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Continuous Low-Thrust Trajectory

Optimization: Techniques and Applications

Mischa Kim

(Abstract)

Trajectory optimization is a powerful technique to analyze mission feasibility during

mission design. High-thrust trajectory optimization problems are typically formulated

as discrete optimization problems and are numerically well-behaved. Low-thrust sys-

tems, on the other hand, operate for significant periods of the mission time. As a result,

the solution approach requires continuous optimization; the associated optimal control

problems are in general numerically ill-conditioned. In addition, case studies comparing

the performance of low-thrust technologies for space travel have not received adequate

attention in the literature and are in most instances incomplete. The objective of this

dissertation is therefore to design an efficient optimal control algorithm and to apply

it to the minimum-time transfer problem of low-thrust spacecraft. We devise a cas-

caded computational scheme based on numerical and analytical methods. Whereas other

conventional optimization packages rely on numerical solution approaches, we employ

analytical and semi-analytical techniques such as symmetry and homotopy methods to

assist in the solution-finding process. The first objective is to obtain a single optimized

trajectory that satisfies some given boundary conditions. The initialization phase for this

first trajectory includes a global, stochastic search based on Adaptive Simulated Anneal-

ing; the fine tuning of optimization parameters – the local search – is accomplished by

Quasi-Newton and Newton methods. Once an optimized trajectory has been obtained,

we use system symmetry and homotopy techniques to generate additional optimal con-

trol solutions efficiently. We obtain optimal trajectories for several interrelated problem

families that are described as Multi-Point Boundary Value Problems. We present and

prove two theorems describing system symmetries for solar sail spacecraft and discuss

symmetry properties and symmetry breaking for electric spacecraft systems models. We

demonstrate how these symmetry properties can be used to significantly simplify the

solution-finding process.
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Chapter 1
Introduction

Deep-space exploration missions require large velocity increments and therefore demand

for sophisticated, capable propulsion technologies. Mission designs using state-of-the-art

high-thrust propulsion technologies (such as chemical propulsion systems) in combina-

tion with gravity assist maneuvers typically feature complicated and inflexible mission

profiles. Low-thrust propulsion systems, on the other hand, can significantly enhance

mission feasibility by using propellant more efficiently. As a direct consequence, low-

thrust propulsion systems provide significantly larger velocity increments, which in turn

allows for an increased spacecraft payload ratio and/or a considerably decreased space-

craft volume and therefore launch vehicle size.

1.1 Trajectory Optimization for Low-Thrust Space

Travel

One of the most important tasks during the analysis and design of space missions is

the design and optimization of suitable mission trajectories. This dissertation addresses

the problem of computing optimal interplanetary trajectories for continuous, low-thrust

spacecraft. Generally, optimality is defined with respect to a set of mission constraints

such as mission time and overall propellant consumption. Solar sail spacecraft61,104 do not

consume propellant; as a result solar sail mission trajectories are typically optimized with

respect to transfer time, only. In the case of electric spacecraft, optimization problems are

in general less straightforward to formulate because for typical applications both mission

1



Chapter 1. Introduction 2

time and propellant consumption need to be taken into account but are (in general)

subject to competing mission constraints.

Except for a small number of “academic” problems spacecraft trajectories in general and

optimal spacecraft trajectories in particular are obtained from the numerical integration

of a set of differential equations describing the system dynamics. These differential

equations typically account for inertial force terms as well as force terms due to control

variable inputs (e.g. control thrust or torque). Therefore, the optimization problem is

to find an “optimizing” function of the control variables that results in an optimized

trajectory solution.

Compared to low-thrust spacecraft optimization problems, optimal control problems for

high-thrust systems are relatively straightforward. With high-thrust spacecraft the du-

ration of (control) thrust arcs is usually short in comparison to the mission time. As a

result, thrust arcs are typically modeled as isolated, singular events justifying the usage

of discrete optimization theory to obtain optimal trajectories. Low-thrust propulsion

systems, on the other side, operate for a significant part of the overall mission time.

Consequently, the control variables need to be modeled as continuous functions requiring

tools based on continuous optimization to solve optimal control problems adequately.

Several strategies have been suggested and used in the literature to solve continuous

optimization problems for spacecraft transfer applications. Indirect approaches based

on the Calculus of Variations (COV) provide a means to formulate optimal control

problems as low-dimensional, discrete optimizations problems. However, convergence

characteristics of trajectory optimization techniques based on the Calculus of Variations

heavily depend on the “quality” of the initial guess of optimization parameters as well

as the skill level of the individual operating the optimization tool. As a consequence,

the search for optimized trajectories for continuous low-thrust spacecraft is typically a

rather tedious and time-consuming process.

1.2 Dissertation Objectives and Problem Statement

In light of the drawbacks of traditional trajectory optimization methods and algorithms

discussed in the previous section we devise a new optimization scheme with the goal of

enhancing the versatility of existing software tools, thereby simplifying and accelerating

the solution finding process. This is achieved by combining the globality of a stochastic

search algorithm – Simulated Annealing (SA) – with the efficiency of local, deterministic
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optimizers based on Quasi-Newton and Newton methods. The novelty of our optimiza-

tion algorithm is the implementation of analytic and semi-analytic techniques such as

symmetry and homotopy methods, which are used to great advantage to compute a wide

variety of optimized transfer trajectories starting with a single solution trajectory. In fact,

the main idea behind the proposed algorithm is that the global optimization problem has

to be solved only once, for a particular spacecraft system. Emanating from this initial

solution we compute solution trajectories for arbitrary boundary conditions and even

different spacecraft system models by relying exclusively on homotopy and symmetry

methods.

The primary research objective is to validate the optimization algorithm and to prove its

efficiency. We employ the optimization algorithm to analyze the continuous, minimum-

time, low-thrust spacecraft transfer problem for interplanetary travel. We consider several

different low-thrust propulsion technologies, namely, solar-electric, nuclear-electric and

solar sail propulsion systems. A comparative analysis between the different spacecraft

system models addresses the secondary research objective of evaluating the performance

of low-thrust propulsion technologies for interplanetary missions.

1.3 Dissertation Overview

The dissertation is organized as follows:

In Chapter 2 we briefly summarize research related to the field of trajectory optimization.

We discuss some papers on direct methods in Section 2.1 and then focus on optimization

techniques based on indirect approaches in Section 2.2. In Section 2.3 we review some

works on trajectory optimization via stochastic algorithms and conclude the chapter by

discussing recent developments in optimal control theory.

Chapter 3 develops the framework for the devised optimization algorithm. We formulate

the general optimal control problem in Section 3.1 and discuss in detail techniques and

algorithms used for our optimization tool in Section 3.2. We introduce Adaptive Sim-

ulated Annealing (ASA) and describe local optimizers in Section 3.2.3. Section 3.2.4 is

devoted to the theory and implementation of homotopy and symmetry methods.

System models are developed in Chapter 4 for two- and three-dimensional analysis for

electric and solar sail spacecraft. Motion equations for nuclear-electric and solar electric

spacecraft models are derived in Section 4.2. Section 4.3 focuses on the derivation of
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equations of motion for solar sail spacecraft.

Chapter 5 forms the main part of the dissertation. We mathematically formulate and

solve optimal control problems in two dimensions in Section 5.1 and extend the analysis

to three dimension in Section 5.2. We demonstrate the usage of symmetry and homotopy

methods to solve the optimal control problem and present new solution families to the

minimum-time transfer problem.

Extensions to the system models investigated in Chapter 5 are studied in Chapter 6.

In Section 6.1 we analyze optimal control problems for spacecraft models including the

attitude dynamics.

Chapters 7 summarizes the findings of this research effort and concludes with recommen-

dations for future work.

In Appendix A we review the theory of continuous trajectory optimization. Appendix B

provides a short tutorial demonstrating the process of non-dimensionalization of differ-

ential equations. Finally, in Appendix C we discuss the functional relationship between

cartesian coordinates and the set of orbital elements.



Chapter 2
Literature Review

In this chapter we briefly summarize the works related in the field of trajectory opti-

mization. First we review some papers analyzing the optimal control problem via direct

methods and discuss some of the more advanced optimization software packages. Sub-

sequently, we discuss results of trajectory optimization problems obtained using indirect

approaches and then present some works analyzing optimal control problems with sto-

chastic optimization algorithms. The last section of this chapter is devoted to new trends

and recent developments in the field trajectory optimization.

Two survey papers for optimal control theory and trajectory optimization methods are of

particular interest and deserve mentioning. The paper by Betts5 gives a brief overview

of the most common and popular numerical methods to solve trajectory optimization

problems. One of the final paragraphs of his paper is devoted to trajectory optimization

methods based on genetic algorithms (GA). Interestingly, the author classifies these sto-

chastic techniques as not being overly appropriate for trajectory optimization problems

and as computationally inferior when compared to methods using gradient information.

The survey paper by Paiewonsky71 approaches optimal control problems from a broader

perspective and is oriented to aeronautical and astronautical applications alike.

2.1 Trajectory Optimization via Direct Methods

Early research efforts to develop trajectory optimization tools based on direct methods

date back to the 1980’s. To the author’s best knowledge, Hargraves and Paris32 first

5
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implemented optimization algorithms based on embedded collocation schemes to solve a

wide variety optimal control problems.

Interestingly, half a decade earlier Bahls and Paris2 had introduced a mission analysis

tool to investigate complex interplanetary missions using low-thrust propulsion technolo-

gies. Unsatisfied with the performance and flexibility of existing optimization packages

based on indirect methods Bahls and Paris, suggested a direct approach using trajec-

tory segmentation. Their research effort led to the development of the Gravity Assisted

Low Thrust Optimization Program (GALTOP). With GALTOP individual thrust arcs were

computed using Chebyshev collocation and subsequently patched together satisfying ap-

propriate sets of boundary conditions. When compared to then state-of-the-art optimizer

based on indirect methods such as HILTOP (Heliocentric Interplanetary Low Thrust Op-

timization Program), Bahls and Paris reported a typical improvement in required com-

putation time of up to 30% and classified GALTOP to be “. . . accurate enough for useful

results and trends to be discerned.”

In 1987, Hargraves and Paris developed an optimization algorithm based on direct meth-

ods introducing – according to Herman and Spencer37 – the new concept of collocation or

direct transcription. In their approach, Hargraves and Paris used linear interpolation for

the control variables and a third-order Hermite interpolation for the state vector. Vari-

ous higher-order interpolation schemes were compared but were found to be less suitable

when implemented in the authors’ optimization package NPDOT (Nonlinear Programming

for Direct Optimization of Trajectories). NPDOT was validated against the software code

CTOP (Chebyshev Trajectory Optimization Program) and provided comparable perfor-

mance with respect to computation time.

A paper by Betts and Erb6 demonstrated the full potential of advanced algorithms based

on collocation when applied to complex systems. Specifically, the authors analyzed opti-

mal (minimum-time and minimum-fuel scenarios) low-thrust trajectories for Earth-Moon

transfers for solar-electric propulsion spacecraft and using a thrust-coast-thrust sequence.

The authors used the Sparse Optimal Control Software (SOCS) capable of solving general,

sparse, and large-scale optimization problems.3 Betts and Erb discussed the importance

of an accurate initial set of optimization parameters and proposed a discretization scheme

suitable for spiral-type transfer trajectories. As outlined in their paper, SOCS proved to

be a computationally efficient tool to solve the optimal control problem with 211,031 vari-

ables and 146,285 constraints for the final mesh-refined system description. Compared

3 SOCS is Boeing’s prime trajectory optimization tool and offers advanced system modeling capabilities to
account, for example, for perturbation effects due to celestial bodies and the Earth oblateness; SOCS also
provides an integrated mesh refinement algorithm.
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to the study performed by Schoenmaekers et al.85, Betts and Erb’s analysis resulted

in an improvement in transfer time of approximately 40% with an increased fuel con-

sumption of 25%, which was attributed to the fact that Schoenmaekers et al. used a

multiple-thrust-arc approach.53,108

Higher-order collocation methods were studied by Herman and Spencer37 for optimal,

low-thrust, thrust-coast-thrust Earth-orbit transfers. More specifically, the authors im-

plemented the so-called Higher-Order Collocation 7th degree system model with SNOPT,

an optimization package for large-scale, nonlinear programming problems. The results of

the investigation were compared to earlier studies performed by the second author. The

algorithm developed by Herman and Spencer resulted in an increase in ∆v performance

of 10% on average and as high as 14%.

McConaghy et al.60 analyzed more complex mission scenarios for low-thrust missions

using solar-electric propulsion. In their paper, the authors combined the benefits of

low-thrust propulsion technologies and gravity-assist maneuvers as means to reduce fuel

consumption and to shorten mission duration. The global search for optimal trajecto-

ries was performed using the STOUR (Satellite Tour Design Program) software package;

the GALLOP (Gravity-Assist Low-thrust Local Optimization Program) optimization tool

was used for the local search. The algorithm was compared to SEPTOP (Solar Electric

Propulsion Trajectory Optimization Program, developed by Carl Sauer of JPL) a soft-

ware package based on indirect methods. Both optimization packages showed comparable

performance characteristics and to be in good agreement with respect to propellant con-

sumption and overall mission time.

Kluever52 studied the geostationary orbit transfer problem with specific impulse modu-

lation for solar-electric spacecraft using Hall thrusters. The author used a direct method

discretizing the state and costate time histories of the corresponding Two-Point Boundary

Value Problem (TPBVP). He obtained several maximum-payload, geostationary Earth-

orbit transfers with an 5–6% improvement in propellant usage as compared to fixed

specific impulse engines. The decrease in required propellant however came at the cost of

increased transfer times of up to 30% and additional electronic hardware requirements.

Fiehler and Oleson21 used direct methods to compare the performance of solar-electric

spacecraft using Hall and ion propulsion systems. The authors analyzed Earth-Mars

transfers with a thrust-coast-thrust profile and concluded that “. . . the Hall thruster de-

livered more payload mass at the shortest trip times and the ion thruster delivered more

mass at the longest trip times [for the mission scenarios considered]”. However, for the

analyzed transfer options, the power levels for the Hall thruster was on average 10% less
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than the power levels for the ion thruster. Comparing the performance of solar-electric

spacecraft to conventional, chemically propelled spacecraft, Fiehler and Oleson noted

that for typical Earth-Mars transfer times of about 200 days chemical propulsion sys-

tems could be considered an equitable transfer option with respect to delivered payload

mass.

Options for optimal transfers to the outer planets have been studied by Vasile et al.97

In particular, the authors compared two classes of mission options: chemical propulsion

spacecraft using aero-gravity assist maneuvers and nuclear-electric spacecraft using grav-

ity assist maneuvers. The trajectory optimization problem was solved via direct method

using a software package developed by the first author.96

2.2 Trajectory Optimization via Indirect Methods

Indirect methods have been successfully applied to a wide variety of low-thrust trajectory

optimization problems. Kechichian43 analyzed the minimum-time, rendezvous problem

for constant acceleration spacecraft based on non-singular, equinoctial orbital elements.

The author used the UNCMIN4 (Unconstrained Minimization) package to calculate three-

dimensional, near-GEO-to-GEO transfer trajectories. In an earlier paper, Kechichian42

studied the time-fixed, minimum-fuel transfer problem for bounded thrust, again, based

on a set of non-singular, equinoctial orbital elements. For this problem, Kechichian

considered both thrust magnitude and thrust direction as control variables with constant

power levels. Starting with optimal transfers for unbounded thrust levels, the author

obtained corresponding solution trajectories for bounded thrust levels which resulted in

a slight improvement in total propellant consumption. Guelman25,26 analyzed the related

problem of power-limited, minimum-time Earth-to-Moon transfers. He considered both

Moon impact and Moon orbit injection scenarios within the Circular-Restricted Three-

Body Problem (CR3BP). The trajectories were obtained by considering a sequence of

Two-Body Problems, one at a time, and subsequently patching together the individual

trajectory segments.

Optimal low-thrust maneuvers in the presence of Earth shadowing effects were stud-

ied by Colasurdo and Casalino17. The authors considered circular-to-circular transfers

and compared analytical solutions to numerically computed results obtained via indi-

rect methods. The paper also studied the dual problem of maximizing the eccentricity

4 UNCMIN is a software package for solving unconstrained optimization problems via the Quasi-Newton
method using the BFGS update formula to compute the approximated Hessian matrix.



2.2. Trajectory Optimization via Indirect Methods 9

change while maintaining a constant semi-major axis. Nah and Vadali65 investigated

three-dimensional, fuel-optimal Earth-to-Mars trajectories for variable specific impulse

propulsion systems. They used a multiple-shooting approach and Newton’s method to

optimize individual trajectory segments in the general four-body problem of Sun, Earth,

Moon, and spacecraft. The spacecraft design considered a fast5 human transit to Mars

including a 10 MW nuclear power plant, a propulsion system with maximum specific

impulse of 35,000 s, and an initial spacecraft mass of 525,000 kg.

A more theoretically motivated minimum-fuel orbit transfer problem was investigated

by Oberle and Taubert69. In particular, the authors analyzed the existence of multiple

optimal control solutions for Earth-to-Mars and Mars-to-Earth trajectories by considering

transfer options with multiple thrust and coast arcs. Oberle and Taubert considered

planar, circular-to-circular transfers with thrust magnitude and thrust direction as the

control variables. They proved the existence of fuel-optimal solutions for prescribed,

upper-bounded transfer times and solved the optimization problem using the multiple-

shooting BNDSCO software code. The authors obtained and classified various solution

families characterized by an increasing number of thrust and coast arcs. They noted that

the problem was of less practical interest since an increase in the number of thrust and/or

coast arcs resulted in an increase in transfer time while keeping the fuel consumption

unchanged.

Caillau et al.10 treated the problem of minimum-time geosynchronous transfers for low-

thrust spacecraft. The authors used continuation methods on the thrust to calculate

fuel-efficient multi-revolution transfer trajectories. To justify the homotopy approach

the authors studied the dependence of the cost function on the bound of the control

variables. The optimization problem was solved with single-shooting and using a Hybrid-

Powell method. Solution trajectories were first obtained for planar low-thrust transfers

with high maximum thrust levels. From these solutions Caillau et al. showed how to

compute more general, three-dimensional transfer trajectories for decreasing values of

maximum thrust levels.

Trajectory optimization problems for solar sail spacecraft have been analyzed by several

research teams over the past five decades.12,38,50,54,57,92,93 The first solar sail trajectories

were calculated by Tsu94 and London57. Tsu investigated various means of propulsion

and showed that in many cases solar sails show superior performance when compared to

chemical and ion propulsion systems. The author used approximated heliocentric motion

equations to obtain spiraling trajectories for a “. . .fixed sail setting”. London presented

5 Typical one-way Earth-to-Mars transfer times for exhaust-modulated plasma rocket spacecraft are as
short as 90-110 days according to Chang-D́ıaz et al.14
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similar spiral solutions for Earth-Mars transfers with constant sail orientation using the

exact equations of motion. Optimal solar sail trajectories were first computed by Zhukov

and Lebedev107 for interplanetary missions between coplanar circular orbits. In 1980 Ja-

yaraman41 published similar minimum-time trajectories for transfers between the Earth

and Mars. He used a penalty function approach using a conjugate gradient method.

Two years later, Wood et al.103 presented an analytical proof to show that the orbital

transfer times obtained by Jayaraman were incorrect due to the incorrect application of a

transversality condition of variational calculus and an erroneous control law. About two

decades later Powers et al.77 and Powers and Coverstone76 obtained results similar to

those reported in Wood’s paper, but evidently used the same incorrect control law used

in Jayaraman41. The more general time-optimal control problem of three-dimensional,

inclined and elliptic departure and rendezvous planet orbits was discussed by Sauer83.

Minimum-time trajectories for compound and non-ideal solar sail spacecraft were an-

alyzed by McInnes62 and Colasurdo and Casalino16, respectively. McInnes studied the

effect of different solar sail configuration on delivered payload with minimum-time Earth-

to-Mars transfers. According to the author, compound solar sail configurations could

theoretically offer greater performance than conventional “flat” solar sails by using a

large, sun-facing collector that directs the solar flux onto a smaller secondary directing

mirror. McInnes presented motion equations for the compound solar sail configuration

as an extension of the flat sail arrangements. His results showed an increase in deliv-

ered payload mass of up to 30% for typical transit times of 300 days for Earth-to-Mars

transfers. The performance of non-ideal solar sails were investigated by Colasurdo and

Casalino. The solar sail performance was measured with a constant efficiency parameter

that enters the system motion equations as a multiplicative coefficient. Not surprisingly,

the authors obtained results similar to those reported earlier in the literature.

2.3 Stochastic Trajectory Optimization

Williams and Coverstone-Carroll101 studied the minimum-fuel problem for solar-electric

propulsion spacecraft using a genetic algorithm approach. They analyzed various trans-

fer options for Earth-to-Mars and Mars-to-Earth mission for NSTAR-type (NASA Solar

Electric Propulsion Technology Applications Readiness Program) satellite configurations

for constant flight times between 1.5 and 3.0 years. The authors used a two-body dy-

namics model and an optimization approach based on an indirect method. Trajectories

were optimized using the SEPTOP (Solar Electric Propulsion Trajectory Optimization

Program) software code combined with a genetic algorithm previously studied by Hart-



2.4. New Trends and Developments in the Field of Trajectory Optimization 11

mann et al.34,35 The results confirmed the feasibility of interplanetary missions using

solar-electric spacecraft when compared to conventional, chemically propelled spacecraft

systems. The study also revealed the advantages of using stochastic algorithms to solve

trajectory optimization problems especially for more complex missions scenarios. A sim-

ilar analysis was performed by Wuerl et al.105 The authors used the software tool RAPTOR

(Rapid Trajectory Optimization Resource) combing the strengths of genetic algorithms

with the rapid convergence behavior of the Quasi-Newton methods. The performance

of the genetic algorithm was further enhanced by implementing a Baldwinian learning

strategy enabled by the use of an active feedback from the deterministic optimizer.

Lu and Khan58 and Tekinalp and Bingol90 used Simulated Annealing for the global

search of optimized trajectories. In their paper, Lu and Khan analyzed various minimum-

time maneuvers for advanced fighter aircraft via direct methods. The control variables

were parameterized using cubic spline functions resulting in a high-dimensional optimiza-

tion problem. According to the authors, the search algorithm showed good convergence

characteristics and performed well when compared to the Principal Axis method and

the Nelder-Mead Simplex. Tekinalp and Bingol investigated the missile optimization

problems and in particular the missile trajectory optimization problem. They used an

adaptive Simulated Annealing algorithm and implemented a direct method to solve the

optimal control problem. The authors compared two formulations for maximum-range

missile trajectories and showed how to embed the trajectory optimization problem into

the general missile optimization problem.

