
A Variable-Step Double-Integration Multi-Step
Integrator

Matthew M. Berry

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Aerospace Engineering

Dr. Christopher Hall, Committee Chair
Dr. Liam Healy, Committee Member
Dr. Lee Johnson, Committee Member

Dr. Hanspeter Schaub, Committee Member
Dr. Craig Woolsey, Committee Member

April 16, 2004
Blacksburg, Virginia

Keywords: Numerical Integration, Orbit Propagation, Orbit Determination,
Variable-Step Integration

Copyright 2004, Matthew M. Berry

A Variable-Step Double-Integration Multi-Step
Integrator

Matthew M. Berry

Abstract

A new method of numerical integration is presented here, the variable-step Störmer-
Cowell method. The method uses error control to regulate the step size, so larger step
sizes can be taken when possible, and is double-integration, so only one evaluation per
step is necessary when integrating second-order differential equations. The method is not
variable-order, because variable-order algorithms require a second evaluation.

The variable-step Störmer-Cowell method is designed for space surveillance applications,
which require numerical integration methods to track orbiting objects accurately. Be-
cause of the large number of objects being processed, methods that can integrate the
equations of motion as fast as possible while maintaining accuracy requirements are
desired. The force model used for earth-orbiting objects is quite complex and computa-
tionally expensive, so methods that minimize the force model evaluations are needed.

The new method is compared to the fixed-step Gauss-Jackson method, as well as a
method of analytic step regulation (s-integration), and the variable-step variable-order
Shampine-Gordon integrator. Speed and accuracy tests of these methods indicate that
the new method is comparable in speed and accuracy to s-integration in most cases,
though the variable-step Störmer-Cowell method has an advantage over s-integration
when drag is a significant factor. The new method is faster than the Shampine-Gordon
integrator, because the Shampine-Gordon integrator uses two evaluations per step, and is
biased toward keeping the step size constant. Tests indicate that both the new variable-
step Störmer-Cowell method and s-integration have an advantage over the fixed-step
Gauss-Jackson method for orbits with eccentricities greater than 0.15.

In Memory of Dr. Frederick H. Lutze, Jr.

iii

Acknowledgments

This work could not have been completed without the help and support of many individ-
uals. First, I would like to acknowledge my late advisor, Dr. Frederick Lutze. Dr. Lutze
provided support and encouragement whenever it was needed, which was quite often. He
is missed dearly by both his students and colleagues.

Next, I must thank Liam Healy, who gave direction to this work and provided constant
assistance. Some of this work was originally presented in conference papers which he
co-authored. Liam has acted as a mentor to me over the years, and I owe much of what
I’ve accomplished to his support.

I would also like to thank Christopher Hall for taking over as my advisor and quickly
coming up to speed on my work. The other members of my committee, Lee Johnson,
Hanspeter Schaub and Craig Woolsey, have also provided assistance through lengthy
discussion of this work.

This work was funded by the Naval Research Laboratory, and I thank Shannon Coffey
for providing the funding. Alan Segerman supported this work through many lengthy
discussions, and Keith Akins provided much needed technical support.

I would also like to thank members of the astrodynamics community for their interest in
this work, and for providing insight and feedback at the AAS meetings. Paul Schumacher
provided both direction and insight into the issues involved in this work. Felix Hoots
provided insight into ephemeris compression techniques, and Paul Cefola and Bob Schutz
provided references to relevant literature.

The support of my parents, family, and friends has also been invaluable over the years
in my career as a student.

iv

Contents

1 Introduction 1

2 Numerical Integrators 5

2.1 Introduction . 5

2.2 Single-Step Integrators . 6

2.2.1 Euler’s Method . 6

2.2.2 Runge-Kutta . 8

2.3 Multi-Step Integrators . 10

2.3.1 Tables and Operators . 11

2.3.2 Differentiation . 13

2.3.3 Adams Method . 14

2.3.4 Summed Adams Method . 17

2.3.5 Störmer-Cowell . 18

2.3.6 Gauss-Jackson . 19

2.3.7 Startup Formulas . 20

2.3.8 Ordinate Forms . 24

2.3.9 Implementation . 26

2.4 s-integration . 35

2.4.1 Transformation Equation . 35

2.4.2 Implementation of the Transformation 37

2.5 Variable-Step Integration . 43

v

2.5.1 Introduction . 43

2.5.2 Shampine-Gordon . 44

2.6 Summary . 58

3 Testing Integrators 60

3.1 Introduction . 60

3.2 Error Ratio . 61

3.3 Testing Techniques . 62

3.3.1 Test Cases . 62

3.3.2 Two-Body Test . 64

3.3.3 Step-Size Halving . 65

3.3.4 Comparison with High-Order Integrator 67

3.3.5 Reverse Test . 69

3.3.6 Integral Invariants . 70

3.3.7 Zadunaisky’s Test . 71

3.3.8 Summary . 78

3.4 Speed Tests . 79

3.5 Evaluations . 79

3.6 Summary . 82

4 Variable-Step Störmer-Cowell Method 83

4.1 Motivation . 83

4.1.1 Variable Step . 83

4.1.2 Double vs. Single Integration . 85

4.2 Derivation . 87

4.2.1 Predictor . 88

4.2.2 Corrector . 91

4.2.3 Interpolation . 92

4.2.4 Step-Size Control . 93

vi

4.2.5 Initialization . 95

4.3 Implementation . 96

4.4 Results . 98

5 Comparisons 102

5.1 Introduction . 102

5.2 Orbit Propagation . 104

5.3 Orbit Determination . 110

5.4 Summary . 116

6 Conclusions And Suggestions for Future Work 117

6.1 Summary . 117

6.2 Recommendations for Future Study . 119

A Ephemeris Compression Equations 121

A.1 Mean Element Fit . 121

A.2 Fourier Fit . 125

B Matlab Code 129

C Fortran Code 138

References 154

Vita 159

vii

List of Figures

2.1 Local and Global Error for Euler’s Method 8

2.2 Points Separated by Equal Values of Various Orbit Angles, with Equal
Steps at Perigee . 38

2.3 Points Separated by Equal Values of Various Orbit Angles, with 16 Steps
in each Orbit . 39

4.1 Speed Ratios to Fixed-Step Integration at 400 km Perigee 85

4.2 Results of Integrating y′′ = −y . 99

4.3 Interpolation Results for Integrating y′′ = −y 100

5.1 Speed Ratios to t-integration at 300 km Perigee 105

5.2 Speed Ratios to t-integration at 400 km Perigee 106

5.3 Speed Ratios to t-integration at 500 km Perigee 106

5.4 Speed Ratios to t-integration at 1000 km Perigee 107

viii

List of Tables

1.1 Summary of Integration Methods . 3

2.1 Backward Difference Table . 12

2.2 Inverse Backward Differences . 13

2.3 Eighth-Order Summed-Adams Difference Coefficients, b′ji 23

2.4 Eighth-Order Gauss-Jackson Difference Coefficients, a′ji 24

2.5 Eighth-Order Summed-Adams Coefficients in Ordinate Form, bjk 27

2.6 Eighth-Order Gauss-Jackson Coefficients in Ordinate Form, ajk 28

2.7 Relationship Between Summation Term and sn 31

2.8 Example Divided Difference Table . 46

2.9 Coefficients giq for Constant Step Size . 51

3.1 Test Case Initial Conditions . 63

3.2 Two-Body Test Results . 65

3.3 Two-Body Position Error (mm) . 65

3.4 Two-Body Step-Size Halving Results . 66

3.5 Perturbed Step-Size Halving Results . 66

3.6 Two-Body High-Order Results . 68

3.7 Perturbed High-Order Results . 68

3.8 Two-Body Test of 14th-Order Gauss-Jackson 69

3.9 Step-Size Halving Test of 14th-Order Gauss-Jackson 69

3.10 Two-Body Reverse Test Results . 70

ix

3.11 Perturbed Reverse Test Results . 70

3.12 Two-Body Zadunaisky Results . 74

3.13 Perturbed Zadunaisky Results . 75

3.14 Runge-Kutta Ephemeris-Compression Zadunaisky Results 77

3.15 Integration of Ephemeris-Compression Derivative Results 78

3.16 Gauss-Jackson Error Ratios for LEO Case 80

3.17 Gauss-Jackson Error Ratios for HEO Case 81

3.18 Effect of Partial Evaluation in s-integration. 82

4.1 Speed Comparisons for Perigee Height of 400 km 84

4.2 Error Ratios for Störmer-Cowell and Adams, Two Body 86

4.3 Error Ratios for Störmer-Cowell and Adams, Perturbations 87

4.4 Coefficients g′iq for Constant Step Size . 91

4.5 Variable-Step Double-Integration Results for the Two-Body Problem . . 101

5.1 Comparisons for Perigee Height of 300 km 107

5.2 Comparisons for Perigee Height of 400 km 108

5.3 Comparisons for Perigee Height of 500 km 108

5.4 Comparisons for Perigee Height of 1000 km 109

5.5 Orbit Determination Differences for t- vs. s-integration 112

5.6 Objects Updated by var. Störmer-Cowell But Not t-integration 113

5.7 Orbit Determination Differences for t-integration vs. var. Störmer-Cowell 114

5.8 Orbit Determination Differences for t-integration vs. Shampine-Gordon . 115

x

1

Chapter 1

Introduction

The United States has two space surveillance centers, Air Force Space Command and

Naval Networks and Space Operations Command (NNSOC), that track objects in Earth

orbit. These centers are currently tracking over 12,000 objects. Most of these objects

are space debris and pose a risk to other spacecraft, including manned spacecraft, with

which they may collide. The centers track these objects for several reasons, one of which

is to predict when a collision may occur between one object and a manned or otherwise

important spacecraft, known as an asset, so the collision can be avoided by moving the

asset. The centers also track objects so that new objects can be detected when they are

launched.

The centers track the objects by first taking observations of the objects from two main

sources, the Space Surveillance Network (SSN), maintained by the Air Force, and the

Naval Space Surveillance Network, known as the Fence. The SSN consists of radar and

optical sensors that target known objects. Observations from the SSN are in the form of

some combination of azimuth and elevation, range, and range rate, depending on the type

of sensor used. The Fence is a non-targeted system, which has three transmitters and six

non-colocated receivers. Radar waves originating from the transmitters are reflected by

orbiting objects and detected by the receivers, resulting in directional observations in the

form of direction cosines. The direction cosines give the objects’ position in a topocentric

frame [1]. Orbit determination is performed from the SSN and Fence observations through

a differential correction process that performs a least squares fit on the observations to

give updated orbital parameters. Orbit parameters are either in the form of orbital

elements or position and velocity. In the differential correction, the initial conditions

are propagated to each observation time, and the difference, or residual, between the

actual observation and the propagated observation is found. The residuals are then used

2

to correct the orbit parameters ([2] pp. 682-702). After the orbit parameters of all the

objects have been updated, the parameters are propagated forward several days and

compared to a propagation of assets of concern to predict collisions.

Both the orbit determination process and the collision prediction process require an

orbit propagator, which gives the state at some time before or after an epoch state. The

propagator solves the equations of motion

r̈ = − µ

r3
r + P , (1.1)

where r is the inertial position vector, r̈ is the acceleration vector, µ is the gravitational

parameter, and P is the perturbation force per unit mass. The equations of motion

can be solved by integrating either analytically or numerically. To solve the equations

analytically, the perturbation force is truncated to an expression that can be analytically

propagated. This procedure is known as general perturbations (GP). To solve the equa-

tions numerically, a full force model is used with a numerical integrator. This method is

known as special perturbations (SP).

In the past, the space surveillance centers have primarily used GP propagators. Because

GP propagators use an analytic solution, they are faster than SP propagators. However,

because the perturbation force is truncated, the analytic solution is less accurate than is

possible with numerical integration. With the launch of the International Space Station,

the accuracy requirements for tracking space objects have increased to the point where

GP propagators are no longer adequate. The space surveillance centers have therefore

adopted special perturbations systems. However, using special perturbations greatly in-

creases the computing capability needed by the centers. Moreover, an upgrade is planned

for the Fence that will allow for the detection of smaller objects, which could increase

the number of tracked objects by an order of magnitude. This upgrade will significantly

increase the amount of computing capability required. Methods of numerical integration

that require less computation time than the methods currently employed would reduce

the burden.

Numerous methods exist to perform numerical integration, and many are commonly used

in orbit propagation. Integrators fall into various categories, which are described in Chap-

ter 2. Integrators are either single-step or multi-step, which refers to the number of points

that are used when integrating to the next point. Integrators may either have a fixed or a

variable step size. Multi-step integrators come in two forms, summed and non-summed,

which refers to whether the integration is performed from epoch or step-by-step, and is

described in Section 2.3.4. The summed form contains a summation term which allows

for an integration directly from epoch. Finally, integrators can perform either single or

double integration. Single-integration integrators find velocity given acceleration, and

3

position given velocity. Double-integration integrators compute position directly from

acceleration, bypassing the intermediate velocity calculation.

Table 1.1 lists the features of several integrators commonly used in astrodynamics. These

integrators are described in detail in Chapter 2. Each integrator has one of two possi-

bilities in the four categories. In general, multi-step integrators are advantageous over

single-step integrators, because multi-step integrators can take larger step sizes for a given

accuracy requirement[3]; however, there are some disadvantages of multi-step integration

discussed in Section 2.3. Variable-step integration is advantageous over fixed-step inte-

gration because variable-step integration handles elliptical orbits more efficiently. The

benefits of variable-step integration are discussed in Section 2.5. Summed integrators are

advantageous over non-summed integrators because the summed form reduces round-off

error[4]. Double integration also reduces the round-off error compared to single integra-

tion, because position is found by only applying the integrator once instead of twice[4],

[3]. Evidence to support these claims is presented in Section 4.1.

Table 1.1: Summary of Integration Methods

Single / Fixed / Non-Summed / Single /

Method Multi Variable Summed Double

Runge-Kutta Single Fixed NA Single

Runge-Kutta-Fehlberg Single Variable NA Single

Adams Multi Fixed Non-Summed Single

Summed Adams Multi Fixed Summed Single

Shampine-Gordon Multi Variable Non-Summed Single

Störmer-Cowell Multi Fixed Non-Summed Double

Gauss-Jackson Multi Fixed Summed Double

Proposed Multi Variable Non-Summed Double

The proposed integrator is a variable-step double-integration multi-step integrator, using

the non-summed form, essentially a variable-step form of the Störmer-Cowell integrator.

This integrator has the best of each possible feature, except that it is non-summed.

Issues regarding the development of a summed variable-step double-integration method

are discussed in Chapter 6. The proposed integrator is derived by following the derivation

of Shampine-Gordon, which is a variable-step single-integration multi-step integrator, and

applying that derivation to double integration.

Numerically solving the equations of motion in the form of (1.1) is known as Cowell’s

formulation. An alternative formulation, known as Encke’s formulation, involves only

4

integrating the perturbation force, and adding that result to the known solution of the

two-body problem. All of the testing done in this work is on Cowell’s formulation, though

the integration methods discussed can be used in Encke’s formulation as well.

Chapter 2 describes integrators commonly used in astrodynamics and focuses on the

derivation of multi-step integrators, including Störmer-Cowell and Shampine-Gordon.

Chapter 3 describes procedures for testing the accuracy of numerical integrators, which

are used both to motivate the need for the proposed integrator in Section 4.1, and to

test the integrator against existing methods in Chapter 5. Following the motivation

in Section 4.1, the rest of Chapter 4 derives the variable-step double-integration multi-

step integrator, and describes how the integrator is implemented. Chapter 5 compares

the proposed integrator to existing methods, using both orbit propagation and orbit

determination tests. Conclusions and suggestions for further study are presented in

Chapter 6.

5

Chapter 2

Numerical Integrators

2.1 Introduction

Equations of the form
dy

dt
= f(t, y), (2.1)

in which the derivative of a dependent variable is a function of that variable, are known

as ordinary differential equations (ODEs). In order to find a specific solution of a dif-

ferential equation the initial conditions (t0, y(t0)) must be given. A given differential

equation along with initial conditions is known as an initial value problem. The solution

to an initial value problem, y(t), can be found analytically for some differential equa-

tions. However, most differential equations must be solved numerically. Algorithms that

numerically solve initial value problems are known as numerical integrators. Numerical

integrators give an approximate solution at distinct values of t, known as mesh points.

The numerical solution at a mesh point tn is denoted yn, and due to error in the numerical

method is different from the exact solution, y(tn).

The differential equation in (2.1) is called a first-order differential equation because the

equation is for the first derivative. Differential equations may have a higher order,

dny

dtn
= f(t, y, y′, . . . , y(n−1)), (2.2)

where n is the order of differential equation. Initial value problems involving higher order

ODEs require initial conditions for each derivative through y(n−1). Though higher order

ODEs may be rewritten as a system of first order equations and solved with a standard nu-

merical integrator, some numerical integrators are specifically designed to handle higher

order ODEs. Integrators that solve second-order ODEs are called double-integration

2.2 Single-Step Integrators 6

methods, while integrators that solve first-order ODEs are called single-integration meth-

ods.

2.2 Single-Step Integrators

Integrators that integrate forward to the next point yn+1, using only information from

the current point yn, are known as single-step integrators, because only information from

a single step is used. Multi-step integrators, which use information from several previous

points yn−i . . . yn, are described in Section 2.3. Though this work focuses on multi-step

integration, single-step integrators have a simpler form, so some of the basic concepts of

numerical integration are more easily demonstrated using single-step integrators as an

example.

2.2.1 Euler’s Method

Euler’s method is the most basic numerical integration algorithm. Given the conditions

at some mesh point (tn, yn) for a differential equation (2.1), the slope can be computed,

dy

dt
= f(tn, yn). (2.3)

The slope is used to approximate the change in y to the next mesh point,

dy

dt
≈ ∆y

∆t
= f(tn, yn)

∆y = f(tn, yn)∆t, (2.4)

so the next y value can be approximated,

yn+1 = yn + ∆y. (2.5)

This method is repeated to give an algorithm for solving differential equations,

yn+1 = yn + f(tn, yn)∆t

tn+1 = tn + ∆t. (2.6)

This algorithm is Euler’s method for solving initial value problems. The algorithm is

started with the initial conditions (t0, y0). The value of ∆t is known as the step size.

2.2 Single-Step Integrators 7

The error of Euler’s method can be found by examining a Taylor series,

yn+1 = yn + f ′(tn)(tn+1 − tn) +
f ′′(tn)

2
(tn+1 − tn)2 + (2.7)

Using the step size ∆t = tn+1 − tn in the Taylor series,

yn+1 = yn + f ′(tn)∆t+
1

2
f ′′(tn)∆t2 + . . . , (2.8)

shows that the first two terms of the series,

yn+1 = yn + f ′(tn)∆t, (2.9)

are Euler’s Method, so the additional terms,

1

2
f ′′(tn)∆t2 + . . . , (2.10)

comprise the truncation error for Euler’s method. The error is called truncation error

because it represents terms that have been truncated from the Taylor series.

The truncation error is on the order of ∆t2, written O(∆t2). This error is called local

error, because it is the error at one step. Since the local error is second order, the method

is locally correct to first order. Figure 2.1 shows how the local error at one step affects

the next step. Because the numerical solution does not match the true solution, at the

next step the method uses the wrong initial conditions, and so in effect attempts to solve

a different, though related, problem. This build-up of local error is known as global

error. The global error is of one order lower than the local error, so Euler’s method

has a first-order global error, and is globally correct to zeroth order. By convention, the

order of an integrator is the order to which it is locally correct, or the order of its global

error. Euler’s method is called a first-order integrator.

The truncation error given in (2.10) is generally the largest source of integration error.

However, additional error arises due to error in floating point arithmetic. Computers only

store numbers to a certain precision, so some accuracy is lost every time a computation

is performed. Error due to this source is called round-off error ([5], pp. 18-21). The

total integration error is due to both truncation and round-off error. As the step size

is reduced, the truncation error decreases; however, round-off error increases as the step

size is reduced, because more calculations are performed. When using double-precision

arithmetic, truncation error normally dominates over round-off error. The step size h

where round-off error is the same order as truncation error is given by

h =

√
2δ

M
, (2.11)

2.2 Single-Step Integrators 8

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

x0 x1 x2 x3

True Solution

∆ x ∆ x ∆ x

f(x2,y2)

f(x1,y1)

f(x0,y0)

Figure 2.1: Local and Global Error for Euler’s Method

where δ is the maximum round-off error in any step, and M is an upper bound on the

second derivative, |y′′(t)| ≤M ([6], pp. 264-267). The value of δ depends on the value of

machine epsilon, which is the precision to which the machine being used stores floating

point numbers. The value of M depends on the nature of the initial value problem being

solved.

2.2.2 Runge-Kutta

Runge-Kutta methods ([6], pp. 276-284) are a family of single-step integrators having

the general form

yn+1 = yn + φ∆t, (2.12)

where φ is a function of weighted slope estimates over the interval ∆t, and has the form

φ = a1k1 + a2k2 + · · ·+ amkm, (2.13)

where ki are slope estimates, m is the number of estimates, and ai are weighting constants.

The values of ki are found by evaluating the function f(t, y) at various points in the

interval.

Heun’s method ([6], p. 280) is an example of a second-order Runge-Kutta method. The

slope at the beginning of the interval is averaged with the slope resulting from an Euler

step to give a better estimate of the solution. The next mesh point yn+1 is found by the

2.2 Single-Step Integrators 9

algorithm

k1 = f(tn, yn),

k2 = f(tn + ∆t, yn + k1∆t),

a1 = 1/2,

a2 = 1/2,

yn+1 = yn +

(
1

2
k1 +

1

2
k2

)
∆t.

The most widely used Runge-Kutta method is the “Classical Fourth Order” method.

The algorithm uses a weighted average of four slope estimates ([6], p. 281),

k1 = f(tn, yn),

k2 = f(tn +
1

2
∆t, yn + k1

1

2
∆t),

k3 = f(tn +
1

2
∆t, yn + k2

1

2
∆t),

k4 = f(tn + ∆t, yn + k3∆t),

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)∆t.

Because the fourth-order Runge-Kutta uses four slope estimates, the function f(t, y)

must be evaluated four times at each step. By contrast Heun’s method requires two

evaluations per step and Euler’s method requires one. In space surveillance, the force

model used is quite complex so these function evaluations are the biggest factor in the

total computation time of orbit propagation. Results in Section 3.5 show that 90% of

the total run-time of an integration is spent evaluating the force model.

For one integrator to be more efficient than another, it must have fewer total evaluations

throughout the integration, while maintaining a specified accuracy. The total number of

evaluations depends on two parameters: the number of evaluations per step, and the step

size used. For instance, for the fourth-order Runge-Kutta to be more efficient than Heun’s

method, it must be able to take steps that are at least twice as large. In general, as single-

step integrators such as Runge-Kutta increase in order, they become more accurate and

can take larger steps to maintain a given accuracy. However, the number of evaluations

per step increases with the order. On the other hand, multi-step integrators, described

in the next section, have an advantage because the number of evaluations per step is not

dependent on the order. Generally multi-step methods need only one or two evaluations

per step.

2.3 Multi-Step Integrators 10

2.3 Multi-Step Integrators

Multi-step integrators integrate forward to the next mesh point using function values at

the current point as well as several previous mesh points. The set of the previous points

used as well as the current point is called the set of backpoints. One disadvantage of

multi-step integrators is that the initial set of backpoints must be found through some

startup procedure, which complicates the method. Also, the function f(t, y) must be

continuous and smooth through the set of backpoints. If there are any discontinuities

in f , for example going through eclipse when solar radiation pressure is considered, the

integration must either be restarted, or modified to handle the discontinuity [7]. The

studies performed here only consider continuous forces; however Chapter 6 discusses how

variable-step multi-step integrators may be used to handle solar radiation pressure.

Multi-step integrators are known as predictor-corrector methods. The algorithms first

predict a y value for the next mesh point and the function f(t, y) is evaluated at the

predicted point. That predicted function value is added to the set of backpoints, and

a corrector formula is used with this revised set of backpoints to refine the predicted y

value.

This procedure offers several variations on the implementation. First, when adding the

predicted value to the set of backpoints, the farthest backpoint from the current point

may or may not be dropped. If it is not dropped, the corrector is of higher order than the

predictor because the corrector uses one more backpoint than the predictor. Otherwise,

the predictor and corrector are of the same order. Also, a second evaluation may or

may not be performed after the corrector. A second evaluation improves the accuracy

of the method, because improved function values are used in the set of backpoints in

the subsequent steps. However, the additional evaluation causes an increase in run-time.

Methods that use one evaluation per step are known as Predict-Evaluate-Correct, or PEC,

methods, and methods that perform a second evaluation are called PECE methods. Some

implementations perform additional iterations of the corrector to meet some tolerance,

and are called P(EC)n or PE(CE)n methods.

Multi-step integrators can be derived to be either fixed or variable step. The fixed-

step implementations are considered here first; the variable-step derivations are found

in Section 2.5 and Section 4.2. The methods can be derived in a variety of ways, but

the fixed-step methods can be derived in a simplified form by using backward differ-

ence operators, which are described in the next section. The derivations of the Adams,

summed-Adams, Störmer-Cowell, and Gauss-Jackson methods follow. These derivations

follow the derivations presented by Maury and Segal [8], and the NORAD document

known as TP008 [9].

2.3 Multi-Step Integrators 11

2.3.1 Tables and Operators

Predictor-corrector integrators can be defined in terms of difference tables. For a fixed-

step method, assume that the function f(t, y) is known at a discrete set of equally-spaced

t values, . . . , t0 − 2h, t0 − h, t0, t0 + h, t0 + 2h, . . . , where h is the step. As shorthand,

these values are referred to as tn = t0 + nh, so this set of five values is t−2, t−1, t0, t1, t2.

The corresponding function values are fn = f(tn, yn), where yn is the numerical solution

at the mesh point tn (not the exact solution y(tn)).

The differential equations are solved by taking differences of the function value. There

are three kinds of differences, represented by different operators:

forward difference ∆fi = fi+1 − fi

backward difference ∇fi = fi − fi−1

central difference δfi = fi+1/2 − fi−1/2.

Note that first central differences cannot be calculated directly, as the half-step points

are not in the sequence of points, though the second central differences (see below)

can be calculated. As previous authors ([3], [10]) have recognized, conversion between

series in these operators is straightforward. The backward difference derivation is used

here, because the majority of the time, when one is predicting or correcting, it is the

most natural. Derivations using other difference operators give algebraically equivalent

methods, though differences in their implementation may give slightly different results

due to round-off error.

Not only can the differences of the function f be computed, the differences of the differ-

ences can be computed, and so on. For instance, the square of the backward difference

operator is the operator applied to the first difference,

∇2fi =∇∇fi = ∇(fi − fi−1)

= fi − fi−1 − (fi−1 − fi−2) = fi − 2fi−1 + fi−2. (2.14)

In general the nth difference can be written in terms of the (n− 1)th differences,

∇nfi = ∇n−1fi −∇n−1fi−1. (2.15)

The relationships of the backward differences are illustrated in Table 2.1. The arrows in

the table point towards the difference; the upper component is always subtracted from

the lower. For example, ∇2f1 = ∇f1 −∇f0.

In addition to the three difference operators, there is also a displacement operator E.

The displacement operator is defined as

Efi = fi+1 (2.16)

2.3 Multi-Step Integrators 12

Table 2.1: Backward Difference Table

i fi ∇fi ∇2fi ∇3fi

−3 f−3

""EE
EE

EE
EE

E
// ∇f−3

$$HHHHHHHHH
// ∇2f−3

$$IIIIIIIII
// ∇3f−3

−2 f−2

""EE
EE

EE
EE

E
// ∇f−2

$$HHHHHHHHH
// ∇2f−2

$$IIIIIIIII
// ∇3f−2

−1 f−1

""EE
EE

EE
EE

E
// ∇f−1

$$HHHHHHHHH
// ∇2f−1

$$IIIIIIIII
// ∇3f−1

0 f0

""EE
EE

EE
EE

E
// ∇f0

$$IIIIIIIII
// ∇2f0

$$IIIIIIIII
// ∇3f0

1 f1

""EE
EE

EE
EE

E
// ∇f1

$$IIIIIIIII
// ∇2f1

$$IIIIIIIII
// ∇3f1

2 f2

""EE
EE

EE
EE

E
// ∇f2

$$IIIIIIIII
// ∇2f2

$$IIIIIIIII
// ∇3f2

3 f3
// ∇f3

// ∇2f3
// ∇3f3

Powers of this operator act as expected; e.g. E2fi = fi+2. The backward difference

operator can be defined in terms of the displacement operator,

∇ = 1− E−1, (2.17)

and alternatively the displacement operator can be defined in terms of the backward

difference operator,

E =
1

1−∇
. (2.18)

The summed integration formulas (see Section 2.3.4.), contain negative powers of the

operators; e.g., ∇−2. The backward difference table (Table 2.1) can be extended to the

left to get negative powers of the backward difference operator, as in Table 2.2. Extending

the differencing to the left gives fi = ∇−1fi−∇−1fi−1. This relation can be changed into

a recursion formula that defines the inverse operator,

∇−1fi = fi +∇−1fi−1. (2.19)

2.3 Multi-Step Integrators 13

Table 2.2: Inverse Backward Differences

i ∇−2fi ∇−1fi fi ∇fi

−2 C2 − 2C1 + f0

))TTTTTTTTTTTTTTT
// C1 − f0 − f−1

&&MMMMMMMMMMM
// f−2

%%JJJJJJJJJJ
// f−2 − f−3

−1 C2 − C1

))TTTTTTTTTTTTTTTTTT
// C1 − f0

&&MMMMMMMMMMMM
// f−1

%%JJJJJJJJJJ
// f−1 − f−2

0 C2

))TTTTTTTTTTTTTTTTTT // C1

&&MMMMMMMMMMMMM
// f0

%%JJJJJJJJJJJ
// f0 − f−1

1 C2 + C1 + f1

))TTTTTTTTTTTTTTT
// C1 + f1

&&MMMMMMMMMMMM
// f1

%%JJJJJJJJJJJ
// f1 − f0

2 C2 + 2C1 + 2f1 + f2
// C1 + f1 + f2

// f2
// f2 − f1

Note that the initial (i = 0) term in the sum is arbitrary; the difference relation holds no

matter what this value is. This value is effectively an integration constant C1. Thus, if

the inverse operator is defined as a sum,

∇−1fi =


C1 +

i∑
j=1

fj, if i ≥ 1

C1 −
0∑

j=i+1

fj, if i ≤ −1

(2.20)

the difference relation (2.15) holds. The constant C1 is discussed further in Section 2.3.9.

Powers of the summation ∇−1 are understood to be multiple sums, analogous to multiple

differences. The presence of the operator ∇−2 in the Gauss-Jackson formulas sometimes

gives rise to the name second sum integration formula. The second sum has an integration

constant C2, analogous to C1.

2.3.2 Differentiation

Differentiation D(·) = d(·)/dt is the operator that turns a function into its derivative

function. The differentiation operator D can be represented in terms of E by noting the

2.3 Multi-Step Integrators 14

following:

Epf(t0) = f(t0 + ph)

= f(t0) + phDf(t0) +
(ph)2

2!
D2f(t0) +

(ph)3

3!
D3f(t0) + . . .

= ephDf(t0), (2.21)

for any real number p, using a Taylor series expansion. The exponential of an operator

is to be interpreted as its ordinary Taylor expansion,

et = 1 + t+
t2

2!
+
t3

3!
+ . . . , (2.22)

with powers of the operator well-defined. Thus we may identify the two operators

Ep = ephD, (2.23)

or taking the log

phD = p logE. (2.24)

This expression can be written in terms of the backward difference operator (2.18),

hD = logE = − log(1−∇). (2.25)

The integration methods can now be derived by taking the inverse of the differentiation

operator. The Adams method is derived first, and the other methods are derived from

it.

2.3.3 Adams Method

Indefinite integration is the operator inverse of differentiation,∫
(·)dt = D−1(·), (2.26)

so its action on an arbitrary function is to give the anti-derivative,

F (t) = D−1f(t). (2.27)

The single-integration operator D−1 is computed as the inverse of the differentiation

operator (2.25),

D−1 = − h

log(1−∇)
. (2.28)

2.3 Multi-Step Integrators 15

With this operator Adams integration can be developed. The focus here is satellite orbits,

so the function f is replaced with acceleration r̈.

The definite integral is computed by using the displacement operator on the indefinite

integral,

(Ep − 1)D−1r̈n = (Ep − 1)ṙn =

∫ tn+ph

tn

r̈dt. (2.29)

For one timestep, p is 1. This integration corresponds to a predictor in a multi-step

numerical integration, because the equation finds a value of ṙ at a future time. If p = 1,

the predictor operator J can be written in terms of the backward difference operator, as

J =
1

h
(E − 1)D−1 =

1

h

[
(1−∇)−1 − 1

]
D−1 =

1

h

∇
(1−∇)

D−1

= − ∇
(1−∇) log(1−∇)

. (2.30)

To integrate from tn − h to tn, shift backward using the displacement operator (2.18),

E−1J = (1−∇)J = − ∇
log(1−∇)

. (2.31)

This operation corresponds to the corrector in a multi-step numerical integration, because

it assumes that the nth value is already known and uses that value to recalculate a new,

better, value. This operator has the simplest expansion so it is considered first.

The coefficients of the operators may be developed using a recursion relation [11]. For

convenience in developing expansions, the corrector operator L is defined with its Taylor

expansion using coefficients ci as

L = E−1J = − ∇
log(1−∇)

= c0 + c1∇+ c2∇2 + c3∇3 + (2.32)

The expansion of L is developed recursively through the standard Taylor series of the

logarithm,

log(1−∇) = −∇− 1

2
∇2 − 1

3
∇3 − 1

4
∇4 . . . , (2.33)

which can be substituted in the definition of L,

L = − ∇
log(1−∇)

=
1

1 + 1
2
∇+ 1

3
∇2 + 1

4
∇3 + . . .

=
∞∑
i=0

ci∇i, (2.34)

and then expanded in the unknowns ci,(
c0 + c1∇+ c2∇2 + c3∇3 + . . .

)(
1 +

1

2
∇+

1

3
∇2 +

1

4
∇3 + . . .

)
= 1. (2.35)

2.3 Multi-Step Integrators 16

Expanding and grouping by powers of ∇,

c0 +

(
1

2
c0 + c1

)
∇+

(
1

3
c0 +

1

2
c1 + c2

)
∇2 +

(
1

4
c0 +

1

3
c1 +

1

2
c2 + c3

)
∇3 + . . .

= 1, (2.36)

allows for the development of a recursion relation for the coefficients

1 = c0, (2.37a)

0 =
1

2
c0 + c1, (2.37b)

0 =
1

3
c0 +

1

2
c1 + c2, (2.37c)

or, in general,

cn = −
n−1∑
i=0

ci
n+ 1− i

(2.38)

for n ≥ 1 with c0 = 1. The first few coefficients are

i 0 1 2 3 4 5 6 7 8

ci 1 −1
2

− 1
12

− 1
24

− 19
720

− 3
160

− 863
60480

− 275
24192

− 33953
3628800

. (2.39)

With the coefficients ci known, integration from tn − h to tn may be written in terms of

L, ∫ tn

tn−h

r̈dt = hE−1J r̈n = hLr̈n. (2.40)

A formula for the corrected value can be found by performing the integration and using

the coefficients ci,

ṙn = ṙn−1 + h

(
1− 1

2
∇− 1

12
∇2 − 1

24
∇3 − 19

720
∇4 − 3

160
∇5 + . . .

)
r̈n. (2.41)

This formula is the Adams-Moulton corrector formula in difference form. This form is

called the difference form because it uses the differences ∇i. An alternate form, called

the ordinate form, in which the differences are re-written in terms of the function values

is described in Section 2.3.8.

