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Natural and artificial satellites are subject to perturbations when orbiting near-Earth

asteroids. These perturbations include non-uniform gravity from the asteroid, third-body

disturbances from the Sun, and solar radiation pressure. For small natural (1 cm-15 m)

and artificial satellites, solar radiation pressure is the primary perturbation that will cause

their orbits to go unstable. For the asteroid Bennu, the future target of the spacecraft

OSIRIS-REx, the possibility of natural satellites having stable orbits around the asteroid

and characterize these stable regions is investigated. It has been found that the main orbital

phenomena responsible for the stability or instability of these possible natural satellites are

Sun-synchronous orbits, the modified Laplace plane, and the Kozai resonance. These findings

are applied to other asteroids as well as to artificial satellites.

The re-emission of solar radiation pressure through BYORP is also investigated for

binary asteroid systems. Specifically, the BYORP force is combined with the Laplace plane

such that BYORP expands the orbit of the binary system along the Laplace surface where

the secondary increases in inclination. For obliquities from 68.875◦ − 111.125◦ the binary

will eventually extend into the Laplace instability region, where the eccentricity of the orbit

will increase. A subset of the instability region leads to eccentricities high enough that the

secondary will impact the primary. This result inspired the development of a hypothesis of a

contact-binary binary cycle described briefly in the following. YORP will increase the spin

rate of a contact binary while also driving the spin-pole to an obliquity of 90◦. Eventually,

the contact binary will fission. The binary will subsequently become double-synchronous,

thus allowing the BYORP acceleration to have secular effects on the orbit. The orbit will
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then expand along the Laplace surface to the Laplace plane instability region eventually

leading to an impact and the start of a new cycle with the YORP process.
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Chapter 1

Introduction

1.1 Introduction

The future looks bright for NEA exploration and utilization. However, these small

bodies come with a significant share of challenges within the field of astrodynamics. The

unique shapes in which asteroids are formed cause the gravity around them to be non-

uniform. Often, the low gravity of the asteroid will result in third-body perturbations to

have a significant effect on the orbit of a satellite. Both third-body effects and non-spherical

shapes of the asteroid cause perturbations of a satellite’s orbit around an asteroid. However,

for smaller asteroids, the real challenge of orbiting a NEA is due to the solar radiation

pressure (SRP). Many NEAs have a very low gravitational acceleration allowing SRP to be

the primary perturbation to the motion of a satellite. The research described in this thesis

will be looking at natural and artificial satellites around NEA with perturbations from an

oblate body, third-body perturbations, and SRP effects.

The research presented in this thesis focuses on satellite motion around near-asteroids

with possible extensions of application to the main-asteroid belt. Near-Earth asteroids are

a unique subset of asteroids to study for multiple reasons. First, they are generally smaller

than other asteroids in our solar-system. Therefore, their gravity field is very small and

easy to escape with the smallest of accelerations on the satellite. Second, they are only 1

AU away from the Sun. Since, accelerations due to solar radiation pressure are inversely

proportional to the square of the distance from the Sun, the SRP perturbations at a NEA



2

is much stronger than at a main-belt asteroid. The combination of the low gravity field

and high SRP accelerations create complex dynamics for satellites orbiting asteroids. This

research looks into the relationship and how to effects long-term stability of satellites. The

research will characterize the orbital phenomena that exist to create or destroy long-term

stability at NEA as well as determine these satellites orbital evolution. Before discussing the

contributions provided in this thesis, it is essential to review history of these bodies and their

exploration and the work that has been done previously on the subject. Depending on the

satellite orbiting the NEA, there are different ways of approaching the problem. Therefore,

each satellite type is discussed in succession: artificial satellites, natural satellites, and binary

satellites.

1.1.1 Near-Earth Asteroid Relevant History and Background

Asteroids are rocky fragments that are left over from the creation of our solar system

4.6 billion years ago. Millions of asteroids populate the inner solar system. They exist in a

broad range of shapes, sizes, and compositions. The main-belt between Mars and Jupiter

holds the largest population of known asteroids, but there also exists many asteroids closer

to home. These asteroids are called near-Earth asteroids. NEAs are characterized as any

asteroid that has a perihelion distance less than 1.3 AU and an aphelion distance greater

than 0.983 AU [1]. Their proximity to Earth makes them convenient to send a spacecraft to

or study with radar and telescopes here on Earth. The current near-Earth Object Wide-field

Infrared Survey Explorer (NEOWISE) estimates that there are 20,500 ± 3000 NEAs larger

than 100 m [2].

The first NEA to be discovered was Eros in 1898 by a German astronomer G. Witt [3].

This discovery would foreshadow that NEA are a unique key for finding information on our

solar system. Using Eros, measurements were made to determine the solar parallax or the

distance of the Earth from the Sun. This measurement is found using triangulation between

the Earth, Sun, and Eros. Eros was the object of choice to determine the solar parallax in
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1901 and 1930/1931 [4, 5]. These values were not improved upon until planetary radar range

data in the 1960’s [6, 7].

Eros was also the first asteroid which had variations in light curve data that changed

with time [8, 9]. This variation was due to the highly elongated shape of Eros [9, 10]. Eros

was the first object in the solar system to be found that didn’t have a near spherical or

slightly ellipsoidal shape. Soon it would come to find many small bodies in the solar system

had odd, elongated bodies. Even some asteroids and comets would have the appearance of

two different bodies being fused together.

In time, spacecraft missions were being sent to asteroids. The first spacecraft to fly

by an asteroid was Galileo in 1991 to main-belt asteroid 951 Gaspra [11]. After that, it

performed a flyby of Ida and Dactyl, the first confirmed binary asteroid system [12, 13].

Although Galileo flew by these asteroids on its way to Jupiter, the next spacecraft to visit

asteroids would be dedicated entirely to asteroid science. Near Earth Asteroid Rendezvous

Shoemaker (NEAR Shoemaker) was the first spacecraft to visit a NEA, insert into an orbit

around an asteroid, and land on the asteroid. First NEAR did a flyby of 253 Mathilde.

NEAR determined the density of Mathilde, 1.3±0.3 g/cm3, which is very low and suggested

that Mathilde was a “rubble pile” asteroid [14, 15]. A “rubble pile” asteroid is a collection

of gravitationally bound rocks and boulders of different sizes with relatively small cohesive

forces holding them together [16, 17, 18]. After the Mathilde flyby, NEAR Shoemaker orbited

and landed on Eros confirming its elongated ellipsoidal shape [19, 20]. The next mission ded-

icated to a NEA was JAXA’s Hayabusa mission, which was sent to 25143 Itokowa. Hayabusa

did an in-depth study of Itokawa to determine its “rubble pile” morphology. Itokawa had a

“new” surface, meaning it had no visible impact craters and appeared to be a collection of

fragments [21]. In fact, it is theorized that Itokawa is a contact binary, meaning that it was

at one time a binary system that eventually collided and now is a single body[22, 23].

Scientists are also observing these asteroids from Earth by telescopes and radar imag-

ing. They also observe asteroids from telescope satellites. For instance, NEOWISE using the
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Wide-field Infrared Survey Explorer (WISE) has discovered new NEA. Several astronomical

surveys on Earth include Lincoln Near-Earth Asteroid Research (Linear) and Catalina Sky

Survey. As of November 1, 2017, 17,017 NEA have been found with diameters between 1

meter to 32 km [24]. Currently, a spacecraft has not visited a NEA binary system, however,

through observations from Arecibo Observatory, observers were able to characterize the 1999

KW4 primary and secondary asteroid components of this binary [25]. The primary (alpha)

is the larger of the two binaries, while the secondary (beta) is the smaller asteroid that orbits

around the alpha. To date of this thesis submittal, there are 62 known binary NEA, with

two asteroids containing two satellites each [26]. These binaries were found using radar or

light curve analysis.

Space agencies such as JAXA and NASA continue to survey and explore near-Earth

asteroids. There are two missions currently headed to asteroids from both NASA and JAXA.

NASA’s New Frontier mission, OSIRIS-REx will arrive at 101955 Bennu in 2018 for a sample

return mission that will return to Earth in 2023 [27]. JAXA’s Hayabusa 2 is expected at

NEA 162173 Ryugu in 2018 with a sample return in the year 2020 [28]. The popularity

of NEAs as a destination for spacecraft missions will only continue to increase. Sending

spacecraft to NEA is more accessible due to their relative proximity to the Earth, where

less propellant is needed to travel to the mission destination. Also, compared to planets

or moons, the low gravity of asteroids makes it easier to move around, land, and return

samples to Earth without using much propellant. Besides their convenience in this respect,

there is a myriad of reasons to visit these bodies. First is for the simple scientific reason

of understanding asteroids. This includes understanding their composition and structure as

well as the evolution and formation of single, binary, and ternary asteroid systems. Beyond

this, asteroids also provide information through samples on the formation and evolution

of the solar system, planetary formation, and contain organic compounds which led to the

formation of life [27, 29].

Studying and visiting asteroids also has applications for future space missions which
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Figure 1.1: Images from spacecraft during missions to the above listed asteroids or comets.
Mathilde, Gaspra, Eros, Itokawa, Ida, and Dactyl are specifically discussed in this chapter.
Photo courtesy of the Planetary Society Credits: All images NASA / JPL / Ted Stryk except:
Mathilde: NASA / JHUAPL / Ted Stryk; Steins: ESA / OSIRIS team; Eros: NASA /
JHUAPL; Itokawa: ISAS / JAXA / Emily Lakdawalla; Halley: Russian Academy of Sciences
/ Ted Stryk; Tempel 1: NASA / JPL / UMD; Wild 2: NASA / JPL.
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include planetary defense from potentially hazardous asteroids and mining these bodies for

resources. AIDA is a conceptual mission that would arrive at NEA binary system 65803

Didymos. It would be the first NEA binary system visited by a spacecraft, but also the

NASA portion of the mission would be a technology demonstration of crashing a kinetic

impactor onto the Didymos beta. This mission would test the plausibility of using such a

method to deflect an asteroid from a collision course with Earth. The mission would be

able to measure the trajectory change and momentum transfer due to this impact [30, 31].

This crash would also provide observations of the dust plume of the impact, crater, and

exposed new material. These observations will help investigate asteroid composition and

will be beneficial to scientists and asteroid mining companies. Although currently not a

reality, there are two American asteroid mining companies: Planetary Resources and Deep

Space Industries. Both companies are still in the conceptual phases of mission design. In

the future, mining asteroids could provide precious metals or water to be processed into in

situ propellant for interplanetary flight.

1.1.2 Artificial Satellites

An artificial satellite or spacecraft orbiting around an asteroid will have multiple strong

perturbations affecting its orbit. However, depending on the asteroid size and shape or or-

bit of the spacecraft, the approach to modeling the problem may change. For instance, an

asteroid like Eros is the second largest asteroid in the NEA population and has an elongated

asymmetrical body. Therefore a spacecraft performing proximity operations around Eros

will be more concerned with the non-uniform gravity than SRP. Previous work began with

modeling elongated asteroids as a tri-axial ellipsoid. Chauvineau provides information on

periodic and synchronous orbits around a tri-axial ellipsoid[32, 33]. He finds that retrograde

orbits seem to be more stable to perturbations than prograde orbits [32]. A triaxial ellipsoid

is a model that will provide fundamental knowledge on an elongated asteroid, but one can

apply shape models of real asteroids using spherical gravity harmonics [34]. This uses a Leg-
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endre polynomial series expansion with coefficients describing the gravity harmonics applied

to a reference sphere. Spherical harmonics more precisely model the real gravity field at an

asteroid than a simple ellipsoid model, but one needs information on the asteroid first to ob-

tain the coefficients needed to use spherical harmonics. When a radar-derived physical model

of the complex shaped 4179 Toutatis with a non-principal axis of rotation was developed,

Scheeres et al. used spherical harmonics to determine periodic orbits and the escape speed

of ejecta on the surface[35]. Next, Scheeres applies his models and analysis to Eros with

preliminary information from NEAR. Eros is a uniformly rotating asteroid, which is much

more common than the complex spin-state of Toutatis. Therefore, his analysis on Eros can

be applied to other asteroids, when information on their shape is obtained. Most important

to spacecraft mission design for NEAR and future missions, Scheeres gives computational

methods on specific limits on stability against impact[36].

The above research focused on highly elongated asteroids. However, some asteroids

approach the shape of an oblate spheroid. Plus, there are plenty of NEAs that are small

enough that SRP rivals the gravitational force on the satellite. In these cases, SRP must be

modeled. The most straightforward version of this model would be represented best as a two-

body problem with a constant force model representing solar radiation pressure. This model

was first studied by Dankowicz in 1994 where he found a stable orbit family perpendicular

to the direction of the radiation pressure [37]. Dankowicz also derived an equation for the

orbit semi-major axis at which the second body would escape the system due to SRP.

amax =

√
3

4

√
µb

Pφ
rs (1.1)

Where µ is the gravitational parameter of the asteroid, b is the mass-to-area ratio of

the satellite, Pφ is the solar radiation constant ( 1x1017 kg −m/s2), and rs is the distance of

the asteroid from the Sun. The stable orbit families found perpendicular to the direction of

SRP also exist when the asteroid body is rotating around the Sun. However, the fixed frozen
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orbit can only be seen in the asteroid-rotating frame about the Sun because as the asteroid

rotates around the sun, the direction of SRP changes and the frozen orbit must precess

to maintain being perpendicular to SRP. The stable orbital families are called terminator

orbits because they remain parallel to the terminator line of the asteroid. This also means

the terminator orbit is perpendicular to the asteroid-Sun vector[38, 39].

Most models would benefit from modeling both SRP and the higher order gravity of

the asteroid. The culmination of this work, where solar tides, spherical harmonics, and SRP

are all modeled together was first presented at a conference by Scheeres that defines which

perturbation is most substantial depending on the size of the asteroid and the orbit radius

of the satellite [40]. Scheeres then published in 2012 a more thorough paper on the topic of

these combined perturbations along with the total effects on the terminator plane [41]. This

paper also related that if the semi-major axis is less than this value, a terminator plane orbit

will not allow the satellite to escape [39].

amin =
1

4

√
µb

Pφ
rs (1.2)

The terminator orbit has become one of the best options for spacecraft to orbit a small

asteroid where SRP is a significant perturbation. A terminator orbit is an orbit that lies

perpendicular to the Sun-asteroid radius vector such that its inclination is at i = 90◦. The

orbit lies along the terminator, where the Sun-facing hemisphere meets the hemisphere that

is in the dark. For asteroids, the orbit is capable of being stable with large perturbations

from solar radiation pressure. For the OSIRIS-REx mission a terminator plane orbit will be

used for two different science phases during the mission [42].

1.1.3 Natural Satellites

SRP scales with the mass-to-area ratio of the object. Mass-to-area ratio is the inverse

of the more often used area-to-mass ratio. Therefore an object will have larger perturba-
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tions from SRP when the area-to-mass ratio increases, while for mass-to-area ratios, larger

perturbations from SRP occur when its value decreases. A spacecraft, which is built to have

little mass, but has solar panels with large areas to absorb light will generally have a low

mass-to-area ratio. For natural objects around an asteroid, a dust particle would be highly

perturbed because it has a very low mass-to-area ratio. However, a large boulder, even with

a low density, has a high enough mass-to-area ratio not to be perturbed by SRP. Natural

satellites are defined as any object that orbits a celestial body that is not human-made. The

research in this thesis looks at two types of natural satellites, based on the mass-to-area of

these objects, they result in two different models being needed to define their motion cor-

rectly. These natural satellites are called natural satellites and binary asteroids. Therefore,

the definition of natural satellite for this thesis is a satellite of an asteroid where SRP influ-

ences the orbit because the rock, pebble or boulder has a relatively low mass-to-area ratio.

The definition of a binary asteroid is a natural satellite large enough that the direct force

caused by the SRP is not enough to affect the orbit of the object.

For natural satellites still affected by SRP, the research on artificial satellites is very

applicable. The range of mass-to-area ratios for spacecraft going to an asteroid range between

33 kg/m2 for Hayabusa to 100 kg/m2 for a CubeSat [29]. While a natural satellite with a

density of 2000 kg/m3 can have a mass-to-area ratio of anything <20,000 kg/m2. Therefore,

natural satellites may be stable in certain orbits where a spacecraft would not. There have

been few studies of natural satellites around NEA. There have been studies on the dust

ejecta that have been included in research on stable orbits around asteroid and comets, but

dust usually is only µm in size [43, 44]. Hamilton and Burns did two studies on objects

up to centimeters in size. The first study was on particles around a main-belt asteroid like

Amphitrite with third-body perturbations from the Sun. The second paper is the exact

same model plus SRP [45, 46]. The second study found particles on the order of cm in size

were not perturbed by SRP and stable around the asteroid for tens of years. However, their

asteroid model has a 100-km radius and is 2.55 AU away from the Sun. A NEA would be
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much smaller than this asteroid and much closer to the Sun. Therefore, SRP would be a

stronger perturbation than this study’s model and the gravity of the asteroid would be much

weaker. Therefore, objects at cm sizes may not be stable for most NEA, but larger objects

on the order of meters could be stable. Further analysis would be needed to make such a

conclusion on natural satellite stability around NEA.

The purpose of studying artificial satellites may seem more evident than natural satel-

lites, but both need to be understood for spacecraft operations at an asteroid. To plan for

a mission to an asteroid, only limited information can be obtained from radar and optical

surveys on Earth. There is a certain amount of error in the estimation of the mass, shape,

and rotation of the asteroid that will not be clarified until the spacecraft is approaching the

asteroid. This is also true for knowing if the asteroid has a natural satellite. For instance,

ground-based observations have determined that no object greater than 15 m in diameter is

orbiting around Bennu, the NEA to be explored by OSIRIS-REx, but has no constraints on

the presence of objects less than this size [47].

Because of the possible risks that are associated with unknown natural satellites upon

arrival at an asteroid, it is imperative for a spacecraft to begin scanning the area with its

instruments to try and detect natural satellites in orbit. In fact, OSIRIS-REx is performing

a natural satellite survey during the approach to Bennu [27]. From the approach distance,

large 10 m natural satellites will be easy to quickly spot, however, object less than a 1 m in

diameter will be more challenging. With a Hill sphere of 29.5 km, OSIRIS-REx would need

to scan ∼ 2700 km2 around the asteroid to conclude whether a natural satellite exists and

further analysis if it requires a potential redesign of the spacecraft’s trajectory to avoid a

collision [48]. Knowing where these natural satellites exist in a stable orbit for long periods

of time will constrain the prime search area significantly. Therefore, more time can be

allocated to optical imaging of smaller areas around the asteroid, so that quality data can be

presented with findings of smaller diameter natural satellites that could significantly impact

the mission.
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The previous literature summarized gives a summary of what has been studied with

regard to natural and artificial asteroids around asteroids. With artificial asteroids, there

has been research with various models presented to describe the stability of satellites around

asteroids. However, this research does not precisely overlap with natural satellite research

where the mass-to-area ratios of these object can be much larger and therefore stable to

SRP in certain orbits that are not stable for spacecraft. The natural satellite research

that have been previously done is very limited, with only a few studies into millimeter to

centimeter sized objects at main-belt asteroids. Therefore natural satellite stability at near-

Earth asteroids or even meter sized natural satellites are not very well known. The research

presented in this thesis hopes to provide a couple answers on some fundamentals questions

that have not been answered such as:

(1) What does natural satellite stability at NEA look like?

(2) Where are centimeter to meter sized natural satellites stable for long periods of time

at NEA?

(3) What orbital phenomena can explain the stability or instability of a given natural

satellite in an arbitrary orbit around a NEA?

(4) Does any of this research extend to artificial satellites and our knowledge of their

stability at NEA?

1.1.4 Binary Asteroid System

For binary asteroid systems with very high mass-to-area ratios, SRP does not have

a significant effect on an asteroid’s motion. However, thermal re-emission of the heat that

comes from SRP on an asteroid can have secular effects on the asteroid over long periods

of time. These non-gravitational forces have been theorized and observed to play a critical
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role in the formation and evolution of binary asteroid systems in the NEA and main-belt

asteroid populations.

The model begins with a single asteroid orbiting the Sun. As the asteroid rotates about

its axis, the part of the asteroid facing the Sun will heat up due to the incident photons.

As the asteroid rotates, and that specific part of the asteroid is no longer directly facing the

Sun, the heat will be re-radiated off the asteroid. Because there is a difference in where the

absorption of heat and re-emission of heat occurs on the asteroid, this causes a net force that

will change the orbit of the asteroid. If the asteroid is prograde, it will increase the semi-

major axis of the asteroid and if it is retrograde the effect will cause the asteroid to reduce

in the semi-major axis. This is called the Yarkovsky effect and was studied by Yarkovsky

in 1900 [49]. The specific case of the Yarkovsky effect described above is called the diurnal

effect and is maximized by the asteroid having an obliquity of 0◦ or 180◦.

There is also the seasonal Yarkovsky effect. The seasonal Yarkovsky effect is also

an effect due to thermal re-emission, but because the obliquity is not 0◦ or 180◦. When

a hemisphere absorbs more heat in autumn than it does in spring because of the object’s

obliquity, this will cause a secular decrease in the semi-major axis of the orbit [50]. Rubincam

first confirmed this effect with the spacecraft Lageos [51].

Rubincam then defined the Yarkovsky-O’Keefe-Radvieskii-Paddack (YORP) effect. He

named the effect to recognize the research of predecessors that studied how the albedo or

a body’s shape can re-emit radiation in such a way to spin up objects such as tektites or

nonmagnetic meteorites till they eventually burst [52, 53, 54]. YORP builds off this idea

with an asymmetrical asteroid uniformly rotating such that it asymmetrically scatters SRP

re-emissions causing a net torque on the asteroid.

This can cause the asteroid to spin up or spin down while also driving its obliquity to

0◦/180◦ or 90◦ [55]. Vokrouhlický and Čapek also investigated how YORP drives known mod-

els of asteroids and random asymmetrical bodies and found the same results [56]. However,

these two studies simplify the analysis by not including thermal conductivity. Once finite
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thermal conductivity is added, the obliquity tends to be driven to 0◦/180◦ instead of 90◦ [57].

Work has also been done to analytically characterize YORP with simple bulk coefficients to

understand the general evolution and time to reach a specific end state[58, 59, 60]. YORP

has been found in observations as opposed to only being computationally modeled. There

have been several observed asteroid spin-rates increasing between periods of observations,

these changes have aligned with the predictions of the YORP effect [61, 62, 63].

Recently, YORP has been given the title normal-YORP, as the second type of YORP

has recently been theorized called tangential-YORP. Tangential-YORP is “re-emission of

absorbed solar light by centimeter to decimeter-sized structures on the asteroid can create a

component of the recoil force that is parallel to the surface” [64]. Tangential-YORP is like

normal-YORP in that it alters the spin state of the asteroid. With an obliquity of 0◦, the

tangential YORP can be equal to normal-YORP in magnitude [65]. However, as obliquity

increases, the effect of tangential-YORP drops to approximately half of its original value [66].

Recent conference proceedings on the combination of tangential-YORP and normal-YORP

with finite thermal conductivity yield results where the obliquity will equally tend towards

0◦/180◦ and 90◦ [67].

