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Abstract

Having high fidelity numerical simulations for the dynamics of a spacecraft is
becoming increasingly important for space missions. Constraints are becoming
more and more stringent as far as precision attitude pointing, attitude jitter, and
orbital accuracy are concerned. A crucial aspect of spacecraft dynamics is the
depleting mass due to thrusters. Orbital maneuvers and Dynamics and Control
(ADC) nozzles firing change the current spacecraft mass properties and results
in an associated reaction force and torque. To perform orbital and attitude
control using thrusters, or to obtain optimal trajectories, the impact of mass
variation and depletion of the spacecraft must be thoroughly understood. Earlier
works make many assumptions while deriving the equations of motion, such
as considering an axial symmetric body or a given tank’s geometry, that could
decrease the generality and applicability of the models and result in the necessity
to re-derive equations of motion for specific spacecraft.

This paper develops the fully coupled translational and rotational equations
of motion of a spacecraft that is ejecting mass through the use of thrusters. The
derivation begins considering the entire closed system: the spacecraft and the
ejected fuel. Then the exhausted fuel motion in free space is expressed using the
thruster nozzle properties and the well-known thrust vector to avoid tracking
the expelled fuel in the simulation. The present formulation considers a general
multi-tank and multi-thruster approach to account for both the depleting fuel
mass in the tanks and the one exiting the thruster nozzles. General spacecraft
configurations are possible where thrusters can pull a single, multiple tanks, or
the tank being drawn from can be switched via a valve.

To perform validation of the model developed and to show the impact of
assumptions that are made for mass depletion in other models, numerical sim-
ulations are presented and compared to a simple parameters-update approach.
Additionally, an orbital maneuver with attitude control is included and the im-
pact on mass variation is taken into account by updating the mass flow of each
ADC nozzle.



1 Introduction

2 Notations and reference frames
The following notation will be used:

e r¢/n is the vector pointing from N to C.

B

e 7 is the vector r expressed in the B reference frame.

e wpg/ is the angular velocity of the B reference frame about the N one.

e 7’ denotes the derivate with respect to the time in the body fixed reference
frame.

e 7 denotes the derivate with respect to the time in the A reference frame.

Moreover, different reference frames will be presented to model properly the
problem:

e The inertial reference frame N centered in N and oriented freely in space.

e The body fixed reference frame B with origin B and versors {131 by ,133}
oriented in any direction of the space.

e R
e M

Finally the instantaneous satellite’s center of mass will be named C, the
center of mass of the spacecraft’s hub will be labeled rp. g and the tank’s
center of mass will be noted r7./p.

3 Mathematical Background

In this section the main tool used for the deduction of the governing equation
will be presented and explained. The following theorem has always been called
in the literature "Reynolds transport theorem” even if its first proof was given
by Leibniz. The theorem provides a basic tool to pass from a Lagrangian for-
mulation, based on the analysis of particles moving in space, to an Eulerian
one, considering a fixed space volume where physical quantities are exchanged
throughout the boundaries.

In the present document the considered Lagrangian system will be labeled
Body, the moving volume of the Eulerian approach will be called V and its
surface A. By using this notation, the theorem affirms [T}, 2, [3] [4]:

d
R d = — d —+ el * TAL dA 1
de Bodypf v dt fo v /Apf(v ! ) ( )



Exhausted gas

/

Total system |

Figure 1: Division of the total system in spacecraft and exhausted gas. The
control surface A, represents the exchanging surface between the two subsys-
tems.

where f is a general vectorial quantity transported out from the control volume,
p is the density of the infinitesimal mass dm considered, 1 the surface normal
taken exiting from the control volume and wv,e is the relative velocity of the
particles exiting from the surface with respect to the control surface itself.
Moreover, in the case of a non deforming control surface the following relation
can be proved [2 5] as no modification of the volume occurs:

d d A
a1 Bodyp‘fdvz/v(”(pf)dv+[4pf(vrel'n)dA 2)

4 Equation of motion

4.1 Translational equation

The derivation of translational equation must begin considering the Newton’s
law for a closed system.
Na
—_— 'rM/N dm = Fext (3)
dt Body
where 7,/x is the velocity of the particle occupying the M point expressed in
the inertial reference frame and F.,; are the external forces experienced by the
point.
As the mass system is constant, the differentiation operator can be brought



inside the integration and the use the kinematics equation allows to pass from
the inertial reference frame A to the rotating and non-inertial B:

Nd

a T‘M/Ndm: ’I"M/Ndm (4)

Body Body

The acceleration of the origin of the B frame can be expressed as:

TyyN =TB/N +TM/B (5)

By using the kinematic transport theorem, the expression of r can be de-
duced:

Ty/B = 7“?»1/3 +wp/n X Tr/B (6)

Far/ = Thy g +2Wa/N X Ty g +WB/N X T/ +ws/n X (Wsyn X TB/m) (7)

Figure 2: Spacecraft subsystem and main definitions.

A Lagrangian formulation of the linear momentum equation can be deduced
by using equations [3| [} [f] and [7}

/ (Fp/N +ws/n X Taryp +wp/n X (wa/n X Taryp)) dm+
Body

rﬁw/Bdm + / TK/[/Bdm = Fext (8)

+2w3/N X /
B Body

ody

As the system mass is constant the derivation operator can be applied before
the integration. Thus:



Bq
v gdm = — Ty pdm (9)
/;ody M/B de Body /
" Bd2
TM/Bdm:@ rM/Bdm (10)
Body Body

By using the Reynolds transport theorem exposed in the previous paragraph
two previous equation can be expressed in a space fixed volume shown in figure

M@

Bq Bq
a ’I”M/Bdm:a/ P"’M/BdVJF/ pr%/[/B~nrM/BdA (11)
Body Vsc Ase
Bd2 Bd2
T e = i [ prmavs

Bq
+dt/A prﬁwB~nrM/BdA+/A prﬁ\/[/B-n'rﬁV[/BdA (12)

where vy = 1, /B because the B point is fixed with respect to the spacecraft
and, clearly, the relative velocity of the particle in M is the the derivative of the
position vector in the B reference frame.