Returning to the predictor (2.30), the expansion of J can be computed by noting that

J = (1−∇)−1L = (1 +∇+∇2 + . . .)(c0 + c1∇+ c2∇+ . . .) =
∞∑
i=0

γi∇i. (2.42)

2.3 Multi-Step Integrators 17

Each coefficient γi can be expressed as the sum of the coefficients ck, k ≤ i

γi =
i∑

k=0

ck, (2.43)

so they may be computed directly from (2.39),

i 0 1 2 3 4 5 6 7 8

γi 1 1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

. (2.44)

and the integral is then ∫ tn+h

tn

r̈dt = hJ r̈n, (2.45)

or,

ṙn+1 = ṙn + h

(
1 +

1

2
∇+

5

12
∇2 +

3

8
∇3 +

251

720
∇4 +

95

288
∇5 + . . .

)
r̈n. (2.46)

This formula is the Adams-Bashforth predictor formula, in difference form, so called

because when applied to tn it integrates forward to tn+1.

In practice, given m known accelerations

r̈n−m, r̈n−m+1, . . . , r̈n, (2.47)

the backward difference table (Table 2.1) for the derivatives can be computed through

∇m−1, a predicted value for ṙn+1 is made based on (2.46), then that value is corrected

with (2.41).

2.3.4 Summed Adams Method

An alternative form of single integration, called the summed form, can be developed

using the summation operator ∇−1. The Adams-Moulton corrector formula (2.41) may

be written so both velocity terms are on the left side,

ṙn − ṙn−1 = h

(
1− 1

2
∇− 1

12
∇2 − 1

24
∇3 − 19

720
∇4 − 3

160
∇5 + . . .

)
r̈n. (2.48)

The difference of the two velocity terms may be written using the backward difference

operator,

∇ṙn = h

(
1− 1

2
∇− 1

12
∇2 − 1

24
∇3 − 19

720
∇4 − 3

160
∇5 + . . .

)
r̈n. (2.49)

2.3 Multi-Step Integrators 18

The corrected value of the velocity can be found by multiplying both sides of (2.49) by

∇−1 [8],

ṙn = h

(
∇−1 − 1

2
− 1

12
∇− 1

24
∇2 − 19

720
∇3 − 3

160
∇4 + . . .

)
r̈n. (2.50)

This expression is the summed Adams corrector formula. The summed form uses the

same coefficients as the Adams-Moulton corrector, but they have been shifted by one

place. The formula is called the summed form because of the presence of the summation

operator.

A similar process can be performed on the Adams-Bashforth predictor formula (2.46),

ṙn+1 = h

(
∇−1 +

1

2
+

5

12
∇+

3

8
∇2 +

251

720
∇3 +

95

288
∇4 + . . .

)
r̈n, (2.51)

giving the summed Adams predictor. The summed form gives the predicted or corrected

value by integrating directly from epoch, while the non-summed form integrates from

point to point. According to Henrici ([4], p. 327) the non-summed form is preferred for

reducing the propagation of roundoff error.

2.3.5 Störmer-Cowell

To find a corrector formula for position, the Adams-Moulton corrector (2.40) can be

multiplied by the corrector operator,

hL

∫ tn

tn−h

r̈dt = hL(ṙn − ṙn−1) = h2L2r̈n. (2.52)

Performing the corrector operation on the velocity terms, hLṙn = rn − rn−1, gives an

expression for position,

rn = 2rn−1 + rn−2 + h2L2r̈n. (2.53)

To find the coefficients in the expansion of L2,

L2 = q0 + q1∇+ q2∇2 + . . . , (2.54)

in terms of the Adams coefficients c (2.38), note that (2.54) is the square of (2.32),

qi =
i∑

k=0

ckci−k; (2.55)

2.3 Multi-Step Integrators 19

so the first nine coefficients are

i 0 1 2 3 4 5 6 7 8

qi 1 −1 1
12

0 − 1
240

− 1
240

− 221
60480

− 19
6048

− 9829
3628800

. (2.56)

The corrector formula is given by using these coefficients in (2.53),

rn = 2rn−1 + rn−2 + h2

(
1−∇+

1

12
∇2 − 1

240
∇4 − 1

240
∇5 + . . .

)
r̈n. (2.57)

This formula is the Cowell corrector formula. It is a double-integration formula, since it

computes the position given acceleration.

As with single integration, the predictor formula is found by shifting where the operator

is applied, in other words multiplying both sides of (2.53) by the shift operator E,

rn+1 = 2rn + rn−1 + h2EL2r̈n. (2.58)

Writing the shift operator in terms of ∇, (2.18), and multiplying by L2,

EL2 = (1−∇)−1L2 = (1 +∇+∇2 + . . .)(q0 + q1∇+ q2∇2 + . . .) =
∞∑
i=1

λi∇i, (2.59)

shows that the predictor coefficients λi can be written as a sum of the corrector coeffi-

cients, just as with single integration. The predictor coefficients can be computed from

(2.56),

i 0 1 2 3 4 5 6 7 8

λi 1 0 1
12

1
12

19
240

3
40

863
12096

275
4032

33953
518400

. (2.60)

Using these coefficients in (2.58),

rn+1 = 2rn + rn−1 + h2

(
1 +

1

12
∇2 +

1

12
∇3 +

19

240
∇4 +

3

40
∇5 + · · ·

)
r̈n, (2.61)

gives the Störmer predictor formula.

2.3.6 Gauss-Jackson

The Gauss-Jackson method is the summed form of the Störmer-Cowell method. Ac-

cording to Herrick ([3], p. 12), the method was named Gauss-Jackson because of its

appearance in a 1924 paper by Jackson [12]. The Gauss-Jackson method is also referred

to as the second-sum method.

2.3 Multi-Step Integrators 20

The Gauss-Jackson corrector can be derived from the Cowell corrector by noting that

the position terms in (2.57) may be combined using a second backward difference,

∇2rn = h2

(
1−∇+

1

12
∇2 − 1

240
∇4 − 1

240
∇5 − 221

60480
∇6 + . . .

)
r̈n. (2.62)

Multiplying both sides by the second sum term, ∇−2, gives an equation for position [8],

rn = h2∇−2

(
1−∇+

1

12
∇2 − 1

240
∇4 − 1

240
∇5 − 221

60480
∇6 + . . .

)
r̈n. (2.63)

Note that (1−∇)r̈n = E−1r̈n = r̈n−1, so that the first two terms can be simplified,

rn = h2

[
∇−2r̈n−1 +

(
1

12
− 1

240
∇2 − 1

240
∇3 − 221

60480
∇4 + . . .

)
r̈n

]
; (2.64)

this expression is the Gauss-Jackson corrector formula.

A similar process on the Störmer predictor (2.61) gives a summed predictor formula,

rn+1 = h2

[
∇−2r̈n +

(
1

12
+

1

12
∇+

19

240
∇2 +

3

40
∇3 + . . .

)
r̈n

]
, (2.65)

which is the Gauss-Jackson predictor formula. Note that for the predictor the second

sum operator acts on r̈n, while for the corrector it acts on r̈n−1.

2.3.7 Startup Formulas

In order to calculate the differences ∇i, the difference table 2.1 must be calculated,

which depends on having values of acceleration at the backpoints. To calculate the N th

difference N + 1 points must be known. The initial value problem only gives the initial

conditions at epoch, so a startup procedure is required to find position and velocity,

and then acceleration, at the other backpoints. One possible method is to use a single-

step integrator, such as Runge-Kutta, to find the values at the initial set of backpoints.

Another method, described here, is to use an iterative method that takes an initial guess

of the backpoints and refines them with corrector formulas. These corrector formulas,

which correct a value using not only previous points, but also future known points, may

be called mid-corrector formulas.

The initial set of guess values can be found by using the analytic two-body solution. For

a method that uses the N th difference, N + 1 total points are needed, so N points in

addition to epoch must be found. To reduce the error that comes from the two-body

solution, instead of propagating N steps forward, N/2 steps are taken both forward and

2.3 Multi-Step Integrators 21

backward. These points are numbered using a symmetric index, from −N/2 to N/2,

with epoch numbered 0. This system requires that N be even, as it is for the integrators

in this study. If N were odd an additional point would be needed either before or after

epoch.

After the set of guess values is found, each value, other than epoch, is corrected with a

mid-corrector formula, except for the last value, which uses the corrector formula. The

computation point refers to the point that is being corrected. The formulas are numbered

using the letter j as an index with symmetric index numbers. So the mid-correctors are

numbered j = −N/2 to j = N/2− 1, and the corrector is numbered j = N/2. Similarly

the predictor can be considered the j = N/2 + 1 formula.

The mid-correctors are found from the corrector by shifting backwards where the operator

is applied, using the shift operator E−1 = 1 −∇. Using the corrector operator L as an

example, the relation of operators to coefficient sets can be seen on the diagram for an

eighth-order method:

j = −4 (1−∇)8L

j = −3 (1−∇)7L

mid-correctors


...

... ↑ apply 1−∇
j = 2 (1−∇)2L ↓ apply (1−∇)−1

j = 3 (1−∇)L

corrector j = 4 L

predictor j = 5
L

1−∇

The coefficients for each mid-corrector may be computed from the next one by application

of the operator 1 − ∇. For an arbitrary power series in ∇ with coefficients d, multiply

the series:

(d0 + d1∇+ d2∇2 + . . .)(1−∇) = d0 + (d1 − d0)∇+ (d2 − d1)∇2 + . . . (2.66)

In other words, the coefficients for a particular value of j are just the differences of

coefficients of adjacent values of powers of ∇ for the next higher value of j. As shown

in the derivation of the Adams and Störmer-Cowell predictors from their correctors, the

coefficients are also the sums of all the coefficients of the next lower j, through the

2.3 Multi-Step Integrators 22

particular power of ∇,

(m0 +m1∇+m2∇2 + . . .)
1

1−∇
= (m0 +m1∇+m2∇2 + . . .)

(
1 +∇+∇2 +∇3 + . . .

)
=
∑

k

(
k∑

i=0

mi

)
∇k. (2.67)

All the coefficients taken together may be viewed as an array, with the rows indexed by

j, and the columns by the backcount i. For an N th-order integrator, there are N + 1

terms in the series expansion of the operator for each j, and there are N + 2 values of

j (including the predictor); therefore, the full array of coefficients has (N + 1)(N + 2)

elements. For example, the eighth-order integrator has 9× 10 = 90 coefficients.

Coefficient arrays for the integrators described above may be found using this procedure.

The arrays for the summed Adams and Gauss-Jackson methods are shown here, since

those methods are used as the control for the study in Chapter 5. The array for the

summed Adams coefficients is called b′, and the array for the Gauss-Jackson coefficients

is called a′. These arrays have two subscripts: the first is the number of the formula j,

and the second is the power of ∇ to which the coefficient corresponds. For instance, the

summed Adams corrector (2.50) may be written with b′,

ṙn = h

(
∇−1r̈n +

N∑
i=0

b′N
2

,i
∇ir̈n

)
. (2.68)

The last mid-corrector formula (j = N
2
− 1) is obtained by applying E−1 to the corrector

formula,

ṙ N
2
−1 =E−1ṙ N

2

=E−1h

[
∇−1r̈ N

2
+

(
−1

2
− 1

12
∇− 1

24
∇2 − 19

720
∇3 − 3

160
∇4 + . . .

)
r̈ N

2

]
=h

[
∇−1r̈ N

2
−1 +

(
−1

2
+

5

12
∇+

1

24
∇2 +

11

720
∇3 +

11

1440
∇4 + . . .

)
r̈ N

2

]
, (2.69)

keeping in mind E−1 = 1 − ∇ from (2.17). Using b′ as the coefficients, in general the

mid-corrector formulas can be written as

ṙn = h

(
∇−1r̈n +

N∑
i=0

b′ni∇ir̈ N
2
,

)
(2.70)

2.3 Multi-Step Integrators 23

where −N
2
≤ n ≤ N

2
− 1. The coefficients b′ji for each value of j are obtained by taking

differences of the coefficients for j + 1. The mid-corrector coefficients are thus computed

recursively,

b′ji =

{
b′j+1,i − b′j+1,i−1 if i > 0

b′j+1,i if i = 0
(2.71)

for −N
2
≤ j ≤ N

2
− 1.

The predictor formula (2.51), may also be written using b′,

ṙn+1 = h

(
∇−1r̈n +

N∑
i=0

b′N
2

+1,i
∇ir̈n

)
. (2.72)

The eighth-order coefficients b′ji are presented in Table 2.3.

Table 2.3: Eighth-Order Summed-Adams Difference Coefficients, b′ji

i

j 0 1 2 3 4 5 6 7 8

−4 −1
2

47
12

−107
8

18701
720

−45083
1440

1445281
60480

−1354079
120960

10468447
3628800

−25713
89600

−3 −1
2

41
12

−239
24

11531
720

−22021
1440

520399
60480

−11603
4480

1070017
3628800

8183
1036800

−2 −1
2

35
12

−169
24

6461
720

−1011
160

138241
60480

− 5257
17280

− 33953
3628800

− 425
290304

−1 −1
2

29
12

−37
8

3131
720

−2837
1440

19087
60480

275
24192

7297
3628800

7
12800

0 −1
2

23
12

−65
24

1181
720

− 95
288

− 863
60480

− 13
4480

− 3233
3628800

− 2497
7257600

1 −1
2

17
12

−31
24

251
720

3
160

271
60480

191
120960

2497
3628800

2497
7257600

2 −1
2

11
12

−3
8

− 19
720

− 11
1440

− 191
60480

− 191
120960

− 3233
3628800

− 7
12800

3 −1
2

5
12

1
24

11
720

11
1440

271
60480

13
4480

7297
3628800

425
290304

4 −1
2

− 1
12

− 1
24

− 19
720

− 3
160

− 863
60480

− 275
24192

− 33953
3628800

− 8183
1036800

5 1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

25713
89600

The Gauss-Jackson corrector (2.64) can be written using the coefficients a′,

rn = h2

(
∇−2r̈n−1 +

N∑
i=0

a′N
2

,i
∇ir̈n

)
, (2.73)

as can the predictor,

rn+1 = h2

(
∇−2r̈n +

N∑
i=0

a′N
2

+1,i
∇ir̈n

)
. (2.74)

2.3 Multi-Step Integrators 24

Table 2.4: Eighth-Order Gauss-Jackson Difference Coefficients, a′ji

i

j 0 1 2 3 4 5 6 7 8

−4 1
12

−2
3

559
240

−371
80

347539
60480

−45601
10080

7965611
3628800

−427487
725760

3250433
53222400

−3 1
12

− 7
12

419
240

−347
120

172651
60480

−20191
12096

1908311
3628800

− 8183
129600

− 330157
159667200

−2 1
12

−1
2

299
240

−79
48

73111
60480

− 6961
15120

33953
518400

407
172800

45911
159667200

−1 1
12

− 5
12

199
240

−49
60

23719
60480

− 275
4032

− 9829
3628800

− 641
1814400

− 3499
53222400

0 1
12

−1
3

119
240

− 77
240

863
12096

19
6048

1571
3628800

289
3628800

317
22809600

1 1
12

−1
4

59
240

− 3
40

− 221
60480

− 31
60480

− 289
3628800

0 317
22809600

2 1
12

−1
6

19
240

1
240

31
60480

0 − 289
3628800

− 289
3628800

− 3499
53222400

3 1
12

− 1
12

− 1
240

0 31
60480

31
60480

1571
3628800

641
1814400

45911
159667200

4 1
12

0 − 1
240

− 1
240

− 221
60480

− 19
6048

− 9829
3628800

− 407
172800

− 330157
159667200

5 1
12

1
12

19
240

3
40

863
12096

275
4032

33953
518400

8183
129600

3250433
53222400

The mid-correctors can also be written with the a′ coefficients,

rn = h2

(
∇−2r̈n−1 +

N∑
i=0

a′ni∇ir̈ N
2

)
, (2.75)

where −N
2
≤ n ≤ N

2
− 1. The coefficients of the mid-correctors are computed as the dif-

ference (2.66) of the corrector coefficients; the entire set of coefficients are thus computed

recursively,

a′ji =

{
a′j+1,i − a′j+1,i−1 if i > 0

a′j+1,i if i = 0
(2.76)

for −N
2
≤ j ≤ N

2
− 1. The eighth-order coefficients a′ji are presented in Table 2.4.

Note that the sum introduced by the ∇−2 term in the mid-correctors or corrector is

accumulated through the point before the point being corrected; this is given by the r̈n−1

term in (2.64).

2.3.8 Ordinate Forms

The formulas given above all involve multiple differences and sums. In order to com-

pute these formulas to a particular order, all the elements of the appropriate difference

2.3 Multi-Step Integrators 25

tables need to be computed. Calculating the differences can be time-consuming and is

unnecessary because the formulas can be re-expressed in terms of the function values

themselves.

As shown above in (2.14), powers of the difference operators can be reduced to linear

combinations of the original function values. The backward difference operator raised to

any power can be expressed in terms of the binomial coefficients of the function points

∇ir̈n =
i∑

m=0

(
i

m

)
(−1)mr̈n−m, (2.77)

for i ≥ 0. A sum over arbitrary coefficients z′i of the backward difference operator can

thus be written in terms of the values of the function
N∑

i=0

z′i∇ir̈n =
N∑

i=0

z′i

i∑
m=0

(
i

m

)
(−1)mr̈n−m

=
N∑

m=0

(−1)mr̈n−m

N∑
i=m

z′i

(
i

m

)

=
N∑

m=0

zNmr̈n−m, (2.78)

with the ordinate coefficients defined as

zNm = (−1)m

N∑
i=m

z′i

(
i

m

)
. (2.79)

Notice that these coefficients, unlike the difference coefficients z′, depend on N , the order

of the integration method. Here the reference point index m numbers the backpoints so

the current point is m = 0 and each previous point has a higher positive value of m. The

coefficients can also be indexed with the symmetric index form and the letter k, so that

k = N/2−m.

As an example, consider the summed Adams corrector (2.50). For a fourth-order method,

N = 4, the difference coefficients z′i and the ordinate coefficients z4m are

m 0 1 2 3 4

z′i −1
2

− 1
12

− 1
24

− 19
720

− 3
160

z4m −193
288

77
240

− 7
30

73
720

− 3
160

. (2.80)

An alternative formulation includes the ∇0 term −1
2
r̈n with the sum rather than with

the coefficients. The example Adams-Moulton corrector (2.50) is now written

ṙn = h

[
∇−1r̈n −

1

2
r̈n +

(
− 1

12
∇− 1

24
∇2 − 19

720
∇3 − 3

160
∇4 + . . .

)
r̈n

]
. (2.81)

2.3 Multi-Step Integrators 26

With this formulation the m = 0 coefficients are different from (2.80):

m 0 1 2 3 4

z′i 0 − 1
12

− 1
24

− 19
720

− 3
160

zNm − 49
288

77
240

− 7
30

73
720

− 3
160

. (2.82)

All the single-integration corrector and mid-corrector coefficients are computed this way;

however, the ∇0 term is included in the coefficients for the predictor. The eighth-order

summed Adams coefficients in ordinate form bjk are shown in Table 2.5, and the Gauss-

Jackson coefficients ajk are shown in Table 2.6. For Gauss-Jackson, the ∇0 term 1
12

r̈n, is

included with the coefficients and not the sum ∇−2. Although this alternate formulation

is not necessary, it makes the programming easier, as described in the next section. Both

the Gauss-Jackson and the summed Adams coefficients may be compared with [9], Table

III (pages 25–26) and [11] Appendix C.3. Ordinate forms for the Adams, summed Adams,

Störmer-Cowell, and Gauss-Jackson predictors and correctors for orders between 1 and

14 may also be found in [8].

In this section, the z′ are generic difference coefficients such as a′ or b′, and the z are the

corresponding ordinate coefficients, which have an extra subscript to indicate the order.

The actual eighth-order ordinate coefficients a or b do not have an order subscript even

though they are dependent on the order; the two subscripts are the point of integration

j and the point of reference k.

2.3.9 Implementation

To find both position and velocity given a function for acceleration, either a single-

integration method must be used once for velocity and the method used again for position,

or a single-integration method must be used along with a double-integration method. As-

suming that summed and non-summed forms are not used together, the four integrators

derived above offer four implementations: two Adams, two summed Adams, Adams and

Störmer-Cowell, or summed Adams and Gauss-Jackson integration. For convenience,

Gauss-Jackson integration is understood to mean Gauss-Jackson and summed Adams

integration, and Störmer-Cowell integration is understood to mean Störmer-Cowell and

Adams integration. The summed Adams and Gauss-Jackson combination is used in the

tests in Chapter 5. Because these integrators involve sum terms, their implementation is

somewhat complicated, and so is described in detail in this section.

2.3 Multi-Step Integrators 27

T
ab

le
2.

5:
E
ig

ht
h-

O
rd

er
S
um

m
ed

-A
da

m
s

C
o
effi

ci
en

ts
in

O
rd

in
at

e
F
or

m
,
b j

k

k

j
−

4
−

3
−

2
−

1
0

1
2

3
4

−
4

19
08

7
89

60
0

−
42

74
87

72
57

60
34

98
21

7
36

28
80

0
−

50
03

27
40

32
00

64
67

56
70

−
26

16
16

1
36

28
80

0
24

01
9

80
64

0
−

26
30

77
36

28
80

0
81

83
10

36
80

0

−
3

81
83

10
36

80
0

57
25

1
40

32
00

−
11

06
37

7
36

28
80

0
21

84
83

72
57

60
−

69 28
0

53
01

77
36

28
80

0
−

21
03

59
36

28
80

0
55

33
40

32
00

−
42

5
29

03
04

−
2

−
42

5
29

03
04

76
45

3
36

28
80

0
51

43
57

60
0

−
66

01
27

36
28

80
0

66
1

56
70

−
49

97
80

64
0

83
92

7
36

28
80

0
−

19
10

9
36

28
80

0
7

12
80

0

−
1

7
12

80
0

−
23

17
3

36
28

80
0

29
57

9
72

57
60

24
97

57
60

0
−

25
63

22
68

0
17

29
93

36
28

80
0

−
64

63
40

32
00

24
97

72
57

60
−

24
97

72
57

60
0

0
−

24
97

72
57

60
0

14
69

40
32

00
−

68
11

9
36

28
80

0
25

27
69

36
28

80
0

0
−

25
27

69
36

28
80

0
68

11
9

36
28

80
0

−
14

69
40

32
00

24
97

72
57

60
0

1
24

97
72

57
60

0
−

24
97

72
57

60
64

63
40

32
00

−
17

29
93

36
28

80
0

25
63

22
68

0
−

24
97

57
60

0
−

29
57

9
72

57
60

23
17

3
36

28
80

0
−

7
12

80
0

2
−

7
12

80
0

19
10

9
36

28
80

0
−

83
92

7
36

28
80

0
49

97
80

64
0

−
66

1
56

70
66

01
27

36
28

80
0

−
51

43
57

60
0

−
76

45
3

36
28

80
0

42
5

29
03

04

3
42

5
29

03
04

−
55

33
40

32
00

21
03

59
36

28
80

0
−

53
01

77
36

28
80

0
69 28

0
−

21
84

83
72

57
60

11
06

37
7

36
28

80
0

−
57

25
1

40
32

00
−

81
83

10
36

80
0

4
−

81
83

10
36

80
0

26
30

77
36

28
80

0
−

24
01

9
80

64
0

26
16

16
1

36
28

80
0

−
64

67
56

70
50

03
27

40
32

00
−

34
98

21
7

36
28

80
0

42
74

87
72

57
60

−
19

08
7

89
60

0

5
25

71
3

89
60

0
−

94
01

02
9

36
28

80
0

53
93

23
3

51
84

00
−

98
39

60
9

40
32

00
16

72
87

45
36

−
13

53
52

31
9

36
28

80
0

10
21

98
41

40
32

00
−

40
98

77
71

36
28

80
0

32
88

52
1

10
36

80
0

2.3 Multi-Step Integrators 28

T
ab

le
2.

6:
E
ig

ht
h-

O
rd

er
G

au
ss

-J
ac

ks
on

C
o
effi

ci
en

ts
in

O
rd

in
at

e
F
or

m
,
a

jk

k

j
−

4
−

3
−

2
−

1
0

1
2

3
4

−
4

32
50

43
3

53
22

24
00

57
27

41
57

02
40

0
−

87
01

68
1

39
91

68
00

40
26

31
1

13
30

56
00

−
91

70
39

31
93

34
4

73
70

66
9

39
91

68
00

−
10

25
77

9
13

30
56

00
75

43
31

39
91

68
00

−
33

01
57

15
96

67
20

0

−
3
−

33
01

57
15

96
67

20
0

53
01

13
66

52
80

0
51

88
87

19
95

84
00

−
27

63
1

62
37

00
44

77
3

10
64

44
8

−
53

15
21

19
95

84
00

10
93

43
99

79
20

0
−

12
61

47
52

00
45

91
1

15
96

67
20

0

−
2

45
91

1
15

96
67

20
0

−
18

58
39

39
91

68
00

17
11

37
19

00
80

0
73

64
3

39
91

68
00

−
25

77
5

31
93

34
4

77
59

7
13

30
56

00
−

98
91

1
39

91
68

00
24

17
3

39
91

68
00

−
34

99
53

22
24

00

−
1

−
34

99
53

22
24

00
43

87
49

89
60

0
−

35
03

9
49

89
60

0
90

81
7

95
04

00
−

20
56

1
31

93
34

4
21

17
99

79
20

0
20

59
66

52
80

0
−

31
7

28
51

20
0

31
7

22
80

96
00

0
31

7
22

80
96

00
−

25
39

13
30

56
00

55
06

7
39

91
68

00
−

32
69

11
39

91
68

00
14

79
7

15
20

64
−

32
69

11
39

91
68

00
55

06
7

39
91

68
00

−
25

39
13

30
56

00
31

7
22

80
96

00

1
31

7
22

80
96

00
−

31
7

28
51

20
0

20
59

66
52

80
0

21
17

99
79

20
0

−
20

56
1

31
93

34
4

90
81

7
95

04
00

−
35

03
9

49
89

60
0

43
87

49
89

60
0

−
34

99
53

22
24

00

2
−

34
99

53
22

24
00

24
17

3
39

91
68

00
−

98
91

1
39

91
68

00
77

59
7

13
30

56
00

−
25

77
5

31
93

34
4

73
64

3
39

91
68

00
17

11
37

19
00

80
0

−
18

58
39

39
91

68
00

45
91

1
15

96
67

20
0

3
45

91
1

15
96

67
20

0
−

12
61

47
52

00
10

93
43

99
79

20
0

−
53

15
21

19
95

84
00

44
77

3
10

64
44

8
−

27
63

1
62

37
00

51
88

87
19

95
84

00
53

01
13

66
52

80
0

−
33

01
57

15
96

67
20

0

4
−

33
01

57
15

96
67

20
0

75
43

31
39

91
68

00
−

10
25

77
9

13
30

56
00

73
70

66
9

39
91

68
00

−
91

70
39

31
93

34
4

40
26

31
1

13
30

56
00

−
87

01
68

1
39

91
68

00
57

27
41

57
02

40
0

32
50

43
3

53
22

24
00

5
32

50
43

3
53

22
24

00
−

11
01

14
81

19
95

84
00

63
22

57
3

28
51

20
0

−
86

60
60

9
16

63
20

0
25

16
29

27
31

93
34

4
−

15
93

14
45

3
19

95
84

00
18

07
13

51
33

26
40

0
−

24
11

58
43

99
79

20
0

10
37

98
43

9
15

96
67

20
0

2.3 Multi-Step Integrators 29

Overview

In order to use the predictor-corrector formulas to integrate forward in time with an

N th order method, N + 1 points must already be known. To preserve the order of the

method, these N+1 points must have also been found using an N th order method. Since

initially only one point, epoch, is known, a startup procedure is necessary. If N + 1

initial estimated points are given, the mid-corrector and corrector formulas can be used

to refine them. By applying the mid-correctors iteratively until the points converge, the

resulting points are accurate through N th order.

For the eighth-order methods used in this study, a Taylor expansion of the two-body

solution to fifth order (f and g series, [2] Eq. (4–68)) is used for the initial estimate,

though a single-step integrator, such as Runge-Kutta could be used. The analytic solution

generates eight positions and velocities in addition to epoch: four before epoch and four

after epoch. The accelerations at all nine points are then found from the positions

and velocities, and corrector and mid-corrector formulas are applied to the eight non-

epoch accelerations, which generates corrected positions and velocities. These corrected

positions and velocities are used to find corrected accelerations, and the cycle repeats,

until the accelerations converge, i.e., on two successive iterations, the absolute difference

is less than a specified tolerance. This process can be denoted SECECE. . . CE, where

“S” is startup estimate, “E” is evaluate, and “C” is correct. This process is done for the

eight initial points other than epoch.

Once the startup points have been corrected to satisfactory accuracy, the regular predictor-

corrector process can start. First the predictor equation is used to find the position and

velocity of the first point after startup, and the force model is evaluated to find the accel-

eration of that point. This predicted acceleration is then used in the corrector formula to

find a corrected position and velocity. If only performing one evaluation per step, PEC,

the process stops here and the next value is predicted. If multiple evaluations are allowed,

the corrected position and velocity are compared to the predicted values, and if they do

not match to some tolerance, another acceleration is evaluated, which is then used in

the corrector. Note that this procedure is different from startup, where convergence of

acceleration is checked. This cycle repeats until the position and velocity converge. This

process gives a P(EC)n implementation. In some implementations a maximum value of

n may be specified.

2.3 Multi-Step Integrators 30

Single Integration

The first step in startup of single integration is to use the mid-corrector formulas to

correct the eight estimated velocities around epoch. In difference form, these formulas

are (2.70); using the ordinate coefficients b, the formulas are

ṙn = h

(
∇−1r̈n −

r̈n

2
+

4∑
k=−4

bnkr̈k

)
, (2.83)

with −4 ≤ n ≤ 4. Note the term − r̈n

2
is excluded from the coefficient sum in anticipation

of its inclusion in the acceleration term, as in (2.81). The integration constant C1 (see

Section 2.3.1) may be determined by making sure that the initial conditions (n = 0)

ṙ0 = h

(
∇−1r̈0 −

r̈0

2
+

4∑
k=−4

b0kr̈k

)
(2.84)

are satisfied; solving for C1 = ∇−1r̈0,

C1 =
ṙ0

h
−

4∑
k=−4

b0kr̈k +
r̈0

2
. (2.85)

As discussed in the previous section, the acceleration term may be included with the

sum to make software implementation easier. Define the term sn = ∇−1r̈n − 1
2
r̈n, which

replaces the first two terms in (2.83), and define a new integration constant C ′
1 = C1− r̈0

2
.

Then (2.83) may be rewritten

ṙn = h

(
sn +

4∑
k=−4

bnkr̈k

)
, (2.86)

where n ranges from −4 to 4, with

sn =


sn−1 +

r̈n−1 + r̈n

2
if n > 0,

C ′
1 if n = 0,

sn+1 −
r̈n+1 + r̈n

2
if n < 0.

(2.87)

Table 2.7 shows the relationship between the summed accelerations and sn near epoch.

For a given value of n, notice the symmetry of the formulas in the last column; changing

the sign of n merely changes the sign of the term added to C ′
1. This formulation makes

programming simpler and is the reason that the term−r̈0/2 is moved from the coefficients

2.3 Multi-Step Integrators 31

Table 2.7: Relationship Between Summation Term and sn

n r̈n ∇−1r̈n sn = ∇−1r̈n − 1
2
r̈n

−2 r̈−2 C1 − r̈0 − r̈−1 C ′
1 − 1

2
r̈0 − r̈−1 − 1

2
r̈−2

−1 r̈−1 C1 − r̈0 C ′
1 − 1

2
r̈0 − 1

2
r̈−1

0 r̈0 C1 C ′
1

1 r̈1 C1 + r̈1 C ′
1 + 1

2
r̈0 + 1

2
r̈1

2 r̈2 C1 + r̈1 + r̈2 C ′
1 + 1

2
r̈0 + r̈1 + 1

2
r̈2

to the sum. The sn are computed successively in order to compute the startup velocities.

While the formulas are correct for n = 0, no correction is performed on epoch.

Once the startup points have been corrected, integration may proceed forward with

application of the predictor, followed by one or more applications of the corrector. The

predictor finds the velocity ṙn+1 from the coefficients in row 5 of the b array, and the

nine most recent accelerations r̈n−8 . . . r̈n. The formula also includes a ∇−1 term which

is the sum of all the accelerations since epoch and C1,

ṙn+1 = h

(
∇−1r̈n +

4∑
k=−4

b5kr̈n+k−4

)
, (2.88)

with n ≥ 4. This expression differs from the difference form given in (2.72). For pro-

gramming, the predictor can be written using sn,

ṙn+1 = h

(
sn +

r̈n

2
+

4∑
k=−4

b5kr̈n+k−4

)
. (2.89)

The Adams-Moulton corrector formula in difference form (2.81), for any point n > 4

after the startup, can be rewritten using the eighth-order ordinate coefficients b. These

coefficients are applied to the eight previous accelerations and the current predicted

acceleration,

ṙn = h

(
∇−1r̈n −

r̈n

2
+

4∑
k=−4

b4kr̈n+k−4

)
, (2.90)

with n ≥ 4. Note that (2.90) is the same as (2.83) for n = 4. The corrector can be

written using sn,

ṙn = h

(
sn +

4∑
k=−4

b4kr̈n+k−4

)
. (2.91)

2.3 Multi-Step Integrators 32

Depending on the implementation, this equation may be applied through several eval-

uate and correct (EC) iterations, but only the last acceleration, k = 4, changes, so the

summation for the first eight need only be done once, then saved through the iterations.

Second Integration

The mid-correctors, predictor, and corrector for the second integration ordinate form are

respectively

rn =h2

(
∇−2r̈n−1 +

4∑
k=−4

ankr̈k

)
−4 ≤ n ≤ 4 , (2.92)

rn+1 =h2

(
∇−2r̈n +

4∑
k=−4

a5kr̈n+k−4

)
n ≥ 4 , (2.93)

rn =h2

(
∇−2r̈n−1 +

4∑
k=−4

a4kr̈n+k−4

)
n ≥ 4 , (2.94)

corresponding to the difference form (2.75), (2.74), (2.73). To find the integration con-

stant for second integration, C2, use n = 0 in (2.92),

r0 = h2

(
∇−2r̈−1 +

4∑
k=−4

a0kr̈k

)
. (2.95)

Table 2.2 shows that the second sum on the point immediately before epoch is the

difference of the two constants of integration,

∇−2r̈−1 = C2 − C1, (2.96)

which then allows us to solve for C2, because C1 is known (2.85),

C2 =
r0

h2
−

4∑
k=−4

a0kr̈k + C1. (2.97)

For software implementation, a term Sn = ∇−2r̈n−1 is defined recursively

Sn =


Sn−1 + sn−1 +

r̈n−1

2
if n > 0,

C2 − C1 if n = 0,

Sn+1 − sn+1 +
r̈n+1

2
if n < 0.

(2.98)

2.3 Multi-Step Integrators 33

The mid-correctors, predictor, and corrector can now be written in terms of Sn,

rn =h2

(
Sn +

4∑
k=−4

ankr̈k,

)
−4 ≤ n ≤ 4, (2.99)

rn+1 =h2

(
Sn+1 +

4∑
k=−4

a5kr̈n+k−4

)
n ≥ 4, (2.100)

rn =h2

(
Sn +

4∑
k=−4

a4kr̈n+k−4

)
n ≥ 4. (2.101)

As with first integration, the summation in the corrector may be split, because the first

eight accelerations do not change during the EC iteration.