The final non-gravitational force to discuss is BYORP or Binary-YORP. BYORP is an

extension of YORP to binary asteroid systems. Many binary asteroids are synchronous, or

the time it takes to complete one orbit around the asteroid is equal to the time it takes to

revolve one revolution about its axis. The secondary also needs to be asymmetrical, just as

with the YORP effect. Using the same principles of thermal reemission with YORP, this will

cause secular effects to the secondary’s orbit around the primary [68]. BYORP most notably

expands or contracts the semi-major axis of the orbit for the binary system. Binary asteroid

systems compose 15% of the near-Earth asteroid population [69, 70]. This fact puzzled

scientists since the BYORP effect results in a binary lifetime of ∼105 years, which is much

too short of a timescale to maintain the current population of binary asteroids [71]. Ćuk and

Nesvorný modified their model of BYORP to include an elongated secondary and modeled
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its libration. They found that eventually as the binary expanded, the secondary’s libration

would lose synchronous lock and the binary would stop expanding. Eventually, the system

would re-gain synchronicity back and begin to contract the orbit [72]. This could rectify

why BYORP has a short timescale to expand, but still maintains the large population of

binary NEA. Ćuk’s model is simply a constant force applied in the body-fixed frame, which

is a somewhat inaccurate representation of BYORP. McMahon and Scheeres derive a more

accurate model using a Fourier series to model the body’s rotation state using coefficients

that represent the shape and radiation properties of the body [73]. They then apply this

model to 1999 KW4 and show that this binary’s orbit should double in 22,000 years. They

also scaled the KW4 results so that it can be applied to other binary systems without a

detailed shape model. Finally, they included an adjusted model for double-synchronous

orbits (where double-synchronous is when the secondary’s orbit and both binary’s rotation

about their axes are all equal) [74].

The non-gravitational forces above are used to explain binary asteroid evolution and

formation as well as other observed phenomena amongst the NEA and main-belt asteroid

population. Observations of the NEA population have found that asteroids greater than

200 m in diameter rarely spin with a period less than 2.2 h [75]. It has also been observed that

many objects observed in the NEA population are rubble piles because of their low estimated

densities [14, 15, 16, 17, 18, 25]. Therefore, it has been theorized that these objects spin up

from YORP until they reach an orbital period of 2.2 hours, where the gravitational forces

can no longer keep the rubble pile bound together as centrifugal forces increase. Scheeres

considers this process in detail to understand how this event would occur. He finds that each

component of the asteroids has a specific spin state at which the component of the body will

go into orbit and this is determined by the largest distance between the two mass centers

[76]. He then goes on to describe the fission process and what the secondary’s orbit might

be after separation. He finds that the secondary immediately goes into a chaotic orbit after

separation [77]. Jacobson and Scheeres then find that mutual body tides can take the binary
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to the next step in the evolution. However, this largely is decided by the mass ratio Ms/Mp

of the two components. Mass ratio <0.2 have multiple possibilities after fission [78]:

(1) Binary escape or re-impacts soon after becoming a chaotic binary.

(2) Binary becomes a stable synchronous binary system subject to BYORP.

(3) Multiple fission events lead to a ternary system.

However, with a mass-ratio >0.2, the evolution is simplified because the exchanges

through angular momentum and energy through spin-orbit coupling is not severe enough

to cause secondary fission or high eccentricities that lead to impact or escape of the sec-

ondary [78]. All chaotic binaries with mass ratios & 0.2 will eventually settle into a double-

synchronous orbit with a semi-major axis between 2-8 primary radii [78, 79]. Once in a

double-synchronous orbit, BYORP will cause the asteroid to expand or contract in radius.

If the orbit expands, it will eventually expand until the secondary escapes the primary and

becomes an asteroid pair. Asteroid pairs are two asteroids with heliocentric orbits that if

traced backward in time yield to a point where the two asteroids were in each others Hill

sphere with small relative speeds [70, 80]. The Hill sphere is the gravitational sphere of

influence of a particular body, where outside that sphere a more massive object would have

larger gravitational effect on the satellite. Therefore, these asteroid pairs most likely were

binaries at some point in the past. If the secondary asteroid contracts, it will end as a contact

binary, where two similar sized components of the asteroid rest on each other to create one

asteroid. Contact binaries make up >9% of the NEA population[81].

Both binary asteroids and contact binaries make up a significant amount the NEA

population and hypotheses to determine what creates and destroys these populations are

still being investigated today. Jacobson later proposed that perhaps rubble pile asteroids

that contract due to BYORP may not inevitably impact, but instead find an orbit radius

where mutual body tides balance the BYORP force that is contracting the secondary [78].
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The binary would then stay in a stable orbit at this radius until perturbed perhaps by a

planetary encounter. Therefore, if contraction through BYORP does not necessarily mean

a contact binary or re-shaped asteroid is the end state; is there a process where expansion

through BYORP could lead to an equilibrium or impact as opposed to eventual escape?

The research on binary asteroids have generally assumed that the binary will expand

or contract without changing inclination. However, if the primary asteroid has its spin-pole

not aligned with its orbit-pole, precession along the Laplace plane will cause the inclination

of the orbit to change due to solar tides and the oblateness of the primary [83]. The Laplace

plane is an equilibrium between these two perturbations that is stable to secular changes

in inclination and longitude of the ascending node of an orbit. This phenomena has been

used to describe why ring or moon systems have certain inclinations around planets, but the

Laplace plane has never been applied to an asteroid. In this research, a hypothesis is tested

on whether a satellite that expands in a binary system will expand along the Laplace plane

and therefore change inclination. And if so, does this provide any new information on the

theory of binary asteroids or contact binary evolution?

1.2 Organization and Contributions

The research presented in this thesis provides insight into a few questions about NEA

and their binary, natural and artificial satellites. The focus will be on natural satellites and

binaries, however since the mass-to-area ratios of artificial and natural satellites overlap,

conclusions on spacecraft are made as well. The contributions are summarized in the next

sections.

1.2.1 Artificial and Natural Satellites

The work in this thesis explores the possible long-term stable orbits that natural satel-

lites may exist in around NEA and what natural phenomena causes it to be stable in these

regions. This involves modeling third-body dynamics from the Sun, spherical harmonics of
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the asteroid, and solar radiation pressure. The initial models only include J2 for spherical

harmonics, however, continued work also includes some analysis with 4 × 0 spherical har-

monics and 4×4 spherical harmonics. Through a rigorous modeling of the behavior of many

different possible orbits around asteroids of various obliquities, it will be determined how

large or small natural satellites can exist in long-term orbits at a given radius or inclination

from the asteroid. These results can be used to reduce the necessary search area around an

asteroid (specifically the asteroid Bennu is evaluated) to determine the most efficient way to

search for natural satellites.

From a subset of this work, spacecraft stability in these long-term orbits are also

observed. One natural phenomenon that is stable to SRP, J2, and third-body perturbations

is the modified Laplace plane. The modified Laplace plane is a frozen orbit that balances

the three perturbations by leveraging the different directions of precession each perturbation

possesses when an asteroid has a non-zero obliquity [82]. The modified Laplace plane could

be a stable orbit that has not been utilized around NEA before and could be of use for

spacecraft missions if the asteroid has enough mass. It is determined that the minimum

mass of the asteroid needed to maintain a stable orbit for a spacecraft with a low mass-to-

area ratio. The contributions included in this thesis are:

(1) Characterize and understand the phenomena that provide stability for natural satel-

lites around the near-Earth asteroid Bennu.

(2) Understand how higher-fidelity modeling of spherical harmonics changes orbits very

near (<3 km) the asteroid.

(3) Extend understanding to various asteroids of differing mass and obliquities.

(4) Apply finding to spacecraft and investigate asteroid mass required for a long-term

stable modified Laplace plane orbit.
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1.2.2 Binary Asteroids

The contributions to binary asteroid evolution include utilizing the classical Laplace

plane with BYORP in binary asteroid evolution. The classical Laplace plane is a simplified

version of the modified Laplace plane where SRP is not included in the model [83]. It has been

that a binary can expand with BYORP and change inclination to maintain the stability of the

classical Laplace plane. If the primary has a high enough obliquity, the binary may enter a

cycle where the expansion of the binary may eventually lead to an eventual impact through

increasing eccentricity of the orbit. This provides a method of contact binary formation

through a cycle to maintain the current contact binary population. The contributions for

binary asteroids included in this thesis are modeling secondary BYORP expansion along the

classical Laplace plane and presenting a hypothesized contact binary-binary cycle through

BYORP expansion along the classical Laplace plane.

Thesis Statement

Binary, natural, and artificial satellites at near-Earth asteroids are mod-
eled with non-gravitational forces such as SRP and re-emission of SRP to
develop a theory on the stability, evolution, and formation of binary, natural
and artificial satellites. Natural satellites are stable for long periods of time
in a multitude of orbits around NEA, where the modified Laplace plane,
Kozai resonance, and Sun-synchronous orbits provide orbital phenomena to
explain satellite stability or instability. Binary asteroids with an expanding
binary will expand along the classical Laplace plane and therefore increase
in inclination as orbital radii increases. A binary on the Laplace plane with
a high obliquity primary will be subject to a binary-contact binary cycle
that subjects a contact binary to fission, binary processes, and re-impact.

1.2.3 Journal Papers

The following journal papers resulted from the work done for this thesis:

• Rieger, S. M., Scheeres, D. J., Barbee, B., “Orbital Stability Regions for Hypothetical
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Natural Satellites of 101955 Bennu (1999 RQ36)”, In Prep., 2017.

• Rieger, S. M., Scheeres, D. J., ”High Obliquity Contact Binary Evolution from the

Classical Laplace Plane”, In Prep., 2017.

1.2.4 Conference Papers

The following conference papers resulted from the work done for this thesis:

• Rieger, S. M., Scheeres, D. J., “Laplace Plane Dynamics with Solar Radiation Pres-

sure in the Vicinity of an Asteroid”, AIAA/AAS Astrodynamics Specialist Confer-

ence. San Diego, California, August 2014.

• Rieger, S. M., Scheeres, D. J., Barbee, B., “Orbital Stability Regions for Hypothetical

Natural Satellites of 101955 Bennu (1999 RQ36)”, 26th AAS/AIAA Space Flight

Mechanics Meeting, Napa Valley, California. February 2016

• Rieger, S. M., Scheeres, D. J., Barbee, B., “Orbital Stability Regions for Hypo-

thetical Natural Satellites”, International Symposium on Space Flight Dynamics.

Matsuyama, Japan. June 2017.

1.2.5 Abstracts and Invited Talks

The following abstracts resulted from the work done for this thesis:

• Rieger, S. M., Scheeres, D. J., “High Obliquity Contact Binary Evolution from

the Classical Laplace Plane, Division of Dynamical Astronomy Meeting. Pasadena,

California. May 2015.

• Rieger, S. M., Scheeres, D. J., Barbee, B., “Orbital Stability Regions for Natural

Satellites of 101955 Bennu”, MIT-Stanford Women in Aerospace Symposium. Cam-

bridge, Massachusetts. May 2016.
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• Rieger, S. M., Scheeres, D. J., “Evolution of binary asteroids under the BYORP

effect, 4th Workshop on Binaries in the Solar System. Prague, Czech Republic.

June 2016.

• Rieger, S. M., Scheeres, D. J, Barbee, B., “Orbital Stability Regions for Natural

Satellites of 101955 Bennu” International Astronautical Congress 2016. Guadalajara,

Mexico. September 2016.

• Rieger, S. M., Scheeres, D. J. “A Contact Binary Asteroid Evolutionary Cycle driven

by BYORP and the Classical Laplace Plane”, Asteroid, Comets, Meteors 2017.

Montevideo, Uruguay. April 2017.

• Rieger, S. M., Scheeres, D. J. “A Contact Binary Asteroid Evolutionary Cycle driven

by BYORP and the Classical Laplace Plane”, 49th Annual Divisions of Planetary

Sciences Meeting. Provo, Utah. October 2017.

1.2.6 Organization

The second chapter discusses and derives the mathematical models used for both binary

systems and natural/artificial satellites. The chapter includes a derivation of the Sun third-

body perturbations, spherical harmonics, SRP, and BYORP. Next, chapter 3 shows the

averaged equations of motion derived and used to obtain the classical Laplace plane and

modified Laplace plane. Analysis of the classical Laplace plane instability region is discussed

in this chapter. Chapter 4 begins with an analysis of stability of natural satellites around

Bennu. This discussion goes into the orbital phenomena causing stability or instability. This

chapter also includes changes in spherical harmonics modeling and its effect on the stability

of natural satellites. Chapter 5 discusses the extension of this research to other asteroids

with various masses and obliquities as well as a discussion on artificial satellite stability

analysis. This chapter also includes work on the modified Laplace plane and its possibility

of being a stable orbit for future spacecraft missions to asteroids. Next, Chapter 6 proposes
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the possibility of a binary-contact binary cycle from the expansion of the secondary’s orbit

through BYORP along the classical Laplace plane. The final chapter, Chapter 7 summarizes

the conclusions.



Chapter 2

Numerical Equations of Motion

In this chapter, the mathematical models used to approach the research on natural,

artificial, and binary asteroid systems is discussed. For all satellites, the same model was

used for third-body dynamics from the Sun and spherical harmonics. However, there are two

separate models for SRP and BYORP that will also be discussed. For an asteroid the size

of Bennu, 492 m, the SRP model is only used for natural (d < 15 m) and artificial satellites,

while the BYORP model is used on large secondaries. Their isn’t an obvious point where

the natural satellite no longer needs to model SRP, however for a satellite with d = 150 m,

the averaged equations of motion and numerical simulations discussed below have sub-meter

differences in their orbital positions. Therefore, an object greater than this size at a Bennu-

sized asteroid is not perturbed by SRP and modeling BYORP over longer time scaled will

give a better approximation of the evolution of the orbit.

The model is set in the asteroid orbit-centered inertial frame. Therefore, the x − y

plane will be in the same plane as the asteroid’s orbit around the Sun. However, since

the asteroid is the origin of the frame, it will appear that the Sun is orbiting in retrograde

around the asteroid. It is important to specify if in the asteroid-orbit centered frame because

sometimes it is also convenient to model the motion in the asteroid-equator centered frame.

These two frames are always different in this work because how the asteroid’s obliquity will

change the dynamics of the satellite is investigated. Both frames are inertially fixed with

the asteroid as the origin. The asteroid-orbit centered frame has the x− y plane in the same
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plane as the asteroid’s orbit around the Sun, while the equator frame lies along the equator

of the asteroid. Therefore, the z-axis for the asteroid centered inertial-orbit frame is aligned

with the angular momentum of the asteroid’s heliocentric orbit. The z-axis for the asteroid

centered inertial equatorial-orbit frame is aligned with the spin-pole of the asteroid. These

two frames are define in Figure 2.1. The difference is defined by the obliquity, ε.

Figure 2.1: Difference between asteroid orbit-centered frame and asteroid equator-centered
frame is from rotating the orbit frame by the obliquity, ε, about the x̂-axis.

2.1 Third Body Perturbations

Third body dynamics from the Sun may not be the largest perturbation on a satellite

at an asteroid, but it does influence the dynamics over long time periods. An example of

third-body perturbations affecting a satellite’s orbit is the Kozai mechanism. If there is a

binary system with a massive object, such as the Sun perturbing the satellite, it will cause

an exchange between the satellite’s eccentricity and inclination [84]. Three-body equations

of motion can be derived using Newtonian mechanics from the equation F = ma. The n
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body problem can be written as:

mi
d2ri
dt2

=
n∑
j=1
j 6=i

Gmimj(ri − rj)

|rj − ri|2
=
∂U

∂ri
(2.1)

This problem has three bodies: the Sun, an asteroid, and a satellite. It is assumed

that the mass of the satellite is negligible such that it does not affect the other two body’s

orbit. Since the asteroid is the origin of the frame, the vector ra is equivalent to zero and not

included in the naming scheme of the radius and velocity vectors. This gives the equation:

r̈p =
µs
|rs|3

rs −
µs
|rsp|3

rsp −
µa
|rp|3

rp. (2.2)

Where µs is the gravitational parameter or the Sun, µa is the gravitational parameter

of the asteroid, rs is the distance from the asteroid to the Sun, rp is the distance from

the asteroid to the point-mass or satellite, and rsp is the distance from the Sun to the

point-mass/satellite. The above equation is the sum of the two-body motion between the

satellite and the asteroid and the third body perturbations. Therefore only the third body

perturbations is

asun =
µs
|rs|3

rs −
µs
|rsp|3

rsp. (2.3)

Figure 2.2: Relationship between the 3 bodies modeled in this problem: the Sun, an asteroid,
and a satellite.
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2.2 Spherical Harmonics

Asteroids exist in many different irregular shapes. These non-spherical mass distribu-

tions provide complex dynamics for a satellite orbiting the asteroid. If a point mass particle

is orbiting any mass distribution, the potential can be computed from a differential mass

element over the body [29].

U(r) = G

∫
B

dm(R)

|r −R| (2.4)

where R is the position vector of the differential mass element dm, B is the collection

of all mass elements, and G is the gravitational constant (6.673×10−11) m3/kg · s2. From

here, you can derive Poisson’s equation.

52U = −4πGρ(r) (2.5)

Satellites are always orbiting outside the body where there is no mass density, Poisson’s

equation then reduces to Laplace’s equation, 52U = 0. It is assumed that the sphere has a

constant density and mass, M for this model. Therefore the integration of the potential of

a satellite yields:

U =
GM

|r|
r > R (2.6)

Any function that satisfies Laplace’s equation is called a harmonic. Using separation

of variables to solve Laplace’s equations, the Laplace’s equation in rectangular coordinates

are:

52U = 0 =
∂2U

∂2x
+
∂2U

∂2y
+
∂2U

∂2z
(2.7)

However, spherical gravity harmonics are derived using spherical coordinates. Spherical
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coordinates are related to Cartesian coordinates by:

r =
√
x2 + y2 + z2

sin δ =
x

r

tanλ =
y

x

(2.8)

Where δ is the latitude and λ is the longitude. Solving for Laplace’s equation in these

coordinates gives:

52U =
1

r2

∂

∂r

(
r2∂U

∂r

)
+

1

r2 cos δ

∂

∂δ

(
cos δ

∂V

∂δ

)
+

1

r2 cos2 δ

∂2U

∂λ2
= 0 (2.9)

Solving this equation gives the full gravitational potential in terms of spherical har-

monics.

U =
GM

r

∞∑
n=0

(
Ra

r

)n n∑
m=0

Pnm (sin δ) [Cnm cosmλ+ Snm sinmλ] (2.10)

Where Ra is the normalizing radius or the maximum radius of the asteroid. Pnm are the

associated Legendre functions and Cnm and Snm are the gravity field harmonic coefficients.

These coefficients represent the mass distribution of the body that is defined up to degree n

and order m. The associated Legendre functions are defined by

Pnm(sin2 δ) = (1− sin2 δ)m/2
dm

d(sin δ)m
(Pn0(sin δ)) (2.11)

where Pn0(sin δ) are defined as

Pn0 =
1

2nn!

dn

d(sin δ)n
(sin2 δ − 1)n (2.12)

The problems analyzed in this research begin with only needing J2 of the asteroid to

be derived. It is assumed that the asteroids analyzed in this research have uniform density,

and therefore their spherical harmonic coefficients can be determined from the shape and
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size of the asteroid if the asteroid is assumed to be a tri-axial ellipsoid. The symmetry of

an ellipsoid makes it relatively easy to determine the spherical harmonics. All Snm = 0 and

odd order or degrees will have a zero value Cnm coefficients. Therefore the first few even

Cnm coefficients can be determined by:

C20 =
1

5Ra

(
γ2 − α2 + β2

2

)
C22 =

1

20R2
a

(
α2 − β2

)
C40 =

15

7

(
C2

20 + 2C2
22

)
C42 =

5

7
C20C22

C44 =
5

28
C2

22

(2.13)

Where α is the semi-major axis, β is the semi-intermediate axis, and γ is the semi-minor

axis of the asteroid. The simplest gravity model for an asteroid is to assume it is an oblate

spheroid, therefore only the J2 coefficient needs to be modeled. J2 = −C20, where C20 can

be determined by the length of its three principal axes as shown in equation Equation 2.13

[41].

Therefore Equation 2.9 for an oblate spheroid in our model can be written as:

U =
µa
rp

[
1 +

(
Ra

rp

)2{
C20

(
1− 3

2
cos2 δ

)}]
(2.14)

The model typically is in the asteroid orbit-centered frame, and since there is a non-

zero obliquity, it is easier to work with spherical harmonics in a vector format. Therefore

the gravity potential of J2 can be expressed as:

R2(rp) = − µa
2|rp|3

C20R
2
a[1− 3(r̂p · p̂)2]. (2.15)

where p̂ = [0, sin ε, cos ε], or the spin pole of the asteroid in the inertial asteroid orbit-

centered frame. R2 = U − µ
r

and r̈ = ∂U
∂r

, therefore the partial derivative of the potential will



28

give the acceleration due to J2 [41]. To find the acceleration of R2, first the equation can be

rewritten as

R2(rp) = − µp
2|ra|3

C20R
2
a[1−

3(rp · p̂)2

|rp|2
]. (2.16)

The partial derivative of the potential is

∂U

∂rp
=

3

2

µa
|rp|5

C20R
2
a

(
1− 3

|rp|2
(rp · p̂)2

)
rp −

µa
|rp|3

C20R
2
a

(
6

|rp|4
(rp · p̂)2

)
rp. (2.17)

With some simplification this equation becomes

aJ2 =
∂U

∂rp
=

3

2

µa
|rp|5

C20R
2
arp −

15

2

µa
|rp|7

C20R
2
a (rp · p̂) rp + 3

µa
|ra|5

C20R
2
a (rp · p̂) p̂. (2.18)

Finally, it has been mentioned that eventually, our model will include 4× 0 and 4× 4

gravity harmonics. The fourth degree and order is used because the model of the spherical

harmonics is around Bennu, which has been surveyed from Earth. The current OSIRIS-REx

mission created a 16×16 coefficient model for their analysis [48]. However, the higher degrees

and orders are arbitrary and will not be completely characterized, even after completing the

mission at the asteroid. Therefore degree and order is limited to four, because these values

have been roughly determined from the model created by Earth observations. However, The

higher order gravity harmonics becomes computationally taxing because the model needs to

take the partial derivatives of Equation 2.10 and the model needs to include rotation since

odd degrees and orders are not symmetric. Therefore the Gravity Potential Derivatives

Calculator (GPDC) is used to determine the partials numerically for these models [85]. In

this case, it was more convenient to integrate the model in the inertial asteroid-equatorial

frame.

2.3 Solar Radiation Pressure Perturbations

The final perturbation to be included is SRP. A simple Cannonball model will be used

[82]. The Cannonball model assumes the satellite presents a constant area perpendicular to
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the Sun-line [29].

aSRP = −(1 + ρ)
PΦ

r2
psb

r̂ps (2.19)

where ρ is the reflectance, b, or m/A, is the mass-to-area ratio in kg/m2, and PΦ is the solar

radiation constant and is approximately 1 × 108 km3/s2/m2[82]. Generally, for the natural

satellite models, it is assumed that the satellite is a sphere and the area that SRP transfers

momentum to is a circle. This model provides easy calculations of the mass-to-area ratio,

volume, and mass. Although, in reality, these objects will have complex shapes.

