epoch, the effects of

variations in φ and α on the resulting rover deployment statistics are investigated, in analogy with

the coefficient variation discussed above. The corresponding settling time statistics are shown in

Fig. 5.15.
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Figure 5.15: Settling time statistics for (left) φ and (right) α variation on the Ryugu reference
sphere.

Reviewing this figure, it can be seen that the release latitude φ has an almost negligible effect

on the deployment statistics, with only a very slight decrease in mean tf at very high latitudes.

The release azimuth α, on the other hand, strongly affects the settling time. The minimum tf

occurs for rover release due east at α = 90 deg; the maximum occurs when releasing due west at

α = 270 deg. The difference in mean tf between the extrema is quite dramatic, with the maximum

tf more than twice the minimum tf . Fig. 5.16 also plots the surface dispersions of the α = 90 deg

and α = 270 deg cases. It can be seen that the release due west results in an extremely large

dispersion that nearly covers the entire surface of the reference sphere.

Figure 5.16: Surface dispersion of rover releases due east and due west.

For context, Table 5.4 contains the azimuth values for both rovers at the two release epochs;

these values were found using the training model pole orientation, similar to how Fig. 5.6 was

created. Out of the four release azimuths listed in Table 5.4, only the Epoch 2 release of the

MINERVA-II-2 rover at α = 45 deg results in reasonably small settling times. If this deployment
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were to be performed, MINERVA-II-1A/B would be released with α = 331 deg. Such a deployment

would result in large surface dispersion that makes it impossible to accurately aim for some surface

region. Given this challenge, the source of the strong effects of α is further examined, which can

be explained from the MINERVA-II velocity at first impact.

Due to the applied release sequence, the rovers always impact Ryugu’s reference sphere with

the same normal impact velocity vN . However, the tangential impact velocity vT is strongly

dependent on the release azimuth α. More specifically, due to Ryugu’s rotation, a release due

east results in a lower surface-relative tangential rover velocity than a release due west. This is

illustrated in Fig. 5.17, which plots the rover tangential impact velocity for varying release latitude

φ and azimuth α.

Table 5.4: Release azimuth values of the MINERVA-II rovers at both release epochs.

Rover Epoch 1 Epoch 2

MINERVA-II-1A/B α = 151 deg α = 45 deg
MINERVA-II-2 α = 331 deg α = 225 deg

Figure 5.17: Variation of the tangential rover impact velocity vT for V0 = 20 cm/s.
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This figure further demonstrates how the rover tangential impact velocity is minimized when

releasing due east and is maximized when releasing due west. When the tangential velocity is

higher, rovers can move across the asteroid surface for a longer amount of time, and can therefore

cover greater distances. Similar results were also found for the MASCOT lander [112]. Even when

ignoring the release azimuth, the rover’s fixed release velocity of V0 = 20 cm/s is notably high,

given that Ryugu’s nominal surface circular velocity is
√
µ/R = 27.5 cm/s. Since the MINERVA-II

rovers are released via a spring mechanism whose impulse cannot be changed in-flight, this high

release velocity cannot be adjusted. An alternative method for reducing the rover tangential impact

velocity is therefore investigated; we propose the inclusion of an additional pre-release maneuver

with the Hayabusa2 mothership spacecraft.

5.2.3 Pre-release maneuver

As mentioned in Section 5.1, the Hayabusa2 spacecraft maintains a fixed vertical velocity of

-10 cm/s during descent, until its lidar altimeter registers an altitude of 60 m above Ryugu’s surface.

The spacecraft then performs a vertical ∆V of +7 cm/s to reduce its descent velocity to -3 cm/s.

In order to limit the MINERVA-II tangential velocity at first impact, we propose combining this

vertical maneuver with a horizontal pre-release maneuver (PRM) designed to cancel the tangential

rover velocity at first impact. A single-shooting algorithm is used to compute the magnitude and

direction of the PRM; these are plotted in Fig. 5.18

As expected, the maneuver is largest when releasing a rover due west, in which case the ∆V

is applied towards the east, such that the net surface-relative lander velocity matches the surface

rotational velocity. To verify that the use of the PRM indeed results in smaller surface dispersions,

the simulations are repeated with release due east and due west, both with and without the PRM.

The resulting surface dispersions are plotted in Fig. 5.19.
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Figure 5.18: Magnitude and direction of the horizontal pre-release maneuver for V0 = 20 cm/s.

Figure 5.19: Surface dispersion of east/west release scenarios, with and without PRM.

Figure 5.20: Settling time of east/west release scenarios, with and without PRM.
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This figure shows how the inclusion of a horizontal PRM renders the dispersion of a release

due west acceptable, when the nominal release had an unacceptably large dispersion. Furthermore,

even though the nominal release due east already performed well, Fig. 5.19 shows a slight but

notable reduction in this scenario’s surface dispersion as well. These results are also reflected in the

corresponding settling times plotted in Fig. 5.20. The east/west releases have become equivalent in

terms of both their settling time and surface dispersion statistics, while they differed greatly when

the PRM was not included.

The above PRM analysis was performed for a fixed rover release velocity of V0 = 20 cm/s, as

holds for MINERVA-II-1A/B. However, the velocity error of the MINERVA-II-2 release mechanism

is much larger, with release velocity varying uniformly as V0 = U(5, 20) cm/s. In this case, the

PRM should be designed to target the mean release velocity of V̄0 = 12.5 cm/s. The residual rover

release velocity will then vary up to ±7.5 cm/s from the V̄0 for which the PRM was designed. As

problematic surface dispersions were observed when the net rover velocity was high, it must be

verified whether this residual velocity still maintains acceptable levels of dispersion. Deployment

is therefore simulated with a ‘true’ release velocity of V0 = [5.0, 12.5, 20.0] cm/s, with a PRM

designed for V̄0 = 12.5 cm/s. This is done for releases due east, south, and west above the equator

of Ryugu’s reference sphere, as well as for a deployment above the northern pole. The resulting

surface dispersions are shown in Fig. 5.21.

Reviewing these results, it can be seen that the surface dispersion remains appreciably small

in all of the tested cases. As the PRM is designed around V̄0 = 12.5 cm/s, the simulations with

release velocity V0 = 12.5 cm/s settle quite evenly around the impact point at λ = φ = 0 deg. The

simulations with V0 = 5.0 cm/s and V0 = 20.0 cm/s have a net release velocity of ±7.5 cm/s, which

is reflected by a directional bias in the corresponding surface dispersions of Fig. 5.19. Nevertheless,

the dispersion area remains small enough to feasibly avoid some sample site exclusion zone.
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Figure 5.21: Surface dispersion for various release α and V0 when including the nominal PRM.

