
 1

Low Earth Orbit Plasma Environment Visualization
Nick Bradley
May 4, 2010

I. Overview of Goals

The goal for the independent study effort this year was to develop a functional interface
to an available low earth orbit (LEO) plasma environment modeling database, and to be
able to easily extract pertinent information to charged spacecraft formation flying
(plasma density, Debye length, etc.) The Debye length varies according to fluctuations in
ion and electron temperatures and densities. There are some simple web-based
interfaces and FORTRAN interfaces to some functional pieces of software that can
provide some subset of the required data, but no easily accessible and user-friendly
solution exists for quick numerical calculations and “sanity checks.”

The specific goals for the fall semester were to:

• Research available models for the plasma environment in LEO and GEO
• Design, build, and complete a Matlab Graphical User Interface (GUI) to

access data in the usable databases
• Model a reference craft and produce data for the craft given certain

environmental conditions

The specific goals for the spring semester, given some setbacks and refined goals leading
from the fall semester, were to:

• Continue researching available models and sources for plasma environment
modeling

• Investigate anomalies in varying instances of the Debye length equation
• Produce Debye length functionality in Matlab

II. Summary of Fall Semester

The work completed during the fall semester was instrumental in developing a basic
graphical user interface (GUI) to display an input of ionospheric data. It was found
shortly into the spring semester that the data obtained from the MSIS source was not, as
previously thought, both pertaining to neutral and ionic substances in LEO. No ionic or
negative electron data is contained in the database, which is unfortunate given its ease of
implementation as a Matlab aerospace toolbox function. However, the fall semester was
not a complete waste, as the basic structure of Matlab display code was developed, as
was much of the underlying physics and necessary basic knowledge.

III. Summary of Spring Semester

During the spring semester, a large amount of work was completed in researching other
available atmospheric modeling libraries, interfacing them into Matlab, and generating
useful output data for the end user. In the end, the International Reference Ionosphere

 2

(IRI) model was chosen because of its reliable and broad database of ionospheric
environmental information, its availability as source code, and its relevant data inputs and
outputs. Through many different methods and trials, the IRI FORTRAN source code was
interfaced with Matlab. A standalone Matlab function now exists to appropriately call
the IRI FORTRAN file, and a GUI exists to interface with the Matlab library.

IV. Detailed Deliverable Description

The delivered code package has several levels of hierarchy, depending on the level to
which the user wishes to control the model output. Figure 1 shows the hierarchy from
highest level to lowest level. The GUI allows the user to choose from a list of possible
data type and plot outputs. The parameters generated in the GUI are sent to the
atmospheric modeling code, which can be run separately from the Matlab command line
without control of the GUI. The modeling code takes in a varying set of parameters
based on the desired output, and returns atmospheric environmental data based on the
specified input as well. At a lower level is the Matlab-IRI interface, which simply takes
in a set of values and calls the IRI FORTRAN code with the Matlab UNIX interface
command. The interface code writes a text file with the parameters in the correct format
for the IRI code to read in. The IRI code returns its own text file with the desired output
parameters, which the Matlab-IRI interface code reads and returns as its own output.
This means that the interface code can be run with its own inputs and outputs entirely
within Matlab, even though it interfaces with the operating system and external
FORTRAN code.

Figure 1: Code hierarchy

Each function contains its own extensive help text (inserted as Matlab comments). The
text included here is to provide familiarity and examples with the code. The descriptions
will begin with the lowest-level functionality and successively describe how specifically
each higher level function interfaces with the lower-level functionality.

1. IRI FORTRAN CODE

The IRI FORTRAN source code is available online through an FTP site1 maintained by
NASA’s Goddard Space Flight Center. This package contains all the code, libraries, and
external data files necessary to enter a wide variety of input parameters to obtain a
similarly broad variety of outputs. Because of the large amount of functionality of the
IRI database, the source code was modified into a new library to suit the needs of
spacecraft formation flying environmental modeling. Specifically, the source code was
also modified to interface with text files so that Matlab could easily use this medium to

1 http://iri.gsfc.nasa.gov/

 3

communicate with the code library. An extensive amount of time was spent trying to
interface to the FORTRAN code using .mex files in MATLAB, but these files proved
extremely cumbersome and poorly documented. Instead of writing an entirely new
function in MATLAB or developing enough FORTRAN to properly model the required
parameters in the native modeling language, the text file interface was chosen instead.