2.4 New Trends and Developments in the Field of

Trajectory Optimization

The direct methods discussed in Section 2.1 are based on the idea of locally approximating

polynomials for the state, costate, and control variables. In recent years the concept of

using globally orthogonal polynomials has gained in importance and received increasing

attention in the literature.79,80,81,98,99 Globally orthogonal polynomials offer an alternative

approach of transforming trajectory optimization problems into nonlinear programming

problems and provide the means to conveniently reformulate optimal control problems

as problems involving systems of purely algebraic equations. One of the benefits of

using globally orthogonal polynomials functions such as the Legendre and Chebyshev

polynomials lies in the fact that the same order of accuracy for the states and costates

is guaranteed, which is usually not the case for transcription methods using a locally
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approximating polynomial function description. As a result, costate information is in

general available to relatively high accuracy providing a “good” initial set of optimization

parameters for subsequent usage in indirect methods.

Early work dates back to the 1960s when Urabe95 proposed a method based on Chebyshev

polynomials to solve Multi-Point Boundary Value Problems (MPBVP). Vlassenbroeck98

and Vlassenbroeck and Van Dooren99 applied the concept of Chebyshev polynomials to

solve optimal control problems and in particular the minimum-time, low-thrust, planar

Earth-to-Mars transfer problem. The authors compared the performance of the method

to other techniques based on direct approaches and concluded that their algorithm showed

superior performance in terms of accuracy and required computation time. Ross and

Fahroo80 developed the so-called Legendre Pseudospectral method. The method was

implemented in the software package DIDO82 and applied to a variety of optimization

problems. Stevens and Ross89, for example, investigated the minimum-time problem of

Earth-Mars cyclers using solar sail spacecraft and showed the efficiency of DIDO6 with

trajectory optimization problems. Mendy63 applied the software package to validate a

multi-satellite optimization model for spacecraft formation control based on a single-

satellite model.

A different approach of solving optimal control problems makes use of the Hamiltonian

structure of the optimality conditions as derived via the variation of calculus. With this

approach generating functions are determined as a complete integral of the Hamilton-

Jacobi or the Hamilton-Jacobi-Bellman equation.

Popescu75 applied the theory of canonical transformations to the study of optimal, el-

liptic orbit transfers. The author proposed an algorithm for obtaining a set of canonical

constants that defines the coast arc and analyzed nonsingular arcs for minimum-time

trajectories in the Keplerian two-body system. The study was somewhat limited as it

only considered the control of the system during periods of null control.

The work of Scheeres et al.84 builds on the results reported by Popescu and extends the

analysis to be applicable to a wider spectrum of optimal control problems. In particular,

the authors showed that certain solutions to the Hamilton-Jacobi equation can directly

yield optimal control laws for a general system. The algorithm proposed by the authors

provided a means to compute the initial costate vector for arbitrary boundary conditions

by algebraic manipulations of the corresponding generating function. They applied the

algorithm to the fixed-time transfer problem in the presence of a central gravitational field

6 Named after Dido, Queen of Carthage, supposedly the first individual to formulate and solve an (isoperi-
metric) optimization problem.
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minimizing a quadratic cost function of the control variables. In a related paper, Guibout

and Scheeres27 solved the problem of nonlinear targeting of a formation of spacecraft by

analyzing the associated Two-Point Boundary Value Problem via the Hamilton-Jacobi

equations. The authors showed how direct solutions for the Taylor series expansion

of the corresponding generating function can be obtained from a nominal, numerically

computed initial trajectory. The algorithm was applied to the reconfiguration problem

of a spacecraft system about the libration point in the Hill’s Three-Body Problem.

2.5 Summary

We have reviewed in this chapter much work related to the field of trajectory optimization.

We have discussed analyses using direct and indirect approaches for solving optimal

control problems and introduced literature on stochastic trajectory optimization. With

the acquired expertise we now proceed to develop an optimization algorithm.



Chapter 3
Trajectory Optimization

In this chapter, we formulate and characterize the low-thrust trajectory optimization

problem and show how low-thrust trajectory optimization problems are traditionally

solved by using optimal control theory. In Section 3.1 we state the trajectory optimiza-

tion problem from a general point of view and from the perspective of optimal control

theory. We place special emphasis on potential objectives for trajectory optimization

and on differences between high-thrust and low-thrust trajectory optimization. We show

that low-thrust trajectory optimization is equivalent to the search for optimal control

functions in an infinite dimensional function space, a numerically difficult problem. Sec-

tion 3.2 presents a brief survey on trajectory optimization methods. We discuss Adaptive

Simulated Annealing, a stochastic technique for global optimization and local search tech-

niques such as Newton and Quasi-Newton methods. In addition, we show how symmetry

and homotopy methods can be used to great advantage to assist in finding optimal con-

trol solutions. In the final section of this chapter we outline an efficient computational

scheme to solve the low-thrust trajectory optimization problem.

3.1 Low-Thrust Trajectory Optimization

From a systems theory perspective, a spacecraft trajectory is defined as a mapping from

some time interval t ∈ [t0, tf ] ⊂ R into state space X ⊂ R
n. Choosing a control function

u = u(t) ⊂ U ⊂ R
m completely defines the magnitude and direction of the spacecraft

thrust vector for a given propulsion system. The trajectory is then obtained by integrat-

14
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ing the motion equations of the spacecraft, which are typically given by a set of first-order

differential equations of the form ẋ = f(x,u, t). For later reference we note that the

equations of motion enter the optimal control problem as a set of dynamic constraints.

3.1.1 Trajectory optimization objectives

The optimality of spacecraft trajectories is measured with a performance index or cost

function that considers a series of mission objectives identified during the mission design

process. Typical mission objectives are:

(1) Minimize transfer time for a given payload or propellant mass.

(2) Minimize propellant mass for a given mission transfer time and launch mass.

(3) Minimize propellant mass for a given mission transfer time and payload mass.

The performance index for a minimum-propellant transfer problem is formulated in “op-

timization” language as

Jmp
=

∫ tf

t0

ṁp dt = mp(tf ) − mp(t0) (3.1)

where mp is the propellant mass. For minimum-time problems the cost function can be

written as

JT =

∫ tf

t0

dt = tf − t0 ≡ T (3.2)

Since we are only concerned with minimum-time transfer problems we define the corre-

sponding performance index as J ≡ JT and omit the subscript henceforth.

In practice, spacecraft trajectories have to be optimized with respect to several conflicting

mission objectives, e.g. minimize transfer time and propellant mass. Such multi-objective

optimization problems are usually reformulated as a series of single-objective problems.

Various strategies for have been proposed in the literature; the most common ones are

as follows:

• The primary mission objective is subject to optimization. Remaining objectives are

redefined as mission constraints.

• All mission objectives are treated equivalently by defining weighting factors. The

weighted objectives are combined into a single scalar quantity. The challenge is

to identify a meaningful combination of weighting factors to reflect the scientific

relationships of the mission objectives.
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Both strategies provide only single solution trajectories that do not reflect the possi-

ble compromises between conflicting objectives. Hajela28 discusses various methods to

analyze multi-objective optimization problems. Another powerful approach to address

multi-objective optimization problems is to resort to Pareto-optimal concepts.36 Pareto-

optimality describes “. . . the best that could be achieved without disadvantaging at least

one . . . ”, in our case, optimization objective.

3.1.2 Low-thrust versus high-thrust trajectory optimization

Trajectory optimization for spacecraft using high-thrust propulsion systems is mathe-

matically relatively straightforward. Thrust phases for high-thrust missions are typically

short compared to the overall mission time. As a result, thrust arcs are modelled as

isolated, singular events, and the continuous optimal control problem can be reduced to

a discrete optimization problem.4,18,72 A typical high-thrust optimal control problem is

the extended version of Lambert’s Problem:3

Definition (Extended Lambert Problem). Let r0 = r(t0) and rf = r(tf ) be the

initial and final spacecraft position vectors, respectively. Find the transfer orbit that

connects r0 and rf for a given transfer time T = tf − t0 and given initial and final

spacecraft velocities and such that the velocity increment ∆v = ||∆v0|| + ||∆vf || is

minimized.

In the Extended Lambert Problem the unknown optimization parameters are the velocity

increments v0 and vf corresponding to the infinitesimally short thrust arcs at t = t0 and

t = tf . The performance index is therefore a function of six numbers, and the numerical

difficulties involved in the optimization problem are moderate.

Unlike high-thrust systems, low-thrust propulsion systems operate for significant peri-

ods of the mission time; the corresponding trajectory optimization problem has to be

modelled as a continuous system and the dimension of the solution space is infinite.

Therefore, the low-thrust trajectory optimization problem is equivalent to the problem

of finding the optimal control function u⋆ = u⋆(t) in an infinite-dimensional function

space U. The low-thrust optimal control problem is comparatively challenging in general

and considered to be numerically difficult when required to be solved exactly.

One of the major issues of continuous low-thrust trajectory optimization problems lies

in constructing a reasonably accurate reference trajectory to initiate the optimization
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process. For discrete optimization problems such as the Extended Lambert Problem, on

the other hand, one can typically come up with a rough estimate on the magnitude of

the optimization parameters, for example, based on experience.

3.1.3 Mission scenarios

We analyze optimization algorithms from the perspective of the general minimum-time

optimal control problem and with particular focus on time-optimal interplanetary trans-

fers. Depending on specific mission objectives various solution families can be identified.

Of particular interest are the intercept problem, the orbit transfer problem, and the

rendezvous problem:

P0 Intercept problem: Minimum-time intercept with target object.

P1 Orbit transfer problem: Minimum-time transfer between an initial Keplerian

and a target Keplerian orbit. There is no additional angular end-point constraint.

P2 Double orbit transfer problem: P1 transfer with subsequent P1 return transfer

to initial orbit. There are no additional angular interior- and end-point constraints.

P3 Rendezvous problem: Minimum-time rendezvous with a target object. The

angular end-point constraint depends on the initial angular separation between

initial and target object, and the synodic period of the target object.

P4 Double rendezvous problem: Minimum-time transfer including a target object

rendezvous and subsequent rendezvous with initial object.

Problem families P0 through P4 represent optimal control problems with increasing levels

of complexity. While the intercept problem only involves a constraint on the final position

of the spacecraft, for rendezvous problems both the final position and velocity of the

spacecraft have to match final position and velocity of the target planet. Accordingly,

additional midpoint constraints have to be satisfied for the double rendezvous problem.

3.2 Optimization Theory

Continuous trajectory optimization problems are traditionally solved via direct or indirect

methods. A distinguishing feature of direct methods is that they are numerically more

robust than indirect methods. The “quality” of the initial guess (closeness of initial guess

from global minimum) is therefore not as crucial as for indirect methods, which is often
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the decisive factor when opting for direct methods. Both optimization approaches require

an initial set of optimization parameters – an initial guess – to initiate the optimization

procedure. The generation of a proper initial set of optimization parameters is usually

the most computationally expensive phase of an optimization algorithm.

In this section we briefly discuss optimization strategies based on direct and indirect

methods. We then focus on designing an optimization algorithm that relies exclusively

on indirect methods. To address the issue of initial guess generation we introduce a

global search algorithm known in the literature as Adaptive Simulated Annealing.40 In

addition, we present advanced mathematical concepts such as symmetry and homotopy

methods to assist in the solution finding process.

3.2.1 The optimal control problem

The optimal control problem is to find an optimal control input u⋆ ∈ U ⊂ R
m for a set

of generally nonlinear, coupled differential equations of the form

ẋ = f(x,u, t) , t ∈ [t0, tf ] (3.3)

subject to boundary conditions

Ψ
(

x(t0),x(tf ), t0, tf
)

=
(

ψ0 (x(t0), t0) ,ψf (x(tf ), tf )
)T

= 0 (3.4)

and such that the associated cost function8,56

J = φ (x(tf ), tf ) +

∫ tf

t0

L (x,u, t) dt (3.5)

is minimized. In general, constraints on state and control variables have to be considered,

as well. These constraints enter the optimal control analysis in the form of inequality

and equality constraints

σ(x,u, t) ≥ 0 (3.6)

For example, for spacecraft applications the maximum available thrust (or equivalently,

the magnitude of the control input) presents a typical control variable constraint;22,24

that is, 0 ≤ ||u|| ≤ umax. Note that this two-sided control variable constraint has to be

rewritten as two separate one-sided constraints to match the form of equation (3.6). For

a detailed analysis on the implementation of state and control variable constraints we

refer to Bryson and Ho8, Hartl et al.33
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3.2.2 Direct and indirect methods

Analytical solutions are available only for some special classical optimal control prob-

lems.8,19,78 In general, it is necessary to resort to numerical methods to obtain solutions

to the optimization problem. In the literature these methods are classified into two cat-

egories: direct and indirect methods5,100. As the names suggest, direct methods directly

solve for the unknown control variables. With indirect methods the control variables are

solved for indirectly via the associated Two-Point Boundary Value Problem.

Direct methods

In direct algorithms the optimal control problem is transformed into a nonlinear pro-

gramming problem, which is solved either via a penalty function method or methods of

augmented Lagrangian functions.

The basic idea behind direct approaches as realized in collocation methods is to introduce

a discretization of the time interval t ∈ [t0, tf ]. The control parameters of the nonlinear

programming problem – the unknowns of the optimization problem – are the values of

the state and control variables at the grid points. For collocation methods, piecewise

linear interpolating functions between the grid points are chosen for the controls. The

states are chosen to be continuously differentiable and piecewise cubic functions. More

advanced discretization schemes use higher-order polynomial approximations and other

finite sum expansions to improve accuracy of the solution trajectory. However, using

more sophisticated discretization models also significantly increases numerical difficulties,

especially in the presence of path constraints.5 For a more detailed discussion on the

theory of direct methods we refer to Betts5.

The major advantage of direct methods lies in their numerical robustness; there is no

equivalent to the numerically sensitive costate system as present in indirect methods.

One of the drawbacks of direct methods, on the other hand, is that only approximate

solutions are obtained. Increasing the number of control parameters yields, in general, an

improvement in the accuracy of the solution. The increased number of unknowns, how-

ever, leads to a considerable increase in computational complexity and computation time.

Another disadvantage of direct methods is the existence of multiple minima (also called

pseudo-minima) as a result of the discretization process.52 Even though pseudo-minima

satisfy all necessary conditions for the optimal solution, the corresponding parameter set

may not be “close” to the parameter set of the actual minimum.
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Indirect methods

Indirect methods are based on the calculus of variation8 and Pontryagin’s minimum

principle.8,74 The optimization problem is obtained via variation of an augmented per-

formance index J + that includes motion equations (constraints) and – when necessary

– state and control variable constraints. The motion equation constraints are associated

with the vector of costates λ ∈ Λ ⊂ R
n; the infinite-dimensional optimization problem is

transformed into a n-dimensional (and therefore discrete) optimization problem for the

unknown costates. Note that for the unconstrained (with respect to path and control

constraints) minimum-time problem n = n.7

Assuming the absence of path and control variable constraints for the time being, the

Hamiltonian function H is obtained from the augmented performance index as

H = L (x,u, t) + λTf(x,u, t) (3.7)

Under certain smoothness conditions8 the following first-order necessary conditions for

the state and control vectors are then obtained from the first variation of J +. As

demonstrated in Appendix A the conditions yield

ẋ =
∂H

∂λ
= f(x,u, t) and λ̇ = −∂H

∂x
= −∂L (x,u, t)

∂x
− ∂f(x,u, t)

∂x
λ (3.8)

which represent a Boundary Value Problem (BVP). In general, the boundary condi-

tions for the state variables are given; the boundary conditions for the costates, or more

precisely, their initial λ(t0) or final values λ(tf ) are the unknowns of the optimization

problem. The optimal control law is determined by minimizing the Hamiltonian function

with respect to the control vector; that is,

∂H

∂u
= 0 and

∂2H

∂u2
> [0] (3.9)

where > [0] denotes positive definiteness of a matrix. The optimal control law u⋆ can

then be written as

u⋆ = arg min
u∈U

H (x⋆,λ⋆,u) , ∀t > 0 (3.10)

There exists a wide variety of techniques to solve the general Boundary Value Problem.

The most frequently used approach for trajectory optimization problems is based on

the multiple-shooting method. Contrary to most other techniques, the multiple-shooting

method has the distinct advantage that all kinds of constraint scenarios can be imple-

mented conveniently and exact solutions to the optimal control problems can be obtained.

7 For dynamical systems with ignorable coordinates n < n, in general.



3.2. Optimization Theory 21

Therefore, we decide to implement the shooting method in our optimization algorithm.

As mentioned in the previous section, the system of costate equations (3.8) is extremely

sensitive to variations in the initial conditions. Consequently, the successful application

of indirect methods heavily depends on the availability of a “good” initial guess of the

optimization parameters. Therefore, the first phase of every optimization algorithm, the

generation of an acceptable set of optimization parameters,20,87 is typically the most

work-intensive and mathematically complex stage of the optimization procedure. An-

other drawback of indirect methods is that the switching structure of the constraints has

to be known a-priori. For a detailed review of solution techniques for constrained optimal

control problems we refer to Betts5.

3.2.3 Optimization techniques

The ultimate success of optimization algorithms heavily depends on whether or not a rea-

sonable accurate guess of the optimization parameters is available or can be generated

during the optimization process. As a result, most approaches use a cascaded scheme

including both global and local optimization tools. In general, global optimization tech-

niques feature a large convergence radius with limited convergence rate and are used

in the first phase of the optimization process. For low-thrust trajectory optimization

problems the objective of the global optimizers is to identify a bounded region in the

search space that encloses the global minimum. Once the approximate neighborhood of

the global minimum is detected local optimization techniques are applied to compute the

optimal parameter set with increased convergence rate.

We employ a global, stochastic search algorithm known as Adaptive Simulated Annealing

and use deterministic approaches such as Quasi-Newton and Newton methods to perform

the fine-tuning of the optimization parameters.

A stochastic approach: Adaptive Simulated Annealing

The difficulty of global optimization problems is to find the “best” optimum – the global

optimum – from a multitude of local optima. For many practical optimization problems

the application of deterministic search algorithms often proves inefficient or simply unfea-

sible. Simulated Annealing is a stochastic, global optimization scheme, initially designed

for discrete – also known as combinatorial – optimization applications such as optimal

chip placement, electronic circuit wiring, and logistic problems such as the Traveling
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Salesman Problem.9,13,51,73

Definition (Traveling Salesman Problem). Given the locations of N cities find the

shortest closed “tour” to connect the cities passing through each city exactly once. The

distance between every pair of cities i and j is di,j.
8

The Simulated Annealing algorithm can then be applied in the following way:

• The solution space is represented by the set of all cyclic permutations π, that is,

Π = (Π(1), Π(2), . . . , Π(N)), where Π(i) denotes the successor city of city i in the

tour represented by the set Π.

• The performance index is chosen as χ(Π) =
∑n

i=1 di,Π(i).

• New solutions are generated by choosing two arbitrary cities labeled k and l, and

reversing the sequence in which the cities in between cities k and l are traversed.

• The difference in the performance index is calculated incrementally from the fol-

lowing expression: ∆χ(Π) = −dk,Π(k) − dΠ−1(l),l + dk,Π−1(l) + dΠ(k),l. Π−1(i) denotes

the predecessor city of city i.

Characteristic for global optimization problems, the number of possible itineraries in

the Traveling Salesman Problem is finite but prohibitively large. For example, for 15

cities the number of different tours that need to be examined to find the solution to the

Traveling Salesman Problem already exceeds 1012, which clearly reflects the global nature

of the optimization problem.

The term simulated annealing (SA) derives from the analogous physical process of ther-

mal annealing (metallurgy) to obtain a defect-free (and so in some sense optimized)

crystalline structure. In an annealing process a melt, initially at high temperature and

disordered, is cooled in a controlled, slow manner to keep the system in an approximate

state of thermodynamic equilibrium (adiabatic cooling). As cooling proceeds, the system

becomes ordered and approaches a ground state. In a SA optimization algorithm, the

annealed substance corresponds to the system being optimized. Similarly, the current

“energy” state of the substance corresponds to the current value of the system cost func-

tion, with the goal of identifying the ground state of the system, the global minimum.

The internal microscopic interactions that keep the substance in a state of thermodynam-

ical equilibrium are simulated in SA by a sequence of parameter perturbations described

8 The original version of the Traveling Salesman Problem assumes that the effort to travel between two
cities is directly proportional to distance between them. Of course, the systems dynamics can be adapted
ad libitum.
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by Markov chains. One major difficulty of implementing a SA algorithm is that there

is no obvious analog to the temperature in the physical process. The corresponding SA

control parameter serves as a reference energy defining the boundary between the local

and global vicinity of the current optimal parameter set in parameter space.

In general, stochastic optimization methods such as Simulated Annealing differ from de-

terministic techniques in that the iteration procedure need not converge towards a local

optimum since transitions thereout are always possible. Another feature is that an adap-

tive exploration of the search space occurs: coarse features of the optimal parameter set

appear at higher temperatures, fine details develop at lower temperatures. The method

incorporates the three functional relationships

P(ξi) Probability density of parameter-space. ξi = (ξi,1, . . . , ξi,l)
T is the l-dimensional

parameter vector at the ith iteration step.

H(∆Ei) Probability for accepting a new performance index given the previous value

thereof.

ϑi Annealing schedule for temperature ϑi at the ith annealing level.

The basic features of SA are illustrated in Figure 3.1: Starting from a randomly generated

initial point – a first candidate – ξi=i0 ≡ ξ0 in the parameter domain of interest and with

an assigned initial temperature ϑi=i0 the algorithm identifies a new point ξi+1, the best

candidate of the (i + 1)st sequence of trial points and evaluates the performance index,

the “energy” of the system Ei+1 ≡ E(ξi+1). If the energy change between the two

candidates and ∆Ei = Ei−Ei+1 represents a decrease in the performance index, the new

point is accepted right away. Otherwise, the new point is accepted with a probability

H(∆Ei) ∝ exp(∆Ei/ϑi). The sequence of generated points with probabilistic acceptance

is referred to in the literature as a Markov chain. After a sufficient number of trial points

have been generated a new Markov chain is generated at a lower temperature level ϑi+1.

The cooling schedule ϑi critically affects the tendency of the algorithm to find the re-

gion enclosing the global minimum. Initially the temperature is chosen relatively high;

most trial points are accepted and there is little chance of the algorithm converging to-

wards a local minimum. As the temperature is decreased for later generations of Markov

chains trial points accumulate more regionally and the search becomes localized. How-

ever, unlike for deterministic optimization techniques, with SA statistical temperature

fluctuations can always cause uphill steps out of a local minimum. Another important

aspect of the SA algorithm is trial point generation. Various approaches have been pro-

posed, for example, using a uniform distribution on the domain of interest or a mix of

a uniformly distributed draw and deterministic steps into a descent direction from the



Chapter 3. Trajectory Optimization 24

Reduce temperature

and generate next

generation of Markov

chain; identify best

candidate alsd

Terminate

algorithm

Generate initial Markov

chain at specified

temperature; identify

best candidate df

Reject candidate

Generate random

number

and compare to

Algorithm

convergence

yes no

yes

no

no

yes

Start

algorithm

Set fjhklid

as new best

candidate

ξi

ξi+1

Ei+1 < Ei

ξi = ξi+1

η ∈ [0, 1]

ηi = exp[∆Ei/ϑi]

η < ηi

ξi−1 = ξi+1

Figure 3.1: Flowchart of the Adaptive Simulated Annealing algorithm.

current point. One of the more popular ways to generate trial points is based on the

Metropolis acceptance probability 64

A(ξi, ϑi) = min {1, exp [−(ξ+i − ξi)/ϑi]} (3.11)

where A(ξi, ϑi) is the probability of accepting a point ξ+i if ξi is the current point and

ξ+i is generated as a possible new point.