The equation [8] can be re-organized considering the previous relations in order
to consider an Eulerian approach, i.e. based on a volume-based view.

/ (Fp/N +ws/n X Taryp +wp/n X (wa/n X Taryp)) dm+
Body

Bq
+2wB/N>< <dt/ pTM/BdV+A
VSC
Bd2 B

d "
+dﬁ[) pTN[/BdV+(RA prg\/[/B'nTM/BdA+

PTh/B -'fer/BdA> +

sc

+/ pr’M/B-’flr’M/BdA:Fext (13)

As explained in [I], if at the initial time all the mass is contained in the
control volume the following relation stands as no mass is outside the volume of

control at t = 0 and the quantity will be transported by the fluxes during the
integration:

Feyt — / (7B/N +wp/n X Tryp +wp/n X (W X Tayp)) dm =
Body

:/ dFyo1 +/ dFsurf_/ P (TB/N +w3/./\f X TM/B —+
Vsc V.

sc sc

+ wp/N X (wB/N X "'M/B)) dy (14)



where the forces has been divided on the volumetric ones and the ones applied
on the spacecraft surface.
Thus:

/ p (F/n +wp/n X Tap +wi/n X (wa/n X Tar/p)) dV+
Vsc

Bq
+2wp/n X (dt/v pTM/BdV—l—A pT%/[/B-’fLTM/BdA> +

sc

Bj2 Bq
+@/y prM/BdVertA PTM/BﬁTM/BdA+

+/ prgw/B-ﬁrngdAz/ dFVO1+/ dFs,s  (15)
A

sc Vsc sc

As the present paper aims to introduce the dynamic’s equations in case of
varying mass inside the spacecraft, two point must be developed: on one hand
both the translational equation and the rotational one will be expressed with
the vector rp/n as free variable and, on the other, a complete and comprehen-
sive model of the ¢ = rc/p vector must be performed in order to follow the
instantaneous displacement of the center of mass all along the trajectory of the
satellite.

Calculating the satellite’s center of mass in the B reference frame, the ¢ vector
can be expressed with respect to the masses of each component of the satellite.

M
Mhub TBe/B 1 ) i—1 Mfuel; TFe; /B
c— u c/ 2171 uel; ci/ (16)

M
Mhub + Zi:l Mtyel;

where my,p is the hub mass, mgyer; the i-th fuel mass and rp, /B the position
of the i-th fuel’s center of mass.

In order to infer the influence of the mass variation in the equation of motion
the relation [16| must be derived. Thus, in the B frame:

M (rvguer, T + Miyel, T}
i=1 fuel; " Fe; /B fuel; Fc;/B
M
Mhub + Zi:l Mityel;

M . M
Zi:l Mityel; Mhub T"Be/B + Zi:l Mtuel; TFe; /B

M 2
(mhub + Zi:l mfueh)

/
CcC =

(17)




M - : / "
I Zi:l (mfueli TFci/B + 2 Mtyel; TFci/B + Mfuel; TFC,;/B)
C =

M
Mhub + Zi:l Miyel;

M .. M
Zi:l Mityel; Mhub T"Be/B + Zi:l Mtuel; TFe; /B
o 2
M
(mhub +> i mfueli)
M . M . /
2 (Zi:l mfueh) Zi:l (mfueli chi/B + Mityel; TFCi/B)

M 2
(mhub + Ei:l mfueli)

+

2
M . M
2 (Zizl mfuel,i) (mhubTBc/B + Zizl Mtuel; TFci/B)

+ 3
M
(mhub + Zizl mfueli)

(18)

Once the vector ¢ has been evaluated, the completed translational equation
of motion can be simplified both assuming no relative internal mass flow inside
the reference volume and expressing each term with respect to nozzle’s position
and geometric feature of each thruster.

In the following pages the terms of equation [L5| will be analyzed in order to have
a simpler relation adapted to the case under study. The main hypothesis that
will be taken into account are:

e The body is rigid and deformation are not considered.

e The mass flow inside among the tanks and the thrusters is considered to
be a second order effect and, thus, neglected.

e The particles are accelerated instantaneously from the spacecraft velocity
to the exhausted velocity at the nozzle surface.

e The particle exhausted velocity vexn is considered constant and parallel to
the nozzle’s normal n

The first integral in equation [L5| is the easiest to compute tanking into ac-
count that ry;/p = ¢+ 7p/c and the definition of barycenter:

/ p (Fe/N +wp/n X Tayp +wiyn X (wayn X Taryp)) AV =

sc

= Maeh B/N + Mee WB/N X €+ Mse wpyn X (wpynr X €)  (19)

where mg. = Mpub + Zf\il Mpel, 1S the instantaneous mass of the spacecraft.
AS far as the second and the forth integral concern, their expression using the
considered variable can be performed throughout the definition of barycenter
and decomposing the vector ry;,p. Thus:



Bd B
E / PTM/B dy = E (msc C) = Msc c + MfuelC (20)

sc

. M.
where Thggel = Y ;1 Mtuel, -

BdQ
de?

Bd2

/ PTM/B dy = @ (msc C) = Mec '+ 2 Miyel c + MiuelC (2]—)

sc

where el = ZzAil mfuelic

In order to infer the term calculated on the reference surface, i.e. the third,
the fifth and the sixth integrals, it could be convenient to separate the integral
on the surface of each nozzle and then sum them up. Moreover, as the fuel’s
properties are flowing out from a spherical surface, it is convenient to express
the vector rp/p as follows 7y /p = TM/Fe; T Tre;/p Where Fe; is the area
barycenter. Finally, a convenient variable transformation can be performed to
compute the properties exchanged while the mass disk is passing through the
reference surface drin = —p 7/, /B ndA.