The text-related code modifications were made simply by using the READ and WRITE
commands in FORTRAN. The code downloaded from the FTP site includes a “test”
function, which interfaces with the command line so that the user can input specific
parameters that the code will then use to produce an output file of parameters. This code
was simply modified for our desired purposes. Instead of having the capability to read in
and produce a wide array of parameters, most of which are not useful for our purposes,
the code was altered to work with a specific set of variables. Compiling the FORTRAN
code (calliri2.for) requires the following command line text (using “gfortran” on a
Mac).

gfortran -o calliriF calliri2.for irisub.for irifun.for
iritec.for iridreg.for igrf.for cira.for

This creates an executable file called “calliriF” that can be executed from the command
line. This executable, when run, looks for a file called “parameters.txt” with the input
parameters for the IRI routine. This text file MUST be set up with the following format,
including line breaks and commas. The variables that should NOT be changed are in
square brackets.

jm,xlat,xlon
iy,imd,iut,hour
hx
ivar
vbeg,vend,vstp
htec_max
[jf1],[jf2],[jf3],[jf4],[jf5]
[jf6],[jf7],[jf8],[jf9],[jf10]
[jf11],[jf12],[jf13],[jf14],[jf15]
[jf16],[jf17],[jf18],[jf19],[jf20]
[jf21],[jf22],[jf23],[jf24],[jf25]
[jf26],[jf27],[jf28],[jf29],[jf30]

The first six lines are explained in Table 1. The “jf” terms are Boolean T/F flags that
should not be altered. Their explanation is in the IRI source code “readme” file.

 4

Table 1: FORTRAN code input parameter explanation

Variable Value(s) Notes

jm 0 (geographic coordinates)
1 (geomagnetic coordinates) 0 should usually be used

xlat Latitude in deg. (+N, -S)
xlon Longitude in deg. (+E, -W)
iy Year

imd Day in MMDD format or
(-ddd) for day of year

iut 0 (local time)
1 (universal time) 1 should usually be used

hour Hour of day
hx Height in km.

ivar

Desired variable:
1 (altitude)
2 (latitude)

3 (longitude)
4 (year)

5 (month)
6 (day)

7 (day of year)
8 (hour)

This value changes based
on which variable is
desired. The Matlab

interface code assigns this
value based on the user

input

vbeg Variable initial value
vend Variable final value
vstp Variable step size

htec_max TEC integration height (?)

This value is not understood
or documented… the value

that the Matlab interface
code uses for this variable is

simply the height (hx)

The “calliriF” executable takes in the data from “parameters.txt” and produces a file
called “output.txt.” This file contains all of the information pertinent to our purposes,
which is electron density and temperature, ion temperature, and specific ion species
densities. Because of an anomaly in the IRI FORTRAN source code, the executable
cannot directly output the ion species’ densities in number density format, but only in
relative percentage format. It does have a documented capability to produce number
density, but it does not function correctly. However, this procedure has been
implemented in the Matlab code that calls the executable function, and is modeled after
the mathematics in the FORTRAN source code to achieve the same result. The IRI code
assumes that ion and electron total number density will be equal, which is valid for
singly-charged ion species in a plasma at equilibrium (i.e. no perturbing charges present
at infinity). This is a valid assumption for our purposes, and so the total electron number

 5

density is combined with the ion species’ relative densities to produce the ion species’
number densities. Each line in the output file is formatted as follows.

VAR, rhoE, Ti, Te, O+, N+, H+, He+, O2+, NO+

Table 2 contains an explanation of these output variables.