2.4 Equations of Motion for Natural and Artificial Satellites

The equations of motion used for the numerical analysis is just merely the sum of the

perturbations and the two-body motion.

a = − µa
|rp|3

rp + asun + aJ2 + aSRP (2.20)

The equation of motion is

r̈p = − µa
|rp|3

rp +
µs
|rs|3

rs −
µs
|rsp|3

rsp+
3

2

µa
|rp|5

C20R
2
arp −

15

2

µa
|rp|7

C20R
2
a (rp · p̂) rp

+3
µa
|rp|5

C20R
2
a (rp · p̂) p̂− (1 + ρ)

PΦ

r2
psb

r̂ps. (2.21)

2.5 BYORP model

One can use a Fourier series with higher order coefficients to determine the exact

direction and magnitude of the acceleration due to BYORP [73]. The derivation presented

here is from a combination of research papers written by McMahon and Scheeres in 2010. A

very simplified version of this model is used, where only the 0th order coefficient is modeled

and apply it only in the direction that causes the secular growth of the semi-major axis of the
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binary system. Some assumptions need to be made to model BYORP. First, the secondary’s

motion is at least synchronous. Therefore one revolution around its spin-axis takes the same

amount of time as one revolution in its orbit around the primary. Second, the secondary’s

spin-pole is aligned with its orbit pole, so the secondary has no obliquity. It has been found

that solar radiation force can be expressed as a Fourier series by this equation [58].

F SRP = P (rps)
N∑
i=1

f i(λs) = P (rps)
∞∑
n=0

[An(δs) cos(nλs) + Bn(δ) sin(nλs)] (2.22)

where N is the number of surface elements used to describe the body and P (rps) is the solar

radiation pressure at a given distance from the Sun, rps.

P (rps) =
Pφ
r2
ps

(2.23)

The Fourier coefficients An and Bn have units of area (m2) and represent the sec-

ondary’s body shape, the secondary’s reflective properties, and the position of the Sun in

the body frame with respect to the secondary. The Sun’s position can be defined by λs, the

solar longitude, and δs, the solar latitude.

The Fourier series, using different coefficients, can also be modeled as a function of the

satellite spin angle.

N∑
i=1

f i(θ) =
∞∑
n=0

[A′n cos(nθ) + B′n sin(nθ)] (2.24)

The coefficients can be generalized as:

A′n = cos(n(λs0 − θ0))An + sin(n(λs0 − θ0))Bn

B′n = cos(n(λs0 − θ0))Bn + sin(n(λs0 − θ0))An

(2.25)

Where λs0 is the initial solar longitude and θ0 is the initial rotation angle about the pole of

the secondary. The initial solar longitude can be related to the Keplerian elements of the
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primary’s heliocentric orbit by:

λs0 = Ωs0 + λν

tanλν = cos is tan(ωs + νs)

(2.26)

Where Ωs0 is the initial longitude of the ascending node of the Sun in the secondary body-

fixed frame, λν is the longitude of the Sun due to the true anomaly, is is the inclination of

the Sun in the body-fixed frame, ωs is the argument of perihelion in the body-fixed frame,

and νs is the true anomaly of the Sun in the body-fixed frame. Since the coefficients given

in Equation 2.25 are dependent on the true anomaly of the Sun, the coefficients are only

valid for one point in the orbit. To obtain the Sun’s orbit in the secondary’s body-fixed

frame, take the Cartesian coordinates and rotate them into the body-fixed frame and then

convert the coordinates into Cartesian elements. Here is the heliocentric orbit in relation to

the inertial frame.

X̂H = [cosωH cos ΩH − sinωH sin ΩH cos iH ] X̂I

+[cosωH sin ΩH + sinωH cos ΩH cos iH ]ŶI

+ sinωH sin iHẐI

Ŷ H = −[sinωH cos ΩH + cosωH sin ΩH cos iH ]X̂I

+[− sinωH sin ΩH + cosωH cos ΩH cos iH ]ŶI

+ cosωH sin iHẐI

ẐH = sin ΩH sin iHX̂I − cos ΩH sin iHŶI + cos iHẐI

(2.27)

Where the heliocentric frame is denoted by an H subscript and the inertial frame by an I
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subscript. The body-fixed frame of the secondary is related to the inertial frame by:

x̂b = −[sinα cos θ + cosα sin θ sin δ]X̂I + [cosα cos θ − sinα sin θ sin δ]Ŷ I + sin θ cos δẐI

ŷb = −[sinα sin θ + cosα cos θ sin δ]X̂I + [cosα sin θ − sinα cos θ sin δ]Ŷ I + cos θ cos δẐI

ẑb = cosα cos δX̂I + sinα cos δŶ I + sin δẐI

(2.28)

Where α is the right ascension and δ is the declination of the secondary’s rotation pole. The

body rotates about the ẑb-axis. However, these relations are only needed if coefficients of

n > 0 are being modeled. For our simplified model, only A0 is being modeled. Therefore for

Equation 2.25, n = 0 and therefore A0 = A′0 [73].

Next, the Fourier coefficients need to be transferred in the secondary’s orbit frame so

that the model can be simply added to the J2 and third-body perturbations derived above.

If the primary is synchronous, the transformation from the rotation angle of the spin pole

can be used, because it is equivalent to one orbit revolution. Therefore the transfromation

matrix is:

T =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.29)

The Fourier series then becomes:

N∑
i=1

Tf i(θ) =
∞∑
n=0

[TA′n cos(nθ) + TB′n sin(nθ)] (2.30)

Therefore the Fourier series can be described in new coefficients

N∑
i=1

Tf i(θ) =
∞∑
n=0

[A′′n cos(nθ) + B′′n sin(nθ)] (2.31)
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The new coefficients can just be described by the old coefficients, where A′n = [A′n(1) A′n(2) A′n(3)]T .

The new coefficients are expressed as:

A′′0 =
1

2


A′1(1)−B′1(2)

A′1(2) +B′1(1)

2A′0(3)

 (2.32)

A′′1 =
1

2


2A′0(1) + A′2(1)−B′2(2)

2A′0(2) + A′2(2) +B′2(1)

2A′1(3)

 (2.33)

B′′1 =
1

2


−2A′0(2) + A′2(2)−B′2(1)

2A′0(1)− A′2(1) +B′2(2)

2B′1(3)

 (2.34)

A′′n =
1

2


A′n−1(1) + A′n+1(1)−B′n−1(2)−B′n+1(2)

A′n−1(2) + A′n+1(2)−B′n−1(1)−B′n+1(1)

2A′n(3)

 (2.35)

B′′n =
1

2


−A′n−1(2) + A′n+1(2) +B′n−1(1) +B′n+1(1)

A′n−1(1)− A′n+1(1) +B′n−1(2) +B′n+1(2)

2B′n(3)

 (2.36)

However, since only A0 is used for our model, this simplifies the new Fourier series to:

aBY ORP = P (rps) [(A0(1) cos(nθ)− A0(2) sin(nθ)) x̂ + (A0(1) sin(nθ)− A0(2) cos(nθ)) ŷ

+ A0(3)ẑ] (2.37)

2.5.1 Normalized Coefficients

In Figure 2.3, the yearly averaged coefficients for A0 and some higher orders for the

binary system KW4 are presented [74]. These values are used to model A0 for our binary
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system. However, KW4 does not have a binary with a mass-ratio greater than 0.2. If the

size of the primary or secondary is changed and similar timescales for BYORP expansion

is maintained, the BYORP model for KW4 used in McMahon and Scheeres needs to be

normalize. The normalizing factor is just simply the mean radius of the secondary.

An =
An

r2
m

(2.38)

Where the mean radius can be determined from the volume of the secondary, 3

√
3V
4π

, and the

volume can be determined from its density and mass. The new coefficients for an arbitrary

system would then be determined by multiplying this non-dimensional factor by the square

of the new mean radius to be modeled [74].

Figure 2.3: Yearly averaged body-frame An coefficients for KW4 from McMahon and
Scheeres, 2010.

2.5.2 Double-Synchronous Binary Systems

Any asteroid that has a mass-ratio greater than 0.2 will be double-synchronous [78].

This means the rotation rate of both asteroids and the secondary’s orbit around the primary

are all equal. Therefore a model is needed to correctly describe how the mutual synchronous
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rotations between the primary and secondary affect BYORP. Therefore, the research needed

to model BYORP expansion/contraction will include syncronous orbits for mass-ratios <0.2

and double-synchronous for mass-ratios > 0.2. The equations of motion of the secondary

around the primary would be :

r̈p = r̈p − r̈a = −G(mp +ma)

r3
p

rp +
F p

mp

− Fa

ma

(2.39)

where the primary asteroid is at the origin of our model, so ra = 0. The disturbing acceler-

ations due to SRP, F s and F a can be combined.

a =
F p

mp

− Fa

ma

=
1

mr

[(1− fm)F p − fmF a] (2.40)

where mr = mamp

ma+mp
and fm = mp

ma+mp
. From Equation 2.22, the model of these two forces

separately can be combined using the equation above. Therefore, the two forces can be

modeled as Fourier series:

F a,BY ORP = P (rs)

[
Aa′′0 +

∞∑
n=1

Aa′′n cos(nM) + Ba′′n sin(nM)

]

F p,BY ORP = P (rps)

[
Ap′′0 +

∞∑
n=1

Ap′′n cos(nM) + Bp′′n sin(nM)

] (2.41)

Where M is the mean anomaly of the secondary’s orbit, which is best used in these equations

for future purposes of averaging using Gauss’s equations [74]. The secondary is orbiting in

close proximity to the primary asteroid, therefore the approximation that rps = rs can be

made. The total acceleration on the secondary can be found by inserting Equation 2.41 into

Equation 2.40.

aBY ORP =
P (rs)

m
[(1− fm)Ap′′0 − fmAa′′0]

+
P (rs)

m
×
∞∑
n=1

((1− fm)Ap′′n − fmAa′′n) cos(nM) + ((1− fm)Bp′′n − fmBa′′n) sin(nM)

(2.42)
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The double-synchronous BYORP model can then be deduced from this expression as:

AC ′′0 = (1− fm)Ap′′0 − fmAa′′0

AC ′′n = (1− fm)Ap′′n − fmAa′′n

BC ′′n = (1− fm)Bp′′n − fmBa′′n

(2.43)

These coefficients can be used then to determine the acceleration on the secondary.

aBY ORP =
P (rs)

m

[
AC ′′0 +

∞∑
n=0

ACn cos(nM) + BCn sin(nM)

]
(2.44)

For our model, where n = 0, the equation for BYORP in a double-synchronous orbit

will be:

aBY ORP = P (rs) [(AC0(1) cos(nM)− AC0(2) sin(nM)) x̂]

+P (rs) [(AC0(1) sin(nM)− AC0(2) cos(nM)) ŷ]

+P (rs) [AC0(3)ẑ]

(2.45)

This equation is the exact expression used earlier in Equation 2.37, except using mean

anomaly instead of the rotation angle of the secondary. However, since the orbit is syn-

chronous and circular, these values will yield equivalent results. Therefore, one only needs

to alter the coefficients to model a synchronous or double-synchronous orbit. The double-

synchronous orbit coefficients given in Equation 2.43 show that a double-synchronous orbit

can either reduce or enhance BYORP. If the coefficients are similar and have the same sign,

BYORP will be reduced. If the coefficients are similar and opposite in sign, BYORP will be

enhanced.

2.5.3 Constant Force BYORP Model

In this section, the model derived above will be simplified and derived for a BYORP

model where only the 0th order is derived. This requires only one coefficient, A0 to describe



37

the asymmetry of the asteroid. It is sometimes advantageous to use a constant force model

in the correct direction to yield the secular changes needed to demonstrate the process.

This allows for a simple demonstrations of the BYORP model that can be easily applied

to primaries and binaries of varying sizes, as well as using A0 as a simple gage for altering

the overall asymmetry of the binary. The secular variation that is most interesting is the

expansion of the semi-major axis, and by varying A0, it can be simply demonstrated how this

effects BYORP expansion or the evolution of the binary system. In McMahon and Scheeres,

they derived the yearly averaged rates for a secular increase of the semi-major axis [74].

¯̇̄a =
Pφ

a2
s

√
1− e2

s

2ap
√
µp

mpµ

[
ŷb · Ā′0

]
(2.46)

Where µ is the mutual gravitation between the primary and secondary. From this equation,

it can be seen that the secular expansion of the semi-major axis is only altered by BYORP

acceleration in the ŷb direction. The BYORP model is only applied as a constant force in the

ŷb direction in the body-fixed frame. The orbital angular momentum is in the same direction

as the rotation pole in the body-fixed frame, or Ĥp = ẑb. Because the body is synchronous,

x̂b is always pointed towards the radius of the secondary around the primary. Therefore the

simplified model with a constant force is:

aBY ORP =
P (rs)A

′
0(2)

mp

Ĥp × (−r̂p) (2.47)
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The Laplace Plane

In 1805, Laplace published his theory that the satellites of Jupiter and the rings and

moons of Saturn maintain a nearly constant inclination relative to the local invariable plane

under the perturbing effects of solar tides and oblateness [86]. This became known as the

Laplace plane. When a satellite is subject to perturbations due to the oblateness of the

main-body, the orbit will precess around the planet’s rotation pole. Likewise, perturbations

due to third-body effects from the Sun will cause the satellite to precess around the helio-

centric orbit-pole of the planet. With both perturbations and a planet with a spin-pole not

aligned with its orbit-pole, there will exist an inclination where the precession due to these

perturbations will be in balance such that the orbit has a constant inclination. If the orbit

of the satellite is offset from this inclination, the orbit will instead precess around a mean

pole that lies between the planet’s rotation and orbit poles. This intermediate pole defines

the classical Laplace plane, and the orbit with an orbit-pole aligned with this intermediate

pole will be “frozen” to perturbations [83, 87]. For a satellite with an orbit very close to

the planet, the Laplace plane will lie approximately on the planet’s equatorial plane, while

distant satellites will lie approximately on the planet’s orbit plane. In between these two

extremes, the Laplace plane lies at a given intermediate angle at a specific semi-major axis.

There exists one significant semi-major axis called the “Laplace radius” and it is the semi-

major axis where the Laplace plane bisects the equator and orbit plane or the perturbation

forces due to J2 and the Sun are equal. The sum of all the possible intermediate orientations
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between the two extremes (equator and orbit plane) creates the Laplace surface [83, 88, 89]

The surface can be observed in Figure 3.1. These frozen orbits all share similar nodes, do

not have secular precession and remain in a circular orbit. The Laplace plane is an essential

concept in planetary science because many planetary satellites orbit near the Laplace plane.

The satellites that are near the Laplace plane are assumed to have been formed by circum-

planetary gas disks. The satellites in orbits far from the Laplace plane are thought to be

captured from heliocentric orbits or some other unusual event [83].

Figure 3.1: Laplace Surface is the collection of stable classical Laplace plane frozen orbits.
As the semi-major axis of the satellite’s orbit gets larger, the inclination of the orbit moves
from the equator to the orbit plane.

3.1 Averaging of Milankovitch Orbital Elements

The Milankovitch orbital elements are simply the angular momentum vector and the

vector b = µe, where µ is the gravitational parameter of the central body and e is the eccen-

tricity vector[90]. The angular momentum vector and eccentricity vector give a complete set

of integration constants for an unperturbed Kepler problem where the equations only need

the initial position of the satellite in its orbit [90]. Using the averaged equations of motion

of the Milankovitch orbital elements, the Laplace plane equilibrium can be easily derived.
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For the Laplace plane, the semi-major axis is constant and thus simplifies the problem [90].

hp =
1

√
µaap

rp × vp

ep =
1

µa
vp ×Hp −

rp
|rp|

(3.1)

Where hp is the angular momentum of the satellite and ep is the eccentricity vector of the

satellite. To get the rates of the above equations the Lagrange planetary equations is used.

ḣp = hp ×
∂R̄∗

∂hp

+ ep ×
∂R̄∗

∂e

ėp = ep ×
∂R̄∗

∂hp

+ hp ×
∂R̄∗

∂ep

(3.2)

where R̄∗ = R̄(hp, ep)/
√
µaap is the scaled averaged disturbing function of the perturbation,

that is independent of time. The average disturbing function is:

R̄(h, e) =
1

2π

∫ 2π

0

R(α,M)dM (3.3)

where α is a set of orbital elements excluding the mean anomaly, M .

3.2 Planetary Oblateness

The oblateness of the asteroid can be defined as

R2 =
µaJ2R

2
a

2r3
p

[1− 3(r̂p · p̂2)] (3.4)

Averaging over the orbital motion, and scaling the function by
√
µaa the new equation

is:

R̄∗2 = −npJ2R
2
a

4a2
ph

2
p

[1− 3(r̂p · p̂2)] (3.5)
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where np =
√

µa
a3p

is the satellite’s mean motion. This equation can now be substituted back

into Equation 3.2. Therefore the scalar perturbations due to oblateness are:

ḣ2 = −ω2

h5
(p̂ · hp)p̂× hp

ė2 = − ω2

2h5
p

{[
1− 5

h2
p

(p̂ · hp)2

]
× hp + 2(p̂ · hp)× p̂

}
· e

(3.6)

Where ω2 = 3npJ2R2
a

2a2p
is the oblateness perturbation factor.

3.3 Sun Third-Body Perturbations

Our satellite will always be much closer to the asteroid than the Sun, therefore rp � rs.

The quadrupolar perturbation function from the Sun’s gravity on the satellite is [91]:

Rs =
µs
2r3

s

[
3(rp · rs)2 − r2

s

]
(3.7)

To average this equation for secular effects, one must consider that there are two

different timescales for the dynamical motion: the asteroid’s orbit around the sun and the

satellite’s orbit around the asteroid. If the satellite’s period is way less than the period of

the asteroid around the Sun, you can assume the Sun’s motion is kept constant. Therefore,

the equation is averaged over the orbital rate of the satellite, np.

R̄∗s = − 3µs
8npash3

s

[
5(Ĥs · ep)2 − (Ĥs · hp)2 − 2e2

p

]
(3.8)

where hs =
√

1− e2
s, Ĥs is a unit vector aligned with the asteroid’s orbit pole. Using the

Lagrange planetary equations given in Equation 3.2 on Equation 3.8, the secular equations

of motion for the Sun’s gravity perturbations are:

ḣsun = −ωsĤs · (5epeTp − hph
T
p )× Ĥs

ėsun = −ωs
[
Ĥs · (5eph

T
p − hpe

T
p )× Ĥs − 2hp × ep)

] (3.9)

where ωs = 3µs
4npa3sh

3
s

is the third-body perturbation factor.
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3.4 Solar Radiation Pressure

The satellite is modeled with the Cannonball model, therefore the satellite is a sphere

with constant optical properties. Making the same assumption as with third-body pertur-

bations rp � rs, the disturbing function for solar radiation pressure is [29]:

Rsrp = −(1 + ρ)Pφ
br2
s

rs · rp (3.10)

It should also be noted; spacecraft going into the shadow of the asteroid is ignored.

Generally, the modified Laplace plane has a longitude of the ascending node that is fixed

at 0◦ or 180◦, and therefore in one asteroid orbit will orbit in the asteroids shadow for

portions of the year. Generally, for this research the stability of a natural satellite in modified

Laplace plane is analyzed. Therefore, this assumption may only be invalid for a small subset

of satellites that are barely stable in the orbit due to SRP. However the general trends

concluded in the research remain intact with this assumption in place. Also, for our model,

it is assumed that ρ = 0. Although having an albedo of zero is unlikely, the albedo value

is ignored because it would only change the answer by a factor of two, and therefore can

be built into the approximation of the size of a satellite. Once again, similar to the solar

third-body perturbations, the timescale of the asteroid’s orbit around the Sun is constant,

and averaged over the satellite’s orbital rate around the asteroid.

R̄∗srp =
3

2

√
ap
µa

Pφ
br2
s

d̂s · ep (3.11)

The equations of motion can then be found using Equation 3.2.

ḣsrp = −Hs tan Λ

r2
s

r̂s × ep

ėsrp = −Hs tan Λ

r2
s

r̂s × hp

(3.12)
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where Hs =
√
µsas(1− e2

s) is the specific angular momentum of the asteroid around the Sun

and Λ is the SRP perturbation angle. Λ is defined as:

tan Λ =
3Pφ

2bVlcHs

(3.13)

In which Vlc is the local circular speed of the satellite about the asteroid. As Λ ap-

proaches π/2 the perturbation due to SRP is strong, while when Λ is close to zero, the

perturbations due to SRP are weak. Because SRP does change a substantial amount over

the course of one orbit around the Sun, one cannot assume the time variation of the Sun’s

orbit can be held constant. If averaged again using the Lagrange planetary equations, the

perturbations due to SRP would vanish, which is not true. Therefore a different method is

used where the equations are rotated in the Sun-rotating frame, and the asteroid’s heliocen-

tric true anomaly is used in the single averaged equations of motion [41]. Where the final

secular equations of motion from SRP are [82]:

ḣsrp = −ωsrpĤs × hp

ėsrp = −ωsrpĤs × ep

(3.14)

These equations are the averaged orbital behavior where ωsrp is

ωsrp =
2π(1− cos Λ)

Ts cos Λ
(3.15)

in which Ts is the asteroid’s orbital period.

3.5 Classical Laplace Plane

The classical Laplace plane is derived from the averaged equations of motion defined

above with only J2 and third-body perturbations. The derivation begins with the total

averaged equation of motion of the Milankovitch orbital elements.
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ḣp = −ω2

h5
p

(p̂ · hp) p̂× hp − ωsĤs ·
(
5epep

T − hphp
T
)
× Ĥs

ėp = − ω2

2h5
p

{[
1− 5

h2
p

(p̂ · hp)2

]
× hp + 2 (p̂ · hp)× p̂

}
· ep

−ωs
[
Ĥs ·

(
5ephp

T − hpep
T
)
× Ĥs − 2hp × ep

]
(3.16)

The equations above are invariant under transformations [83]. For example, the above

equation is invariant when (p̂ → −p̂) or the obliquity of the asteroid can be restricted in

range from (0, π) to (0, π/2). Therefore, the solutions are the same for a given obliquity

and its retrograde complement. This is also true for when (Ĥs → −Ĥs), (ê → −ê), or

(ĥ→ −ĥ, t→ −t).

If it is assumed that e = 0, a complete general solution to Equation 3.16 exists [83]:

˙̂
hp = −ω2

(
p̂ · ĥp

)
p̂× ĥp − ωs(Ĥs · ĥp)Ĥs · ĥp (3.17)

The solutions to the Laplace equilibria from the above equation yields five types of

equilibria for the system determined by different orientations of the angular momentum and

eccentricity vectors. These are explored in Tremaine et al. [83]. Our work is only concerned

with the circular Laplace equilibrium. The condition for equilibrium with ė = 0 and ḣ =

constant is:

ω2

(
p̂ · ĥp

)
p̂× ĥp + ωs(Ĥs · ĥp)Ĥs · ĥp = 0 (3.18)

There are two relationships that will yield solutions to the above equilibrium:

ĥp · p̂ = ĥp · Ĥs = 0

or

ĥp · (p̂× Ĥs) = 0

(3.19)
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The first case the angular momentum is perpendicular to the principal plane and is

called the “orthogonal” Laplace equilibrium. The second case, the angular momentum lies in

the principal plane and is called the “coplanar” Laplace equilibrium. In the coplanar Laplace

equilibrium, the equilibrium vector can instead be described simply by an azimuthal angle

φ, where the equilibrium condition can be represented as:

ωs sin 2φ+ ωs sin 2(φ− ε) = 0 (3.20)

Where ε is the obliquity and φ, or the Laplace angle can be explicitly solved by

tan 2φ =
sin 2ε

cos 2ε+ (rL/ap)5
(3.21)

where rL is the Laplace radius.

r5
L = 2J2R

2
aa

3
sh

3
s

µa
µs

(3.22)

Equation 3.20 has four solutions for φ in a 2π interval, therefore φ, φ± π/2, and φ+ π

are all solutions [83].