/,

sc

N
pTEW/B'IfLTM/BdA:Z/A prﬁWB~nTM/BdA:
j=1 noz;

N

N
=— Z/ (rav/n, + 7, /B) di = — Z Moz, TN, /B (22)
j:l mnon j:1
where the first part of the integral is null because of barycenter definition and
Tinoz,; 18 the mass flow of the j—th nozzle.

Bd , Bd N
dt/A /’TM/B‘"TM/BdA:E _;mHOZj’"NJ/B =

sc

N N
= - Z (mnon- ’,'Nj/B + mnoz]-'r'g\/'j/B) = - Z mnozj-rNj/B (23)
j=1 j=1
where the last equivalence stands as the nozzle barycenter is motionless with
respect to the body-fixed point B and Moz, 1S the mass flow derivative of the

j—th nozzle.
The sixth integral can be easily solved if the exhausted velocity 7/, /B = Vexh is
considered constant at the nozzle’s exit, as previously hypothesized.

N
/A P”M/B 'ﬁTM/B dA = Z /A P’”EVI/B 'nTEVI/BdA =
e =

s noz;
N N

= - E / Vexh dm = — § mHOZJ‘ 'Uexhj (24)
j=1 Mnoz; j=1

10



where vex, is the exhausted velocity of a particle exiting from the j—th nozzle.
Finally the two integrals of the right member of equation[L5|can easily computed
once a force model is chosen. This step depends directly from the problem under
study. As the present work aims to provide general spacecraft rotational and
translational equations, the only term that can be developed analytically is the
surfacing integral in order to take into account the effect of the pressure jump
between the nozzle and the environment. Thus:

/ dFvol + / dFsurf = -F‘ext7 vol T+ Fext, surft
Vse A

sc

vcxh]
+ Z Anozj pexh patm) (25)

chh

where Feyi vo1 are the external forces acting on the control volume, Feyt, surf
are the external forces accelerating the control surface, pexn, is the particles’
exhausted pressure at the j—th nozzle and p,ty, is the atmospheric pressure at
the flying altitude.

Finally, the equation[I5can be rewritten considering nozzles’ geometry and fluid

properties by using equations

M B/N + Msc WB/N X €+ Mgcwp/n X (wp/n X €) + Mge € + 21401 €+

N
.. / . . ..
+ MfuelC + 2‘-‘-"B/J\/ X <msc C + MifyelC — E Mnoz; TNj/B) - E Mnoz; TN, /BT
Jj=1 Jj=1

vexhj

N
- § mnozj Vexh; = Fext, vol + Iwext7 surf 1 E
Jj=1 Jj=1

where ¢, ¢/, ¢’ have been specified in equations
The previous equation can be righted by defining the following quantity:

Anozj (pexhj ~ Patm) (26)

@cxhj

A 7 i . . Vexh,
Fthrj = 'Uexhj (vnohj (pexhj - patm) + mnoz]-) = Ispj 9o mnoz]- ° hg (27)
exh; exh;
Thus:
mf 1
ey ZFthry == (¢ +wpn xe) — '+

S

Zmnozg-wB/./\/ X TNJ-/B+
Jj=1

—2wp v X € —wp/n X (wp/n X €) +

SC

1
Msc

N
.. .. 1 1
Z mI]OZJ' rNj/B — Mfyel €+ miFext, vol + miFext, surf (28)

]:1 SC SC

11



Moreover, if the cross product is substituted with the skew matrix associated,
the translational equation 28| can be written in a more compact form:

N .
1
PIPLL W PR I
-1 Msc

. T .
/N +[€] wpn = +
SC .
J

N

> titnos, [@8/n] TN, B+
j=1

+ 2 [GJB/N]TC, + [J)B//\/]T [‘IJB/N] c -+ m
al 1 1
Z mnozj' chj/B - mfuel c+ F‘ext7 vol + 7Fext, surf (29)

C j=1 SC SC

+

ms

This equation of motion is the Newton’s law for an open system subjected to
external forces Fuxt, vol + Fext, surt and thrust Fip, = Z;\le Fi, due to mass
depletion of the spacecraft, represented in figure 2l From this equation can be
deduced that the variation of the mass inside the spacecraft affect directly the
position of the satellite itself with respect to the origin as the body fixed point
B changes its state of motion according to the variation of the tanks’ linear
inertia.

4.2 Rotational Motion
In this section the rotational equation of motion will be developed taking into
account the variation of fuel in the reservoirs. Beginning from the Newton’s
equation and calling M the point where the infinitesimal mass dm is:
TM/Nd’ITL:dF =  TM/N X'i*M/Ndm:rM/N x dF (30)
By performing an integration allover the system:

/ ’I"M/N XTM/Ndm: TM/N x dF (31)
Body Body

The left term of the equation can be manipulated in order to consider a
different reference of the origin of the momentum equation thanks to kinematics
identities:

/ pTM/NX’i';]\/[/NdV: PTM/B XTM/BdV+
Body Body

+/ pT’B/NX’i;M/NdV+/ ,OTM/BX’FB/NCIV:/ 'I”‘M/NXdF
Body Body Body
(32)

Considering that #;/y dm = dF', the torque caused by the forces acting on
the body can be easily defined:

12



/ ’I"]V[/NXdF— p’l"B/NX'I”M/NdV:
Body Body

= / (TN —TByN) X Ty AF = Ty X PyyndF = Lp  (33)
Body Body
where L is the torque with respect to the body-fixed point B.
As the mass of the system is constant, the derivative of the angular momentum
about point B can be inferred easily from equation [32[ thanks to the property
of the cross product and Othe previously exposed Reynold transport theorem:

Nd
/ pTM/BX’I';M/deii/ pTM/BX’I;‘M/BdV‘F
Body dt

sc

+/ p’l“g/[/B"fL(’l‘M/BX'I:'M/B>dA (34)

sc

Moreover, as in the translational equation, if all the mass of the system is
contained at the initial time inside the control volume, the following relation
stands:

/ pra/pXrgNdV—Lp = / PTM/BXTB/N dV—/ T/ X AF o+
Body V. Vsc

- / Tm/B X AFguf = M€ X /N — LB, vol — L swt  (35)
Asc

sc

where L vo1 and Lp sy are the torque caused by the volume forces and sur-
face one respectively.