Procedure

A step by step procedure for the operation of the integrator can now be written:

Startup

1. Use f and g series to calculate 8 positions and velocities surrounding epoch.

2. Evaluate 9 accelerations from these positions and velocities, and those of epoch.

3. While the accelerations have not converged:

(a) Calculate s0 (2.87) and S0 (2.98).

(b) For each point n = −4 . . . 4, n 6= 0:

i. Calculate sn (2.87) and Sn (2.98).

ii. Calculate
4∑

k=−4

bnkr̈k.

iii. Calculate
4∑

k=−4

ankr̈k.

iv. Calculate ṙn (2.86) and rn (2.99).

v. Evaluate the acceleration r̈n using the appropriate force model.

(c) Test convergence of the accelerations.

2.3 Multi-Step Integrators 34

Predict

4. Calculate Sn+1 (2.98).

5. Calculate
4∑

k=−4

b5kr̈n+k−4.

6. Calculate
4∑

k=−4

a5kr̈n+k−4.

7. Calculate ṙn+1 (2.89) and rn+1 (2.100).

Evaluate — Correct

8. Evaluate the acceleration r̈n+1.

9. Increment n.

10. While ṙn and rn have not converged, and the maximum number of corrector iter-

ations is not exceeded:

(a) Calculate sn (2.87).

(b) If first iteration:

i. Calculate
3∑

k=−4

b4kr̈n+k−4.

ii. Calculate
3∑

k=−4

a4kr̈n+k−4.

(c) Calculate b44r̈n and a44r̈n.

(d) Calculate ṙn (2.91) and rn (2.101).

(e) Test convergence of ṙn and rn; if not converged, and this is not the last

allowable corrector iteration, evaluate r̈n.

11. Go to 4.

Similar procedures are used for implementing two Adams, two summed Adams, or Adams

with Störmer-Cowell.

2.4 s-integration 35

2.4 s-integration

For elliptical orbits, fixed-step integrators are less efficient than variable-step methods,

because many steps have to be taken at apogee in order to get the desired accuracy

at perigee. One way of increasing the efficiency of numerically integrating elliptical

orbits is to change the independent variable using a generalized Sundman transformation

[13]. Integrating with the new independent variable is known as s-integration, while

conventional integration with time as the independent variable is known as t-integration.

Use of s-integration can be considered an analytic step regulation, because the step size

in time is changed by an analytic transformation.

2.4.1 Transformation Equation

Sundman [14] and Levi-Civita [15], in attempting to solve the restricted problem of three

bodies, introduced the transformation of the independent variable

dt = cr ds, (2.102)

with c constant for the two-body orbit, because this transformation regularizes, and in

fact linearizes, the equations of motion. Later investigators raised r to different powers

in the transformation,

dt = crn ds, (2.103)

known as the generalized Sundman transformation (Szebehely and Bond [16] generalized

even more, allowing an arbitrary function of r).

In some cases the new independent variable s can be written in terms of an orbit angle.

An orbit angle is any angle θ considered a function of true anomaly θ(ν) that has the

following properties:

• At perigee, the value of the angle is the same as true anomaly: θ(ν) = ν = 2πm

for any integer m.

• At apogee, the value of the angle is the same as true anomaly: θ(ν) = ν = πm for

any odd integer m.

• The angle increases monotonically with true anomaly, θ(ν2) > θ(ν1) if ν2 > ν1.

• There is symmetry about the major axis: θ(ν) = −θ(−ν).

2.4 s-integration 36

Examples include the mean, eccentric, and true anomalies. Simply applying the trans-

formation to s does not assure that s is then an orbit angle; c must be picked so that the

appropriate boundary conditions are satisfied.

For each of the possible values of n ≥ 1, there is a corresponding angle ([9], p. 100; [17];

[18], p. 19; [2], p. 484):

• n = 1 or dt = cr ds. The angle s is the eccentric anomaly if c is chosen so that s is

an orbit angle, c =
√
a/µ. This case is Sundman’s original transformation, or the

Kustaanheimo-Stiefel transformation [18].

• n = 2 or dt = cr2ds. The angle s is the true anomaly if c is chosen so that s is an

orbit angle, c = [µa(1− e2)]−1/2.

• n = 3/2 or dt = cr3/2ds. In this case s is known as the intermediate anomaly (see

below) when c = 1/
√
µ [17], though s does not have any meaning as an angle in

the orbit. A value of c so that s is an orbit angle is found in [13].

Ferrer and Sein-Echaluce [19] showed that only n = 1 and n = 2 linearize the Kepler

problem; the latter only with regularization. Palmer et al. [20] studied the use of an

n = 1 transformation for integration with a Bulirsch-Stoer integrator and compared

results using positions obtained from a GPS-equipped satellite. Merson [21] introduced

the idea of using the value n = 3/2 in the generalized Sundman transformation, with an

intent not of regularization per se, but of maximizing computational efficiency; see also

[22]. He gave an analysis showing that this value of n equally distributes the integration

error around a full orbit, even if the eccentricity is high. One may conclude that this

method is preferred for numerical integration. He also gave accuracy and timing results

for n = 3/2, compared to other integrators. Nacozy [17], expressed s with n = 3/2 in

terms of an elliptic integral of the true anomaly, and dubbed this angle the intermediate

anomaly. His choice of constant c = 1/
√
µ made s dimensionless but did not result in an

orbit angle.

There are two ways to approach a numerical integration implementation using these

transformations. The step size at perigee can be fixed through the transformation; in

this case, the total number of steps varies depending on the transformation. Expressing

the transformations as orbit angles, Figure 2.2 illustrates this approach with an approxi-

mately fixed perigee step of ∆ν ≈ 1.0 radian. Alternatively, one can fix the total number

of steps on an orbit, and allow the step sizes to vary. Figure 2.3 illustrates this approach

with sixteen points equally distributed in the same four orbit angles. The figures show

an orbit with 0.75 eccentricity. Since perturbations affect the orbit, they also affect the

2.4 s-integration 37

transformations. However, the steps in these figures assume a Kepler problem in order

to understand the general characteristics of s-integration.

Figure 2.2(a) demonstrates the inefficiency of t-integration for elliptical orbits. In order

to get the desired step at perigee, there are many integration points close together at

apogee. These steps are closer than needed to maintain the desired accuracy. Integrating

with the intermediate anomaly, shown in Figure 2.2(c), gives the same step size at perigee

with only 10 steps over the orbit, in contrast to 58 steps with t-integration. Figure 2.3

shows how the integration points are spread throughout the orbit using the different orbit

angles. With t-integration, Figure 2.3(a), most of the steps are at apogee, where they are

not needed. With eccentric anomaly, Figure 2.3(b), the points seem to be spread evenly

about the orbit. With the intermediate anomaly, Figure 2.3(c), there are more steps

toward perigee. Because the perturbations due to atmospheric drag and geopotential

are greater at perigee, integrating with the intermediate anomaly has an advantage over

the eccentric anomaly. Figure 2.3(d) shows that integrating with the true anomaly puts

more steps towards perigee than integrating with the intermediate anomaly. The steps

at apogee may be too far apart with the true anomaly to maintain accuracy.

2.4.2 Implementation of the Transformation

One of the integration methods tested in Chapter 5 is s-integration. The s-integration

is the Merson / Nacozy form discussed in the previous section with n = 3/2 and c =

1/
√
µ, so s is not an orbit angle. The s-integration is performed using the eighth-order

Gauss-Jackson integrator. The implementation of t-integration with Gauss-Jackson is

described in Section 2.3.9. Integration in s uses the same code, but adds the necessary

transformation from t to s space; the transformation back into to time requires the

integration of an additional, seventh, differential equation (2.103).

A step size in time is first selected. For s-integration the step size must be converted into

s-space, by using the derivative (2.103) as an approximation of the discrete step. The

conversion is performed using the distance from earth center to the satellite at perigee

rp,

∆s =
√
µ r

− 3
2

p ∆t. (2.104)

Since the distance at perigee is used in the conversion, the step at perigee in true anomaly

is approximately the same for s-integration (Figure 2.2(c)) as it is in t-integration (Fig-

ure 2.2(a)). In the tests in Chapter 5 step sizes for s-integration are referred to in units

of time; these are actually the step sizes at perigee which must be converted to s-steps

with (2.104).

2.4 s-integration 38

(a) Equal Mean Anomaly (n=0) with 58
Steps

(b) Equal Eccentric Anomaly (n=1) with
16 Steps

(c) Equal Intermediate Anomaly
(n=3/2) with 10 Steps

(d) Equal True Anomaly (n=2) with 6
Steps

Figure 2.2: Points Separated by Equal Values of Various Orbit Angles, with Equal Steps at

Perigee

2.4 s-integration 39

(a) Equal Mean Anomaly (n=0); Step
Size at Perigee Is ∆ν = 1.97 Radians

(b) Equal Eccentric Anomaly (n=1);
Step Size at Perigee Is ∆ν = 0.97 Ra-
dians

(c) Equal Intermediate Anomaly
(n=3/2); Step Size at Perigee Is
∆ν = 0.60 Radians

(d) Equal True Anomaly (n=2); Step
Size at Perigee Is ∆ν = 0.39 Radians

Figure 2.3: Points Separated by Equal Values of Various Orbit Angles, with 16 Steps in each

Orbit

2.4 s-integration 40

After the step size is determined the integrator enters its initialization phase, which for

t-integration is described in Section 2.3.9. Because the f and g series equations used in

the initialization depend on the time between the points, and for s-integration the points

must be equally spaced in s, a conversion must be made from s to time. To be exact,

the time should be found by integrating (2.103); however, accuracy is not as critical in

this first phase of the initialization routine, so the time is approximated by holding the

epoch distance constant,

∆tfg =
r

3
2
0√
µ

∆s. (2.105)

After the positions and velocities are calculated by the f and g series, the force model

is evaluated to find the accelerations. These accelerations must then be converted to

s-space by changing t derivatives to s derivatives.

For any value of n and c, the derivatives with respect to s are computed using the

derivatives with respect to t via the relation

d

dt
= c−1r−n d

ds
. (2.106)

Differentiation with respect to s is indicated with a prime (′), while differentiation with

respect to t is indicated by a dot (˙). The velocity is converted by application of (2.106),

ṙ = c−1r−nr′. (2.107)

The acceleration can then also be transformed,

r̈ = −c−3c′r−2nr′ − nc−2r−2n−1r′r′ + c−2r−2nr′′, (2.108)

where c′ = dc/ds may be non-zero if perturbations are present (say, if c depends on a or

e). In the present case c = 1/
√
µ, and n = 3/2, so (2.108) can be solved for r′′,

r′′ =
1

µ

(
3

2
r2ṙṙ + r3r̈

)
. (2.109)

This equation involves the derivative of the (scalar) magnitude r which is easily calcu-

lated,

ṙ =
d
√

r · r
dt

=
r · ṙ
r
, (2.110)

so that the second derivative may be rewritten,

r′′ =
1

µ

(
3

2
r(r · ṙ)ṙ + r3r̈

)
. (2.111)

2.4 s-integration 41

These second derivatives are then integrated using the Gauss-Jackson and summed

Adams mid-corrector formulas to find the position and velocity at each of the 8 points

surrounding epoch. The integration does not give velocity directly; it gives r′ = dr/ds.

So a conversion must be made to find velocity,

ṙ =

√
µr′

r
3
2

. (2.112)

Before the force model can be re-evaluated, the time at each point must be found. The

time is found by integrating the transformation (2.103),

t′ =
1
√
µ
r

3
2 , (2.113)

using the summed Adams mid-corrector formulas. With the time known the forces

are evaluated to compute refined estimates of the accelerations, these accelerations are

converted into s-space second derivatives, and the integration is performed again to obtain

positions, velocities, and times at the points. This process repeats until the accelerations

between two iterations converges to a prescribed tolerance. The initialization procedure

for s integration may thus be summarized:

Initialization for s-integration

1. Convert t step size to s step using the perigee distance, (2.104).

2. Use f and g series to calculate 8 positions and velocities surrounding epoch, holding

the epoch distance constant to find the time, (2.105).

3. Evaluate 9 accelerations from the positions and velocities, including epoch.

4. Convert the accelerations into s derivatives, (2.111).

5. While the s second derivatives have not converged:

(a) For each point n = −4 . . . 4, n 6= 0:

i. Calculate rn and r′n, using Gauss-Jackson and summed Adams mid-

corrector formulas (2.86), (2.99).

ii. Convert r′n to ṙn, (2.112).

iii. Calculate the time at point n by integrating (2.113) with the summed

Adams mid-corrector formulas.

iv. Evaluate the acceleration r̈n using the appropriate force model.

v. Convert r̈n to r′′n, (2.111).

2.4 s-integration 42

(b) Test convergence of r′′n.

The initialization process is followed by a predictor-corrector cycle, which for t-integration

is described in Section 2.3.9. This cycle is modified for s-integration. When the inde-

pendent variable is s, the predictor and corrector give dr/ds, not velocity, so the velocity

must be found using (2.112). After the position and velocity are found the time at the

new point must be found by solving (2.113) using the summed Adams predictor or cor-

rector formula. After the forces are evaluated, the accelerations must be converted to

second s derivatives using (2.111). Thus the predictor-corrector modified for s-integration

continues from steps 1-5 above as follows:

Predict (s-integration)

6. Calculate rn+1 and r′n+1, using Gauss-Jackson and summed Adams predictor for-

mulas,(2.100),(2.89).

7. Convert r′n+1 to ṙn+1, (2.112).

8. Calculate the time at point n + 1 by integrating (2.113) with the summed Adams

predictor formula.

Evaluate — Correct (s-integration)

10. Evaluate the acceleration r̈n+1.

11. Convert r̈n+1 to r′′n+1, (2.111).

12. Increment n.

13. While rn and ṙn have not converged, and the maximum number of corrector iter-

ations has not been reached:

(a) Calculate rn and r′n, using Gauss-Jackson and summed Adams corrector for-

mulas,(2.101),(2.91).

(b) Convert r′n to ṙn, (2.112).

(c) Calculate the time at point n by integrating (2.113) with the summed Adams

corrector formula.

(d) Test convergence of rn and ṙn; if not converged, and this is not the last

allowable corrector iteration, evaluate r̈n, and convert to r′′n.

14. Predict next time step (go to 6).

2.5 Variable-Step Integration 43

One disadvantage of s-integration is that the integration of (2.113) subjects time to inte-

gration error, which can significantly contribute to in-track error. Another disadvantage

of s-integration is that there is still no control over the local error. Though s-integration

provides analytic step regulation by varying the steps through the orbit as shown in

Figure 2.2, it is still a fixed-step method. The steps are equally spaced by s, instead of

equally spaced by time, t. Variable-step methods, described in the next section, regulate

the step size by controlling the local error.

2.5 Variable-Step Integration

2.5.1 Introduction

True variable-step integration methods change the step size at each step to meet some

tolerance for the local error. The local error is estimated at each step, and the step size

is adjusted so that the estimated error at the next step will be approximately equal to

the tolerance. The local error estimate is made by comparing two integrations made

of different orders. For instance, the Runge-Kutta-Fehlberg method ([6], pp. 286-292)

estimates the local error by comparing the result of fourth-order and fifth-order Runge-

Kutta formulas. For multi-step integrators, local error estimates can be made by using

predictor and corrector formulas of different order.

The multi-step methods derived above in terms of the backward difference operator do not

lend themselves to variable-step integration. Because the backward differences require

a set of backpoints that are equally spaced by the independent variable, a new set of

backpoints is required if the step size is changed. Creating this new set of backpoints

effectively means the integration must be restarted, which reduces the effectiveness of the

variable-step method. For an eighth-order integrator, the startup procedure described

in Section 2.3.7 requires eight evaluations for each iteration of the startup cycle. If, say,

there are typically three iterations of the startup cycle, then a restart costs 24 evaluations.

Since an increase of step size when moving towards apogee means there also has to be a

decrease on the other side, increasing the step size costs 48 evaluations total. So if the

step size is doubled, 48 steps must be taken with the new step size just to break even.

Krogh [23] presented several algorithms for changing the step size that do not involve a

full restart. Some of these methods involve interpolating to find solution values at the

new set of backpoints and then performing evaluations only once, or simply interpolating

the function values to the new set of backpoints so no new evaluations are required.

Gear presented an integrator using interpolation to find the new set of function values

2.5 Variable-Step Integration 44

[5]. Though interpolation does save function evaluations, error is introduced through the

interpolation [23].

Another method suggested by Krogh is to use integration formulas based on interpolating

polynomials in divided difference form so that the backpoints are not required to be

equally spaced. Krogh indicated that this method gives the most flexibility, however

it has the disadvantage that the coefficients must be calculated at every step. Krogh

pointed out that the disadvantage of computing coefficients is minor if the calculation of

the function f is much more costly than the calculation of the coefficients. In our case

the cost of computing the coefficients is nearly insignificant compared to the cost of the

function evaluation, so this method is likely the best for implementing a variable-step

algorithm.

Krogh presented algorithms for integrating differential equations using divided differences

in [24]. His method applies to differential equations of any order, so single-integration

as well as double-integration and higher can be performed. However the algorithms

for solving differential equations of order greater than one involve terms containing the

derivatives. For instance, the double-integration formula involves a velocity term. The

integrator presented in Chapter 4 does not have such a velocity term. Shampine and

Gordon [25] also used divided differences to develop a single-integration variable-step

method. Their work followed the work of Krogh and also included discussion of how

to change the step size to control local error. The derivation of the Shampine-Gordon

method is described in the next section, and is the starting point of the derivation of the

variable-step Störmer-Cowell method presented in Chapter 4.

2.5.2 Shampine-Gordon

The Shampine-Gordon integrator follows a predict, evaluate, correct, evaluate (PECE)

implementation, so there are two evaluations at every step. The corrector is one order

higher than the predictor, which allows for a local error estimate at each step. The

step size and order are adjusted at every step based on the local error estimate. The

derivation of Shampine-Gordon was originally presented in [25], and follows the work

of Krogh [24]. The derivation is repeated here because it is the starting point of the

derivation of the variable-step Störmer-Cowell integrator. The derivation is based on the

concept of divided differences.

2.5 Variable-Step Integration 45

Divided Differences

The Shampine-Gordon integrator is derived by integrating a polynomial that interpolates

through the function values at the backpoints. This polynomial is written in divided

difference form so that the backpoints do not have to be equally spaced.

The (k−1)th degree interpolating polynomial P k,n(t) passes through the k function values

fn−k+1 . . .fn if

P k,n(tn+1−i) = fn+1−i, i = 1 . . . k. (2.114)

Here f i = f(ti, r̈i, ṙi), where f is the right-hand side function in the differential equation

for acceleration

r̈ = f(t, r, ṙ). (2.115)

In divided difference form, the polynomial is written

P k,n(t) = f [tn] + (t− tn)f [tn, tn−1] + (t− tn)(t− tn−1)f [tn, tn−1, tn−2] + · · ·
+ (t− tn)(t− tn−1) · · · (t− tn−k+2)f [tn, tn−1, . . . , tn−k+1], (2.116)

where f [tn, . . . , tn−i+1] is the ith divided difference of fn. The divided differences are

calculated through a recursive relation,

f [tn] = fn,

f [tn, tn−1] =
fn − fn−1

tn − tn−1

,

f [tn, . . . , tn−i] =
f [tn, . . . , tn−i+1]− f [tn−1, . . . , tn−i]

tn − tn−i

. (2.117)

As an example, consider the divided difference table in Table 2.8. Each divided difference

is calculated by subtracting the two values to the left and dividing by the total span in

t that the difference covers.

For the example in Table 2.8, the polynomial P 4,4 that passes through the values is found

from (2.116),

P 4,4 = 7+(t−7)(−2/3)+(t−7)(t−4)(−14/12)+(t−7)(t−4)(t−3)(−11/36). (2.118)

The example can also be used to illustrate how a new point can be added to an existing

polynomial, which is used in the derivation of the corrector. The derivation of the

corrector involves a polynomial that passes through the predicted value as well as all the

same values as the polynomial used by the predictor. When n = 3, the polynomial P 3,3

is known,

P 3,3 = 9 + (t− 4)(4) + (t− 4)(t− 3)(2/3). (2.119)

2.5 Variable-Step Integration 46

Table 2.8: Example Divided Difference Table

n tn f [tn] f [tn, tn−1] f [tn, tn−1, tn−2] f [tn, . . . , tn−3]

1 1 1

&&MMMMMMMMMMMMM

2 3 5

&&LLLLLLLLLLLLL // 2

((QQQQQQQQQQQQQQQQQ

3 4 9

%%KKKKKKKKKKKK // 4

((QQQQQQQQQQQQQQQ // 2/3

))RRRRRRRRRRRRRRRR

4 7 7 // −2/3 // −14/12 // −11/36

The polynomial P 4,4 can be found from P 3,3 by adding one more term at t = 1 that

includes the new difference,

P 4,4 = 9 + (t− 4)(4) + (t− 4)(t− 3)(2/3) + (t− 4)(t− 3)(t− 1)(−11/36). (2.120)

The two forms of P 4,4, (2.118) and (2.120), are equivalent.

Predictor

The Shampine-Gordon predictor finds the predicted value of velocity, ṙp
n+1, at point

(n+1) from the value at n, ṙn, by integrating the interpolating polynomial P k,n defined

in (2.116),

ṙp
n+1 = ṙn +

∫ tn+1

tn

P k,n(t) dt. (2.121)

The superscript p is used to indicate the value is predicted. In order to develop an

effective algorithm to integrate P k,n(t), the terms are rewritten. First, the independent

variable t is replaced by τ which measures the fraction of the current interval covered,

τ =
t− tn
hn+1

, (2.122)

with hn = tn − tn−1 the separation between adjacent values of t. Second, the divided

differences are modified so that they are equivalent to backward differences when the

2.5 Variable-Step Integration 47

step size is constant. The modified divided differences, φ, are defined

φ1(n) = f [tn] = fn = r̈n,

φi(n) =ψ1(n)ψ2(n) · · ·ψi−1(n)f [tn, tn−1, . . . , tn−i+1] i > 1, (2.123)

where ψi(n) is the sum of the i steps leading up to point n,

ψi(n) = hn + hn−1 + · · ·+ hn+1−i. (2.124)

With a constant step size h, ψi(n) = ih, and the modified divided differences reduce to

backward differences,

φi(n) = ∇i−1fn = ∇i−1r̈n, (2.125)

if h = hn = hn−1 = · · · = hn+1−i.

The first term of the polynomial P k,n, (2.116), is simply f [tn]. For i > 1, the ith term of

P k,n(t),

(t− tn)(t− tn−1) · · · (t− tn−i+2)f [tn, tn−1, . . . , tn−i+1] (2.126)

can be written in terms of τ and φi(n),

(τhn+1)(τhn+1 + hn) · · · (τhn+1 + hn + · · ·+ hn−i+3)
φi(n)

ψ1(n)ψ2(n) . . . ψi−1(n)
. (2.127)

Next, the term is multiplied and divided by ψ1(n+ 1) through ψi−1(n+ 1), which allows

the differences to be easily computed from one step to the next,(
τhn+1

ψ1(n+ 1)

)(
τhn+1 + hn

ψ2(n+ 1)

)
· · ·
(
τhn+1 + hn + · · ·+ hn−i+3

ψi−1(n+ 1)

)
× ψ1(n+ 1)ψ2(n+ 1) · · ·ψi−1(n+ 1)

ψi(n)ψ2(n) · · ·ψi−1(n)
φi(n). (2.128)

This expression is simplified by introducing φ∗, defined

φ∗
i (n) = βi(n+ 1)φi(n), (2.129)

where

β1(n+ 1) = 1,

βi(n+ 1) =
ψ1(n+ 1)ψ2(n+ 1) · · ·ψi−1(n+ 1)

ψ1(n)ψ2(n) · · ·ψi−1(n)
i > 1, (2.130)

and by condensing the sums of h in the numerators into ψ,(
τhn+1

ψ1(n+ 1)

)(
τhn+1 + ψ1(n)

ψ2(n+ 1)

)
· · ·
(
τhn+1 + ψi−2(n)

ψi−1(n+ 1)

)
φ∗

i (n). (2.131)

2.5 Variable-Step Integration 48

Noting that the i = 1 term of P k,n(t) is f [tn] = φ1(tn), the ith term (2.126) can be

written,

ci,n(τ)φ∗
i (n), (2.132)

where ci,n(τ) is defined

ci,n(τ) =


1 i = 1,(

τhn+1

ψ1(n+ 1)

)
= τ i = 2,(

τhn+1

ψ1(n+ 1)

)(
τhn+1 + ψ1(n)

ψ2(n+ 1)

)
· · ·
(
τhn+1 + ψi−2(n)

ψi−1(n+ 1)

)
i ≥ 3.

(2.133)

The expression for ci,n(τ) is simplified through a recursion formula,

ci,n(τ) =

(
τhn+1 + ψi−2(n)

ψi−1(n+ 1)

)
ci−1,n(τ), (2.134)

when i ≥ 3. This expression is further simplified by defining αi(n+ 1),

αi(n+ 1) =
hn+1

ψi(n+ 1)
, (2.135)

so that ci,n(τ), (2.133), can be written

ci,n(τ) =


1 i = 1,

τ i = 2,(
αi−1(n+ 1)τ +

ψi−2(n)

ψi−1(n+ 1)

)
ci−1,n(τ) i ≥ 3.

(2.136)

The interpolating polynomial P k,n(t) can now be written as a summation,

P k,n(t) =
k∑

i=1

ci,n(τ)φ∗
i (n). (2.137)

Returning to the original problem of finding the predicted velocity, the polynomial in

(2.121) can be replaced with (2.137),

ṙp
n+1 = ṙn +

∫ tn+1

tn

k∑
i=1

ci,n(τ)φ∗
i (n) dt. (2.138)

Since the φ∗
i (n) are constants, they can be pulled out of the integration,

ṙp
n+1 = ṙn +

k∑
i=1

φ∗
i (n)

∫ tn+1

tn

ci,n(τ) dt. (2.139)

2.5 Variable-Step Integration 49

The integration variable can be changed to τ by (2.122), noting that τ = 0 when t = tn,

τ = 1 when t = tn+1, and dt = hn+1 dτ ,

ṙp
n+1 = ṙn + hn+1

k∑
i=1

φ∗
i (n)

∫ 1

0

ci,n(τ) dτ. (2.140)

To solve the problem, the integral of ci,n(τ) is needed. Focusing on i ≥ 3, the integral of

ci,n to an arbitrary point τ can be written using (2.136),∫ τ

0

ci,n(τ0) dτ0 =

∫ τ

0

(
αi−1(n+ 1)τ0 +

ψi−2(n)

ψi−1(n+ 1)

)
ci−1,n(τ0) dτ0. (2.141)

This integral can be solved using integration by parts,∫
u dv = uv −

∫
v du, (2.142)

where in this case

u =

(
αi−1(n+ 1)τ0 +

ψi−2(n)

ψi−1(n+ 1)

)
, (2.143)

and

dv = ci−1,n(τ0) dτ0, (2.144)

which gives,∫ τ

0

ci,n(τ0) dτ0 =

(
αi−1(n+ 1)τ +

ψi−2(n)

ψi−1(n+ 1)

)∫ τ

0

ci−1,n(τ0) dτ0

− αi−1(n+ 1)

∫ τ0

0

∫ τ1

0

ci−1,n(τ0) dτ0 dτ1. (2.145)

Though a double integral has been introduced, it is on a ci−1,n term. Since the integrals

of the c1,n and c2,n terms can be found easily, a recursive formula for the integral of ci,n
can be found in terms of multiple integrals of lower i values of c.

The recursive formula is found by first introducing notation for multiple integrals of

ci,n(τ),

c
(−q)
i,n (τ) =

∫ τ

0

∫ τq−1

0

∫ τq−2

0

· · ·
∫ τ0

0

ci,n(τ0) dτ0 dτ1 . . . dτq−1. (2.146)

Under this notation (2.145) may be written

c
(−1)
i,n (τ) =

(
αi−1(n+ 1)τ +

ψi−2(n)

ψi−1(n+ 1)

)
c
(−1)
i−1,n(τ)− αi−1(n+ 1)c

(−2)
i−1,n(τ). (2.147)

2.5 Variable-Step Integration 50

The general case is

c
(−q)
i,n (τ) =

(
αi−1(n+ 1)τ +

ψi−2(n)

ψi−1(n+ 1)

)
c
(−q)
i−1,n(τ)− qαi−1(n+ 1)c

(−q−1)
i−1,n (τ). (2.148)

To find the predicted value, (2.140) indicates that c
(−1)
i,n (1) is needed. A variable gi,q is

introduced to simplify the process of finding these values,

gi,q = (q − 1)! c
(−q)
i,n (1). (2.149)

Substituting in the formula for c
(−q)
i,n given in (2.147),

gi,q =

(
αi−1(n+ 1) +

ψi−2(n)

ψi−1(n+ 1)

)
(q − 1)! c

(−q)
i−1,n(1)− αi−1(n+ 1)q! c

(−q−1)
i−1,n (1)

=

(
hn+1

ψi−1(n+ 1)
+

ψi−2(n)

ψi−1(n+ 1)

)
gi−1,q − αi−1(n+ 1)gi−1,q+1, (2.150)

where αi−1(n + 1) has been replaced with (2.135) on the second line. This formula is

further simplified by noting that hn+1 + ψi−2(n) = ψi−1(n+ 1),

gi,q = gi−1,q − αi−1(n+ 1)gi−1,q+1. (2.151)

This equation holds when i ≥ 3.

To write a recursive formula for g, the special cases of i = 1 and i = 2 must be considered.

When i = 1, c1,n = 1, so the integral is

g1,q = (q − 1)! c
(−q)
1,n (1) = (q − 1)!

∫ 1

0

∫ τq−1

0

· · ·
∫ τ1

0

dτ0 dτ1 . . . dτq−1 =
(q − 1)!

q!
=

1

q
.

(2.152)

When i = 2, c2,n = s, so the integral is

g2,q = (q − 1)!

∫ 1

0

∫ τq−1

0

· · ·
∫ τ1

0

τ dτ0 dτ1 . . . dτq−1 =
(q − 1)!

(q + 1)!
=

1

q(q + 1)
. (2.153)

Now a recursive formula for the coefficients gi,q is available,

gi,q =


1

q
i = 1,

1

q(q + 1)
i = 2,

gi−1,q − αi−1(n+ 1)gi−1,q+1 i ≥ 3,

(2.154)

2.5 Variable-Step Integration 51

and the predictor formula (2.121), (2.140), can be written,

ṙp
n+1 = ṙn + hn+1

k∑
i=1

gi,1φ
∗
i (n). (2.155)

This formula is the Shampine-Gordon predictor. The predictor is followed by an eval-

uation, and then the corrector. For a fixed step, αi(n + 1) = 1/i, so the coefficients g

may be calculated ([25], p. 83). Those coefficients are in Table 2.9. The first row of

coefficients, gi,1, in Table 2.9 matches the Adams-Bashforth coefficients γi−1 (2.44).

Table 2.9: Coefficients giq for Constant Step Size

1 2 3 4 5

1 1 1/2 5/12 3/8 251/720

2 1/2 1/6 1/8 19/180

q 3 1/3 1/12 7/120

4 1/4 1/20

5 1/5

Corrector

After the predicted value ṙp
n+1 is found, the function f is evaluated at the predicted point,

giving a predicted acceleration value, r̈p
n+1. The corrector then uses an interpolating

polynomial that is one degree higher than P k,n(t), interpolating through all the same

points as P k,n(t) plus the new point r̈p
n+1. This new polynomial P ∗

k+1,n(t) can be written

in terms of P k,n(t) (see Section 2.5.2),

P ∗
k+1,n(t) = P k,n(t) + ck+1,n(τ)φp

k+1(n+ 1). (2.156)

The new modified divided difference, φp
k+1(n+1), is calculated from the previous modified

divided differences, φi(n), and the new acceleration r̈p
n+1. From the definition of divided

differences, (2.117), and the definition of modified divided differences, (2.123), the relation

from φp
i (n+ 1) to φi(n) can be found,

φp
i (n+ 1) = φi−1(n+ 1)− ψ1(n+ 1) · · ·ψi−1(n+ 1)

ψ1(n) · · ·ψi−1(n)
φi−1(n), (2.157)

2.5 Variable-Step Integration 52

where φp
1(n+ 1) = r̈p

n+1. This relation is simplified by the definition of φ∗
i (n), (2.129),

φp
1(n+ 1) = r̈p

n+1,

φp
i (n+ 1) = φp

i−1(n+ 1)− φ∗
i−1(n+ 1). (2.158)

This relation motivates why β is introduced into the derivation of the predictor.

The corrected velocity at point (n+ 1), ṙn+1, may be found by integrating P ∗
k+1,n(t),

ṙn+1 = ṙn +

∫ tn+1

tn

[
P k,n(t) + ck+1,n(τ)φp

k+1(n+ 1)
]
dt. (2.159)

Combining the terms already known to comprise ṙp
n+1, and changing the integration

variable to τ , the expression is

ṙn+1 = ṙp
n+1 + hn+1

∫ 1

0

ck+1,n(τ)φp
k+1(n+ 1) dτ. (2.160)

The integral term may be replaced with gk+1,1,

ṙn+1 = ṙp
n+1 + hn+1gk+1,1φ

p
k+1(n+ 1), (2.161)

which is the Shampine-Gordon corrector formula.

After the corrected value is found, another function evaluation is performed, to find r̈n+1.

A new set of differences, φi(n+ 1) are found from a relation analogous to (2.158),

φ1(n+ 1) = r̈n+1,

φi(n+ 1) = φi−1(n+ 1)− φ∗
i−1(n+ 1). (2.162)

These differences are used by the predictor in the next step.

Interpolation

In general, integration steps do not correspond with output times requested by the user.

Though the step size could be controlled to hit output times exactly, this method would

usually involve taking steps that are smaller than necessary, which costs run-time. In-

stead, an interpolation method is used which does not require any additional evaluations.

To find a requested value of velocity ṙout at time tout between tn and tn+1, a kth degree

interpolating polynomial is used which passes through k + 1 known points,

P k+1,n+1(tn+2−i) = fn+2−i, i = 1, 2 . . . k + 1. (2.163)

2.5 Variable-Step Integration 53

In divided difference form, the ith term of Pk+1,n+1 is

(t− tn+1)(t− xn) · · · (t− tn−i+3)f [tn+1, tn, . . . , tn−i+2], (2.164)

for i > 1. This expression can be simplified by first defining the step size hI between the

output time and the last integration time,

hI = tout − tn+1, (2.165)

and changing variables from t to the fraction of a step τ ,

τ =
t− tn+1

hI

. (2.166)

The ith term (2.164) can now be written

τhI

ψ1(n+ 1)

τhI + ψ1(n+ 1)

ψ2(n+ 1)
· · · τhI + ψi−2(n+ 1)

ψi−1(n+ 1)
φi(n+ 1). (2.167)

The expression is further simplified by defining cIi,n+1(τ),

cIi,n+1(τ) =

{
1 i = 1,

Γi−1(τ)c
I
i−1,n+1(τ) i ≥ 2,

(2.168)

where

Γi(τ) =


τhI

ψ1(n1)
i = 1,

τhI + ψi−1(n+ 1)

ψi(n+ 1)
i ≥ 2.

(2.169)

Now the term (2.164) is simply cIi,n+1(τ)φi(n+ 1).

The value of the velocity at the requested time is found by integrating the interpolating

polynomial,

ṙout = ṙn+1 +

∫ tout

tn+1

P k+1,n+1(t) dt. (2.170)

Using the notation cIi,n+1(τ), this expression is

ṙout = ṙn+1 + hI

k+1∑
i=1

φi(n+ 1)

∫ 1

0

cIi,n+1(τ) dτ. (2.171)

The integration of cIi,n+1(τ) is found by integrating by parts,∫ τ

0

cIi,n+1(τ0) dτ0 = Γi−1(τ)

∫ τ

0

cIi−1,n+1(τ0) dτ0

−
∫ τ

0

∫ τ1

0

hI

ψi−1(n+ 1)
cIi−1,n+1(τ0) dτ0 τ1. (2.172)

2.5 Variable-Step Integration 54

In general, the formula for multiple integrals of cI is

c
I(−q)
i,n+1(τ) = Γi−1(τ)c

I(−q)
i−1,n+1(τ)−

qhI

ψi−1(n+ 1)
c
I(−q−1)
i−1,n+1(τ), (2.173)

for i > 1.