3.6 Laplace Plane Stability

The classical Laplace plane eigenvalues equations are [83]:

λ2
h = −ω2

2 cos2 φ− ω2
s cos2(ε− φ)− ω2ωs

2
[cos 2φ+ cos 2(ε− φ) + 2 cos 2ε]

λ2
e = −ω

2
2

4
(5 cos4 φ− 2 cos2 φ+ 1)− ω2

s

2
[7 cos 2(ε− φ)− 5]

−ω2ωs
16

[2 + 3 cos 2ε+ 6 cos 2ε+ 6 cos 2(ε− φ) + 15 cos 2(ε− 2φ)]

(3.23)

From these equations and the equilibrium condition given in Equation 3.20, the possible

solutions to the Laplace plane and whether these solutions are stable can be determined.

These equations give the eigenvalues, which if λ2
h > 0 or λ2

e > 0, the Laplace plane is unstable.
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Figure 3.2: Stability and instability regions for the classical and orthogonal Laplace equilib-
ria. A “0” or “1” denotes if the region is stable or unstable respectively. The first number
gives the stability in the angular momentum, while the second number gives the stability for
the eccentricity.
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Varying the values of the obliquity, ε, and the inclination of the orbit, φ, the conditions for a

stable or unstable Laplace plane can be found. The results which were published in Tremaine

et al. 2009, and Rosengren & Scheeres, 2014 are in Figure 3.2. The instability region in

yellow in Figure 3.2 is unstable for obliquity angles above 68.875◦ − 111.125◦ and Laplace

radii from 0.8 to 1.25. The orthogonal Laplace equilibria are always unstable; however, there

is a small region where it is stable to eccentricity as seen in Figure 3.2.

3.7 Modified Laplace Equilibria

With the inclusion of the SRP perturbation terms in Equation 3.18, the Laplace equi-

librium is now [82, 90]

ω2

(
p̂ · ĥp

)
˜̂p · ĥp + ωs

(
Ĥs · ĥp

)
˜̂
Hs · ĥp + ωsrp

˜̂
Hs · ĥp = 0. (3.24)

In terms of obliquity and the Laplace angle the equilibrium is [82]

ω2 sin 2φ+ ωs sin 2(φ− ε) + 2ωsrp sin(φ− ε) = 0. (3.25)

The solutions for this equilibria are not symmetric. Therefore retrograde orbits will not

necessarily have the same inclination as the prograde orbits as was the case with the classical

Laplace plane. The modified Laplace plane is not invariant when (ĥ → −ĥ, t → −t). The

modified Laplace plane may also not have four solutions, but rather the roots of the equation

above vary in number with the strength of SRP [82].

As the mass-to-area ratio increases, SRP increases. And, as SRP increases, the Laplace

angle increases in inclination for constant orbital radii. It is assumed that ρ = 0 and mass-

to-area ratios of b = 10, 100, 1000, 10,000 kg/m2, and no SRP are compared. The difference

can be seen in Fig. 3.3. Figure 3.3 gives the Laplace angle or inclination of the natural

satellite as a function of semi-major axis normalized by the Laplace radius for mass-to-area

ratios of 10, 100, 1000, and 10,000 kg/m2 at Bennu. For no SRP, the Laplace radius is
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equivalent to 1 at the bisection of the obliquity (4◦) such that the Laplace angle is 2◦. For

an increase in the mass-to-area ratio the bisection occurs at a lesser semi-major axis. For

reference, a natural satellite with a mass-to-area ratio of 10 kg/m2, 100 kg/m2, 1000 kg/m2,

and 10,000 kg/m2 is 0.75 cm, 7.5 cm, 0.75 m and 7.5 m in diameter respectively.

Figure 3.3: The Laplace angle for varied mass-to-area ratios for given semi-major axes.



Chapter 4

Hypothetical Natural Satellites around 101955 Bennu

4.1 Introduction

The Origins, Spectral Interpretation, Resource Investigation, Security-Regolith Ex-

plorer (OSIRIS-REx) mission to return a sample from potentially hazardous near-Earth

asteroid (NEA) 101955 Bennu (1999 RQ36) is NASA’s third New Frontiers mission and

launched in September, 2016. During its time at Bennu, the spacecraft will occupy two

distinct Sun-terminator plane orbits at radii between 1 km and 2 km [42]. Thus, there is

interest in whether Bennu might possess any natural satellites in long-term stable orbits that

could interfere with spacecraft operations in Bennu’s vicinity. Bennu has been the target of

an extensive ground-based observation campaign since its discovery in 1999. Those obser-

vations have established that there are no natural satellites larger than 15 m in diameter.

[47, 48]

Because of the possible risks that are associated with unknown natural satellites upon

arrival at an asteroid, it is imperative for a spacecraft to begin scanning the area with

its instruments to try and detect natural satellites in orbit. In fact, OSIRIS-REx is doing a

natural satellite survey during approach to Bennu [27]. From the approach distance, large 10

m natural satellites will be easy to quickly spot, however objects less than a 1 m in diameter

will be more challenging. With a Hill sphere of 29.5 km, OSIRIS-REx would need to scan

∼ 2700 km2 area around the asteroid to conclude whether a natural satellite exists that

requires a potential redesign of the spacecraft’s trajectory to avoid a collision. This research
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will provide knowledge of where these natural satellites are able to exist in a stable orbit for

long periods of time. Thus constraining the necessary search area significantly. Therefore,

more time can be allocated to radar imaging of smaller areas around the asteroid, so that

more quality data can be presented with findings of smaller diameter natural satellites that

could significantly impact the mission.

There has been interest in the possibility of natural satellites or smaller material such

as dust or pebbles in orbit around asteroids [45, 46]. Most millimeter to centimeter sized

objects will not be stable due to solar radiation pressure. This still leaves a large range of

objects that could be stable at Bennu that radar observations haven’t discovered.

To investigate whether natural satellites <15 m exist around Bennu, initial conditions

are varied for semi-major axis, inclination and longitude of the ascending node to find a

range of possible orbits that are stable. It is define that unstable orbits as those that end

in a collision or escape, while stable orbits do not impact/escape during the simulation.

Eccentricity is not varied as an initial condition, but with perturbations from the Sun the

eccentricity may increase. Because highly eccentric orbits with large semi-major axes may

intersect near the surveying orbits of OSIRIS-REx; semi-major axes from 1 km to the Hill

sphere (∼29.5 km) are analyzed.[48] These initial conditions are evaluated for multiple sized

satellites up to 15 m in diameter. Each initial condition is simulated for 1000 years or until

the natural satellite escapes or collides with Bennu. If there is escape or collision, these initial

conditions are considered to be unstable. Stable natural satellites are in orbits capable of

being stable for more than tens of thousands of years. The longer an orbit is stable for a

natural satellite, the more likely it may have a natural satellite in orbit when OSIRIS-REx

arrives at Bennu. However, sweeping through as many possible initial orbit conditions at

Bennu for 10,000 to 100,000 years is computationally exhaustive. Therefore, 1000 years was a

compromise to find a preliminary idea of where such long-term orbits exist. It was found that

most orbits stable for 1000 years are also stable for 10,000 years, but there are exceptions.

These exceptions are simulated for 10,000 years and discussed in the results if necessary. By
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extending several test cases to 10,000 years, it was found that only a special subset of high

inclination orbits were unstable due to the Kozai resonance. All other solutions that were

stable for 1000 years were stable for 10,000 years. The results are trusted because they give

an idea of which orbits allow for long term stability of natural satellites, and therefore the

longer an object is stable in that orbit, the higher the probability a natural satellite will

exist in this orbit when a spacecraft arrives.

There are possible stable orbits expected to exist for varying diameter satellites. The

first possible stable region will be due to the modified Laplace plane (MLP). Tremaine defines

the classical Laplace plane as “...normal to the axis about which the pole of a satellite’s orbit

precesses”[83]. The perturbations on the satellite in the Laplace plane are caused by a third-

body and an oblate primary. The MLP also includes solar radiation pressure (SRP) in the

perturbation model [82]. It has already been determined that two characteristics of the

MLP around Bennu [92]. First, the MLP becomes less stable as the distance between the

satellite and primary increases. Second, the MLP is less stable as the diameter of the satellite

decreases. For a more indepth discussion and derivation on the Laplace plane, please refer

to Chapter 3.

Second, the Kozai resonance may be responsible for stable and unstable regions for

natural satellites. The third-body perturbations from the Sun on the satellite causes the

Kozai resonance. This resonance causes libration of the satellite’s argument of periapsis. The

libration produces an exchange between eccentricity and inclination such that the satellite’s

angular momentum projection normal to the Sun-Bennu orbit plane is conserved [84].

Finally, an orbit can be stable if in a Sun-synchronous orbit. These orbits have bounded

variations in the Keplerian orbital elements except the longitude of the ascending node. Due

to solar radiation torques, the longitude of the ascending node will precess at a rate equivalent

with Bennu’s orbit around the Sun [41].

By constructing and executing an array of detailed simulations modeling the evolution

of natural satellite orbits over thousand-year time scales, the possible sizes, distances from
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Bennu, and orbital orientations of long-term stable orbits is assessed. It is noted note

that theories proposing credible mechanisms for the in situ formation or capture of such

natural satellites are also required, but those studies are purposefully outside our dynamical

investigations. From these data, conclusions are drawn on the likelihood of Bennu possessing

natural satellites either in the past or during the current epoch. It is determined that whether

these satellites might interfere with the OSIRIS-REx spacecraft operations around Bennu.

And if so, which specific regions near Bennu that the OSIRIS-REx team may wish to focus

their efforts to search for natural satellites during the spacecraft’s approach to Bennu.

4.2 Implementation

4.2.1 Approximate escape semi-major axis

Before beginning analysis, it is important to understand at what distance from the

asteroid the spacecraft will escape. The Hill radius suffices for determining this distance

with third-body motion. But with the strength of the SRP perurbation in a small body’s

low gravity environment, the natural satellite will often escape at a radius less than the Hill

sphere. The Hill sphere is defined as [41]

rH = as(1− e)3

(
m

3ms

)1/3

. (4.1)

The minimum diameter where a natural satellite of a given mass-to-area ratio will escape

the system is defined by: [41]

amin =
1

4

√
µa

(1 + ρ)PΦ/b
as. (4.2)

The equations above are an approximation and some satellites at a semi-major axis less than

amin may escape. This equation’s relationship to various natural satellite diameters can be

seen in Fig. 4.1. For satellite diameters below ∼ 3 m, the SRP escape criterion is a better

approximation for the semi-major axis than the Hill sphere.
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Figure 4.1: The Hill sphere and SRP no-escape criteria for Bennu.
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4.2.2 Numerical Implementation

To help characterize and understand the orbits of possible natural satellites, the pa-

rameters studied will be the semi-major axis of the satellite’s orbit, the diameter of the

satellite, and the time the orbit remains stable. Instability is characterized by impact or

escape from Bennu. All parameters for Bennu are held constant. The parameters used in

this research are listed in Table 4.1 [27, 47, 48].

Table 4.1: Bennu Parameters

Parameter Value
Obliquity (with respect to the orbit plane of Bennu), φ 176◦

Gravitational parameter, µa 5.2 m3/s2

Assumed density of Bennu satellites , ρ 2000 kg/m3

Body Major Axis, α 567 m
Body Intermediate Axis, β 535 m
Body Minor Axis, γ 508 m
Heliocentric Orbit Semi-Major axis, as 1.126391025996 AU
Heliocentric Orbit Eccentricity, es 0.203745112
Heliocentric Orbit Inclination, is 6.0349391◦

Heliocentric Orbit Arg. of Periapsis, ws 2.0608668◦

The assumed density of Bennu’s satellites is larger than the currently estimated density

for Bennu of 1250 kg/m3 [93]. Bennu is a rubble pile and therefore may have space between

the boulders and rocks that comprise it while the natural satellite may be a single boulder

or a rubble pile. It is assumed that the natural satellite is a boulder and will be denser than

Bennu. With the assumed density of 2000 kg/m3 for the natural satellites, the approximate

size of a natural satellite can be determined. This value is larger than the density of Bennu.

This is because Bennu is a rubble pile asteroid, or a collection of lose material bound together

by gravity. This rubble pile has large gaps between the rocks and boulders that make up

Bennu and therefore creates a very low density object. If a satellite fissions from the asteroid

and is small, it doesn’t have enough gravity to be a bound rubble pile, and therefore will be a

single rock or boulder. Therefore, the assumption of the density will be greater to represent

a monolithic rock. Assuming the natural satellite is a sphere, the SRP will only affect the

surface area of a circle in the Sun direction. The diameter of the natural satellite in terms
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of density and mass-to-area ratio is:

D =
3

2

b

ρ
(4.3)

The semi-major axes studied range from 1 km out to the Hill sphere, this will include

any orbits that grow in eccentricity that may intersect with the OSIRIS-REx survey orbits.

The mass-to-area ratios will be from the minimum mass-to-area ratio to yield a captured

orbit to 20,000 kg/m2. For the density assumed, this will be up to a 15 m diameter satellite.

The actual density of these satellites can vary from the assumed value, so the diameters

given are approximate.

The natural satellite orbits are numerically simulated for numerous initial conditions.

Our program to simulate these results was written in C. MATLAB was used to analyze sim-

ulation outputs. The numerical simulation in C uses the GNU Scientific Library, which has

a suite of functions used to integrate ordinary differential equations. Runge-Kutta Prince-

Dormand (8, 9) method is the integration method used. Both the absolute and relative

tolerances of the integration are 10−14 m. The integration time will be 1000 years. One

thousand years is ample time to determine which orbits are stable for long periods of time.

But also, short enough that computations are not overly time-consuming. However, there

will be case studies on several examples with larger time scales to determine how this changes

the results. For the natural satellite around Bennu, the initial orbit is always assumed to be

circular for simplicity. Future work will explore a range of eccentricities since eccentricity

can cause certain orbits to become more stable [41].

The initial conditions tested will be at semi-major axes of 1-15 km in intervals of 1

km and then at intervals of 5 km up to 30 km. For each semi-major axis, the mass-to-area

ratios between 10 kg/m2 to 20,000 kg/m2 are tested. This covers a range of natural satellites

from 0.0075 m to 15 m in diameter. The mass-to-area ratios from 10 − 90 kg/m2 will be

analyzed in intervals of 10 kg/m2, then mass-to-area ratios from 100 − 900 kg/m2 will be
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analyzed in intervals of 100 kg/m2, and mass-to-area ratios from 1000− 20, 000 kg/m2 will

be analyzed in intervals of 1000 kg/m2. For any semi-major axis and mass-to-area ratio, 120

iterations of varying initial conditions are integrated for 1000 years. The 120 iterations vary

with Ω = 0◦ , 90◦ , 180◦ , 270◦ and inclinations from 0◦ to 180◦ in increments of 6 degrees.

This gives a total of 62,640 simulations. The next section will provide a summarization on

meaningful trends found in these simulations. Certain simulations will provide insight into

the physical phenomena that may be responsible for stability/instability for given initial

conditions.

4.2.2.1 Spherical Harmonics

For lower orbits, it is found that increasing the gravity field up to 4th order in the

zonal harmonics was needed to resolve some of the stability zones. Zonal harmonics are only

increased because Bennu is close to rotationally symmetric. This approximation was close

enough to sample results with 4× 4 spherical harmonics, but with a significant reduction in

computation time. At orbits around 1 km, there were some cases where the J2 only orbits

had different stability characteristics than those expanded up to J4. This can be seen in

Fig. 4.2, which shows the inclination vs. longitude of ascending node for orbits of various

initial conditions and a = 1 km and D = 0.6 m. Stable orbits are in blue, while unstable

orbits are in red, where there are stable orbits for J2 near 90◦ that do not exist for the 4× 0

simulation. At orbits higher than 3 km no differences were found between these cases. Thus

for orbits less than 3 km a 4th order zonal gravity field was used while for orbits above 3 km

J2 was used .
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(a) Ω vs. i for J2 shape model (b) Ω vs. i for 4× 0 shape model

Figure 4.2: Comparison of J2 and 4× 0 shape model for a natural satellite with D = 0.6 m
at a = 1 km
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4.3 Natural Satellite Stability

A summary of the results is given in Fig. 4.3. This figure represents the results of

all simulations with varying semi-major axes, inclinations, longitude of the ascending nodes,

and natural satellite diameters. For each semi-major axis and inclination simulated, the

minimum natural satellite diameter is determined and shown with a corresponding color,

where blue is the smallest diameter to red being the largest. The figure shows the minimum

natural satellite diameter stable for 1000 years at each semi-major axis and inclination.

Larger diameter objects may exist at the same semi-major axis and inclination. As a satellite

becomes smaller, the more likely it becomes that SRP will disturb its orbit and cause it to

go unstable. Therefore, the minimum natural satellite diameter gives the smallest diameter

not affected by SRP. Notice that inclinations between 36◦ and 144◦ at semi-major axes

between 1 and 13 km have significantly smaller diameter natural satellites than the rest of

the simulations. Not all objects larger than the minimum diameter are stable. There are

regions of instability for larger diameters that can be seen in the Appendix.

A summary of the full results can be seen in Tables A.1 to A.3 in the Appendix.

These tables give a list of all diameters of natural satellites stable for 1000 years at a given

inclination and semi-major axis. It is important to note that often there are bands of stable

diameters. For instance, in Table A.1 at a semi-major axis of 2 km and an inclination of 54◦

the diameters that are stable are 0.03−0.06 m and 1.5−15 m. These ranges of diameters are

both stable for two different reasons. As discussed below, the smaller ranges of diameters for

natural satellites are stable because they are in a Sun-synchronous orbit. Larger satellites

are stable due to SRP not significantly altering the orbit of the satellite.

4.4 Progression of Stability with varying size of natural satellite

The data were analyzed by observing the evolution of stable and unstable orbits at

a constant semi-major axis and increasing the size of the natural satellite. Some select
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examples of these results can be viewed in Fig. 4.4, showing 12 graphs that represent

the varying initial conditions. For all figures the semi-major axis of the orbit was kept

constant, but each plot represents a different sized diameter at that semi-major axis. Each

plot gives 120 different initial conditions for the natural satellite by varying the inclination

and longitude of the ascending node for that specific semi-major axis and natural satellite

diameter. Each data point represents an inclination and a longitude of ascending node at

a specific time in any given orbit. The example case shown in Fig. 4.4 is for a semi-major

axis of 4 km in the asteroid-orbit centered frame. The 12 figures increase in natural satellite

diameter from 0.75 m to 7.5 m. The sum of all the data yield information on which orbital

regions are stable/unstable or if longitude of periapsis precesses 360◦ or less for a certain

initial condition. It is noted that the color of the data depicts how long the orbit existed

before escape or collision. In Fig. 4.4l, there is a color map that can shows the length of time

the orbit was stable, where red shows it became unstable in less than 200 years and blue

shows it remained stable until the end of the simulation at 1000 years. The first noticeable

observations from Fig. 4.4 is that graphs a, b, and c have stable orbits at inclinations

between 50◦ − 100◦, but graphs d-l are unstable in this region. Graphs a-c are stable in

this region due to being in a Sun-synchronous orbit while the instability in the subsequent

graphs is due to instability from the Kozai resonance. This is discussed in the subsequent

sections. The second noticeable features of graphs d-l are the stable regions at low prograde

and high retrograde inclinations that do not precess 360◦ through Ω, but rather oscillate

around Ω = 0◦ or Ω = 180◦. These points of stability are the modified Laplace plane (MLP)

orbits. The MLP is a frozen orbit in both longitude of the ascending node and inclination.

Due to short-term perturbations not modeled in the averaged equations of motion, even if

the initial conditions were exactly on the MLP; the orbit would still oscillate. Also, initial

conditions close to the MLP will also oscillate around the stable region, but with a larger

variance in the inclination and Ω. Further discussion on the MLP is in a more detailed

section below.
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(a) D=0.075 m (b) D=0.375 m (c) D=0.75 m

(d) D=1.5 m (e) D=2.25 m (f) D=3.0 m

(g) D=3.75 m (h) D=4.5 m (i) D=5.25 m

(j) D=6.0 m (k) D=6.75 m (l) D=7.5 m

Figure 4.4: Evolution of the orbital planes at a semi-major axis of 4 km for various satellite
diameters.
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4.5 Range of Sizes possible for a Natural Satellite in a Sun-Synchronous

Orbit

Sun-synchronous orbits are orbits that rely on a strong SRP perturbation to cause the

node of the orbit to precess at the same rate as the asteroid travels about the sun. These

orbits are naturally stable, and oscillate about an eccentric orbit of eccentricity e = cos Λ

with orbit angular momentum vector pointing towards or away from the sun. The orbits

become more stable as the SRP perturbation grows, to the point where the object is stripped

out of orbit. Due to this, such orbits are useful for spacecraft and thus natural satellites

trapped in such orbits would be of significant concern.

Sun-synchronous orbits possibly containing natural satellites are especially interesting

to OSIRIS-REx as the spacecraft will be in terminator plane orbits between 1 km and 2 km.

The terminator plane orbit is a sun-synchronous orbit, but with the advantage of the orbit

plane being perpendicular to the Sun-line. This orbit orientation allows the spacecraft to

face the Sun. SRP drives the stability of the terminator plane at an asteroid as opposed to

J2 with planetary terminator planes [41]. Because the terminator plane is driven by SRP,

it is stable to secular perturbations caused by SRP and therefore is an opportune orbit for

spacecraft along with natural satellites.

As stated in the introduction to this chapter, there are no natural satellites orbiting

Bennu greater than 15 meters in diameter. So the focus of these results were to determine

the minimum natural satetllite diameters that could exist around Bennu. An example is

an orbit at 4 km, where the minimum size stable natural satellite is 5.25 cm. This object

was stable for 1000 years at a semi-major axis of 4 km, Ω = 0◦, and i = 90◦ − 108◦. Some

Keplerian orbital elements for these 4 orbits can be seen in Fig. 4.5. The semi-major axis,

eccentricity, and inclination are constant for the 1000 year period. Longitude of the ascending

node precesses a full 360 degrees. These results have the properties of a Sun-synchronous

orbit. In Fig. 4.6, an inclination vs. Ω plot is displayed in the Sun-Bennu rotating frame.
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Sun-synchronous orbits precess in the inertial frame but will remain bounded to ΩR = 0◦ or

ΩR = 180◦ in the Sun-Bennu rotating frame. Because the longitude of the ascending node

is bounded in Fig. 4.6, the data for the four different orbits all have a precession similar to

the rate of Bennu traveling around the Sun.

Figure 4.5: Keplerian orbital elements for the 4 stable orbits for a 5.25 cm satellite at 4 km.

Sun-Synchronous orbits cause a multitude of < 0.75 m diameter satellites to be stable

at inclinations between 36◦ and 144◦ or the large blue colored region in Fig. 4.3. These

Sun-synchronous orbits oscillate around the terminator plane near i = 90◦. Therefore, a

Sun-synchronous orbit starting at i = 40◦ will oscillate in inclination between 40◦ and 140◦.

If you take these Sun-synchronous orbits away, the summary of stable orbits becomes much

different and can be seen in Fig. 4.7. The figure drastically changes and there are far fewer

< 1 m sized satellites that are stable. Objects at inclinations between 78◦ and 102◦ are

unstable for a > 4 km. These Sun-synchronous orbits are stable to SRP. Without being in

one of these Sun-synchronous orbits, it is very difficult for smaller objects to remain stable
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long-term at higher altitude orbits.