Finally, the general rotational equation for a control volume in a rotating refer-
ence frame can be reorganized:

Hy B +/ PTh BT (rar/B X Paryp) dA+ mgee X T /n =
ASC

= LB,Vol + LB,surf (36)

By definition of angular momentum vector about point B:
Hy., B = [Inub, B WB/N + TBe/B X Miub TBe/B+

M
+ Z ([Ifueli7 Fci] WB/N + TFc;/B X Mtuel; ":'Fci/B) (37)
i=1

where [Ihyp, Bc] is the hub’s inertia about its center of mass Be.
Furthermore, an analytical expression of the mass variation influence on the
rotational motion can be deduced:

13



Hsc, B — [Ihub7 Bc} wB/N + wWB/N X ([Ihub,Bc] wB/./\f) + TBe/B X Mhub ,FBC/B+
M
+Z (el pes) wa/n + wi/n X (Ttuel,, Fe;) WB/N) + TFei/B X Mivel, Tre; 5+
=1
T pe /B X Mivel; Tre, /B + [Tiuels, Fe;] wp/n7)  (38)

It must be noticed that no relative motion of the particle inside the spacecraft
has been considered and, as a consequence, there is no effect both of the Coriolis’
acceleration and of the whirling motion on the spacecraft dynamics. An more
detailed dissertation of the impact of these effect on the spacecraft can be found
in [6].

Additionally, the derivate of the vectors rp./p and Tp.,/p can be computed
using the transport theorem between the two reference frames:

TBe/B = 7’330/13 + WB/N X TBe/B = WB/N X TBc/B (39)
FRe/B = WB/N X TBe/B +WB/N X (WB/N X TBe/B) (40)
”"Fci/B:r}?ci/B +wB/./\/'XTFc,-/B (41)

'i;Fci/B = T/F/’c,;/B + QWB/N X r,Fci/B +C|JB/N X TF(:i/B—’_
+ wp/n X (Wp/n X Tre ) (42)

By substituting equations [40} [41] and [42] in equation [38] can be rewritten:

Hy. p = [Tnub, el @s/n + wi/n % (Thab, Bl ws/n) +

+TBe/B X Miub (WA X TBe/B + wWi/n X (Wa/N X TBe/B)) +
M

+ ) (rue,, Fe,) @nyn + wpynr % (e, Fe,] wp/n) +
=1

+ TFc;/B X Mfuel, (rlf«igi/B + 2wB/N X T;"ci/B—’_
+ WB/N X TRe, /B +wp/n X (Wa/N X Tre,/B))+
+ TFc;/B X mfueli (TIFci/B + wB/N X TFci/B) + [Ifuel,i,FcJ/ wB/N) (43)

In order to compact the equation the following inertia matrices must be
defined using the tilde operator to replace the cross product:

[Ihub,B] = [Ihub,Bc] + Mhub I:FBC/B] [’FBC/B]T (44)
[Ifueli,B] = [Ifueli,Fci] + Miuel; ['FFci/B] ['FFci/B}T (45)
M
[Isc, B] = [Ihub, B] + Z tuel,, B] (46)
=1

14



Moreover, using the Jacobi identity for the cross product a x (b x ¢) + b X
(c x a) + ¢ X (a x b) = 0 the derivative of the fuel inertia in the B reference
frame can be introduced:

TFe;/B X (2‘4113//\/ X T;?ci/B) = —Tp¢;/B X (r}ci/B X wB/N) +

+Tre;/B X (wB/N x T}rci/B) = —TF¢;/B X <7“%ci/B X "’B/N) +

_r%'ci/B X (chi,/B X wB/N) +(.UB/N X (Tchy/B X T‘chi/B) (47)

[Ifu()liy B]/ = [Ifucli,, FcJ + mfuelq‘, [fi;FCi/B] [’FFCZ'/B] ’ +
T
+ Miyel, (I:,’:FC7/B} |:f/Fcl/B:| + [’f‘lFCl/B} [FF&:/B] T) (48)

Thus, by substituting equations and [48] and developing the ex-
pressions:

M
H,. p = I, B] wp/n+ [@8/n] [Usc, B] wB/N+Z (mfueli [Pre,/B) The,  p+
=1

+rivsuel, [Fre,/B] e, s + el 8] wi/n + [@8/57] [Fre,/ 5] T%ci/B) (49)

Considering that, at the nozzles’s exit, Tr;/p = Vezn, + wp/n X Tar/p and
driv = —pr}, p - *dA, the surface integral can be expressed in term of the
nozzles’ surface:

N
/ pThyp T (Taryp X Payp) dA = — Z/ Tar/B X Vexh; A+

Aexh =1 mmzj

N
+Z/ TMm/B X (TM/B X wB/N) dm (50)

Mnoz,;

Jj=1 J

Finally the equation of motion [36] can be updated using equations [9] and
1510]

M
Hg. p = I, B] wp/n+ [@8/n] [Lsc, B] wB/N+Z (mfueli [Pre,/B) The, p+
=1

+mfueli ["chi/B] r}ci/B + [Ifueli,B]/ wB/N + Mtyel; [GJB/N] [’leci/B} TIFQ-/B) +

N N
30 [ ) v it Y [ raagn]) [Fagn] it
j=1"7"noz; i=1

Mnoz;

+[€] msc PB/N = LB, vol + LB surt  (51)

15



The torque of each nozzle can be computed as a part given by the pressure
distribution of exhausting flow and a second one provided by the lever arm
distance from the application point of the force:

Lp,., = Lb.. s, +/ TM/B X Unoz; din (52)

noz;
J

Furthermore, a term taking into account the angular momentum variation
caused by mass depletion can be defined as follows:

j=1" "oz,

(K] = U, o]+ / [7a1/5] [Fay5] din (53)

The second integral in equation can be computed evaluating the mo-
mentum exchanged due to the fuel thin disc going out from the nozzle area,
coincident in this case with part of the interface surface between the spacecraft
and the exhausted fuel. If a series of N nozzles are considered, the integral can
be split:

/ﬁ ["aa/8) [Payp] din =

Inoz;

= [ (gn) + Fa]) (o] + o ]) i =

noz
075

HOZ]'

2 00
. _ _ T
= —Mnoy, [TNJ/B] [’f'Nj/B] + [BM;] |0 1 0 [BMj]T (54)
0 0 1

where Ay, is the exiting area of the j-th nozzle and [BM;] is the change
coordinate matrix from the j-th nozzle frame M, defined to have its origin in
the IV; point and its first axis in the exhausting velocity direction vexn;, to the
B frame.

Finally the rotational equation of motion can be written:

M
[Isc, B] wB/N + [‘:JB/N] [Isc, B] WB/N + Z (mfueli [":Fci/B} "’.g‘ci/B""
=1
+mfuc17; [/FFci/B] r;«"ci/B + Mtuel; [&B/N] [FFCi/B] T%Ci/B) +
N
+ KUJB/_/\/ + [é] Mge TB/N = LB,Vol + LB,surf + Z LBthrj (55)

J=1

4.2.1 The [K] term

In this paragraph a brief dissertation about the [K] matrix defined in equation
will be developed.
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This matrix is summarize the angular momentum variation induced by the mass
depletion. It is a symmetric matrix as it is sum of matrices of this type and,
as shown in equation it depends directly from the nozzles’ position and
geometry and from the tanks’ mass variation and their geometry.

In figure [3] a simple but instructive case is shown and it could be useful to
clarify the influence of the [K] term and can be analyzed in details in [7] where
various tank configurations are considered and a dissertation of the spin and
transversal rate is developed to understand the influence of the mass depletion
on the system.

M

[ g

Casen 1 Casen 2 Casen 3

Figure 3: Cases of the influence of the [K] matrix on the system dynamics.

In all the three cases a cylindrical tank is rotating about its symmetry axis
S . T . .
€3 with constant angular velocity wg,/ = [O 0 wgp/n. ] and, at a given time,
it starts loosing mass according to the force to be applied. On one hand, the

angular momentum transported by a particle at the tank’s wall will be:

0
-lq-part7 tank = Mpart Ryani X (Rtank X wB/N) = Mpart 0 (56)
thank wB/Nz

where mpare is the particle mass and Ryiank is the cylinder radius.
On the other, the angular momentum of the same particle at the nozzle’s exit
can be easily written as follows:

0
-lq-palrt7 noz — Mpart R, x (Rnoz X WB/N + vcxh) = Mpart 0 (57)
R or WB/N.

where R, is the nozzle radius.

Obviously the angular momentum variation is equal to the amount of it trans-
ported throughout the surface control by the particles. Intuitively, three differ-
ent cases can be distinguished:

1. If Riank < Rpoyz, the particle is transporting out more angular momentum
than the one it owned inside the tank as the distance from the symmetry
axis €3 is bigger. As a consequence, the body tends to spin down and
asymptotically stabilize the motion.

17



2. If Riank = Rnoz, the same amount of angular momentum possessed by the
particle inside the tank is ejected from the nozzle and, consequently, the
body does not modify its state of motion.

3. If Riank > Ruoz, the angular momentum difference is smaller than zero
and the system spins up to compensate this gap.

5 Fuel supply architecture and implementation

From a program implementation prospective the tank mass flow and their deriva-
tives must be computed once a maneuver is performed in order to evaluate the
different terms in the equations of motion. By using this approach the j-th
nozzle mass flow will be considered as known and could be computed from the
thrust provided by the nozzle and its properties, i.e. Ispj and vy, -

If a matrix notation is considered:

mfuel - [A] mnoz (58)

where [4] is a matrix linking the tanks’ mass flows and nozzles’ ones.
A fundamental property of the matrix A can be established from the definition
of ’n"quel:

M M N N M
meueli = Z ZAijmnozj = Zmnozj = ZAij =1 VJ S (1,N)
i=1 j=1 i=0

i=1 j=1
(59)
The previous property is a direct consequence of the mass flow conservation
between the tanks and the nozzles.
From the previous relation, the first derivative of mass flows can be easily com-
puted:

mfuel == [A] mnoz + [A]mnoz (60)

In the following analysis the [A] will be considered constant with time, i.e.
[A] = 0. In figure 4| an example of a possible distribution system is shown.
Taking to account this schematic representation and the fact that each com-

ponent of the matrix [A], ; represent the percentage of fuel ejected by the nozzle
j given from the tank 4, an example can be easily developed.The system of
equation is:

mfuell = mnozl + mnozz

mfuelg =03 mn024 + mnozs (61)

Mfuelz = Mnozs +0.7 Mnoz,

Thus, the [A] matrix is:

(62)

=

I
S O =
O O =
= o O
e @
N W
O = O



Tank n 1 Tank n 2
Tank n 3

Nozzlen 1 Nozzlen 2 Nozzlen3 Nozzlen4 Nozzlen 5

Figure 4: An example of the distribution system among tanks and nozzles with
numerical values.