5.2.4 Discussion: Deployment to the reference sphere

The simulation of rover deployment to the Ryugu reference sphere, whose total volume

matches that of the training model, allows for a systematic investigation of the effects of relevant

environmental and release parameters on the resulting deployment statistics. More specifically, it

was revealed how the coefficient of restitution e governs both the rover settling time and surface

dispersion. Although it is therefore important to use a realistic estimate of e during simulations,

our results show that the surface dispersion remains limited if e < 0.65. The estimates of the

coefficient of restitution in small-body environments available in literature predict that e will in-

deed remain below this limit. Given that a more accurate estimate is not possible at this time,

simulations to the Ryugu training model will be performed with a uniformly varying coefficient of

restitution e = U(0.1, 0.6), such that each rover-surface collision will be performed using a different

and random e value. The resulting set of simulated trajectories will then include realistic ranges

for the estimated settling time and surface dispersion. Given that the coefficient of friction f has

a smaller effect on the deployment statistics, its value is fixed at f = 0.60, as an average value

between those encountered in literature.
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Most importantly, it was shown how the MINERVA-II release velocity is relatively high,

resulting in high tangential impact velocities. In turn, this renders the rover surface dispersion area

unacceptable large unless they are released in an easterly direction. Given that the fixed Hayabusa2

attitude limits the choice of release azimuth, an alternative strategy must be considered in order

to reduce the net MINERVA-II release velocity. The inclusion of a horizontal pre-release maneuver

was shown to be successful, effectively rendering all release azimuths equivalent, even when the

full range of release velocity uncertainty is applied. The magnitude and direction of the maneuver

will need to be adjusted to account for Ryugu’s topography. The need for PRM inclusion is a

critically important result that addresses dispersion concerns visible in even the simple spherical

Ryugu model, and has since been included in the nominal plan for the upcoming rover deployment.

5.3 Deployment to the Ryugu training model

The simplified analysis of rover deployment to Ryugu’s reference sphere revealed how the sur-

face interaction coefficients and release geometry affect the deployment dynamics. Although these

simulation results are insightful, they were obtained using a smooth sphere that lacks topograph-

ical details such as the hills, craters, and large boulders that are present on the Ryugu training

model and are expected to exist on the ‘real’ Ryugu. This topography may strongly influence the

deployment dynamics of a lander and create basins of attraction or rejection (as demonstrated in

Chapter 4); the full topography must thus be taken into account. The pre-deployment analysis is

therefore continued using the Ryugu training model.

For this, the previously mentioned release sequence with error model of Table 5.2 is again

used, in order to initialize batches of 1,000 simulations. All simulations include a horizontal PRM

that is designed using the nominal descent trajectory. Fig. 5.22 illustrates the effect of this maneuver

inclusion when deploying to Ryugu’s training model. In it, the Hayabusa2 spacecraft is shown (not

to scale) at the lidar trigger point. The mothership coast arc is plotted as a black line, with the

release event marked with a black dot and the ascent maneuver marked with a blue dot. The

MINERVA-II-2 descent trajectory is drawn until first impact with a red line. The Ryugu surface
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normal is also shown with a black arrow and the PRM with an orange arrow. The figure plots both

the ‘original’ sequence (towards the left, with dashed lines) and the ‘corrected’ sequence (towards

the right, with a solid line). All trajectories are plotted in the asteroid-fixed frame. The differences

in rover tangential velocity at first impact are indeed significant; the figure intuitively demonstrates

the positive effect of PRM inclusion on the rover dispersion. Unlike deployment to the reference

sphere, deployment to Ryugu’s training model is expected to differ for varying release longitudes

λ. Although the release latitude φ is fixed for a given release date, one is free to choose the

release longitude by selecting the ‘time of day’ at which rovers are released. Given the different

topographies that occur across Ryugu’s surface, one may expect deployment trends for some λ to

be quite different from those for some other λ. Effectively, the freedom of choice of λ corresponds

to a freedom of choice in releasing rovers above a hill, plain, or crater on the surface.

Figure 5.22: Sample MINERVA-II release sequence without (dashed line) and with (solid line)
PRM.

We investigate a total of 12 release scenarios for both Epoch 1 and 2, between which the

nominal release longitude is varied by ∆λ = 30 deg. The nominal Hayabusa2 coast arc and rover

descent trajectory (until first impact) are shown, for all 12 selected release longitudes at Epoch
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1, in Fig. 5.23. One thousands simulations are performed for each release; it is repeated that the

restitution coefficient is randomly drawn from a uniform distribution as e = U(0.1, 0.6) for each

surface collision; the friction coefficient is fixed at f = 0.60. Finally, note that the rover is given

a random attitude at the start of each simulation. The results obtained at both epochs are now

reviewed.

Figure 5.23: Selected release longitudes λ for Epoch 1 simulations, with nominal descent trajectory.

5.3.1 Epoch 1 deployment

We show overviews of all 12 Epoch 1 release scenarios in Fig. 5.24, in which the release

positions are marked in red, the first-impact positions are marked in green, and the final settling

positions are marked in blue. The asteroid is rotated in each subfigure such that the nominal release

positions are always located at the center of the respective subfigures. Inspecting the 12 result sets,

notice that the surface dispersions are all sufficiently small to fit on the single hemisphere that

is visible. This is already a promising result with regards to the goal of avoiding some region on

the surface. Beyond this blanket result, marked differences between the surface dispersions of the

12 scenarios are observed. This difference is perhaps the most significant when comparing the

λ = 30 deg and λ = 150 deg scenarios. Detailed views of these are provided in Figs. 5.25 and

5.26 to better examine the difference. In these figures, the trajectories that have respectively the

shortest, median, and longest settling time are plotted with bright, intermediate, and dark lines.
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Figure 5.24: Release, first impact, and final settling positions of Epoch 1 deployment simulations
to the Ryugu training model.
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Fig. 5.25 shows how the λ = 30 deg first impacts occur over a relatively flat and smooth

region of Ryugu’s surface. As a result, the direction of the post-impact rover velocity is chiefly

determined by the direction of its pre-impact velocity. Given that the MINERVA-II-2 release

velocity varies as V0 = U(5, 20) cm/s, and that the applied PRM targets the mean release velocity

of V̄0 = 12.5 cm/s, there exists notable variation (roughly ±7.5 cm/s) in the first-impact velocity of

the 1,000 simulations. Because of the flatness of the first-impact region, rovers are effectively free

to ‘bounce’ in whichever random direction results from their impact attitude, similar to the erratic

motion of a die thrown on a table. The surface dispersion of the λ = 30 deg scenario is therefore

relatively high.

The deployment dynamics of the λ = 150 deg release, as shown in Fig. 5.26, are quite

different. This release scenario is such that rovers impact the wall of a large crater. This wall

‘slopes up’ towards the right of the figure; the orientation of this crater wall affects the post-impact

rover velocity and directs them towards the center of the crater. Although the rovers continue to

bounce around, the circular crater wall governs the geometry of individual bounces and contains

the rover motion within the crater. As a result, the surface dispersion of this scenario remains

relatively small, save for a handful of trajectories that manage to escape the crater, such as the

longest-settling-time trajectory shown on the right of the figure.

These differences in surface dispersion are quantified in Fig. 5.27, which shows that the

dispersion of the plains-deployment is approximately twice as high as that of the crater-deployment.

This plot shows the marked differences in surface dispersion between the 12 release scenarios.

Interestingly, these differences are much less pronounced in the settling time statistics of Fig. 5.28.

Note that the settling time tf includes the free-fall time after release and before the first impact.