Compared to other global search methods such as Genetic Algorithms, Simulated Anneal-

ing has been shown to provide superior performance variance with increased convergence

rate.58 Additionally, Genetic Algorithms are not designed to ergodically sample and cover



3.2. Optimization Theory 25

the parameter space in the most efficient manner and hence can not provide a complete

system representation. The prime benefit of Genetic Algorithms, on the other hand,

occurs when candidate evaluations can be performed in parallel, making Genetic Algo-

rithms an excellent technique to run on parallel processing hardware. In comparison, the

Simulated Annealing process is largely sequential in evaluating possible candidates.

Newton and Quasi-Newton methods

Common to all deterministic optimization methods is the strategy of iterative improve-

ment requiring the cost function to decrease at every iteration step. Iterative improve-

ment is achieved by taking steps into a descent directions of the performance index.

Optimization techniques based on iterative improvement such as Newton and Quasi-

Newton methods typically follow a generic algorithm:

Algorithm UC (Unconstrained optimization)

UC1 Test for convergence. If convergence conditions are satisfied, the algorithm termi-

nates.

UC2 Compute a search (descent) direction ζi.

UC3 Compute a step length υi that achieves a sufficient decrease in the cost function.

UC4 Update current estimate of the minimum and proceed to step UC1; i → i + 1.

In the following section we discuss the practical implementation of the outlined algorithm

and specifics of Newton and Quasi-Newton methods with respect to low-thrust trajectory

optimization.

To keep the analysis general, we denote the cost function of a general optimization

problem by χ(p), and by χ(pi), when evaluated at a particular point pi. The gradient and

Hessian of the cost function are denoted by gi = ∇χ(pi) and Hi = ∇2χ(pi), respectively.

Step length computation To ensure the convergence of the optimization scheme the

iterative steps into descent directions have to produce a sufficient decrease in the cost

function. The sufficiency requirement can be satisfied choosing several conditions on the

step length υi. As an example, a sufficient decrease is achieved when the step size satisfies

the Goldstein-Armijo principle:67

υi,0 =

{

1 , if χ(pi − ζi) ≤ χ(pi) − gT

i ζi

ῡi , else
(3.12)
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where

ῡi = max

{

c1, min

{

c2,
gT

i ζi

2
(

χ(pi − ζi) − χ(pi) + gT

i ζi

)

}}

(3.13)

and with

υi = υi,0̺j max, such that χ(pi − υiζi) − χ(pi) ≤ υig
T

i ζi (3.14)

and where 0 < ̺j < 1. In equation (3.13) scalars c1 and c2 are chosen to satisfy 0 < c1 ≪
1 ≪ c2. In typical applications based on the Goldstein-Armijo principle, the trial values

of υi are defined in terms of an initial step length υi,0 and the step reduction factor ̺j.

The value of υi is then chosen as the first member of the sequence {υi,0̺j} as outlined in

equation (3.14), for which equation (3.12) is satisfied for some c1 and c2.

In our experience, the performance of the optimization algorithm, that is, its convergence

range and rate, depends critically on the choice of the initial step length and parameters

in equation (3.13). The usual convention to take υi,0 as unity proves to be moderately

successful. Conservative choices for c1 and c2 typically guaranteed convergence, however,

usually with unacceptable low convergence rate. For overly optimistic values of ci, the

algorithm did not converge at all in most cases. In general, the successful choice of a set

of step length parameters was based on an intuitive feeling developed during extensive

testing of the overall optimization algorithm.

There is an obvious tradeoff between the effort expended to determine a “good” set

of step length parameters and the resulting benefits of improving the cost function.

Alternative conditions on step length computations are available in the literature; for

example, the Powell-Wolfe principle.67 However, we decide to compare the performance

of the step length formula based on the Goldstein-Armijo principle to the performance

of a relatively simplistic search method, the Golden Section search.67

The Golden Section search is a line search technique based on interval reduction via

bracketing and represents an elegant and robust approach. The algorithm is illustrated

in Figure 3.2 and works as follows: Given a scalar, unimodal function χ(p) in one variable

and defined over the normalized search interval [p0, p1] ∼ [0, 1] ≡ I identify the two

intervals Il = [0, 1 − ̟] and Iu = [̟, 1] where ̟ = 2/(1 +
√

5) ≈ 0.618 is the so-called

Golden ratio and evaluate the cost function at pl = 1 − ̟ and pu = ̟. Depending on

the relative values of χ(pl) and χ(pu) the minimum is located either in I
′
l = I \ [0, 1 − ̟]

or in I
′
u = I \ [̟, 1]. The bracketing procedure is then repeated with the reduced interval

[0′, 1′] until conditions for convergence are satisfied.

With the Golden Section search, there is a linear reduction of the interval of uncertainty

by the factor ̟ at every step. The difficulty of this method, of course, lies in determining
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Figure 3.2: Interval reduction with Golden Section search algorithm.

the maximum range of the interval [p0, p1] in which the χ(p) is unimodal. So in some

sense, the challenge of finding the best step length with the previously discussed step

length algorithms appears as a related problem with the Golden Section search method.

The advantage of the Golden Section Search lies in its structural simplicity and the

fact that no derivative information of the cost functions is required. If, however, such

information is available it can be used to improve the convergence of the algorithm.67

In comparison with the step length algorithm based on the Goldstein-Armijo principle,

the Golden Section search proved to be surprisingly robust for trajectory optimization

typically providing an acceptable convergence rate. In particular, for more complex

optimization problems (e.g. minimum-time transfer for Solar Sail propulsion systems in

three dimensions) the Golden Section search showed better convergence behavior.

Search direction computation Assuming that the cost function can be locally ap-

proximated by the first two terms of a Taylor series expansion

χ(pi + ζi) = χ(pi) + gT

i ζi + ζi
THiζi + O

(

(ζi)
3
)

≈ χ(pi) + gT

i ζi (3.15)

one way to obtain a sufficient decrease in χ(p) is to minimize a normalized9 expression of

the second term in the expansion (3.15) gT

i ζi. In other words, choose ζi so that, amongst

all suitably normalized vectors, gT

i ζi is a minimum. For a given p-norm || · ||p, ζi is

therefore the solution of the minimization problem

min
ζ∈Rn

gT

i ζ

||ζ||p
(3.16)

and the solution depends on the specific choice of p. For example, choosing the 2-

Norm ||ζi||2 =
(

ζi
Tζi

)1/2
, it is straightforward to show that the solution is the negative

9 Normalization is necessary to eliminate the possibility of arbitrarily large step sizes, which would lead the
first-order series expansion approximation of the cost function ad absurdum.
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gradient, ζi = −gi, which is known to be the direction of the steepest descent. Algorithms

utilizing the steepest descent direction as the search direction are commonly referred to

in the literature as Steepest Descent methods. Even though it is tempting to assume that

Steepest Descent methods automatically yield rapid convergence we need to keep in mind

that the analysis above is based on the assumption that the cost function can indeed be

approximated by a first-order Taylor series expansion, which is usually not the case in

practice. To improve the local model of the cost function, most optimization algorithms –

such as Newton and Quasi-Newton methods – utilize second-order derivative information

or an approximation thereof.

Newton’s method Newton’s method is the optimization algorithm par excellence and

is therefore used as a standard to compare more complex optimization schemes against

to. Newton’s methods are based on a quadratic model of χ(p) and therefore provide,

at least locally, quadratic convergence. Expanding the cost function about the current

point pi yields

χ(pi + ζi) ≈ χ(pi) + gT

i ζi + ζi
THiζi (3.17)

The right-hand side of equation (3.17) is minimized by requiring that ζi is a minimum

of the quadratic function

q(ζi) = gT

i ζi + ζi
THiζi (3.18)

Differentiating equation (3.18) with respect to ζi, a stationary point of satisfies

ζi
THiζi = −gT

i ζi (3.19)

and the associated solution for ζi is termed Newton direction. Note that for Hi >

0, only a single iteration is required to reach the minimum of the model function in

equation (3.17) from any starting point. Therefore, Newton’s method provides good

convergence characteristics when the quadratic model is an accurate representation of

χ(p), which requires pi to be sufficiently close to the minimum for most general nonlinear

cost functions χ(p).

For the trajectory optimization problem Newton’s method proved to be a valuable

part of the overall optimization algorithm. Especially for planar minimum-time trans-

fers Newton’s method showed rapid convergence for an acceptable convergence range.

Convergence characteristics degraded, however, noticeably for the more complex three-

dimensional optimization problems. In particular, for the minimum-time transfer prob-

lem using solar sail propulsion the convergence rate dropped in most case into sub-linear

range. Poor convergence characteristics, or, the unavailability of a sufficiently accu-

rate starting point to employ Newton’s method require a more “tolerant” optimization

scheme, e.g. Quasi-Newton methods.
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Quasi-Newton methods Compared to Newton’s method, Quasi-Newton methods be-

long to the category of pseudo first-order techniques that use second-order information

via approximated function Hessian. Rather than computing the exact Hessian at every

iteration step, Quasi-Newton methods are based on the idea of building up curvature

information as the iterations proceed by using the observed behavior of the cost function

and its first derivative.

The curvature of χ(p) along a specified direction si ≡ υiζi = pi+1 − pi is given by

the second term in a Taylor series expansion si
THisi and can be approximated using

first-order information

si
THisi ≈ (∇χ(pi + si) − ∇χ(pi))

T
si (3.20)

At the beginning of the ith iteration step of a Quasi-Newton method, an approximate

Hessian matrix IHi is calculated that contains the curvature information already accu-

mulated. Typically, the initial Hessian approximation IH0 is taken as the identity matrix

if no additional information is available a priori. After pi+1 has been computed, the

Hessian is updated to take account of the current curvature information. The Hessian is

updated according to the update formula

IHi+1 = IHi + IUi (3.21)

where IUi is termed the update matrix. The conditions required of an approximated

Hessian are that it should approximate the curvature of the cost function along the

step direction and – ideally – converge towards the true Hessian as the iteration process

proceeds. Denoting by yi = gi+1−gi the change in gradient and based on equation (3.20),

the approximated Hessian is therefore required to satisfy the following conditions

IHi+1si = yi , and IHi symmetric (3.22)

Since the (true) Hessian matrix is symmetric by construction, it seems reasonable to

require symmetry for the approximated Hessian, as well.

Various update formulas have been suggested in the literature.67 The so-called symmetric

rank-one update has the form

IHi+1 = IHi +
1

(yi − IHisi)Tsi

(yi − IHisi)(yi − IHisi)
T (3.23)

The corresponding symmetric rank-two update formula – better known as the Davidon-

Fletcher-Powell (DFP) update formula – can be written as

IHi+1 = IHi −
1

si
TIHisi

IHisisi
TIHi +

1

yi
Tsi

yiyi
T +

(

si
TIHisi

)

wiwi
T (3.24)
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where

wi =
1

yi
Tsi

yi −
1

si
TIHisi

IHisi (3.25)

Extensive research has been performed in order to identify a “best” update strategy for

the Hessian. The so-called Broyden-Fletcher-Goldfarb-Shanno (BFGS) update given by

IHi+1 = IHi −
1

si
TIHisi

IHisisi
TIHi +

1

yi
Tsi

yiyi
T (3.26)

is currently believed to produce Hessian information most efficiently67 for a wide variety

of practical applications.

Note that in order to obtain the search direction ζi it is necessary to solve the left-

hand side equation (3.22) which involves O
(

n3
)

operations. Using instead the inverse

Hessian HIi = IH−1
i to obtain the search direction reduces required operations to an order

of O
(

n2
)

. This order-reduction significantly decreases computation time for complex

systems of equations; calculation of the inverse Hessian is therefore the preferred approach

to obtain the search direction.67

The inverse symmetric rank-one update has the form

HIi+1 = HIi +
1

(si − HIiyi)Tyi

(si − HIiyi)(si − HIiyi)
T (3.27)

The inverse updated formula corresponding to the Davidon-Fletcher-Powell update can

be written as

HIi+1 = HIi −
1

yi
THIiyi

HIiyiyi
THIi +

1

yi
Tsi

sisi
T (3.28)

Finally, the inverse Broyden-Fletcher-Goldfarb-Shanno (IBFGS) update is given by

HIi+1 =

(

1− 1

yi
Tsi

siyi
T

)

HIi

(

1− 1

yi
Tsi

yisi
T

)

+
1

yi
Tsi

sisi
T (3.29)

where 1 is the n-dimensional unity matrix.

Comparing the performance of the various update formulas for the Hessian and its in-

verse, the BFGS and its corresponding inverse update formula slightly outperform the

DFP and the rank-one updates. Provided good initial information on the Hessian matrix

or its inverse are available, performance differences are subtle for most cases. However,

when using the unity matrix to initiate the optimization procedure the BFGS update

formula shows advantageous behavior in terms of converge rate compared to other up-

date formulas. Performance differences between the regular and the inverse version of

the update formula are noticeable especially from the perspective of computation time.

Therefore, for our analysis we use the IBFGS update formula to compute search directions

for the Quasi-Newton method.
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3.2.4 Additional methods to solve MPBVP

We have discussed to this point conventional, numerical methods necessary to solve the

Two-Point Boundary Value Problem. Even though being an essential element of the

overall optimization algorithm, the application of these techniques is computationally

expensive and therefore to be reduced to a minimum. The exploration of alternative,

analytical methods is in order.

Symmetry methods

The Norwegian mathematician Sophus Lie put forward many of the fundamental ideas

behind symmetry methods and pioneered the study of Lie transformation groups that

leave systems of differential equations invariant.7,70,88 For ordinary differential equations,

Lie’s infinitesimal transformation method provides a widely applicable technique to find

closed form similarity solutions. In addition, symmetries of differential equations often

provide insight into the physical nature of the system.

In general, a symmetry group of a system of differential equations is a group that trans-

forms solutions of the system to other solutions. Consider a system of differential equa-

tions

∆i

(

ξ,µ(k)
)

= 0 , i = 1, 2, . . . m (3.30)

of order k, with p independent variables ξ = (ξ1, ξ2, . . . , ξp) ∈ R
p, and q dependent

variables µ = (µ1, µ2, . . . , µq) ∈ R
q. Given a solution trajectory

(

µ(ξ), ξ
)

that satisfies

equations (3.30) and given a symmetry transformation g ∈ G in the Lie group G of

differential equations (3.30) the transformed solution trajectory
(

µ̂(ξ̂), ξ̂
)

given by

g · Γµ =
{

(

ξ̂, µ̂
)

= g · (ξ,µ) : (ξ,µ) ∈ Γµ

}

(3.31)

satisfies equations (3.30), as well.

In the framework provided by Lie these groups consist of geometric transformations

on the space of both dependent and independent variables for the system. Frequently

encountered examples of group transformations are translation, rotation, and scaling.

Lie’s most profound finding was that the generally complex and nonlinear conditions

of invariance of the system under group transformation can be replaced by equivalent,

linear – and therefore local – conditions reflecting the corresponding form of infinitesimal

invariance of the system under the action of the infinitesimal generators of the group.
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There are three major methods to compute Lie symmetries, respectively, their corre-

sponding infinitesimal generators. The first and most widely used method is implemented

in numerous symbolic software packages and uses so-called prolonged vector fields 7, the

second approach uses Cartan’s exterior calculus.7 The application of these methods in-

volves tedious and unwieldy computations that require a great amount of experience

and a high level of mathematical proficiency. The third method applies the principle of

invariance under transformation directly to the set of differential equations and relies

on the more intuitive, engineering-type expertise. Especially for more complex, highly

non-linear and coupled systems the third approach is often the preferred choice.

The steps of the prolongation method are described in detail in Olver70 and can be

summarized as follows:

For a system of differential equations (3.30) the partial derivatives of µl are represented

as

µl
J =

∂|J |µl

∂ξj1
1 ∂ξj2

2 . . . ∂ξ
jp
p

(3.32)

where for J = (j1, j2, . . . , jp) ∈ N
p, |J | =

∑p
i=1 ji, and µ(k) denotes the vector whose

components are the partial derivatives up to order k of all µl.

One-parameter group transformations are parameterized by a parameter ǫ and have the

form ξ̂ = ΛG(ξ,µ; ǫ), µ̂ = ΩG(ξ,µ; ǫ) where the transformations ΛG and ΩG are to be

determined. Lie showed that the one-parameter Lie group G can be recovered from the

knowledge of the linear terms in the Taylor series expansion of ΛG and ΩG, that is,

ξ̂(ǫ) = ξ̂(ǫ)
∣

∣

ǫ=0
+ ǫ

∂ΛG(ξ,µ; ǫ)

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

+ O
(

ǫ2
)

= ξ + ǫη(ξ,u) + O
(

ǫ2
)

(3.33)

µ̂(ǫ) = µ̂(ǫ)
∣

∣

ǫ=0
+ ǫ

∂ΩG(ξ,µ; ǫ)

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

+ O
(

ǫ2
)

= µ+ ǫϕ(ξ,u) + O
(

ǫ2
)

(3.34)

where ξ̂(ǫ = 0) = ξ and µ̂(ǫ = 0) = µ. Therefore, instead of using the Lie group G

directly, in the method of prolonged vector fields one uses the associated Lie algebra as

defined by the corresponding vector fields

Φ =

p
∑

i=1

ηi(ξ,µ)
∂

∂ξi

+

q
∑

l=1

ϕl(ξ,µ)
∂

∂µl
(3.35)

To obtain the determining equations for coefficients ηi(ξ,µ) and ϕl(ξ,µ) the kth prolon-

gation pr(k)Φ is constructed and applied to the system of differential equations (3.30).

The result is a a system of linear homogeneous partial differential equations – termed
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the determining system for the symmetries – for ηi and ϕl, in which ξ and µ are treated

equally, and as independent variables. Solution of the system then yields the explicit

forms of ηi(ξ,u) and ϕl(ξ,u). For a more detailed discussion on the method of pro-

longed vector fields we refer to Olver70.

We have used the method of prolonged vector fields to solve for symmetry groups of sev-

eral basic differential equations such as the Heat Equation, the Wave Equation, and the

Korteweg-de Vries Equation. In trying to identify symmetries for our Two-Point Bound-

ary Value Problems we encountered considerable difficulties on various levels. First, as

compared with Initial Value Problems (and ordinary differential equations without any

boundary conditions, for that matter) the existence of two sets of boundary conditions in

Two-Point Boundary Value Problems severely restricts the number of possible symmetry

groups. Secondly and more importantly, the complexity (nonlinearity, coupling) of the

motion equations used for our analysis resulted in highly complex systems of determining

equations. Solving the determining equations proved to be highly non-trivial and out of

the scope of this dissertation. Just for comparison, to our best knowledge the classical

Kepler problem is to date the most “complex” system that has been successfully analyzed

to its entirety with respect to symmetry properties.55,68

For these reasons we decide to approach the problem of finding symmetry groups by

working directly with the differential equations and boundary conditions.

Continuation methods

The method of continuation is a method that augments the capabilities of conventional

numerical techniques for solving sensitive Two-Point Boundary Value Problems by soft-

ening the requirements on the quality of the initial guess. Continuation methods imbed a

problem in the family of neighboring Two-Point Boundary Value Problems which depend

continuously on the so-called continuation parameter σ that can be varied smoothly in a

predefined interval, typically σ ∈ [σ0, σN ] = [0, 1] is chosen. The problem family is built

in such a way that for σ = σ0 the family degenerates to a problem with an available solu-

tion or a relatively easily obtainable solution. For σ = σN reduces to the problem whose

solution is desired. In general, continuation methods decrease the condition number of

the problem at hand and guarantee good convergence provided no bifurcation or turning

points are present in the problem.1
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In general, a homotopy function for a continuation method is defined as a mapping

h : R
n × R → R

n (3.36)

describing a parameter dependent family of problems h(p, σ) = 0

h(p, σ) , f(p) − (1 − σ) f(p0) = 0 (3.37)

for a given problem f(p) and a given value p0. By construction the problem family

contains two limiting problems: on one hand, for σ0 = 0

h(p, 0) = f(p) − f(p0) = 0 (3.38)

which represents a system of equations with p ≡ p0 as the trivially known solution. On

the other hand, setting σ = σN = 1 equation (3.36) simplifies to

h(p, 1) = f(p) = 0 (3.39)

which is the problem whose solution is desired. The idea of continuation methods is

to choose an “appropriate” partition of the interval [σ0, σN ] → {σ0, σ1, . . . , σN} and to

iteratively solve a sequence of problems

h(p, σi) = 0 , i = 1, 2, . . . N (3.40)

The key point of this approach is that if parameter step sizes ∆σi = σi − σi−1 are suffi-

ciently small, the solution pi−1 of the (i− 1)st problem can be chosen as the initial guess

for the subsequent problem and the iteration procedures converges. Using for example a

Quasi-Newton or Newton method an “appropriate” partitioning of the parameter interval

guarantees convergence while providing a rapid convergence rate.

We have applied continuation methods extensively to compute entire families of mini-

mum-time trajectories by varying boundary conditions for a particular system model

(that is to say, propulsion system). We refer to the problem of calculating solution

trajectories for varying boundary conditions as numeric continuation. As illustrated in

Figure 3.3 starting with an optimal (solid trajectory) for initial and final conditions IC

and FC, we obtain another transfer solution (dashed trajectory) by slightly varying the

final conditions FC → FC′. Similarly, we have used continuation methods successfully to

generate trajectories from the corresponding trajectory of a different system model while

keeping the boundary conditions unchanged. For example, the problem of calculating

minimum-time trajectories in three dimensions for solar sail spacecraft presents serious

numerical difficulties. However, with the availability of an “analogous” solution trajectory

for a nuclear-electric propulsion system these difficulties can be addressed appropriately

using continuation methods. Figure 3.3 illustrates the process we refer to as algebraic

continuation.
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IC FC
FC′

IC FC FC

t0 tf t′f t0 tf t′f

numeric algebraic

Figure 3.3: Numeric and algebraic continuation.

3.3 Developing an Optimization Algorithm

We have devised a cascaded computational scheme based on numerical and analytical

methods. Whereas other conventional optimization packages rely on numerical solution

approaches, we employ analytical and semi-analytical techniques such as symmetry and

homotopy methods to assist in the solution-finding process. Figure 3.4 illustrates the

basic concept of the optimization algorithm: The first objective is to obtain a single opti-

mized trajectory that satisfies some given boundary conditions. The initialization phase

for this first trajectory includes a global, stochastic search based on Adaptive Simulated

Annealing. ASA provides a large convergence radius but only limited convergence rate

and accuracy as indicated by the stars in the rating table on the left-hand side of Fig-

ure 3.4. The fine tuning of optimization parameters – the local search – is accomplished by

Quasi-Newton and Newton methods. Both Newton and Quasi-Newton methods feature

an increased convergence rate and accuracy when compared to the stochastic optimiza-

tion method. Once an optimized trajectory has been obtained, we use system symmetry

and continuation methods to generate additional optimal control solutions efficiently.