6 Control feedback law

Once equations have been gathered, control can be included to reach the desired
reference state despite the disturbances applied on the spacecraft.
According to reference [§], a Modified Rodrigues Parameters (MRP) feedback
control law has been chosen as it can always assure global asymptotic stability
avoiding singularities. If a reference frame R is defined, the control can be
expressed as follows:

u=—-Kopr —Pwg/r (63)

where o3, is the MRP defining the attitude from the R frame to the B one
and wg/r is the angular velocity of the B frame about the R one. The impor-
tance of using a R frame instead the inertial one N lies in the possibility of
moving the reference frame about the latter to let the spacecraft orient its axis
as desired in the euclidean space imposing both the attitude and the angular
velocity. A clear example of this concept could be a reference frame R spinning
about the inertial frame N

In order to evaluate the control torque the attitude oz,z and the angular ve-
locity wgp,r must be computed. By considering as known oz and wg/ar, the
needed variables can be calculated as follows [, [Q]:

OB/R =O0B/N O OR/N =

(1 —Ug/NO'B/N) or/N t+ (1 — U?E/NUR//\O OB/N —20R/N X OB/N

1+ (Ug/NUB/N> (‘772//\/‘773/1\/) +20% \OR/N
(64)

WB/R = WB/N — WR/N (65)
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where, in case of singular representation of the MRP set o,%, one of the two
initial MRP can be switched to the shadow representation Sog s~ defined by:

g
Se —

ol o (66)
For a detailed treatment and the kinematic relations among the different angu-
lar representations, the references [§] could be used.

The control torque might be concretely provided to the spacecraft through var-
ious devices and, in the present paper, a thruster-based control will be imple-
mented to underline the main features of mass depletion.

The challenge of this approach is to find out the needed forces from a given
torque. The following algorithm has been provided by Dr. Hanspeter Schaub
and has not be developed by the author.

By assuming a series of P ACS thrusters, the position of the k-th nozzle can be
labeled 7y, /g and the k-th force is given by:

Finr, = Finry, Gk = Finr, [BMy] 9 (67)

where 1 is the first versor of the k-th ADC thruster’s reference frame as defined
previously. Consequently, the torque generated can be easily computed:

Lp,,., =7N.B % Finr, gk (68)

If a set of ortho-normal, i.e. &, &, = 1 and é, - é. for r,h € (1,3), axis is
chosen the total torque provided by the thrusters about the ¢, is:

P P P
Lg,, ¢ = Z Lp,,., ¢ = Z (TNne/B X k) - €nFiny, = deFthrk (69)
k=1 k=1 k=1

In a matrix form:

LBthr “€p = [D} Fiye (70)

The first step to compute the forces is to find which thrusters could provide
positive Fipr,, thus in accord with the definition of Fiy,, as magnitude of the
force vector. This can be actually achieved by a minimum norm solution to
produce the needed control torque:

-1
Fu = [D]" (ID][D]")  w-é (71)
By considering the P thrusters providing positive magnitude from Equation

and calling F'y,, the vector containing their magnitude, [E] is a 3 x P matrix
defined as follows:

di, =7, /B X Gk (72)
From this definition, the thruster mapping is:

[D] Fine = &, (u- &) (73)
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At the same time, the thruster should not produce a net force on the space-
craft in order not to influence the translational motion. Thus:

F=[G)Fu=0 (74)
where [@] is a 3 x P matrix containing the thrust’s direction.
In order to minimize the net force applied on the spacecraft with the constrains
of obtaining a given torque, the following functional must be minimized:

1 — —
J=3 Fo [G) [G] Fone + A" ([D] Funr — &n (u- &) (75)

where A is the 3 x 1 Lagrange multiplier vector. By imposing its gradient equals
to zero, the set of forces provided by the chosen nozzles can be computed.

)
D 0343 A (& (u : éh)

This procedure is applied for every component of the control w and, finally,
the net force generated can be computed summing the force generated from the
P nozzle:

P
Fuet = Fu, (77)
k=1

It must be noticed that this approach does not require a symmetric ADC
thrusters’ configuration and can be applied to whichever set of thruster mini-
mizing the net force and providing the needed control torque.

7 Tank models

Different tank model could be developed to perfectly suit the needs of the space-
craft’s fuel chain configuration. In the present paper five reservoir model will
be considered as examples and their properties such as inertia variation and
barycenter motion will be gathered.

The models and the main hypothesis are presented below:

e The constant tank’s volume model where a spherical reservoir maintains
a fixed geometry, i.e. a constant radius, and a fixed barycenter.

e The constant fuel’s density model where a spherical tank keeps its geo-
metrical shape but gradually change its volume, so its radius, to maintain
the density of the fuel constant and it has a fixed center of mass.

e The emptying tank model where the fuel leaks out from an outlet in the
spherical reservoir and the quantity of fuel decrease perpendicularly to the
output direction modifying the barycenter position and the body’s inertia
accordingly to the mass distribution inside the tank.
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e The uniform burn cylinder model where a cylindrical tanks does not
change its geometrical shape and volume but the gas gradually decrease
its density. As a consequence, the fuel barycenter remains fixed and the
inertia varies accordingly to the mass variation.

e The centrifugal burn cylinder model where a cylindrical tank is considered
and the fuel burns radially from the center to the walls without breaking
the tank’s symmetry. The inertia tensor derivative is computed from these
hypothesis and the barycenter remains in its initial position as the sym-
metry is conserved.

7.1 The constant tank’s volume model

This model takes into account the variation of the fuel inside the satellite con-
sidering no variation of the volume off the tank. By looking at Figure

Figure 5: Geometrical properties of the constant density sphere.

Viank = cost = Rgankx = cost (78)
2
[tuel, 7] = = Miuel Rk [Lsx3] (79)
P2 2
[Ifuel, Tc] = g Mtuel Rtank []]-3><3] (80)

Moreover the position of the center of mass of the tank does not change, so:
!/ 12
Trey =0 Tre/p =0 (81)

7.2 The constant fuel’s density model

The second model considers a shape-changeable tank adapting itself to keep the
fuel’s density constant. Thus,according to Figure [G}

Viank = el . Meuel
pre S Rue= el (g9)
Viank = 47 Rgank Ryank dm Rtank Ptuel
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As a consequence:

2
[Ifuel, Tc] = g Mfuel RtQank []13><3] (83)

2 m .
el re) = z (Rfank + WM) Miyel [L3x3] =
2 9 2 5 . 2, 2
= 5 Rioni + 3 Reani | Mituel [Laxa] = gmf\lelRtank [I3x3] (84)
As in the previous model:
T’/TC/B =0 T/I/’C/B =0 (85)

7.3 The emptying tank model

In this case the mass variation stats from the opposite point to the outlet, that
will be called from now on the pole, perpendicularly to the vector connecting
the pole and the outlet.