The mean settling time of all 12 scenarios lies between 1 and 1.5 hr, with the plains- and crater-

deployments having almost identical time statistics. It is noted that the 3σ outliers mainly consist

of higher-than-average tf values. Due to the symmetric plotting of Fig. 5.28, it is therefore possible

for the lower half of the 3σ region to (incorrectly) reach below tf = 0. To properly examine the

3σtf statistics, the full distribution of values should be considered instead. Nevertheless, Fig. 5.28
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provides a good visual comparison of the different scenarios.

These results indicate that the topography of the first-impact region has only a weak effect

on the rate at which the rover energy is dissipated, but has a very strong effect on the surface area

to which the corresponding bounces are contained. In summary, these deployment results suggest

that the minimum rover dispersion (and, correspondingly, the maximum confidence in avoiding

some surface exclusion zone) can be achieved by deploying rovers to a sufficiently large crater.

5.3.2 Epoch 2 deployment

We repeat the above strategy and perform 12 sets of deployment simulations with ∆λ =

30 deg at release Epoch 2. The release, first-impact, and final settling positions of the respective

cases are plotted in Fig. 5.29, where Ryugu is now viewed from the southern hemisphere. The

dispersion trends seen in this picture match those of the Epoch 1 deployment: notable differences

exist between the individual release scenarios, but all scenarios have a sufficiently small dispersion

such that it should be possible to avoid some sampling exclusion zone. Two extreme cases are again

highlighted: deployment to plains at λ = 240 deg and deployment to a crater at λ = 90 deg, in

respectively Figs. 5.30 and 5.31.

These two highlighted scenarios display behavior that matches Epoch 1. When releasing

rovers above a region that is mostly flat, rovers are free to bounce around and have a relatively

large dispersion. When deploying above a large crater, rovers are contained by the crater and have a

relatively small dispersion. In this case, the crater deployment does have one disadvantage: the large

crater contains two smaller, secondary craters, as marked with white circles in Fig. 5.31. These

secondary craters have a further focusing effect that ‘attracts’ a notable number of simulations.

Given the small size of these craters, their walls may obstruct the line-of-sight between rover and

mothership and severely limit the available communication window. This reduces the advantage of

this release scenario.
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Figure 5.25: Detailed view of the λ = 30 deg Epoch 1 deployment to plains.

Figure 5.26: Detailed view of the λ = 150 deg Epoch 1 deployment to a crater.

Figure 5.27: Surface dispersion statistics of Epoch 1 deployment to the Ryugu training model.
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Figure 5.28: Settling time statistics of Epoch 1 deployment to the Ryugu training model.

5.3.3 Discussion: Deployment to the training model

The simulation results for deployment to the Ryugu training model predict that the rover

dispersion area remains appreciably small when the horizontal pre-release maneuver is included.

Notable effects of the release longitude λ do exist, with the surface dispersion varying by up to

100% between the different scenarios. Overall, the 3σ dispersion area varies between roughly 3%

and 10% of the Ryugu surface. This is sufficiently small such that the exclusion zone around some

targeted Hayabusa2 sampling site can be avoided. The dispersion area can be further reduced by

choosing to deploy MINERVA-II-2 to a crater, assuming craters indeed exist on the real Ryugu.

The small dispersion of crater deployment scenarios has several advantages. The prediction

that the rover trajectory will be contained by the targeted crater should improve the odds of the

mothership successfully tracking the rover throughout its descent. If the rover position can be

tracked both before and after an impact, one may estimate the effective surface interaction coeffi-

cients that act during the impact. This provides highly valuable scientific information about the

asteroid surface. Furthermore, if the surface interaction coefficients can be estimated following the

Epoch 1 deployment, the Epoch 2 (and MASCOT) deployment prediction can be performed with

greater confidence. This may enable more precise aiming of rovers during successive deployments,

such that they can better target regions of interest. In order to do this, it will be important to

estimate the true MINERVA-II-2 release velocity, given the large release mechanism uncertain-
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Figure 5.29: Release, first impact, and final settling positions of Epoch 2 deployment simulations
to the Ryugu training model.
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Figure 5.30: Detailed view of the λ = 240 deg Epoch 2 deployment to plains.

Figure 5.31: Detailed view of the λ = 90 deg Epoch 2 deployment to a crater.

Figure 5.32: Settling time statistics of Epoch 2 deployment to the Ryugu training model.
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Figure 5.33: Surface dispersion statistics of Epoch 2 deployment to the Ryugu training model.

ties. This velocity can be estimated from observed changes in the Hayabusa2 velocity at release.

Although the mission geometry renders these changes poorly observable in linear velocity measure-

ments (through, for example, Doppler effects), a strong signal should be visible in the Hayabusa2

attitude motion. By combining the release velocity estimate with descent tracking and on-board

measurements from the rovers, an accurate trajectory reconstruction should be possible, which has

the potential to yield valuable scientific information about Ryugu’s surface.

5.4 Effect of the asteroid mass

Although the size of asteroid Ryugu has been established to a reasonable precision, no in-

formation on its density is available. As mentioned in Section 5.1, the training model is assumed

to have a nominal gravitational parameter of µ = 32 m3/s2, corresponding to a mean density of

ρ = 1.5 g/cm3 when using the volume of the training shape model. Given the density uncer-

tainty, the mission rehearsal performed by JAXA takes into account a uniform error model for

µ = U(11, 92) m3/s2. These correspond to densities of ρ = U(0.4, 4.3) g/cm3.

We note that Ryugu is a C-type (carbonaceous) asteroid; such bodies typically have a density

of 1.3 to 1.4 g/cm3 [53]. For context, these values are compared with relevant density measurements

available in literature. The rubble-pile asteroid Itokawa was measured to have a density of ρ =
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1.90±0.13 g/cm3 during the Hayabusa mission [34]. Asteroid Bennu, the target of the OSIRIS-REx

mission, is estimated to have a density of ρ = 1.26± 0.07 g/cm3 [20]. This estimate was obtained

using a large set of orbit and radar data, from which models of the YORP effect were able to

establish a value for ρ. The NEAR-Shoemaker spacecraft measured the density of asteroid Eros

at ρ = 2.67 ± 0.03 g/cm3 [146]. The density values of Itokawa, Bennu, and Eros are perhaps the

most relevant, as they are of a similar size and (likely) composition as Ryugu. In addition, comet

67P/C-G was found to have a mean density of ρ ≈ 0.53 g/cm3 [88]. This density is notably lower

than the aforementioned asteroids, due to the comet’s composition of low-density ices. Finally,

note the densities of the Martian moons Phobos and Deimos, respectively ρ = 1.88 g/cm3 and

ρ = 1.47± 0.17 g/cm3, though these bodies are roughly an order of magnitude larger than Ryugu,

and exist in a very different dynamical environment. These density values, together with the given

range of the Ryugu density, are plotted in Fig. 5.34 for visual reference.

Figure 5.34: Comparison of Ryugu training model ρ with relevant small bodies [34, 20, 146, 88].