Table 4.2: Sun-Synchronous orbits

Semi-major axis (km) Range of diameters of
natural satellite (m)

1 0.0075
1.5 0.0075 - 0.045

2 0.015 - 0.225
3 0.03 - 0.3
4 0.0525 - 0.375
5 0.15 - 0.45
6 0.15 - 0.525
7 0.15 - 0.6
8 0.225 - 0.75
9 0.3 - 0.675

10 0.375 - 0.75
11 0.45 - 0.75
12 0.6-0.75
13 0.75
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Figure 4.6: Inclination vs. Ω for 1000 years for i = 84◦, 90◦96◦, 102◦ for a 5.25 cm satellite
at 4 km.
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4.6 Stability with the modified Laplace plane

As stated in a previous section, the stable points near Ω = 0◦ and Ω = 180◦ are

most likely the results of the modified Laplace plane (MLP) due to the lack of precession in

the longitude of the ascending node. A way to confirm this is by comparing the averaged

equations shown in Equation (3.16) to the numerical results. In Fig. 4.8a the whole solution

set is compared to the averaged equations, but in Fig. 4.8b just the modified Laplace plane

and a few other orbits are shown. In Fig. 4.8b, the results for a = 5 km, D = 7.5 m

were compared where just the MLP and two other orbits are plotted. There is a point

at Ω = 0◦, i = 3◦ which is the MLP equilibrium. The two other orbits are near enough

to the equilibrium that they oscillate around it. In blue are the numerical results. The

numerical result for the MLP isn’t a point but rather a tight circle with some variance in

Ω and inclination. Also, the two neighboring orbits deviate from the averaged equations

and have a larger variance in Ω and inclination. It is expected this because the numerical

solutions have perturbations that are not modeled with the secular averaged equations of

motion.

As the natural satellites decrease in diameter or their mass-to-area ratio decreases,

the MLP will cease to be a stable orbit. The averaged equations of motion that model the

MLP do not model non-secular motion caused by SRP. Therefore, compared to the example

object shown in Fig. 4.8b with D = 7.5 m, the object with D = 1.5 m in Fig. 4.8c will

vary in motion around the MLP more significantly. Eventually, this non-secular motion

will be the dominating perturbation, the smaller object will escape or impact Bennu. Also,

the variance in motion will change depending on how close to the MLP the initial orbit of

the natural satellite may be. If the object’s initial conditions are exactly on the modified

Laplace, inclination and longititude of the ascending node are bounded much more than an

object displaced a couple degrees in inclination from the MLP.



68

(a) All results (b) Prograde MLP, D=7.5 m

(c) Prograde MLP, D=1.5 m

Figure 4.8: Figures (a-b) Inclination vs. longitude of the ascending node for a = 5 km, D =
7.5 m. In green are the averaged equations of motion results. (c) a = 5 km, D = 1.5 m
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4.7 Kozai Resonance

Figure 4.9: The numerical and analytical data for the Kozai resonance at a = 10 km, D =
7.5 m,Ω = 0◦, i = 72◦.

For a Kozai resonance to occur, the satellite has negligible mass compared to the other

two bodies in a three-body system. Also, the distance between the primary and the satellite

must be much closer than the primary to the Sun. These are both true in this scenario.

The orbit’s argument of periapsis librating due to perturbations from the Sun causes the

Kozai resonance. Using the averaged equations of motion for just third-body dynamics, the

angular momentum of the satellite’s orbit projected normal to the Sun-Bennu orbit plane is

conserved. This can be quantified as:

Hz =
√

(1− e2) cos i (4.4)
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Therefore, the eccentricity and inclination of the satellite’s orbit will vary. As inclina-

tion increases, the eccentricity will decrease and vice versa. The Kozai resonance will most

likely occur further out from the asteroid such that spherical harmonics will not significantly

perturb the system. The satellite needs to be massive enough as to not be perturbed sub-

stantially from SRP. Also at high inclinations, the Kozai resonance will cause instability

since the eccentricity will be too large. Eccentricity will increase such that it will collide

with Bennu or it will escape the Hill sphere.

The Kozai resonance is determined with averaged equations that only include third-

body dynamics. In order for the Kozai resonance to occur, the semi-major axis needs to be

far enough away from Bennu that perturbations due to J2 are no longer significant. Plus, the

satellite has to be large enough in diameter such that SRP is no longer a dominating force.

Therefore, to determine the possibility of a Kozai resonance around Bennu, the example

used is both far from Bennu at 10 km and a large satellite at 7.5 m in diameter. In Fig.

4.9, there is a plot of eccentricity as a function of inclination. The numerical results for

the orbit of one initial condition at a = 10 km, D = 7.5 m, Ω = 0◦, i = 72◦ is given

by the blue data points. The general trend of the data is as eccentricity increases, the

inclination decreases, a property of the Kozai resonance. Since numerical results of an orbit

have multiple perturbations modeled, it cannot be assume Hz or the angular momentum in

the z−component of the Bennu-Sun orbit plane is constant. Therefore, for the value of Hz,

the mean of all the data points was used to determine the value of Hz. Then a range of

eccentricities from 0 to 0.8 was used to solve for the inclination. These results are shown in

Fig. 4.9 as a red curve. The numerical data follows the same curve as the analytical Kozai

resonance equation. But, there is a larger variance in inclination for the numerical results.

This may be due to the other perturbative forces on the satellite or higher-order third-body

perturbations not accounted for in the averaged equations. Further research will need to be

done to verify that this large variation is acceptable and that the orbit can be considered

stable for longer periods of time.
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The Kozai resonance may also be responsible for the instability regions in Fig. 4.4d-

l. The Kozai resonance has a maximum eccentricity value for a given inclination. This

relationship is:

emax =

(
1− 5

3
cos2 imax

)1/2

(4.5)

For the example orbit with an initial inclination of 72◦, the maximum eccentricity

is 0.91. The resulting eccentricity from the numerical data appears to go beyond that

value to 0.92. As the initial inclination increases, the maximum eccentricity achieved by

the Kozai resonance also increases. Eventually, the maximum eccentricity is so high that

the satellite may escape the Hill sphere or collide with Bennu. Above an inclination of

72◦, there is a critical inclination where the eccentricity will become large enough to cause

instability through the Kozai resonance. The same case exists for retrograde orbits near a

polar inclination. This givese a band of unstable inclinations between 78◦ − 102◦.

Figure 4.10: Inclination vs. Ω for a = 4 km, D = 5.25 m for 10,000 years.
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By looking at Fig. 4.4g-l, there exist stable orbits in the region that are supposed

to be unstable due to the Kozai resonance. This may be due to two reasons. First, there

are other perturbing forces other than third-body perturbations from the Sun causing the

orbits to not reach maximum eccentricity. Second, the simulation did not run for a time

period long enough to witness the escape/collision due to the growth in eccentricity. To see

if a longer simulation time will yield the escape/collision, Fig. 4.4i with initial conditions

a = 4 km, D = 5.25 m is integrated for 10,000 years. The results are in Fig. 4.10.

After 10,000 years all orbits in the 60◦ − 120◦ range are unstable, which suggests the Kozai

resonance is the reason for this unstable region, but the time scales for oscillations between

maximum inclination and maximum eccentricity are on longer time scales than 1000 years.

Above it was mentioned that the band of unstable orbits found in Fig. 4.7 for incli-

nations from 78◦ − 102◦ for semi-major axes greater than 4 km is attributed to the Kozai

resonance. However, if the time of integration was extended to 10,000 years, the Kozai res-

onance causes instability for all orbits from 60◦ − 120◦. Therefore, this band of unstable

orbits for semi-major axes greater than 4 km, may cover a larger range of inclinations if the

integration was on time scales that allowed for maximum eccentricity to be obtained through

the Kozai resonance. In future work, it would be advantageous to extend the integration

time in this region to see if the Kozai resonance would have this impact.

4.8 Conclusion and Future Work

4.8.1 Conclusion

Simulations were performed for hypothetical natural satellites from 0.0075 m to 15 m

at semi-major axes from 1 km to the Hill sphere of 29.5 km [48]. The 120 iterations vary with

Ω = 0◦, 90◦, 180◦, 270◦ and inclination from 0◦ to 180◦ in increments of 6 degrees. A subset

of the data was used as an example to show how the stable and unstable orbits evolved as the

size of the natural satellite increased at a constant semi-major axis. Multiple observations
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were made on whether Sun-synchronous, modified Laplace plane, or Kozai resonance could

be used to help understand certain regions.

Sun-synchronous orbits were stable for the smallest natural satellites with diameters

from 0.75 cm to 0.75 m. The Sun-synchronous orbits were stable for inclinations from

36◦ and 144◦ and semi-major axes from 1.5 km to 13 km. The range of inclinations for

these orbits also includes the terminator plane, which means OSIRIS-REx could share an

orbit with a natural satellite. The two terminator plane orbits that OSIRIS-REx will be

in are at radii between 1 km and 2 km. In this study, no natural satellites stable in the 1

km terminator orbit were found. However, larger objects greater than 4.5 m were found,

capable of being stable at 90◦, but are not in a terminator or Sun-synchronous orbit. At 1.5

km, there are natural satellites stable in the terminator plane, but they are less than 10 cm

in diameter. OSIRIS-REx will only be searching for natural satellites greater than 10 cm in

diameter during approach to Bennu.[48] Once again, at a radius of 1.5 km, there are objects

larger than 1.5 m capable of orbiting at the same inclination, but not in a Sun-synchronous

orbit. These larger objects are not in a frozen like Sun-synchronous orbits and therefore may

vary more in their Keplerian orbital elements. At 2 km radii, there are natural satellites

with diameters greater than 10 cm in a terminator plane orbit. These objects tend to be

eccentric and therefore will intersect the 1.5 km orbit at times. Therefore, OSIRIS-REx will

be interested in surveying for natural satellites that may be stable near the terminator plane

orbits the spacecraft will be occupying.

For objects greater than 1.5 m in diameter, the modified Laplace plane is a stable frozen

orbit where natural satellites may reside for all orbital radii. Because of the low obliquity of

Bennu, the modified Laplace plane will only have inclinations differing from the equator of

4◦ or less. Both prograde and retrograde modified Laplace plane orbits are stable. Natural

satellites near the modified Laplace plane may oscillate around the Laplace plane such that

RAAN does not precess.

The Kozai resonance created an unstable region for inclinations between 78◦ − 102◦
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for orbital radii greater than 4 km in the 1000 year timespan. The Kozai resonance affects

objects greater than 1.5 m in diameter that are not easily perturbed by SRP.

4.8.2 Future Work

From the data, interesting orbital phenomena capable of occuring to natural satellites

around Bennu have been characterized. However, there is interesting work that could be done

to further answer some questions on the topic. There is one example of the Kozai resonance

occurring at a = 10 km, D = 7.5 m,Ω = 0◦, i = 72◦, but it is not understood what range of

diameters the natural satellite or distance from Bennu that the Kozai resonance occurs. Also,

it would benefit OSIRIS-REx to better understand the stability of orbits at 1 km. Observing

Fig. 4.3, the minimum diameter natural satellite stable seems random as inclination increases

compared to larger orbital radii. One km orbit stability will be heavily affected by spherical

harmonics, therefore further investigation in how this affects the lower orbits around the

asteroid will be beneficial. Further conclusions can also be made by quantifying the variance

in the eccentricity of a given natural satellite orbit. Many of these orbits maintain constant

semi-major axis and inclination, but the eccentricity can increase dramatically. Therefore,

these satellites make exist at a large range of radii and a large breath or orbits may intersect

paths with OSIRIS-REx.

Finally, this investigation was purely targeted at the asteroid Bennu for understanding

where the stable orbits of a natural satellite may exist. However, this study can be applied

to other small bodies or with bodies of varying obliquities, and the dynamics could be

very different. Therefore, understanding how the orbital phenomena change from various

obliquities or asteroids could help with understanding the dynamical environment of natural

satellites for future missions to small bodies. Altering the obliquity of the asteroid and its

effects are discussed in the next chapter.



Chapter 5

Artificial and Natural Satellites around Asteroids

This chapter looks into both natural and artificial satellites around multiple asteroids.

The chapter is broken into four main sections, each interested in a different focus that com-

plements the work done on natural satellites around Bennu. The first section will introduce

the stability of a spacecraft and a one meter in diameter natural satellite around multiple

asteroids: KW4, Bennu, and Vesta. Specifically, this study focuses on the stability of the ter-

minator plane and Laplace plane around these asteroids while changing various parameters.

The second section focuses on artificial satellites at Bennu using a subset of mass-to-area

ratios from the previous chapter. The third part takes a more in-depth look at the mod-

ified Laplace plane and how much mass an asteroid needs for the spacecraft to be stable.

Finally, the last section of this chapter looks at various obliquities of an asteroid to see how

that changes the overall stability of natural satellites that could orbit a given asteroid. This

chapter hopes to gain some insight into artificial and natural satellites at various asteroids

and to help advance perspective on general satellite stability around an asteroid.

5.1 Natural and Artificial satellites around multiple asteroids

Initiating and maintaining a spacecraft orbit in the proximity of an asteroid is a sig-

nificant challenge. The unique and often irregular shapes of asteroids cause their gravity

fields to be non-uniform, while the low mass of these bodies results in their gravity fields

being relatively weak. Also, solar radiation pressure (SRP) can be a dominating force on a
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spacecraft’s motion in this weak gravity environment. All of these factors combine to make

the orbital motion of a spacecraft about an asteroid potentially unstable over time. Such

instability could lead to the spacecraft escaping from the asteroid or crashing into its surface.

Therefore it is paramount to determine frozen orbits that exist around an asteroid such that

excessive station-keeping can be minimized. Frozen orbits such as the Sun-terminator plane

are being used by OSIRIS REx; however, the Modified Laplace Plane may also yield another

viable option as a frozen orbit to be utilized by spacecraft [41].

The motion of the spacecraft around an asteroid includes perturbations from J2, third-

body perturbations from the Sun and SRP. To better understand the full capability of the

modified Laplace plane, parameters such as the asteroid orbit, mass-to-area ratio of the

spacecraft, and obliquity of the asteroid are varied. Three asteroids are studied to determine

the effect an asteroids’ shape, mass and orbit have on the spacecraft. These asteroids are

66391 (1999KW4), Bennu, and Vesta. Near-Earth asteroid 66391 (1999 KW4), hereinafter

will be referred to as KW4. Although Vesta is not a NEA, its comparably larger mass will

help contrast the effects of SRP on the other two smaller bodies.

5.1.1 Implementation

There is a multitude of parameters that can be varied to compare how the Laplace

equilibrium and other equilibria evolve. The parameters that will be varied are obliquity,

semi-major axis, mass-to-area ratio of the spacecraft, the asteroid’s mass and J2. The

asteroids being compared are 1999 KW4, Vesta and Bennu. The parameters for each are

listed in Table 5.1.

Table 5.1: Asteroid Parameters

Name Mass (kg) SMA (km) Ecc. ( ) Ts (days) ε (deg) α (km) β (km) γ (km)
Bennu 6.233× 1010 1.6844× 108 0.204 436.6 175◦ 0.3 0.3 0.25
1999 KW4 2.353× 1012 9.6042× 107 0.688 188 3.2◦ 0.75 0.75 0.65
Vesta 2.5908× 1020 3.5328× 108 0.0886 1325 41◦ 283 279 223
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Figure 5.1: The Hill sphere and SRP no-escape criteria for Bennu, KW4, and Vesta.
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Before beginning analysis, it is essential to understand at what distance from the

asteroid the spacecraft will escape. The Hill radius usually is sufficient for determining this

distance, however with the strength of the SRP perturbation another approximation needs

to be established. The Hill sphere is defined as [41]

rH = as(1− es)3

(
mp

3ms

)1/3

. (5.1)

The approximation for what distance SRP will be weak enough the spacecraft will not

escape is [41]

amin =
1

4

√
µa

(1 + ρ)Pφ/b
as. (5.2)

Although the equations above are an approximation and may result in some semi-major

axes less than amin escaping, it gives a more realistic idea of where SRP is a dominating

perturbation. The results of these analytic equations for Bennu, KW4, and Vesta can be

seen in Figure 5.1. Notice that for Vesta, a large asteroid with significant mass, the Hill

radius is a better approximation of when the spacecraft will escape as opposed to the SRP

escape criteria. However, for KW4 and Bennu, mass-to-area ratios below ∼ 1500 kg/m2 and

∼ 3000 kg/m2 respectively yield the SRP escape criteria as a better approximation. This

suggests that SRP is a significant perturbation that will cause instability for the satellite up

until at least these mass-to-area ratios.

5.1.2 Overview of Ω and Inclination precession

All trajectories will be compared with a right ascension of the inclination versus as-

cending node (RAAN) plot. The initial conditions have a RAAN of 0◦ or 180 ◦ while the

inclinations tested are 0◦ to 180◦ in increments of 15◦. The initial conditions will also include

the prograde and retrograde Laplace plane equilibria. The time will be terminated at escape

or collision or after ten years. The change in inclination and RAAN will be mapped over
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time for these initial conditions to show general trends in the motion of the spacecraft given

its initial orbit parameters. Figure 5.2 can be used as an example for the inclination vs. right

ascension of the ascending node map. The numerical results are displayed in colors ranging

from blue to green, where the color denotes the time of escape/collision or end of integration;

where the green data set represents a trajectory that quickly escapes from or collides with the

asteroid. A pure blue set of data denotes the end of integration with no escape of collision.

The data that are displayed in red denotes the averaged equations of motion’s evolution of

RAAN and inclination. Three general trends can be seen in these maps. The first is the

modified Laplace plane equilibrium. For the modified Laplace plane the averaged equations

in red will be a singular point denoting no changes in inclination or RAAN over time. This

can be seen in the three different plots in Figure 5.2 at various inclinations with RAAN of

either 0◦ or 180◦. The numerical equations will never result in a singular point when on the

modified Laplace plane but rather the data will “orbit” the averaged equation’s equilibrium

data point due to small precessing in inclination and RAAN. The second trend is where

both the averaged equations and numerical equations orbit around the equilibrium. This is

when the initial condition is somewhat offset from the modified Laplace plane. This can be

seen as a closed singular loop for the averaged equations while the numerical is a closed loop

but with oscillations around the averaged equations. These oscillations that don’t exist in

the averaged model are non-secular motion due to SRP. If this non-secular motion is large

enough it will cause the satellite to become unstable. Finally, there exists a case where both

the average equations and numerical equations yield an inclination that oscillates within

a range of values, but the RAAN precesses through 360◦ of motion. The numerical data

will oscillate about the averaged equations or deviate from the averaged equations over time

depending on the strength of the non-secular forces due to SRP.
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5.1.3 Obliquity

The obliquity affects where the Laplace angle will lie on the Laplace surface. For

comparing varying obliquity, all analysis was completed at 0.25 Laplace radius at Bennu

with an object that has a mass-to-area of b = 1000 kg/m2. The analysis was done in the

asteroid orbit-frame; therefore the equilibrium in this frame is defined by i = ε − φ. This

close to the asteroid the Laplace angle is inclined 1.5◦ from the equator, which means the

Laplace angle is at 29.5◦ relative to the orbit plane.

It can be seen in Figure 5.2 that as the obliquity increases, so does the inclination of

the Laplace surface relative to the orbit plane. There are two Laplace equilibria. First is at

Ω = 0◦, i = ε − φ and the second is Ω = 180◦, i = 180◦ − i. As the obliquity increases,

the two equilibrium are relatively close regarding inclination, till both are at 90◦ when the

obliquity is 90◦. This is a special case where the asteroid equator is perpendicular to the

orbit pole. It should also be noted, that as the obliquity increases, the further away an orbit

can be displaced from the modified Laplace plane and still precess about the Laplace plane

as opposed to processing in RAAN a full 360◦. When the obliquity reaches 90◦, all initial

conditions investigated are precessing around the Laplace plane.
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(a) 30◦ Obliquity (b) 60◦ Obliquity

(c) 90◦ Obliquity

Figure 5.2: These three figures show the numerical results in blue to green and the averaged
motion in red. Each plot was evaluated at 0.25 Laplace radii at Bennu with b = 1000 kg/m2.
Figure a.) ε = 30◦ b.) ε = 60◦ c.) ε = 90◦ These figures are in the asteroid orbit frame so
the equilibria for the Laplace plane is defined by i = ε− φ.



82

(a) Vesta φ = 5◦, 0.743rL (b) Vesta φ = 15◦, rL

(c) Vesta φ = 25◦, 1.345rL

Figure 5.3: These three figures show the numerical results in blue to green and the averaged
motion in red. These figures are in the asteroid orbit-frame so the equilibria for the Laplace
plane is defined by i = ε− φ.
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5.1.4 Compare different Laplace Angles

A comparison was made of Bennu, Vesta, and 1999 KW4 at φ = 5◦, 15◦, and 25◦.

The satellite and each asteroid will have b = 1000 kg/m2 and ε = 30◦. This provides two

comparisons. The first is a comparison of all three asteroids at three different points on

their Laplace surface. Second, because of the differences in mass, the 3 points of the Laplace

surface will be at different radii for each asteroid. This provides an understanding of how

the stability of a satellite evolves as it is placed on an orbit further from the asteroid.

In Figure 5.3, the evolution of increasing radii for Vesta can be seen. There is little

deviation from the numerical analysis to the averaged equations. Only at φ = 25◦ there exists

deviation from the averaged equations that are significant. However, there are no escapes or

collisions during the ten years analyzed. This contrasts significantly with Figure 5.4 where

the analysis on KW4 and Bennu are shown. For 1999 KW4, at φ = 5◦ there are significant

oscillations about the averaged equations. There is also instability for the prograde modified

Laplace plane equilibrium. At φ = 15◦ the oscillations increase but few trajectories escape

before the end of the analysis time. The Laplace equilibria do not necessarily exist, but some

trajectories oscillate in Ω and i around the equilibrium. By φ = 25◦, most of the trajectories

are unstable and escape. Bennu is even more unstable, even at radii close to the asteroid.

The Laplace equilibria is not stable for Bennu except the retrograde MLP at a Laplace angle

of 5◦.

There are significant differences between the behavior of the satellite around the three

asteroids. Vesta is more massive than the other asteroids. This allows for the 2-body motion

between Vesta and the spacecraft to dominate and thus SRP perturbation will be relatively

weak. The Laplace plane with no SRP has a Laplace angle of φ = 15◦ at 1 Laplace radius

for the obliquity used in this analysis. For Vesta, the MLP Laplace radius did not change

with the addition of SRP. While for Bennu and KW4 the new radii for φ = 15◦ is 0.477rL

and 0.787rL respectively. The stronger the SRP perturbation is relative to the other
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(a) Bennu φ = 5◦, 0.337rL (b) KW4 φ = 5◦, 0.565rL

(c) Bennu φ = 15◦, 0.477rL (d) KW4 φ = 15◦, 0.787rL

(e) Bennu φ = 25◦, 0.673rL (f) KW4 φ = 25◦, 1.089rL

Figure 5.4: These 6 figures show the numerical results in blue to green and the averaged
motion in red. The trajectories go from green to blue, depending how long the trajectory
exists without escape or collision. The color scale on plot (f) gives the time scale for the
corresponding color. Each plot was evaluated at Bennu with b = 1000 kg/m2.These figures
are in the asteroid orbit frame so the equilibria for the Laplace plane is defined by i = ε−φ.
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perturbations, the more it will alter the Laplace surface.

5.1.5 Mass-to-Area Ratio

For the asteroid Bennu at ε = 30◦ and a = 0.337rL ≈ 3 km , a comparison of b = 0, 100,

and 1000 kg/m2 was made. The results can be seen in Figure 5.5. For increasing mass-to-

area ratio, the closer the spacecraft follows the averaged equations. For b = 100 kg/m2, the

motion of the spacecraft hardly follows the averaged equations of motion. This is in contrast

to no SRP, where the numerical analysis simply oscillates around the averaged equation’s

precession of inclination and RAAN. From Figure 5.5 it appears the only case where the

modified Laplace plane is stable is the retrograde grade case for b = 1000 kg/m2. Figure

5.5c shows a large number of stable orbits that oscillate in inclination around 90◦. These are

Sun-synchronous orbits that are oscillating around the terminator plane.