Interpolation coefficients gI are defined which are similar to the integration coefficients

g,

gI
i,q = (q − 1)! c

I(−q)
i,n+1(1). (2.174)

A recursive formula is available for these coefficients by using (2.173),

gI
i,q =


1

q
i = 1,

Γi−1(1)gI
i−1,q −

hI

ψi−1(n+ 1)
gI

i−1q + 1 i ≥ 2.
(2.175)

A formula for the requested velocity value is now available in terms of these coefficients,

ṙout = ṙn+1 + hI

k+1∑
i=1

gI
i,1φi(n+ 1). (2.176)

This expression is the Shampine-Gordon interpolation formula. The formula requires the

extra calculation of the gI coefficients.

Step-Size Control

The step size is controlled by keeping the local error at each step below a user-defined

tolerance, ε. The tolerance is defined in terms of an absolute tolerance, εabs, and a relative

tolerance, εrel. The local error for each component L being integrated must be lower than

the absolute tolerance and the relative tolerance times the value of the component,

leL ≤ εrelṙL + εabs = ε, (2.177)

where ṙL represents the Lth component of the velocity vector.

The local error is estimated by subtracting from the corrected value ṙn+1 a value given

by a lower order corrector ṙn+1(k),

leLn+1(k) ≈ ṙn+1 − ṙn+1(k). (2.178)

The value of ṙn+1(k) is obtained by integrating a (k−1)th degree interpolating polynomial

P ∗
k,n that passes through the predicted point r̈p

n+1. This polynomial can be written by

adding a term to the polynomial P k,n,

P ∗
k,n(t) = P k,n(t) + ck,n(τ)φp

k+1(n+ 1). (2.179)

2.5 Variable-Step Integration 55

Using this polynomial in place of P ∗
k+1,n in (2.159) leads to an expression for ṙn+1(k),

ṙn+1(k) = ṙp
n+1 + hn+1gk,1φ

p
k+1(n+ 1). (2.180)

The local error, (2.178), is estimated by subtracting (2.180) from (2.161),

len+1(k) ≈ hn+1(gk+1,1 − gk,1)φ
p
k+1(n+ 1). (2.181)

At each step, this local error estimate is compared to the tolerance for each component.

The integration method checks that√√√√ 3∑
L=1

(
leL

WTS(L)

)2

≤ EPS, (2.182)

where EPS is the maximum of the relative and absolute tolerances,

EPS = max(εrel, εabs), (2.183)

and WTS(L) is a weight for each component,

WTS(L) = |ṙL|
εrel
EPS

+
εabs

EPS
. (2.184)

The subscript S refers to single integration. Double integration equivalents are given in

Section 4.2.4. Using (2.182) guarantees that (2.177) holds for every component ([25], pp.

175-179). If the local error is above the tolerance, the step fails, and is tried again with

half the step size, hn+1 = 0.5hn+1 (failed) ([25], p. 117). Note that this error estimate is

made with φp
k+1(n + 1), before the second evaluation is performed. Therefore, if a step

fails, the second evaluation does not need to be performed.

A further consideration is made if a step fails after multiple tries. If a step fails after

halving and trying again three times, the integration restarts as a first-order method. The

method assumes that the failures are a sign of a discontinuity, so the method restarts as

first order to handle the discontinuity correctly ([25], pp. 117-118).

If the step succeeds, the next step size, hn+2, is chosen as a multiple of the current step

size, hn+2 = ρhn+1, to keep the local error at the next step,

len+2(k) ≈ hn+2(gk+1,1 − gk,1)φ
p
k+1(n+ 2), (2.185)

as close as possible to the tolerance. The modified divided difference at the next step,

φ∗
k+1(n+ 2) = ψ1(n+ 2) · · ·ψk(n+ 2)fp[tn+2, . . . , tn+2−k], (2.186)

2.5 Variable-Step Integration 56

is unknown. However, it may be approximated from φk+1(n+1) if the divided differences

are assumed to be slowly varying ([25], p. 111).

Because the step size hn+2 appears in the values of ψi(n+ 2), and is needed to calculate

the coefficients gk+1,1 and gk,1, there is no easy way to solve (2.181) for a value of hn+2 that

meets the tolerance. Instead, a value of hn+2 is found that meets the tolerance if all the

preceding steps were also taken with hn+2. Using this assumption, and the assumption

that the divided differences are slowly varying, the modified divided difference at (n+2)

is approximated,

φp
k+1(n+ 2) ≈ (ρhn+1)(2ρhn+1) · · · (kρhn+1)f

p[tn+2, . . . , tn+2−k]

≈ ρkσk+1(n+ 1)φp
k+1(n+ 1), (2.187)

where σi(n+ 1) is defined,

σ1(n+ 1) = 1,

σi(n+ 1) =
hn+1 · 2hn+1 · · · (i− 1)hn+1

ψ1(n+ 1) · ψ2(n+ 1) · · ·ψi−1(n+ 1)
i > 1. (2.188)

When the step size is constant, the coefficients gk+1,1 and gk,1 become the fixed-step

Adams-Bashforth predictor coefficients, γk and γk−1, found in Section 2.3.3. The local

error, (2.185), using hn+2 = ρhn+1 can now be approximated,

len+2(k) = ρk+1hn+1γ
∗
kσk+1(n+ 1)φp

k+1(n+ 1), (2.189)

where γ∗k is the difference between the constant step size coefficients, γ∗k = γk−γk−1. The

value of σk+1(n+ 1) can be found through a recursive formula,

σ1(n+ 1) = 1,

σi(n+ 1) = (i− 1)αi−1(n+ 1)σi−1(n+ 1) i > 1. (2.190)

To solve for the value of ρ to get the next step size, hn+2 = ρhn+1, the Shampine-Gordon

integrator calculates the approximated error (ERKS) that would be made if the previous

steps had been taken with hn+1,

ERKS = |hn+1γ
∗
kσk+1(n+ 1)|

√√√√ 3∑
L=1

(
φp

L k+1(n+ 1)

WTS(L)

)2

. (2.191)

From (2.189), the approximated error at the next step with a step size of ρhn+1 is

ρk+1ERKS, so the optimal value of ρ to satisfy the tolerance ε can be found,

ρ =

(
EPS

ERKS

) 1
k+1

. (2.192)

2.5 Variable-Step Integration 57

However, because of the assumptions made in this derivation, the integrator uses a so-

called “chicken factor” [26] of 0.5, giving a more conservative value of ρ,

ρ =

(
0.5EPS

ERKS

) 1
k+1

. (2.193)

Shampine-Gordon places further restrictions on changes to the step size ([25], pp. 115-

118). If the calculated value of ρ is greater than 2, the step size is only doubled. The

step size is not changed at all if the calculated value of ρ is between 0.9 and 2. And if ρ

is less than 0.5, the step size is cut in half. These restrictions serve two purposes. First,

bounding changes in the step size between 0.5 and 2 keeps the method stable. Second,

not changing the step size when ρ is between 0.9 and 2 keeps the step size constant for

a significant number of steps. Shampine and Gordon sought to keep a constant step

size as much as possible. With a constant step size, the coefficients g do not have to

be calculated, because they are simply the known Adams-Bashforth coefficients. Not

needing to calculate the coefficients provides a reduction in overhead when the step size

is constant. Also, keeping a constant step size allows the order of the method to be

increased, which is described in the following section.

Variable Order

The Shampine-Gordon method also controls the local error by adjusting the order of

the method ([25], pp. 112-115). Local error estimates, similar to (2.191), are made for

(k− 1) and (k− 2), and the order is reduced from k to (k− 1) if these estimates indicate

that reducing the order would give less error. These estimates rely on φp
k(n + 1) and

φp
k−1(n+ 1), so they are made before the second evaluation is performed. Therefore, the

order can be reduced if the step fails. Reduction in order is considered before the step

size is changed, and the step size is allowed to change even if the order is changed on the

same step.

Increases in order are considered after the step size regulation. The order is increased

only when the step size has been kept constant. A local error estimate is made for (k+1),

and the order is increased if the estimate indicates the error would be reduced. The local

error estimate for (k+1) uses the value φk+2(n+1) ([25], p. 113), so the second evaluation

must be performed before increasing the order can be considered.

The variable-order algorithm allows Shampine-Gordon to be a self-starting method. The

method is started as first order (k = 1), so only the initial conditions are required. The

order is then increased at every step until either a step fails, the order selection algorithms

indicate to lower the order, or the maximum order of 12 is reached ([25], pp 118-120). The

2.6 Summary 58

method is started as first order, so the initial step size is chosen accordingly. Consider a

method of zeroth order, where ṙ1 = ṙ0. The error of this method can be found from a

Taylor series approximation,

ṙ(t1) = ṙ(t0) + hr̈(t0) + O(h2), (2.194)

so the local error is

ṙ(t1)− ṙ1 = hr̈(t0). (2.195)

Assume that the error of the first-order method is h times the error of the zeroth-order

method, so keeping the local error within ε requires

ε ≈ |le1| ≈ h2|r̈0|. (2.196)

Solving for the step size gives,

h ≈
√

ε

r̈0

. (2.197)

To be conservative, one quarter of this value is used. Accounting for the multiple com-

ponents of f , and the relative tolerance, the initial step size is

h1 =
1

4

√√√√√ EPS√∑3
L=1

(
r̈L 0

WTS(L)

)2
. (2.198)

In case the initial accelerations are near zero, an upper bound is placed on h, equal to

the size of the step to the first requested output point. In addition, a lower bound is

placed on the initial step size, equal to 4εmt0, where εm is machine epsilon, defined as the

smallest positive number where 1 + εm > 1 on the machine. Step sizes lower than this

bound cause a significant amount of round-off error.

Implementation

In Chapter 5 the Shampine-Gordon integrator is compared to other methods. In those

tests, the implementation follows the code published by Shampine and Gordon ([25], pp.

186-231).

2.6 Summary

The derivations of four fixed-step multi-step integrators, the Adams, summed Adams,

Störmer-Cowell, and Gauss-Jackson integrators, as well as the variable-step multi-step

2.6 Summary 59

Shampine-Gordon integrator, have been presented in this chapter. These derivations

are needed to understand the derivation of the variable-step double-integration method

derived in Chapter 4. Also, comparing these methods to one another motivates the need

for the variable-step double-integration method, and the benefits of that method can

be seen by comparing it to the methods presented in this chapter. The comparisons

to motivate the need for the variable-step double-integration method are presented in

Section 4.1, and the comparisons of that method to other integrators are presented in

Chapter 5. Before any comparisons can be performed, a discussion of how to measure

integration accuracy is required, which is presented in the next chapter.

60

Chapter 3

Testing Integrators

3.1 Introduction

When comparing integration methods to one another, two things must be considered:

accuracy and speed. To compare the methods, accuracy tests are first performed for

various types of orbits. The accuracy tests are used to tune the integrators to give

equivalent accuracy, and the integrators are then tested for speed. Since the speed

tests are made for equivalent accuracy, this testing procedure identifies the most efficient

integration method for each type of orbit.

While speed testing is simply a matter of measuring computation time, accuracy testing is

a more complicated issue. Although assessment of integration accuracy is a long-standing

problem, much of the focus of the available literature is on the three-body problem in

astronomy, particularly over long periods of time. Because of the chaotic nature of such

systems, accuracy is desired to assess characteristics of chaotic regions in time and space.

In astrodynamics, the concern is with the problem of orbiting a planet with geopotential,

atmospheric drag, solar radiation and other perturbations, and often for a relatively

modest number of orbits. Accuracy is desired here for precise knowledge of spacecraft

position and orbit over a short period of time. Although the problems are similar, the

needs are sufficiently different that the integrator, including order and step size, may

be chosen differently. Nevertheless, the techniques developed by astronomers to assess

integrators may be used to develop a means of assessing integrators for astrodynamics.

Attempts at characterization of integration error frequently stop with two-body inte-

gration because of the ability to determine absolute accuracy. Perturbations have a

significant effect on integration accuracy that is not apparent from a two-body study, as

3.2 Error Ratio 61

is shown below.

An N th order system of ordinary differential equations, with initial conditions given at

t = t0, can be written in the general form [27]

y′ = f(t,y), y(t0) = y0, (3.1)

where y and f are vectors of N functions and y0 is a vector of N constants. In astrody-

namics y consists of three position functions and three velocity functions, and t is time.

If some numerical integration algorithm is used to solve (3.1), the algorithm generates

an approximate solution ỹ. After n steps the accumulated error is

ξn = y(tn)− ỹn, (3.2)

where y(tn) is the exact solution, ỹn is the computed solution at tn, tn = t0 + nh, and h

is the step size. The error can be written in the form [27]

ξn = [y(tn)− yn] + [yn − ỹn], (3.3)

where the first difference is the truncation error, and the second difference is the round-off

error [6]. Truncation error exists because the numerical integration algorithm has been

truncated at some (locally correct) order, p. Truncation error is dependent on the step

size h and the order p, and decreases as the step size is decreased. Round-off error exists

because computers only keep track of numbers to a finite number of significant digits,

and some error is introduced during every calculation. Round-off error increases as the

step size is decreased, because more computations are performed.

Various techniques exist to estimate the error, ξ, of a numerical integrator. Each tech-

nique has different strengths and weaknesses. In this chapter, six such techniques are

discussed, and one is chosen to use in the comparisons made in Chapters 4 and 5. All the

techniques involve the numerical comparison of two prospective orbits. This comparison

is done through the computation of the error ratio, which provides a figure of relative

merit between two integrated orbits. One of the orbits is produced by the integrator being

tested; the other, the reference orbit, covers the same time period and initial conditions

and may be produced by either integration or analytic computation.

3.2 Error Ratio

In a study of integration methods, Merson used an error ratio defined in terms of the

RMS error of the integration as a measure of integration accuracy [21]. First define

3.3 Testing Techniques 62

position errors as

∆r = |rcomputed − rreference|. (3.4)

The RMS position error can be calculated,

∆rRMS =

√√√√ 1

N

N∑
i=1

(∆ri)2. (3.5)

The RMS position error is normalized by the apogee distance and the number of orbits

to find the position error ratio,

ρr =
∆rRMS

rANorbits

. (3.6)

In [21], Merson uses a position error ratio to test integrators. His error ratio was only

normalized by the apogee distance; the number of orbits is added here to make error

ratios of orbits of different eccentricities more comparable. Also, a velocity ratio test is

added here because velocity and position are often integrated with different numerical

integrators, and it may be useful to estimate the error in orbital elements, which depend

directly on the velocity. The velocity error ratio is the RMS velocity error normalized by

the number of orbits and the perigee speed,

ρv =
∆vRMS

vPNorbits

. (3.7)

Both position and velocity error ratios are computed for each of the testing techniques

described in the next section.

3.3 Testing Techniques

Six testing techniques are described in this section, the two-body test, the step-size

halving test, comparing with a higher-order integrator, use of integral invariants, and

Zadunaisky’s technique. The use of these techniques is demonstrated by testing them

on three test-case orbits and two integration methods, which are explained in the next

section.

3.3.1 Test Cases

If an integrator is expected to perform satisfactorily over a wide variety of orbits, some

representative sample of these orbits is needed as a test set of initial conditions. In

3.3 Testing Techniques 63

particular, forces that stress an integrator should be included to give a sense of the worst

case. For the case of space surveillance catalog maintenance, circular orbits near the

earth and at geosynchronous altitude represent the bulk of the catalog; the addition of

a high-eccentricity elliptical orbit with perigee dipping well into the atmosphere gives a

case that stresses the integrator.

Three test cases are considered, a low earth orbit (LEO), a highly elliptical orbit (HEO),

and a geosynchronous orbit (GEO). The initial conditions of these test cases are shown

in Table 3.1. The test cases all have an initial epoch of 1999-10-01 00:00:00 UT, and a

ballistic coefficient of 0.01 m2/kg.

Table 3.1: Test Case Initial Conditions
Test Case Perigee Height (km) e i (◦)

LEO 300 0.0 40

HEO 200 0.75 40

GEO 35786 0.0 0.01

The purpose here is to compare accuracy assessment techniques, so in addition to test

orbits, test integrators are needed on which to try the various techniques. Two integrators

commonly used in astrodynamics are used in the tests. The first is a fourth-order Runge-

Kutta, as described in Section 2.2.2. The Runge-Kutta integrator is a single-step, single-

integration, fixed-step integrator. The step sizes used for the Runge-Kutta integrator

are five seconds for the LEO and HEO cases, and one minute for the GEO case. The

second integrator is an eighth-order Gauss-Jackson integrator, using the implementation

described in Section 2.3.9. The corrector is applied only once at each integration step,

giving a predict, evaluate, correct cycle. For the Gauss-Jackson integrator, the step sizes

are 30 seconds for the LEO and HEO cases, and 20 minutes for the GEO case. The

testing techniques show that these step sizes give reasonably accurate results.

The tests are performed using the Special-K software suite ([28]), developed by the Naval

Research Laboratory, which is used operationally by Naval Network and Space Operations

Command (NNSOC, formerly Naval Space Command). Operationally, the software uses

the Gauss-Jackson integrator. These tests are performed with a research version of the

software, which has been modified to allow different integrators to be used.

3.3 Testing Techniques 64

3.3.2 Two-Body Test

If the force is a simple two-body (Kepler) force, an exact solution is available for com-

parison. The advantage of this technique is that the error is then known exactly, but

the disadvantage is that the force may not be realistic. This test does not necessarily

indicate how well the integrator handles perturbations. Orbits typically integrated for

space surveillance may cover a time period of several days or more. During that time, the

integrated effects of the perturbations cause a substantial deviation from the two-body

solution. Integrators that handle the two-body force well, but not one or more of the

perturbations, will appear accurate with the two-body test though they are not accurate

in real problems. However, the two-body test is useful for evaluating other testing tech-

niques. The other techniques should give the same results as the two-body test when

only the two-body force is used in those techniques.

Fox [29] performed extensive tests on integrators using the two-body test. Part of the

purpose of his study was to assess accuracy in light of the execution time, so he put

“dead weight” into the force evaluation — computations that do nothing but soak up

processor time — in an attempt to simulate the evaluation-dominated execution time of

integrations with realistic force models. Montenbruck [30] also used the two-body force

to assess integrators.

Table 3.2 shows position and velocity error ratios with the two-body test for both Runge-

Kutta and Gauss-Jackson integrators. The position and velocity error ratios are found

using (3.6) and (3.7), respectively. Ephemeris generated by the numerical integrators

over a three-day time span is used for rcomputed and vcomputed, and rreference and vreference

are the values given by the exact analytic solution. Though the cases use different step

sizes, the ephemeris is generated at one minute intervals, so that N in (3.5) is 4321.

For the GEO case with the Gauss-Jackson integrator, where the step size is 20 minutes,

the intermediate points are found using a 5th order interpolator. Table 3.3 gives the

maximum position error over three days for each test case. A comparison of Table 3.2 to

Table 3.3 demonstrates how an error ratio corresponds to the maximum position error,

which may be of interest.

Table 3.2 shows that the Gauss-Jackson integrator is more accurate in every case, except

in the velocity for the GEO case. Gauss-Jackson is roughly four orders of magnitude more

accurate than Runge-Kutta for the low earth orbit, roughly one order of magnitude more

accurate for the eccentric orbit, and of comparable accuracy for the geosynchronous orbit.

Both integrators show the least accuracy in position with the eccentric orbit, though the

Gauss-Jackson has the least accuracy in velocity with the geosynchronous orbit.

With the exact error of the integrators for the two-body problem known, it is possible to

3.3 Testing Techniques 65

Table 3.2: Two-Body Test Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 2.05× 10−10 2.05× 10−10 1.21× 10−14 1.19× 10−14

HEO 2.49× 10−10 5.15× 10−10 1.03× 10−11 2.26× 10−11

GEO 3.27× 10−11 3.25× 10−11 8.98× 10−12 8.58× 10−11

Table 3.3: Two-Body Position Error (mm)

Test Case Runge-Kutta Gauss-Jackson

LEO 133 0.00616

HEO 286 15.0

GEO 7.21 2.61

get an indication of error not measured in the other techniques. The techniques described

in the subsequent sections are each tested two ways. In the first test only the two-body

force is considered, so that the error measured by the technique can be compared to the

known error. This comparison gives an indication of how well the techniques measure

integration accuracy. In the second test a perturbation model is used. The perturbation

forces are 36× 36 WGS-84 geopotential, the Jacchia 70 drag model [31], and lunar and

solar forces. Note that all of these perturbations are continuous forces. To simplify this

study, discontinuous forces such as solar radiation pressure are not considered.

3.3.3 Step-Size Halving

For the step-size halving test, the reference integration is produced with the same inte-

grator but with the step size cut in half. Because the truncation error is related to the

step size, this technique can give a good estimate of truncation error, and even an esti-

mate of the order of the integration method, provided the step size is large enough that

truncation error dominates the total error. If the step size is too small, round-off error

dominates over truncation error. The step-size halving test does not give reliable results

in regions where round-off error dominates. However, the test can be used to identify

the region where round-off error dominates. If the results of the step-size halving test

appear worse as the step size is decreased, round-off error is dominating the total error.

Tables 3.4 and 3.5 show error ratios using the step-size halving test, for the two-body

force and for the full force model, respectively. The error ratios with the two-body force

3.3 Testing Techniques 66

are the same order of magnitude as the true error ratios in Table 3.2, and even match to

one significant digit, except for the LEO case with Gauss-Jackson. These results show

that step-size halving gives a reasonable measure of integration error.

Table 3.4: Two-Body Step-Size Halving Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 1.96× 10−10 1.96× 10−10 6.70× 10−14 6.70× 10−14

HEO 2.34× 10−10 4.85× 10−10 1.04× 10−11 2.29× 10−11

GEO 3.07× 10−11 3.05× 10−11 8.97× 10−12 8.62× 10−11

Table 3.5: Perturbed Step-Size Halving Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 8.68× 10−10 8.70× 10−10 3.09× 10−9 3.10× 10−9

HEO 2.48× 10−10 5.07× 10−10 1.05× 10−8 2.24× 10−8

GEO 3.07× 10−11 3.05× 10−11 9.14× 10−12 8.62× 10−11

A comparison of Table 3.4 to Table 3.5 shows that the numerical integrators perform

worse with perturbations than with only the two-body force for the low-earth and eccen-

tric cases, but nearly the same for the geosynchronous case. This result may be because

the geosynchronous orbit is not subject to drag, and the presence of drag causes an in-

crease in integration error. This result shows that the two-body test described above

does not capture all of the error of an integrator. The effect of perturbations on the

low-perigee cases is more noticeable with the Gauss-Jackson integrator. The drag model

used in these tests, Jacchia 70, involves a table look-up to find the atmospheric density.

The table look-up is performed with a linear interpolator, giving density values that are

continuous but not smooth. Because the density is not smooth the drag force is also non-

smooth. Since multi-step methods involve the use of backpoints, non-smooth forces have

a greater effect on multi-step methods than on single-step methods such as Runge-Kutta.

A more formal error analysis is also possible with step-size halving. In theory the global

error is on the order of the step size raised to the power of the order, p, of the numerical

integrator [32],

y − ỹ = ξ ≈ Chp, (3.8)

where y is the actual solution, ỹ is the numerical solution, and C is some constant that

depends on the numerical integrator. An estimate of ξ can be found by comparing results

3.3 Testing Techniques 67

with half the step size. Considering the numerical solution, ỹ, to be a function of the

step size h, the error with half the step size can be found,

[y − ỹ(h/2)] ≈ Chp

2p
≈ [y − ỹ(h)]

2p
. (3.9)

This equation can be solved for the error,

2p[y − ỹ(h/2)] ≈ [y − ỹ(h)]

(2p − 1)[y − ỹ(h/2)] ≈ ỹ(h/2)− ỹ(h)

ξ(h/2) ≈ ỹ(h/2)− ỹ(h)

2p − 1
(3.10)

In order for (3.10) to be valid, (3.8) must hold true. This condition can be checked by

forming the quotient

[y − ỹ(h/2)]− [y − ỹ(h/4)]

[y − ỹ(h)]− [y − ỹ(h/2)]
=
ỹ(h/4)− ỹ(h/2)

ỹ(h/2)− ỹ(h)
≈ Chp/2p − Chp/4p

Chp − Chp/2p
=

1

2p
. (3.11)

The quotients should approach 2−p as the step size decreases. But when round-off be-

comes a factor, the quotients drift away from the theoretical value. As long as the

quotients indicate that (3.8) is valid, round-off error is not a major concern and (3.10)

can be used. Equations (3.10) and (3.11) have been written in scalar form; in practice

they can be applied to each component of the vector state x.

The step-size halving test does give a good indication of error, and can be used to measure

truncation error. The test is relatively easy to perform with fixed-step integrators, for

which the step size is controlled by the user. However, variable-step methods, in which

the step size is controlled internally by the integrator, cannot use this test. Because some

of the integrators tested in this work are variable step, the step-size halving technique

cannot be used.

3.3.4 Comparison with High-Order Integrator

The comparison integration may be a higher-order high-accuracy integrator. The ad-

vantage of this technique is that perturbations can be tested. However, this technique

relies on the assumption that the higher-order integrator is correct, or more correct,

than the integrator being tested. This assumption is not necessarily true. For instance,

the higher-order method might be using a step size that is too large to give adequate

accuracy. Tables 3.6 and 3.7 show error ratios comparing the two test integrators to a

14th-order Gauss-Jackson, with the two-body force and full perturbation forces, respec-

tively. The step size used in the 14th-order Gauss-Jackson are 15 seconds for cases 1

3.3 Testing Techniques 68

and 2, and 1 minute for case 3. The 14th order Gauss-Jackson integrator uses a P(EC)n

implementation, with a maximum number of corrector cycles of six (see Section 2.3.9).

The tolerance used in the corrector cycles is 1× 10−12.

Table 3.6: Two-Body High-Order Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 2.05× 10−10 2.05× 10−10 1.81× 10−14 1.81× 10−14

HEO 2.49× 10−10 5.16× 10−10 1.04× 10−11 2.29× 10−11

GEO 3.28× 10−11 3.25× 10−11 8.99× 10−12 8.58× 10−11

Table 3.7: Perturbed High-Order Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 3.17× 10−9 3.17× 10−9 3.09× 10−9 3.09× 10−9

HEO 8.95× 10−9 1.96× 10−8 1.05× 10−8 2.26× 10−8

GEO 3.27× 10−11 3.25× 10−11 8.77× 10−12 8.58× 10−11

A comparison of Table 3.6 to Table 3.2 shows that the high-order test results are the

same order of magnitude as the exact two-body results in every case. For the Runge-

Kutta integrator, the test matches the true results to at least two significant figures in

each case. For the Gauss-Jackson integrator, the test matches the true results to two

significant figures for the eccentric case, and the geosynchronous case. A comparison of

these results to Table 3.4 shows that the higher-order test does a better job of measuring

the two-body error than the step-size halving test for the Runge-Kutta integrator, as

well as the low-earth case with the Gauss-Jackson method. The higher-order test and

the step-size halving test give equivalent results for the other two cases. As a reference,

the results of the 14th-order Gauss-Jackson method itself in the two-body test are given

in Table 3.8. The higher-order test gives the best results when the error of the method

being tested is significantly greater than the method used as the reference.

A comparison of Table 3.7 to Table 3.5 shows that the step-sizing halving results and the

high-order results with perturbations are the same order of magnitude in all cases except

the LEO and HEO cases with Runge-Kutta. The higher-order test indicates more error

than the step-size halving test for these two cases. The Gauss-Jackson results match to

at least one significant figure in each case, and the Runge-Kutta results match to one

significant figure in the GEO case. The Gauss-Jackson results match closely between

3.3 Testing Techniques 69

Table 3.8: Two-Body Test of 14th-Order Gauss-Jackson
Test Case Error Ratio

Position Velocity

LEO 8.84× 10−15 8.85× 10−15

HEO 1.37× 10−13 2.96× 10−13

GEO 1.42× 10−14 1.39× 10−14

the step-size halving test and the high-order test because in both tests, the reference

integrator is a Gauss-Jackson integrator with a low step size. Though the accuracy of

the 14th-order Gauss-Jackson method itself cannot be measured with perturbations, using

the step-size halving test on the method gives an indication of its accuracy. Results of

the step-size halving test for the 14th-order method are shown in Table 3.9.

Table 3.9: Step-Size Halving Test of 14th-Order Gauss-Jackson
test # Error Ratio

Position Velocity

LEO 1.58× 10−9 1.58× 10−9

HEO 8.12× 10−9 1.78× 10−8

GEO 5.79× 10−14 5.58× 10−14

3.3.5 Reverse Test

In this technique the test and reference orbits come from the same integrator. The test

orbit is produced by integrating forward from the initial conditions, and the reference

orbit is produced by integrating backward to the original starting time using the final state

of the first integration as initial conditions. These two integrations should be identical,

and any difference between them is due to integration error. Using this technique to

measure integration error is advantageous because it is a relatively simple procedure to

perform. A disadvantage with this technique is that it does not measure any reversible

integration error. Any error that is an odd function of the step size is canceled when

the sign of the step changes on the reverse integration. The reverse test has been used

extensively for integration accuracy checks, including recently in the N -body problem

[33].

Tables 3.10 and 3.11 show results of the reverse test with a two-body force and full

3.3 Testing Techniques 70

perturbation forces, respectively. Again the tests are over a three-day interval with

ephemeris generated at one-minute increments. A comparison of Table 3.10 to Table 3.2

shows that the reverse test fails to capture a significant portion of the error; in the GEO

case for the Runge-Kutta integrator, only about a tenth of the error is captured. This

results may be an example of the weakness of the reverse test pointed out by Zadunaisky

[34], who demonstrated for the three-body problem that the reverse test will certify that

a second-order Adams-Moulton multi-step method is perfectly accurate because of the

symmetry of the equations used under time reversal. A comparison of Table 3.11 to Tables

3.5 and 3.7 shows that the reverse test is also inconsistent with the other techniques in

the presence of perturbations.

Table 3.10: Two-Body Reverse Test Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 2.27× 10−10 2.27× 10−10 6.15× 10−14 6.15× 10−14

HEO 5.14× 10−11 1.09× 10−10 2.21× 10−11 4.68× 10−11

GEO 3.58× 10−12 3.59× 10−12 2.11× 10−11 2.11× 10−11

Table 3.11: Perturbed Reverse Test Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 1.97× 10−10 1.98× 10−10 3.00× 10−9 3.01× 10−9

HEO 4.67× 10−11 1.03× 10−10 1.99× 10−11 1.10× 10−10

GEO 3.51× 10−12 3.52× 10−12 2.20× 10−11 2.20× 10−11

3.3.6 Integral Invariants

Another frequently-used technique for integration accuracy assessment is to check the

invariance of integral invariants such as energy, which is easy to perform. This technique

has been used recently for integrators applied in the N -body problem [33]. The main

drawback is that this test does not capture all errors. For example, energy invariance

does not measure in-track errors, because an orbit shifted in time has the same energy.

In general, the more forces present that break a particular symmetry, the fewer conserved

quantities and thus the fewer quantities that can be checked; the presence of drag means

3.3 Testing Techniques 71

that energy is no longer conserved at all. Huang and Innanen [35] showed that this

accuracy check is not exact and reliable and suggested a revised technique. However, even

their revised technique cannot measure integration error when drag is present. Because

drag is one of the perturbation forces under consideration in this test, no results can be

given for this technique.

3.3.7 Zadunaisky’s Test

Zadunaisky, in [36], [27], [37], and [34], suggested a technique for measuring numerical

integration error. This technique is based on the construction of an analytical function

near the solution to the actual problem, then constructing differential equations for which

this function is an exact solution. The method has two desirable properties. First, there

is an exact solution, because the problem is constructed to match the original solution.

Second, the solution is realistic, because it is close in some sense to the solution of the

real problem. The technique is like the two-body test in providing an absolute reference

for error computation, but has a behavior that mimics real forces.

First a set of polynomials P (t) are determined that represent the components of ỹ, the

numerical solution of (3.1). A pseudo-system of equations is constructed from these

polynomials, for which P (t) is the exact solution,

ż = f(t,z) + D(t), (3.12)

where

D(t) = Ṗ (t)− f(t,P (t)), (3.13)

and where (3.12) has the same initial conditions as the polynomial,

z(t0) = P (t0). (3.14)

When the pseudo-system is integrated with the same numerical integrator used to create

ỹ, the errors of the pseudo-system,

ξ = z̃ − P (t), (3.15)

may be a good approximation of the error in the original problem.

In [36], Zadunaisky gave conditions for P (t) under which this technique gives a good

approximation of the original error,

||ỹ − P (t)||
||ỹp+1 − P p+1(t)||

}
≤ O(h2), (3.16)

3.3 Testing Techniques 72

where p is the order of the numerical integrator, and ỹp+1 are the numerical approxima-

tions for the (p+ 1)th derivatives of y. These conditions are based on error propagation

theory, and are meant to ensure that the asymptotic behavior of the errors accumulated

in the numerical integration of both the original system and the pseudo-system are the

same. In [34], Zadunaisky gives a different condition, which is that D(t) must not be

larger than either the local truncation error or the local round-off error.

In [37] and [34], Zadunaisky found the polynomial P (t), needed to form the pseudo-

system, using Newton’s interpolation formula with backward divided differences. Because

an Ñ th degree polynomial is needed to interpolate Ñ + 1 points, the original interval is

divided into subintervals to avoid the problems involved with interpolating data to a high

degree polynomial. After integrating the original problem for Ñ steps, where Ñ ≤ 10,

he applies Newton’s formula to obtain polynomials P (t) of Ñ th degree. Each polynomial

Pi(t) interpolates one of the components of position or velocity through the Ñ +1 points

spanned by the Ñ steps. These polynomials are used to construct the pseudo-system,

(3.12), and the error estimate is obtained. This process is then repeated using the last

point of the previous set as the first point on the next set, and using ỹÑ+1 and z̃Ñ+1

as initial conditions in the original system and pseudo-system, respectively. Using this

method, the solution to the pseudo-system over the entire interval, z(t), is a function

of successive Ñ th degree polynomials that match up the subintervals of Ñ + 1 points.

Therefore z(t) is continuous over the entire interval, but its derivative is discontinuous

at the last point of each subinterval. Zadunaisky claimed that these discontinuities are

irrelevant to the validity of the technique.

To implement Zadunaisky’s technique for a given test case, ephemeris ỹ(t) is first gener-

ated by numerically integrating the test case. The ephemeris should be generated at time

increments equal to the step size h of the numerical integrator. This ephemeris is then

used to find coefficients of the polynomials P (t) at each subinterval. The polynomials

are of the form

Pi(t̃) = a0 + a1t̃+ a2t̃
2 + ...+ aÑ t̃

Ñ , (3.17)

where t̃ is the time since the beginning of the subinterval, and the subscript i refers to

the component of the state ỹ = [rx ry rz vx vy vz]
T that the polynomial fits. To make the

polynomial exactly match the ephemeris at each of the Ñ + 1 points on the subinterval,

the coefficients a0...aÑ are found by solving the system
1 0 0 . . . 0

1 t̃1 t̃21 . . . t̃Ñ1
1 t̃2 t̃22 . . . t̃Ñ2
...

1 t̃Ñ t̃2
Ñ

. . . t̃Ñ
Ñ





a0

a1

a2

...

aÑ


=



ỹi(t0)

ỹi(t1)

ỹi(t2)
...