Table 2: FORTRAN code output parameter explanation

Variable Value(s) Notes

VAR Variable step value

Represents the value of the
step, e.g. “45” for the

parameters at 45 degrees
longitude if longitude is

selected as the independent
variable

rhoE Electron density (1/cm3) Assumed to be equal to the
total ion number density

Ti Ion temperature (K)
Te Electron temperature (K)
O+ O+ relative density (%)
N+ N+ relative density (%)
H+ H+ relative density (%)
He+ He+ relative density (%)
O2+ O2

+ relative density (%)
NO+ NO+ relative density (%)

2. MATLAB IRI INTERFACE

This interface simply provides a function that reads and writes the text files necessary for
the IRI executable, described in the previous section. As inputs, this function takes in the
latitude, longitude, year, month, day, universal time, height, variable initial value,
variable final value, variable step size, and type of variable. These inputs are formatted
appropriately for the text file “parameters.txt,” as described in the previous section. The
function uses the Matlab command to interface to the underlying OS to run the “calliriF”
executable (!./calliriF). The IRI code produces the “output.txt” file, which this
interface function then reads in to obtain the desired data. As mentioned previously, the
ion species’ relative densities are converted into absolute number densities by assuming
that the total electron number density is equivalent to the total ion number density for
singly-charged ion species, which is valid for the LEO region covered by the IRI code.
The function returns a vector of the desired variable values (latitude, longitude, etc.) and
a vector for each of the corresponding density and temperature parameters described in
Table 2.

 6

3. ATMOSPHERIC MODELING CODE

This function produces plots and sets of Matlab outputs for a desired large set of data,
such as the entire earth or visualizing a set of multiple ion densities. In its simplest
definition, it is essentially a “FOR” loop that iterates over a given set of data to call the
IRI interface function, which successively produces sets of text files that call the IRI
executable. The function is very versatile in its input and output parameters, since the
required parameters and variables are different for different types of visualizations. The
visualizations available are latitude varying 2D, longitude varying 2D, altitude varying
2D, global 3D, and orbit varying 2D. With a user-specified set of input and output
parameters, including a desired independent variable, the function takes the data and
passes it to the IRI executable interface, which returns the results from the model. These
results are formatted, plotted, and written to a structure that is returned as a function
output.

This function can be separately embedded or called from any other Matlab function, as
long as the appropriate input and output format is followed. For example, if a user
wishes to observe the variation in Debye length over the South Atlantic Anomaly by
altitude, a simple “FOR” loop can be written to loop through specific altitudes at the
desired latitude/longitude for the South Atlantic Anomaly. This atmospheric modeling
code can be called at every desired altitude (with the plot option turned either on or off)
to obtain a set of data that can be evaluated by the user.

4. MATLAB GUI

This GUI is simply a user interface to the atmospheric modeling code. The interface
provides a series of dialog boxes from which the user can choose the desired modeling
variable, the desired outputs, and specify the values of the parameters for the modeling
simulation. An example of the GUI process with its parameter inputs is shown in the
following figures. The atmospheric modeling code will produce plots consistent with the
selected outputs in the first GUI window according to the independent variable chosen in
the second window. The parameters are specified in the third window, and are
customized for the independent variable type.

 7

 8

V. Extensions and Known Issues

Many extensions are possible with this library of code. Data smoothing, interpolation,
and the addition of GEO environmental data are all extensions that would greatly benefit
the user.

There are several known issues, mostly stemming directly from unexplained anomalies in
the IRI FORTRAN source code.
1. When the whole earth is modeled at a specific time, it is apparent that there is a

data anomaly at longitudes approximately ±20 degrees from the International
Date Line (180 degrees longitude). Data smoothing has been investigated for this
anomaly, but is not a fix to the problem of not being able to model actual data.

2. Along with the previous anomaly, the IRI FORTRAN code does not accept a
longitude of 0 or 360 degrees. In the implementation of the Matlab code,
longitudes of 0.01 and 359.99 degrees are used, which seem to work
mathematically with the FORTRAN code.

3. Previously mentioned, the FORTRAN code seems to have trouble creating
density outputs in absolute units rather than relative units. The work-around for
this has been implemented in Matlab by using the electron density as the absolute
reference.

4. The IRI code does not have solar activity data (f10.7cm, ap index) for dates past
early 2009. The modeling is not completely valid for more recent dates, since the
environment in the ionosphere is highly dependent on solar activity. Most likely,
if a new version of the IRI source code is downloaded every so often from the
FTP site, the data files can be replaced to provide updated solar data, but this has
not been tested. Dates before early 2009 work well, and if simple modeling and
rough estimates are desired for environmental behavior, older dates work well.