The following notation will be used: 6 € (0, ) will be the latitude angle counted
from the pole till the outlet, ¢ € (0,2 7) will note the longitude angle, the radius
will be r € (0, Riank). Moreover the 8* will denote the angle between the pole
and the circumference of the fuel’s free surface. The volume V and the center
of mass of the tank can be computed using notations in figure [7}

2m 6" Rtauk%
V(6*) :/ / / r? sin@df de dr +
0 0 0

27w pRiank 21 R3 3 1
+/ / / r? sinodedgz)dr:% 1+ 5 cos6” — 5 cos” 0
0 *J0

2
(86)

Figure 6: Geometrical properties of the constant density sphere.

23



. R 1 27 0°  pRpank 220"
Tre/B ks = 1o pkRst o / / / 2 sinfcosfdf do dr +
V(6*) \ Jo o Jo

2m T Rank T R4
+ / / / r® sinf@cosfdfdedr | = tank [2 cos? 0* — cost 0" — 1]
0 = Jo

4V(07)
(87)

where kj is the outlet-to-pole axis of the reference frame of the sphere and
r7e /B the constant vector from B to the center of the sphere.

Considering that mgue] = pruelV , the derivatives in the B reference frame can be
performed:

4
- TR fuel -
r’TC/B e f%pue {4 Miwerf* sin® 0% cos 0+
) 4mfuel

+Mfyel (2 cos? 0* — cos® 0% — 1)] (88)

4
_ ™ Rtank Ptuel
3
2 Miyel

—4mg g 6+ sin® 0" (3 cos? 0 —sin® 0*) +

+ (2 cos® 0" — cos™ 0 — 1) (Mmsuerritguel — 217,)]  (89)

Tiesp - ks {4 Miyer sin® 0% cos 6 (9 Myel — 2 0% mfuel) +

The relation among mguel y Mfuel , 6* and 6* is gathered from the derivation
of the relation between the volume V and mgyer:

Mfuel = pfuelv<9*) = 7;nfuel = pfuelv(e*)

Thfue] = —T7 pfuelR;;dank sin3 0* 0* (90)

Mfgel = —T Prucl Rogpy sin 6 (9* sin0* 4+ 3 6% cos 9*) (91)

~

ks

Figure 7: Geometrical properties of the emptying tank model.
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Finally * can be found:

2 3 1
=7 pruel RE i |1+ = cos 0% — 3 cos® 0* | (92)

Miuel = PruetV(07) = Mipyel = 3 5

As far as the inertia concerns:

27 0" Rtank%
i3 = prot </ / / vt sin? 0.0 do dr +
0
2m Riank
/ / / rt sin® 0 dé d(bdr) =

2 * * 1 *
57TpfuelRtank [5 + ZCOSG sin @ 1 (cos 30™ — 9 cos* )] (93)

27 (0" Reanc 200
Is9 = pruel / / / r (sing — sin® @ sin? ¢) dodpdr+
o Jo Jo

27 thxnk 2
/ / / sm 6 — sin® 0 sin (j)) dfde¢dr 7T PfuclRtank [3+

* * * * * 4
—*4 COS 9 + 724 (COS 30" — 9cosb ) *4 cosf 78 cos 0™ sin 0 :| (9 )

27 0 Ryank 22587
111 = pruel / / / r* (sin@ — sin® 6 cos? ¢) df dpdr+
0 0 0

2w pm pRiank
+/ / / r* (sin@ — sin® 0 cos® ¢) dfd¢ d7‘> =1Iz2 (95)
0 *J0

27 0 Ryank 2250"
112 = Pruel / / / 4 sin® 0 cos psin ¢ df de dr +
0 o Jo

27 ds Riank
+/ / / 4 sin® @ cos ¢ sin ¢ df de dr) =0 (96)
0 = Jo

27 (0" Reank <200
113 = pryel / / / r* sin? 0 cos f cos p df dp dr +
o Jo Jo

27 g Rank
+/ // r sin? @ cos B cos pdf dpdr ) =0 (97)
0 *Jo
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27 (0% Reank <207
Ihs = pfue]/ / / rt sin? @ cosfsinpdfdodr = 0 (98)
0 o Jo

because f027r cos ¢ sin ¢ = fozﬂ sin ¢ = fozﬁ cos ¢ = 0.
From those calculations the derivatives, in the tank reference frame, can be
computed:

2 . 1 1
I, = =T Prucl R 0% [cos2 0% sin® 6* — 1 sin® 6% + 1 sin 36™ — % sin 0*] (99)

2 ) 5 1
Iy=1,= =T Prucl R 0% [4 sin 6* cos 0" — 1 sin 6" — g sin 30"+

3 1 1
+§ sin 0" + 3 cos? 0% sin® 0* — 3 sin® 0*} (100)

7.4 Uniform burn cylinder

This model consider a cylindrical tank whose geometry remains constant while
fuel density changes. From these considerations and by looking at Figure[8] the

L L=2h |

R

Figure 8: Geometrical properties of the uniform burn cylinder

inertia tensor and it’s derivative could be evaluated:

R?> R? R?

111 = I3 = Mpyel |:4 + 3] I33 = Miyel > (101)
: R? h? . R?