ỹi(tÑ)


, (3.18)

3.3 Testing Techniques 73

where the subscripts on t̃ and t refer to the points on the subinterval, and t̃0 = 0. This

system can be solved for the coefficients by inverting the first matrix and multiplying it

by the vector on the right-hand side. Though this procedure must be repeated for each

of the six components and for each subinterval, the matrix inversion only needs to be

performed once, because the matrix only depends on the order Ñ , and the time step h.

This matrix is always non-singular, so the inversion can be performed.

After the coefficients are found, the same numerical integrator is used to generate another

set of ephemeris, but with the force model modified so that the pseudo-system (3.12) is

being integrated. Normally, the force model returns an acceleration based on position,

velocity, and time, r̈ = f(t, r, ṙ). Instead, the coefficients for the appropriate subinterval

are used to find the values of P and Ṗ , and the force model returns

r̈ = f(t, r, ṙ) + Ṗ (t)− f(t,P (t)). (3.19)

Note that P is a six-component vector consisting of both position and velocity, though

r̈ is only a three-component vector. Therefore, the vector Ṗ used in (3.19) is a three-

component vector consisting of the first derivative of the velocity polynomials. This

formulation makes (3.19) have a different form than (3.12), but this change makes the

technique easier to implement.

There are two practical considerations to make when generating and using the coefficients

in the modified force model. First, the ephemeris from which the coefficients are generated

must be in the same coordinate system in which the integration is performed. Second,

conversions may be necessary if the units of the ephemeris, and of the time t̃ used in the

polynomial equations, are different from the units used by the integrator.

The ephemeris generated in the second integration, z̃, are compared to the original

ephemeris, ỹ, to determine an error ratio. For the GEO case, with the Runge-Kutta

integrator using only the two-body force, the position error ratio is 2.51× 10−7 with a

9th order polynomial, Ñ = 9. Table 3.2 shows that the actual error ratio is 3.27× 10−11,

so the technique produces a result four orders of magnitude too high. Examining the first

90 minutes of data, the technique gives an error ratio that is two orders of magnitude

too high. When Ñ = 6, the error ratio given by the technique is 1.90× 10−9, two orders

of magnitude too high. However, the error ratio over 90 minutes is the correct order of

magnitude. With Ñ = 5, the error ratio is 5.96× 10−10, one order of magnitude too

high. Over the 90 minute time span, the technique gives an error ratio that is an order

of magnitude too low. These results highlight the difficulty in choosing an appropriate

degree polynomial.

Because the reliability of Zadunaisky’s technique depends on how well the polynomial

fits the ephemeris, an improvement in the method of determining the polynomials is

3.3 Testing Techniques 74

suggested to improve the results. In addition to matching the values of the ephemeris,

the derivatives are also matched at the end-points of each subinterval. So for a subinterval

consisting of Ñ − 1 points, an Ñ th degree polynomial is found by modifying (3.18),

1 0 0 ... 0

1 t̃1 t̃21 ... t̃Ñ1
.

.

1 t̃Ñ−2 t̃2
Ñ−2

... t̃Ñ
Ñ−2

0 1 0 ... 0

0 1 2t̃Ñ−2 ... Ñ t̃Ñ−1

Ñ−2





a0

a1

.

.

aÑ−2

aÑ−1

aÑ


=



x̃i(t0)

x̃i(t1)

.

.

x̃i(tÑ−2)
˙̃xi(t0)

˙̃xi(tÑ−2)


, (3.20)

where ˙̃xi(t) is the velocity given in the ephemeris for i = 1 . . . 3, and the acceleration

given by the same force model used to generate the ephemeris for i = 4 . . . 6.

Tables 3.12 and 3.13 show error ratios given by Zadunaisky’s technique with the two-

body force and the full force model, respectively. The polynomials used in the method

match each point in the subinterval, and the derivatives of the polynomial match the

force model at the end points of each subinterval, as described above. For the Runge-

Kutta integrator a 5th order polynomial is used, Ñ = 5, and for the Gauss-Jackson a

3rd order polynomial is used, Ñ = 3. These polynomials have been found to give the

best results. With higher-order polynomials, the technique gives error ratios that are too

high, compared to the two-body test, and with lower order polynomials the error ratios

are too low. In [37], Zadunaisky uses Ñ ≥ p, which is followed here for the Runge-Kutta

integrator but not for the Gauss-Jackson integrator.

Table 3.12: Two-Body Zadunaisky Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 3.07× 10−10 3.07× 10−10 1.32× 10−14 1.32× 10−14

HEO 3.38× 10−9 7.27× 10−9 7.78× 10−14 1.71× 10−13

GEO 3.54× 10−11 3.54× 10−11 3.66× 10−15 3.34× 10−15

A comparison of Table 3.12 to the exact two-body error in Table 3.2 shows that the

technique matches the true error ratios in order of magnitude for the LEO and GEO

cases for Runge-Kutta, and the LEO case for Gauss-Jackson. For the eccentric orbit

with Runge-Kutta the technique gives an error ratio that is an order of magnitude too

high compared to the actual two-body error. In [34] Zadunaisky suggests a variant of

3.3 Testing Techniques 75

Table 3.13: Perturbed Zadunaisky Results
Test Case Runge-Kutta Gauss-Jackson

Position Velocity Position Velocity

LEO 3.78× 10−10 3.78× 10−10 1.11× 10−13 1.11× 10−13

HEO 3.43× 10−9 7.36× 10−9 2.84× 10−14 6.21× 10−14

GEO 3.10× 10−11 3.09× 10−11 1.18× 10−14 1.27× 10−14

his technique that gives improved results for eccentric orbits, but that improvement has

not been implemented here. For Gauss-Jackson the technique gives an error ratio that is

three orders of magnitude too low for the HEO and GEO cases compared to the actual

two-body error. A comparison of the perturbed results in Table 3.13 to the results from

the step-size halving and high-order test in Tables 3.5 and 3.7 shows that the Runge-

Kutta results with Zadunaisky’s technique match the results from the other techniques,

at least in order of magnitude. However the Gauss-Jackson results are several orders of

magnitude lower for Zadunaisky’s technique for all cases.

Note that for the method of choosing polynomials described above, the minimum order

polynomial is Ñ = 3, because that involves a subinterval of two points. The fact that

the best results were found for Gauss-Jackson with this lowest order polynomial, and

that this order violates Zadunaisky’s criteria of Ñ ≥ p, indicates that this method of

determining polynomials may not be appropriate for Gauss-Jackson, and may explain

why the error ratios do not match the error ratios from the other tests.

Another technique for finding a polynomial to fit the ephemeris is available from ephemeris

compression techniques. Ephemeris compression is a way to transmit satellite ephemeris

without needing to send out a full ephemeris file, and without the receiver needing a full

propagator. When space surveillance was done entirely with general perturbations, the

space surveillance centers could simply send out initial conditions to users, and the users

could generate ephemeris on-site with the same analytic propagator. With the centers

now using special perturbations, the users would be required to have SP capability on-

site if the centers were to only send out initial conditions. Special perturbations software

is both complex and computationally expensive, so not all users have this capability. On

the other hand, having the centers send out ephemeris generated at small intervals to

all the users places an additional burden on the centers. Ephemeris compression offers a

compromise, in which the centers send out coefficients from a fit of the ephemeris, and

the users can then reconstruct the ephemeris.

Hoots and Segerman [38], presented a method of ephemeris compression called the Hybrid

3.3 Testing Techniques 76

Ephemeris Compression Model (HECM). The compression model consists of three stages.

Given position ephemeris equally spaced in time, the method first converts the ephemeris

to mean elements at each time step. These mean elements are then fit to a power series

in time using a Chebyshev fit. This fit gives an approximation to the secular effects of

perturbations on the elements. The second part of the compression models the periodic

J2 perturbation. The final part of the compression uses a Fourier series to model the

remaining periodic effects of perturbations. The Fourier model was first presented by

Segerman and Coffey[39]. At each time step, the power series representing the mean

elements is evaluated, and the resulting elements are converted to osculating elements

by accounting for the J2 periodic effects. The difference between this estimated state

and the original ephemeris is called residual ephemeris, which is modeled by the Fourier

series. The residual ephemeris represents perturbation effects that are known to have

two predominate periods: one orbit and one day. Therefore, a set of Fourier coefficients

is found for each orbit, with the period in the Fourier series being the period of the

argument of latitude. To further compress the total number of coefficients needed in the

compression, a second Fourier fit is done on the Fourier coefficients themselves. This

second fit uses one day as the period, so a set of coefficients is found for each day.

To reconstruct the ephemeris, the coefficients from the Chebyshev fit are used to com-

pute mean elements at each time, and those mean elements are converted to osculating

elements by accounting for the J2 effect. This procedure gives an estimated state to

which the residual ephemeris must be added. To reconstruct the residual ephemeris,

the one-day Fourier coefficients are used to reconstruct the one-orbit Fourier coefficients.

The one-orbit coefficients are then used to find the residual ephemeris at each time step.

However, the Fourier series does not give a reliable fit near the endpoints of the orbit

due to the Gibb’s phenomenon, which causes error in Fourier fits near endpoints when

the data is not exactly periodic. Instead of using the Fourier series at the endpoints,

a quintic interpolating polynomial is used that passes through three points each on ad-

jacent orbits. If the points in the region of an orbit endpoint are numbered 1 through

10, so that the orbit endpoint occurs between points 5 and 6, then the interpolating

polynomial passes through the points reconstructed by the Fourier series at points 1, 2,

3, 8, 9, and 10. Using this interpolating polynomial prevents a discontinuity that would

occur if only the Fourier series were used. To provide smoothness between the Fourier

series and the polynomial, a cosine smoothing function is used which keeps the first and

second derivative continuous, but not the third derivative. The smoothing function is

used between points 1 and 2 and between points 9 and 10. For the first orbit, a prior

orbit is unavailable so this technique cannot be used. Instead, a quartic polynomial is

used that passes through the known epoch value as well as the values from the Fourier

series. If the points closest to epoch are numbered 1 through 6, with epoch numbered

3.3 Testing Techniques 77

1, the polynomial passes through epoch at point 1, and the Fourier reconstruction at

points 3 through 4. Again, a smoothing function is used between points 5 and 6. No

consideration is made for the last orbit.

Ephemeris compression can be used in Zadunaisky’s technique by taking two derivatives

of the compression expressions for position. To simplify the process, the one-day period

Fourier fit is not performed. This second fit is not needed because minimizing the number

of coefficients is not an issue here. Also, the J2 periodic correction is not made, so that

the derivatives of this correction are not needed. Instead, the J2 periodic effects are

handled by the Fourier fit, by increasing the number of terms in the series. In [38], Hoots

and Segerman used a maximum of 91 coefficients per day. Here, a maximum of 601

coefficients per day is used. The derivatives of the ephemeris compression expressions

are given in Appendix A.

The results for the the LEO and HEO cases with the Runge-Kutta integrator with

perturbations are shown in Table 3.14. These results, where a five-second step size

is used, match the results from the step-size halving and higher-order test and indicate

that using ephemeris compression with Zadunaisky’s method works in theory. However,

the results with the GEO case, using a one-minute step size, show the flaws of this

method. The GEO case gives a position error ratio of 2.5× 10−2 with perturbations,

which is nine orders of magnitude too large. An investigation of the integration step-by-

step shows that the integration error occurs when the first smoothing function is used.

The smoothing function lasts one minute, which is the same as the integration step size.

Integrating the same case with a five second step size does give reasonable results. This

result indicates that the problem is stiff in this region, so only small step sizes can be

used. The second derivative changes rapidly between the interpolating polynomial and

the Fourier series, and the smoothing function is adequate to account for the change only

when small steps are used. With Gauss-Jackson, the technique does not give reasonable

results even with a five second step, most likely because of the discontinuity in the 3rd

derivative of the smoothing function.

Table 3.14: Runge-Kutta Ephemeris-Compression Zadunaisky Results
Test Case Position Velocity

1 2.03× 10−9 2.04× 10−9

2 3.74× 10−9 8.27× 10−9

Using only the power series part of the fit, which is smooth, the method gives results

that are two orders of magnitude too low. The power series does not fit the data well

enough to give adequate results. Specifically, the power series does not model any of the

3.3 Testing Techniques 78

periodic effects, which contribute to integration error. So, use of ephemeris compression

in Zadunaisky’s technique at this time is limited to single-step methods with small step

sizes. If a method of fitting the ephemeris with an expression that is more smooth

becomes available, it is likely to give good results with Zadunaisky’s technique.

With a function of time that closely fits the ephemeris available, one might try to inte-

grate the second derivative of that function by itself, instead of as part of Zadunaisky’s

technique, and use the error of that integration as a measure of the error in the original

problem. Table 3.15 shows results for the LEO and HEO cases with perturbations inte-

grating only the compression expression, compared to the reconstruction of the ephemeris.

These results are somewhat lower than the higher-order results for position, and signif-

icantly lower for velocity. Since the expression being integrated is only a function of

time, the integration error at one step does not affect the next step. So this method only

measures local error; global error does not build up. Position has a larger error than

velocity because position is found by integrating velocity, so the velocity error does affect

the position error.

Table 3.15: Integration of Ephemeris-Compression Derivative Results
Test Case Position Velocity

1 1.23× 10−9 8.24× 10−12

2 6.74× 10−10 5.91× 10−11

3.3.8 Summary

Because perturbations, including atmospheric drag, affect integration error, the two-body

test and the integral invariant test can not be used to measure integration accuracy.

However the two-body test has proved useful in assessing the effectiveness of the other

techniques. In particular the two-body test has shown that the reverse test does not

give a good measure of integration error. Though Zadunaisky’s technique in theory gives

a measure of integration error compared to an exact solution, the method has proven

too difficult to implement. No methods are currently available to find a polynomial

that is both sufficiently smooth and sufficiently represents the orbital motion. On the

other hand, the step-size halving test and the higher-order test both give comparable

results and measure the two-body error reasonably well. Because some of the integration

methods used in subsequent tests are variable-step, the step-size halving test cannot be

implemented. Therefore, the higher-order test is used. Though the higher-order test does

not give an exact measure of integration error, it does give a reasonable approximation of

3.4 Speed Tests 79

the error. Since the main purpose of the comparisons in Chapter 5 is to measure the speed

of integration methods that have “about the same” accuracy, the higher-order test will

suffice. Because the 14th-order Gauss-Jackson method used in the higher-order test uses

a relatively small step-size and has multiple evaluations per step, it has a significantly

longer run-time than the methods being tested. So the test effectively measures how

much accuracy is lost by using the faster methods.

3.4 Speed Tests

To measure integration speed, the integration methods are first adjusted to give equiv-

alent accuracy. The step size, or other parameters such as integration tolerance, are

adjusted to give an error ratio, with perturbations, of approximately 1× 10−9 in a higher-

order test covering 3 days. The computation time is then found in an integration covering

30 days with perturbations. Computation time is measured as the user time on an SGI

Octane.

3.5 Evaluations

When comparing the computation time of integrators, the main factor determining the

execution time is the number of force model evaluations performed. To demonstrate the

effect that perturbations have on run-time, the highly elliptic case is integrated with

the Gauss-Jackson integrator with a 30-second step size for 30 days with and without

perturbations. The integration with perturbations takes 19.0 seconds, and the integration

without perturbations takes 1.94 seconds of user time. So 90% of the run-time is spent

evaluating the perturbations. These run-times include not only the integration but also

other overhead associated with creating the output ephemeris file. With the Runge-

Kutta method, which uses a smaller step size so the overhead is less significant, 93% of

the run-time is spent evaluating the perturbations for this test case. The other test cases

have similar percentages.

Because evaluations take up such a large percentage of run-time, the number of evalua-

tions in an integration can be used as an estimate of speed, without actually performing

speed tests. For instance, when comparing two integration methods to one another, if

one is known to have twice as many evaluations, because it uses half the step size or

has twice as many evaluations per step, then it can be assumed to have about twice the

run-time of the other method. Furthermore, if two integrations have the same number

3.5 Evaluations 80

of evaluations, then they can be assumed to have equivalent run-times, and the method

that is more accurate can be considered the more efficient method.

As an example, consider a test of the Gauss-Jackson method with various step sizes

and various orders, and also varying the number of evaluations per step. Table 3.16

shows position error ratios for such a study for the low earth test case, and Table 3.17

shows results for the highly elliptical test case. The tables show results for both one

evaluation per step (PEC), and two evaluations per step (PECEC). Results in between

the horizontal lines have equivalent run-times. The * in the tables denotes that the

integration has become unstable. It is obvious when instability has occurred, because

the eccentricity of the integrated ephemeris grows to the point where the orbit becomes

hyperbolic. High order multi-step integrators are known to be susceptible to instability

at large step sizes ([40], pp. 139, 146).

Table 3.16: Gauss-Jackson Error Ratios for LEO Case
Step Size Evals/ Order

(sec) Step 6 8 10 12 14

480 2 1.7× 10−3 2.9× 10−3 * * *

240 1 4.1× 10−4 * * * *

240 2 4.9× 10−5 2.8× 10−5 3.0× 10−5 * *

120 1 3.5× 10−7 5.2× 10−7 * * *

120 2 1.2× 10−6 1.1× 10−6 1.0× 10−6 1.3× 10−6 5.0× 10−7

60 1 3.7× 10−8 2.8× 10−8 1.1× 10−8 * *

60 2 4.0× 10−8 2.9× 10−8 2.2× 10−8 1.6× 10−8 1.6× 10−8

30 1 2.9× 10−9 3.1× 10−9 3.2× 10−9 3.2× 10−9 *

30 2 2.9× 10−9 3.1× 10−9 3.2× 10−9 3.2× 10−9 3.2× 10−9

15 1 4.9× 10−12 2.6× 10−12 1.0× 10−12 2.3× 10−12 7.6× 10−12

The results in Table 3.16 and 3.17 indicate that cutting the step size in half gives a

greater accuracy improvement than adding a second evaluation. However, for the higher-

order methods, the second evaluation is necessary to maintain stability at larger step

sizes. The greatest speed advantage is gained by using one evaluation per step with a

lower-order method, to avoid instability. The tests presented in Chapter 5 involve the

eighth-order Gauss-Jackson, with one evaluation per step. The step sizes used in the

tests are sufficiently small to avoid instability.

These results support a claim made by Herrick [3] that the Gauss-Jackson integrator can

run without the corrector. Though the corrector is applied once in a PEC implementa-

tion, without a second evaluation the results of the correction are not used in subsequent

3.5 Evaluations 81

Table 3.17: Gauss-Jackson Error Ratios for HEO Case
Step Size Evals/ Order

(sec) Step 6 8 10 12 14

480 2 1.0× 10−1 1.1× 10−1 * * *

240 1 3.5× 10−3 1.7× 10−2 9.4× 10−3 * *

240 2 4.6× 10−3 2.7× 10−3 6.1× 10−4 1.3× 10−3 3.4× 10−5

120 1 2.7× 10−5 2.0× 10−5 2.0× 10−5 6.0× 10−5 1.1× 10−2

120 2 1.2× 10−5 8.9× 10−6 1.5× 10−5 1.5× 10−5 1.7× 10−5

60 1 5.7× 10−7 5.8× 10−7 1.5× 10−6 1.8× 10−6 2.9× 10−5

60 2 7.3× 10−7 7.9× 10−7 7.2× 10−7 7.6× 10−7 5.1× 10−7

30 1 1.6× 10−8 1.1× 10−8 6.7× 10−9 8.3× 10−9 2.8× 10−9

30 2 1.7× 10−8 1.0× 10−8 7.5× 10−9 6.0× 10−9 5.6× 10−9

15 1 1.9× 10−10 9.2× 10−11 4.2× 10−11 4.6× 10−11 9.5× 10−11

steps. Therefore, PE and PEC implementations have the same stability properties, and

have comparable results. Adding the corrector does improve the results somewhat over

predictor-only implementations, so it is used here, because applying the corrector without

a second evaluation has little effect on run-time.

With s-integration, the integration is always unstable with one evaluation per step (PEC)

([21], p. 184). A second evaluation (PECEC) provides stability, but the computation time

associated with a second evaluation significantly limits the advantage of s-integration

over t-integration discussed in Section 2.4. However, it is not necessary for the second

evaluation to be a full evaluation to maintain stability. Because the difference between

the predicted and corrected states is small, the difference in perturbation forces at the

two states is small. Therefore, computation time can be saved by simply re-evaluating

the two-body force during the second evaluation, and adding it to the perturbation force

from the first evaluation. This second evaluation is called a partial evaluation ([41], p.

108) and denoted Ẽ, so the implementation is PECẼC.

Table 3.18 shows the maximum position difference over three days between using s-

integration with the PECEC method and the PECẼC method for a variety of orbits.

Each integration was performed with perturbations, with a 30-second step size at perigee.

Though the PECEC method takes twice as long, it changes the result by less than 10 mm.

The s-integration results in Chapter 5 are obtained using the PECẼC method.

3.6 Summary 82

Table 3.18: Effect of Partial Evaluation in s-integration.
Perigee Height (km) e Position Difference (mm)

300 0.25 1.96

300 0.50 2.12

300 0.75 2.30

500 0.25 1.91

500 0.50 2.17

500 0.75 2.27

1000 0.25 1.85

1000 0.50 2.05

1000 0.75 8.79

3.6 Summary

Several methods of testing the accuracy of integrators have been presented in this chapter.

One of these methods, the higher-order test, has been chosen as the test to use for the

testing in subsequent chapters. In addition, a method for testing the speed of integrators

has been described, and used to illustrate the effect of evaluations on run-time. The

effect of evaluations on stability has also been discussed. Further testing in the next

chapter motivates the need for a variable-step double-integration multi-step integrator,

which uses one evaluation per step. That method is also derived in the next chapter, and

then in Chapter 5 it is compared to other integration methods.

83

Chapter 4

Variable-Step Störmer-Cowell

Method

4.1 Motivation

The need for a variable-step double-integration method can be illustrated by comparing

some of the integration methods described in Chapter 2. The benefit of variable-step

integration is demonstrated by comparing the Shampine-Gordon method, and the s-

integration method, to the Gauss-Jackson method. The benefit of double integration is

shown by comparing the Adams method to the Störmer-Cowell method. Following this

motivation the method is derived in Section 4.2, the implementation of the method is

discussed in Section 4.3, and preliminary results are given in Section 4.4.

4.1.1 Variable Step

Variable-step integrators have an advantage over fixed-step integrators for elliptical or-

bits. The advantage of variable-step methods can be quantified using the speed testing

procedure described in Section 3.4. The fixed-step Gauss-Jackson method is compared to

the variable-step Shampine-Gordon method as well as s-integration, which uses analytic

step regulation, in speed tests on test-case orbits of various eccentricities. The test cases

all have a perigee height of 400 km, and an inclination of 40◦. As in the testing in the

previous chapter, the test cases have a ballistic coefficient of 0.01 m2/kg, and an epoch of

1999-10-01 00:00:00 UT.

Table 4.1 shows the step sizes needed for the fixed-step method (t-integration) and s-

4.1 Motivation 84

integration, and the relative tolerance needed by Shampine-Gordon, to achieve an error

ratio of 1× 10−9 in the higher-order test. An absolute tolerance of 1× 10−31 is used for

every case with the Shampine-Gordon integrator. The step size used for the 14th-order

Gauss-Jackson used as the reference in the higher-order test is chosen to give an error

ratio of 1× 10−10 or better in the step-size halving test. Table 4.1 also shows the time

required to integrate 30 days with the step size or tolerance shown. Finally, the table

shows a speed ratio, which is the time of the fixed-step method divided by the time of

the variable-step method. The variable step methods have an advantage when the speed

ratio is above one. Figure 4.1 shows a plot of the speed ratio against eccentricity for both

variable-step methods.

Table 4.1: Speed Comparisons for Perigee Height of 400 km
Step Size / Tolerance Time for 30 Day Run (sec) Speed Ratio to t

e t s SG t s SG s SG

0 29 20 2× 10−11 20.6 32.1 89.9 0.64 0.23

0.05 36 34 7× 10−11 16.5 17.5 58.8 0.94 0.28

0.10 41 40 2× 10−10 14.5 13.9 42.4 1.0 0.34

0.15 39 36 1× 10−10 15.1 13.8 37.6 1.1 0.40

0.20 38 34 2× 10−11 15.3 13.2 40.1 1.2 0.38

0.25 38 34 7× 10−11 15.2 12.1 30.6 1.3 0.50

0.30 39 34 2× 10−11 14.7 11.0 32.8 1.3 0.45

0.40 35 32 1× 10−11 16.3 9.29 29.6 1.8 0.55

0.50 33 30 1× 10−11 17.2 7.69 23.8 2.2 0.72

0.55 35 25 7× 10−12 16.2 7.85 22.2 2.1 0.73

0.60 31 28 1× 10−11 18.3 6.03 18.2 3.0 1.0

0.65 31 27 2× 10−11 18.2 5.23 14.1 3.5 1.3

0.70 29 26 1× 10−11 19.4 4.41 13.0 4.4 1.5

0.80 26 23 1× 10−11 21.8 2.92 8.16 7.5 2.7

0.90 25 22 7× 10−11 22.5 1.24 2.89 18 7.8

0.95 25 22 2× 10−10 22.5 0.56 1.15 40 20

Figure 4.1 shows that s-integration is more efficient than fixed-step integration at an

eccentricity of approximately 0.15, and that Shampine-Gordon is more efficient than

Gauss-Jackson at an eccentricity of approximately 0.60. Test results at other perigee

heights, given in Chapter 5, show that the eccentricity where the variable-step methods

are more efficient is independent of the perigee height. The plot also shows that s-

integration is always more efficient than Shampine-Gordon. This result is because s-

integration only has one full evaluation and one partial evaluation, and Shampine-Gordon

4.1 Motivation 85

0 0.2 0.4 0.6 0.8 1
Eccentricity

0

5

10

Sp
ee

d
R

at
io

s-integration
Shampine-Gordon

Figure 4.1: Speed Ratios to Fixed-Step Integration at 400 km Perigee

has two full evaluations. Though s-integration does provide a significant advantage for

elliptical orbits, it still does not provide local error control, so there is no guarantee that

it is meeting a specific accuracy requirement. Also, s-integration has the disadvantage of

in-track error mentioned in Section 2.4.2. A variable-step integrator that only requires

one evaluation per step would combine some advantages of both Shampine-Gordon and

s-integration.

4.1.2 Double vs. Single Integration

Because two integrations are necessary to integrate a second-order differential equation,

single integration has more round-off error than double integration. To examine the

advantage of double integration over single integration, the double-integration Störmer-

Cowell method is compared to the single-integration Adams method. These integrators

are compared on test case orbits with varying eccentricity and perigee heights. Again,

the test cases all have an inclination of 40◦, a ballistic coefficient of 0.01 m2/kg, and an

epoch of 1999-10-01 00:00:00 UTC.

Table 4.2 gives error ratios over three days for the Störmer-Cowell and Adams integrators

without perturbations. The table shows that the error ratio is always smaller with

Störmer-Cowell. The reference value used to compute the error ratio in (3.4) is the

analytic two-body solution. The integrators both use a 30 second step size in the tests,

so have nearly identical run-times. The integrators are both set to use two evaluations

4.1 Motivation 86

per step. The first evaluation is a full evaluation, and the second evaluation is a partial-

evaluation.

Table 4.2: Error Ratios for Störmer-Cowell and Adams, Two Body

Height (km) Eccentricity Störmer-Cowell Adams

300 0.00 2.47× 10−13 2.66× 10−12

300 0.25 3.05× 10−12 7.90× 10−12

300 0.50 1.28× 10−11 9.35× 10−11

300 0.75 4.01× 10−11 2.66× 10−10

500 0.00 3.49× 10−13 7.90× 10−13

500 0.25 2.87× 10−12 9.21× 10−12

500 0.50 7.94× 10−12 6.46× 10−11

500 0.75 2.21× 10−11 1.69× 10−10

1000 0.00 9.63× 10−14 4.78× 10−12

1000 0.25 3.53× 10−13 9.58× 10−12

1000 0.50 1.73× 10−12 2.40× 10−11

1000 0.75 9.70× 10−12 7.03× 10−11

Table 4.3 gives position error ratios over three days for the two integrators with perturba-

tions. The table shows that the error ratio is always smaller with Störmer-Cowell, except

for the 300 km and 500 km circular orbits. Again a step size of 30 seconds is used for

both integrators, and two evaluations per step are performed, with the second one being

a partial-evaluation. In the tests with perturbations the reference used in (3.4) is the

14th-order Gauss-Jackson method. To ensure that the reference method is significantly

more accurate than the methods being tested, a five-second step size is used with the

14th-order method.

The results in Tables 4.2 and 4.3 show that Störmer-Cowell is generally more accurate

than Adams for equivalent run-times. These results show the advantage of double inte-

gration over single integration. In the tests used to create these results, the integrators

performed two evaluations per step. A further advantage of double integration is shown

by removing the second evaluation. In a predict, evaluate, correct (PEC) implementation,

the Adams method is unstable in all of the test cases, with and without perturbations.

The Störmer-Cowell method is not unstable. Without the second evaluation Störmer-

Cowell gives results that are only slightly less accurate than with two evaluations. This

finding implies that double integration gives a stability advantage over single integration.

Krogh ([24], p. 31) and Herrick ([3], p. 12) also pointed out that double integration can

4.2 Derivation 87

Table 4.3: Error Ratios for Störmer-Cowell and Adams, Perturbations

Height (km) Eccentricity Störmer-Cowell Adams

300 0.00 4.69× 10−09 3.45× 10−09

300 0.25 3.73× 10−09 7.31× 10−09

300 0.50 3.60× 10−09 1.31× 10−08

300 0.75 1.16× 10−08 4.04× 10−08

500 0.00 2.14× 10−10 1.11× 10−10

500 0.25 4.89× 10−10 1.41× 10−09

500 0.50 1.30× 10−09 3.82× 10−09

500 0.75 3.96× 10−09 1.13× 10−08

1000 0.00 3.33× 10−12 1.47× 10−11

1000 0.25 1.86× 10−11 5.49× 10−11

1000 0.50 5.65× 10−11 1.74× 10−10

1000 0.75 2.09× 10−10 6.27× 10−10

perform as well with one evaluation per step as single integration can with two evaluations

per step. Krogh specifically pointed out the stability advantage of double integration in

[42]. This stability advantage allows a variable-step double-integration method to require

only one evaluation per step, giving it a significant advantage over Shampine-Gordon.

4.2 Derivation

To create an integrator with features that the motivation tests indicate would be use-

ful, a variable-step double-integration method can be derived using the concepts in the

derivation of Shampine-Gordon. However, the proposed implementation differs from

Shampine-Gordon in several ways. Only one evaluation is performed per step, for a PEC

implementation, which significantly reduces the run-time of the method. The method is

not variable order, because a second evaluation would be necessary to estimate when the

order should be increased. Finally, since the main goal is to reduce run-time, and because

order increases that require a constant step are not being considered, fewer restrictions

are placed on the factor ρ which changes the step size. The argument that keeping the

step size constant reduces the overhead does not apply, because the force model used

in orbit propagation is so expensive that the overhead associated with calculating the

coefficients is insignificant.

4.2 Derivation 88

4.2.1 Predictor

For satellite orbits, the governing second-order differential equation is

r̈ = f(t, r, ṙ). (4.1)

To solve for position, r, take the double integral of each side in (4.1),∫ tn+1

tn

∫ t̃

tn

r̈(t) dt dt̃ =

∫ tn+1

tn

∫ t̃

tn

f(t, r, ṙ) dt dt̃. (4.2)

Performing the integration on the left side of (4.2) gives

rn+1 = rn + hn+1ṙn +

∫ tn+1

tn

∫ t̃

tn

f(t, r, ṙ) dt dt̃. (4.3)

Proceeding with this form leads to the integration methods given by Krogh [24]. Lund-

berg also used this form, and called it the general formulation of double integration

[41].

General Formulation

The general formulation predictor is found by replacing the function f with the interpo-

lating polynomial P k,n,

rp
n+1 = rn + hn+1ṙn +

∫ tn+1

tn

∫ t̃

tn

P k,n(t) dt dt̃. (4.4)

Substituting (2.137) for P k,n, and changing the integration variable to τ , gives

rp
n+1 = rn + hn+1ṙn + h2

n+1

k∑
i=1

φ∗
i (n)

∫ 1

0

∫ τ̃

0

ci,n(τ) dτ dτ̃ . (4.5)

The double integration of ci,n is given by the coefficients gi,2 found for Shampine-Gordon,

so the predictor simplifies,

rp
n+1 = rn + hn+1ṙn + h2

n+1

k∑
i=1

gi,2φ
∗
i (n). (4.6)

This expression is the predictor formula for the general formulation of double integration.

4.2 Derivation 89

Variable-Step Störmer-Cowell

The general formulation contains a velocity term, ṙn, which must be removed for a truly

double integration formula. To remove the velocity term, take a step backward ([4],

p. 290), ∫ tn−1

tn

∫ t̃

tn

r̈(t) dt dt̃ =

∫ tn−1

tn

∫ t̃

tn

f(t, r, ṙ) dt dt̃, (4.7)

which leads to the relation

−rn = −rn−1 − hnṙn +

∫ tn−1

tn

∫ t̃

tn

f(t, r, ṙ) dt dt̃. (4.8)

The first derivative term is removed by adding (hn+1/hn) times (4.8) to (4.3),

rn+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 +

∫ tn+1

tn

∫ t̃

tn

f(t, r, ṙ) dt dt̃

+
hn+1

hn

∫ tn−1

tn

∫ t̃

tn

f(t, r, ṙ) dt dt̃. (4.9)

This formulation represents the variable-step form of the Störmer-Cowell method. Again,

the interpolating polynomial P k,n is used in place of f(t, r, ṙ) to give an expression for

the predicted value of position, rp
n+1,

rp
n+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 +

∫ tn+1

tn

∫ t̃

tn

P k,n(t) dt dt̃

+
hn+1

hn

∫ tn−1

tn

∫ t̃

tn

P k,n(t) dt dt̃. (4.10)

Substituting (2.137) for P k,n gives

rp
n+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 +

∫ tn+1

tn

∫ t̃

tn

k∑
i=1

ci,n(τ)φ∗
i (n) dt dt̃

+
hn+1

hn

∫ tn−1

tn

∫ t̃

tn

k∑
i=1

ci,n(τ)φ∗
i (n) dt dt̃. (4.11)

The integration variable can be changed to τ by noting that τ = −hn/hn+1 when t = tn−1,

for the upper limit of the second integration term,

rp
n+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 + h2
n+1

k∑
i=1

φ∗
i (n)

∫ 1

0

∫ τ̃

0

ci,n(τ) dτ dτ̃

+
h3

n+1

hn

k∑
i=1

φ∗
i (n)

∫ −hn
hn+1

0

∫ τ̃

0

ci,n(τ) dτ dτ̃ . (4.12)

4.2 Derivation 90

This expression can be written with the simplified notation c
(−q)
i,n using (2.146),

rp
n+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 + h2
n+1

k∑
i=1

φ∗
i (n)c

(−2)
i,n (1)

+
h3

n+1

hn

k∑
i=1

φ∗
i (n)c

(−2)
i,n

(
−hn

hn+1

)
. (4.13)

A new set of coefficients, g′i,q, is needed to find the second integration term. Define g′i,q
as

g′i,q = (q − 1)! c
(−q)
i,n

(
−hn

hn+1

)
. (4.14)

Using (2.148), for i ≥ 3, (4.14) is

g′i,q =

(
αi−1(n+ 1)

−hn

hn+1

+
ψi−2(n)

ψi−1(n+ 1)

)
(q − 1)! c

(−q)
i−1,n

(
−hn

hn+1

)
− αi−1(n+ 1)q! c

(−q−1)
i−1,n

(
−hn

hn+1

)
. (4.15)

Using the definition of α, (2.135), and noting that −hn + ψi−2(n) = ψi−3(n − 1), the

expression simplifies,

g′i,q =
ψi−3(n− 1)

ψi−1(n+ 1)
g′i−1,q − αi−1(n+ 1)g′i−1,q+1, (4.16)

for i ≥ 3. To implement a recursive formula for g′, the expressions for i = 1 and i = 2

are needed. When i = 1, change the limit of integration in (2.152),

g′1,q = (q − 1)!