Comparing the density range of the Ryugu training model with the density values of the

relevant bodies included in Fig. 5.34, note that the ρmin value is typical of a cometary body. Given

the spectral observation that classifies Ryugu as a C-type asteroid, its density is therefore unlikely

to be this low. Similarly, the ρmax value is particularly high and more typical of M-type (metallic)

asteroids [53]. It has also been found in fast-spinning asteroids of various types, though in bodies

of much smaller size (< 100 m) than Ryugu [89]. Despite both extremes being unlikely for a

C-type asteroid of Ryugu’s size, it is still valuable to investigate how variations in the asteroid
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density would affect rover deployment. The simulation of rover deployment to the Itokawa training

model is thus repeated, using the extreme gravitational parameter values of µmin = 11 m3/s2 and

µmax = 92 m3/s2. In the interest of conciseness, the discussion is restricted to an analysis of

the best- and worst-case deployments that were discussed in the previous section, for both release

epochs. Figs. 5.35 and 5.36 compare the release, first-impact, and final settling positions of the

best- and worst-case deployments, for the three relevant values of µ. These are respectively the

crater and plains deployment scenarios.

Figure 5.35: Worst- and best-case Epoch 1 training model deployments, with varying µ.

In all cases, it is found that the rover surface dispersion increases notably for µmin and

decreases slightly for µmax. This trend is expected: when µ is smaller, Ryugu’s gravitational pull

is weaker, such that it takes rovers more time to return to the surface after an impact. With

a fixed tangential velocity, rovers thus cover more distance across the asteroid surface when µ is

lower. These differences in surface dispersion appear mostly in the scenarios that deploy to Ryugu’s
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Figure 5.36: Worst- and best-case Epoch 2 training model deployments, with varying µ.

plains. When deploying to craters, the differences are much smaller. These visually observed trends

are also quantified in Fig. 5.37, which agrees with our discussions so far: the differences between

the µ = 11 m3/s2 and µ = 32 m3/s2 scenarios are far more dramatic than those between the

µ = 32 m3/s2 and µ = 92 m3/s2 scenarios. The settling time variations of Fig. 5.38 also show

corresponding variations.

These results suggest that rover deployment becomes more challenging when the asteroid

density is lower. Since deployment to a low-density asteroid has larger associated rover dispersions,

it becomes more difficult to reliably guarantee the avoidance of some exclusion zone on the surface.

This is also expected to render the rover descent tracking more challenging. Although deployment

to craters still results in the lowest surface dispersion even at µmin, the craters’ effectiveness at

containing rover trajectories notably decreases. As a result, many simulations do exit the craters

and settle in the surrounding plains. In summary, this indicates that the selection of the rover
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Figure 5.37: Surface dispersion statistics of deployment with varying µ.

Figure 5.38: Settling time statistics of deployment with varying µ.

release point requires greater care if the asteroid density ρ is low. In these cases, the inclusion

of the horizontal pre-release maneuver is paramount in order to sufficiently restrict the surface

dispersion area. At nominal or high asteroid densities, rover trajectories are naturally more spatially

contained, resulting in more robustness to position and velocity errors at release. In conclusion,

the combination of Ryugu’s shape and mean density set the playing field that determines precisely

how challenging the selection of the MINERVA-II release location is.

5.5 Summary: The deployment of MINERVA-II

The Japanese Hayabusa2 asteroid sample return mission will arrive at its target, asteroid

Ryugu, at some time between June and July of 2018. Following several months of remote sensing

operations, the spacecraft will deploy three MINERVA-II rovers to Ryugu’s surface and obtain sev-
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eral surface samples during touch-and-go maneuvers. In these maneuvers, Hayabusa2 autonomously

descends to the asteroid surface using its lidar, as well as visual tracking of target markers. To

avoid interfering with the Hayabusa2 descent guidance system, the MINERVA-II rovers must be

deployed in a way that minimizes the rovers’ chances of entering some exclusion zone around the

targeted sampling sites. Given the complex dynamics of rovers in small-body environments, their

release must be carefully designed using high-fidelity simulation. Although the shape and spin

models of Ryugu will remain uncertain until arrival, a pre-arrival deployment analysis can be per-

formed using the Ryugu training model, which was developed for broad mission rehearsal at the

Japan Aerospace Exploration Agency (JAXA). The pre-arrival analysis, which was performed using

the methodology outlined in this thesis, has helped plan for the actual deployment analysis to be

carried out post-arrival by revealing challenges and opportunities in the rover deployment.

Using first the Ryugu reference sphere with equivalent volume as the training model, the

effects of the surface interaction coefficients are investigated. This revealed that the coefficient of

restitution e is the governing determinant of the rover deployment statistics, with the friction co-

efficient f playing a minor role. When the restitution coefficient e < 0.65, as can be expected from

literature, the statistics scale roughly linearly with changes in e. Continuing to use the Ryugu ref-

erence sphere, it was shown that the MINERVA-II release velocity and associated uncertainties are

relatively high, resulting in high tangential impact velocities and unacceptably large correspond-

ing surface dispersions. In order to mitigate this issue, we propose the inclusion of a horizontal

pre-release maneuver (PRM) that allows the Hayabusa2 mothership to cancel some of the rover’s

net velocity and ensure a first impact that occurs normal to the asteroid surface. The PRM is

shown to indeed significantly reduce the rover surface dispersion and settling time and has since

been included in the nominal operation plan for the rover deployment.

Using this insight into the general motion trends of MINERVA-II, simulations of deployment

to the full Ryugu training model are performed at two candidate release epochs. Although the

release latitude is fixed at both epochs due to the Ryugu-Earth-Sun geometry, the release longitude

can be freely chosen using the particular time of deployment. Release is therefore simulated from
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a range of longitudes, while the coefficient of restitution is randomly vared at each impact, with

a fixed friction coefficient. With the included PRM, only minor variations in the settling time

tf are found between the various release λ, with a mean first-impact time of t1 ≈ 11 min and

a mean settling time of tf ≈ 75 min. Far greater variation is observed in the surface dispersion

area, which depends strongly on the topography of the first-impact region. Larger dispersions are

observed when deploying to a flat region on Ryugu’s surface and smaller dispersions when deploying

to a crater. Sufficiently large craters are able to contain the rover descent trajectories even in

the presence of uncertainties in the mothership navigation, rover release, and surface interaction

properties. This suggests that rovers should be deployed to large craters on Ryugu’s surface in

order to minimize the surface dispersion and maximize the confidence of avoiding a sample site

exclusion zone. Furthermore, a smaller surface dispersion increases the chances of successfully

tracking a rover throughout its descent to and impacts on the surface of Ryugu. This increases

the data available for estimation of the e and f coefficients, which provide scientific information on

Ryugu’s structure and composition. It is noted that the Hayabusa2 sampling is also likely to target

a surface crater, given that exposed crater materials tend to be less affected by space weathering

and contain greater amounts of scientifically-interesting hydrous minerals [144]. If multiple large

craters exist on Ryugu, it is therefore likely for the Hayabusa2 sampling to target one such crater,

while rovers are deployed to another crater.