3.4 Summary

In this chapter we have discussed stochastic and deterministic optimization methods

implemented in our algorithm. The innovation of our approach is the usage of homotopy

and symmetry methods which allow for efficient computation of optimal control solutions.



Chapter 3. Trajectory Optimization 36

Adaptive Simulated

Annealing

Newton Method

Quasi-Newton Method

Homotopy Symmetry

St
oc

ha
st
ic
, g

lo
ba

l

D
et
er
m
in
is
ti
c,

lo
ca

l

A
na

ly
ti
c

N
um

er
ic

C
on

ve
rg

en
ce

ra
di
us

C
on

ve
rg

en
ce

ra
te

A
cc

ur
ac

y

Figure 3.4: Cascaded numerical algorithm for solving the optimal control problem.

In the following chapter we introduce spacecraft system models and corresponding motion

equations. The resulting optimal control problems are then solved in Chapter 5.



Chapter 4
System Models and Motion

Equations

In this chapter we introduce system models for solar-electric, nuclear-electric, and so-

lar sail spacecraft and discuss corresponding motion equations. We analyze spacecraft

system models for two- and three-dimensional analyses in Section 4.1 and derive the

corresponding equations of motion for electric spacecraft in Section 4.2 and for solar sail

spacecraft in Section 4.3.

4.1 System Models

Figure 4.1 and Figure 4.2 illustrate two- and three-dimensional system descriptions. We

employ an unperturbed two-body system model of Sun and spacecraft neglecting the

presence of other celestial bodies and other perturbation effects. The Sun is modeled

as a point mass with spherically symmetric gravitation and solar radiation fields. Solar

sail spacecraft are modelled as perfectly flat and perfectly reflective sails of mass m and

surface area A and are treated dynamically as point masses. Spacecraft with nuclear- or

solar-electric propulsion systems are modeled as point masses with variable mass m(t).

Solar flux S and available solar power pγ are functions of the distance r of the spacecraft

from the Sun. Hence, for solar sail and solar-electric spacecraft the thrust T (r) is also a

function of r, whereas for nuclear electric spacecraft the thrust is assumed constant.

The equations of motion for all spacecraft system models are described with respect

37
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to an inertial reference frame E, which is defined by a set of mutually perpendicular

vectors {ex,ey,ez} with ex pointing in the vernal equinox direction �. We employ

several different coordinate descriptions depending on the respective application. For two-

dimensional analysis we use polar coordinates with r = (r, θ)T; cartesian r = (x, y, z)T

and spherical r = (r, θ, φ)T coordinates are used for three-dimensional system models.

The control variables of the system – the unknowns of the optimization problem – are

the thrust angles (e.g. α = (αr, αφθ)
T) as measured with respect to an orbital reference

frame, e.g. O = {or,oθ,oφ}. We use the following notation to unambiguously identify a

set of control variables: Control angles with a single subscript are measured with respect

to the axis of the corresponding orbital reference frame, for example, αr is the angle

between the control angles vector and the radial direction or. Control variables with two

subscripts are measured in the plane that corresponds to the two subscripts; the first

subscript identifies the axis of the orbital frame from which the angle is measured. As an

example, αφθ is the angle in the oφoθ-plane and measured with respect to the oφ-axis.

For the two-dimensional analysis initial and target spacecraft trajectories are modelled

as heliocentric, circular, and coplanar orbits. Periodic Keplerian orbits are used to model

planetary trajectories for the three-dimensional transfer problem. Trade studies explor-

ing the physical behavior of optimal spacecraft transfers are more readily facilitated in

two dimensions. In addition, usage of circular, coplanar planetary orbits minimizes the

number of key system parameters. Most importantly, we show in Chapter 5 that the

two-dimensional analysis accurately predicts the overall system behavior when compared

to the three-dimensional analysis.

4.2 Electric Propulsion Spacecraft

In this section we briefly discuss electric spacecraft systems using nuclear-electric and

solar-electric propulsion technologies. Compared to solar-electric spacecraft, nuclear-

electric systems offer, in general, superior performance characteristics. Especially for

missions into the outer regions of the solar system the solar flux decrease severely con-

straints the available electrical power and in turn the range of applications of solar-electric

systems. On the other hand, nuclear-electric propulsion concepts come encumbered with

public safety concerns as well as significant potential technical problems as discussed in

a paper by Cameron and Herbert11. As a consequence of the (public) lack in confidence

in this highly controversial technology, development of nuclear spacecraft systems has

suffered significant setbacks.
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Figure 4.1: Dynamical systems representations in two dimensions.
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Figure 4.2: Dynamical systems representations in three dimensions.
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4.2.1 Nuclear-electric propulsion systems

For nuclear-electric propulsion systems we assume a constant specific impulse Isp and a

constant thrust T (r) = T . With these assumptions the mass flow function µ(r) and the

specific thrust τ(r) are given by39

µ(r) = µ = − τm

g0 Isp

= −c = const. , where τ(r) =
T

m
(4.1)

and where c > 0 is the mass flow rate and g0 is the gravitational acceleration at the

surface of the Earth.

4.2.2 Solar-electric propulsion systems

The model for solar-electric propulsion system is significantly more complex. First of all,

the available electrical power is a function of the distance of the spacecraft from the Sun.

Neglecting power fluctuations due to the spacecraft rotational motion the solar radiation

flux decreases ∼ 1/r2 provided rmin < r < rmax. At some cutoff distance r = rmax all

available electrical power is required to maintain operations of vital spacecraft systems

(e.g. navigation, communication, etc.) of the spacecraft. As a result, power requirements

are not met to reliably operate the propulsion system beyond the cutoff point. For

decreasing values of r the available electrical power reaches a saturation level at some

r = rmin which is defined by the standard of technology of the power system (efficiency

and degradation of solar cells, efficiency of power conversion and storage units, etc.).

To reduce analysis complexity we assume that rmin = 0 and rmax → ∞ and employ

a simplified system model used in Circi15 and proposed by Williams and Coverstone-

Carroll102:

τ(r) = [b1 + b2P (r)]/m , µ(r) = c1 + c2P (r) , ⌈τ(r)⌉ = mN, ⌈µ(r)⌉ = mg/s (4.2)

where the solar array performance, P (r), is modelled as a polynomial of the form102

P (r) = P0
a1r

2 + a2r + a3

r4(1 + a4r)
, ⌈P (r)⌉ = kW, ⌈r⌉ = AU (4.3)

In equation (4.3) P0 is the reference power at 1 AU, the power is measured in kilowatts

and the radial distance is measured in AU. Constants ai, bi, and ci in equations (4.2,4.3)

are parameters describing propulsion system characteristics and are given in Table 4.1.



4.2. Electric Propulsion Spacecraft 41

Table 4.1: Solar-electric propulsion system performance parameters.102

Parameter i = 1 2 3 4

ai 1.1063 0.1495 −0.2990 −0.0423

bi −1.9137 36.2429

ci −0.4756 −0.9021

For comparison we restate the propulsion system models for nuclear-electric and solar-

electric spacecraft

Nuclear-electric propulsion Solar-electric propulsion

τ(r) = T/m τ(r) = [b1 + b2P (r)]/m (4.4)

µ(r) = −c µ(r) = c1 + c2P (r)

In the following section we derive corresponding motion equations for electric propulsion

spacecraft.

4.2.3 Motion equations for electric propulsion system

For our analysis a system description with respect to a polar coordinate system is benefi-

cial for planar transfers; that is, the position vector r = (r, θ)T. For the three-dimensional

analysis we use a cartesian coordinate description. The equations of motion are then de-

rived in a straightforward manner using Lagrange’s equation

d

dt

∂L
∂q̇i

− ∂L
∂qi

= Qi , i = 1, . . . n (4.5)

In equation (4.5) the Lagrangian L = T − V is computed as the difference between the

kinetic and the potential energy of the system, qi are the generalized coordinates, and

Qi are the generalized forces of the system.

Using polar coordinates, the general motion equations for the planar system model of a

controlled electric spacecraft are then readily obtained as

r̈ = rθ̇2 − µ⊙/r2 + τ(r) cos αr (4.6)

rθ̈ = −2ṙθ̇ + τ(r) sin αr (4.7)

ṁ = µ(r) (4.8)
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where αr is the control variable. The specific thrust τ(r) and the mass flow function

µ(r) depend on the particular spacecraft propulsion system and are presented in equa-

tions (4.4) for nuclear-electric and solar-electric systems.

For the three-dimensional analysis we use a cartesian coordinate description with r =

(x, y, z)T. Applying Lagrange’s equations the equations of motion are readily obtained

as

ẍ = −µ⊙x

r3
+ τ(r) cos αz cos αxy (4.9)

ÿ = −µ⊙y

r3
+ τ(r) cos αz sin αxy (4.10)

z̈ = −µ⊙z

r3
+ τ(r) sin αz (4.11)

ṁ = µ(r) (4.12)

In the subsequent section we discuss system models and equations of motion for solar

sail spacecraft.

4.3 Solar Sail Spacecraft

In this section we discuss a solar radiation pressure model and subsequently derive motion

equations for solar sail spacecraft for planar and three-dimensional analysis.

4.3.1 Solar radiation pressure model

The solar radiation pressure forces are due to photons γ impinging on the spacecraft

surface, for example, the solar sail. If a fraction, γa, of the interacting photons is absorbed,

a fraction, γs, is specularly reflected, and a fraction, γd, is diffusely reflected, then by

conservation of energy

γa + γs + γd = 1 (4.13)

The radiation forces due to absorption, specular and diffuse reflection can be written as61

fa =
γafγ AU2

r2

(

nT

γS
)

S , fs =
2γsfγ AU2

r2

(

nT

γS
)2
nγ , (4.14)

and

fd =
γdfγ AU2

r2

(

nT

γS
)(

S + 2nγ/3
)

, with fγ = pγA (4.15)
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and where A is the solar sail surface area, pγ = 4.563 × 10−6 N/m2 is the nominal

solar radiation pressure constant at 1 AU, where the unit of AU is chosen such that

⌈AU⌉ = ⌈r⌉. Furthermore, nγ is the solar sail surface area vector, and S is the unit

vector pointing from the Sun center to the spacecraft as illustrated in Figure 4.2. The

total solar radiation pressure force may then be written as

fγ = fa + fs + fd =
fγ AU2

r2

(

nT

γS
) {

(1 − γs)S +
[

2γs

(

nT

γS
)

+ 2γd/3
]

nγ

}

(4.16)

which simplifies to

fγ =
fγ AU2

r2
cos αr

{

(1 − γs)S +
[

2γs cos αr + 2γd/3
]

(S cos αr + S⊥ sin αr)
}

=
fγ AU2

r2
cos αr {(1 − γs + cos αr (2γs cos αr + 2γd/3))S

+ sin αr (2γs cos αr + 2γd/3))S⊥}
, fS

γ S + fS⊥

γ S⊥

(4.17)

observing that
(

nT

γS
)

= cos αr and introducing S⊥ as the unit vector in the nγS-

plane and orthogonal to S. Note that we assume the solar sail to be perfectly flat with

homogeneous solar radiation pressure distribution over the entire sail surface.

For later reference we derive the solar radiation pressure torque gγ for the solar sail

spacecraft. With the surface area of other parts of the spacecraft being negligibly small,

gγ results

gγ = ds

(

− sin αr fS
γ + cos αr fS⊥

γ

)

= ds
fγ AU2

r2
cos αr sin αr (1 − γs) (4.18)

where ds is the distance between the spacecraft center of mass and the center of solar

radiation pressure of the sail . Note that we assume the solar sail to be perfectly flat

and a homogeneous solar radiation pressure distribution over the entire sail surface. Note

that the solar radiation pressure torque does not depend on γa and is equal to zero for a

perfectly reflective solar sail where γs = 1.

4.3.2 Motion equations for solar sail system

Using equations (4.17) we introduce the solar sail characteristic acceleration as

β = 2fγ AU2/m (4.19)
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For the planar analysis we then employ a system description based on polar coordinates.

With the solar radiation pressure model discussed in Section 4.3.1 the equations of motion

yield

r̈ = rθ̇2 − µ⊙

r2
+

β

r2
cos3 αr (4.20)

θ̈ = −2ṙθ̇

r
+

β

r3
cos2 αr sin αr (4.21)

We employ spherical coordinates r = (r, θ, φ)T for the three-dimensional analysis. Using

Lagrange’s equation the resulting motion equations result in

r̈ = rθ̇2 cos2 φ + rφ̇2 − µ⊙

r2
+

β

r2
cos3 αr (4.22)

θ̈ =
1

r cos φ

[

2rθ̇φ̇ sin φ − 2ṙθ̇ cos φ + β cos2 αr sin αr sin αφθ/r
2
]

(4.23)

φ̈ = −2ṙφ̇

r
− θ̇2 sin φ cos φ +

β

r3 cos φ
cos2 αr sin αr cos αφθ (4.24)

4.4 Summary

In this chapter we have introduced system models for solar-electric, nuclear-electric, and

solar sail spacecraft for two- and three-dimensional analysis. We have used Lagrange’s

equation to derived the equations of motion for the system models and now proceed to

the next chapter to investigate optimal control problems for minimum-time transfers.



Chapter 5
Optimal Control Analysis

In this chapter we formulate the optimal control problem for various low-thrust systems

and derive necessary optimality conditions. We first focus on two-dimensional system

descriptions and then generalize the problem formulation to three dimensions. In Sec-

tion 5.1 we analyze the planar minimum-time optimal control problem for nuclear-electric,

solar-electric, and solar sail spacecraft. We perform symmetry analysis and identify and

derive various symmetry transformations in Section 5.1.4. Subsequently, in Section 5.1.5

we validate the optimization algorithm developed in Chapter 3 and present new solution

families to the optimal control problem. The trade studies presented in Section 5.1.5 are

the starting point for the three-dimensional optimal control analysis discussed in Sec-

tion 5.2 in which we focus on the implementation of homotopy methods. In particular,

we demonstrate how to compute transfer trajectories for a solar sail spacecraft using

corresponding solution trajectories of a nuclear-electric spacecraft.

5.1 Two-dimensional Analysis

We employ polar coordinates to develop the system descriptions for planar transfer sce-

narios. The gravitational potential and the solar radiation field of the Sun are naturally

described in polar coordinates and so are the boundary conditions for transfers between

circular (and elliptical) planetary orbits. In this section we set up the optimal control

problem for nuclear-electric, solar-electric, and solar sail spacecraft. The system models

and corresponding equations of motion are discussed in Chapter 4.

45
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5.1.1 Nuclear-electric propulsion systems

The motion equations for a nuclear-electric propulsion spacecraft in polar coordinates

were derived in Section (4.9–4.12) and are given by

r̈ = rθ̇2 − µ⊙

r2
+

T

m
cos αr (5.1)

θ̈ = −2ṙθ̇

r
+

T

mr
sin αr (5.2)

ṁ = −c (5.3)

By defining a set of intermediate variables vθ , rθ̇ and vr , ṙ we can rewrite the second-

order differential equations (5.1,5.2) as a set of first-order differential equations. By a

minor abuse of notation and following the procedure outlined in Appendix B, we use

r, θ, and m to denote nondimensional variables henceforth; the tilde-notation 2̃ is used

for dimensional variables. The nondimensional motion equations can then be written as

ṙ = vr (5.4)

θ̇ =
vθ

r
(5.5)

v̇r =
v2

θ

r
− 1

r2
+ τ cos αr (5.6)

v̇θ = −vrvθ

r
+ τ sin αr (5.7)

τ̇ = τ 2κ (5.8)

Note that we replaced the spacecraft mass m by a new state variable, the specific, nondi-

mensional thrust τ via

T̃

m̃
, τ̃ , and with m̃′ = −c̃ → τ̃ ′ = − T̃ m̃′

m̃2
≡ τ̃ 2c̃

T̃
, τ̃ 2κ̃ (5.9)

introducing the so-called thrust efficiency parameter κ. Choosing the specific thrust

rather than the spacecraft mass as a state variable simplifies the costate analysis and

yields less complex expressions for the costate differential equations.

The Hamiltonian H can then be written as

H = λ1vr + λ2vθ/r + λ3

(

v2
θ

r
− 1

r2
+ τ cos αr

)

+ λ4

(

−vrvθ

r
+ τ sin αr

)

+ λ5τ
2κ (5.10)
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The corresponding costate equations λ̇ = −∂H /∂x are

λ̇1 = −λ2vθ/r
2 + λ3

(

−2/r3 + v2
θ/r

2
)

+ λ4

(

−vrvθ/r
2
)

(5.11)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(5.12)

λ̇3 = −λ1 + λ4vθ/r (5.13)

λ̇4 = −λ2/r − 2λ3vθ/r + λ4vr/r (5.14)

λ̇5 = −λ3 cos αr − λ4 sin αr − 2λ5τκ (5.15)

Note that θ is an ignorable coordinate; the corresponding costate λ2 is therefore a constant

and zero if θ(tf ) is free. In this case the dimensionality of the search space decreases by

one. For θ(tf ) given, λ2(t0) ≡ λ2 remains an unknown of the optimization problem.

The optimal control angle is obtained by setting the first derivative of the Hamiltonian

with respect to the control angle equal to zero.

∂H

∂αr

= 0 = −λ3τ sin αr + λ4τ cos αr → sin αr

cos αr

=
λ4

λ3

(5.16)

To remove sign ambiguities in the optimal control law we note that

∂2H

∂α2
r

= −λ3τ cos αr − λ4τ sin αr > 0 (5.17)

Using information from equation (5.16) we identify two conditions on the sign of the

cosine and the sine of the control angle in the form

−λ3 cos αr > 0 → sign(λ3) = −sign(cos αr)

−λ4 sin αr > 0 → sign(λ4) = −sign(sin αr)
(5.18)

and therefore the correct control law for αr is obtained as

α⋆
r = atan2

(−λ4

−λ3

)

, with α⋆
r ∈ [0, 2π) (5.19)

In the following section we discuss the optimal control problem for solar-electric space-

craft.
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5.1.2 Solar-electric propulsion systems

The dimensional motion equations for a solar-electric spacecraft in the gravitational field

of the Sun in polar coordinates are given by

r̈ = rθ̇2 − µ⊙

r2
+

b1 + b2P (r)

m
cos αr (5.20)

θ̈ = −2ṙθ̇

r
+

b1 + b2P (r)

mr
sin αr (5.21)

ṁ = c1 + c2P (r) (5.22)

where the electric power P (r) is given by15

P (r) = P0
a1r

2 + a2r + a3

r4(1 + a4r)
(5.23)

and constants ai, bi, and ci are listed in Section 4.2.2. As in Section 5.1.1, we nondi-

mensionalize the equations of motion and adjust the notation for the variables. The

nondimensional motion equations are then given by

ṙ = vr (5.24)

θ̇ =
vθ

r
(5.25)

v̇r =
v2

θ

r
− 1

r2
+

b1 + b2P (r)

m
cos αr (5.26)

v̇θ = −vrvθ

r
+

b1 + b2P (r)

m
sin αr (5.27)

ṁ = c1 + c2P (r) (5.28)

From the system Hamiltonian we can derive the differential equations for the costates in

the form

λ̇1 = −λ2vθ/r
2 + λ3

(

−2/r3 + v2
θ/r

2 − ∂P (r)

∂r

b2

m
cos αr

)

+

λ4

(

−vrvθ/r
2 − ∂P (r)

∂r

b2

m
sin αr

)

− λ5
∂P (r)

∂r
c2

(5.29)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(5.30)

λ̇3 = −λ1 + λ4vθ/r (5.31)

λ̇4 = −λ2/r − 2λ3vθ/r + λ4vr/r (5.32)

λ̇5 = − 1

m2
[b1 + b2P (r)](λ3 cos αr − λ4 sin αr) (5.33)
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Note that both the state and costate systems for a solar-electric propulsions system are

significantly more complex than for a nuclear-electric propulsion system.

The optimal control angle is obtained by setting the first derivative of the Hamiltonian

with respect to the control angle equal to zero:

∂H

∂αr

= 0 = [b1 + b2P (r)](−λ3 sin αr + λ4 cos αr) → sin αr

cos αr

=
λ4

λ3

(5.34)

Using similar arguments as before in Section 5.1.1 regarding sign and quadrant ambigu-

ities of the control angle it is straightforward to show that the correct control law for αr

has the form

α⋆
r = atan2

(−λ4

−λ3

)

, with α⋆
r ∈ [0, 2π) (5.35)

The next section is devoted to analyze the optimal control problem of solar sail spacecraft.

5.1.3 Solar sail spacecraft

Dimensional motion equations for a solar sail spacecraft in polar coordinates can be

written in the form

r̈ = rθ̇2 − µ⊙

r2
+

β

r2
cos3 αr (5.36)

θ̈ = −2ṙθ̇

r
+

β

r3
cos2 αr sin αr (5.37)

The corresponding nondimensional equations of motion are given by

ṙ = vr (5.38)

θ̇ =
vθ

r
(5.39)

v̇r =
v2

θ

r
− 1

r2
+

β

r2
cos3 αr (5.40)

v̇θ = −vrvθ

r
+

β

r2
cos2 αr sin αr (5.41)
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From the system Hamiltonian we can derive the differential equations for the costates in

the form

λ̇1 = λ2vθ/r
2 + (5.42)

λ3

(

2β cos3 α/r3 + v2
θ/r

2 − 2/r3
)

+ λ4

(

2β sin α cos2 α/r3 − vrvθ/r
2
)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(5.43)

λ̇3 = −λ1 + λ4vθ/r (5.44)

λ̇4 = −λ2/r − 2λ3vθ/r + λ4vr/r (5.45)

Applying Pontryagin’s Minimum Principle, the stationary condition yields

∂H

∂α
= 0 = −3λ3β sin α cos2 α/r2 + λ4β

(

cos3 α − 2 sin2 α cos α
)

/r2 (5.46)

which is satisfied if







cos α⋆
r = 0

cos α⋆
r 6= 0 and tan2 α⋆

r +
3λ3

2λ4

tan α⋆
r −

1

2
= 0

(5.47)

The optimal control angle α⋆
r that minimizes the Hamiltonian in equation is then given

by

α⋆
r =















atan
(

(

−3λ3 −
√

9λ2
3 + 8λ2

4

)

/(4λ4)
)

if λ4 6= 0

0 if λ4 = 0 , λ3 < 0

±π/2 if λ4 = 0 , λ3 > 0

(5.48)

As a side-note, the second minus sign in the argument of the arctangent in the control

law (5.48) is in agreement with the analysis in Wood et al.103 and replaces the plus sign

used in other papers.41,76,77

5.1.4 Symmetry analysis

In this section we analyze system symmetries starting with the solar sail spacecraft

model. For electric-propulsion systems corresponding symmetries are present only for

the rather restrictive case of null mass flow. However, by employing homotopy methods

these symmetry properties can be used to great advantage to calculate additional solution

trajectories for non-zero mass flow, as well.
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Solar sail spacecraft

In the following we present and prove two system symmetries summarized in Theorem 1

and Theorem 2. Theorem 1 provides an effective tool to determine optimal return tra-

jectories, which can be used to compute solutions of the P1 family efficiently. As pointed

out previously, solving the associated Three-Point Boundary Value Problem is not only

numerically challenging but is also a time-consuming process. Another interesting sym-

metry property is formulated in Theorem 2. Using nondimensional analysis one can show

similarity of minimum-time solutions for the case when r(tf )/r(t0) = const. Moreover,

there exists a simple relationship between transfer times and initial (or final) orbit radii

for trajectories with r(tf )/r(t0) = const.