∫ −hn
hn+1

0

· · ·
∫ τ1

0

dτ0 . . . dτq−1 =
(q − 1)!

q!

(
−hn

hn+1

)q

=
1

q

(
−hn

hn+1

)q

. (4.17)

For i = 2, change the integration limit in (2.153),

g′2,q = (q − 1)!

∫ −hn
hn+1

0

· · ·
∫ τ1

0

τ dτ0 . . . dτq−1 =
(q − 1)!

(q + 1)!

(
−hn

hn+1

)q+1

=
1

q(q + 1)

(
−hn

hn+1

)q+1

. (4.18)

Now a recursive formula for g′i,q is available, similar to (2.154) for gi,q,

g′i,q =



1

q

(
−hn

hn+1

)q

i = 1,

1

q(q + 1)

(
−hn

hn+1

)q+1

i = 2,

ψi−3(n− 1)

ψi−1(n+ 1)
g′i−1,q − αi−1(n+ 1)g′i−1,q+1 i ≥ 3.

(4.19)

4.2 Derivation 91

Note that for i = 3, ψi−3(n − 1) = 0. When the step size is constant, ψi(n) = ih and

αi(n+ 1) = 1/i, so the formula reduces to

g′i,q =



1

q
(−1)q i = 1,

1

q(q + 1)
(−1)q+1 i = 2,

i− 3

i− 1
g′i−1,q −

1

i
g′i−1,q+1 i ≥ 3.

(4.20)

The coefficients g′iq for a constant step are shown in Table 4.4. Adding the second row

of the table, g′i,2, to the coefficients gi,2 given in Table 2.9, gives the Störmer-Cowell

coefficients λi−1 (2.60).

Table 4.4: Coefficients g′iq for Constant Step Size

1 2 3 4 5

1 -1 1/2 1/12 1/24 19/720

2 1/2 -1/6 -1/24 -1/45

q 3 -1/3 1/12 1/40

4 1/4 -1/20

5 -1/5

Using the coefficients g and g′, the double-integration predictor formula (4.13) can be

written

rp
n+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 + h2
n+1

k∑
i=1

gi,2φ
∗
i (n) +

h3
n+1

hn

k∑
i=1

g′i,2φ
∗
i (n), (4.21)

or, combining the terms,

rp
n+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 + h2
n+1

k∑
i=1

(
gi,2 +

hn+1

hn

g′i,2

)
φ∗

i (n). (4.22)

This expression is the predictor formula for the variable-step Störmer-Cowell method.

4.2.2 Corrector

As in single integration, the corrector uses the interpolating polynomial P ∗
k+1,n, given

in (2.156). The corrected value at point (n + 1), rn+1, is found by replacing P k,n with

4.2 Derivation 92

P ∗
k+1,n in (4.10),

rn+1 =

(
1 +

hn+1

hn

)
rn −

hn+1

hn

rn−1 +

∫ tn+1

tn

∫ t̃

tn

[
P k,n(t) + ck+1,n(τ)φp

k+1(n+ 1)
]
dt dt̃

+
hn+1

hn

∫ tn−1

tn

∫ t̃

tn

[
P k,n(t) + ck+1,n(τ)φp

k+1(n+ 1)
]
dt dt̃. (4.23)

This expression is simplified by combining the terms known to be rp
n+1 and by changing

the integration variable to τ ,

rn+1 = rp
n+1 + h2

n+1

∫ 1

0

∫ τ̃

0

ck+1,n(τ)φp
k+1(n+ 1) dτ dτ̃

+
h3

n+1

hn

∫ −hn
hn+1

0

∫ τ̃

0

ck+1,n(τ)φp
k+1(n+ 1) dτ dτ̃ . (4.24)

The integrals can be written in terms of the coefficients g and g′,

rn+1 = rp
n+1 + h2

n+1

(
gk+1,2 +

hn+1

hn

g′k+1,2

)
φp

k+1(n+ 1), (4.25)

giving a corrector formula for the variable-step Störmer-Cowell method. To reduce run-

time, a second evaluation is not performed, so only a PEC implementation is used.

Results show this implementation to be stable. Without the second evaluation the dif-

ferences used by the predictor in the next step are simply φi(n+ 1) = φp
i (n+ 1).

4.2.3 Interpolation

To interpolate to a requested point, an integration is performed from the last integra-

tion point to the requested point, similar to (2.170), but with the additional backwards

integration to remove the velocity term,

rout =

(
1 +

hI

hn+1

)
rn+1 −

hI

hn+1

rn +

∫ tout

tn+1

∫ t̃

tn+1

P k+1,n+1(t) dt dt̃

+
hI

hn+1

∫ tn

tn+1

∫ t̃

tn+1

P k+1,n+1(t) dt dt̃. (4.26)

The expression is simplified using the notation c
I(−q)
i,n+1, given in (2.173),

rout =

(
1 +

hI

hn+1

)
rn+1 −

hI

hn+1

rn + h2
I

k+1∑
i=1

φi(n+ 1)c
I(−2)
i,n+1(1)

+
h3

I

hn+1

k+1∑
i=1

φi(n+ 1)c
I(−2)
i,n+1

(
−hn+1

hI

)
. (4.27)

4.2 Derivation 93

The coefficients gI
2,i can be used for the first integration term. Another set of coefficients,

gI′ is needed for the second term. These coefficients are defined

gI′

i,q = (q − 1)! c
I(−q)
i,n+1

(
−hn+1

hI

)
. (4.28)

Following (2.173), a recursive formula for these coefficients is available,

gI′

i,q =


1

q

(
−hn+1

hI

)
i = 1,

Γi−1

(
−hn+1

hI

)
gI′

i−1,q −
hI

ψi−1(n+ 1)
gI′

i−1,q+1 i ≥ 2.
(4.29)

The value of Γ in this expression can be simplified following (2.169),

Γi

(
−hn+1

hI

)
=

−1 i = 1,
ψi−2(n)

ψi(n+ 1)
i ≥ 2.

(4.30)

Note that for i = 2, ψi−2(n + 1) = 0. With these coefficients defined, an expression for

rout is available,

rout =

(
1 +

hI

hn+1

)
rn+1 −

hI

hn+1

rn + h2
I

k+1∑
i=1

(
gI

i,2 +
hI

hn+1

gI′

i,2

)
φi(n+ 1). (4.31)

This expression is the interpolation formula for double integration.

4.2.4 Step-Size Control

The step size is controlled by estimating the local position error at each step, similarly

to (2.178) for velocity. For double integration, the value of rn+1(k) is found by replacing

P ∗
k+1,n(t) with P ∗

k,n(t), (2.179), in (4.23),

rn+1(k) = rp
n+1 + h2

n+1

∫ 1

0

∫ τ̃

0

ck,n(τ)φp
k+1(n+ 1) dτ dτ̃

+
h3

n+1

hn

∫ −hn
hn+1

0

∫ τ̃

0

ck+1,n(τ)φp
k(n+ 1) dτ dτ̃ . (4.32)

The integrals may be written in terms of the coefficients g and g′,

rn+1(k) = rp
n+1 + h2

n+1

(
gk,2 +

hn+1

hn

g′k,2

)
φp

k+1(n+ 1). (4.33)

4.2 Derivation 94

The local error vector is estimated by subtracting (4.33) from (4.25),

len+1(k) ≈ h2
n+1

(
gk+1,2 − gk,2 +

hn+1

hn

(g′k+1,2 − g′k,2)

)
φp

k+1(n+ 1). (4.34)

The method determines if a step fails based on this local estimate; the step fails if√√√√ 3∑
L=1

(
leL

WTD(L)

)2

≤ EPS, (4.35)

where WTD(L) is a weight for double integration,

WTD(L) = |rL|
εrel
EPS

+
εabs

EPS
, (4.36)

similar to (2.191) for single integration. If the step fails the step is tried again with half

the step size. Like the Shampine-Gordon integrator, the method restarts as first order if

a step fails after three tries. This restart is needed with double integration, because if

the step size becomes too small compared to the previous step, the term (−hn/hn+1)
q in

the g′ coefficients (4.19) becomes large, contributing to numerical error.

To choose the step size at the next step, hn+2 = ρhn+1, the local error at that step is

approximated, analogous to (2.185),

len+2(k) ≈ h2
n+2

(
gk+1,2 − gk,2 +

hn+2

hn+1

(g′k+1,2 − g′k,2)

)
φp

k+1(n+ 2). (4.37)

As with single integration, this expression is approximated assuming that the differences

are slowly varying and the previous steps were also taken at ρhn+1, analogous to (2.189),

len+2(k) ≈ ρ2h2
n+1(λk − λk−1)ρ

kσk+1(n+ 1)φp
k+1(n+ 1), (4.38)

where λi are the Störmer-Cowell predictor coefficients given in Section 2.3.5. Introducing

λ∗k = λk − λk−1 simplifies the expression,

len+2(k) ≈ ρk+2h2
n+1λ

∗
kσk+1(n+ 1)φp

k+1(n+ 1). (4.39)

To calculate the value of ρ, the error using a step size of hn+1 is found, as in (2.191),

ERKD = |h2
n+1λ

∗
kσk+1(n+ 1)|

√√√√ 3∑
L=1

(
φp

L k+1(n+ 1)

WTD(L)

)2

. (4.40)

Using a chicken factor of 0.5, the factor ρ for the next step is found similarly to (2.193),

ρ =

(
0.5ε

ERKD

) 1
k+2

. (4.41)

4.2 Derivation 95

For stability, the calculated value of ρ is bounded between 0.5 and 2. However, no other

restrictions are placed on r, so that unlike Shampine-Gordon step-size increases between

1 and 2 can be made. This technique allows the step size to increase as soon as possible,

which reduces overall run-time. Because of the expensive force model it is better to make

a small increase in the step size and recompute the coefficients than to leave the step size

constant to avoid recomputing the coefficients.

4.2.5 Initialization

To start the method, a variable-order implementation is used. The method starts as

first-order, and at each step the order is increased, and the step size is doubled. During

this startup phase a second evaluation is performed for stability. The order is increased

until nine backpoints are used, at which point the startup phase ends and the normal

predict, evaluate, correct cycle begins. Nine backpoints are used in the normal procedure

because this corresponds to an eighth-order multi-step method. The testing in Section

3.5 showed the eighth-order Gauss-Jackson method to have good stability characteristics

with one evaluation per step, even with relatively large step sizes.

The initial step size is chosen by a method similar to the method used by the Shampine-

Gordon method. For double integration, the equivalent of (2.198), is

h1 =
1

4

√√√√√ EPS√∑3
L=1

(
ṙL 0

WTD(L)

)2
. (4.42)

Again, this step size is bounded by 4εmt0, and the size of the step to the first output

point. The error in the first step is a lower bound on the error of the entire method, so

additional procedures are used to find the best value of the initial step. If the first step

fails the accuracy check, the step size is reduced by one half and the method tries again.

If the step does not fail, the step size is doubled and the initial step is tried again. The

doubling is repeated on each successful try until the step fails, and then the step size is

reduced back to the last successful value. This procedure biases the initial step toward a

large value. Initial steps that are too small can cause a significant amount of round-off

error, which this procedure avoids.

At the first step, when n = 0, only the initial values of position and velocity are known.

Therefore, the variable-step Störmer-Cowell formula for position, (4.22), cannot be used,

because r−1 would be needed. Instead the general formulation, (4.6), is used for the first

4.3 Implementation 96

step. At the first step k = 1, so the predictor can be written,

rp
1 = r0 + h1ṙ0 +

1

2
h2

1r̈0, (4.43)

and the corrector is

r1 = rp
1 +

1

6
h2

1φ2(1). (4.44)

Though the general formulation is undesirable because the presence of the velocity term

contributes to round-off error, at the first step the velocity is an initial condition, and

so by definition contains no round-off error. Since the general formulation is used at the

first step, a different equation is needed to check the accuracy for position,

1

3
h2

1

√√√√ 3∑
L=1

(
φL2(2)

WTD(L)

)
< EPS. (4.45)

The accuracy check for velocity at the first step is given by (2.182).

4.3 Implementation

The double-integration variable-step integrator is implemented with a Shampine-Gordon

style single-integration integrator to solve the differential equation r̈(t) = f(t, r, ṙ). The

double-integration integrator is used to find r and the single-integration integrator is used

to find ṙ. The integrators are implemented together to use the same step size, which is

the smaller of the two step sizes given by their respective step-size control algorithms.

The single-integration integrator differs from Shampine-Gordon in that the order of the

method remains fixed, the step size is allowed to change by a factor between 0.9 and

2, and only one evaluation is performed per step, just as with the double-integration

integrator.

The method must first be started as first order. For the first step the general formulation

is used. The procedure for this step is:

1. The initial step size for double integration, (4.42), and single integration, (2.198),

are calculated.

2. The step size is set to the lower of the two values, and bounded between 4εmt0 and

the size of the step to the first output point.

3. The predicted position, (4.43), and velocity, (2.155), are calculated.

4.3 Implementation 97

4. The function is evaluated at the predicted point.

5. The new differences φi(1) are calculated (2.162).

6. The corrected values of position, (4.44), and velocity, (2.161), are found.

7. The error is estimated for r1, (4.45), and ṙ1, (2.182).

8. If the error is below the tolerance, the step size is halved, and the procedure returns

to step 3.

9. If the error is above the tolerance, and no previous tries have failed, the step size

is doubled, and the procedure returns to step 3.

10. The function is re-evaluated at the corrected point, and the differences are recom-

puted.

11. The number of backpoints is incremented to k = 2.

12. The value of ρ is set to 2.

After the first step has been taken, the variable-step Störmer-Cowell is used. At each

step (n+ 1),

13. The new step size is calculated, hn+1 = ρhn.

14. The values of ψi(n+ 1), ψi(n), and ψi(n− 1) are calculated, (2.124).

15. The values of αi(n+ 1) are calculated, (2.135).

16. The coefficients are calculated, g, (2.154), and g′, (4.19).

17. The values of βi are calculated, (2.130), and the values of φ∗
i , (2.129).

18. The predicted values rp
n+1, (4.22), and ṙp

n+1, (2.155), are found.

19. The function is evaluated at the predicted point.

20. The new differences φi(n+ 1) are calculated, (2.162).

21. The corrected values of rn+1, (4.25), and ṙn+1, (2.161), are found.

22. The error is estimated for r, (4.34), and ṙ, (2.181).

4.4 Results 98

23. If either error estimate is above the tolerance (4.35), (2.182), the step fails, the

differences are reset, ρ is set to 0.5, and the procedure returns to step 13. If there

are three consecutive failures, the method restarts at step 1.

24. If the number of backpoints k is equal to the maximum of 9:

(a) The value of ERK is calculated for double integration, (4.40), and single inte-

gration, (2.191).

(b) The factor ρ recommended for double integration, (4.41), and single integra-

tion, (2.193) is calculated.

(c) The factor ρ is set to the lower of the two recommended values, and bounded

between 0.5 and 2.

Otherwise the method is still in the startup phase:

(a) A second evaluation at the corrected point is performed, and the differences

are recalculated, (2.162).

(b) The number of backpoints k is incremented.

(c) The factor ρ is set to 2 to double the step size.

25. The step n is incremented and the procedure returns to step 13.

4.4 Results

Two separate implementations show the integrator to be effective. The first implementa-

tion is in Matlab. The Matlab implementation is used to integrate the second order dif-

ferential equation y′′ = −y, with initial conditions y(0) = 0, y′(0) = 1, over 0 ≤ t ≤ 10π.

The exact solution of this problem is y(t) = sin(t). Because this problem has no de-

pendence on y′, only the double-integration method has been implemented. An absolute

tolerance of εabs = 1× 10−14 is used in the integration. Figure 4.2 shows a plot of the

numerical solution, the step sizes used, and the total error at each step, |yn − sin(tn)|.

Figure 4.2 shows that the step size fluctuates periodically between approximately 0.1

and 0.15. There is a slight offset between the peaks of the solution and the peaks of

the step-size curve. The error curve also behaves periodically, with peaks of the error

correlating to peaks of the solution. The error grows as the integration progresses, which

is expected. The maximum error is 2.68× 10−12. The values plotted at in Figure 4.2 are

the actual integration points, so no interpolation is used. Figure 4.3 shows the solution,

4.4 Results 99

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

h

Step Size

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

y

Numerical Solution

0 5 10 15 20 25 30 35
0

1

2

3
x 10−12 Error

x

|y
−s

in
(x

)|

Figure 4.2: Results of Integrating y′′ = −y

4.4 Results 100

and error, of interpolated values in increments of t of 0.1. The error for these interpolated

values is on the same order as the error of the integration itself. The Matlab code used

to create Figures 4.2 and 4.3 is given in Appendix B.

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

y

Interpolated Solution

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3
x 10−12 Error

|y
−s

in
(x

)|

x

Figure 4.3: Interpolation Results for Integrating y′′ = −y

The integration method has also been implemented in Fortran to test using the method for

orbit propagation. The full implementation of both the variable-step double and single-

integration integrators described in the Section 4.3 has been implemented into Special-K

[28]. Sample Fortran code is given in Appendix C. Table 4.2 shows error ratios in a

two-body test of various test case orbits. A relative tolerance of εr = 1× 10−12 and an

absolute tolerance of εa = 1× 10−13 are used in the tests. Canonical units are used in

the integration, so the position and velocity are on the order of one. Using an absolute

tolerance an order of magnitude lower than the relative tolerance assures that the relative

tolerance usually dominates the weighting factors given by (2.184) and (4.36). However,

when one of the components of position or velocity approaches zero, the absolute tolerance

prevents the values of ERKS, (2.191), and ERKD, (4.40), from becoming too large. With

a smaller absolute tolerance steps would unnecessarily fail when components approach

4.4 Results 101

zero, costing run-time.

Table 4.5: Variable-Step Double-Integration Results for the Two-Body Problem

Height (km) Eccentricity Error Ratio

300 0.00 3.18× 10−10

300 0.25 4.90× 10−11

300 0.50 1.80× 10−10

300 0.75 1.85× 10−10

500 0.00 3.46× 10−10

500 0.25 2.59× 10−10

500 0.50 6.68× 10−11

500 0.75 1.94× 10−10

1000 0.00 2.39× 10−10

1000 0.25 1.69× 10−10

1000 0.50 2.12× 10−10

1000 0.75 8.90× 10−11

These preliminary results show the integrator to be effective. Additional testing compar-

ing the method to other integration methods is shown in the next chapter.

102

Chapter 5

Comparisons

5.1 Introduction

Many studies have compared the use of different methods to integrate satellite orbits.

Merson [21] tested different integration methods on a variety of types of orbits, and

found that the eighth-order Gauss-Jackson method, with only the predictor, to be most

efficient for circular orbits. Merson recommended the Gauss-Jackson method with s-

integration for highly elliptical orbits. However, Merson’s report was prepared in 1974,

before variable-step multi-step methods such as Shampine-Gordon were available.

Fox [29] compared the fixed-step Gauss-Jackson method, Gauss-Jackson with s-integration,

a variable-step variable-order Adams method, and several variable-step single-step meth-

ods for orbits with various eccentricities. Fox used the two-body problem in his tests so an

exact measure of error was available. To simulate the effects of complex perturbations on

computation time, Fox added unnecessary calculations to the evaluation to waste time.

Like Merson, Fox found the Gauss-Jackson method to be best for low eccentricities. Fox

found that for elliptical orbits with complicated force models s-integration is the best

method, because it requires fewer evaluations than the single-step methods. The main

drawback of Fox’s tests is that the effect of perturbations on integration error was not

considered.

More recently, Montenbruck [30] performed a study comparing several single-step and

multi-step methods, with both fixed and variable steps. Again, his study did not include

perturbations. His tests indicated that some of the more recently developed single-step

methods are competitive with multi-step methods in some cases.

A set of tests performed by Lundberg [41] compared integrators similar to the methods

5.1 Introduction 103

considered here. Lundberg’s study compared eight integrators:

• The general formulation in backward difference form (fixed step, multi-step, double

integration)

• The Gauss-Jackson method in backward difference form (fixed step, multi-step,

double integration)

• The Gauss-Jackson method in ordinate from (fixed step, multi-step, double inte-

gration)

• The variable-order Shampine-Gordon method (variable step, multi-step, single in-

tegration)

• The variable-order Krogh integrator (variable step, multi-step, double integration)

• The non-summed Adams method (fixed step, multi-step, single integration)

• A 7(8)th-order Runge-Kutta-Fehlberg integrator (variable step, single step, single

integration)

• A 7(8)th-order Runge-Kutta-Nyström integrator (variable step, single step, double

integration)

The multi-step integrators all used a PECE implementation in the tests. Lundberg com-

pared the methods on five sets of differential equations that have exact periodic solutions:

an harmonic oscillator, the circular problem of two bodies, the elliptical problem of two

bodies, the Euler rigid-body problem, and the restricted three-body problem. The circu-

lar and elliptical problems of two bodies involved two bodies of equal mass orbiting one

another, so are not the same as the two-body problem for earth-orbiting satellites. Lund-

berg also compared the integrators for a near circular earth-orbiting satellite with and

without perturbations. For the case without perturbations he used the analytic solution

as the reference, and for the case with perturbations the reference was an integration

performed with the 7(8)th-order Runge-Kutta-Fehlberg with a higher precision and lower

tolerance than the method used in the tests. This testing procedure is similar in na-

ture to the higher-order test. The case with perturbations considered only the spherical

11th-degree geopotential effects.

Lundberg’s study examined both the number of function evaluations and the total compu-

tation time, so he was able to draw conclusions about the overhead cost of the integrators.

For instance, integrators that have fewer evaluations but longer run-times than another

5.2 Orbit Propagation 104

method, when the evaluation is not expensive, have a greater overhead cost. Lund-

berg concluded that the variable-step multi-step methods have a higher overhead cost

than the variable-step single-step methods. However, both the fixed and variable-step

multi-step methods were more efficient than the single-step methods in terms of func-

tion evaluations. In the elliptical problem, the fixed-step multi-step methods require less

overhead than the variable-step methods, but require more evaluations than the variable-

step multi-step methods. However, the fixed-step multi-step methods still require fewer

evaluations than the variable-step single-step methods to achieve a certain accuracy. In

comparing the double integration methods to the single integration methods, Lundberg

found the double integration methods to be more accurate for a given step size and order.

Lundberg also concluded that there was no significant difference between the difference

and ordinate forms of the Gauss-Jackson method.

Though Lundberg’s tests demonstrate many of the differences between these methods,

the tests do not reveal the best integrator to use for satellite orbits with a full force

model in all cases. Lundberg found the fixed-step methods to be more efficient for

satellite orbits, but he only examined circular orbits. His study did not reveal the benefit

of using variable-step methods for elliptical satellite orbits. Also, Lundberg’s tests did

not include drag, which has a significant effect on integration error.

In this Chapter, tests are performed comparing the variable-step Shampine-Gordon

and Störmer-Cowell methods, as well as s-integration, to the fixed-step Gauss-Jackson

method. Orbit propagation tests are performed at various eccentricities to show where

the variable-step methods have an advantage over the fixed step method. Though Mer-

son and Fox both recommended variable-step methods for elliptical orbits and fixed-step

methods for circular orbits, they do not indicate when to switch between the two meth-

ods. The tests are also performed at different perigee heights to show the effect that

drag has on the results. Following the orbit propagation tests, orbit determination tests

are performed to indicate how using the variable-step methods for orbits where they are

appropriate can speed up the catalog maintenance process.

5.2 Orbit Propagation

Figures 5.1 – 5.4 show plots of speed ratio against eccentricity for perigee heights of

300 km, 400 km, 500 km, and 1000 km, respectively. Plots for s-integration, Shampine-

Gordon, and the variable-step Störmer-Cowell method are all shown on each figure. The

horizontal line on the plots represent a speed ratio of one, above which the variable-step

methods are more efficient than the fixed-step methods. Tables 5.1 – 5.4 show the times

5.2 Orbit Propagation 105

from the 30-day propagation used to compute the speed ratios. The speed ratio is the

time of the fixed-step Gauss-Jackson divided by the time of the variable-step methods.

The 300 km circular orbit decays in less than 30 days, so the times shown for that case

are the times to integrate 20 days. The tables also show the step sizes and tolerances

needed for the methods to give a position error ratio, given by (3.6), of 1× 10−9 against

the 14th-order Gauss-Jackson method. To create the reference values, the 14th-order is

set to give an error ratio of 1× 10−10 in the step-size halving test.

0 0.2 0.4 0.6 0.8 1
Eccentricity

0

5

10

Sp
ee

d
R

at
io

s-integration
Shampine-Gordon
Var. Störmer-Cowell

Figure 5.1: Speed Ratios to t-integration at 300 km Perigee

Figure 5.1 shows that the variable-step Störmer-Cowell method has an advantage over s-

integration for 300 km perigee orbits with eccentricities below 0.55. This result indicates

that the variable-step Störmer-Cowell method handles the high-drag cases better than

s-integration. Controlling the step size by local-error control allows the method to use

appropriately small steps near perigee where drag is a factor, and still use large enough

steps at apogee to decrease run-time. With analytic step regulation, s-integration cannot

account for the fact that there is drag near perigee. For s-integration to give accurate

results near perigee at the low altitude, it must use a step that is smaller than necessary

at apogee. So this test case demonstrates the advantage of local error control over ana-

lytic step regulation. The results at the higher perigee heights indicate that s-integration

does vary the step size appropriately when drag is a less significant factor. Figure 2.3(c)

shows that s-integration does take smaller steps, in arc-length, at perigee than at apogee.

The comparison between the variable-step Störmer-Cowell method and s-integration in-

dicates that these smaller steps are appropriate to account for the increased geopotential

perturbation forces near perigee, but are not small enough to handle high drag cases.

5.2 Orbit Propagation 106

0 0.2 0.4 0.6 0.8 1
Eccentricity

0

5

10

Sp
ee

d
R

at
io

s-integration
Shampine-Gordon
Var. Störmer-Cowell

Figure 5.2: Speed Ratios to t-integration at 400 km Perigee

0 0.2 0.4 0.6 0.8 1
Eccentricity

0

5

10

Sp
ee

d
R

at
io

s-integration
Shampine-Gordon
Var. Störmer-Cowell

Figure 5.3: Speed Ratios to t-integration at 500 km Perigee

5.2 Orbit Propagation 107

0 0.2 0.4 0.6 0.8 1
Eccentricity

0

5

10

Sp
ee

d
R

at
io

s-integration
Shampine-Gordon
Var. Störmer-Cowell

Figure 5.4: Speed Ratios to t-integration at 1000 km Perigee

Table 5.1: Comparisons for Perigee Height of 300 km
Step Size / Tolerance Time for 30 Day Run (sec)

e t s SG vSC t s SG vSC

0 12 7 5× 10−12 3× 10−12 33.3 58.7 82.6 45.5

0.10 26 15 4× 10−11 5× 10−11 22.9 35.6 55.3 20.6

0.15 26 23 4× 10−11 5× 10−11 22.7 21.4 46.0 17.3

0.20 14 11 1× 10−11 2× 10−11 41.3 39.5 49.2 16.9

0.30 32 30 1× 10−11 4× 10−11 18.0 12.2 40.6 13.0

0.40 35 20 1× 10−11 2.5× 10−11 16.3 14.5 31.9 11.6

0.50 31 21 1× 10−11 3× 10−11 18.4 10.8 25.7 9.32

0.60 28 25 7× 10−11 6× 10−11 20.3 6.71 15.2 6.91

0.65 26 24 4× 10−11 4.5× 10−11 22.0 5.86 13.8 6.10

0.70 28 24 1× 10−11 6× 10−11 20.2 4.74 13.5 4.99

0.80 26 23 2× 10−11 8× 10−11 21.8 2.92 7.76 3.09

0.90 22 18 1× 10−10 1× 10−10 25.6 1.53 2.93 1.37

0.95 23 18 2× 10−10 1.5× 10−10 24.4 0.65 1.21 0.62

5.2 Orbit Propagation 108

Table 5.2: Comparisons for Perigee Height of 400 km
Step Size / Tolerance Time for 30 Day Run (sec)

e t s SG vSC t s SG vSC

0 29 20 2× 10−11 2× 10−12 20.6 32.1 89.9 31.4

0.05 36 34 7× 10−11 8× 10−11 16.5 17.5 58.8 20.4

0.10 41 40 2× 10−10 2× 10−10 14.5 13.9 42.4 16.7

0.15 39 36 1× 10−10 6× 10−11 15.1 13.8 37.6 15.8

0.20 38 34 2× 10−11 7× 10−11 15.3 13.2 40.1 13.7

0.25 38 34 7× 10−11 5× 10−11 15.2 12.1 30.6 12.7

0.30 39 34 2× 10−11 6× 10−11 14.7 11.0 32.8 11.2

0.40 35 32 1× 10−11 4× 10−11 16.3 9.29 29.6 10.3

0.50 33 30 1× 10−11 3× 10−11 17.2 7.69 23.8 8.83

0.55 35 25 7× 10−12 2× 10−11 16.2 7.85 22.2 8.20

0.60 31 28 1× 10−11 6.5× 10−11 18.3 6.03 18.2 6.47

0.65 31 27 2× 10−11 8× 10−11 18.2 5.23 14.1 5.42

0.70 29 26 1× 10−11 6× 10−11 19.4 4.41 13.0 4.75

0.80 26 23 1× 10−11 8× 10−11 21.8 2.92 8.16 3.13

0.90 25 22 7× 10−11 1.5× 10−10 22.5 1.24 2.89 1.21

0.95 25 22 2× 10−10 1× 10−10 22.5 0.56 1.15 0.54

Table 5.3: Comparisons for Perigee Height of 500 km
Step Size / Tolerance Time for 30 Day Run (sec)

e t s SG vSC t s SG vSC

0 45 40 5× 10−11 1× 10−10 13.3 16.1 75.0 25.8

0.10 44 39 8× 10−11 1.5× 10−10 13.7 14.2 43.3 15.9

0.15 42 37 1× 10−10 5× 10−11 14.0 13.4 35.2 15.1

0.20 42 37 2× 10−11 1× 10−10 13.8 12.3 37.6 12.7

0.30 40 35 6× 10−11 7.5× 10−11 14.4 10.6 26.8 10.9

0.50 35 32 2× 10−11 2.5× 10−11 16.2 7.23 20.6 8.61

0.55 34 31 1× 10−11 5× 10−11 16.7 6.49 19.9 7.24

0.60 34 30 4× 10−11 6.5× 10−11 16.7 5.71 14.5 6.25

0.70 31 28 2× 10−11 1× 10−10 18.2 4.12 11.4 4.42

0.80 29 26 2× 10−11 9× 10−11 19.4 2.61 7.16 2.89

0.90 26 24 2× 10−10 1× 10−10 21.7 1.15 2.51 1.27

0.95 27 24 5× 10−10 8× 10−11 20.9 0.53 1.05 0.59

5.2 Orbit Propagation 109

Table 5.4: Comparisons for Perigee Height of 1000 km
Step Size / Tolerance Time for 30 Day Run (sec)

e t s SG vSC t s SG vSC

0 68 60 1× 10−10 2× 10−10 8.83 10.8 49.1 16.9

0.10 65 56 1× 10−10 2× 10−10 9.19 9.78 29.9 11.0

0.15 62 55 1× 10−10 1× 10−10 9.40 9.04 25.7 10.4

0.20 60 53 1× 10−10 1.5× 10−10 9.65 8.57 23.1 9.33

0.30 57 50 1× 10−10 1× 10−10 10.1 7.48 19.8 8.41

0.50 51 46 1× 10−11 6× 10−11 11.2 5.08 18.3 6.59

0.60 48 44 5× 10−11 7× 10−11 11.8 3.93 11.7 5.21

0.70 46 41 3× 10−11 1.5× 10−10 12.3 2.88 8.98 3.63

0.90 38 34 1× 10−10 1× 10−10 14.9 0.87 2.30 1.14

Figures 5.2 – 5.4 show that at higher perigees the variable-step Störmer-Cowell method

and s-integration have roughly the same speed, though the variable-step Störmer-Cowell

method is somewhat slower. The additional overhead associated with calculating the

integration coefficients may account for the difference between the run-times of the two

methods. The variable-step Störmer-Cowell method and s-integration are always faster

than the Shampine-Gordon integrator. The Shampine-Gordon method requires two eval-

uations per step, while the other two methods use only one full evaluation per step, so the

Shampine-Gordon method should have twice the run-time as the other methods. How-

ever, the results shown in Tables 5.1 – 5.4 indicate that the Shampine-Gordon integrator

has more than double the run-time as the other variable-step methods. The Shampine-

Gordon method is biased toward keeping the step size constant, only increasing it when

the step size can be doubled. This limitation accounts for the additional run-time of the

Shampine-Gordon method beyond what is expected from the additional evaluation.

Figures 5.1 – 5.4 show that s-integration has an advantage over t-integration for or-

bits with eccentricities over approximately 0.15, and the Shampine-Gordon integrator is

more efficient than the Gauss-Jackson method with t-integration for eccentricities over

approximately 0.60. The figures indicate that these results are independent of perigee

height. The variable-step Störmer-Cowell method also has an advantage over the Gauss-

Jackson method for eccentricities over approximately 0.15 for perigee heights of 400 km

and higher. For 300 km perigee height orbits, the variable-step Störmer-Cowell method

has an advantage for eccentricities over approximately 0.10.

5.3 Orbit Determination 110

5.3 Orbit Determination

Orbit determination testing is performed on a test set of catalogued satellites for 1999-

09-29. There are 8003 objects in the catalog, of which 1000 are randomly selected for

testing. The goal of the test is to find the improvement in computation time by using the

variable-step methods where the orbit propagation tests show they are more efficient, as

well as to validate that the variable step methods give comparable results to the fixed-step

Gauss-Jackson.

The initial vectors from the catalog are fit using differential correction with a fitspan

between 1.5 and 10 days. The fitspan, which is the time span from which observations

are used in the fit, is determined by operational algorithms and depends on the mean

motion and rate of change of mean motion. The fit includes observations up to 1999-10-

01 00:00:00, going back through the length of the fitspan. Before the fit, the initial vector

is propagated forward to the time of the last observation. The fit solves for position and

velocity at the time of the last observation, and also solves for the ballistic coefficient

when the perigee height is below 1200 km.

The fit is performed with a batch least-squares differential correction process. The dif-

ferential correction process propagates the epoch state, at the time of the last observa-

tion, backwards to the time of each observation. At each observation time a residual is

calculated, which is the difference between the actual observation and the observation

computed from the propagation. These residuals are then used to correct the value of

the state at epoch,

δx =
(
ATWA

)−1
ATW b̃, (5.1)

where δx is the correction to the epoch state vector, b̃ are the residuals, A is a matrix

of partial derivatives, and W is a weighting matrix. The A matrix contains the partial

derivatives of the observations with respect to the components of the epoch state vector.

The W matrix weights observations based on how well the sensors are known to perform.

After the state is updated the process is repeated with residuals given by the updated

state. This process repeats through several iterations until the epoch state converges. At

each step the weighted RMS is calculated,

RMS =

√
b̃

T
W b̃

N − 1
, (5.2)

where N is the number of observations. The process is converged when the percent

change in weighted RMS from one iteration to the next is less than 1%, or if the change

in weighted RMS is less than 1× 10−5. The weighted RMS is a unitless value, because

the W matrix normalizes the residuals.