Figure 5.6 shows the precession of RAAN and inclination for a satellite where b = 100

kg/m2 at the three asteroids. With a mass-to-area ratio that low, the averaged equations of

motion are changed significantly for the smaller asteroids, KW4 and Bennu, than for Vesta.

While every initial condition for Vesta is stable including the Laplace plane, the only stable

orbits for KW4 and Bennu are Sun-synchronous orbits with large oscillations around the

terminator plane.

5.1.6 Conclusion

The modified Laplace plane equilibria do not create frozen orbits in circumstances

where solar radiation pressure is the dominating force in the system. The averaged equations

of motion used to derive the MLP only take into account the long-term oscillations in motion

for the spacecraft. In a small body system, the short-term perturbations have a greater effect

and can cause a collision or escape in approximately 19 days or less. However, for a spacecraft

where stationkeeping is involved, the MLP orbit could remain in a useful orbit long enough

to still be considered. This could be determined by understanding how the Keplerian motion
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(a) Bennu: b = 0 kg/m2 (b) Bennu: b = 1000 kg/m2

(c) Bennu: b = 100 kg/m2

Figure 5.5: These three figures show the numerical results in blue to green and the averaged
motion in red. The trajectories go from green to blue, depending how long the trajectory
exists without escape or collision. The colormap on the right gives the time in years that
corresponds to a given color. Each plot was evaluated at Bennu at ε = 30◦ and a = 0.337rL ≈
3 km. These figures are in the asteroid orbit frame so the equilibria for the Laplace plane is
defined by i = ε− φ.
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(a) Vesta: b = 100 kg/m2 (b) KW4: b = 100 kg/m2

(c) Bennu: b = 100 kg/m2

Figure 5.6: Comparison of a satellite with mass-to-area ratio of 100 kg/m2 at each asteroid.
Each plot was evaluated at the asteroid at ε = 30◦ and a = 0.337rL . These figures are in
the asteroid orbit frame so the equilibria for the Laplace plane is defined by i = ε− φ.
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evolves and comparing that to the well utilized frozen orbits such as the terminator plane.

Also, the MLP may not be Lyapunov stable and if there is a small deviation from the

equilibrium a possible collision or escape may result.

This preliminary work was initially intended to determine if the modified Laplace plane

is a valid stable orbit choice for a spacecraft visiting an asteroid. The answer is unclear

because the modified Laplace plane would be very stable at an asteroid the size of Vesta

but not anything the size of Bennu or KW4. Vesta is 8-10 orders of magnitude larger in

mass than Bennu and KW4. Therefore, somewhere in between these objects in mass is the

minimum sized asteroid where the modified Laplace plane can be used for a spacecraft. This

is answered in section 5.3.

The second biggest takeaway from this research is that the obliquity of the asteroid

changes the precession of an orbit significantly. Ifthe same rigorous initial condition model as

in Chapter 4 was implemented, how would the obliquity affect the overall natural or artificial

satellite stability for the whole parameter space around a given asteroid.

Finally, it was clear from this study and the previous chapter, to have an artificial

satellite at an asteroid like Bennu, the best orbit for stability is a terminator plane orbit or

a Sun-synchronous orbit. The data from Chapter 4 overlaps with the mass-to-area ratios

of artificial satellites. Although a 1000 year stability isn’t required for spacecraft mission

design, this subset of data in the next section is discussed to better understand the parameter

space where artificial satellites can be stable around Bennu.
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5.2 Artificial Satellites at Bennu

This section looks at the subset of data from Chapter 4 that applies to artificial satel-

lites. Typically, spacecraft that are for exploring small bodies have a mass-to-area ratio

of approximately ∼40 kg/m2 [29]. This is equivalent to a 3 cm in diameter for a natural

satellite discussed in Chapter 4. Also, many CubeSat projects have been looking at explor-

ing small bodies. CubeSats have a mass-to-area ratio of about 100 kg/m2. Therefore, any

of the data with mass-to-area ratios less than 100 kg/m2 are also useful for understanding

long-term spacecraft stability. For comparison, a natural satellite with a mass-to-area ratio

of 100 kg/m2 in this study is less than 10 cm in diameter. Although spacecraft will not need

to exist in orbit around an asteroid for 1000 years, an orbit that is stable for 1000 years to

multiple perturbations will be a safe choice for a science mission or as a long-term parking

orbit.

For spacecraft with mass-to-area ratios less than 100 kg/m2, all unstable orbits are

<4 km. The range of inclinations available is from 36◦ to 144◦ with most, 73%, reaching

a maximum eccentricity above 0.5. The results can be examined closer in Fig. 5.7, where

every stable orbit is shown in a histogram providing information on maximum eccentricity

and inclination. Also in Fig. 5.8 and 5.9, the results for mass-to-area ratios for both a

m
A

= 40 kg/m2 spacecraft and m
A

= 100 kg/m2 CubeSat are given. The main difference

between these two mass-to-area ratios is that the CubeSat can orbit in a 4 km orbit and a

wider range of inclinations for 1000 years,while the spacecraft can only orbit at 2-3 km.

Finally in Figure 5.10 there is a summary of the lowest mass-to-area ratios capable

of being stable for 1000 years at each initial inclination and semi-major axis. OSIRIS-REx

has a mass-to-area ratio of ∼ 63 kg/m2 and therefore can maintain stability for 1000 years

if it’s semi-major axis is 1-4 km and has an inclination between 48◦ − 138◦. However, the

Sun-synchronous orbits with an inclination off the terminator plane are not the best options

for spacecraft missions. These orbits precess in inclination around the terminator plane,
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therefore they may be stable to impact/escape, but their inclination can vary by ∼ 30◦

or more. Also, the eccentricity of these orbits can become quite high with a maximum

eccentricity of 0.8 and an average eccentricity around ∼ 0.4. Therefore it is still in the best

interest of spacecraft to stay in an inclination as close to the terminator plane, i = 90◦, to

avoid large precession in inclination. Over the 1000 year period, even the terminator plane

orbit will result in a maximum eccentricity of ∼ 0.5 and an average eccentricity of ∼ 0.2

over the entire simulation. Obviously, these large changes that occur over 1000 years aren’t

directly applicable to a spacecraft that can do station keeping to maintain this orbit over

months, but it still shows that the terminator plane is the most stable option with the least

long term growth in eccentricity.

Figure 5.10: The lowest mass-to-area ratio stable in a given orbit for 1000 years for a range
of mass-to-area ratios below 100 kg/m2.

5.3 Artifical Satellite Stability in the Laplace Plane

At the beginning of this chapter, it was investigated whether the modified Laplace

plane was an option as an orbit for spacecraft. The asteroids used for the simulation include

KW4, Bennu and Vesta. Both Bennu and KW4 were not particularly good candidates for

the modified Laplace plane, while a spacecraft at Vesta was able to maintain a stable orbit

in the MLP. However, the difference in these bodies gravitational parameter is 8-10 orders of
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Figure 5.11: Prograde (left) and retrograde (right) modified Laplace plane equilibria. The
prograde MLP orbit is for µa = 100, 000 m3/kg s2 at an obliquity of 25◦ and a = 0.25rL. The
retrograde MLP orbit is for µa = 10, 000 m3/kg s2 at an obliquity of 25◦ and a = 0.25rL.

magnitude. Therefore, this section looks into the minimum gravitational parameter necessary

for a stable MLP to exist. The model includes J2, third-body perturbations from the Sun,

and SRP. The spacecraft has a mass-to-area of 40 kg/m2, which is similar to the mass-to-

area ratio of NEAR Shoemaker [29]. The asteroid will be orbiting at 1 AU and will have a

J2 = 0.02798. The gravitational parameter will vary by increasing its order of magnitude

until a MLP that will be stable for 1000 years is found. No spacecraft requires being in orbit

for 1000 years, but orbits stable on the order of decades often just did not impact or escape

the asteroid yet and were not on the MLP at all. Different obliquities will be observed for

the asteroid from 25◦ − 85◦ in increments of 20◦. The initial conditions of the orbit will be

on the modified Laplace plane along with orbits incrementally displaced from the modified

Laplace plane by inclination differences of 1◦, 5◦, and 10◦. Also , semi-major axes along the

Laplace surface of 0.25 rL to 1.5 rL in increments of 0.25 rL is evaluated.

It was found that for a prograde modified Laplace plane, the minimum gravitational

parameter needed is µa = 105 m3/kg s2. This gravitational parameter was stable for the

obliquities of 25◦, 45◦ and 65◦ for a semi-major axis of 0.25rL. An example of the Laplace

plane is in a prograde orbit at ε = 25◦ is shown in Figure 5.11. An asteroid with µa = 105
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m3/kg s2 can have an orbital diameter between ∼9.4-12.4 km depending on the density of the

asteroid. It is assumed a range of densities between 1.2 g/cm3 to 3.4 g/cm3, or a rubble pile

to a metallic body. The stable orbit would be approximately 25.7 km away. For an obliquity

of 85◦ or semi-major axes greater than 0.25rL, the minimum gravitational parameter needs

to be µa = 106 m3/kg s2. This would be double the radius of an asteroid with µa = 105

m3/kg s2. An asteroid with Ra =∼ 5 km is huge for a near-Earth asteroid. There are NEA

with diameters this big, but many of them resemble an ellipsoid as opposed to an oblate

spheroid. The modified Laplace plane only takes J2 into account so that the MLP may be

unstable for these tri-axial ellipsoids. Even still, these asteroids are quite rare in the NEA

population with only maybe ∼12 asteroids in the NEA population with diameters over 5

km [94]. However, the retrograde modified Laplace plane is stable for asteroids an order of

magnitude less in the gravitational parameter at a semi-major axis of 0.25rL (∼ 16.2km).

This gives an orbital radius of 4.3-6.2 km, which is still very large for NEA.

The MLP may be stable for the main-belt asteroid population which holds more large

asteroids and because of their distance from the Sun, also are subjected to smaller perturba-

tions from SRP. Assuming the asteroid had an orbit of 3 AU, the retrograde and prograde

MLP was stable at 0.25rL (∼ 10.2 km) for an asteroid with an obliquity of 25◦ and 45◦ for

µa = 1000 m3/kg s2. This is equivalent to an asteroid that is between 2-2.8 km. However,

this gravitational parameter is very constrained in spacecraft orbit radius and the obliquity

of the asteroid. For the main-belt, there are many asteroids with µa that is on the order of

µa = 104−106 m3/kg s2, where the modified Laplace plane would be stable for all obliquities

and a larger range of orbital radii for options the spacecraft.

5.4 Natural Satellites around Asteroids of Various Obliquities

In this section,a few different obliquity angles for an asteroid the size of Bennu is

observed and determine how the obliquity will change the overall stability of natural satellites

orbiting the asteroid. The focus of this research is solely on the existence of stable orbits for
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a natural satellite and purposefully places how the natural satellite migrated to this orbit

outside the bounds of this study. Numerical simulations modeling J2, third body dynamics,

and solar radiation pressure is used on a broad set of initial conditions that vary in semi-

major axis, inclination, longitude of the ascending node and natural satellite diameter. To

be considered stable, it is required that a set of initial conditions to remain in orbit for

greater than 1000 years. Instability is defined as an escape from the asteroid or impact. By

constructing and executing an array of detailed simulations modeling the evolution of natural

satellite orbits over thousand-year timescales, the possible sizes, distances from Bennu, and

orbital orientations of long-term stable orbits is assessed. In Chapter 4 it was found that

three orbital phenomena that dictated the stability of natural satellites from a centimeter in

diameter to 7.5 m in diameter [95].

In the previous chapter, it was discussed three different orbital phenomena that would

cause the natural satellites to be stable or unstable. These were the modified Laplace plane,

Kozai resonance, and Sun-synchronous orbits. In this section, each of these orbital phe-

nomena but at varying obliquities is revisited. If there are changes in how the orbital events

affect the orbit stability for different obliquities, then this knowledge can be applied to future

spacecraft missions.

A summary of the results from Chapter 4 can be seen in Figure 4.3. This figure

represents the results for all simulations with varying semi-major axis, inclination, longitude

of the ascending node, and natural satellite diameter at Bennu with its true obliquity. The

graph shows the minimum natural satellite diameter that is stable for 1000 years at each

semi-major axis and inclination. Larger diameter objects may exist at the same semi-major

axis and inclination. Therefore the minimum natural satellite diameter gives the minimum

diameter not impacted by SRP. Notice that inclinations between 36◦ and 144◦ at semi-major

axes between 1 and 13 km have significantly smaller diameter natural satellites than the

rest of the simulations. These smaller objects are stable due to Sun-Synchronous orbits. If

natural satellites that are a stable due to Sun-synchronous orbits are taken away from Figure
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4.3, there are no stable orbits for objects with inclinations between 78◦ and 108◦ for radial

distances greater than 4 km. This can be viewed in Figure 4.7. This instability region is due

to the Kozai resonance where higher inclinations correspond to growth in eccentricity that

is large enough to cause escape or an impact with Bennu.

The results discussed above and summarized with Figure 4.3, are for a particular

asteroid, Bennu. How natural satellite stability changes when an asteroid with different

parameters is evaluated. How the obliquity of the asteroid will affect the natural satellite

stability is examined. Therefore all parameters are kept the same as in previous work, but

with an asteroid precisely the same as Bennu with obliquities of 0◦, 45◦, 90◦ and 135◦.

5.5 Various Obliquities Summary

The summary of results for various sized natural satellites with different initial condi-

tions: semi-major axis, longitude of the ascending node, and inclination for various obliquities

is shown in Figures 5.12-5.15. The first basic observation is that the low obliquity asteroids

0◦ and 176◦ both have stable orbits out to 25-29 km, while the high obliquity asteroids

have nothing stable after 20 km. This would make visiting an asteroid with high obliquity

beneficial because the stable region for all natural satellites is significantly reduced. Also, it

appears the orbit that rotates in the opposite direction of the asteroid’s spin will be stable

at higher orbital radii. So a prograde obliquity will have more possible orbital radii stable

for retrograde natural satellites, while a retrograde obliquity will yield more possible orbital

radii stable for prograde natural satellites.

5.5.1 Sun-Synchronous Orbits

The first comparison between the varying obliquities is the difference in their Sun-

Synchronous orbits. The Sun-synchronous orbits are easy to determine in the figures because

they are most objects with a diameter less than 1 meter. It is also further verified that these

are Sun-Synchronous orbits by observing the change in longitude of the ascending node
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in the Sun-rotating frame. Sun-synchronous orbits precess in the inertial frame but will

remain bound to ΩR = 0◦ or ΩR = 180◦ in the Sun-Bennu rotating frame. For the original,

ε = 176◦, Sun-Synchronous orbits exist, for inclinations between 36◦ and 144◦ at semi-major

axis between 1 and 13 km. For ε = 45◦, Sun Synchronous orbits exist for a semi-major

axis between 1 and 15 km but exist for all inclinations. Finally, for ε = 135◦, the Sun-

Synchronous orbits exist for all inclinations as well. Both low obliquity asteroids, 0◦ and

176◦, have Sun-synchronous orbits only at a range of 36◦ and 144◦, while the 90◦ case has no

Sun-synchronous orbits from 72◦ and 102◦. Therefore it seems that Sun-synchronous orbits

are stable for all inclinations unless the asteroid has an obliquity parallel, anti-parallel, or

perpendicular to the orbit pole. Being parallel results in no equatorial Sun-synchronous

orbits, while being perpendicular to the orbit results in no stable terminator plane orbits.

All of these results were validated by observing the orbits of the asteroid centered orbit

rotating-frame to see if the precession of the longitude of the ascending node was fixed.

5.5.2 Modified Laplace Plane

In Figure 5.16a, many initial conditions are shown for an asteroid with ε = 176◦, and a

natural satellite that is 3.75 m in diameter with a semi-major axis of 2 km. Each data point

represents an inclination and a longitude of ascending node at a specific time in any given

orbit. The sum of all the data yield information on which orbital regions are stable/unstable

or if longitude of periapsis precesses 360◦ or less. Figure 5.16 have the inclination and

longitude of the ascending node defined from the equator of the asteroid. In Figure 5.16a,

there is one equilibrium at Ω = 0◦ and i = 90◦, there are some orbits that will oscillate

around the equilibrium, but most precess a full Ω = 360◦. At an obliquity of 0◦ there are

three Lapalce equilibria, however if the initial condition isn’t directly on the Laplace plane,

the orbit will precess 360 ◦. Figure 5.16b-c with ε = 45◦ and ε = 135◦ respectively have three
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(a) ε = 0◦ (b) ε = 45◦

(c) ε = 90◦ (d) ε = 135◦

(e) ε = 176◦

Figure 5.16: Inclination vs. longitude of the ascending node for a = 2 km, D = 3.75 m for
1000 years. The higher obliquity asteroids, have the motion of the natural satellite orbits
oscillating around the Laplace plane, and therefore their longitude of the ascending node
is bounded. Figure (a), has a small retrograde obliquity, therefore the longitude of the
ascending node is not bounded to the Laplace plane.
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modified Laplace equilibria, where the majority of possible orbits will oscillate around one of

these three equilibria. The only difference between ε = 45◦ and ε = 135◦ is that the equilibria

at a given inclination will shift the longitude of the ascending node 180◦. At ε = 90◦, more

initial conditions will precess around the Laplace plane compared to the other obliquities. It

appears that higher obliquity asteroids will have natural satellites larger than 1 m diameter

mostly oscillating around the modified Laplace plane, and therefore will be bounded in the

longitude of the ascending node, while the same asteroid at low obliquities will precess 360◦.

5.5.3 Kozai Resonance

If the Sun-synchronous stable orbits are taken away from the summary plots of the

stability, the instability due to the Kozai resonance can be observed. The Kozai resonance can

cause instability around the natural satellite. Because of the exchange between inclination

and eccentricity, some inclinations are large enough that the maximum eccentricity capable of

impact or collision will be reached at some point in the orbit. In chapter 4, it is discussed that

the Kozai resonance and how it caused instability for high inclination orbits from 78◦−102◦.

Also investigated is if this resonance causes instability for the other obliquities. For the

intermediate obliquities,45◦ and 135◦, the Kozai resonance does not cause any instability

as can be seen in Figure 5.17. The Kozai resonance was originally modeled with averaged

equations with third body perturbations only. Perhaps adding the perturbations of an oblate

spheroid at some given obliquity will disrupt the Kozai resonance.

Bennu has an expected obliquity that is very near equatorial. This obliquity had the

Kozai resonance present according to the simulations. The same is the case for no obliquity,

ε = 0◦, as seen in Figure 5.18. It appears the Kozai resonance here creates instability for

the identical high inclination orbits as was observed with the ε = 176◦ case. The interesting

result is when the obliquity is 90◦, which can be viewed in Figure 5.19. The Kozai resonance

seems to have cause instability to orbits that are very near the equator of the orbit. At

first, this seems counterintuitive because the Kozai resonance affects high inclination orbits.
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However, the results shown in Figure 5.19 are in the asteroid-centered equatorial frame.

Since the obliquity of the asteroid is 90◦, an equatorial orbit is technically a 90◦ orbit in

the asteroid-centered orbit-frame. Since the Kozai resonance is only affected by third-body

perturbations, the high inclination is relative to the orbit-frame, not the equator. Therefore

it seems the Kozai resonance just causes instability to the satellite at high inclinations if the

asteroid is very close to having no obliquity or the rotation pole is perpendicular to the orbit

pole.

5.6 Conclusion

By varying the obliquity of the asteroid, there are several differences between where

natural satellites will be stable and what orbital phenomena are causing stability or insta-

bility. The conclusions of these simulations are:

• Sun-synchronous orbits yield stable orbits for natural satellites less than 1 m in

diameter for all asteroid obliquities. Also, ε = 176◦, ε = 90◦, and ε = 0◦ had Sun-

synchronous orbits only for a range of inclinations, while ε = 45◦ and ε = 135◦ have

Sun-synchronous orbits for all inclinations.

• The high oblquity cases, ε = 45◦ andε = 90◦, ε = 135◦, have natural satellites greater

than 1 meter oscillating around the Laplace plane, while the low oblquity case will

have the longitude of the ascending node precess 360◦.

• Kozai instability region only exists for the ε = 176◦, ε = 0◦, and ε = 90◦ asteroids.



Chapter 6

Binary asteroids in the Laplace Plane

6.1 Introduction

In Chapter 1 a brief history of the non-gravitational forces that can cause secular

changes on an asteroid’s orbit over an extended period is given. These non-gravitational

forces are the main contributors to why the asteroid population is what is observed today.

There have been numerous papers published to describe the processes that form binary

systems, contact binaries, asteroid pairs, or ternary systems [70, 72, 78, 80, 96]. Cuk and

Burns first presented the non-gravitational force, BYORP, in 2005 [68]. This force was an

extension of YORP from a single asteroid to a binary system. Thermal reemission causes the

YORP effect due to solar radiation pressure “...on irregularly shaped bodies that results in a

torque that will cause secular effects to the spin-rate and direction of an asteroid”[56]. YORP

is responsible for driving the spin-rate and spin-direction of an asteroid, where it is the sole

contributor to increasing centrifugal accelerations on a “rubble pile” to a particular spin rate

that causes fission. This spin rate is determined by the largest separation distance between

the mass centers of the fissioned component and the main body [77]. YORP is a crucial

component of the contact binary cycle as it is responsible for separating the asteroid into a

binary system. BYORP is similar to YORP in that it is due to thermal reemission of solar

radiation pressure. However, instead of an asymmetrical asteroid, there is a binary system

with a spherical central body and an asymmetrical secondary. For the thermal reemission to

have any secular effects, the binary needs to be synchronous, or the orbit of the secondary is
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equal to the rotation of the primary. This synchronicity will cause the binary to have secular

growth or contraction of the semi-major axis and for the eccentricity to be dampened [74].

In this chapter, the non-gravitational force, BYORP, with the classical Laplace plane

also discussed in previous chapters are combined. “The classical Laplace plane is the mean

reference plane about whose axis the pole of a satellite’s orbit precesses.” [83]. Suppose

there are just two perturbations on a primary body and it’s satellite: J2 of the primary

asteroid and third body perturbations from the Sun. Precession of angular momentum of

the satellite from J2 will rotate about the primary body’s polar axis, while the precession of

angular momentum due to 3rd body perturbations will precess around the primary’s orbit

pole. If the orbit pole and the primary pole is not aligned, there exists a frozen orbit where

the two precession caused by these perturbations will balance each other. This frozen orbit

lies along the Laplace surface and is defined by its orbital radius and inclination, or Laplace

angle. This frozen orbit will change inclination for a given orbital radii. As the orbit is near

the primary body, J2 is the dominant perturbation, and therefore the inclination will be near

the equator. Likewise, as the orbit increases in distances, the 3rd body perturbations will

be the dominating perturbation and the inclination will go towards the orbit plane of the

primary[83]. The classical Laplace plane has been applied to a multitude of evolutionary

theories in planetary science from the formation of planetary rings, natural satellites, and

satellites that are formed from circumplanetary disks of gas and dust [82, 83, 88, 97, 98,

99, 100]. Now it will be investigated that the evolution of binary systems through BYORP

expanding the binary asteroid along the Laplace plane, and thus changing the secondary’s

inclination.