This completed pre-arrival analysis has outlined the steps to be taken by the ‘real’ deployment

analysis that must be performed with the accurate Ryugu models that will be available following

the arrival of Hayabusa2. The results documented in this case study nonetheless establish trends

that are expected to persist on the real body. Our work has revealed the need for PRM inclusion

in order to limit the rover surface dispersion and stresses the need for an accurate estimate of the

true rover release velocity in order to accurately reconstruct the rover descent trajectory. These

results have adjusted the nominal Hayabusa2 operational plans.
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Conclusions

This thesis has presented a comprehensive methodology to simulate the motion of ballistic

spacecraft probes, operating in the vicinity and on the surface of a small body such as an asteroid,

comet, or small moon. The work is distinguished from that of previous authors primarily through

its ability to handle arbitrary probe shapes. To the best of our knowledge, all previous efforts

to simulate global motion across a small body are limited to either pointmass or spherical lander

models, as detailed in Chapter 1. Such models are unable to reproduce the complex and chaotic

bouncing behavior of non-spherical shapes, resulting in biased deployment dispersions. These

models have been implemented in a GPU environment to allow for parallel evaluation of multiple

simulations, which greatly increases the speed at which simulation can be performed, and enables

broad studies of probe deployment. The resulting simulation framework has been applied to perform

extensive parametric studies that reveal the effect of relevant environmental parameters, as well as

to the real-world scenario of rover deployment on the Hayabusa2 asteroid exploration mission.

6.1 Simulation of small-body probes

The applied modeling methods were discussed in detail in Chapter 2. After a brief discussion

of the general probe equations of motion, different shape modeling methods were presented. Most

importantly, the use of the implicit signed distance field (SDF) was proposed as a replacement

for the classically-used explicit polyhedron model. The SDF can be constructed prior to simula-

tion to allow for fast online interpolation, which significantly increases the speed at which collision
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detection between a probe and the target body can be performed. These global shape models

are limited with regards to the smallest resolved surface features. Using procedural generation

techniques, rock and boulders can be efficiently generated on the small-body surface. Both the

generation of polyhedral rocks on the polyhedron shape model are demonstrated, as well as frac-

tional Brownian motion and fully procedural rocks on the signed distance field. These can be tuned

to match the rock distributions observed on actual small-body surfaces. Although we continue to

use the classical (constant-density) polyhedron model for gravity field modeling, this field is also

pre-computed; online interpolations of the perturbation with respect to a central gravity field are

performed in order to minimize the required memory storage. The modeling of probe-target con-

tact interactions distinguishes between impulsive collisions and continued contact motion. A full

derivation of the contact model is provided, and includes (energetic) restitution, Coulomb friction,

and rolling resistance forces and torques, which are governed by their respective coefficients. The

model captures the interaction between a probe and a hard surface layer and is optimized for easy

resolution of stick/slip behavior and implementation in a parallelized framework. Complex inter-

actions with a regolith layer on top of the hard surface layer are abstracted through a modulation

of the coefficient of restitution, in agreement with (limited) experiments available in literature. An

efficient GPU implementation is achieved by distinguishing between flying, contact, and collision

phases of motion, and executing these across separate GPU kernels. This allows for approximately

20 typical simulations to be performed each second, on a 2018 high-performance machine.

The lift-off velocity is the velocity that an object needs to cease contact with the small-body

surface when moving (tangentially) across its surface, and is the focus of Chapter 3. A general

derivation of the velocity is provided, and simplified the expression for the practical cases of lift-

off from a curved surface, a sharp ridge, and a plane. The surface radius of curvature is found

to dominate the expressions; methods to obtain the radius of curvature of an ellipsoid, spherical

harmonic, and polyhedron shape are provided. This is then first applied to some simple shapes,

sphere and ellipsoid, to understand some general properties of the lift-off velocity. Finally, the

expressions are applied to generate lift-off velocity distributions across several solar system bodies.
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The simulation framework was then applied to perform parametric studies of probe motion in

the small-body environment in Chapter 4. First, the motion of spherical probes was investigated, for

which the effects of the respective surface interaction coefficients were established. The coefficient of

restitution e was found to govern the deployment statistics; the coefficient of friction f did not affect

the motion unless it was very small. Studying the probe mass distribution, it was found that more

concentrated mass distributions result in shorter settling times and smaller surface dispersions.

Finally, the presence of polyhedral rocks was found to significantly affect the deployment statistics,

with the inclusion of rocks reducing both the settling time and surface dispersion. A saturation

limit appears when the spacing between rocks becomes smaller than the probe; the inclusion of

additional rocks is found to no longer affect the deployment statistics.

Second, the motion of probes with more complex shapes was investigation. Varying the probe

shape, those with a more spherical shape (such as the dodecahedron) were found to settle more

slowly and with greater surface dispersion than less spherical shapes (such as the tetrahedron).

These trends are explained through inspection of the aspect angle, which determines the feasible

geometries under which probe-target impacts can occur. Varying the surface interaction coefficients,

the restitution coefficient was found to govern the probe motion, much like it did for spherical

probes. However, the effect of the friction coefficient on complex probes is notably different from

the effect on spherical probes. It was found that increased f results in increased settling time and

surface dispersion, up to some saturation value f∗ beyond which further increases cease to have

an effect. The value of this f∗ is dependent on the probe shape: it is very small for spheres, but

reaches values beyond 1 for very non-spherical shapes such as the tetrahedron. Finally, the effect

of mass distribution on the motion of these complex probes are investigated. In general, it was

found that variants of a given shape with a more outwards mass distribution settle more slowly

than a variant of that same shape with a more concentrated mass distribution. This effect is almost

negligible for nearly-spherical shapes, but becomes significant for less spherical shapes such as a

cube or tetrahedron.
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Third, the effects of small-body surface topography on the probe motion are examined.

Simulation to surfaces with procedurally-generated rocks indicate that the presence of rocks reduces

the settling time and surface dispersion of deployed probes. This effect is more significant for

spherical probes than it is for more complex shapes. When including rocks of various sizes, only

those larger than the considered probes are found to affect deployment dynamics. The presence

of regolith, which experiments have shown to damp normal impacts more strongly than tangential

impacts, is accounted for using a restitution-modulation model. This indicates that near-spherical

probes experience effectively lower restitution on a regolith-covered surface than more distorted

shapes. In conclusion, the presence of fine surface topography reduces the settling time and surface

dispersion of near-spherical probes; they will act more like distorted, non-spherical shapes.

Finally, the simulation framework is applied to investigate rover deployment to asteroid

Ryugu (formerly 1999 JU3), in Chapter 5. More specifically, a pre-arrival deployment analysis

was performed for the MINERVA-II rovers onboard the Hayabusa2 asteroid sample return mission.