Definition (Solution Trajectory). A function Ω = (X,Λ, U, T )T is called a solution

trajectory of the optimal control problem if X and Λ are compatible solutions to the

state equations (5.38–5.41) and costate equations (5.42–5.45), respectively, with control

history U and transfer time T , for a given set of boundary values.

Theorem 1. Let Ω be a P0 solution trajectory satisfying the boundary conditionsX(t0) =

X0, X(tf ) = Xf , Λ(t0) = Λ0, and Λ(tf ) = Λf , then the costate solution for the

corresponding return trajectory Ω∗ = (X∗,Λ∗, U∗, T ∗)T satisfies

Λ∗
1(t

∗) = −Λ1(t) , Λ∗
2(t

∗) = Λ2(t) = 0 , Λ∗
3(t

∗) = Λ3(t) , Λ∗
4(t

∗) = −Λ4(t) ,

with

t∗ = T − t

and where T = tf − t0 = t∗f − t∗0 = T ∗.

Proof. The boundary conditions for the states are trivially compatible under the sym-

metry transformation for the independent variable t. With (d/dt∗) = −(d/dt) it follows

from equation (5.38) that v∗
r(t

∗) = −vr(t) and from equation (5.40) that r∗(t∗) = r(t).

For system invariance the control angle satisfies α∗
r(t

∗) = −αr(t) [equation (5.41)], which

is compatible with the symmetry transformations for the Lagrange multipliers and the

control law (5.48). Similarly, with the proposed symmetry transformations the costate

equations are rendered invariant.

Remark. Obviously, (−Λ1(tf ), Λ3(tf ),−Λ4(tf )) 7→ (Λ∗
1(t

∗
0), Λ

∗
3(t

∗
0), Λ

∗
4(t

∗
0)) and the return

trajectory is readily propagated forward in time. For P0 solution trajectories θ is an

ignorable coordinate and does not appear in any algebraic constraints; therefore, Λ2 =

Λ∗
2 = 0 without loss of generality.
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Theorem 2. Let Ω be a P0 solution trajectory with Ξ , r(tf )/r(t0) then the equivalent

P0 solution trajectory Ω∗ with Ξ∗ = Ξ and r∗(t∗0) 6= r(t0) satisfies

X∗
1 (t∗) = aX1(t) , X∗

2 (t∗) = X2(t) , X∗
3 (t∗) = a−1/2X3(t) , X∗

4 (t∗) = a−1/2X4(t)

Λ∗
1(t

∗) = a−3/2Λ1(t) , Λ∗
2(t

∗) = Λ2(t) = 0 , Λ∗
3(t

∗) = Λ3(t) , Λ∗
4(t

∗) = Λ4(t)

with

t∗ = bt and therefore T ∗/ T = b ≡ a3/2

where a = r∗(t∗0)/r(t0) = r∗(t∗f )/r(tf ) , T = tf − t0 , and T ∗ = t∗f − t∗0 .

Proof. Using as reference distance units 1 DU = r(t0) and 1 DU∗ = r∗(t∗0) to nondi-

mensionalize motion equations and to obtain the corresponding solution trajectories Ω

and Ω∗ the state and costate transformations render the systems of differential equations

equivalent provided that

µ̃⊙ TU 2/ DU 3 = µ̃⊙ TU∗ 2/ DU∗ 3

Remark. For solution trajectories that are not readily obtained with Theorem 1 and

Theorem 2, for example, Ξ∗ 6= Ξ and r∗0 6= r0, Theorem 2 can be used to reduce the two-

parameter continuation problem to a one-parameter continuation problem as follows:

1. Compute ∗Ω with ∗Ξ = Ξ, ∗r0 = r∗0 (or ∗rf = r∗f ), using Theorem 2

2. Use homotopy to calculate Ω∗ with r∗0 = ∗r0 (or r∗f = ∗rf ) fixed

Also note the similarity between Kepler’s Third Law and the equation in Theorem 2

describing the relationship between minimum transfer times and corresponding initial

(or equivalently final) radial distances.

Figure 5.1 shows three solar sail spacecraft transfer trajectories that are connected by

system symmetries discussed in Theorem 1 and Theorem 2. The figure on the left il-

lustrates minimum-time transfers in the xy-plane, the bold bars indicate the orientation

of the sail. Note that the symmetry is also reflected in the reflexion symmetry of the

control angle histories in the figure on the right-hand side.

Electric spacecraft

For electric propulsion spacecraft the differential equation for the mass flow (e.g. ṁ =

−c) prohibits analogous symmetry transformations. The time derivative generates a
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Figure 5.1: System symmetry shown with three transfer trajectories for β = 0.33784.

coefficient that multiplies the time derivative in the transformed coordinate. For example,

ṁ ≡ (d/dt)m = −c 6= −c∗ = (d/dt∗)TU∗m∗, in general, since TU∗ can not be chosen

arbitrarily. Invariance of the mass flow equation can be achieved by adjusting the mass

flow c 7→ c∗ as part of the symmetry transformation. We note, however, that by allowing

the mass flow to change as part of the transformation the requirements for performing

symmetry transformations are no longer satisfied. The requirements state that invariance

of the set of differential equations be achieved by a proper transformation of independent

and dependent variables only, which – obviously – does not include transformation of

system parameters.

With a similar argument we can show that it is not possible to compute an equivalent

return trajectory by using the analogous of Theorem 2 for electric spacecraft. Note that

with the transformation of the time variable t∗ = T − t the mass flow equation changes

its sign, that is, (d/dt)m = −c 7→ −(d/dt∗)m∗ = −c∗. Both c and c∗ denote mass flow

rates, which by our definition are positive constants. As a direct result (and unlike for

solar sail spacecraft) the minimum transfer time for an Earth-to-Mars transfer can not be

equal to the minimum transfer time for a Mars-to-Earth transfer for electric spacecraft.

The algebraic complexity further increases in the case of the motion equations for solar-

electric spacecraft model. No symmetry transformations could be identified to this date.

Remark. The process of identifying symmetry transformations for general, non-linear, and

coupled differential equations is non-trivial. Imposing boundary conditions on the states

and costates to formulate an appropriate optimal control problem adds another level of

complexity since the boundary conditions too have to satisfy transformation conditions.
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To the best of our knowledge this work presents the first attempt to investigate the

trajectory optimization problem via symmetry methods. We have shown in this section

that system symmetries can be used effectively to solve for optimal control solutions

provided, of course, that a) symmetries are present and b) corresponding symmetry

transformations can be identified. Especially for higher-dimensional and more complex

system descriptions prospects of success of finding symmetry groups of transformations

are reasonably unlikely.

5.1.5 Results and propulsion system performance comparison

In this section we first validate the optimization algorithm with some well-documented

results in the literature and subsequently present optimal control solutions.

Optimization algorithm validation

We employ solar sail spacecraft transfer trajectories to test and validate the performance

of the optimization algorithm. Results obtained for Earth-to-Mars P1 transfers are in

excellent agreement with data published by Wood et al.103 Table 5.1 shows transfer times

and initial and final costates for two different characteristic accelerations. We obtained

high-accuracy results with ‖ψ (x(tf ), tf ) ‖ < 10−14, which result in slightly improved

transfer times in the order of 10 to 15 hours compared to reported results in Wood

et al.103 Note that the nondimensional characteristic accelerations of β = 0.16892 and

β = 0.33784 correspond to nominal values of β̃ = 1 mm/s2 and β̃ = 2 mm/s2. The

minimum transfer times correspond to 323.87 and 407.62 days, respectively (1 TU =

365.25/(2π) days = 58.1313 days). The transfer trajectories and corresponding control

angle histories are illustrated in Figure 5.2 and Figure 5.3. The plots on the left-hand

side show transfer trajectories and sail orientations in the xy-plane; the time histories of

the sail orientation angles are shown in plots on the right-hand side.

Systems performance comparison

Figures 5.4 and 5.5 show minimum-time orbit transfer trajectories between Earth and

Mars for a nuclear-electric spacecraft with τ0 = 0.16892 and κ = 0.50604 which corre-

sponds to an initial specific thrust of τ̃0 = 1 mm/s2 and a specific impulse of Isp = 6000 s.

Comparing the control angle histories for both transfers it seems that the two scenar-
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Table 5.1: Minimum transfer times and corresponding costates for Earth-to-Mars transfers.

Analysis Characteristic Transfer time Initial costates Final costates

Wood, et al.103

Kim

Analysis Transfer time Initial costates Final costates

{

{

acceleration

Author β T λ(0) λ(T )

0.16892 7.02232





−7.40581

−4.22855

−7.91115









−21.5481

+ 8.5025

−46.6174





0.33784 5.57911





−3.68044

−2.59597

−2.56421









−14.9271

+10.1662

−29.6344





0.16892 7.01204





−7.41099

−4.23234

−7.90591









−21.5482

+ 8.5063

−46.5737





0.33784 5.57134





−3.68301

−2.59741

−2.56208









−14.9274

+10.1619

−29.6045





Powers, et al.76,77 0.33784 5.57 – –
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Figure 5.2: Transfer trajectory and solar sail orientation angle history for an Earth-to-Mars

transfer with β = 0.16892.

ios are connected by a symmetry transformation; transfer times are close, however, not

identical (Tmin = 3.050 (Mars-to-Earth) compared to Tmin = 3.041 (Earth-to-Mars))! As

pointed out in Section 5.1.4 the non-zero mass flow is responsible for symmetry breaking.
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Figure 5.3: Transfer trajectory and solar sail orientation angle history for an Earth-to-Mars

transfer with β = 0.33784.
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Figure 5.4: Transfer trajectory and thrust angle history for an Earth-to-Mars transfer with

τ0 = 0.16892 and κ = 0.50604.

Figure 5.6 shows orbit transfer time as a function of final orbit radius comparing solar

sail and nuclear-electric spacecraft and for an initial orbit radius is 1 AU. Curves 1,2,

and 3 (solid-dotted lines) correspond to solar sail spacecraft with increasing characteristic

acceleration; curve pairs 4 and 5 (solid lines) correspond to nuclear-electric spacecraft

with initial specific thrust of τ̃0 = 0.5 mm/s2 and τ̃0 = 1.0 mm/s2 and specific impulse

of Isp = 3000 s and Isp = 6000 s. The figure shows that electric propulsion systems in

general outperform solar sail spacecraft for outbound trajectories r(tf ) > r(t0) provided

that there are no constraints on propulsion system mass (fuel). For inbound transfers

we notice an increased effectiveness of solar sail spacecraft due to the increasing solar
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Figure 5.5: Transfer trajectory and thrust angle history for an Mars-to-Earth transfer with

τ0 = 0.16892 and κ = 0.50604.
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Figure 5.6: Transfer time as a function of target orbit radius for solar sail spacecraft (solid-

dotted lines) and nuclear-electric propulsion spacecraft (solid lines). The initial orbit radius is

1 AU.

radiation pressure.

Minimum-time Earth-Mars-Earth double orbit transfer trajectories for solar sail space-

craft and nuclear-electric spacecraft are illustrated in Figure 5.7 and Figure 5.8. Because

of system symmetry the overall transfer time for the solar sail spacecraft is simply twice
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the transfer time of the corresponding P1, solution, that is, TP2
= 2 TP1

= 11.142. This

particular symmetry is also reflected in the mirror-symmetry of the solar sail orientation

angle history. Note that the second half of the control angle history (t ∈ [5.571, 11.142))

is obtained by simply reflecting the first half of the control angle history (t ∈ [0, 5.571))

once about the x-axis and once about the y-axis. In comparison, Figure 5.8 clearly illus-

trates the lack of the corresponding symmetry transformation for the electric-spacecraft.

In addition, the outbound leg of the P2 transfer takes approximately 45% longer than

the inbound leg which is, of course, due to the increased thrust acceleration as a result

of decreasing spacecraft mass.

Multiple solutions to minimum-time transfer problem are possible. Figure 5.9 shows two

globally minimal Earth-Mars P3 solutions for an initial angular separation between Mars

and Earth of ∆Θ(t0) = 1.117 rad and a characteristic acceleration of β = 0.135136. For

the two significantly different trajectories, we refer to the spacecraft as being in either

“sleep” or “catch-up” mode. Sleep-mode solutions are characterized by a dramatic ini-

tial increase of the radial distance of the spacecraft reducing its angular rate. Midway

through the transfer the angular rate is further decreased by reducing the sail orientation

angle, gravity becomes dominant, and the spacecraft naturally falls back into the target

orbit for rendezvous. Comparing sleep and catch-up type trajectories, the latter are more

dynamically “active”. As illustrated in Figure 5.9 the control angle history for the sleep

mode trajectory shows a distinctively more moderate functional behavior. Additionally,

catch-up mode trajectories typically include one or more solar gravity/solar radiation

assists. The tangential velocity vθ is generally higher for catch-up mode than for cor-

responding sleep mode trajectories. Not surprisingly, once close to the object planet

(Earth) the spacecraft in catch-up mode approaches its target from “behind”. In sleep

mode the spacecraft slows down appropriately to be approached by its target.

Obviously, the two trajectories in Figure 5.9 are members of two fundamentally different

solution branches. For fixed initial angular separation ∆Θ(t0) of the planets, there exist

in general an infinite number of locally optimal P3 solutions but only one or two globally

optimal solution trajectories as illustrated in Figure 5.10. Varying ∆Θ(t0), the minimum-

time P3 trajectory to transfer between arbitrary points on the initial and target orbits

coincides with the corresponding P1 solution; that is, Tmin
P2

= TP1
. In Figure 5.10 the

corresponding P1-type solution is located at Tmin
P3

= 7.01204 and ∆Θ(t0) = 2.67402 rad

with β = 0.16892 according to Table 5.1. Starting at the P1-type solution, the P3 solution

family consists of two solution branches: for decreasing ∆Θ(t0) we find catch-up type

solutions, whereas for increasing ∆Θ(t0) sleep mode turns out to be more time-efficient.

The two branches represent globally optimal solutions for TP3
6 Tmax

P3
= 12.59186, where

the branches intersect (first crossover = Darboux point) and the global optimum switches
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Figure 5.7: Minimum-time Earth-Mars-Earth double orbit transfer trajectory and solar sail

orientation angle history for β = 0.33784.
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Figure 5.8: Minimum-time Earth-Mars-Earth double orbit transfer trajectory and thrust angle

history for τ = 0.16892 and κ = 1.01208.

from sleep- to catch-up-type solution trajectories, and vice versa. Note that the Darboux

point marks solution trajectories for pessimal ∆Θ(t0). A further increase or decrease in

∆Θ(t0) yields locally optimal solutions, with faster, globally optimal solutions readily

apparent. Tracking locally optimal solution branches we find additional crossover points.

Figure 5.11 shows solution trajectories for a solar sail spacecraft with β = 0.33784 at the

second crossover point.

The connection between the two solution families introduced with Figure 5.10 is illus-

trated in Figure 5.12. The middle plot shows the optimal P3 transfer option (bold dashed
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Figure 5.9: Minimum-time Mars-to-Earth rendezvous trajectories at first crossover point for

β = 0.135136.

line) that corresponds to the P1 solution trajectory. For decreasing values of initial an-

gular separation between Mars and Earth catch-type transfers are more time-efficient.

The plot on the left-hand side of Figure 5.12 shows catch-type transfer trajectories for

several initial Mars-Earth constellations. Note that the initial segments of all trajectories

are similar to the optimal P3 transfer (bold dashed line in middle plot). The shape of

the second trajectory segment depends on ∆Θ(t0), the initial angular separation between

Mars and Earth. For small deviations of ∆Θ(t0) from ∆Θopt(t0) the spacecraft performs

a relatively short swing-by maneuver about the Sun. As ∆Θ(t0) decreases, transfer time

increases and the approaches of the spacecraft with Sun become closer; the rendezvous

location of spacecraft and Earth moves anti-clockwise. On the other hand, for increas-

ing values of ∆Θ(t0), the spacecraft is initially “too far ahead” of Earth to perform an

optimal P3 transfer (bold dashed line). The transfer trajectory solutions follow the sleep-

mode branch. The right-hand side plot in Figure 5.12 shows some sleep-mode solutions

for different ∆Θ(t0). For increasing values in initial angular separation between Mars

and Earth, the spacecraft moves further out into space allowing the spacecraft to reduce

its angular velocity appropriately for a rendezvous with Earth. As expected, transfer

time increases for increasing values of ∆Θ(t0).

Figures 5.13 and 5.14 illustrate minimum transfer time as a function of initial angular

separation ∆Θ(t0) for different solar sail spacecraft and nuclear electric spacecraft for

Earth-to-Mars and Mars-to-Earth P3 transfers. Unlike for P1 solutions, symmetries of

the P3 family are less distinct. Nevertheless, minimum Tmin
P3

and maximum Tmax
P3

transfer

times agree for both Earth-to-Mars and Mars-to-Earth P3 solution families for solar sail

spacecraft. Because of non-zero mass flow and the resulting symmetry breaking transfer
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times for Earth-to-Mars and Mars-to-Earth trajectories do not agree in the case of electric

spacecraft.

Comparing the performance of electric spacecraft we find that for comparable thrust

characteristics nuclear-electric spacecraft outperform solar-electric spacecraft, especially

for sleep-mode transfer trajectories. Figure 5.15 shows spacecraft with nuclear propul-

sion systems with τ0 = 0.16892 and τ0 = 0.08846 and for thrust efficiency parameters of

κ = 0.50604 and κ = 1.10208. The solar-electric spacecraft is equipped with a 3 kW (ref-

erence) power source and is comparable to the nuclear spacecraft with τ0 = 0.16892 and

κ = 0.50604. Note the performance improvement for the solar-electric system relative to

the nuclear spacecraft for catch-type solution trajectories. For values of ∆Θ(t0) < −2

transfer times are shorter for the solar-electric spacecraft which is due to the close en-
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and for β = 0.33784.
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Figure 5.12: Trajectory geometry comparison for sleep-type and catch-type solution trajec-

tories for minimum-time Mars-to-Earth rendezvous for a solar sail spacecraft.

counter of the spacecraft with the Sun during the gravity/solar radiation assist increasing

the available electrical power P (r) and therefore also the specific thrust.

5.2 Three-dimensional Analysis

In this section we focus on homotopy methods to solve the minimum-time optimal control

problem. As pointed out in Section 3.2.4 homotopy methods present an effective tech-

nique to solve complex problems by first analyzing a related but simpler problem. In the

following we demonstrate how to compute solution trajectories for solar sail spacecraft
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Figure 5.13: Minimum transfer time for Earth-to-Mars rendezvous comparing solar sail space-

craft (solid-dotted lines) and nuclear-electric spacecraft (solid lines).

using solutions for nuclear-electric spacecraft. In doing so the particular choices of coor-

dinate system to describe the system dynamics prove to be essential. On one hand, the

most “natural” way to describe solar sail spacecraft in three dimensions is to use a frame

of reference based on spherical coordinates. On the other, cartesian coordinates are a

logical choice to formulate the system dynamics of nuclear-electric spacecraft. Therefore,

the approach we take to solve the minimum-time transfer problem for solar sail spacecraft

can be outlined as follows:

(1) Solve the minimum-time transfer problem for nuclear-electric spacecraft described

with cartesian coordinates.

(2) Transform the solution from cartesian coordinates to spherical coordinates.

(3) Use homotopy and the solution of nuclear-electric spacecraft in spherical coordi-

nates to compute corresponding solution trajectories for solar sail spacecraft in

spherical coordinates.
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In the following we formulate the optimal control problem for nuclear-electric spacecraft

in cartesian and spherical coordinates and for solar sail spacecraft in spherical coordinates.

In Section 5.2.4 we set up the homotopy problem and demonstrate the effectiveness of the

approach with a specific example. In the final section we show that the two-dimensional

trade studies discussed in Section 5.1 are in good agreement with results obtained for the

three-dimensional analysis which serves as the justification to use results from the two-

dimensional analysis to study the general physical nature of low-thrust minimum-time

transfers.
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Figure 5.15: Minimum transfer time for Earth-to-Mars rendezvous comparing solar-electric

spacecraft (upward-triangle solid lines) and nuclear-electric spacecraft (solid lines).