The study of the Laplace plane and BYORP yields very standard results of BYORP

expanding the secondary along the Laplace plane. However, the Laplace plane for spe-

cific orientations of the primary asteroid’s obliquity and the secondary’s orbital radius will

eventually come to an instability region. This instability region will rapidly increase the

eccentricity of the orbit till the binary system impacts. The effects of this region may play a
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Table 6.1: Asteroid model properties

Parameter Value

Semi-Major Axis 1 AU
Graviational Parameter 157.035 m3/s2

Major Radius 750 m
Minor Radius 670 m

role in the formation of contact binaries and may even create a cycle where the asteroid will

go through the YORP process to create a binary system and then BYORP with the Laplace

plane to cause the system to become a contact binary again.

6.2 Implementation

The model of the binary system will include solar tides, an oblate spheroid primary,

and a constant force BYORP model as presented in Equation 2.47. For more information

on the BYORP model and the coefficients used, please refer back to Chapter 2. The binary

system modeled uses parameters such as the J2 coefficient and BYORP coefficients of the

observed binary system, 1999 KW4. However, the obliquity of the primary, mass, and size

of the primary and binary will change depending on the simulation. For most simulations,

the mass of the primary will reflect that in Table 6.1 unless otherwise noted.

The binary system will be numerically simulated for a large number of initial conditions.

The program to simulate these results will be written in C and MATLAB will be used to

analyze data. The numerical simulation in C will take advantage of the GNU Scientific

Library, which has a suite of functions used to integrate ordinary differential equations. The

numerical analysis is done using a Runge-Kutta Prince-Dormand (8, 9) method. Simulations

will run till the secondary impacts or escapes from the primary. The initial model uses mass,

and radii of KW4 along with the 0th order BYORP coefficient[25]. A summary of values

used can be seen in Table 6.1.



110

6.3 BYORP Expansion along the Laplace plane

First, it is important to model if as BYORP expands the secondary, it will expand along

the Laplace plane. When an asteroid fissions into a binary, the secondary must go through

some processes to reach a synchronous state to be expanded or contracted by BYORP. If

the binary has a mass ratio . 0.2, then the secondary will go through a second fission and

tidal effects to settle into a synchronous orbit. From observations, mass ratios . 0.2 have an

orbital radius of 1.5-3 primary radii. For mass ratios & 0.2, tides will dampen the system to

a double synchronous binary with an orbit between 2-8 primary radii [78]. Therefore, to test

if the binary follows the Laplace plane, a synchronous binary between 1.5 and eight primary

radii with an initial inclination on the Laplace plane is simulated. Four examples are shown

in Figure 6.1 for four different primary obliquities: 25◦, 45◦, 65◦, and 85◦. In Figure 6.1, the

numerical results follow the analytical solution and increase in inclination along the Laplace

surface.

The examples in Figure 6.1 all follow the Laplace plane, however, they all have initial

orbital radii greater than six primary radii. If the initial orbital radius began at .4.7 primary

radii, they would enter into the evection resonance. The evection resonance occurs when the

longitude of periapsis of the satellite is equivalent to the orbital period of the primary or

planet [91]. The evection resonance causes a substantial increase in eccentricity. Our model of

the secondary is simply a point-mass that has a constant secular force that expands its orbit.

This model does not account for libration of the secondary’s rotation and the possibility of

the secondary having the shape of an ellipsoid. Without the libration being modeled, the

evection resonance can exist and keep the binary from expanding, since the resonance will

cause the binary to lose synchronicity [68]. However, once libration is added, it is impossible

for prograde binaries to be captured into an evection resonance and retrograde systems will

only be captured temporarily [72]. Therefore, although the evection resonance exists in our

simplified model, it will not have any effect on the outcome of the binary system once the
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Figure 6.1: Examples of 4 different obliquities following the Laplace plane when expanded
with BYORP acceleration. The red, numerical data follow the blue analytical solutions
solved using Equation 3.20. For the 85◦, the the Laplace plane instability region and stops
its evolution.
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rotation of the secondary is also included in the model. Therefore our model will always

start our initial conditions outside the evection resonance, assuming once libration is added

to the model, it may begin with any initial state and get the results without the evection

resonance.

The model used to see if BYORP would expand the binary along the Laplace plane

started with initial conditions on the Laplace plane. However, current theories suggest that

if the secondary fissions, it will most likely separate from the equator of the object [25, 101].

Therefore, the inclination of the binary may be offset from the Laplace place by a couple of

degrees instead of lying directly on the Laplace plane. The farthest observed orbital radii

for a binary system is ten primary radii [79]. At ten primary radii, the Laplace plane will

be 1◦ − 3◦ inclined to the equator. In Figure 6.2, the secondary began its orbit on the

equator at 0.7 Laplace radii, or ∼ 11 primary radii. At this point the Laplace plane is 5◦

from the equator. Even with a 5◦ difference in inclination, the secondary still followed the

Laplace surface as BYORP expanded the orbit, but the orbit varies more in inclination as

it expands. Therefore the binary system can settle into a double-synchronous orbit along

the equator or within ∼ 5◦ of the Laplace surface and still expand along the surface. To

have an 5◦ difference between the Laplace angle and the equator, the primary needs to have

an obliquity at the lower range of the unstable region. As the obliquity approaches 90◦,

the Laplace surface will approach being discontinuous where prior to one Laplace radii, the

Laplace angle is 0◦ and after one Laplace radius the Laplace angle is 90◦, or equal to the

obliquity. For example, if the obliquity is 75◦, the Laplace radii at which the Laplace angle is

5◦ is at 0.77 Laplace radii or approximately 13 primary radii. For q > 0.2, the clear majority

of binary asteroids will settle at primary radii equal or less than 8 primary radii, or 0.55

Laplace radii, which is well within the bounds of when the Laplace angle is greater than 5◦

[78]. Therefore the limitations of the binary not following the Laplace plane because of a

difference in inclination will be very rare for obliquities near 90◦. This demonstrates that

the secondary can remain on the equator once it settles into a synchronous orbit, but still
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Figure 6.2: The analytical solution for the Laplace surface is given in blue. In red is incli-
nation change of the secondary as the semi-major axis increases due to BYORP expansion.
The initial orbit for the secondary was at ∼ 11 primary radii and an inclination of 0◦. This
demonstrates that the secondary can remain on the equator once it settles into a double-
synchronous orbit, but still follow the Laplace surface as the orbit expands.
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follow the Laplace surface as the orbit expands.

In Figure 6.1, an obliquity of 85◦ follows the Laplace plane till approximately 0.8

Laplace radii or ∼13 primary radii and then begins to have a more chaotic evolution in

inclination and semi-major axis. This is due to the Laplace plane instability region. The

instability region is first discussed in Chapter 3 and the instability region is shown in yellow

in Figure 3.2 is unstable for obliquity angles above 68.875◦ and Laplace radii from 0.9 to

1.25. To understand the instability region in Figure 3.2, the code ran for a multitude of

initial conditions and determined the maximum eccentricity of the satellite in 1000 years.

The results of this can be seen in Figure 6.3. In this region, within 1000 years some initial

conditions reach an eccentricity of one after the 1000 years. The area of the instability

region that caused the most eccentricity growth was between Laplace radii of 0.95-1.0, or

16-17 primary radii and for primary obliquities between 76◦ − 107◦. If a binary asteroid

has a primary with a high obliquity between 77◦ − 105◦, BYORP can expand the orbit

along the Laplace plane, enter this instability region and re-impact the primary. From this

information, it was determined there may exist a contact binary-binary asteroid cycle.

6.4 Contact Binary-Binary Cycle

Of near-Earth asteroids (NEA) greater than 200 m, 10% are contact binaries [81]. Of

the currently observed contact binaries, 9 out of 14 have known obliquities between 50◦−130◦

[102]. Therefore, the existence of high obliquity asteroids required for this cycle has been

observed. This high obliquity along with radiative forces that drastically affect the evolution

of NEA will provide the mechanisms in which this cycle is possible.

The asteroid of interest for this cycle will be between 100 m and 10 km and therefore

will be a “rubble pile” asteroid. A “rubble pile” is a collection of boulders of various sizes

bounded by gravity [17, 18]. Previous missions to asteroids such as Hayabusa’s exploration

of Itokawa and NEAR Shoemaker’s flyby of Mathilde as well as radar imaging of KW4, show

that the bulk density of these asteroids is lower than that of a monolith rock; providing
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Figure 6.3: Eccentricity displayed as a contour plot after 1000 years. In the most unstable
regions, the eccentricity goes to unity even in this short amount of time.
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observational evidence of the existence of rubble pile asteroids [14, 21, 25].

The binary would also have to have a mass-ratio greater than 0.2. To observe a contact

binary, the size differences between the two lobes need to be large enough to observe. This

also excludes a lot of complicated dynamics with mass-ratios less than 0.2 where there can be

secondary fission or the secondary escape/impacts the primary before reaching a synchronous

orbit. Because of the large mass ratio, the binaries will always enter a double-synchronous

orbit and begin BYORP expansion at 2-8 primary radii [78].

The cycle begins with a contact binary asteroid that has an obliquity of ∼ 90◦ with

YORP increasing the rotation rate of the asteroid. A contact binary that is affected by

YORP will drive the asteroid to obliquities of 0◦ and 90◦ with a nearly equal chance of going

to either obliquity. [56]. This asteroid will eventually spin up to a period of ∼2.2 h that

will result in a disruption of the self-gravitating “rubble pile” asteroid. [79] It is assumed

that this disruption will cause the contact binary to fission into a binary system with a

mass-ratio of 0.2 or larger. The binary system will then go through a tidal process that will

end with the binary system being double synchronous [78]. Because the system is double

synchronous, the binary will have the non-gravitational force, BYORP, expand the orbit of

the binary. As the binary orbit radius expands, the inclination of the orbit will follow the

Laplace surface, which is stable to precession due to third-body perturbations from the Sun

and the primary’s oblateness. Even if the secondary does not begin directly on the Laplace

surface, as the orbit radii expands, its inclination will oscillate around the Laplace plane

equilibrium. As the orbit expands along the Laplace surface, the secondary will eventually

enter the Laplace plane instability region at approximately 14.8-16 Rp. The orbit will quickly

grow in eccentricity and eventually lose synchronous lock and stop expanding the orbit. The

eccentricity will continue to grow beyond 0.9 due to this instability region. The orbit will

elongate and intersect the primary resulting in an impact of the two asteroids. This contact

binary will have a new obliquity, that varies from ∼ 40◦ − 140◦. Then the process repeats

itself, with the contact binary being driven by YORP again to an obliquity of 90◦. This
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Figure 6.4: 1. Begin with contact binary. Contact binary is driven to an obliquity of 90◦

and its rotation rate is spinning up due to YORP. 2. Fissions into chaotic binary, where the
tidal process will dissipate the energy in the system. 3. The binary system will settle into
a double-synchronous binary. From there, the binary will expand due to BYORP. It will
follow the Laplace plane as it expands. 4. The orbit will expand, increasing in orbital radii
and inclination until it reaches the Laplace plane instability region. 5. The Laplace plane
instability region will cause a rapid growth in the orbital eccentricity of the binary system
until it leads to an impact, causing a contact binary.
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process is summarized in Figure 6.4.

6.4.1 YORP Process

The cycle begins with a contact binary. This binary will have the non-gravitational

force, YORP, altering the rotation state of the asteroid. YORP will change the obliquity

angle of the asteroid as well as the spin-rate. First, the obliquity angle will be driven to either

90◦ or 0◦/180◦ with an approximately equal chance of going to either spin pole[56]. There

is also a 6.9% chance of the asteroid being driven to an intermediate obliquity as well. For

this cycle to begin, it is necessary that YORP drives the asteroid to an obliquity of or near

90◦. This is because eventually, the Laplace plane instability region will play a role in the

cycle by driving the secondary to re-impact the primary asteroid. For this instability region

to exist, the obliquity of the primary must be between 76◦ − 107◦. Therefore, an asteroid

driven by YORP to 90◦ will be at an obliquity angle that lies in this region. Secondly, YORP

will drive this asteroid to either increase or decrease its spin-rate, with a lesser likelihood

that a permanent spin-up of the asteroid to occur. However, for fission of the asteroid to

occur, the asteroid needs to spin up to a period of approximately ∼ 2.2 h that will result in

a disruption of the self-gravitating ”rubble pile” asteroid. [79].

6.4.2 Binary Fission leading to large mass-ratio systems

Once the object is at a high obliquity near 90◦ and is rotating at approximately ∼ 2.2

h period, the increasing spin-rate will fission into a binary. The next step in the cycle is

for tidal processes discussed in Jacobson and Scheeres to cause the binary to settle into

a double-synchronous binary. For a double-synchronous binary, the mass-ratio of the sec-

ondary to the primary must be q > 0.2 [78]. There are a couple of reasons why only these

higher mass-ratios are studied. The first is that contact binaries can only be observed if the

mass-ratio is high enough to see the contact binary is made of two parts. This ensures that

our hypothesis is focused on the currently observed contact binaries with high obliquities.
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Secondly, the process for tides to dampen a chaotic binary is more straightforward for higher

mass-ratios. If the secondary has a high enough mass-ratio, it cannot be ejected from the

exchanges of angular momentum and energy through spin-orbit coupling. This is much more

severe for mass-ratios q . 0.2 where it can cause the secondary to eject from the system[78].

The eccentricity/momentum exchange for higher mass-ratios reduces the eccentricity of the

system and therefore keeps the secondary from escaping or producing a secondary fission

event. Tidal Dissipations eventually dampens the libration in the system, such that the

binary system is double-synchronous [78]. Double-synchronous systems will have both the

primary and secondary period equivalent to the orbit. Low mass-ratios can have secondary

fission and can result in multiple end states such as a stable ternary, asteroid pairs or a

reshaped asteroid[56]. Third, a double-synchronous binary may have a better lock on syn-

chronicity compared to a regular synchronous binary. This will cause the binary to continue

to expand into the instability region of the Laplace plane even with eccentricity growth. By

continuing to expand into the region, it will reach the center where the eccentricity can grow

to near parabolic and eventually result in an impact.

6.4.3 BYORP Expansion

Once the binary system has settled into a double-synchronous orbit, the BYORP force

due to this synchronicity will have secular motion that will either expand or contract the

system. This all depends on the shape of the binary, but it is assumed that the binary will

expand. It is assumed that the secondary will settle into an orbit close enough to the Laplace

plane, that the secondary will oscillate in inclination around the Laplace surface as the orbit

expands due to BYORP.

As the binary expands along the classical Laplace plane, it will eventually reach the

instability region of the Laplace plane. This happens when the secondary is 14.8 − 16 rp

from the primary. Also, the obliquity of the primary must be between 76◦ and 107◦ for the

secondary to expand into the Laplace instability region, which is the case for our binary
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(a) A0 = 1400 m2 (b) A0 = 14, 000 m2

Figure 6.5: a.) The left figure gives three plots for a binary orbit where A0 is 1400 m2

b.) gives the same three plots for A0 = 14, 000 m2. The higher A0 crosses the instability
region and increases the eccentricity to 0.5, but not high enough to impact the primary. The
secondary will eventually escape the primary. a.) The less asymmetric secondary with a
lower A0 value will reach an eccentricity of almost 1 which will result in an impact before
leaving the instability region.
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system where the obliquity should be near 90◦. At this point, the eccentricity of the binary

will increase until it is highly eccentric, > 0.85, that it results in an impact. But, there are

issues with BYORP that may cause the eccentricity to rise, but not enough to result in an

impact.

BYORP could expand the orbit too quickly. The acceleration of BYORP is dependent

on the asymmetric shape of the secondary. The more asymmetric the shape, the faster

BYORP will expand the orbit. Also, because the binary is double-synchronous, the shape of

the primary can also enhance or reduce the BYORP effect due to their rotations being equal,

and this can also play a part in how fast the secondary expands away from the primary [74].

This asymmetry is simply represented by the value of A0. The value of A0 is important

because if A0 is too large, the acceleration may be fast enough to cause the binary to expand

through the instability region without increasing eccentricity to a high enough value that

there is an impact. An example of this can be seen in Figure 6.5. In Figure 6.5a.) the value

of A0 is low enough that the expansion of BYORP takes 25, 000 years to grow to 10 primary

radii, while in Figure 6.5b.) the value of A0 is a magnitude greater resulting in the same

orbital radii growth to happen in 2500 years. The rate of expansion of the latter case will

be so fast it will enter and leave the Laplace instability region before eccentricity increases

to a value that results in impact. Therefore, the asymmetry of the secondary must be slow

enough to allow for the eccentricity growth to occur during BYORP expansion. However,

the secondary must not be too symmetric that A0 is small, and the time to expand takes

longer than the lifetime of a binary where a flyby of a planet could severely disrupt the

system.

If the secondary expands through the instability region of the Laplace plane, the eccen-

tricity increases, which may cause the secondary to lose synchronous lock with the primary.

If the binary loses lock, the binary system with cease to expand due to BYORP. This could

help increase the number of impacts because asymmetric secondaries that expand too quickly

could lose lock and cause the binary to remain in the Laplace plane instability region. This
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would cause the eccentricity to grow and lead to an impact with the primary. However, this

could also reduce impacts because the binary may lose lock too soon. The instability region

is only capable of growing the eccentricity high enough to cause instability at radii above

14.8 primary radii. However, the instability region begins at 13.3 primary radii and therefore

may get trapped in the area where the eccentricity may only grow to an eccentricity of 0.4.

Thus, it will need to simulate the loss of synchronicity to understand how this changes the

process of eccentricity growth. Random initial conditions were simulated with initial radii

between 0.35 − 0.85 rL and primary obliquities of 75◦ − 110◦. Parameters are altered such

as A0 = 1400 m2 and A0 = 14, 000 m2 as well as the inclination being on the Laplace

plane or the equator. It is not known what value of eccentricity will cause the binary to

lose lock, but it is assumed, for now, that it is an eccentricity of either 0.05 or 0.1. A

summary of the impacts is in Table 6.2. For the binary to lose synchronous lock at 0.05, the

slower rate of expansion (A0 = 1400 m2) will effect the possibility of impacts with a 50%

increase in binary impacts. The difference in impacts is also reduced 10% if the initial orbit

is on the equator as opposed to the Laplace plane. According to Table 6.2, if synchronous

lock is lost at an eccentricity of 0.1, the loss of synchronous lock will cause an increase in

impacts regardless of the value of A0. Therefore, it seems that once in the instability region,

eccentricity will continue to grow and eventually result in an impact. The initial conditions

that did not impact for the cases where eccentricity of 0.1 caused the synchronicity to lose

lock are summarized in Figure 6.6 . Regardless of the parameters dictating the simulation, it

appears that the only initial states that do not impact are at the extremes on the obliquity

ranges of the instability region. Therefore, perhaps because it is on the peripheries of the

instability region displayed in Figure 6.3, sometimes the eccentricity increases enough to

cause impact and sometimes it does not. However, once the obliquity is between 77◦− 102◦,

there will be an impact regardless of losing synchronicity or not.
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Figure 6.6: The initial conditions for orbital radii and obliquity for the binary systems that
did not impact. These are all on the extreme values of obliquity for the Laplace instablity
region.
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Table 6.2: Percent of initial conditions that impacted asteroid.

A0 Initial Inclination Eccentricity lose Synchronous Lock Percent Impact

1400 Laplace Plane 0.05 92
14,000 Laplace Plane 0.05 39
1400 Equator 0.05 82
14,000 Equator 0.05 28
1400 Laplace Plane 0.1 98
14,000 Laplace Plane 0.1 94
1400 Equator 0.1 98
14,000 Equator 0.1 94

6.4.4 Impact state obliquity distribution

If the binary system impacts, the new rotational state of this contact binary must be

determined. This can be easily determined by conservation of angular momentum, where

the orbital and rotational angular momentum becomes just the final rotational angular

momentum.

m1m2

m1 +m2

r × v + IiΩiω̂i = IfΩf ω̂f (6.1)

Where r and v is the final Cartesian state of the orbit before impact, I is the moment

of inertia, Ω is the angular velocity and ω̂ is the spin-pole direction. The moment of inertia

of a sphere is I = 2
5
m1r

2
1. It is assumed that the secondary has a negligible rotational angular

momentum. The final moment of inertia is the sum of the two asteroids moments of inertia

plus their moments of inertia around their center of mass. It is assumed that the final contact

binary will be two spherical bodies resting on each other, such that the distance between

the two sphere’s centers are R1 + R2. To determine the primary angular velocity, it can be

assumed that the system is double-synchronous while the eccentricity of the orbit is low.

Therefore, it can be assumed that the spin-rate of the primary is equal to the mean motion

of the orbit, or
√

Gm1

a3
. To determine the value of a for the mean motion, the semi-major axis

right before the eccentricity drastically spikes in Figure 6.7 is found. This value is chosen
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Figure 6.7: The semi-major axis and eccentricity grow for a binary system. The semi-major
axis shows the increase in orbital radii due to BYORP for the binary, while eccentricity
growth shows the increase in eccentricity due to the Laplace instability region.
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because BYORP will lose synchronicity, so this is the last moment it can be assumed that

the primary spin state is equal to the secondary orbit.

It is determined that the final states for 200 varying initial conditions that begin with

the expansion of the orbit through BYORP at a given radius from 0.35 − 0.85 rL and for

primary obliquities from 75◦−110◦. Half the initial conditions start with an inclination that

is on the Laplace plane, while the other half begins on the equator.

The result for the final state versus the initial state is in Figure 6.8. The final obliquities

vary from 23◦ − 150◦, with no correlation between the initial state and the final state of the

contact binary. This means that the ultimate determination of this cycle repeating itself is

from YORP driving the obliquity to 90◦ and not the final state of impact for the contact

binary.

For these same simulations, the periods of the contact binary are also computed and

can be seen in Figure 6.9. Most contact binaries have a final period between 14 and 14.5

hours, while there are several even in the 16-17 hours range. This is much slower than the

period that is required to cause another binary system, and therefore YORP will have to

spin up the asteroid for the cycle to continue.

The impact velocity varies depending on the mass of the objects, but if the primary is

under 2 km in diameter, the impact velocity will be less than 1 m/s. A binary the size of

KW4 with a mass-ratio of 0.2 with its secondary, will have an impact velocity of 0.73 m/s.

6.4.5 Timescales of binary-contact binary cycle

In this section, it is determined that the relative lengths of time it takes for YORP to

spin up the contact binary to fission and the time BYORP takes to expand the binary into the

instability region. If one time period is significantly longer than the other, then the majority

of observations will be of the state with a longer time. Both YORP and BYORP processes

time scales can be analytically determined. The YORP induced spin rate of acceleration on
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Figure 6.8: The final obliquities of the contact binary as a function of the inital oblquity of
the primary while as a binary system. Regardless of the intial orbit radii or obliquity, the
final obliquity appears random, except for the maximum and minimum range of the final
obliquity trending upwards as the initial obliquity increases.
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Figure 6.9: Most of the final periods of the contact binary are clustered at 14-14.5 hours,
while there are some around 16-17 hours. These are too slow to cause a binary, and therefore
will need to have the spin-rate increased by BYORP.
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the contact binary can be represented by:

ω̇ =
3Pφ

4πa2
s

√
1− e2

s

C

ρR2
a

(6.2)

where ρ is the density of the contact binary and C ranges from 0.001 to 0.01 and represents

a non-dimensional constant that is a function of the shape and obliquity of the asteroid’s

body [60]. This can be integrated to give the time for YORP to reach a spin rate that allows

the contact binary to fission.