The rovers will be deployed a few months after arrival, and although current knowledge of the

Ryugu system is limited, it is important to prepare for the rover deployment through a pre-arrival

study. Simulation of deployment to the Ryugu reference sphere revealed a major challenge, namely,

the relatively large magnitude of the MINERVA-II ejection velocity of up to 20 cm/s. This high

velocity results in first impacts with high tangential velocity that result in unacceptably large

surface dispersions. To alleviate this issue, our work has suggested the inclusion of a horizontal

pre-release maneuver with the Hayabusa2 spacecraft, in order to reduce the effective rover velocity

at release. This was shown to reduce the rover dispersion to an acceptable size. Including this

maneuver, simulations to the detailed Ryugu training shape model were performed. This model

was developed by JAXA for broad mission rehearsal purposes. The effects of rover deployment to

different terrains on the asteroid were investigated; this showed that deployment to large craters

minimizes the rover surface dispersion. We therefore suggest deployment to such a crater in order

to improve the chances of successfully tracking the rover through its descent trajectory. The impact

dynamics that can thus be estimated may provide information on Ryugu’s (sub-)surface structure.
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6.2 Future work

The simulation framework presents, to the best of our knowledge, the first attempt at cap-

turing the complex dynamics between a small-body exploration probe with arbitrary shape and a

complex target surface. The applied parallel implementation of this framework enables fast sim-

ulation of a large number of trajectories. Nevertheless, the framework can be extended in several

directions. Here, some areas in which this work could be extended are discussed. Some prelimi-

nary guidelines for doing so are also provided, both with respect to modeling and with respect to

applications.

(1) Post-arrival MINERVA-II deployment analysis and trajectory reconstruction. The simplest

extension of this thesis work is the continued application of the simulation framework to the

deployment planning of the rovers onboard Hayabusa2. Following the spacecraft’s arrival

at Ryugu in June/July of 2018, its observations will be used to produce a high-resolution

shape model of the asteroid, similar to the training shape model presented in Chapter 5.

Hayabusa2 will also estimate the asteroid’s mass and rotation pole. These updated models

must be used to repeat the deployment analysis of Chapter 5. Although the pre-arrival

analysis was performed independently, it is paramount that the post-arrival analysis be

performed in conjunction with the Hayabusa2 and MINERVA-II science teams. This will

provide the necessary constraints and requirements needed for the deployment analysis to

select the optimal rover release site. Furthermore, once this deployment is performed near

the end of September 2018, the bouncing MINERVA-II trajectory can be reconstructed

using observations from the Hayabusa2 spacecraft. This reconstructed trajectory can be

compared with simulations in order to estimate the effective restitution and friction coef-

ficients that acted during the rover’s impacts on the asteroid surface. This will provide

scientific information on the (sub-)surface structure and will inform subsequent deploy-

ments to Ryugu and similar bodies.
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(2) Advanced impulsive contact modeling and experiments. Although this thesis has presented

a successful effort at modeling the contact between a complex probe shape and small-

body surface, the applied model remains somewhat limited in scope. More specifically,

our impulsive model abstracts away much of the complex impact mechanics into effective

coefficients of restitution and friction. Lacking experimental results on the likely effects

of probe attitude and velocity at impact on the coefficient values, we believe that this is

presently the best possible effort. However, there remains great utility in performing a

broad study combining the analytics and experiments of rigid probes impacting onto a

hard surface layer in microgravity. Some of these suggested experiments were detailed in

Chapter 4. It may be possible to empirically fit some dependency of e and f on the impact

conditions, though more advanced impact models employing elastoplastic theory will likely

yield better and more substantiated results. Although this would be a significant project,

it constitutes an area of basic research which, to the best of our knowledge, is currently

lacking in the field of impact mechanics.

(3) Advanced regolith contact modeling. Similar to the suggestion made above, it holds that the

applied regolith interaction model significantly abstracts the complex interactions that are

expected to occur on the small-body surface. Although our implementation can recreate the

limited experimental work of low-velocity impacts into granular materials, it continues to be

a highly simplified model. The extension of this model will require both extensive modeling

using DEM-type simulation, as well as experimental work. An extension of the experiments

suggested in Chapter 4 with granular materials would provide an excellent starting point,

given the high degree of control that can be achieved in such experiments. This combination

of experiment with detailed but local simulations could be used to empirically fit some

effective collision parameters to the observed behavior. These parameters can then be

incorporated into the global simulations detailed in this thesis in order to produce realistic
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behavior without requiring computationally intensive DEM models in those simulations.

(4) Simulation of scientific probe instruments. Although ballistically-deployed probes are now

included on small-body exploration missions, they are still considered as secondary pay-

loads. Although the European MASCOT lander has an extensive suite of scientific instru-

ments, the Japanese MINERVA-II rovers remain quite simple technology demonstrators.

As a result, although they are equipped with a few instruments, they do not carry instru-

mentation that can be used to extract scientific information directly from bouncing trajec-

tories. The inclusion of accelerometers, for example, would greatly improve the accuracy

of reconstructed trajectories and thus of the information returned about the small-body

(sub-)surface. The implementation of instrument models into our simulation framework

would allow for the generation of realistic measurement data. This would enable a broad

investigation of how effectively surface properties can be extracted from the measurement

data. It will also provide insight into how the internal placement of these instruments would

affect their science return. Finally, it would allow for the development of some conceptual

probe designs aimed at maximizing scientific return from bouncing trajectories.



Bibliography

[1] Michael F A’Hearn, MJS Belton, WA Delamere, J Kissel, KP Klaasen, LA McFadden,
KJ Meech, HJ Melosh, PH Schultz, JM Sunshine, et al. Deep impact: excavating comet
tempel 1. science, 310(5746):258–264, 2005.

[2] Michael F A’Hearn, MJS Belton, WA Delamere, J Kissel, KP Klaasen, LA McFadden,
KJ Meech, HJ Melosh, PH Schultz, JM Sunshine, et al. Deep impact: excavating comet
tempel 1. science, 310(5746):258–264, 2005.

[3] M Ahmad, KA Ismail, and F Mat. Impact models and coefficient of restitution: A review.
Journal of Engineering and Applied Sciences, 11:6549–6555, 2006.

[4] Ergun Akleman and Jianer Chen. Generalized distance functions. In Shape Modeling and
Applications, 1999. Proceedings. Shape Modeling International’99. International Conference
on, pages 72–79. IEEE, 1999.

[5] M. A. Ambroso, C. R. Santore, A. R. Abate, and D. J. Durian. Penetration depth for shallow
impact cratering. Phys. Rev. E, 71:051305, May 2005.

[6] Robert C Anderson, Daniel Scheeres, Steven Chesley, and BASiX Team. Binary asteroid
in-situ explorer mission (basix): A mission concept to explore a binary near earth asteroid
system. In Lunar and Planetary Science Conference, volume 45, page 1571, 2014.

[7] Robert C Anderson, Daniel Scheeres, Steven Chesley, and BASiX Team. Binary asteroid
in-situ explorer mission (basix): A mission concept to explore a binary near earth asteroid
system. In Lunar and Planetary Science Conference, volume 45, page 1571, 2014.

[8] Christopher Batty. Sdfgen, 2015.

[9] MJS Belton, J Veverka, P Thomas, P Helfenstein, D Simonelli, C Chapman, ME Davies,
R Greeley, R Greenberg, J Head, et al. Galileo encounter with 951 gaspra: First pictures of
an asteroid. Science, 257(5077):1647–1652, 1992.

[10] Vivek Bhatt and Jeff Koechling. Three-dimensional frictional rigid-body impact.
TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL
OF APPLIED MECHANICS, 62:893–898, 1995.

[11] J-P Bibring, H Rosenbauer, H Boehnhardt, S Ulamec, J Biele, S Espinasse, B Feuerbacher,
P Gaudon, P Hemmerich, P Kletzkine, et al. The rosetta lander (philae) investigations. Space
science reviews, 128(1-4):205–220, 2007.