5.3 Orbit Determination 111

To get a baseline for computation time in the tests, the time is found to fit the 1000 test

objects using Gauss-Jackson with t-integration. The test is performed on a 450 MHz

Pentium II machine running Linux. The total user time is 11.2 hours. Of the 1000

objects, 913 update, while 87 do not update because they fail some criteria, such as

having a final RMS that is too large, or not having enough observations for the object.

To test s-integration, the objects with eccentricities above 0.15 are fit with Gauss-Jackson

using both t-integration and s-integration. The time using t-integration is 2.28 hrs, and

the time using s-integration is 0.65 hrs. So s-integration is 3.5 times faster than t-

integration for processing only the objects with eccentricities above 0.15. Operational

algorithms are used to choose the step sizes for the methods, with both t-integration and

s-integration having the same step at perigee. Objects with eccentricities over 0.25 use

a step size of 30 seconds, and low-earth objects with lower eccentricities use a step size

of 1 minute. Objects at higher altitudes use larger steps. There are 136 objects with

eccentricities above 0.15, of which 102 update and 34 do not. Comparing the final states

given by t- and s-integration, 71 of the objects have a final position difference of less than

1 m. The remaining 31 objects are shown in Table 5.5, which gives the final position

difference in meters, and the difference in final weighted RMS. A negative value for RMS

difference in the table indicates that the s-integration has a lower final weighted RMS.

The objects with the largest position difference in Table 5.5, 19622 and 21589, have

a lower weighted RMS with s-integration, indicating that s-integration gives a better

fit. The object with the next highest position difference, 3827, converged on a different

iteration in the differential correction, and accepted a different number of observations.

Though this position difference is relatively large, it is still within the accuracy of the

observations and the force model. The remaining position differences are relatively minor,

and well within the accuracy of the observations.

Using s-integration to perform the fits saves 1.63 hrs over t-integration. In the entire set

of 1000 objects, if t-integration is used to fit the objects with eccentricities below 0.15 and

s-integration is used to fit objects with eccentricities above 0.15, the total computation

time would be 9.57 hrs, which is a 14.6% savings over using only t-integration.

To test the variable-step Störmer-Cowell integrator, the method is also used to fit ob-

jects with eccentricities over 0.15. A relative tolerance of 2× 10−11 is used in the fits.

One of the objects that did not update under t-integration or s-integration, object

21538, is removed from the set for the variable-step Störmer-Cowell method, because

the variable-step algorithm uses a step size that is prohibitively small for the object.

Under t-integration and s-integration the integrations become unstable for this object,

generating an error that causes the differential correction to stop, so the object is not

5.3 Orbit Determination 112

Table 5.5: Orbit Determination Differences for t- vs. s-integration
Satellite Position RMS Difference

Number Difference (m) (s-int − t-int)

3827 112.778 0.0007

10960 2.70625 0.0000

13970 4.65988 -0.0002

19622 378.819 -0.0912

19884 1.06457 0.0000

19994 7.05259 -0.0007

19998 1.13009 -0.0004

21589 264.48 -0.0555

21591 4.22768 0.0008

21709 9.7989 0.0000

22020 13.9651 0.0000

22098 18.3051 0.0000

22238 7.41498 0.0000

22633 10.5869 0.0000

22997 1.71619 0.0007

23229 5.68604 0.0000

23332 15.019 0.0000

23403 7.89305 0.0000

23430 9.05374 0.0000

23460 15.5898 0.0000

23523 7.00024 0.0000

23616 4.74221 -0.0001

23950 3.42605 0.0000

24211 1.82044 -0.0001

24293 10.1841 0.0000

24655 14.9491 0.0000

24764 17.3145 -0.0001

25503 4.20061 0.0000

25542 18.3253 0.0000

25552 2.91824 0.0000

25805 2.00252 0.0000

5.3 Orbit Determination 113

updated. Instead of becoming unstable, the variable-step method finds a step size small

enough to perform the integration, but the step size is on the order of one millisecond,

so the object can not update in a reasonable amount of time. This problem is not nec-

essarily a flaw in the method, since the other methods cannot handle this object either.

However, additional error handling to prevent situations like this one from occurring are

necessary before the variable-step Störmer-Cowell method can be used operationally.

Of the remaining 135 objects with eccentricities over 0.15, 105 of the objects update with

the variable-step Störmer-Cowell method, while 30 do not. Three objects that failed to

update with t-integration and s-integration, 14136, 18719 and 25539, are able to update

with the variable-step method. Characteristics of these objects, and their reason for

failing in t-integration, are show in Table 5.6. Two of the objects have perigee heights

below 300 km, where drag is significant. The other object has a higher perigee height of

380 km, but with ballistic coefficient 0.43m2/kg can still be considered a high-drag case.

These results indicate that the variable-step method is able to handle drag better than

the other methods. With local error control the variable-step method can take smaller

steps when drag is a factor. Of the 102 objects that update under both t-integration and

the variable-step Störmer-Cowell method, 85 have final position differences under 1 m.

The remaining 17 objects are shown in Table 5.7. A negative value for RMS difference

indicates the fit is better with the variable-step method.

Table 5.6: Objects Updated by var. Störmer-Cowell But Not t-integration
Satellite Reason for Failing e Perigee Height Ballistic Coefficient

in t-integration (km) (m2/kg)

14136 Final B-term too large 0.72 272 0.0018

18719 Final RMS too large 0.51 161 0.045

25539 Final B-term too large 0.72 382 0.43

The object with the largest position difference, 23950, has a larger final weighted RMS

with the variable-step method. This object has only 25 observations within its fitspan.

The differential correction converges on the 16th iteration for this object under the

variable-step method. With t-integration the differential correction rejects one obser-

vation after the 15th iteration, and continues for six more iterations considering only 24

observations. So the difference between the fits with t-integration and with the variable-

step Störmer-Cowell method for this object can be accounted for by the low number of

observations for this object. All of the remaining objects with position differences greater

than 10 m have lower final RMS values with the variable-step Störmer-Cowell method.

The variable-step Störmer-Cowell method takes 0.63 hours to process the objects, so it

5.3 Orbit Determination 114

Table 5.7: Orbit Determination Differences for t-integration vs. var. Störmer-Cowell
Satellite Position RMS Difference

Number Difference (m) (vSC− t-int)

5977 5.07898 0.0001

8195 1.4376 0.0000

9911 1.11593 0.0000

10946 1.01612 0.0011

10960 3.03786 0.0002

11007 231.851 -0.0407

14131 52.4079 -0.0317

19622 380.928 -0.0909

19807 1.56643 0.0000

19994 10.3783 -0.0011

21589 259.809 -0.0545

21590 30.3005 -0.2210

22020 1.48802 0.0000

22997 2.87322 0.0010

23177 1.20855 -0.0054

23824 115.035 -0.0896

23950 466.252 0.6853

5.3 Orbit Determination 115

is 1.65 hours faster than t-integration. The method is 3.6 times faster than the Gauss-

Jackson method with t-integration for processing only the objects with eccentricities

above 0.15. Using the the variable-step Störmer-Cowell method for objects over 0.15

eccentricity and Gauss-Jackson with t-integration for the remaining objects would take

9.55 hours to process all 1000 objects, a 14.7% savings over only using t-integration for

all of the objects. This savings is comparable to the savings with s-integration.

To test Shampine-Gordon, the objects with eccentricities above 0.6 are fit with both

Gauss-Jackson using t-integration and Shampine-Gordon. A relative tolerance of 1× 10−11

is used for the Shampine-Gordon integrator in the fits. Gauss-Jackson takes 1.64 hrs to

process the 87 objects, while Shampine-Gordon takes 0.85 hrs. So Shampine-Gordon is

1.9 times faster then Gauss-Jackson for these objects. The Gauss-Jackson method up-

dates 67 of the objects, while the Shampine-Gordon integrator updates 66 of the objects.

The Shampine-Gordon method fails to update object 10946 because the final RMS is too

large, though the object updates with Gauss-Jackson. The final position differences after

the fit between the two integrators is less than 1 m for 55 of the objects, the remaining

15 are shown in Table 5.8. A negative RMS difference in the table indicates that the

weighted RMS is lower with Shampine-Gordon.

Table 5.8: Orbit Determination Differences for t-integration vs. Shampine-Gordon
Satellite Position RMS Difference

Number Difference (m) (SG − t-int)

8195 2.15318 -0.0001

9911 2.47439 0.0000

12992 1.57563 0.0007

13999 1.28456 -0.0002

17078 1.56477 0.0000

19622 1.87689 0.0480

19884 1.3129 -0.0003

20649 1.2846 -0.0001

21589 264.477 -0.0577

22020 1.01124 0.0000

22068 1.65849 0.0002

22633 1.79357 -0.0001

22997 2.53152 0.0009

23824 115.065 -0.0877

24655 36.3626 0.5819

5.4 Summary 116

Again the objects with the largest position differences, 21589 and 23824, have lower

weighted RMS values with Shampine-Gordon. The remaining objects have position dif-

ferences that are relatively small, and well within the accuracy of the observations.

Using Shampine-Gordon on eccentricities over 0.60 saves 0.79 hrs over t-integration. If

the entire set of 1000 objects is fit with Gauss-Jackson using t-integration for eccentricities

below 0.60 and with Shampine-Gordon for eccentricities above 0.60, the total computa-

tion time would be 10.41 hrs, which is a 7.0% savings over using only Gauss-Jackson with

t-integration.

5.4 Summary

Two sets of tests are presented in this chapter. The orbit propagation tests compare

the speed of variable-step and fixed-step integration methods with the integrators tuned

to give equivalent accuracy. Those tests show that s-integration and the variable-step

Störmer-Cowell method have comparable results in most cases, and that both methods

have an advantage over the fixed-step Gauss-Jackson method for objects with eccentric-

ities greater than 0.15. The variable-step Störmer-Cowell method has an advantage over

s-integration for low-perigee orbits where drag is significant. The Shampine-Gordon in-

tegrator is slower than s-integration and the variable-step Störmer-Cowell, and has an

advantage over the fixed-step method for eccentricities greater than 0.60.

Orbit determination tests also show the advantage of variable-step integration. The tests

are designed to show the speed advantage that would be gained by using the variable-step

methods for elliptical orbits and fixed-step methods for near-circular orbits, compared

to using fixed-step methods for all objects. The tests show that using the variable-step

Störmer-Cowell method for objects with eccentricities above 0.15, and the fixed-step

Gauss-Jackson for the other objects gives a 14.7% speed advantage over using the fixed-

step Gauss-Jackson for all objects. Using s-integration for objects with eccentricities

greater than 0.15 has a comparable advantage, 14.6%. Using the Shampine-Gordon

integrator for objects with eccentricities above 0.60 has an advantage of 7.0% over using

the fixed-step method for all objects. The tests show that in most cases using a different

integrator to perform the orbit determination does not have a significant effect on the

final result. However, the variable-step Störmer-Cowell method is able to update more

objects, because the local error control allows the method to take small steps when

needed. Other cases where the different methods produce relatively large final position

differences can be attributed to the accuracy and sparseness of the observations.

117

Chapter 6

Conclusions And Suggestions for

Future Work

6.1 Summary

A new method of numerical integration, the variable-step Störmer-Cowell method, is

derived. A study of currently available integration methods indicates that this new

method has features desirable for elliptical orbits, and for orbits experiencing significant

atmospheric drag. The method is variable-step with error control, so larger step sizes can

be taken when possible, and the method is double-integration, so only one evaluation per

step is necessary. The method uses a variable-order implementation for initialization, so

it is self-starting. However, the method is not variable-order beyond the initialization

phase, because variable-order algorithms require a second evaluation, which is considered

too time-consuming for the application intended. This method is designed for space

surveillance applications, which require numerical integrators that can efficiently handle

a complex force model for a variety of orbit types. The best integrator for a given orbit

is the one that has the fastest run-time while maintaining a given accuracy requirement.

In addition to deriving numerical integration methods, techniques for assessing the ac-

curacy of numerical integrators are discussed. The two-body test gives an exact measure

of error when perturbations are not considered. This exact measure of error is useful to

evaluate the other techniques, by testing them without perturbations. However, when

these other techniques are used with perturbations, they show a significantly larger er-

ror than the two-body test when drag is a factor. The step-size halving test and the

higher-order test give results that are consistent with one another, and match the two-

body error well. The reverse test gives results that are inconsistent, and previous authors

6.1 Summary 118

have shown it to be unreliable. Zadunaisky’s technique also gives inconsistent results.

Zadunaisky’s technique requires a fit of the ephemeris that is both accurate and smooth,

which is difficult for earth-orbiting satellites over several days.

Several of the integrators are compared to one another in speed and accuracy tests.

These tests show the advantage the variable-step methods have over fixed-step methods

for elliptical orbits. The variable-step Störmer-Cowell method is compared to two other

variable-step methods in these tests, s-integration and the Shampine-Gordon integra-

tor. Orbit propagation tests in which the integrators are set to give equivalent accuracy

show that s-integration and the variable-step Störmer-Cowell method are faster than

the Shampine-Gordon integrator, because Shampine-Gordon has an additional evalua-

tion per step, and because Shampine-Gordon is biased toward keeping a constant step

size. The variable-step Störmer-Cowell method is somewhat slower than s-integration in

most cases, which indicates that the analytical step regulation that s-integration uses is

giving appropriate step sizes. However, the variable-step Störmer-Cowell method has an

advantage over s-integration at lower perigees, indicating that s-integration needs step

sizes at apogee that are too small in order to have small enough steps at perigee to

maintain accuracy when drag is a significant factor. The tests show that s-integration

has an advantage over t-integration above an eccentricity of approximately 0.15, and the

Shampine-Gordon integrator is more efficient than t-integration for eccentricities over

approximately 0.60. These results are independent of perigee height. The variable-step

Störmer-Cowell method also has an advantage over t-integration for eccentricities over

approximately 0.15 for perigee heights of 400 km and higher. For 300 km perigee height

orbits, the variable-step Störmer-Cowell method has an advantage for eccentricities over

approximately 0.10.

Orbit determination tests show that s-integration and Shampine-Gordon give comparable

results to t-integration when used at the eccentricities specified by the orbit propagation

tests. A time improvement of 14.6% and 14.7% are achieved by using s-integration and

the variable-step Störmer-Cowell method, respectively, at eccentricities above 0.15, and a

time improvement of 7.0% is achieved by using Shampine-Gordon at eccentricities above

0.60. The variable-step Störmer-Cowell method is also able to update more objects than

t-integration and s-integration, indicating that it may handle drag better than the other

methods.

6.2 Recommendations for Future Study 119

6.2 Recommendations for Future Study

The results suggest that s-integration works well except when drag is a significant factor.

To give larger steps at apogee while maintaining accuracy at perigee with drag present,

a different value of n is needed in the general Sundman transformation. While Merson,

Nacozy, and others found that n = 1.5 works best in the transformation, they only

investigated values of n = 1, 1.5, and 2. A study of other values of n is warranted to

find the value that gives the best speed advantage, which may depend on perigee height

and other factors. The variable-step Störmer-Cowell method, or a similar method, could

be used in such a study. If a variable-step method is used with s as the independent

variable, then the variable-step algorithm should never want to change the step size. The

best value of n can be found by varying n and examining the step-size changing factor

ρ over the integration. The value of n that keeps ρ closest to one is best. The results

here indicate that a value close to n = 1.5 is most likely ideal for higher perigees, but a

different value is needed at lower perigees.

The results from Zadunaisky’s test using ephemeris compression with the Runge-Kutta

integrator with a small step size demonstrate that Zadunaisky’s test can give reliable

results. However, the lack of smoothness in the fit used prevents the test from working

well with larger step sizes or with multi-step integrators. To overcome this problem,

a method of fitting ephemeris is needed which is both accurate and smooth. Some

modification of the Hybrid Ephemeris Compression Model used here may give such a

result. The smoothing functions between consecutive orbits would need to be modified

to cover a longer timespan, and to keep more derivatives continuous.

This study did not consider discontinuous forces, such as solar radiation pressure or

thrust. Multi-step integrators are derived assuming that the forces are continuous among

the backpoints, so any discontinuity causes integration error. One way to avoid this error

is to restart the integrator at the point of the discontinuity. Because the method derived

here is variable step and self-starting, the method could be used to handle discontinuities

by stepping directly to the point of the discontinuity and then restarting as a first-order

method. However, for solar radiation pressure these restarts would be required twice

an orbit, as the object moves in and out of eclipse. Such frequent restarts would have

a significant effect on run-time. Woodburn [7], Lundberg [43], [44], and Lundberg et.

al. [45] have discussed ways to handle solar radiation pressure without the need to

restart. Instead, following a shadow crossing the backpoints are modified to account for

the discontinuity. When the object crosses into eclipse, the solar radiation pressure force

is subtracted from the backpoints, and when the object comes out of eclipse the force

is added to backpoints. This method could be used with the integrator derived here to

6.2 Recommendations for Future Study 120

handle solar radiation pressure. A similar method could be used to handle thrust.

The variable-step double-integration multi-step integrator is derived here because it has

the best features in several categories of numerical integrators. However, the method is

non-summed, though the summed form reduces round-off error in multi-step methods.

Creating a summed variable-step method is complicated because the summation term

assumes that the step size is constant going back to epoch. Though Krogh describes

how to recompute the sums when the step size is doubled or halved in [23], restricting

the variable-step algorithm to doubling and halving reduces the benefit of variable-step

integration. A method for recomputing the sums when the step size is changed by an

arbitrary factor is required for an effective summed variable-step method.

121

Appendix A

Ephemeris Compression Equations

The Hybrid Ephemeris Compression Model [38], gives position by adding the position

given from the mean element fit to the residual ephemeris given by the Fourier fit. The

position in Cartesian coordinates, x, y, and z, may be written

x =x′ + δx,

y = y′ + δy,

z = z′ + δz, (A.1)

where x′, y′, and z′ are from the mean element fit and δx, δy, and δz are from the Fourier

fit.

A.1 Mean Element Fit

The position can be found from the mean elements given by the fit. For the purposes

of this study, these elements are not corrected for the J2 periodic effect. The classical

elements are given by the coefficients of the fit,

n = c10 + c11t+ c12t
2 + c13t

3,

e = c20 + c21t+ c22t
2 + c23t

3,

i = c30 + c31t+ c32t
2 + c33t

3,

ω = c40 + c41t+ c42t
2 + c43t

3,

Ω = c50 + c51t+ c52t
2 + c53t

3,

M = c60 + c61t+ c62t
2 + c63t

3, (A.2)

A.1 Mean Element Fit 122

where the c are coefficients from the Chebyshev fit, t is time, and n is the mean motion,

e is eccentricity, i is inclination, ω is the argument of perigee, Ω is the right ascension of

the ascending node, and M is the mean anomaly.

The derivatives in time of these expressions are straightforward, the first derivatives are

ṅ = c11 + c12t+ c13t
2,

ė = c21 + c22t+ c23t
2,

i̇ = c31 + c32t+ c33t
2,

ω̇ = c41 + c42t+ c43t
2,

Ω̇ = c51 + c52t+ c53t
2,

Ṁ = c61 + c62t+ c63t
2, (A.3)

and the second derivatives are

n̈ = c12 + c13t,

ë = c22 + c23t,

ï = c32 + c33t,

ω̈ = c42 + c43t,

Ω̈ = c52 + c53t,

M̈ = c62 + c63t. (A.4)

To find the position from the elements, define the quantities,

l1 = cos Ω cosω − sin Ω sinω cos i,

m1 = sin Ω cosω + cos Ω sinω cos i,

n1 = sinω sin i,

l2 = − cos Ω sinω − sin Ω cosω cos i,

m2 = − sin Ω sinω + cos Ω cosω cos i,

n2 = cosω sin i. (A.5)

These quantities represent elements of a rotation matrix from the satellite’s orbital frame

to an earth centered inertial frame ([46], p. 82). The position can be found in terms of

these rotational quantities,

x′ = al1 cosE + bl2 sinE − ael1,

y′ = am1 cosE + bm2 sinE − aem1,

z′ = an1 cosE + bn2 sinE − aen1, (A.6)

A.1 Mean Element Fit 123

where a is the semi-major axis,

a = 3

√
µ

n2
, (A.7)

b is the semi-minor axis,

b = a
√

1− e2, (A.8)

and E is the eccentric anomaly. The eccentric anomaly is found by solving Kepler’s

equation,

M = E − e sinE. (A.9)

The first derivative of position is found by taking a time derivative of (A.6),

ẋ′ = ȧl1 cosE + al̇1 cosE − al1Ė sinE + ḃl2 sinE + bl̇2 sinE + bl2Ė cosE

− ȧel1 − aėl1 − ael̇1,

ẏ′ = ȧm1 cosE + aṁ1 cosE − am1Ė sinE + ḃm2 sinE + bṁ2 sinE

+ bm2Ė cosE − ȧem1 − aėm1 − aeṁ1,

ż′ = ȧn1 cosE + aṅ1 cosE − an1Ė sinE + ḃn2 sinE + bṅ2 sinE + bn2Ė cosE

− ȧen1 − aėn1 − aeṅ1. (A.10)

The derivatives of the rotational quantities are found by taking the derivative of (A.5),

l̇1 = − Ω̇m1 + ω̇l2 + i̇n1 sin Ω,

ṁ1 = Ω̇l1 + ω̇m2 − i̇n1 cos Ω,

ṅ1 = ω̇n2 + i̇ sinω cos i,

l̇2 = − Ω̇m2 − ω̇l1 + i̇n2 sin Ω,

ṁ2 = Ω̇l2 − ω̇m1 − i̇n2 cos Ω,

ṅ2 = − ω̇n1 + i̇ cosω cos i. (A.11)

The derivative of the semi-major axis is found from (A.7),

ȧ = −2

3
ṅ 3

√
µ

n5
, (A.12)

and the derivative of the semi-minor axis is found from (A.8),

ḃ = ȧ
√

1− e2 − aeė√
1− e2

. (A.13)

The derivative of the eccentric anomaly is found by taking a derivative of Kepler’s equa-

tion, (A.9),

Ė =
Ṁ + ė sinE

1− e cosE
. (A.14)

A.1 Mean Element Fit 124

The second derivative of position is found by taking a time derivative of (A.10),

ẍ′ = äl1 cosE + 2ȧl̇1 cosE − 2ȧl1Ė sinE + al̈1 cosE − 2al̇1Ė sinE − al1Ë sinE

− al1Ė
2 cosE + b̈l2 sinE + 2ḃl̇2 sinE + 2ḃl2Ė cosE + bl̈2 sinE + 2bl̇2Ė cosE

+ bl2Ë cosE − bl2Ė
2 sinE − äel1 − 2ȧėl1 − 2ȧel̇1 − aël1 − 2aėl̇1 − ael̈1,

ÿ′ = äm1 cosE + 2ȧṁ1 cosE − 2ȧm1Ė sinE + am̈1 cosE − 2aṁ1Ė sinE − am1Ë sinE

− am1Ė
2 cosE + b̈m2 sinE + 2ḃṁ2 sinE + 2ḃm2Ė cosE + bm̈2 sinE + 2bṁ2Ė cosE

+ bm2Ë cosE − bm2Ė
2 sinE − äem1 − 2ȧėm1 − 2ȧeṁ1 − aëm1 − 2aėṁ1 − aem̈1,

z̈′ = än1 cosE + 2ȧṅ1 cosE − 2ȧn1Ė sinE + an̈1 cosE − 2aṅ1Ė sinE − an1Ë sinE

− an1Ė
2 cosE + b̈n2 sinE + 2ḃṅ2 sinE + 2ḃn2Ė cosE + bn̈2 sinE + 2bṅ2Ė cosE

+ bn2Ë cosE − bn2Ė
2 sinE − äen1 − 2ȧėn1 − 2ȧeṅ1 − aën1 − 2aėṅ1 − aen̈1.

(A.15)

The second derivative of the rotational quantities is found from (A.11),

l̈1 = − Ω̈m1 − Ω̇ṁ1 + ω̈l2 + ω̇l̇2 + ïn1 sin Ω + i̇ṅ1 sin Ω + i̇Ω̇n1 cos Ω,

m̈1 = Ω̈l1 + Ω̇l̇1 + ω̈m2 + ω̇ṁ2 − ïn1 cos Ω− i̇ṅ1 cos Ω + i̇Ω̇n1 sin Ω,

n̈1 = ω̈n2 + ω̇ṅ2 + ï sinω cos i+ i̇ω̇ cosω cos i− i̇2n1,

l̈2 = − Ω̈m2 − Ω̇ṁ2 − ω̈l1 − ω̇l̇1 + ïn2 sin Ω + i̇ṅ2 sin Ω + i̇Ω̇n2 cos Ω,

m̈2 = Ω̈l2 + Ω̇l̇2 − ω̈m1 − ω̇ṁ1 − ïn2 cos Ω− i̇ṅ2 cos Ω + i̇Ω̇n2 sin Ω,

n̈2 = − ω̈n1 − ω̇ṅ1 + ï cosω cos i− i̇ω̇ sinω cos i− i̇2n2. (A.16)

The second derivative of the semi-major axis is found from (A.12),

ä = −2

3
n̈ 3

√
µ

n5
+

10

9
ṅ2 3

√
µ

n8
, (A.17)

and the second derivative of the semi-minor axis is found from (A.13),

b̈ = ä
√

1− e2 − 2ȧeė− aė2 − aeë√
1− e2

− aė2√
(1− e2)3

. (A.18)

The second derivative of the eccentric anomaly is found from (A.14),

Ë =
(1− e cosE)(M̈ + ë sinE + ėĖ cosE)− (Ṁ + ė sinE)(−ė cosE + eĖ sinE)

(1− e cosE)2
.

(A.19)

With the coefficients c from the Chebyshev fit given, the elements and the derivatives of

the elements can be found, from (A.2), (A.3), and (A.4). From the elements, the related

quantities given in (A.5) can be found, as well as the semi-major and semi-minor axes,

the eccentric anomaly, and their derivatives. Finally, the Cartesian position, x′, y′, and

z′, and their derivatives can be found. These values must then be added to the values of

the residual ephemeris from the Fourier fit.

A.2 Fourier Fit 125

A.2 Fourier Fit

The equations for constructing the residual ephemeris are found in [39]. There are six

separate formulas, for the Fourier series, the quintic interpolating polynomial, the quartic

interpolating polynomial, and the three smoothing functions.

The Fourier form of the residual vector ([39], p. 346) is

xf(t) = a0N +
∞∑

k=1

(
akN cos

[
2πk(t− tminN

)

T1

]
+ bkN sin

[
2πk(t− tminN

)

T1

])
,

tminN
< t < tmaxN

, (A.20)

where the residual vector x represents [δx δy δz]T , N refers to the orbit number, T1 is

the period of the orbit, and a and b are coefficients from the Fourier fit. Differentiating,

ẋf(t) =
∞∑

k=1

2πk

T1

(
−akn sin

[
2πk(t− tminn)

T1

]
+ bkn cos

[
2πk(t− tminn)

T1

])
,

tminn < t < tmaxn . (A.21)

Differentiating again,

ẍf(t) = −
∞∑

k=1

(
2πk

T1

)2(
akn cos

[
2πk(t− tminn)

T1

]
+ bkn sin

[
2πk(t− tminn)

T1

])
,

tminn < t < tmaxn . (A.22)

The quintic interpolating polynomial used between consecutive orbits ([39], p. 352) is

xp(t) =
10∑

j=1
j /∈[4,7]

xj

10∏
i=1

i/∈[4,7]
i6=j

t− ti
tj − ti

, t1 ≤ t ≤ t10. (A.23)

Differentiating,

ẋp(t) =
10∑

j=1
j /∈[4,7]

xj

10∑
k=1

k/∈[4,7]
k 6=j

1

tj − tk

10∏
i=1

i/∈[4,7]
i6=j,k

t− ti
tj − ti

, t1 ≤ t ≤ t10. (A.24)

Differentiating again,

ẍp(t) =
10∑

j=1
j /∈[4,7]

xj

10∑
k=1

k/∈[4,7]
k 6=j

1

tj − tk

10∑
`=1

`/∈[4,7]
` 6=j,k

1

tj − t`

10∏
i=1

i/∈[4,7]
i6=j,k,`

t− ti
tj − ti

, t1 ≤ t ≤ t10. (A.25)

A.2 Fourier Fit 126

The first smoothing function between the Fourier series at the end of an orbit and the

interpolating polynomial ([39], p. 353) is

x1−2(t) = xf(t) +
1

2
[xp(t)− xf(t)]

(
1− cos π

t− t1
t2 − t1

)
, t1 ≤ t ≤ t2, (A.26)

Differentiating,

ẋ1−2(t) = ẋf(t) +
1

2
[ẋp(t)− ẋf(t)]

(
1− cos π

t− t1
t2 − t1

)
+
π [xp(t)− xf(t)]

2(t2 − t1)
sin π

t− t1
t2 − t1

, t1 ≤ t ≤ t2. (A.27)

Differentiating again,

ẍ1−2(t) = ẍf(t) +
1

2
[ẍp(t)− ẍf(t)]

(
1− cos π

t− t1
t2 − t1

)
+
π [ẋp(t)− ẋf(t)]

(t2 − t1)
sin π

t− t1
t2 − t1

+
π2 [xp(t)− xf(t)]

2(t2 − t1)2
cos π

t− t1
t2 − t1

, t1 ≤ t ≤ t2. (A.28)

The second smoothing function between the interpolating polynomial and the Fourier

series at the beginning of the orbit ([39], p. 353) is

x9−10(t) = xf(t) +
1

2
[xp(t)− xf(t)]

(
1− cos π

t10 − t

t10 − t9

)
,

t9 ≤ t ≤ t10, (A.29)

Differentiating,

ẋ9−10(t) = ẋf(t) +
1

2
[ẋp(t)− ẋf(t)]

(
1− cos π

t10 − t

t10 − t9

)
− π [xp(t)− xf(t)]

2(t10 − t9)
sin π

t10 − t

t10 − t9
, t9 ≤ t ≤ t10. (A.30)

Differentiating again,

ẍ9−10(t) = ẍf(t) +
1

2
[ẍp(t)− ẍf(t)]

(
1− cos π

t10 − t

t10 − t9

)
− π [ẋp(t)− ẋf(t)]

(t10 − t9)
sin π

t10 − t

t10 − t9

+
π2 [xp(t)− xf(t)]

2(t10 − t9)2
cos π

t10 − t

t10 − t9
, t9 ≤ t ≤ t10. (A.31)

A.2 Fourier Fit 127

The quartic polynomial near epoch ([39], p. 353) is

xp(t) =
6∑

j=1
j 6=2

xj

6∏
i=1

i6=2 or j

t− ti
tj − ti

, t1 ≤ t ≤ t6. (A.32)

Differentiating,

ẋp(t) =
6∑

j=1
j 6=2

xj

6∑
k=1

k 6=2 or j

1

tj − tk

6∏
i=1

i6=2,j,k

t− ti
tj − ti

, t1 ≤ t ≤ t6. (A.33)

Differentiating again,

ẍp(t) =
6∑

j=1
j 6=2

xj

6∑
k=1

k 6=2 or j

1

tj − tk

6∑
`=1

` 6=2,j,k

1

tj − t`

6∏
i=1

i6=2,j,k,`

t− ti
tj − ti

, t1 ≤ t ≤ t6. (A.34)

The smoothing function between the quartic polynomial and the Fourier series of the

first orbit ([39], p. 354) is

x5−6(t) = xf(t) +
1

2
[xp(t)− xf(t)]

(
1− cos π

t6 − t

t6 − t5

)
, t5 ≤ t ≤ t6, (A.35)

Differentiating,

ẋ5−6(t) = ẋf(t) +
1

2
[ẋp(t)− ẋf(t)]

(
1− cos π

t6 − t

t6 − t5

)
− π [xp(t)− xf(t)]

2(t6 − t5)
sin π

t6 − t

t6 − t5
, t5 ≤ t ≤ t6. (A.36)

Differentiating again,

ẍ5−6(t) = ẍf(t) +
1

2
[ẍp(t)− ẍf(t)]

(
1− cos π

t6 − t

t6 − t5

)
− π [ẋp(t)− ẋf(t)]

(t6 − t5)
sin π

t6 − t

t6 − t5

+
π2 [xp(t)− xf(t)]

2(t6 − t5)2
cos π

t6 − t

t6 − t5
, t5 ≤ t ≤ t6. (A.37)

Because the interpolating polynomials pass through the values of the Fourier series, the

smoothing functions give continuous first and second derivatives. However, the third

A.2 Fourier Fit 128

derivative is not continuous. As an example, consider the derivative of (A.37),

...
x5−6(t) =

...
x f(t) +

1

2
[
...
xp(t)−

...
x f(t)]

(
1− cos π

t6 − t

t6 − t5

)
− 3π[ẍp − ẍf]

2(t6 − t5)
sin π

t6 − t

t6 − t5

+
π2[ẋp − ẋf]

2(t6 − t5)2
cos π

t6 − t

t6 − t5

+
π3[xp − xf]

2(t6 − t5)3
sin π

t6 − t

t6 − t5
(A.38)

Because the first derivatives of the interpolating polynomial and the Fourier series are

not equal, the third derivative of the smoothing function does not match the values of

the third derivative of the polynomial and Fourier series at the endpoints.

129

Appendix B

Matlab Code

% Matt Berry

% This code uses a variable-step double-integration multi-step

% integrator (variable-step Stormer-Cowell), to integrate

% scalar 2nd order differential equations, y’’ = f(x,y,y’).

% The function dbrhs returns f(x,y,y’). The initial

% conditions here are for integrating a sine wave,

% with dbrhs returning -y.

%

% Only the double-integration code is used in this script,

% but the corresponding single-integration code is also shown,

% in some cases commented-out. Only an absolute tolerance is

% used in this code, so there are no weighting factors.

%

% This script produces a graph of integration points and

% interpolation points.

clear

% Stormer-Cowell coefficients, lamda

d_coeffs = [1 0 1/12 1/12 19/240 3/40 863/12096 275/4032 ...

33953/518400 8183/129600];

% first order coefficients, gamma

s_coeffs = [1 1/2 5/12 3/8 251/720 95/288 19087/60480 ...

5257/17280 1070017/3628800 25713/89600];

130

% set tolerance

tol = 1e-14;

% set maximum number of backpoints

kmax = 9;

% index on gamma, lamda starts at zero in derivation, 1 here.

for i=1:kmax

lamdastar(i) = d_coeffs(i+1) - d_coeffs(i);

gammastar(i) = s_coeffs(i+1) - s_coeffs(i);

end

% initialize, define f, dx, initial conditions

x0 = 0;

y0 = 0;

yp0 = 1;

xf = 10*pi;

n = 1;

k = 1;

ydp(1) = dbrhs(x0,[y0 yp0]);

x(1) = x0;

y(1) = y0;

yp(1) = yp0;

dx = 0.25 * sqrt(tol/abs(yp(1)));

% Set the initial step size to dx, to prevent a divide by zero

% message. This value isn’t actually used for anything.

h(1) = dx;

% start difference table

diff(1,1) = ydp;

% use initial step for first step

r = 1;

% now we can integrate

131

nout = 1;

% ask for evenly space values

for xout=x0:(xf-x0)/1000:xf

% integrate to, or past, the requested point

while x(n) < xout

dx = r*dx;

x(n+1) = x(n) + dx;

h(n+1) = dx;

ratio = h(n+1) / h(n);

invrat = 1/ratio;

% calculate coefficients

% get alpha

for i=1:k

if i==1

psi(1) = h(n+1);

else

psi(i) = psi(i-1) + h(n-i+2);

end

alpha(i) = h(n+1) / psi(i);

end

psinm1(1) = 0;

% this i is really i+1, since psinm1(0) is needed

for i=2:k-1

psinm1(i) = psinm1(i-1) + h(n+1-i);

end

for i=1:k+1

for q=1:k+3-i

if i == 1

g(q,i) = 1/q;

gp(q,i) = 1/q * (-invrat)^q;

elseif i == 2

g(q,i) = 1/q/(q+1);

gp(q,i) = 1/q/(q+1) * (-invrat)^(q+1);

else

g(q,i) = g(q,i-1) - alpha(i-1) * g(q+1,i-1);

% index is changed in psinm1

132

gp(q,i) = psinm1(i-2) / psi(i-1) * gp(q,i-1) ...