Ty = (ωf − ωi)
4πa2

s

√
1− e2

s

3Pφ

ρR2
a

C
(6.3)

An analytical equation given in McMahon and Scheeres gives the year averaged rates

for secular expansion/contraction of the semi-major axis as:

¯̇̄a =
Pφ

a2
s

√
1− e2

s

ap
√
µps

mpµ
[ŷb · Ā0] (6.4)

Where µ is the gravitational parameter of the system and ps is the semi-latus rectum of

the system’s orbit around the Sun. Integrating this equation gives the time that it takes

BYORP to expand/contract the orbit from an initial to final semi-major axis.

Tb =

(
1
√
ai
− 1
√
af

)
a2
smp
√
µ

PφA0

(6.5)

Depending on the value of C and if A0 is 1400 m2, τy/τb is between ∼ 44.5 and ∼ 445.3.

Therefore, the system will spend 1-2 orders of magnitude more time as a contact binary then

as a binary system. For a primary with a radius of R = 650 m, a binary will take 104 years

to expand, while YORP will take 105− 106 years to reach a spin rate that will cause fission.

Figure 6.10 shows the analytically determined time to expand from 2.0 primary radii to 13.5

primary radii (0.8 Laplace radius) over the time YORP takes to reach 2.2 hour spin-rate.

The secondary’s initial orbital radii starts close to the primary so that it takes a long amount

of time to expand BYORP to the instability region. This final primary radius of
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Figure 6.10: The ratio between time spent in the YORP process over time spent in the
BYORP process.The yellow data is the time it takes numerical simulations to expand from
0.5 rL-0.8 rL or 8.5rp to 13.5 rp, while the purple data is the same numerical expansion but
include the time in the instability region to the impact as well. The solid red and blue lines
give the range of time ratios for an expansion from 2.0 rp to 13.5 rp.
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13.5Rp is approximately where the instability region begins. The bounds of the possible

ratio TY ORP/TBY ORP are given in Figure 6.10 for the maximum and minimum value of C to

represent the YORP coefficient. In between are two numerical sets of data. The yellow data

is the time ratio between YORP and BYORP to expand from 8.5Rp to 13.5 Rp for asteroid

diameters from 200 km to 10 km. In purple, is the same simulation, but includes the time in

the instability region after losing synchronous lock till the time of impact. From this, it can

be seen that the time spent in the instability region takes about the same amount of time

to an order of magnitude less time than BYORP expansion.

6.4.6 Discussion

The contact binary cycle would provide a theory of maintaining the current population

of contact binaries. If something in this cycle were observed, a contact binary spinning up due

to YORP with any obliquity will most likely be seen, but also trending toward an end state

obliquity of 90◦. If the binary portion was witnessed the binary part of the cycle, BYORP

would be expanding the orbit and although the Laplace plane changes the inclination of

the orbit, the orbit will most likely be at a low inclination generally below 10◦. The higher

inclination orbits will not be observed unless the binary already has a higher eccentricity

and does not have a synchronous orbit.

6.5 Conclusion and Future Work

6.5.1 Conclusion

It has been determined that a binary system can follow the Laplace plane as it expands

with BYORP, even if it is not directly on the Laplace plane. If the obliquity of the primary

has an obliquity between 68.875◦ − 111.125◦, the binary will enter the Laplace instability

region and grow in eccentricity. If the obliquity is between 77◦ − 105◦, the eccentricity will

eventually grow to above 0.9 causing an eventual impact or escape. These conclusions were
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applied to create a new hypothesis on contact binary creation that keeps them in cycles of

fission and formation.The necessary conditions for the contact binary cycle to exist:

(1) Mass ratio, q & 0.2, to ensure no second fission or secondary escape. Ensures that

binary will settle into a double-synchronous orbit.

(2) The asymmetry of the secondary is such that the orbit of the binary expands as

opposed to contracts.

(3) The secondary settles near the Laplace plane within 5◦ inclination or on the equator

. 10 primary radii.

(4) The primary has an obliquity between 76◦− 107◦, so that the orbit expands into the

unstable region of the Laplace plane that results in collisions.

(5) After impact, YORP drives the obliquity to 90◦ and spins up the period of the

contact binary.

The binary cycle begins with a contact binary that is spinning up and its obliquity is

being driven to 90◦ due to YORP. Once YORP spins up the asteroid to a period of 2.2

hours, the asteroid will fission. The binary is chaotic, but due to q & 0.2, the tidal process

will yield a double-synchronous binary. This binary will expand due to BYORP along the

Laplace plane. Once the binary reaches an orbital distance of approximately 13.3 primary

radii, the secondary has entered the Laplace plane instability region. This will cause the

binary orbit to increase in eccentricity. First, the binary will lose synchronous lock, and the

orbit will stop expanding. Next, since the orbit is now stranded in the instability region, the

orbital eccentricity will eventually grow until the orbit intersects the primary body resulting

in an impact. The impact will result in a contact binary with a slow rotation and an obliquity

between 30◦ − 150◦. For the cycle to continue, YORP will need to drive the contact binary

to an obliquity of 90◦ and spin up the rotation of the asteroid.
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6.5.2 Future Work

What was presented in this chapter is a very simplified model, the next step would

be to include the libration of the two bodies to see how this affects the cycle’s evolution.

This will provide more conclusive timing on when precisely the binary system is most likely

to lose its synchronicity once the eccentricity increases. The obliquity of the primary may

also need to be incorporated into the model of BYORP since a double synchronous orbit

includes the mutual effect of solar re-emission on both the primary and secondary. Finally,

YORP driving the cycle back to a 90◦ obliquity is a crucial part of the cycle, but current

work proposes it is a coin toss between 90◦ and 0◦/180◦ or leans more towards final states of

0◦/180◦. It would be interesting to determine if there exists a mechanism in which contact

binaries would be driven more towards 90◦ or if this cycle will only have a 50% chance of

continuing each time it reaches the YORP portion of the cycle.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

7.1.1 Natural and Artificial Satellites

This dissertation applied known models of solar radiation pressure to near-Earth as-

teroids to explore the stability to impact or escape of natural and artificial satellites around

these bodies. This dissertation also presented the novel application of the classical Laplace

plane to the evolution of a binary asteroid through BYORP expansion. This use of the

Laplace plane created a hypothesis for contact binary-binary cycles that would help explain

the current population of contact binaries in the NEA population as well as explain the

broad range of obliquities found in observed contact binary populations.

The research provided in this dissertation used a model of spherical harmonics of the

asteroid, third-body perturbations from the Sun, and solar radiation pressure to character-

ize the stability of natural satellites around the asteroid Bennu, the future destination of

the OSIRIS-REx spacecraft. Previous work has investigated binary asteroid systems with

satellites large enough not to be directly impacted by SRP or studied particles such as dust

or 1 cm sized debris. This research looks at the stability of satellites small enough to be

affected by SRP and incapable of being seen from Earth observations, but large enough to

be dangerous if a collision with a spacecraft were to take place, ranging in size from 1 cm

to 15 m in diameter. Three orbital phenomena have been discussed that lead to stability or

instability of the satellite: modified Laplace plane, Kozai resonance, and Sun-synchronous
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orbits. The modified Laplace plane created a frozen orbit that was stable for satellites larger

than 1.5 m, while the Sun-synchronous orbits created stability for objects under 1 m in di-

ameter at inclinations between 36◦ − 144◦. The Kozai resonance caused instability for large

objects over 1.5 m in diameter at high inclinations between 78◦ − 102◦. Objects less than 1

meter in size are constrained to orbits 13 km or less. These objects will be the most difficult

to see during the natural satellite survey during approach.

The research of natural satellite stability was also applied to other asteroids such as

KW4 without the secondary and Vesta as well as asteroids with various obliquities of 0◦,

45◦, 90◦, 135◦. This research provided insight into how the obliquity will change natural

satellite stability as a whole. There were three main findings from this work. First, sun-

synchronous orbits were stable for all inclinations for asteroids with spin-poles not aligned

or perpendicular to the orbit pole, ε = 45◦ and ε = 135◦. While ε = 0◦ and ε = 176◦

were only stable from 36◦ − 144◦. ε = 90◦ had stable Sun-synchronous orbits except from

78◦ − 102◦. Along the same trend, the Kozai resonance instability did not exist for ε = 45◦

and ε = 135◦, while the aligned and perpendicular obliquities to the orbit pole did have

the Kozai resonance instability. Finally, the further the obliquity angle was from aligning

with the orbit-pole, the more possible orbits would precess around the Laplace plane and

therefore have bounded precession in longitude of the ascending node. At ε = 90◦, most

orbits had precession of Ω bounded to the Laplace plane, while ε = 0◦ had none.

A subset of mass-to-area ratios from our natural satellite research that overlapped with

artificial satellites was discussed. It is confirmed that the terminator plane is the best long-

term stable orbit for a spacecraft mission to an asteroid. There are stable orbits that are

Sun-synchronous, which precess in inclination around the terminator plane. However, the

significant precession in inclination and the growth of eccentricity that occur in these orbits

make them too unpredictable for spacecraft missions. Also, the modified Laplace plane was

determined not to be an option for a spacecraft orbit at NEA, unless the NEA is one of the

few asteroids greater than ∼5 km in diameter. However, the modified Laplace plane could
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easily be implemented as a spacecraft orbit at a main-belt asteroid with any obliquity for

any object over ∼ 5 km in diameter.

7.1.2 Binary Asteroids

The dissertation also discussed the possibility of binary asteroids expanding due to BY-

ORP acceleration along the classical Laplace plane. The work confirmed that the secondary

would maintain an inclination synonymous with the Laplace surface with a model of an

oblate spheroid primary, solar tides, and a constant-force BYORP model. This is also true

if the satellite is displaced from the Laplace surface. The inclination of the secondary would

just oscillate around the Laplace surface as it expanded away from the primary. However,

with obliquities between 68.875◦− 111.125◦, the secondary will eventually enter the Laplace

plane instability region where the orbit eccentricity will increase. If the obliquity is between

77◦ − 105◦, the eccentricity will become high enough to cause the secondary to impact the

primary.

From this information, a contact binary-binary cycle was proposed. The cycle begins

with a contact binary that will spin up, and its obliquity will be driven to ∼ 90◦ due to BY-

ORP. Once the rotational period of the asteroid reaches ∼ 2.2 hours, the asteroid will fission.

The binary system will be chaotic until tides bring the binary into a double-synchronous or-

bit. The secondary will expand along the Laplace plane where it will eventually reach the

Laplace plane instability region. Once the secondary enters this area, it will increase in

eccentricity, lose synchronicity and ultimately impact the secondary. This creates a contact

binary with any obliquity that will be subject to YORP increasing the spin rate.
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7.2 Future Work

7.2.1 Natural and Artificial Satellites

The research presented in this dissertation has made progress on these topics, how-

ever, with research, there are always more questions to ask and problems to solve. The

work accomplished on natural satellite stability purposefully places the issue, “How would a

natural satellite get into this orbit?” outside the bounds of the research goals. However, if

most satellites come from rocks or boulders leaving the equatorial bulge at the equator; how

would a natural satellite evolve to have a terminator plane orbit? Also, one initial parameter

that is ignored is the eccentricity. The eccentricity of an orbit can often make it more stable

to perturbations. For example, the terminator plane orbit requires a non-zero eccentricity to

be stable to SRP. Therefore, exploring how this increases stability for the natural satellites

would be beneficial to investigate.

7.2.2 Binary Asteroids

The binary asteroid system model with BYORP is a simple model that does not in-

clude the libration of the two asteroids. This would help determine exactly when the binary

will stop being synchronous due to increases in eccentricity. Because the binary is double-

synchronous, the rotation of the primary also would affect the secular motion of the sec-

ondary. But the primary has a high obliquity, which may change how thermal re-emission

from the primary contributes to BYORP. Finally, a significant portion of the cycle relies

on the assumption that YORP will spin up the asteroid and drive the obliquity to 90◦ and

BYORP will expand, not contract, the binary system. Therefore, the cycle has a certain

probability during the BYORP or YORP process that the cycle will stop because the as-

teroid is oriented the wrong way, and the asymmetry causes the opposite to happen. There

may be a mechanism that causes the cycle to have a high probability of ending in states that

allow the cycle to continue. Either way, it is essential to understand the chances of the cycle
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stopping at each step of the contact binary evolution.
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[71] M Ćuk. Formation and destruction of small binary asteroids. The Astrophysical
Journal Letters, pages 57–60, 2007. ISSN 0004-637X. doi: 10.1086/516572. URL
http://iopscience.iop.org/1538-4357/659/1/L57.
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F. Spoto, B. Rozitis, L. A. M. Benner, W. F. Bottke, M. W. Busch, J. P. Emery, E. S.
Howell, D. S. Lauretta, J.-L. Margot, and P. A. Taylor. Orbit and bulk density of the
OSIRIS-REx target Asteroid (101955) Bennu. Icarus, 235(101955):5–22, 2014. ISSN
10902643. doi: 10.1016/j.icarus.2014.02.020.

[94] D. Rabinowitz, E. Helin, K. Lawrence, and S. Pravdo. A reduced estimate of the
number of kilometre-sized near-earth asteroids. Nature, 403(6766):165–166, 2000. ISSN
00280836. doi: 10.1038/35003128.

[95] S. M. Rieger, D. J. Scheeres, and B. Barbee. Orbital Stability Regions for Hypothetical
Natural Satellites of 101955 Bennu (1999 RQ36). In 26th AAS/AIAA Space Flight
Mechanics Meeting,, Napa, CA, 2016.

[96] S. A. Jacobson, D. J. Scheeres, and J. McMahon. Formation of the Wide
Asynchronous Binary Asteroid Population. The Astrophysical Journal,
780:60, 2013. ISSN 0004-637X. doi: 10.1088/0004-637X/780/1/60.
URL http://stacks.iop.org/0004-637X/780/i=1/a=60?key=crossref.

f796260887d953984d85e7b931b949b8{%}5Cnpapers3://publication/doi/10.

1088/0004-637X/780/1/60.

[97] Peter Goldreich. Inclination of Satellite Orbits about an Oblate Precessing Planet.
The Astronomical Journal, 70(1):5–9, 1965.

[98] P. Goldreich. History of the lunar orbit. Reviews of Geophysics, 4(4):411–439, 1966.
ISSN 19449208. doi: 10.1029/RG004i004p00411.

[99] J. A. Burns, P. Hamill, J. N. Cuzzi, and R.H. Durisen. On the ”Thickness” of Saturn’s
Rings caused by satellite and solar perturbations and be planetary recession. The
Astronomical Journal, 84(11):1783–1801, 1979.

http://link.springer.com/10.1007/s10569-013-9530-7
http://link.springer.com/10.1007/s10569-013-9530-7
http://stacks.iop.org/0004-637X/780/i=1/a=60?key=crossref.f796260887d953984d85e7b931b949b8{%}5Cnpapers3://publication/doi/10.1088/0004-637X/780/1/60
http://stacks.iop.org/0004-637X/780/i=1/a=60?key=crossref.f796260887d953984d85e7b931b949b8{%}5Cnpapers3://publication/doi/10.1088/0004-637X/780/1/60
http://stacks.iop.org/0004-637X/780/i=1/a=60?key=crossref.f796260887d953984d85e7b931b949b8{%}5Cnpapers3://publication/doi/10.1088/0004-637X/780/1/60


148

[100] A. R. Dobrovolskis, N. J. Borderies, and T. Y. Steiman-Cameron. Stability of polar
rings around Neptune. Icarus, 81(1):132–144, 1989. ISSN 10902643. doi: 10.1016/
0019-1035(89)90130-9.

[101] Kevin J. Walsh and Derek C. Richardson. A steady-state model of NEA binaries
formed by tidal disruption of gravitational aggregates. Icarus, 193(2):553–566, 2008.
ISSN 00191035. doi: 10.1016/j.icarus.2007.08.020.

[102] M. W. Busch and Et. Al. Radar imaging and shape modeling of contact-binary near-
Earth asteroids 11066 Sigurd, 2000 YF29, and 2004 XL14. in prep, 2017.

[103] D. S. Lauretta, A. E. Bartels, M. A. Barucci, E. B. Bierhaus, R. P. Binzel, W. F.
Bottke, H. Campins, S. R. Chesley, B. C. Clark, B. E. Clark, E. A. Cloutis, H. C.
Connolly, M. K. Crombie, M. Delbo, J. P. Dworkin, J. P. Emery, D. P. Glavin, V. E.
Hamilton, C. W. Hergenrother, C. L. Johnson, L. P. Keller, P. Michel, M. C. Nolan,
S. A. Sandford, D. J. Scheeres, A. A. Simon, B. M. Sutter, D. Vokrouhlicky, and K. J.
Walsh. The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical,
geological, and dynamical nature from astronomical observations. Meteoritics and
Planetary Science, 50(4):834–849, 2015. ISSN 10869379. doi: 10.1111/maps.12353.

[104] K. J. Walsh, D. C. Richardson, and P. Michel. Rotational breakup as the origin
of small binary asteroids. Nature, 454(7201):188–191, 2008. ISSN 0028-0836. doi:
10.1038/nature07078.

[105] J. Kawaguchi. Summary of Guidance , Navigation and Control Achievement in its
Proximity Phase. AIAA/AAS Astrodynamics Specialist Conference, (August):1–8,
2006. doi: 10.2514/6.2006-6533.
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Table A.1: Range of stable natural satellite diameters for semi-major axes 1-5 km.

Semi-major axis (km)
1 2 3 4 5

i◦ Diameter (m)
0 0.3-15 1.5-15 1.5-15 1.5-15 1.5-15
6 0.3-15 1.5-15 1.5-15 1.5-15 1.5-15
12 0.3-15 1.5-15 1.5-15 1.5-15 1.5-15
18 0.45-15 1.5-15 1.5-15 1.5-15 1.5-15
24 0.6, 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
30 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
36 1.5-15 1.5-15 0.075, 1.5-15 0.15, 1.5-15 0.225, 1.5-15
42 2.25-15 1.5-15 0.075, 1.5-15 0.15, 0.675-15 0.15-0.225, 1.5-15
48 3.75-15 0.03, 1.5-15 0.0525-0.675, 1.5-15 0.075-0.225, 1.5-15 0.15-0.3, 1.5-15
54 3.75-15 0.03-0.06, 1.5-15 0.0375-0.15, 0.675-15 0.0675-0.225, 1.5-15 0.15-0.3, 1.5-15
60 5.25-15 0.03-0.0675, 1.5-15 0.045-0.15, 0.675-15 0.0675-0.3, 1.5-15 0.15-0.375, 1.5-15
66 15 0.0225-0.075, 2.25-15 0.0375-0.15, 0.675-0.75, 3-15 0.06-0.3, 2.25-15 0.15-0.375, 2.25-15
72 5.25-15 0.015-0.075, 1.5-15 0.0375-0.225, 0.75, 2.25, 15 0.06-0.3, 6.75-15 0.15-0.375, 6-15
78 0.0075, 5.25-15 0.015-0.075, 0.675-15 0.03-0.225, 1.5-15 0.06-0.3 0.15-0.45
84 0.0075, 5.25-15 0.015-0.075, 0.6-15 0.03-0.225, 1.5-15 0.0525-0.3, 3-15 0.15-0.45
90 1.5-15 0.015-0.075, 0.6-15 0.03-0.225, 1.5-15 0.0525-0.375, 3-15 0.15-0.45
96 0.75-15 0.015-0.075, 0.6-15 0.03-0.225, 1.5-15 0.0525-0.3, 3.75-15 0.15-0.45
102 0.0075, 0.75-15 0.015-0.075, 0.525-15 0.03-0.225, 1.5-15 0.0525-0.3 0.15-0.45
108 0.375, 0.525-15 0.015-0.075, 0.525-15 0.0375-0.15, 0.75-3, 6.75-15 0.06-0.3, 6.75-15 0.15-0.45, 5
114 0.375-15 0.015-0.0675, 0.525-15 0.0375-0.15, 0.675-0.75, 2.25-

15
0.06-0.3, 2.25-15 0.15-0.375, 3-15

120 0.525-15 0.0225-0.06, 0.525-15 0.0375-0.15, 0.6-15 0.0675-0.3, 1.5-15 0.15-0.375, 2.25-15
126 0.375-15 0.0225-0.0525, 0.525-15 0.045-0.15, 0.6-15 0.0675-0.225, 1.5-15 0.15-0.375, 1.5-15
132 0.6-15 0.75-15 0.045-0.075, 0.6-15 0.075-0.225, 0.75-15 0.15-0.3, 1.5-15
138 0.75-15 0.675-15 0.045-0.075, 1.5-15 0.075-0.15, 0.675-15 0.15-0.225, 1.5-15
144 3.0-15 1.5-15 0.0525-0.0675, 0.75-15 0.675-15 0.15-0.225, 1.5-15
150 15 1.5-15 1.5-15 1.5-15 0.75-15
156 1.5, 5.25-15 1.5-15 1.5-15 1.5-15 1.5-15
162 2.25-15 1.5-15 1.5-15 1.5-15 1.5-15
168 2.25-15 2.25-15 1.5-15 1.5-15 1.5-15
174 2.25-15 2.25-15 1.5-15 1.5-15 1.5-15
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Table A.2: Range of stable natural satellite diameters for semi-major axes 11-15 km.

Semi-major axis (km)
11 12 13 14 15

i◦ Diameter (m)
0 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
6 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
12 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
18 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
24 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
30 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
36 1.5-15 1.5-15 1.5-15 1.5-15 2.25-15
42 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
48 1.5-15 1.5-15 1.5-15 1.5-15 1.5-15
54 0.525- 0.6, 1.5-15 1.5-15 1.5-15 2.25-15 2.25-15
60 0.525-0.75, 2.25-15 0.675, 2.25-15 2.25-15 2.25-15 2.25-7.5
66 0.525-0.75, 2.25-15 0.6-0.75, 3-15 2.25-15 3.0-15 3, 5.25-6, 7.5-15
72 0.45-0.75, 3.75-15 0.6-0.75, 3-15 0.75, 3.75-6.75, 15 3.75-6.75, 15 3.75
78 0.45-0.75 0.675-0.75 - - -
84 0.525-0.75 0.675 - - -
90 0.6-0.675 - - - -
96 0.675-0.75 0.75 - - -
102 - - - - -
108 0.75 - - - -
114 15 - 15 - -
120 6.0-15 15 15 - -
126 3.75, 5.25-15 - - - -
132 3.75-15 15 15 15 15
138 3.0-15 7.5-15 7.5-15 7.5-15 7.5-15
144 3-3.75, 5.25-15 6.75-15 6.0-15 6.75-15 6.75-15
150 3, 6-15 6.0-15 6.0-15 6.0-15 6.0-15
156 3, 5.25-15 5.25-15 5.25-15 6.0-15 6.0-15
162 5.25-15 5.25-15 5.25-15 5.25-15 5.25-15
168 5.25-15 5.25-15 5.25-15 5.25-15 5.25-15
174 5.25-15 5.25-15 5.25-15 5.25-15 5.25-15
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Table A.3: Range of stable natural satellite diameters for semi-major axes 20 and 25 km.

Semi-major axis (km)
20 25

i◦ Diameter (m)
0 2.25-15 6-7.5
6 3.0-15 6-6.75
12 2.25-15 6.75, 15
18 3.0-15 6.0-15
24 2.25-15 -
30 2.25-15 -
36 2.25-3, 5.25-6, 15 -
42 3 -
48 5.25 -
54 - -
60 - -
66 - -
72 - -
78 - -
84 - -
90 - -
96 - -
102 - -
108 - -
114 - -
120 - -
126 - -
132 - -
138 - -
144 - -
150 - -
156 - -
162 - -
168 - -
174 - -
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