308

[12] Jens Biele, Lars Kesseler, Christian D Grimm, Silvio Schröder, Olaf Mierheim, Michael Lange,
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[98] F Sansò. On the aliasing problem in the spherical harmonic analysis. Bulletin géodésique,
64(4):313–330, 1990. DOI: dx.doi.org/10.1007/BF02538406.

[99] John Satterly. The moments of inertia of some polyhedra. The Mathematical Gazette,
42(339):11–13, 1958.

[100] Shujiro Sawai, Kawaguchi Junichiru, Daniel Scheeres, Naoki Yoshizawa, and Masahiro Oga-
sawara. Development of a target marker for landing on asteroids. Journal of Spacecraft and
Rockets, 38(4):601–608, 2001.

[101] Hanspeter Schaub and John L Junkins. Analytical mechanics of space systems. Aiaa, 2003.

[102] Daniel J Scheeres. Orbital Motion in Strongly Perturbed Environments. 2012.

[103] Daniel J Scheeres, Steven J Ostro, R Scott Hudson, Eric M DeJong, and Shigeru Suzuki.
Dynamics of orbits close to asteroid 4179 toutatis. Icarus, 132(1):53–79, 1998.

[104] DJ Scheeres. Landslides and mass shedding on spinning spheroidal asteroids. Icarus, 247:1–17,
2015.

[105] DJ Scheeres, SG Hesar, S Tardivel, M Hirabayashi, D Farnocchia, JW McMahon, SR Chesley,
O Barnouin, RP Binzel, WF Bottke, et al. The geophysical environment of bennu. Icarus,
276:116–140, 2016. DOI: dx.doi.org/10.1016/j.icarus.2016.04.013.

[106] Li Shen and Moo K Chung. Large-scale modeling of parametric surfaces using spherical
harmonics. In 3D Data Processing, Visualization, and Transmission, Third International
Symposium on, pages 294–301. IEEE, 2006. DOI: dx.doi.org/10.1109/3DPVT.2006.86.

[107] Christian Sigg, Ronald Peikert, and Markus Gross. Signed distance transform using graphics
hardware. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 12. IEEE
Computer Society, 2003.

[108] Steve Squyres. Caesar: Project overview. In 18th Meeting of the NASA Small Bodies
Assessment Group, 2018.

[109] DO Staley. Man on an asteroid. Journal of Geophysical Research, 75(28):5571–5573, 1970.

[110] William James Stronge. Impact mechanics. Cambridge university press, 2004.

[111] Dirk J Struik. Lectures on classical differential geometry. Courier Corporation, 2012.

[112] S Tardivel, E Canalias, M Deleuze, AT Klesh, and DJ Scheeres. Landing mascot on asteroid
1999 ju3: Solutions for deploying nanosats to small-body surfaces. In Lunar and Planetary
Science Conference, volume 46, page 1182, 2015.

[113] Simon Tardivel. The limits of the mascons approximation of the homogeneous polyhedron.
In AIAA/AAS Astrodynamics Specialist Conference, page 5261, 2016.

[114] Simon Tardivel. Optimization of the ballistic deployment to the secondary of a binary aster-
oid. Journal of Guidance, Control, and Dynamics, pages 2790–2798, 2016.



315

[115] Simon Tardivel, Patrick Michel, and Daniel J Scheeres. Deployment of a lander on the
binary asteroid (175706) 1996 fg3, potential target of the european marcopolo-r sample return
mission. Acta Astronautica, 89:60–70, 2013.

[116] Simon Tardivel and Daniel J Scheeres. Ballistic deployment of science packages on binary
asteroids. Journal of Guidance, Control, and Dynamics, 36(3):700–709, 2013.

[117] Simon Tardivel and Daniel J Scheeres. Accurate deployment of landers to dynamically chal-
lenging asteroids. In American Astronautical Society, AAS 15-424, 2015.

[118] Simon Tardivel, Daniel J Scheeres, Patrick Michel, Stefaan Van wal, and Paul Sánchez.
Contact motion on surface of asteroid. Journal of Spacecraft and Rockets, 51(6):1857–1871,
2014.

[119] Simon Tardivel, Daniel J Scheeres, Patrick Michel, Stefaan Van wal, and Paul Sánchez.
Contact motion on surface of asteroid. Journal of Spacecraft and Rockets, 51(6):1857–1871,
2014.

[120] Simon Charles Vincent Tardivel. The deployment of scientific packages to asteroid surfaces.
PhD thesis, University of Colorado at Boulder, 2014.

[121] P Thomas, J Veverka, and S Dermott. Small satellites. In Satellites, pages 802–835, 1986.

[122] Florian Thuillet, Patrick Michel, Clara Maurel, Ronald-Louis Ballouz, Yun Zhang, Derek C
Richardson, Jens Biele, Eri Tatsumi, and Seiji Sugita. Numerical modeling of lander interac-
tion with a low-gravity asteroid regolith surface. 2018.

[123] Akira Tsuchiyama, Masayuki Uesugi, Takashi Matsushima, Tatsuhiro Michikami, Toshi-
hiko Kadono, Tomoki Nakamura, Kentaro Uesugi, Tsukasa Nakano, Scott A Sandford, Ryo
Noguchi, et al. Three-dimensional structure of hayabusa samples: origin and evolution of
itokawa regolith. Science, 333(6046):1125–1128, 2011.

[124] Yuichi Tsuda, Sei-ichiro Watanabe, Takanao Saiki, Makoto Yoshikawa, and Satoru Nakazawa.
Cruise status of hayabusa2: Round trip mission to asteroid 162173 ryugu. Acta Astronautica,
136:176–181, 2017.

[125] Yuichi Tsuda, Makoto Yoshikawa, Masanao Abe, Hiroyuki Minamino, and Satoru Nakazawa.
System design of the hayabusa 2asteroid sample return mission to 1999 ju3. Acta
Astronautica, 91:356–362, 2013.

[126] R Pl Turco, OB Toon, C Park, RC Whitten, JB Pollack, and P Noerdlinger. An analysis
of the physical, chemical, optical, and historical impacts of the 1908 tunguska meteor fall.
Icarus, 50(1):1–52, 1982.

[127] J. S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian. Low-speed impact craters in
loose granular media. Phys. Rev. Lett., 90:194301, May 2003.

[128] David A Vallado. Fundamentals of astrodynamics and applications, volume 12. Springer
Science & Business Media, 2001.

[129] Stefaan Van wal, Robert Reid, and Daniel Scheeres. Parallellized small-body lan-
der/hopper simulations with distributed contact and procedural noise. In 2017 AAS/AIAA
Astrodynamics Specialist Conference. AAS/AIAA, 2017.



316

[130] Stefaan Van wal, Simon Tardivel, Paul Sánchez, Darius Djafari-Rouhani, and Daniel Scheeres.
Rolling resistance of a spherical pod on a granular bed. Granular Matter, 19(1):17, 2017.

[131] Stefaan Van wal, Simon Tardivel, and Daniel Scheeres. High-fidelity small-body lander sim-
ulations. In 6th International Conference on Astrodynamics Tools and Techniques. ESA,
2016.