5.2.1 Nuclear-electric propulsion systems

As demonstrated in Section 5.1 we nondimensionalize motion equations using the algo-

rithm outlined in Appendix B and derive necessary conditions for optimality. We derive

optimality conditions for a nuclear-electric spacecraft first in cartesian coordinates and

then using a spherical coordinates description.
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NEP system in cartesian coordinates

Motion equations for spacecraft with electric propulsion systems can be written as

ẍ = −µ⊙x

r3
+

T

m
cos αz cos αxy (5.49)

ÿ = −µ⊙y

r3
+

T

m
cos αz sin αxy (5.50)

z̈ = −µ⊙z

r3
+

T

m
sin αz (5.51)

ṁ = −c (5.52)

As shown in Section 5.1.1 we replace the spacecraft mass by the specific thrust as the

state variable to simplify subsequent analysis. The equations of motion can then be

written as a first-order, nondimensional system

ẋ = vx (5.53)

ẏ = vy (5.54)

ż = vz (5.55)

v̇x = − x

r3
+ τ cos αz cos αxy (5.56)

v̇y = − y

r3
+ τ cos αz sin αxy (5.57)

v̇z = − z

r3
+ τ sin αz (5.58)

τ̇ = τ 2κ (5.59)

and the corresponding Hamiltonian results

H = λ1vx + λ2vy + λ3vz + λ7τ
2κ + λ4

(

− x

r3
+ τ cos αz cos αxy

)

+

λ5

(

− y

r3
+ τ cos αz sin αxy

)

+ λ6

(

− z

r3
+ τ sin αz

) (5.60)

The corresponding costate equations are then obtained as λ̇ = −∂H /∂x

λ̇1 = λ4

(

y2 + z2 − 2x2
)

/r5 − 3x(λ5y + λ6z)/r5 (5.61)

λ̇2 = λ5

(

x2 + z2 − 2y2
)

/r5 − 3y(λ4x + λ6z)/r5 (5.62)

λ̇3 = λ6

(

y2 + x2 − 2z2
)

/r5 − 3z(λ4x + λ5y)/r5 (5.63)

λ̇4 = −λ1 (5.64)

λ̇5 = −λ2 (5.65)

λ̇6 = −λ3 (5.66)

λ̇7 = −λ4 cos αz cos αxy − λ5 cos αz sin αxy − λ6 sin αz − 2λ7τκ (5.67)
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The first derivative of the Hamiltonian with respect to αz results

∂H

∂αz

= 0 = −λ4τ sin αz cos αxy − λ5τ sin αz sin αxy + λ6τ cos αz (5.68)

which simplifies to

sin αz

cos αz

=
λ6

λ4 cos αxy + λ5 sin αxy

, with αz ∈ [−π/2, π/2] (5.69)

Accordingly, the second-order derivative of the Hamiltonian with respect to αz can be

written as

∂2H

∂α2
z

= −λ4τ cos αz cos αxy − λ5τ cos αz sin αxy − λ6τ sin αz > 0 (5.70)

or, equivalently

(λ4 cos αxy + λ5 sin αxy) cos αz + λ6 sin αz < 0 (5.71)

substituting for the costates using equation yields to independent constraints in the form

λ6 cos2 αz

sin αz

+ λ6 sin αz =
λ6

sin αz

< 0 → sign(λ6) = −sign(sin αz) (5.72)

and, similarly,

λ4 cos αxy + λ5 sin αxy

cos αz

< 0 → sign(λ4 cos αxy + λ5 sin αxy) = −sign(cos αz) (5.73)

the corresponding control law for αz then results

α⋆
z = atan2

( −λ6

−(λ4 cos αxy + λ5 sin αxy)

)

, with α⋆
z ∈ [−π/2, π/2] (5.74)

For the control angle αxy the first-order derivative of the Hamiltonian results

∂H

∂αxy

= 0 = −λ4τ cos αz sin αxy + λ5τ cos αz cos αxy → sin αxy

cos αxy

=
λ5

λ4

(5.75)

the corresponding second-order derivative is obtained as

∂2H

∂α2
xy

= −λ4τ cos αz cos αxy − λ5τ cos αz sin αxy > 0 (5.76)

As we noted earlier αz ∈ [−π/2, π/2] → cos αz > 0. Using equation (5.75) two

independent constraints for the control angle αxy can be obtained as

sign(λ5) = −sign(sin αxy) and sign(λ4) = −sign(cos αxy) (5.77)

therefore the correct control law for αxy is obtained as

α⋆
xy = atan2

(−λ5

−λ4

)

, with α⋆
xy ∈ [0, 2π) (5.78)

Note that mixed second-order derivatives of the Hamiltonian add no additional informa-

tion.
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NEP system in spherical coordinates

Motion equations for spacecraft with electric propulsion systems can be written using

spherical coordinates as

r̈ = rθ̇2 cos φ2 + rφ̇2 − µ⊙

r2
+

T

m
cos αr (5.79)

θ̈ = −2θ̇ṙ

r
+ 2θ̇φ̇ tan φ +

T

m

sin αr sin αφθ

r cos φ
(5.80)

φ̈ = −2φ̇ṙ

r
− θ̇2 sin φ cos φ +

T

mr
sin αr cos αφθ (5.81)

ṁ = −c (5.82)

Again we replace the spacecraft mass m by the specific thrust τ as the new state variable;

equations (5.79–5.82) can then be rewritten as a first-order, nondimensional system

ṙ = vr (5.83)

θ̇ = vθ (5.84)

φ̇ = vφ (5.85)

v̇r = rv2
θ cos2 φ + rv2

φ − 1

r2
+ τ cos αr (5.86)

v̇θ = −2vθvr

r
+ 2vθvφ tan φ + τ

sin αr sin αφθ

r cos φ
(5.87)

v̇φ = −2vφvr

r
− v2

θ sin φ cos φ +
τ

r
sin αr cos αφθ (5.88)

τ̇ = τ 2κ (5.89)

and the corresponding Hamiltonian results

H = λ1vr + λ2vθ + λ3vφ+

λ4

(

rv2
θ cos2 φ + rv2

φ − 1

r2
+ τ cos αr

)

+

λ5

(

−2vθvr

r
+ 2vθvφ tan φ + τ

sin αr sin αφθ

r cos φ

)

+

λ6

(

−2vφvr

r
− v2

θ sin φ cos φ +
τ

r
sin αr cos αφθ

)

+ λ7τ
2κ

(5.90)



5.2. Three-dimensional Analysis 69

The corresponding costate equations are then obtained as λ̇ = −∂H /∂x

λ̇1 = −λ4

(

v2
θ cos2 φ + v2

φ + 2/r3
)

+ λ5

(−2vθvr

r2
+ τ

sin αr sin αφθ

r2 cos φ

)

+ (5.91)

λ6

(

−2vφvr/r
2 + τ sin αr cos αφθ/r

2
)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(5.92)

λ̇3 = λ4rv
2
θ sin (2φ) − λ5

(

2vθvφ

cos2 φ
+ τ

sin αr sin αφθ sin φ

r cos2 φ

)

+ λ6v
2
θ cos (2φ) (5.93)

λ̇4 = −λ1 + 2λ5vθ/r + 2λ6vφ/r (5.94)

λ̇5 = −λ2 − 2λ4rvθ cos2 φ + 2λ5(vr/r − vφ tan φ) + λ6vθ sin (2φ) (5.95)

λ̇6 = −λ3 − 2λ4rvφ − 2λ5vθ tan φ + 2λ6vr/r (5.96)

λ̇7 = −λ4 cos αr − λ5
sin αr sin αφθ

r cos φ
− λ6 sin αr cos αφθ/r − 2λ7τκ (5.97)

Pontryagin’s necessary conditions yield

∂H

∂αφθ

= 0 = λ5
τ sin αr cos αφθ

r cos φ
− λ6

τ

r
sin αr sin αφθ → sin αφθ

cos αφθ

=
λ5

λ6 cos φ
(5.98)

which can be used to deduce directly the control law for the control angle αφθ. The

second derivative of the Hamiltonian with respect to the clock angle yields

∂2H

∂α2
φθ

= −λ5
τ sin αr sin αφθ

r cos φ
− λ6

τ

r
sin αr cos αφθ > 0 (5.99)

By construction, the cone angle αr > 0, that is, αr ∈ [0, π], and therefore sin αr > 0,

which simplifies condition (5.99) to

λ5
sin αφθ

cos φ
+ λ6 cos αφθ < 0 (5.100)

Substituting for λ5 and λ6 in condition (5.100) using equation (5.98) yields two indepen-

dent constraints on the clock angle:

λ5
sin αφθ

cos φ
+λ5

cos2 αφθ

sin αφθ cos φ
=

λ5

sin αφθ cos φ
< 0 → sign(λ5) = −sign(sin αφθ) (5.101)

since φ ∈ [−π/2, π/2], and accordingly

λ6

cos αφθ

< 0 → sign(λ6) = −sign(cos αφθ) (5.102)
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The correct control law for the clock angle is then obtained from equation (5.98) as

α⋆
φθ = atan2

( −λ5

−λ6 cos φ

)

, with α⋆
φθ ∈ [0, 2π) (5.103)

The first derivative of the Hamiltonian with respect to the cone angle αr results

∂H

∂αr

= 0 = −λ4τ sin αr + λ5
τ cos αr sin αφθ

r cos φ
+ λ6

τ

r
cos αr cos αφθ (5.104)

and therefore
sin αr

cos αr

=
λ5 sin αφθ + λ6r cos αφθ cos φ

λ4r cos φ
(5.105)

which can be used to deduce directly the control law for the control angle αφθ. To

remove quadrant ambiguities we obtain information from the second derivative of the

Hamiltonian with respect to the clock angle

∂2H

∂α2
r

= −λ4τ cos αr − λ5
τ sin αr sin αφθ

r cos φ
− λ6

τ

r
sin αr cos αφθ > 0 (5.106)

With the help of equation (5.105) we can deduce two independent constraints

sin αr > 0 ⇔ αr ∈ [0, π] and sign(λ4) = −sign(cos αr) (5.107)

Note that with conditions (5.100) the numerator on the right-hand side in equation (5.105)

is negative and so the correct control law for the cone angle yields

α⋆
r = atan

(

λ5 sin αφθ + λ6 cos φ cos αφθ

λ4r cos φ

)

, with α⋆
r ∈ [0, π] (5.108)

For completeness we note that mixed second-order derivatives of the Hamiltonian with re-

spect to the control angles ∂2H /(∂αr∂αφθ) = 0 and therefore do not yield any additional

information.

5.2.2 Solar sail spacecraft

Non-dimensional motion equations for solar sail spacecraft can be written as

ṙ = vr (5.109)

θ̇ = vθ (5.110)

φ̇ = vφ (5.111)

v̇r = rv2
θ cos2 φ + rv2

φ − 1

r2
+

β

r2
cos3 αr (5.112)

v̇θ = −2vθvr

r
+ 2vθvφ tan φ +

β

r3

cos2 αr sin αr sin αφθ

cos φ
(5.113)

v̇φ = −2vφvr

r
− v2

θ sin φ cos φ +
β

r3
cos2 αr sin αr cos αφθ (5.114)
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and the corresponding Hamiltonian results

H = λ1vr + λ2vθ + λ3vφ+

λ4

(

rv2
θ cos2 φ + rv2

φ − 1

r2
+

β

r2
cos3 αr

)

+

λ5

(

−2vθvr

r
+ 2vθvφ tan φ +

β

r3

cos2 αr sin αr sin αφθ

cos φ

)

+

λ6

(

−2vφvr

r
− v2

θ sin φ cos φ +
β

r3
cos2 αr sin αr cos αφθ

)

(5.115)

Then the costate equations result

λ̇1 = −λ4

(

v2
θ cos2 φ + v2

φ + 2/r3 − 2β cos3 αr/r
3
)

+

λ5

(−2vθvr

r2
+

3β

r4

cos2 αr sin αr sin αφθ

cos φ

)

+ (5.116)

λ6

(−2vφvr

r2
+

3β

r4
cos2 αr sin αr cos αφθ

)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(5.117)

λ̇3 = λ4rv
2
θ sin (2φ) − λ5

(

2vθvφ

cos2 φ
+

β

r3

cos2 αr sin αr sin αφθ sin φ

r cos2 φ

)

+ λ6v
2
θ cos (2φ)(5.118)

λ̇4 = −λ1 + 2λ5vθ/r + 2λ6vφ/r (5.119)

λ̇5 = −λ2 − 2λ4rvθ cos2 φ + 2λ5(vr/r − vφ tan φ) + λ6vθ sin (2φ) (5.120)

λ̇6 = −λ3 − 2λ4rvφ − 2λ5vθ tan φ + 2λ6vr/r (5.121)

Let us first derive the control law for the clock angle αφθ. The first derivative of the

Hamiltonian with respect to the clock angle results

∂H

∂αφθ

= λ5
β cos2 αr sin αr cos αφθ

r3 cos φ
− λ6

β

r3
cos2 αr sin αr sin αφθ = 0 (5.122)

and therefore
sin αφθ

cos αφθ

=
λ5

λ6 cos φ
(5.123)

which can be used to deduce directly the control law for the control angle αφθ. To remove

quadrant ambiguities we use the second derivative of the Hamiltonian with respect to

the clock angle. Since φ ∈ [−π/2, π/2] the corresponding conditions yield

sign(λ6) = −sign(cos αφθ) and sign(λ5) = −sign(sin αφθ) (5.124)
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Therefore the correct control law for the clock angle can be written as

α⋆
φθ = atan2

( −λ5

−λ6 cos φ

)

, with α⋆
φθ ∈ [0, 2π] (5.125)

A similar analysis yields the control law for the cone angle. It is straightforward to show

that the first derivative of H with respect to αr results

∂H

∂αr

= − 3λ4
β

r2
cos2 αr sin αr+

(

λ5
sin αφθ

cos φ
+ λ6 cos αφθ

)

β

r3

(

cos3 αr − 2 cos αr sin2 αr

)

(5.126)

By dividing through the common factor β cos3 αr/r
2 in equation (5.126) we end up with

a quadratic equation in tanαr which yields

tan α⋆
r = −a ±

√

a2 + 1/2 , where a =
(3/4)λ4r cos φ

λ5 sin αφθ + λ6 cos αφθ cos φ
(5.127)

Rather than using the second-order derivative of the Hamiltonian to choose the correct

sign (±) for the control law, we give physical and geometrical arguments to obtain the cor-

rect control law. Note that irrespective of the sign of a, the plus sign in equation (5.127)

causes tan αr > 0 whereas with the minus sign, tan αr < 0. Since the cone angle is by

definition positive (αr > 0) it follows that αr ∈ [0, π] such that the solar sail normal

vector is uniquely determined with αφθ ∈ [0, 2π]. Therefore, choosing the sign in equa-

tion (5.127) is tantamount to choosing between the first and second quadrant for the cone

angle. From equation (5.112) we see that v̇r(αr) ∝ cos3 αr → sign(v̇r(αr)) = sign(cos αr).

For the case where αr = π, v̇r(αr) < 0 which clearly violates Newton’s 2nd law.10 As a

result, αr ∈ [0, π/2] and the corresponding control law is obtained as

α⋆
r = atan

(

−a +
√

a2 + 1/2
)

, with α⋆
r ∈ [0, π/2] (5.128)

and where

a =
(3/4)λ4r cos φ

λ5 sin αφθ + λ6 cos αφθ cos φ
(5.129)

Having derived the motion equations for nuclear-electric and solar sail spacecraft we now

proceed to discussing coordinate transformations of optimal control solution trajectories.

10 Mutationem motus proportionalem eĄe vi motrici impreĄae, et fieri secundum lineam rectam qua vis illa imprimitur66 – The
alteration of motion is ever proportional to the motive force impressed; and is made in the direction of
the right line in which that force is impressed.
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5.2.3 Coordinate transformation of solution trajectories

Minimum-time solutions for nuclear-electric spacecraft in cartesian coordinates are read-

ily obtained using the optimization algorithm introduced in Chapter 3. In order to be

able to formulate the homotopy problem to solve for solutions for solar sail spacecraft we

need a solution trajectory for nuclear-electric spacecraft in spherical coordinates. In the

following we briefly outline how to use information of the available transfer trajectory

in one coordinate system to obtain a reduced-order optimization problem in the desired

coordinate system.

First note that the relationship between the control angles vectors in cartesian and spher-

ical coordinates is given by (see Figure 4.2)

uspher = C2(−φ)C3(θ)ucart (5.130)

where

uspher =





cos αr

sin αr sin αφθ

sin αr cos αφθ



 and ucart =





cos αz cos αxy

cos αz sin αxy

sin αz



 (5.131)

and where Ci is the single-rotation matrix about the ith axis. For a given set of initial

conditions for the trajectory described in cartesian coordinates we can therefore compute

the corresponding initial control angles αr(t0) and αφθ(t0) using equations (5.130,5.131).

We can then use the expressions for the optimal control angles in equations (5.103,5.108)

to calculate initial conditions for two costates and by doing so reduce the dimensionality

of the resulting optimization problem. For the subsequent analysis we use boundary

conditions and corresponding sets of initial control angles in cartesian and spherical

coordinates for a typical Earth-to-Mars minimum-time transfer as listed in Table 5.2.

For the sake of convenience we restate the optimal control laws for the clock and the cone

angles. The optimal clock angle yields

α⋆
φθ = atan2

( −λ5

−λ6 cos φ

)

, with α⋆
φθ ∈ [0, 2π) (5.132)

The optimal control law for the cone angle results in

α⋆
r = atan

(

λ5 sin αφθ + λ6 cos φ cos αφθ

λ4r cos φ

)

, with α⋆
r ∈ [0, π] (5.133)

We first note that for the data set given in Table 5.2 cosφ(t0) > 0. Therefore λ5(t0) < 0

and λ6(t0) > 0 in control law (5.103) to obtain an initial control angle α⋆
φθ(t0) located in
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Table 5.2: Partial transformation of initial condition of costate vector using control angles.

xcart(t0) xcart(tf ) λcart(t0)
u⋆

cart(t0) =

(α⋆
z, α

⋆
xy)

T

u⋆
spher(t0) =

(α⋆
r , α

⋆
φθ)

T
λspher(t0)



















+1.0000

+0.0167

+0.0000

−0.1965

+1.7967

+1.7534





































+0.8069

−1.2554

−0.0461

+0.6514

+0.5086

−0.0053





































−1.0000

−0.4401

+0.9031

+0.0206

+0.1000

+0.0494



















(

−0.0491

−1.6704

) (

+1.2594

+1.6224

)



















−1.0000

−0.3186

+0.0136

−0.1961

−0.6103

+0.0315



















the second quadrant. Also note that sinα⋆
φθ(t0) > 0 and cos α⋆

φθ(t0) < 0 which renders

the numerator in equation (5.108) to be negative. As a result we need the denominator

to be negative to obtain an angle in the first quadrant; thus λ4(t0) < 0. With scaling

freedom we can therefore choose λ5(t0) = −1 and use equation (5.103) to compute λ6(t0).

The costate λ4(t0) is then readily available using equation (5.108). Note that we have

normalized the resulting costate vector λspher(t0) to match the normalization used for the

corresponding costate vector in cartesian coordinates λcart(t0).

We note that the reduction in dimensionality of the optimization problem significantly

simplifies the solution finding process. Nevertheless, a more in-depth study of trans-

formation theory would be worthwhile and could potentially result in a theory for the

algebraic transformation of the entire costate vector.

5.2.4 Defining a homotopy problem

In the previous section we demonstrated how to compute solution trajectories for a

nuclear-electric spacecraft in spherical coordinates using the corresponding solution in

cartesian coordinates. We can now use this solution to define a homotopy problem and

solve for minimum-time trajectories for a solar sail spacecraft.

For the sake of discussion we introduce some notation to distinguish between different

sets of motion equations. Let

ẋ = fγ(x, t) , Ψγ(x(t0),x(tf ), t0, tf ) = 0 (5.134)
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where

x =

(

x

λ

)

, and fγ(x, t) =

(

fγ(x,λ,u⋆
γ , t)

gγ(x,λ,u⋆
γ , t)

)

(5.135)

define the state and costate differential equations of a solar sail spacecraft and let

Ψγ(x(t0), t0, tf ) = Ψγ(x(t0),x(tf ), t0, tf ) (5.136)

describe the given boundary conditions. Similarly, we use the subscript τ to denote a

nuclear-electric spacecraft system model, that is:

ẋ = fτ (x, t) , Ψτ (x(t0),x(tf ), t0, tf ) = 0 (5.137)

An appropriate homotopy problem is then defined by setting

h(x, σ, t) , ẋh = fτ (x, t) + σ
(

fγ(x, t) − fτ (x, t)
)

, Ψh = Ψτ ≡ Ψγ (5.138)

Note that by setting σ = 0 the homotopy problem degenerates to the problem with the

known solution, whereas for σ = 1 the homotopy problem reduces to the problem with

the desired solution. Also note that the boundary conditions are fixed.

Figure 5.16 shows the result of a homotopy problem computing a minimum-time tra-

jectory for a solar sail spacecraft by using the corresponding solution trajectory of a

nuclear-electric spacecraft. Figure 5.17 illustrates the development of the continuation

parameter as a function of iteration step for the homotopy problem shown in Figure 5.16.

We employed a variable step size algorithm for the continuation parameter that gener-

ates a near-optimal sequence of σi with guaranteed, rapid convergence. For the homotopy

problem shown in Figure 5.16 the algorithm converged within 25 iteration steps with typ-

ically less than four iterations necessary to solve the individual homotopy sub-problems

for each σi.

5.2.5 Results and propulsion system performance comparison

We employ classical orbital elements on the user side of the optimization code to define

boundary conditions. Appropriate mappings (Appendix C) transform the boundary con-

ditions into a cartesian (spherical) coordinate description to integrate motion equations.

Figure 5.18 shows a sequence of three-dimensional minimum-time Earth-to-Mars ren-

dezvous for a nuclear-electric spacecraft with κ = 0.50604 and initial thrust of τ0 =

0.16892 using J2000 data and varying initial true anomaly offsets of Mars ∆Θm as mea-

sured from the J2000 reference location. Note that we use a different scale for the z-axes
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Figure 5.16: Earth-to-Mars transfer trajectory and control angle histories for a solar sail

spacecraft obtained from the corresponding transfer solution of a nuclear-electric spacecraft

and using homotopy.
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to better visualize the geometry of transfers. Analogous to transfers in two dimensions

we identify catch-mode and sleep-mode solution trajectories. Minimum transfer time

as a function of initial true anomaly offset of Mars ∆Θm as measured from the J2000

reference location is illustrated in Figure 5.19 for κ = 0.50604 and for τ0 = 0.16892 and

τ0 = 0.33784, respectively. Similar to the trade studies discussed in Section 5.1.5 we

identify the two solution branches that correspond to catch-mode and sleep-mode solu-

tion trajectories. The figure also shows that the two-dimensional analysis for coplanar,

circular planetary orbits compares well to the general three-dimensional analysis. In fact,

the solid line representing 2D minimum-time transfers lies “close” to the corresponding

curve (downward-triangle solid line) for a wide range of initial true anomaly differences.

Therefore, trade studies presented in Section 5.1.5 can indeed be used to analyze the

general minimum-time transfer problem, at least for “small” values in eccentricity and

inclination of initial and target planet orbits (as is the case, for example, for Earth and

Mars orbits).

5.3 Summary

In this chapter we have analyzed the minimum-time transfer problem of low-thrust space-

craft in two and three dimensions. We have demonstrated how to implement symmetry

and homotopy methods to efficiently generate optimal control solutions. In the follow-

ing chapter we discuss various extensions to the system models used in this chapter by

employing a rigid-body representation for the spacecraft.
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Figure 5.18: 3D Minimum-time Earth-to-Mars rendezvous for κ = 0.50604 and initial thrust

of τ0 = 0.16892 for varying initial Earth-Mars constellations.
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Chapter 6
Work in Progress and Future

Challenges

This chapter documents current research efforts and lays out the framework for future

work in the field of low-thrust minimum-time trajectory optimization. In Chapter 5

we have discussed optimal control problems based on the Two-Body system of Sun and

spacecraft and modeling both bodies as point masses. The first part of this chapter is

devoted to analyzing the minimum-time transfer problem using a more complex system

description by taking into account the attitude dynamics of the spacecraft. We discuss

spacecraft design aspects of both solar sail and nuclear-electric spacecraft in Section 6.2

and derive optimality conditions for both system models in Section 6.4 and Section 6.5,

respectively. We show exemplary simulation results for both spacecraft systems and

briefly outline potential directions for future work.

6.1 Integrating Satellite Attitude Dynamics

In Chapter 5 we analyzed optimal control problems modeling the Sun and spacecraft as

point masses. Considering the distance scales involved for interplanetary transfers the

point mass assumption is well-justified. Nevertheless, from an engineering perspective

the following questions are of interest:

(1) What are feasible approaches to practically control the attitude of solar sail space-

craft?

80
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(2) Of all feasible approaches what is the best way to implement a control system

that could potentially achieve control angle profiles similar to those obtained via

optimal control analysis in Chapter 5?

(3) Is thrust vectoring a feasible approach to perform interplanetary minimum-time

transfers for continuous low-thrust electric spacecraft?

Answering these questions requires the analyses of more complex system models employ-

ing, for example, rigid-body representations for spacecraft. In this section we introduce

several spacecraft design and control concepts for solar sail and electric spacecraft and

discuss implications on optimal control analysis.