- alpha(i-1) * gp(q+1,i-1);

end

end

end

% need psi(n)

psin(1) = h(n);

for i=2:k-1

psin(i) = psin(i-1) + h(n+1-i);

end

sum2=0;

sum1=0;

for m=1:k

%beta(m) = psi_1(n+1)...psi_{m-1}(n+1) / psi_1(n)...psi_{m-1}(n)

if m == 1

beta(1) = 1;

else

beta(m) = beta(m-1) * psi(m-1) / psin(m-1);

end

% phi* = beta * phi

diff(k,m) = diff(k,m) * beta(m);

sum2 = sum2 + (g(2,m) + ratio * gp(2,m)) * diff(k,m);

sum1 = sum1 + g(1,m)*diff(k,m);

end

% predict

yp(n+1) = yp(n) + dx * sum1;

if k>1

y(n+1) = (1+ratio)*y(n) - ratio*y(n-1) + dx^2 * sum2;

else

% use general formulation on first point only

y(n+1) = y(n) + dx*yp(n) + dx^2 * g(2,1)*diff(1,1);

end

% evaluate, and get new phi

if k < kmax

% append this value to difference array

133

npt = k+1;

else

% cycle this value into difference array

diff(1:k-1,:) = diff(2:k,:);

npt = k;

end

diff(npt,1) = dbrhs(x(n+1),[y(n+1) yp(n+1)]);

for m=2:k+1

diff(npt,m) = diff(npt,m-1) - diff(npt-1,m-1);

end

% corrector

if k > 1

y(n+1) = y(n+1) + dx^2 * (g(2,k+1) + ratio*gp(2,k+1)) ...

* diff(npt,k+1);

else

% general formulation

y(n+1) = y(n+1) + dx^2 * g(2,2)*diff(2,2);

end

yp(n+1) = yp(n+1) + dx * g(1,k+1) * diff(npt,k+1);

% error estimate

if k>1

errd = abs(h(n+1)^2 * (g(2,k+1) - ...

g(2,k) + ratio*(gp(2,k+1)-gp(2,k))) ...

* diff(k,k+1));

else

errd = abs(h(n+1)^2 * (g(2,k+1) - g(2,k)) * diff(k,k+1));

end

errs = abs(h(n+1) * (g(1,k+1) - g(1,k)) * diff(k,k+1));

if errd > tol% | errs > tol

% reject this step, put everything back and start over

r = 0.5;

if k == kmax

diff(2:k,:) = diff(1:k-1,:);

end

for m=1:k

134

diff(k,m) = diff(k,m) / beta(m);

end

fprintf(’Step size too big, x= %f, h= %f\n’,x(n+1),h(n+1));

continue

end

if k == kmax

% normal procedure, find next step size

sigma = 1;

for i=2:k+1

sigma = (i-1) * alpha(i-1) * sigma;

end

erks = abs(h(n+1) * gammastar(k) * sigma * diff(k,k+1));

erkd = abs(h(n+1)^2 * lamdastar(k) * sigma * diff(k,k+1));

rs = (tol/4/erks) ^ (1/(k+1));

rd = (tol/4/erkd) ^ (1/(k+2));

% r = min(rs,rd);

r = rd;

% bound r between 0.5 and 2

if r > 2

r = 2;

elseif r < 0.5

r = 0.5

end

% set last used value of k, for interpolator

lk = k;

n = n+1;

else

% do second eval, add increment k, double step size

% evaluate again

diff(k+1,1) = dbrhs(x(n+1),[y(n+1) yp(n+1)]);

for m=2:k+1

diff(k+1,m) = diff(k+1,m-1) - diff(k,m-1);

end

135

% increment k, but save value of k used for this

% step for interpolator

lk = k;

k = k+1;

r = 2;

n = n+1;

end

end % end of integration while loop

if xout < x(n)

% now integrated past requested point, find requested point

xouts(nout) = xout;

% get interp coefficients

hI = xout - x(n);

ratio = hI/h(n);

invrat = 1/ratio;

gamma1(1) = hI/psi(1);

for i=2:lk

gamma1(i) = (hI + psi(i-1)) / psi(i);

end

gammap(1) = -1;

gammap(2) = 0;

for i=3:lk

gammap(i) = psin(i-2) / psi(i);

end

for i=1:lk+1

for q=1:lk+3-i

if i == 1

gint(q,i) = 1/q;

gpint(q,i) = 1/q * (-invrat)^q;

else

gint(q,i) = gamma1(i-1) * gint(q,i-1) - ...

hI / psi(i-1) * gint(q+1,i-1);

gpint(q,i) = gammap(i-1) * gpint(q,i-1) - ...

hI / psi(i-1) * gpint(q+1,i-1);

136

end

end

end

sum1 = 0;

sum2 = 0;

for i=1:lk+1

sum1 = sum1 + gint(1,i) * diff(npt,i);

sum2 = sum2 + (gint(2,i) + ratio*gpint(2,i)) * diff(npt,i);

end

yout(nout) = (1+ratio)*y(n) - ratio*y(n-1) + hI^2*sum2;

ypout(nout) = y(n) + hI*sum1;

nout = nout+1;

else

% integrated exactly to requested point

xouts(nout) = x(n);

yout(nout) = y(n);

nout = nout + 1;

end

end % end of for loop

% plot integration points, step size, and error

subplot 311

plot(x,h,’linewidth’,2)

ylabel(’\fontsize{14}h’)

title(’\fontsize{14}Step Size’)

grid

subplot 312

plot(x,y,’linewidth’,2)

grid

ylabel(’\fontsize{14}y’)

title(’\fontsize{14}Numerical Solution’)

subplot 313

plot(x,abs(y-sin(x)),’linewidth’,2)

title(’\fontsize{14}Error’)

137

xlabel(’\fontsize{14}x’)

ylabel(’\fontsize{14}|y-sin(x)|’)

grid

% plot interpolation points and error

figure

subplot 211

plot(xouts,yout,’linewidth’,2)

ylabel(’\fontsize{14}y’)

title(’\fontsize{14}Interpolated Solution’)

grid

subplot 212

plot(xouts,abs(yout-sin(xouts)),’linewidth’,2)

title(’\fontsize{14}Error’)

ylabel(’\fontsize{14}|y-sin(x)|’)

xlabel(’\fontsize{14}x’)

grid

138

Appendix C

Fortran Code

ccc

subroutine varstormcow(rqtime,currtime,rel,abse,pos,vel,

> reset,delt)

implicit none

ccc

c variable-step Stormer-Cowell integration routine

c written by: Matt Berry

c Subroutine varstormcow performs one step of the variable-step

c Stormer-Cowell algorithm. If the integration step takes the

c current time beyond the request time, the routine will

c interpolate to the request time. The routine changes the value

c of current time, position, and velocity during the call. The

c routine sets the value of delt, which is the amount the

c current time changed.

c

c Call with reset = 1 to start the integrator. The routine will

c normally return with reset = 0. If the routine returns

c reset = 1, the method must restart because a step has failed

c after 3 tries.

139

c The algorithms used in this code are explained in

c "A Variable-Step Double-Integration Multi-Step Integrator" by

c Matthew M. Berry. PhD Dissertation, Virginia Polytechnic

c Institute and State University, Blacksburg, VA. April 2004.

cc

c

c subroutines used:

c DERIV(pos,vel,currtime,accel)

c this routine should return acceleration given position,

c velocity, and time.

c

ccc

c call line variables

double precision, intent(in) :: rqtime ! requested time

double precision, intent(inout) :: currtime ! current time

double precision, intent(in) :: rel ! relative tolerance

double precision, intent(in) :: abse ! absolute tolerance

double precision, intent(inout) :: pos(3) ! position vector

double precision, intent(inout) :: vel(3) ! velocity vector

double precision, intent(out) :: delt ! change in currtime

! during call

c note: the units of rqtime, currtime, pos, vel, and accel must

c all be compatible

integer reset ! 1 if restarting

ccc

c paramaters

integer kmax ! maximum value of k

parameter (kmax = 9)

ccc

c local variables

double precision stepsize ! step size

double precision stepsize2 ! step size squared

140

double precision accel(3) ! acceleration vector

double precision diff(3,kmax+1) ! modified divided differences

double precision diffsave(3,kmax) ! diff from last step

double precision r ! amount to change the step by on next step

double precision steps(kmax) ! step size history

double precision psi(kmax) ! sums of steps

double precision alpha(kmax) ! ratio of current step to psi

double precision psinm1(0:kmax-2) ! sums of steps,

! starting 2 steps back

double precision psin(kmax-1) ! sums of steps,

! starting 1 step back

double precision g(kmax+2,kmax+1) ! integration coefficients

double precision gp(kmax+2,kmax+1)! integration coefficients

double precision beta(kmax) ! ratio of phi’s

double precision pos2back(3) ! position from 2 steps ago

double precision lastpos(3) ! position from last step

double precision lastvel(3) ! velocity from last step

double precision newdiff(3,kmax+1) ! differences after

! evaluation

double precision savecurrtime ! last value of current time

double precision errd ! error estimate on position

double precision errs ! error estimate on velocity

double precision erkd ! position error estimate

double precision erks ! velocity error estimate

double precision terrd ! temp value for errd

double precision terrs ! temp value for errs

double precision rs ! r value for single integration

double precision rd ! r value for double integration

double precision sigma ! parameter used in error estimate

double precision savestep ! saved step size of

! furthest backpoint

double precision ratio ! ratio of latest step sizes

double precision invrat ! inverse of ratio

double precision sum1 ! integration sum for velocity

double precision sum2 ! integration sum for position

double precision gammastars(kmax) ! difference of single

! fixed-step coefficients

141

double precision gammastard(kmax) ! difference of double

! fixed-step coefficients

double precision eps ! tolerance

double precision releps ! relative error / eps

double precision abseps ! absolute error / eps

double precision macheps ! machine epsilon

double precision wts(3) ! error weighting for velocity

double precision wtd(3) ! error weighting for position

double precision h1s ! initial step for single integration

double precision h1d ! initial step for double integration

double precision intpos(3) ! last position integrated to

double precision intvel(3) ! last velocity integrated to

double precision inttime ! last time integrated to

! inttime is the same as currtime

! unless the last step had an

! interpolation

double precision hI ! interpolation step

double precision gint(kmax+2,kmax+1) ! interp. coefficients

double precision gpint(kmax+2,kmax+1) ! interp. coefficients

double precision gamma1(kmax) ! gamma associated with gint

double precision gammap(kmax) ! gamma associated with gpint

integer intdir ! integration direction

! 1 = forward

! -1 = backward

integer q ! coefficient index

integer i,m ! loop control

integer k ! number of backpoints

integer lk ! k in last integration step,

! for interpolator

integer fail ! number of consecutive failures

logical again ! true if repeating initial step

142

ccc

c variables needed for the next step

save r,diff,stepsize,steps,k,lk,eps, intpos, inttime, intvel,

> lastpos, lastvel, psi, psin, releps, abseps, fail, intdir

ccc

c data statements

data gammastars /-0.5d0, -0.08333333333333333d0,

> -0.04166666666666667d0, -0.02638888888888891d0,

> -0.01874999999999999d0, -0.01426917989417986d0,

> -0.01136739417989419d0, -0.009356536596119958d0,

> -0.007892554012345676d0/

data gammastard /-1.d0, 0.08333333333333333d0, 0.0d0,

> -0.004166666666666666d0, -0.004166666666666666d0,

> -0.003654100529100521d0, -0.003141534391534404d0,

> -0.002708608906525564d0, -0.002355324074074072d0/

ccc

c save the current time

savecurrtime = currtime

if (reset == 1) then

c initialization

c set EPS, releps, abseps

eps = dmax1(rel,abse)

releps = rel / eps

abseps = abse / eps

c get machine epsilon

macheps = epsilon(1.d0)

k = 1

reset = 0

143

c get initial value of acceleration

call DERIV(pos,vel,currtime,accel)

terrs = 0.0d0

terrd = 0.0d0

do i = 1,3

lastpos(i) = pos(i)

lastvel(i) = vel(i)

diff(i,1) = accel(i)

wts(i) = abs(vel(i)) * releps + abseps

wtd(i) = abs(pos(i)) * releps + abseps

terrs = terrs + (accel(i) / wts(i))**2

terrd = terrd + (vel(i) / wtd(i))**2

enddo

c get initial step estimate for single and double integration

h1s = 0.25d0 * sqrt(eps / sqrt(terrs))

h1d = 0.25d0 * sqrt(eps / sqrt(terrd))

c get initial step size

stepsize = min(h1s,h1d,abs(rqtime-currtime))

stepsize = max(stepsize,4*macheps * currtime)

c set step size in the right direction

if (rqtime >= currtime) then

intdir = 1

else

intdir = -1

endif

stepsize = sign(stepsize,dble(intdir))

fail = 0

again = .true.

do while (again .and. fail < 10)

again = .false.

stepsize2 = stepsize * stepsize

144

steps(1) = stepsize

c do first step with general formulation

c predict

do i=1,3

vel(i) = lastvel(i) + stepsize * diff(i,1)

pos(i) = lastpos(i) + stepsize * lastvel(i) +

> stepsize2 * diff(i,1) / 2.0d0

enddo

c advance time

currtime = currtime + stepsize

c evaluate

call DERIV(pos,vel,currtime,accel)

terrs = 0.0d0

terrd = 0.0d0

do i=1,3

newdiff(i,1) = accel(i)

newdiff(i,2) = newdiff(i,1) - diff(i,1)

c correct

vel(i) = vel(i) + stepsize * newdiff(i,2) / 2.0d0

pos(i) = pos(i) + stepsize2 * newdiff(i,2) / 6.0d0

c get error estimate

wts(i) = abs(lastvel(i)) * releps + abseps

wtd(i) = abs(lastpos(i)) * releps + abseps

terrs = terrs + (newdiff(i,k+1) / wts(i))**2

terrd = terrd + (newdiff(i,k+1) / wtd(i))**2

enddo

terrs = sqrt(terrs)

terrd = sqrt(terrd)

errd = abs(stepsize2 * (1.d0/3.d0)) * terrd

errs = abs(stepsize * (1.d0/2.d0)) * terrs

if (errd > eps .or. errs > eps) then

c set everthing back and try again with half step

again = .true.

145

fail = fail + 1

currtime = currtime - stepsize

stepsize = 0.5d0 * stepsize

elseif(fail == 0) then

c step succeeded, try again with a larger step,

c to find maximum initial step

again = .true.

currtime = currtime - stepsize

stepsize = 2.0d0 * stepsize

endif

enddo

c end of initial step loop

if (again) then

print*,’Unable to take first step after 10 tries, giving up’

stop

endif

c reset fail count

fail = 0

c re-evaluate

call DERIV(pos,vel,currtime,accel)

c get differences

do i=1,3

newdiff(i,1) = accel(i)

newdiff(i,2) = newdiff(i,1) - diff(i,1)

do m=1,2

diff(i,m) = newdiff(i,m)

enddo

enddo

c set integration time and state to current values

inttime = currtime

do i=1,3

intpos(i) = pos(i)

intvel(i) = vel(i)

146

enddo

c increment order, double step size on next step

lk = 1

k = 2

r = 2.0d0

return

endif ! end of initialization

c take a step if requested time is past integration time

if ((rqtime > inttime .and. intdir == 1) .or.

> (rqtime < inttime .and. intdir == -1))

> then

DO I = 1,3

pos2back(i) = lastpos(i)

lastpos(i) = intpos(i)

lastvel(i) = intvel(i)

END DO

c change the step size

stepsize = stepsize * r

stepsize2 = stepsize * stepsize

if (lk == kmax) then

c If already using maximum value of k, cycle this value into

c steps array. Otherwise, it gets appended to the end.

savestep = steps(1)

do i=1,k-1

steps(i) = steps(i+1)

enddo

endif

steps(k) = stepsize

c compute ratio of current step size to last

ratio = stepsize / steps(k-1)

147

invrat = 1.d0/ratio

c calculate alpha and psi(n+1)

do i = 1,k

if (i > 1) then

psi(i) = psi(i-1) + steps(k+1-i)

else

psi(1) = stepsize

endif

alpha(i) = stepsize / psi(i)

enddo

c get psi(n-1) (need 0 through k-2)

psinm1(0) = 0.d0

do i=1,k-2

psinm1(i) = psinm1(i-1) + steps(k-1-i)

enddo

c get psi(n)

psin(1) = steps(k-1)

do i=2,k-1

psin(i) = psin(i-1) + steps(k-i)

enddo

c calculate coefficients

do i = 1,k+1

do q = 1,k+3-i

if (i==1) then

g(q,1) = 1.d0 / dble(q)

gp(q,1) = g(q,1) * (-invrat)**q

elseif (i==2) then

g(q,2) = 1.d0 / dble(q) / (dble(q) + 1.d0)

gp(q,2) = g(q,2) * (-invrat)**(q+1)

else

g(q,i) = g(q,i-1) - alpha(i-1) * g(q+1,i-1)

gp(q,i) = psinm1(i-3) / psi(i-1) * gp(q,i-1) -

> alpha(i-1) * gp(q+1,i-1)

148

endif

enddo

enddo

c calculate beta

beta(1) = 1.d0

do m = 2,k

beta(m) = beta(m-1) * psi(m-1) / psin(m-1)

enddo

c now integrate

do i=1,3

sum2 = 0.d0

sum1 = 0.d0

do m = 1,k

c save differences before multiplying by beta

diffsave(i,m) = diff(i,m)

c calculate phi* = phi*beta

diff(i,m) = beta(m) * diff(i,m)

c calculate sums for integration

sum2 = sum2 + (g(2,m) + ratio * gp(2,m)) * diff(i,m)

sum1 = sum1 + g(1,m) * diff(i,m)

enddo

c predict velocity and position

pos(i) = (1.d0 + ratio) * lastpos(i) - ratio*pos2back(i)

> + stepsize2 * sum2

vel(i) = lastvel(i) + stepsize * sum1

enddo

c update the time

currtime = inttime + stepsize

c evaluate force model

call DERIV(pos,vel,currtime,accel)

terrs = 0.0d0

149

terrd = 0.0d0

do i=1,3

c get new differences

newdiff(i,1) = accel(i)

do m=2,k+1

newdiff(i,m) = newdiff(i,m-1) - diff(i,m-1)

enddo

c corrector

pos(i) = pos(i) +

> stepsize2 * (g(2,k+1) + ratio*gp(2,k+1))

> * newdiff(i,k+1)

vel(i) = vel(i) +

> stepsize * g(1,k+1) * newdiff(i,k+1)

c get error estimate

wts(i) = abs(lastvel(i)) * releps + abseps

wtd(i) = abs(lastpos(i)) * releps + abseps

terrs = terrs + (newdiff(i,k+1) / wts(i))**2

terrd = terrd + (newdiff(i,k+1) / wtd(i))**2

enddo

terrs = sqrt(terrs)

terrd = sqrt(terrd)

errd = abs(stepsize2 * (g(2,k+1) - g(2,k) +

> ratio * (gp(2,k+1) - gp(2,k)))) * terrd

errs = abs(stepsize * (g(1,k+1) - g(1,k))) * terrs

if (errd > eps .or. errs > eps) then

c step failed,

c reset everything and use half this step next time

fail = fail + 1

r = 0.5d0

if (lk == kmax) then

do m = k,2,-1

steps(m) = steps(m-1)

150

enddo

steps(1) = savestep

endif

do i=1,3

pos(i) = lastpos(i)

vel(i) = lastvel(i)

lastpos(i) = pos2back(i)

do m = 1,k

diff(i,m) = diffsave(i,m)

enddo

enddo

currtime = savecurrtime

delt = 0.d0

c if 3rd failure, start over

if (fail >= 3) then

reset = 1

endif

c exit routine

return

endif

c step succeded, reset fail count

fail = 0

if (k == kmax) then

c no longer in variable-order mode

c calculate step for next time

sigma = 1.0d0

do i = 2,10

sigma = (i-1) * alpha(i-1) * sigma

enddo

erks = abs(stepsize * gammastars(k) * sigma) * terrs

erkd = abs(stepsize2 * gammastard(k) * sigma) * terrd

151

c compute r for single and double integration

rs = (eps/2.d0/erks) ** (1.d0/dble(k+1))

rd = (eps/2.d0/erkd) ** (1.d0/dble(k+2))

c use smallest r

r = min(rs,rd)

c bound r

if (r > 2.d0) r = 2.d0

if (r < 0.5d0) r = 0.5d0

c set last used value of k

lk = k

else

c variable-order start-up mode

c Evaluate again, increment k and double step

c evaluate force model

call DERIV(pos,vel,currtime,accel)

c get new differences

do i=1,3

newdiff(i,1) = accel(i)

do m=2,k+1

newdiff(i,m) = newdiff(i,m-1) - diff(i,m-1)

enddo

enddo

c set last used value of k, in case an interpolation

c is needed now

lk = k

k = k+1

r = 2.0d0

endif

c Get ready for next step: set integration time and state to

152

c current values, and copy latest differences from newdiff

c to diff.

inttime = currtime

do i=1,3

do m = 1,lk+1

diff(i,m) = newdiff(i,m)

enddo

intpos(i) = pos(i)

intvel(i) = vel(i)

enddo

endif

c end of integration step, check to see if

c interpolation is needed

if ((inttime > rqtime .and. intdir == 1) .or.

> (inttime < rqtime .and. intdir == -1)) then

c integrated too far, interpolate to request time

c set interpolation step

hI = rqtime - inttime

ratio = hI/steps(lk)

invrat = 1.0d0 / ratio

c compute gamma values

gamma1(1) = hI / psi(1)

do i=2,lk

gamma1(i) = (hI + psi(i-1)) / psi(i)

enddo

gammap(1) = -1.0d0

gammap(2) = 0.0d0

do i=3,lk

gammap(i) = psin(i-2) / psi(i)

enddo

c calculate coefficients

do i=1,lk+1

153

do q=1,lk+3-i

if (i == 1) then

gint(q,i) = 1.0d0 / q

gpint(q,i) = 1.0d0 / q * (-invrat)**q

else

gint(q,i) = gamma1(i-1) * gint(q,i-1) - hI/psi(i-1)

> * gint(q+1,i-1)

gpint(q,i) = gammap(i-1) * gpint(q,i-1) - hI/psi(i-1)

> * gpint(q+1,i-1)

endif

enddo

enddo

c compute interpolation values

do i=1,3

sum1 = 0.0d0

sum2 = 0.0d0

do m=1,lk+1

sum1 = sum1 + gint(1,m) * diff(i,m)

sum2 = sum2 + (gint(2,m) + ratio*gpint(2,m))

> * diff(i,m)

enddo

vel(i) = intvel(i) + hI * sum1

pos(i) = (1.0d0 + ratio) * intpos(i)

> - ratio * lastpos(i) + hI**2 * sum2

enddo

c set current time to the request time

currtime = rqtime

endif ! end of interpolation

c set the change in time

delt = currtime - savecurrtime

return

end

154

References

[1] J. H. Seago, M. A. Davis, A. E. Reed, E. D. Lydick, and P. W. Schumacher, “Re-

sults of naval space surveillance system calibration using satellite laser ranging,” in

Proceedings of the 2001 AAS/AIAA Astrodynamics Specialists Conference, (Quebec

City), American Astronautical Society, January 2001. AAS 01–361. 1

[2] D. A. Vallado, Fundamentals of Astrodynamics and Applications. New York:

McGraw-Hill, 1997. 2, 29, 36

[3] S. Herrick, Astrodynamics: Orbit Correction, Perturbation Theory, Integration,

vol. 2. New York: Van Nostrand Reinhold Company, 1972. 3, 11, 19, 80, 86

[4] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. New York:

John Wiley and Sons, 1962. 3, 18, 89

[5] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations.

Englewood Cliffs, New Jersey: Prentice-Hall, 1971. 7, 44

[6] R. L. Burden and J. D. Faires, Numerical Analysis. New York: Brooks/Cole Pub-

lishing Company, sixth ed., 1997. 8, 9, 43, 61

[7] J. Woodburn, “Mitigation of the effects of eclipse boundary crossings on the nu-

merical integration of orbit trajectories using an Encke type correction algorithm,”

in AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA, 11–14 Febru-

ary 2001, (AAS Publications Office, P. O. Box 28130, San Diego, CA 92198),

AAS/AIAA, 2001. Paper AAS 01-223. 10, 119

[8] J. L. Maury and G. P. Segal, “Cowell type numerical integration as applied to satel-

lite orbit computation,” Tech. Rep. X-553-69-46, NASA, 1969. NTIS #N6926703.

10, 18, 20, 26

[9] NORAD, “Mathematical foundation for SCC astrodynamic theory,” Tech. Rep. TP

SCC 008, Headquarters North American Aerospace Defense Command, 1982. Ob-

REFERENCES 155

tainable from Defense Technical Information Center, Cameron Station, Alexandria,

VA 22304-6145, as AD #B081394. 10, 26, 36

[10] J. F. Frankena, “Störmer-Cowell: straight, summed and split. An overview,” Journal

of Computational and Applied Mathematics, vol. 62, pp. 129–154, 1995. 11

[11] R. N. Wallner, “Earth gravitational error budget initial report,” Tech. Rep. , Kaman

Sciences Corporation, 1994. 15, 26

[12] J. Jackson, “Note on the numerical integration of d2x/dt2 = f(x, t),” in Monthly

Notes, vol. 84, pp. 602–606, Royal Astronomy Society, 1924. 19

[13] M. Berry and L. Healy, “The generalized Sundman transformation for propagation

of high-eccentricity elliptical orbits,” in Advances in Astronautics, (San Diego, CA),

American Astronautical Society, February 2002. AAS 02–109. 35, 36

[14] K. F. Sundman, “Mémoire sur le problème des trois corps,” Acta Mathematica,

vol. 36, pp. 105–179, 1912. 35

[15] T. Levi-Civita, “Sur la résolution qualitative du problème restreint des trois corps,”

Acta Mathematica, vol. 30, pp. 305–327, 1906. 35

[16] V. Szebehely and V. Bond, “Transformations of the perturbed two-body problem

to unperturbed harmonic oscillators,” Celestial Mechanics, vol. 30, no. 1, pp. 59–69,

1983. 35

[17] P. Nacozy, “The intermediate anomaly,” Celestial Mechanics, vol. 16, pp. 309–313,

1977. 36

[18] E. L. Stiefel and G. Sheifele, Linear and Regular Celestial Mechanics, vol. 174 of

Die Grundlehren der mathematischen Wissenshaften. New York: Springer-Verlag,

1971. 36

[19] S. Ferrer and M. K. Sein-Echaluce, “On the Szebehely-Bond equation. Generalized

Sundman’s transformation for the perturbed two-body problem,” Celestial Mechan-

ics, vol. 32, pp. 333–347, April 1984. 36

[20] P. L. Palmer, S. J. Aarseth, S. Mikkola, and Y. Hashida, “High precision integration

methods for orbit propagation,” The Journal of the Astronautical Sciences, vol. 46,

pp. 329–342, October-December 1998. 36

[21] R. H. Merson, “Numerical integration of the differential equations of celestial me-

chanics,” Tech. Rep. TR 74184, Royal Aircraft Establishment, Farnborough, Hants,

REFERENCES 156

UK, January 1975. Defense Technical Information Center number AD B004645. 36,

61, 62, 81, 102

[22] C. E. Velez, “Notions of analytic vs. numerical stability as applied to the numerical

calculation of orbits,” Celestial Mechanics, vol. 10, pp. 405–422, 1974. 36

[23] F. T. Krogh, “Algorithms for changing the step size,” SIAM Journal on Numerical

Analysis, vol. 10, no. 5, pp. 949–965, 1973. 43, 44, 120

[24] F. T. Krogh, “Changing stepsize in the integration of differential equations using

modified divided differences,” in Proceedings of the Conference on the Numerical

Solution of Ordinary Differential Equations (D. G. Bettis, ed.), vol. 362 of Lecture

Notes in Mathematics, (New York), Springer-Verlag, 1974. 44, 86, 88

[25] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential

Equations. San Francisco: W. H. Freeman and Company, 1975. 44, 51, 55, 56, 57,

58

[26] J. M. A. Danby, Computing Applications to Differential Equations. Reston, Virginia:

Reston Publishing Company, 1985. QA 371.D258 1985. 57

[27] P. E. Zadunaisky, “On the accuracy in the numerical computation of orbits,” in

Periodic Orbits, Stability and Resonances (G. E. O. Giacaglia, ed.), (Dordrecht,

Holland), pp. 216–227, D. Reidel Publishing Company, 1970. 61, 71

[28] H. L. Neal, S. L. Coffey, and S. Knowles, “Maintaining the space object catalog

with special perturbations,” in Astrodynamics 1997 Part II (F. Hoots, B. Kaufman,

P. Cefola, and D. Spencer, eds.), vol. 97 of Advances in the Astronautical Sciences,

(San Diego, CA), pp. 1349–1360, American Astronautical Society, August 1997.

AAS 97–687. 63, 100

[29] K. Fox, “Numerical integration of the equations of motion of celestial mechanics,”

Celestial Mechanics, vol. 33, pp. 127–142, June 1984. 64, 102

[30] O. Montenbruck, “Numerical integration methods for orbital motion,” Celestial Me-

chanics and Dynamical Astronomy, vol. 53, pp. 59–69, 1992. 64, 102

[31] L. G. Jacchia, “New static models of the thermosphere and exosphere with empirical

temperature models,” Tech. Rep. 313, Smithsonian Astrophysical Observatory, 1970.

65

[32] L. W. Johnson and R. D. Riess, Numerical Analysis. Reading, Mass.: Addison-

Wesley, 1982. QA297.J63 1982. 66

REFERENCES 157

[33] K. G. Hadjifotinou and M. Gousidou-Koutita, “Comparison of numerical methods

for the integration of natural satellite systems,” Celestial Mechanics and Dynamical

Astronomy, vol. 70, no. 2, pp. 99–113, 1998. 69, 70

[34] P. E. Zadunaisky, “On the accuracy in the numerical solution of the n-body prob-

lem,” Celestial Mechanics, vol. 20, pp. 209–230, 1979. 70, 71, 72, 74

[35] T.-Y. Huang and K. A. Innanen, “The accuracy check in numerical integration of

dynamical systems,” Astronomical Journal, vol. 88, pp. 870–876, June 1983. 71

[36] P. E. Zadunaisky, “A method for the estimation of errors propagated in the numerical

solution of a system of ordinary differential equations,” in The Theory of Orbits in

the Solar System and in Stellar Systems (G. Contopoulos, ed.), (New York), pp. 281–

287, International Astronomical Union, Academic Press, 1966. 71

[37] P. E. Zadunaisky, “On the estimation of errors propagated in the numerical inte-

gration of ordinary differential equations,” Numerische Mathematik, vol. 27, no. 1,

pp. 21–39, 1976. 71, 72, 74

[38] F. R. Hoots and A. Segerman, “Satellite ephemeris representation using hybrid

compression,” in Proceedings of the 2002 AAS/AIAA Space Flight Mechanics Con-

ference, (San Antonio, TX), American Astronautical Society, January 2002. AAS

02–133. 75, 77, 121

[39] A. M. Segerman and S. L. Coffey, “Ephemeris compression using multiple fourier

series,” J. Astro. Sci., vol. 46, no. 4, pp. 343–359, 1998. 76, 125, 126, 127

[40] O. Montenbruck and E. Gill, Satellite Orbits. New York: Springer, 2000. 80

[41] J. Lundberg, “Multistep integration formulas for the numerical integration of the

satellite problem,” Tech. Rep. IASOM TR 81-1, Center for Space Research, The

University of Texas at Austin, Austin, TX, April 1981. 81, 88, 102

[42] F. T. Krogh, “A variable step variable order multistep method for the numerical

solution of ordinary differential equations,” Information Processing; Proceedings of

the IFIP Congress, vol. 68, pp. 194–199, 1969. 87

[43] J. Lundberg, “Computational errors and their control in the determination of satel-

lite orbits,” Tech. Rep. CSR-85-3, Center for Space Research, The University of

Texas at Austin, Austin, TX, March 1985. 119

REFERENCES 158

[44] J. B. Lundberg, “Mitigation of satellite orbit errors resulting from the numerical

integration across shadow boundaries,” American Astronautical Society, 1996. AAS

96–408. 119

[45] J. Lundberg, M. Feulner, P. Abusali, and C. Ho, “Improving the numerical inte-

gration solution of satellite orbits in the presence of solar radiation pressure using

modified back differences,” American Astronautical Society, 1991. AAS 91–187. 119

[46] R. R. Bate, D. D. Mueller, and J. E. White, Fundamentals of Astrodynamics. New

York: Dover Publications, 1971. 122

159

Vita

Matthew Muhlhauser Berry was born on October 14, 1977 in Baltimore, Maryland.

After graduating from high school in Timonium, Maryland, he matriculated to Virginia

Tech in August 1995. Matt completed his Bachelor of Science in Aerospace Engineering

in May 2000, and his Master of Science in the same field in December 2002. Matt

participated in the cooperative education program as an undergraduate and as a graduate

student, employed at the Naval Research Laboratory in Washington, DC. Matt’s work at

NRL has been focused on research and development of space surveillance software used

operationally by the Naval Network and Space Operations Command.

Go Hokies.

	1 Introduction
	2 Numerical Integrators
	2.1 Introduction
	2.2 Single-Step Integrators
	2.2.1 Euler's Method
	2.2.2 Runge-Kutta

	2.3 Multi-Step Integrators
	2.3.1 Tables and Operators
	2.3.2 Differentiation
	2.3.3 Adams Method
	2.3.4 Summed Adams Method
	2.3.5 Störmer-Cowell
	2.3.6 Gauss-Jackson
	2.3.7 Startup Formulas
	2.3.8 Ordinate Forms
	2.3.9 Implementation

	2.4 s-integration
	2.4.1 Transformation Equation
	2.4.2 Implementation of the Transformation

	2.5 Variable-Step Integration
	2.5.1 Introduction
	2.5.2 Shampine-Gordon

	2.6 Summary

	3 Testing Integrators
	3.1 Introduction
	3.2 Error Ratio
	3.3 Testing Techniques
	3.3.1 Test Cases
	3.3.2 Two-Body Test
	3.3.3 Step-Size Halving
	3.3.4 Comparison with High-Order Integrator
	3.3.5 Reverse Test
	3.3.6 Integral Invariants
	3.3.7 Zadunaisky's Test
	3.3.8 Summary

	3.4 Speed Tests
	3.5 Evaluations
	3.6 Summary

	4 Variable-Step Störmer-Cowell Method
	4.1 Motivation
	4.1.1 Variable Step
	4.1.2 Double vs. Single Integration

	4.2 Derivation
	4.2.1 Predictor
	4.2.2 Corrector
	4.2.3 Interpolation
	4.2.4 Step-Size Control
	4.2.5 Initialization

	4.3 Implementation
	4.4 Results

	5 Comparisons
	5.1 Introduction
	5.2 Orbit Propagation
	5.3 Orbit Determination
	5.4 Summary

	6 Conclusions And Suggestions for Future Work
	6.1 Summary
	6.2 Recommendations for Future Study

	A Ephemeris Compression Equations
	A.1 Mean Element Fit
	A.2 Fourier Fit

	B Matlab Code
	C Fortran Code
	References
	Vita