[132] Stefaan Van wal, Simon Tardivel, and Daniel Scheeres. Parametric study of ballistic lander
deployment. Journal of Spacecraft and Rockets, 2017.

[133] Stefaan Van Wal, Simon Tardivel, and Daniel Scheeres. Parametric study of ballistic lander
deployment to small bodies. Journal of Spacecraft and Rockets, pages 1–26, 2017/09/29 2017.

[134] Stefaan Van wal, Simon Tardivel, and Daniel J Scheeres. Exploring Small Body Surfaces with
Landed Pods. In 12th International Planetary Probe Workshop, Cologne, Germany, 2015.

[135] J Veverka, B Farquhar, M Robinson, P Thomas, S Murchie, A Harch, PG Antreasian,
SR Chesley, JK Miller, WM Owen Jr, et al. The landing of the near-shoemaker spacecraft
on asteroid 433 eros. Nature, 413(6854):390, 2001.

[136] J Veverka, B Farquhar, Mark Robinson, P Thomas, S Murchie, A Harch, PG Antreasian,
SR Chesley, JK Miller, WM Owen, et al. The landing of the near-shoemaker spacecraft on
asteroid 433 eros. Nature, 413(6854):390–393, 2001.

[137] Tycho T Von Rosenvinge, John C Brandt, and Robert W Farquhar. The international
cometary explorer mission to comet giacobini-zinner. Science, 232(4748):353–356, 1986.

[138] Hakon Wadell. Volume, shape, and roundness of quartz particles. The Journal of Geology,
43(3):250–280, 1935.

[139] Amanda M. Walsh, Kristi E. Holloway, Piotr Habdas, and John R. de Bruyn. Morphology
and scaling of impact craters in granular media. Phys. Rev. Lett., 91:104301, Sep 2003.

[140] Robert A Werner and Daniel J Scheeres. Exterior gravitation of a polyhedron derived and
compared with harmonic and mascon gravitation representations of asteroid 4769 castalia.
Celestial Mechanics and Dynamical Astronomy, 65(3):313–344, 1996.

[141] Allen Wilkinson and Alfred DeGennaro. Digging and pushing lunar regolith: Classical soil
mechanics and the forces needed for excavation and traction. Journal of Terramechanics,
44(2):133–152, 2007.

[142] K Willner, J Oberst, H Hussmann, B Giese, H Hoffmann, K-D Matz, T Roatsch, and
T Duxbury. Phobos control point network, rotation, and shape. Earth and Planetary Science
Letters, 294(3-4):541–546, 2010.

[143] K Willner, X Shi, and J Oberst. Phobos’ shape and topography models. Planetary and Space
Science, 102:51–59, 2014.

[144] H. Yabuta, N. Hirata, R. Honda, Y. Ishihara, K. Kitazato, and M. Komatsu. Hayabusa2
landing site selection (lss) training: Summary report of scientific evaluation. In Lunar and
Planetary Science Conference, volume 49, 2018.



317

[145] Hajime Yano, Takashi Kubota, Hirdy Miyamoto, Tatsuaki Okada, D Scheeres, Yasuhiko
Takagi, Kazuya Yoshida, Masanao Abe, Shinsuke Abe, O Barnouin-Jha, et al. Touchdown of
the hayabusa spacecraft at the muses sea on itokawa. Science, 312(5778):1350–1353, 2006.

[146] DK Yeomans, PG Antreasian, J-P Barriot, SR Chesley, DW Dunham, RW Farquhar,
JD Giorgini, CE Helfrich, AS Konopliv, JV McAdams, et al. Radio science results during
the near-shoemaker spacecraft rendezvous with eros. Science, 289(5487):2085–2088, 2000.

[147] Donald K. Yeomans and Tao Kiang. The long-term motion of comet halley. Monthly Notices
of the Royal Astronomical Society, 197(3):633–646, 1981.

[148] Tetsuo Yoshimitsu. Development of autonomous rover for asteroid surface exploration. In
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference
on, volume 3, pages 2529–2534. IEEE, 2004.

[149] Tetsuo Yoshimitsu, Takashi Kubota, Tadashi Adachi, and Yoji Kuroda. Advanced robotic
system of hopping rovers for small solar system bodies. In Proc. 11th Int. Symp. Artif. Intel.,
Robot. Autom. in Space, 2012.

[150] Tetsuo Yoshimitsu, Takashi Kubota, and Ichiro Nakatani. Minerva rover which became a
small artificial solar satellite. In Small satellite conference, 2006.

[151] Tetsuo Yoshimitsu, Takashi Kubota, Ichiro Nakatani, Tadashi Adachi, and Hiroaki Saito.
Hopping rover minerva for asteroid exploration. In Artificial Intelligence, Robotics and
Automation in Space, volume 440, page 83, 1999.

[152] Xu Zhen-Tao, FR Stephenson, and Jiang Yao-Tiao. Astronomy on oracle bone inscriptions.
Quarterly Journal of the Royal Astronomical Society, 36:397, 1995.


	Introduction
	Small bodies
	Small-body surface exploration
	Literature review
	Thesis outline

	Modeling
	Equations of motion
	Shape
	Spherical harmonics
	Polyhedron
	Signed distance field

	Statistical features
	Polyhedral rocks
	Fractal noise
	Procedurally seeded rocks

	Gravity
	Constant-density polyhedron
	Linearization
	Model resolution
	Voxelization

	Contact
	Geometry
	Collisions
	Contact motion

	Regolith
	Numerical methods
	Trajectory propagation
	Sequential simulation on the CPU
	Parallel simulation on the GPU


	The lift-off velocity
	Deriving the lift-off velocity
	Geometry
	General expression
	Lift-off from a curved surface
	Lift-off from a ridge
	Lift-off from a plane
	Lift-off from a concave region

	Surface curvature
	General properties
	Ellipsoid
	Spherical harmonics
	Polyhedron

	Applications to simple shapes
	Applications to the sphere
	Applications to ellipsoids

	Applications to Solar System bodies
	1999 KW4 Alpha
	Bennu
	Eros
	Phobos


	Parametric studies
	Spherical probes
	Nominal scenarios
	Effect of surface interaction coefficients
	Effect of surface rocks
	Summary: Deployment sensitivities in favorable environments
	Deployment sensitivities in challenging environments

	Complex landers
	Nominal deployment scenario
	Effect of probe shape
	Effect of surface interaction coefficients
	Effect of probe mass distribution

	Surface topography
	Effect of surface noise
	Effect of procedural rocks
	Effect of surface regolith


	Case study: Hayabusa2 rovers
	The Hayabusa2 mission
	Asteroid Ryugu
	Mothership and rovers
	Rover release

	Deployment to spherical Ryugu
	Effect of surface interaction coefficients
	Effect of release geometry
	Pre-release maneuver
	Discussion: Deployment to the reference sphere

	Deployment to the Ryugu training model
	Epoch 1 deployment
	Epoch 2 deployment
	Discussion: Deployment to the training model

	Effect of the asteroid mass
	Summary: The deployment of MINERVA-II

	Conclusions
	Simulation of small-body probes
	Future work

	 Bibliography