6.2 Control system design considerations

One of the most important aspects of formulating an optimal control problem is choosing

a particular set of control variables. An imprudent decision in that respect can lead overly

complicated and even ill-posed problem statements.

For electric spacecraft thrust vectoring presents a feasible control strategy that offers

significant operational and analytical benefits over other control concepts. First, only

a single thruster is required (in theory at least) for both attitude and orbital control

reducing the system complexity to a minimum. Second, assuming constant, continuous

thrust the thrust vector angle is the effective control variable of the system. With this

particular choice of control variable one avoids a bang-type control structure and all its

complications, e.g. controllability issues. On the other hand other control strategies

might provide more control authority and could potentially reduce overall propellant

usage. Nevertheless, we employ the thrust vectoring control concept to analyze the

coupled attitude-orbital dynamics optimization problem of electric spacecraft.

Figure 6.1 illustrates several feasible control system designs for solar sail spacecraft.

Probably the most straightforward way to control the attitude of the spacecraft is to

apply a control torque gu about the center of mass . Applying a control force fu

instead slightly complicates the analysis since the force appears in the orbital equations,

as well. However, note that in both cases the control variable appears linearly in the

motion equations, which leads to bang-type control laws which in turn could potentially

render the system uncontrollable for a plain minimum-time control problem. Using a

combination of control force and torque or the implementation of symmetrically placed

control vanes at the solar sail tips with control force f1 and f2 are possible ways to resolve
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Figure 6.1: Spacecraft control system design comparison.

uncontrollability issues. One way to avoid the use of thrusters is to take advantage of the

solar radiation pressure via control panels and choosing as the control variables the panel

deflection angles ζ1 and ζ2. The major drawback of this design probably concerns the

structural integrity of the spacecraft. Furthermore, the achievable control torques are not

only rather small but are also a function of the distance of the spacecraft from the Sun. An

elegant approach to control the attitude of the spacecraft considers control masses which

are displaced symmetrically from the center of mass by a distance du(t). Note that the

moments of inertia I1(du(t)) = I2(du(t)) are functions of the control mass displacement

and the gravity gradient torque is gG ∝ (I1(du(t)) − I3). Therefore, to be efficiently

controllable the spacecraft would have to be designed about an inertially symmetric

operating point dref such that an increase (decrease) of du(t) results a negative (positive)

torque gG for a corresponding fixed orientation angle. Similar to the control panel concept

the control mass approach suffers from a strongly varying control effectiveness (∝ 1/r3).

Also the structural maturity of the design is a major concern not to mention the increased

spacecraft mass.

6.3 System models and motion equations

We consider a symmetric spacecraft system as illustrated in Figure 6.2. For solar sail

spacecraft the payload is modelled as a point mass mp connected rigidly to a perfectly

flat and reflective square sail of mass ms and surface area A. We define the body-

fixed reference frame {bx, by} with the bx axis identifying the system symmetry axis

and passing through the spacecraft system barycenter and the center of pressure of



6.3. System models and motion equations 83

ex,�

ey

E
bx

Bby

bx

by

r

r = (r, θ)T

S

γs, (γa, γd)
ms, A

mp

fu

gu

dcm

νr νr
αν

m(t)

dcm

T

Sail

Structure

Sun

Initial orbit/planet
(circular, coplanar)

Target orbit/planet
(circular, coplanar)

Solar
flux
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the solar sail. The distance between center of mass and center of pressure is ds. The

sail orientation angle νr is defined as the angle between the sail normal (= bx) and the

solar flux direction S. A positive angle rotates the bx anti-clockwise into S. The sail

orientation angle is controlled via a control force fu – or equivalently – the corresponding

control torque gu. For convenience, we define S⊥ as the unit vector orthogonal to S such

that S⊥ and by are aligned for νr = 0. The environmental forces and torques acting on

the spacecraft system are due to the gravitational field and the solar radiation of the

Sun. Electric spacecraft are controlled via thrust vectoring with a constant thrust force

T and variable thrust vector control angle αν . Note that by appropriately changing αν

both the spacecraft orientation angle νr and the the spacecraft position r = (r, θ)T can

be controlled.

Both system models are described using polar coordinates. The initial and target space-

craft trajectories are modelled as heliocentric, circular, and coplanar orbits. We define

the generalized coordinate vector as r , (r, θ, νr)
T and the corresponding velocity vector

as v , (vr, vθ, ω)T where vr = ṙ and vθ = rθ̇. The angular rate of the spacecraft is defined

as ω , ν̇r.

The motion equations for a solar sail spacecraft are then readily obtained by using the
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equations of motion presented in Section 5.1.3 and attaching a set of differential equations

describing the attitude dynamics of the system. In other words, let

ν̃ ′
r = ω̃ (6.1)

ω̃′ =
[

−3µ̃⊙

(

Ĩ1 − Ĩ3

)

cos ν̃r sin ν̃r/r̃
3 + g̃γ + g̃u

]

/Ĩ2 (6.2)

where the moments of inertia Ĩi are given by

Ĩ1 = Ĩ2 = m̃sÃ/12 + m̃sd̃
2
s + m̃pd̃

2
cm and Ĩ3 = m̃sÃ/6 (6.3)

with an overall spacecraft mass of m̃ = m̃s + m̃p. The first term on the right-hand side of

equation (6.2) is the gravity gradient torque as derived in Hughes and McInnes38. The

second and third terms in equation (6.2) account for the solar radiation torque and the

control torque. By following the procedure outlined in Appendix B we end up with a set

of nondimensional motion equations in the form

ṙ = vr (6.4)

θ̇ = vθ/r (6.5)

v̇r = v2
θ/r − 1/r2 + β cos3 νr/r

2 (6.6)

v̇θ = −vrvθ/r + β sin νr cos2 νr/r
2 (6.7)

ν̇r = ω (6.8)

ω̇ = ς cos νr sin νr/r
3 + gu (6.9)

where ς is the gravity gradient form factor and ς̃ = −3µ̃⊙

(

Ĩ1 − Ĩ3

)

/Ĩ2. Also note that for

a perfectly reflective solar sail γs = 1 and therefore gγ = 0.

The motion equations for a nuclear-electric spacecraft can be derived in a similar manner

using the analysis from Section 5.1.1. However, we assume that unlike for solar sail

spacecraft the dimensions of the electric spacecraft are truly “small”. As a result we

neglect the influence of the gravity gradient torque gG. The nondimensional motion

equations for the spacecraft then result in

ṙ = vr (6.10)

θ̇ = vθ/r (6.11)

v̇r = v2
θ/r − 1/r2 + τ cos(νr + αν) (6.12)

v̇θ = −vrvθ/r + τ sin(νr + αν) (6.13)

τ̇ = τ 2κ (6.14)

ν̇r = ω (6.15)

ω̇ = −ϕ sin αν (6.16)
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In equation (6.16) we have introduced the specific thrust vector torque ϕ = dcmT/I with

I denoting the moment of inertia about the spacecraft center of mass. Note that for both

system models the angle θ is an ignorable coordinate and can therefore be eliminated

from the analysis. The normalized boundary conditions describing the orbital dynamics

for solar sail spacecraft (6.4–6.7) and nuclear-electric spacecraft (6.10–6.13) are

r(t0) = 1 θ(t0) = free vr(t0) = 0 vθ(t0) = 1 (6.17)

r(tf ) = rf θ(tf ) = free vr(tf ) = 0 vθ(tf ) = 1/
√

rf (6.18)

Boundary conditions for the differential equations defining the attitude dynamics result

in

νr(t0) = π/2 ω(t0) = 0

νr(tf ) = π/2 ω(tf ) = 0
or

νr(t0) = νopt
0 ω(t0) = 0

νr(tf ) = νopt
f / free ω(tf ) = 0 / free

(6.19)

Additionally we have boundary conditions on the initial and final specific thrust τ for

nuclear-electric spacecraft

τ(t0) = τ0 and τ(tf ) = free (6.20)

The first set of boundary conditions in equation (6.19) seems to be a natural way to set

up the optimal control problem for a transfer between coplanar circular orbits. However,

a different set of boundary conditions might provide more valuable information when

comparing the transfer characteristics of the spacecraft for the two cases when attitude

dynamics is taken into account and when only the orbital problem is considered. That

is, using the optimal initial and terminal control angles νopt
0 and νopt

f as obtained from

the orbital control problem offers a fair approach to determine the effect of the attitude

dynamics on, for example, the minimum transfer time. Alternatively, it might prove

advantageous not to prescribe the final orientation angle and/or angular velocity. A

matter of common knowledge, complex performance indices significantly complicate the

numerical analysis and therefore we choose as the constraint at t = tf

ψ (x(tf ), tf ) =
(

r(tf ) − rf , vr(tf ), vθ(tf ) − 1/
√

rf

)T
= 0 (6.21)

and allow νr(tf ) and ω(tf ) to vary freely. In the next section we formulate the optimal

control problem for solar sail and nuclear-electric spacecraft.

6.4 Optimal control analysis for solar sail spacecraft

In the following we present the optimality conditions for a system model assuming a

rigid body representation for the solar sail spacecraft. To simplify the numerical analysis
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a control torque gu rather than a control force fu is chosen as the control input. As

pointed out previously we are only interested in the case where γs = 1, that is, the

perfectly reflective solar sail.

6.4.1 Spacecraft design parameters

The control performance of solar sail spacecraft depends critically on the specific design

parameters. An important design criteria and also the most common performance metric

is the characteristic acceleration β̃. To simplify the design process for our analysis we

adopt the one-third rule as used in McInnes61 allocating one-third of the total system

mass to the payload. We further assume that the remaining two-thirds of the spacecraft

mass (solar sail, sail structures, deployment mechanism) are evenly distributed over the

sail surface. With these assumptions the characteristic acceleration yields

β̃ =
2Ãp̃γ

m̃
=

2p̃γ

3ρ̃
or, given β̃ : ρ̃ =

2p̃γ

3β̃
(6.22)

where ρ̃ is the mass density of the solar sail. For a payload mass of m̃p = 50 kg (m̃ =

3m̃p = 150 kg) and for typical characteristic accelerations of β̃ = 1 mm/s2 and 2 mm/s2

the required sail mass densities result ρ̃ = 3.042 g/m2 and 1.5241 g/m2 which is technically

feasible according to McInnes.61 Table 6.1 summarizes the spacecraft design parameters

for a 150 kg spacecraft and a square solar sail with surface area Ã = ã2.

The design parameter ς in equation (6.9) controls the geometry of the spacecraft system

and therefore the sign of the gravity gradient torque for a fixed orientation angle. With

the one-third/two-thirds mass allocation between the payload and the solar sail and

denoting d as the payload-sail distance the dimensions of the spacecraft result d̃s =

d̃/3, d̃cm = 2d̃/3, the moments of inertia become

Ĩ1 = Ĩ2 = 2m̃Ã/36 + 2m̃d̃ 2/27 + 4m̃d̃ 2/27 = m̃Ã/18 + 2m̃d̃ 2/9 , Ĩ3 = m̃sÃ/9 (6.23)

which yields for ς

ς = −3
Ĩ1 − Ĩ3

Ĩ2

= −3
4d̃ 2 − Ã

4d̃ 2 + Ã
, ς ∈ (ςmin, ςmax ] = (−3, +3 ] (6.24)

For ς < 0 the symmetry axis is the minor axis and the gravity gradient torque is stabilizing

for attitudes with νr = nπ, n ∈ Z. The case of ς = 0 corresponds to inertially symmetric

spacecraft where Ĩi = Ĩ , i = 1, 2, 3; the gravity gradient torque is equal to zero. To
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Table 6.1: Spacecraft design parameters for a 50 kg payload and a square solar sail.

β̃ in mm/s2 β nondimensional ρ̃ in g/m2 Ã in m2 ã in m

1.00000 0.16892 3.04200 16,436.5 128.205

2.00000 0.33784 1.52100 32,873.1 181.309

take into account the effect of the gravity gradient torque on the control performance we

choose ςref = +1 as the reference value. Having analyzed design parameters for the solar

sail spacecraft model we now proceed to derive optimality conditions for the spacecraft

system.

6.4.2 Optimality conditions

With motion equations (6.4–6.9) the system Hamiltonian results in

H = λ1vr + λ2vθ+

λ3

(

v2
θ

r
− 1

r2
+

β

r2
cos3 νr

)

+ λ4

(

−vrvθ

r
+

β

r2
cos2 νr sin νr

)

+

λ5ω + λ6

(

ς sin νr cos νr/r
3 + gu

) [

+εg2
u

]

(6.25)

Note that in equation (6.25) we have formulated two different minimization problems.

The term in square brackets in the Hamiltonian generalizes the “pure” minimum-time

problem to a minimum-time minimum-cost control problem. The weighing constant ε

allows one to penalize excessive control cost relative to increased transfer time. Also,

by choosing ε ≪ 1 the minimum-time problem can easily be recovered. As a matter

of fact, the bang-type control we obtain for the “pure” minimum-time problem renders

the spacecraft uncontrollable. Therefore, the minimum-time problem can only be solved

using the more general approach choosing ε appropriately.

Differentiating the system Hamiltonian with respect to the state vector we obtain for the
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costate equations

λ̇1 = λ3

(

2β cos3 νr/r
3 + v2

θ/r
2 − 2/r3

)

+ λ4

(

2β sin νr cos2 νr/r
3 − vrvθ/r

2
)

(6.26)

+λ6

(

3ς cos νr sin νr/r
4
)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(6.27)

λ̇3 = −λ1 + λ4vθ/r (6.28)

λ̇4 = −2λ3vθ/r + λ4vr/r (6.29)

λ̇5 = 3λ3β sin νr cos2 νr/r
2 − λ4β

(

3 cos3 νr − 2 cos νr

)

/r2 − λ6ς cos 2νr/r
3 (6.30)

λ̇6 = −λ5 (6.31)

Omitting the control cost term the control torque appears only linearly in the Hamiltonian

and Pontryagin’s Minimum Principle yields a bang-type structure for the optimal control

law and logic

g⋆
u =











gmin
u if λ6 < 0

gmax
u if λ6 > 0

singular if λ6 = 0

Standard minimum-time problem (6.32)

On the other hand, for the combined minimum-time minimum control cost problem the

optimal control law results

g⋆
u = −λ6/(2ε) Minimum-time minimum-cost problem (6.33)

which is considerably less complex than the control law (6.32).

Note that the optimal control law for the standard minimum-time problem (6.32) implies

the possible existence of singular control arcs. In the following section we perform singular

control arc analysis for the problem at hand.

6.4.3 Singular control arc analysis

The switching function S is defined as

S ,
∂H

∂u
≡ ∂H

∂gu

(6.34)

Using the control logic (6.32) the control is singular whenever S ≡ 0 during a finite

time interval. For a singular control arc, gu is determined by successive differentiation
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of the switching function until the control variable appears explicitly. Furthermore, it is

required that S be differentiated an even number of times for gu to be optimal.8 Hence

g⊛
u = arg

{(

d2jS

dt2j

)

= 0

}

, j ∈ N (6.35)

where we used the superscript notation 2⊛ to denote the singular optimal control arc.

In addition, Kelley’s optimality condition8 has to be satisfied along an optimal singular

subarc; that is,

(−1)j ∂

∂gu

(

d2jS

dt2j

)

> 0 (6.36)

The first time derivative of the switching function yields Ṡ = λ̇6 = −λ5 ≡ 0. It is also

straightforward to show that the second time derivative results

S̈ ≡ S (2) = 0 → [λ4(3 cos(2νr) − 1) − 3λ3 sin(2νr)] cos νr = 0 (6.37)

At this point the algebra becomes increasingly involved. Setting the third time derivative

of the switching function equal to zero, S (3) = 0, we find

− 12λ1r cos ν2
r sin νr

+ λ3(3ωr + 2vθ)[cos νr + 3 cos(3νr)]

+ λ4{ωr[sin νr + 9 sin(3νr)] + 2 cos νr[vr − 3vr cos(2νr) + 3vθ sin(2νr)]} = 0

(6.38)

Finally, taking the fourth time derivative of S and setting the resulting expression

equal to zero the control variable appears linearly (first term in the third line in equa-

tion (6.39)):

− 8λ1r
2 cos νr{6ωr[3 cos(2νr) − 1] + 3vr sin(2νr) + 2vθ[3 cos(2νr) − 1]}

+ 4λ3

{

2 cos ν2
r sin νr[12 − 3ς − 8β cos νr + 9ς cos(2νr)]

+ 3r3{gu[cos νr + 3 cos(3νr)] − ω2[sin νr + 9 sin(3νr)]} − 36rv2
θ cos ν2

r sin νr

+ ωr2{3vr[cos νr + 3 cos(3νr)] − 4vθ[sin νr + 9 sin(3νr)]}
}

+ λ4

{

−2 cos νr[4 − ς + 6β cos νr − 4(3 + 2ς) cos(2νr) + 2β cos(3νr)

+ 9ς cos(4νr)] + 4ω2r3[cos νr + 27 cos(3νr)] + 4gur
3[sin νr + 9 sin(3νr)]

+ 12ωr2{vr[sin νr + 9 sin(3νr)] + 2vθ[cos νr + 3 cos(3νr)]}
− 8r cos νr{v2

r [3 cos(2νr) − 1] − 3vrvθ sin(2νr) + v2
θ [1 − 3 cos(2νr)]}

}

= 0

(6.39)
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Therefore, solving equation (6.39) for gu → g⊛
u and using equations (6.37,6.38) the opti-

mal singular control g⊛
u is of fourth order and is given by

g⊛
u =

{

36ω2r3[3 − 12 cos(2νr) + cos(4νr)]

− 3 sin(2νr)
2{13β cos νr + 3[6 − 6ς + 2(ς − 9) cos(2νr) + 5β cos(3νr)]}

+ 8rv2
θ [19 − 36 cos(2νr) + 9 cos(4νr)]

− 72ωr2[cos(2νr) − 3][vr sin(2νr) + vθ − 3vθ cos(2νr)]
}

/
{

36r3 cos νr[−7 sin νr + sin(3νr)]
}

= 0

(6.40)

Note, that the optimal control on a singular control arc does not depend on any of the

costates. Also, for orientation angles of νr = nπ/2, n ∈ Z the singular control law

becomes, again, undefined.

6.5 Optimal control analysis for nuclear-electric space-

craft

With equations of motions (6.10–6.16) the system Hamiltonian is readily available. The

costate differential equations are then given by

λ̇1 = −λ2vθ/r
2 + λ3

(

−2/r3 + v2
θ/r

2
)

+ λ4

(

−vrvθ/r
2
)

(6.41)

λ2 = const.

{

= 0 iff θ(tf ) = free

6= 0 iff θ(tf ) = θf
(6.42)

λ̇3 = −λ1 + λ4vθ/r (6.43)

λ̇4 = −λ2/r − 2λ3vθ/r + λ4vr/r (6.44)

λ̇5 = −λ3 cos(νr + αν) − λ4 sin(νr + αν) − 2λ5τκ (6.45)

λ̇6 = λ3τ sin(νr + αν) − λ4τ cos(νr + αν) (6.46)

λ̇7 = −λ6 (6.47)

To obtain the optimal control angle we set the first derivative of the Hamiltonina equal

to zero, that is

∂H

∂αν

= −λ3τ sin(νr + αν) + λ4τ cos(νr + αν) − λ6ϕ cos αν = 0 (6.48)

After performing some trivial algebraic manipulations we find for the optimal thrust

vector angle
sin α⋆

ν

cos α⋆
ν

=
−λ3 sin νr + λ4 cos νr − λ6ϕ/τ

λ3 cos νr + λ4 sin νr

(6.49)
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To remove sign and quadrant ambiguities associated with the tangent function we com-

pute the second derivative of the Hamiltonian

∂2H

∂α2
ν

= −λ3τ cos(νr + αν) − λ4τ sin(νr + αν) + λ6 sin αν > 0 (6.50)

Following a similar line of argumentation as used in Chapter 5 we finally obtain the

correct optimal thrust vector angle in the form

α⋆
ν = atan2

(

+λ3 sin νr − λ4 cos νr + λ6ϕ/τ

−λ3 cos νr − λ4 sin νr

)

with α⋆
ν ∈ [0, 2π) (6.51)

Note that α⋆
ν ∈ [0, 2π) since we have not constrained the thrust vector angle. In prac-

tice and in particular when using only a single thruster achievable thrust vector angles

are constrained to lie in an interval α⋆
ν ∈ [αmin

ν , αmax
ν ] with typical upper bounds of

abs(αmin
ν ) < π/2 and abs(αmax

ν ) < π/2. Preliminary optimal control simulation results

for constrained thrust vector angles show extremely poor convergence characteristics

which we attribute to limited control authority. However, a more in-depth analysis is

necessary to achieve a thorough understanding of the constrained thrust vector angle

optimal control problem.

6.6 Simulation results

We obtained optimized solution trajectories for both solar sail spacecraft and nuclear-

electric spacecraft with trajectory endpoint accuracies of ‖ψ (x(tf ), tf ) ‖ < 10−6 which

corresponds to a mismatch, for example, in radial distance in the order of some tens of

kilometers. Figures 6.3 and 6.4 show a typical simulation result for an Earth-to-Mars

transfer for a solar sail spacecraft with high characteristic acceleration. Note that since

ε = 1 we consider a mixed minimum-time minimum-cost control problem, which yields

an increased transfer time of T = 6.83254 as compared to T = 5.57134 for the minimum-

time problem obtained using the system model and analysis in Chapter 5. The difference

in transfer time corresponds to approximately 73.32 days. Also note that since the final

orientation angle and angular velocity are allowed to vary freely the spacecraft is rotating

after completing the transfer. Comparing Figure 6.3 with the corresponding figure in the

previous chapter (Figure 5.3) we observe a different system behavior, which comes as

no surprise since with ε = 1 we do not solve a true minimum-time problem. Figure 6.4

shows Lagrange multipliers, angular velocity, and control torque as functions of time for

the transfer illustrated in Figure 6.3. We first note the large magnitudes in λ1 and λ4

when compared to the remaining Lagrange multipliers.
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Figure 6.3: Transfer trajectory and solar sail orientation angle history for an Earth-to-Mars

transfer. Simulation parameters are β = 0.33784, ς = 1, and ε = 1.

Figure 6.5 illustrates a minimum-time Earth-to-Mars transfer for a nuclear-electric space-

craft with τ0 = 0.16892, κ = 0.50604, and ϕ = 1, which corresponds to the simulation

result shown in Figure 5.4. We first note a significant difference in transfer time. The

transfer computed in Chapter 5 takes T = 3.041 TU; the transfer time for the current

system model increases by more than 30% to T = 3.981 TU. The increase in transfer

time can be explained with the relatively small value of ϕ = 1 for the specific thrust

vector torque which is also reflected by the modest steering angle deflection; the space-

craft steering angle more or less points in the direction of the velocity vector at all times

(|νr(t)| < 17◦). In other words, the control force (or equivalently torque) in the present

case is too small to cause substantial spacecraft rotation required to achieve a solution

trajectory comparable to the one in Figure 5.4. Attempts to compute solution trajecto-

ries for significantly increased values of ϕ were not successful because of the sensitivity

of the system with respect to variations in ϕ.