I{l = IQ? = Miuel |:4 + 3:| Iég = Mtyel 7 (102)

where R is the cylinder radius and h its half-height.
Moreover, as the position of the center of mass of the tank does not change:

T&"C/B =0 7‘ITI“C/B =0 (103)
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7.5 Centrifugal burn cylinder

The present model consider a cylinder filled with propellant burning radially
from the center to the edge. The geometry properties and their nomenclature
can be seen in Figure [9}

| kS

Figure 9: Geometrical properties of the centrifugal burn cylinder

By denoting r the distance of the fuel surface from the axis of the cylinder,
this quantity can be easily computed from the amount of mass in the tank:

2 Mtyel

2mph

T =

(104)

where R is the cylinder radius, h its half-height and p the fuel density.
As in the previous models, the time derivative of r can be gathered from volume-
mass relation:

Megel = —4mphr 7 (105)

As a consequence:

R?2+4+1r2 A2
I11 = Iy = myyel {4 + 3} (106)
R? 412
I35 = mpyel [2 } (107)

Moreover, their time derivative in the tank’s reference frame can be com-
puted:

) ,,,2 h2
Iil :IéQmeuel |:2+3:| (108)
I35 = tifuel 72 (109)

Finally, the tank’s center of mass does not change as the mass variation is
symmetric. Thus:

T%C/B =0 T/T/“C/B =0 (110)
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8 Thruster models

The present section presents the thruster’s model developed and used in the
present paper.

Some general properties of the thruster are here summarized. Firstly, the thrust
will be assumed to follow the specif impulse relation expressed in Equation
As a consequence, the impulse, and thus the velocity variation, can be easily
computed:

Mfin d
Av = I go Jexh / Sl sp 90 Jexh In (mﬁn) (111)

Vexh in m Vexh Min

where my, is the initial mass of the spacecraft and myg, is the final one. The
equation is normally projected on the force axis to obtain the wide-known scalar
equation:

.
Av = I 1 = 112
0= Lyt (2 (112)

It must be underlined that this equation is not dependent from the force law
applied on the spacecraft as far as the specific impulse relation stands.

Two simple examples of thruster are presented briefly in the list below and then
exposed in the following paragraphs.

e The impulsive thruster model where the thrust is immediately generated
during the firing time.

e The ramping thruster model where, once the valve is opened to provide
thrust, a time span of response At is required to acquire the steady
state.

It must be underlined that the modularity and adaptability of the code permit
the use of complex models which could be implemented directly from the user.

8.1 Impulsive model

This section presents the simplest model developed to simulate the satellite
attitude. The thrust has the following expression:

Vexh

Ji . Yoxh  if  ti, . <t < tan,.
F(t) = sp 90 Miyel ! e fin i (113)
0 otherwise

where ti,, is the initial firing time and tg,,,, is the final firing time.

The dynamical characteristics associated with this type of thruster are pre-
sented in Figures The absence of mMyye is a simplification of the singular
derivative that could be obtained from the step function. This lead to a rapid
and easier implementation without loosing precious details during the simula-
tion.

28



0.005

0.000
80

~0.005

~0.010

Thrust [N]

T fuel |KG/ S|

-0.015

-0.020

9 ~0.025
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

time [s] time [s]
(a) Thrust (b) mMtyel
0.06
0.04
Ky 0.02
—~
>
~e
— 0.00
o
g
B 002
-0.04
—0.06,
0.0 0.2 0.4 0.6 0.8 1.0
time [s]
(C) mfuel

Figure 10: Characteristics of the impulsive thruster firing from ¢t = 0.3 s to
t = 0.8 s. In the shown simulation: Iy, =400 s and go = 9.81 .

8.2 Ramping model

A more sophisticated approach is presented in this paragraph. The thruster
model is not perfectly fitting reality as the continuity of the fuel rate derivative
is not assured. Despite that, a fist order approximation of the ramping up and
down of the fuel rate can be evaluated without entering into details of a complex
implementation. This model consider a time interval A ¢,cs, where the thruster’s
valve cannot provide the needed amount of fuel and, as a consequence, a straight
line transient connects the zero state to the steady one. The mathematical
expression of this model is:

Isp g0 77.7quel Z:: (t — tin fir) if tin fir <t <tpn fir +A tresp
F(t) Isp 9o 77:7'fuel Z:E lf tin fir + A tresp <t S tﬁn fir
Isp go Miyel z::: (tﬁnﬁr + A tresp - t) if tﬁn fir <t S tﬁn fir + A tresp
0 otherwise
(114)
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Figure 11: Characteristics of the ramping thruster firing from t = 0.3 s to t =
0.8 s. In the shown simulation: Iy, =400 s, go = 9.81 %5 and At,esp = 50 ms.

where At,.sp has been previously defined. In Figures the main properties
of the thruster are presented for a 0.5 s firing interval.

9 Numerical Implementation

INSERIRE DIGITAL IMPEMENTATION

10 Results

In the present section the results obtained by the developed method, imple-
mented in a Python environment, for different cases.

Firstly validating simulation will be shown to provide a way to validate the
present model, where neither the angular momentum nor the energy are con-
stant, and successively a series of fuel demanding maneuver will be exposed in
order to underline the importance to take into account the mass depletion for
high-accuracy pointing, simulation and control law design.
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10.1 Axial-symmetric rocket

The following simulations have been performed to reproduce the results outlined
in [7] and validate the developed model.

10.1.1 Centrifugal burn

12 12
1.0 1.0
0.8 0.8 B O ———
w(t)p/w. w(t)sn. —
O E(OTa
e
0.4 0.4
— —
0.2 — #=20 02H—
T i taenses T i
— =10 — 4=
s — s
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless time Dimensionless time
(a) Spin rate evolution in time (b) Traversal rate evolution in time
.
10.1.2 Uniform burn
14 1.4
1.2 R 12 e
1.0 1.0
w(t V. (1) By
“@Os. “Osw. o
w(0)s/x. T w(0)/x.
0.6 0.6
0.4 0.4
—0 —=%
Z e 0o
02 s-10 0.2 y-10
~ e ~ i
o o
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless time Dimensionless time
(¢) Spin rate evolution in time (d) Traversal rate evolution in time
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10.2 De-tumbling maneuver

10.3 LEO-to-GEO maneuver

11 Conclusions
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