6.7 Summary and conclusions

The minimum-time transfer problem of solar sail and nuclear-electric spacecraft has been

studied using a rigid-body representation to model the spacecraft. Even though the

system models analyzed in Chapter 5 do provide an in-depth understanding of the physics

of the minimum-time transfer problem more complex system descriptions are required to

investigate engineering aspects of rotating spacecraft systems.
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Figure 6.4: Lagrange multipliers λi, nondimensional angular velocity ω and control torque gu

as a function of time for an Earth-to-Mars transfer. Simulation parameters are β = 0.33784,

ς = 1 and ε = 1.
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Figure 6.5: Transfer trajectory and thrust vector angle history for an Earth-to-Mars transfer

for a nuclear-electric spacecraft with τ0 = 0.16892, κ = 0.50604, and ϕ = 1.
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Several questions remain unanswered: Using a control torque the minimum-time problem

for solar sail spacecraft results a bang-type control law which we believe renders the

system uncontrollable. Also, simulation results indicate that singular control arcs are

rare which leaves for the control law plain square-wave functions, which in turn raises the

following question: Under which circumstances does a certain type of control law/logic

render a system uncontrollable from an optimal control perspective? Another interesting

question in that respect is: What can be said about the existence of singular control arcs

for the case when the control on such a subarc does not depend on any of the costates

but is a function of (some of) the states only?

Clearly the analysis presented in this chapter is far from being complete. Future work

will include the verification of simulation results using available optimization tools such

as EZopt86 and DIDO.82 Both software packages have been used successfully by several

researchers to solve a variety of optimal control problems. EZopt and DIDO solve optimiza-

tion problems using a direct method, nevertheless, one of the most important features of

DIDO is its capability to provide estimates for the Lagrange multipliers.20

In addition, further analysis is necessary to investigate the influence of the spacecraft

geometry (parameter ς) and the control parameter ε on optimal transfer time and control

torque. For example for the solar sail spacecraft analysis and for small ε it should be

possible to recover the control angle histories for the reduced system model which does

not include spacecraft attitude dynamics.



Chapter 7
Summary and Conclusions

We study the minimum-time optimal control problem of low-thrust spacecraft for inter-

planetary missions. The primary objective of this research effort is to implement and

validate an efficient optimization algorithm based on numerical and analytical methods.

The secondary research objective is to apply the optimization algorithm to the minimum-

time transfer problem of spacecraft using different types of low-thrust propulsion tech-

nologies and to compare their performance with interplanetary mission scenarios. We

consider nuclear-electric, solar-electric and solar sail spacecraft systems.

We employ unperturbed two-body system models of Sun and spacecraft neglecting the

presence of other celestial bodies and other perturbative effects. The Sun is modeled

as a point mass with spherically symmetric gravitation and solar radiation fields. Solar

sail spacecraft are modelled as perfectly flat and perfectly reflective sails and are treated

dynamically as point masses. Spacecraft with nuclear or solar electric propulsion systems

are modeled as point masses with variable mass. Solar flux and available solar power are

functions of the distance of the spacecraft from the Sun. The equations of motion for

all spacecraft system models are described with respect to an inertial reference frame.

For two-dimensional analysis we use polar coordinates with, and cartesian and spherical

coordinates for three-dimensional system models.

The optimization problem is solved using an indirect method. The cascaded compu-

tational scheme is divided into three distinct optimization levels. On the first level a

global statistical algorithm based on Adaptive Simulated Annealing is used to find an

approximate guess for the Lagrange multipliers and the transfer time. The optimization

parameters are then refined in the second level via local optimization methods using

95
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Quasi-Newton and Newton methods. The third optimization level is formed by sym-

metry and homotopy methods. The key idea behind and novelty of the optimization

algorithm is that a global optimization problem needs to be solved only for a single

mission scenario, that is, for an arbitrary spacecraft system model and a given set of

boundary conditions. Once an optimized trajectory has been obtained, we only use sys-

tem symmetry and homotopy methods to generate additional optimal control solutions.

These additional solution trajectories are not restricted to a particular type of spacecraft

system model and can be obtained for arbitrary sets of boundary conditions of the states.

The composite algorithm proves extremely efficient in finding highly accurate solutions

to the minimum-time control problem.

We obtain optimal trajectories for several interrelated problem families that are described

as Multi-Point Boundary Value Problems. We present and prove two theorems describ-

ing system symmetries for solar sail spacecraft and discuss symmetry properties and

symmetry breaking for electric spacecraft systems models. We demonstrate how these

symmetry properties can be used to significantly simplify the solution-finding process.

For the minimum-time transfer between two planetary orbits with subsequent return

transfer, only a Two-Point Boundary Value Problem has to be solved when using sym-

metry as opposed to the associated Three-Point Boundary Value Problem. Another

system symmetry allows for efficient computation of solution trajectories by replacing

a two-parameter continuation problem by a corresponding one-parameter continuation

problem.

For fixed initial angular separation of the planets, we show that there exist in general an

infinite number of locally optimal solutions but only one or two globally optimal solution

trajectories. For both the two-dimensional and three-dimensional analysis these globally

optimal solution trajectory are members of two distinctively different solution families.

We show that two solution branches corresponding to the two solution families emanate

from a common solution trajectory, the minimum-time orbit transfer trajectory. For

decreasing values in initial angular separation between initial and target planet we find

what we refer to as catch-up type trajectories, whereas for increasing values in initial

angular separation so-called sleep-mode transfer solutions turn out to be more time-

efficient. The two branches intersect an infinite number of times and in particular at

the first crossover point, where the global optimum switches from sleep- to catch-up-type

solution trajectories, and vice versa. A further increase or decrease in initial angular

separation between origin and target objects yields locally optimal solutions, with faster,

globally optimal solutions readily apparent.

Various extensions to the currently employed system models offer opportunities and chal-
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lenges for future work. In this dissertation we briefly discuss the implementation of rigid-

body representations for spacecraft and analyze system design and control issues related

to the combined orbital/attitude dynamics system models. Several future deep-space

missions are targeting orbits about the Sun-Earth-spacecraft Lagrangian points.46,47,48,49

To facilitate analyses for these missions, system descriptions based on Two-Body models

are inadequate and have to be replaced with Three-Body models such as the Circular-

Restricted Three-Body Problem (CR3BP). The motion equations of a spacecraft within

the context of the CR3BP are moderately complex and give rise to an extremely chal-

lenging optimal control problem45 which – to our best knowledge – has been addressed

adequately in the literature only in the form of the so-called Trajectory Correction Ma-

neuver (TCM) problem,23,44,45,59 a high-thrust optimal control problem.
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Appendix A
Optimal Control of

Time-Continuous Systems

The optimal control problem is to find an optimal control input u⋆ for a generally non-

linear system ẋ = f(x,u, t) such that the associated performance index

J = φ (x(tf ), tf ) +

∫ tf

t0

L (x,u, t) dt (A.1)

is minimized, and such that the constraint at final time tf

ψf = ψ (x(tf ), tf ) = 0 (A.2)

is satisfied. In equations (A.1) and (A.2) x is the n–dimensional state vector, u is the

m–dimensional control input, and φ and L are the terminal and accumulated costs,

respectively. Instead of solving a constrained optimization problem, it is advantageous

to consider the corresponding unconstrained optimization problem using the augmented

performance index

J + = φ (x(tf ), tf ) + νTψ (x(tf ), tf ) +

∫ tf

t0

{

L (x,u, t) + λT (f(x,u, t) − ẋ)
}

dt (A.3)

Defining the Hamiltonian function H as

H (x,u, t) = L (x,u, t) + λTf(x,u, t) (A.4)

we can rewrite equation (A.3) as

J + = φ (x(tf ), tf ) + νTψ (x(tf ), tf ) +

∫ tf

t0

{

H (x,u, t) − λTẋ
}

dt (A.5)
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In order to obtain necessary optimality conditions we follow the analysis of Pontryagin

et al.74 and compute the first variation of the augmented performance index. For the

sake of readability we omit the arguments of the functional terms in equation (A.5). The

first variation of the augmented performance index then yields

δJ + =
[

φx + νTψx

]

δx
∣

∣

tf
+

[

φt + νTψt

]

δt
∣

∣

tf
+ δνTψ|tf +

[

H − λTẋ
]

δt
∣

∣

tf
−

[

H − λTẋ
]

δt
∣

∣

t0
+

∫ tf

t0

{

H T

x δx+ H T

u δu− λTδẋ+ δλT [Hλ − ẋ]
}

dt

(A.6)

where the subscripts x, u, and t denote differentiation with respect to x, u, and t

respectively. By integrating by parts the term in equation (A.6) that depends on δẋ we

end up with the expression
∫ tf

t0

λTδẋ dt = λTδx
∣

∣

tf
− λTδx

∣

∣

t0
−

∫ tf

t0

λ̇Tδx dt (A.7)

and equation (A.6) can be rewritten as

δJ + =
[

φx + νTψx − λ
]

δx
∣

∣

tf
+

[

φt + νTψt + H
]

δt
∣

∣

tf
+

δνTψ|tf + H δt
∣

∣

t0
+ λTδx

∣

∣

t0
+

∫ tf

t0

{[

Hx + λ̇
]T

δx+ H T

u δu+ [Hλ − ẋ]T δλ
}

dt

(A.8)

The necessary condition for the augmented performance index to be minimized is that

the first variation of J + equals zero, that is, δJ + = 0. The condition is satisfied by

setting to zero the coefficients of the independent increments of δx, δt, δν, and δu. Note

that both t0 and x(t0) are assumed to be known (or fixed) and therefore their variations

are equal to zero.

From equation (A.8) we derive the necessary conditions for J + to be optimized as

λ̇ = −Hx (A.9)

Hu = 0 (A.10)

0 =
[

φx + νTψx − λ
]

δx
∣

∣

tf
+

[

φt + νTψt + H
]

δt
∣

∣

tf
(A.11)

Equations (A.9) define the set of differential equations for the costate vector. The optimal

control law follows from equations (A.10) and by considering the second derivative of the

Hamiltonian with respect to the control variables to satisfy the convexity conditions.

The boundary conditions for the final costates and final Hamiltonian are obtained from

equation (A.11).
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From a practical point of view the costate equations are only of secondary interest, how-

ever, need to be integrated simultaneously with the state equations since the optimal

control law is a function of both state and costate equations. We note that the costates

enter the augmented performance index linearly (equation (A.3)). As a result, the dif-

ferential equations for the costates are linear with respect to the costates; the system of

costate equations therefore offers one degree of scaling freedom (which is of course due to

the underlying scaling symmetry of the system of costates). Scaling freedom “reduces”

the number of unknown initial costates by one, since we can freely choose for one of the

costates λi(t0) = c. Note, however, that sign(c) undetermined.

For minimum-time problems described by autonomous systems, scaling freedom yields

to a “true” dimensionality reduction of the unknown initial costates. To see this, let the

time derivative of the Hamiltonian be given by

˙H = Ht + H T

u u̇+
[

Hx + λ̇
]T
f (A.12)

According to conditions (A.9) and (A.10) the second and third terms on the right-hand-

side of equation (A.12) are equal to zero. For autonomous systems equation (A.12)

therefore yields
˙H = Ht = 0 or H = const. (A.13)

For autonomous, minimum-time problems we can then conclude with condition (A.11)

that

const. = H ≡ H
∣

∣

tf
= −φt

∣

∣

tf
= −1 → H = H (x,λ,u) ≡ −1 (A.14)

In practice we can use equation (A.14) to compute one of the initial costates from the

remaining (n − 1) unknown costates.

In summary, the state and costate equations are given by

ẋ =
∂H

∂λ
= f(x,u, t) and λ̇ = −∂H

∂x
= −∂L (x,u, t)

∂x
− ∂f(x,u, t)

∂x
λ (A.15)

The optimal control law satisfies

u⋆ = arg min
u∈U

H (x⋆,λ⋆,u) , ∀t > 0 (A.16)

Equations (A.15) and (A.16), combined with a set of boundary conditions for the states

yield a Two-Point Boundary Value Problem (TPBVP). The initial conditions of the co-

states λ(t0) are the unknowns of the TPBVP and need to be chosen such that at t = tf
the conditions on the states ψf = 0 are satisfied.
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By introducing additional interior-point constraints on the states we obtain a more gen-

eral type of boundary value problem, termed Multi-point Boundary Value Problem (MP-

BVP).

Interior-point constraints on the state variables

Interior-point constraints on the states frequently appear as a result of specific mission

objectives in spacecraft transfer problems. In trajectory optimization problems interior-

point constraints are treated similarly to end-point constraints, for example, let

ψi = ι (x(ti), ti) = 0 (A.17)

in some intermediate time interval t0 < ti < tf . The corresponding extended augmented

performance index then assumes the form

J z = φ (x(tf ), tf ) + νTψ (x(tf ), tf ) + πTι (x(ti), ti) +
∫ tf

t0

{

H (x,u, t) − λTẋ
}

dt
(A.18)

where π are the Lagrange multipliers associated with the interior-point constraints. The

first variation of J z then yields

δJ z =
[

φx + νTψx − λ
]

δx
∣

∣

tf
+

λT(t+i ) − λT(t−i ) + πTιx δx
∣

∣

ti
−

H (t+i ) + H (t−i ) + πTιt δt
∣

∣

ti
+ λTδx

∣

∣

ti
∫ tf

t0

{[

Hx + λ̇
]T

δx+ H T

u δu+ [Hλ − ẋ]T δλ
}

dt

(A.19)

where t−i and t+i signify immediate points in time just before and after t = ti, respectively.

In addition to conditions (A.9)–(A.11) we therefore obtain two additional jump conditions

at the interior point:

λ(t−i ) = λ(t+i ) + πT
∂ι

∂x(ti)
(A.20)

H (t−i ) = H (t+i ) − πT
∂ι

∂ti
(A.21)
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Nondimensional Motion Equations

In this chapter we briefly demonstrate the process of obtaining non-dimensional mo-

tion equations with a solar sail spacecraft in the 1/r-gravitational field of the Sun and

described with respect to a spherical reference frame.

The dimensional motion equations can be written as

r̈ = rθ̇2 cos φ2 + rφ̇2 − µ⊙

r2
+

β

r2
cos3 αr (B.1)

θ̈ = −2θ̇ṙ

r
+ 2θ̇φ̇ tan φ +

β

r3

cos2 αr sin αr sin αφθ

r cos φ
(B.2)

φ̈ = −2φ̇ṙ

r
− θ̇2 sin φ cos φ +

β

r3
cos2 αr sin αr cos αφθ (B.3)

As a first step we transform the system of second-order differential equations into a

system of first-order differential equations by introducing velocity-like variables vr, vθ,

and vφ and rename variables to indicate their dimensional character by choosing 2 → 2̃

r̃′ = ṽr (B.4)

θ̃′ = ṽθ (B.5)

φ̃′ = ṽφ (B.6)

ṽ′
r = r̃

(

θ̃′
)2

cos φ̃2 + r̃
(

φ̃′
)2 − µ̃⊙

r̃2
+

β̃

r̃2
cos3 α̃r (B.7)

ṽ′
θ = −2θ̃′r̃′

r̃
+ 2θ̃′φ̃′ tan φ̃ +

β̃

r̃3

cos2 α̃r sin α̃r sin α̃θφ

r̃ cos φ̃
(B.8)

ṽ′
φ = −2φ̃′r̃′

r̃
−

(

θ̃′
)2

sin φ̃ cos φ̃ +
β̃

r̃3
cos2 α̃r sin α̃r cos α̃θφ (B.9)
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Note that we have also replaced the time derivative 2̇ by its dimensional equivalent

2̃′ ≡
(

d/dt̃
)

2̃. The original variable names and the dot-notation for the time derivative

will be used subsequently for the non-dimensional system description.

Step number two of the non-dimensionalization procedure involves choosing a specific

non-dimensionalization for distance, time, and angle measures and expressing the non-

dimensional time derivative as a function of the dimensional time derivative, that is

r̃ = r AU, and t̃ = t TU, → d

dt̃
=

d

dt

dt

dt̃
=

d

dt

1

TU
(B.10)

In equations (B.10) we have chosen 1 AU (one astronomical unit) as the representative

length unit. The time unit 1 TU will be determined as part of the subsequent analysis.

By limiting angular variables to be within the interval [0, 2π) (or a subset thereof) we

can simply choose 1 rad as the scaling factor to nondimensionalize angles, in other words,

⌊θ̃⌋ = ⌊θ⌋ since θ̃ = O(1), for example. With the above non-dimensionalization we obtain

for the time derivatives of the generalized coordinates

ṙ = ṽr
TU

AU
, vr (B.11)

θ̇ = ṽθ TU , vθ (B.12)

φ̇ = ṽφTU , vφ (B.13)

Transforming equation (B.7) into its non-dimensional counterpart we find

v̇r
AU

TU2 = r AU
v2

θ

TU2 cos φ2 + r AU
v2

φ

TU2 − µ̃⊙

r2AU2 +
β̃

r2AU2 cos3 αr (B.14)

which simplifies to

v̇r = rv2
θ cos φ2 + rv2

φ − 1

r2
+

β

r2
cos3 αr (B.15)

by choosing

µ̃⊙ TU2

AU3 = 1, → TU =

√

AU3

µ̃⊙

and
β̃ TU2

AU3 = β (B.16)

Note that the angular rate of a spacecraft on a 1 AU, planar, circular orbit about the Sun

equals ṽθ =
√

µ̃⊙/AU3 which corresponds to a nondimensional value of vθ = ṽθ TU =
√

µ̃⊙/AU3
√

AU3/µ̃⊙ = 1 according to equations (B.12) and (B.16).

Having both distance and time units available, we find corresponding expressions for the

remaining equations (B.8,B.9). The entire set of non-dimensional motion equation then
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results in

ṙ = vr (B.17)

θ̇ = vθ (B.18)

φ̇ = vφ (B.19)

v̇r = rv2
θ cos2 φ + rv2

φ − 1

r2
+

β

r2
cos3 αr (B.20)

v̇θ = −2vθvr

r
+ 2vθvφ tan φ +

β

r3

cos2 αr sin αr sin αφθ

cos φ
(B.21)

v̇φ = −2vφvr

r
− v2

θ sin φ cos φ +
β

r3
cos2 αr sin αr cos αφθ (B.22)

Comparing the set of nondimensional motion equations to the dimensional counterparts

we notice that the nondimensional set operates with a reduced number of system pa-

rameters – the system behavior apparently does not depend on µ⊙, the heliocentric

gravitational constant.



Appendix C
Orbital Elements and Cartesian

Coordinates

Orbital elements are frequently used in astrodynamics application to describe the con-

figuration of satellite systems. One of the major advantages of using an orbital element

description is that for unperturbed two-body motion five orbital elements are constants

of motion. For satellite formations and – in particular – relative satellite dynamics prob-

lems, the usage of orbital elements proves beneficial, as well. For example, for the case

of an uncontrolled formation of two spacecraft in an unperturbed 1/r-gravitational field

the orbital element barycenter performs Keplerian motion, which is not the case for the

true center of mass (see Figure C.1).

To be able to use both cartesian coordinates and the set of orbital elements we briefly

review coordinate mappings between the two system descriptions. Let Γ : R
6 → R

6 be

the nonlinear mapping that transforms orbital elements oe into Cartesian orbit position

and velocity coordinates x, that is,

x = Γ(oe) , where x , (r,v) , v = ṙ (C.1)

The coordinates transformations r(oe) and ṙ(oe) can be written as

r = rR(Ω, i, ω)





cos f

sin f

0



 and v =

√

µ

p
R(Ω, i, ω)





− sin f

e + cos f

0



 (C.2)

where

r =
p

1 + e cos f
, p = a

(

1 − e2
)

, and f = f(M, e) (C.3)
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Orbital Element Barycenter

Cartesian Barycenter

Spacecraft

Spacecraft orbit

Cartesian Barycenter
orbit

Periap
ses direct

ion

oe

op

Oper

Figure C.1: Cartesian Barycenter versus Orbital Element Barycenter location for a formation

of two spacecraft.

and

R(Ω, i, ω) = C3(−Ω)C1(−i)C3(−ω) (C.4)

In equations (C.2–C.3), r = ||r|| is the radial distance orbital element, Ω is the right

ascension of the ascending node, i is the inclination, ω is the argument of the periapsis,

f is the true anomaly, p is the semi-latus rectum, e is the eccentricity, and a is the semi-

major axis of the orbit. Ci are single-axis rotation matrices for the ith coordinate axis

and R denotes the composite rotation matrix that transforms vectors from an inertial

reference frame E into the orbital reference frame Oper = {oe,op,oh} at periapsis passage.

Figure C.2 illustrates the orbit geometry. Note that the initial position of the secondary

body within its orbit is measured with respect to the periapsis direction and referred

to as epoch position. The true anomaly is commonly used to define the position of the

secondary body in the orbit and as such replaces the time as the independent variable.

The mean (M) and eccentric (E) anomaly are also used frequently to represent the time

measure.

To compute the coordinate mapping from orbital elements to cartesian coordinates Γ−1 :

R
6 → R

6, that is, oe = Γ−1(x), we compute the specific angular momentum vector h

and the node vector n as

h = (hx, hy, hz)
T = r × v , n = (nx, ny, nz)

T =
ez × h
‖ez × h‖

(C.5)
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Equatorial plane

Angular momentum
direction
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nodesΩ

ω

i
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ey

ez

oe

oh

Oper

E

Figure C.2: Orbital elements.

The semi-major axis is readily available via the specific energy of the orbit

a = − µ

2E
, E =

v2

2
− µ

r
(C.6)

The eccentricity vector and eccentricity of the orbit result in

e = ||e|| , where e = (ex, ey, ez)
T =

1

µ

[(

v2 − µ

r

)

r −
(

rTv
)

r
]

(C.7)

The three rotational angles i, Ω, and ω are readily available with Figure C.2 and result

in

cos i =
hx

‖h‖ , cos Ω = nx , cos ω =
nTe

e
, (C.8)

Note that the inclination is defined within the interval i ∈ [0, π) and therefore the ex-

pression for the inclination in equation (C.8) is well defined. For the right ascension of

the ascending node we see that Ω ∈ [0, π) if ny > 0 and Ω ∈ [π, 2π) otherwise. Similarly,

ω ∈ [0, π) if ez > 0 and ω ∈ [π, 2π) otherwise. The true anomaly epoch angle f0 is

simply the angle between e and the position vector r, therefore

cos f0 =
eTr

er
(C.9)

Note that f0 ∈ [0, π) if rTv > 0 and f0 ∈ [π, 2π) otherwise.
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It has been well documented in the literature that orbital elements exhibit singularities for

zero eccentricity and inclinations of i = 0, π. In addition, the semi-major axis changes

discontinuously for orbits with e = 1. To eliminate these deficiencies, a modified set

of equinoctial orbit elements is frequently used in the literature.6,37,43 For our analysis

classical orbital elements are adequate since they are used exclusively as a means to define

boundary conditions.
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