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The Distributed Spacecraft Attitude

Control System Simulator:

From Design Concept to Decentralized Control

Jana L. Schwartz

(ABSTRACT)

A spacecraft formation possesses several benefits over a single-satellite mission. How-
ever, launching a fleet of satellites is a high-cost, high-risk venture. One way to mitigate
much of this risk is to demonstrate hardware and algorithm performance in ground-
based testbeds. It is typically difficult to experimentally replicate satellite dynamics
in an Earth-bound laboratory because of the influences of gravity and friction. An air
bearing provides a very low-torque environment for experimentation, thereby recapturing
the freedom of the space environment as effectively as possible. Depending upon con-
figuration, air-bearing systems provide some combination of translational and rotational
freedom; the three degrees of rotational freedom provided by a spherical air bearing are
ideal for investigation of spacecraft attitude dynamics and control problems.

An interest in experimental demonstration of formation flying led directly to the develop-
ment of the Distributed Spacecraft Attitude Control System Simulator (DSACSS). The
DSACSS is a unique facility, as it uses two air-bearing platforms working in concert. Thus
DSACSS provides a pair of ‘spacecraft’ three degrees of attitude freedom each. Through
use of the DSACSS we are able to replicate the relative attitude dynamics between nodes
of a formation such as might be required for co-observation of a terrestrial target.

Many dissertations present a new mathematical technique or prove a new theory. This
dissertation presents the design and development of a new experimental system. Al-
though the DSACSS is not yet fully operational, a great deal of work has gone into
its development thus far. This work has ranged from configuration design to nonlinear
analysis to structural and electrical manufacturing. In this dissertation we focus on the
development of the attitude determination subsystem. This work includes development
of the equations of motion and analysis of the sensor suite dynamics. We develop nonlin-
ear filtering techniques for data fusion and attitude estimation, and extend this problem
to include estimation of the mass properties of the system. We include recommendations
for system modifications and improvements.
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Chapter 1

Introduction

In the past decade, advances in computer size, speed, and networking have fostered a

shift in the design of a variety of systems. When attempting to build a top-ten su-

percomputer, Virginia Tech’s “System X” team did not make use of the fastest, most

cutting-edge computing technology. Rather, they created a system of 1,100 Apple G5

PowerMac desktop computers working together — rated in November 2003 as the third

fastest system in the world, with a speed of 10.3 trillion operations-per-second.∗ When

Dr. Robert Ballard and director James Cameron sent expeditions to the Titanic, they did

not use a lone manned underwater vehicle. Instead, they used teams of custom-designed,

remotely-operated vehicles to explore the area quickly and completely with minimal risk.

These missions included excursions into the ship that would not have been possible with

larger vehicles.† Some applications cannot be accomplished by a monolithic system; it

would be impractical (perhaps impossible) to have a single robot simultaneously play ev-

ery position on a soccer team. The ultimate goal of the RoboCup project is to develop a

team of fully autonomous humanoid robots that can win against the human world cham-

pionship team by 2050.‡ Other distributed system applications include disaster search

and rescue, multi-point scientific data collection, passive surveillance, and reconnaissance

missions.

∗ http://www.tcf.vt.edu/
† http://www.titanic-titanic.com/
‡ http://www.robocup.org/



1.1 Distributed Systems in Space 2

1.1 Distributed Systems in Space

Spacecraft formation flying is yet another application of distributed technology. Just as

teams of unmanned aerial and ground vehicles have been proposed for battlefield scenario

awareness, teams of spacecraft have been suggested for a variety of scientific and strategic

missions. These missions require higher levels of autonomy and communication between

nodes than some of the programs described above, but all benefit from the same core

technologies.

A spacecraft formation possesses several benefits over a single-satellite mission. Certainly

there is less launch risk if the system is distributed across several launch platforms.

Further, a greater range of structural configurability may offer lower launch costs for many

small vehicles than for a single, large spacecraft. Although the initial cost of a fleet of

vehicles may be higher than in a single-spacecraft design, the benefits of mass-production

can eventually be used to lower per-vehicle cost — a manufacturing phenomenon rarely

seen in the space industry, wherein most designs are highly tailored to unique mission

goals. Use of a group of spacecraft provides a level of redundancy in a notably high-risk

environment. If, as in the case of the Hubble Space Telescope,§ there is a flaw with one

spacecraft in a formation, the mission will not be entirely compromised. Rather, the rest

of the formation will be able to operate (perhaps in some reduced capacity ‘fault tolerant’

mode) until the malfunctioning spacecraft is repaired or replaced. This reconfigurability

is also beneficial for technology upgrades, allowing new formation nodes to be dynamically

introduced to the system as updated vehicles are placed in orbit. Moreover, the inherent

redundancy in the system allows each vehicle’s design to be less robust — and thereby

less expensive — with less risk to the mission.

With all of these benefits at hand, spacecraft formation flying has become an exciting

area of research. Of course, the problem of relative orbital dynamics is not a new one;

the spacecraft rendezvous problem was a major focus of the Gemini program.¶ However,

spacecraft formation flying differs from rendezvous in several key ways. An orbit transfer

culminating in rendezvous typically takes place over only a few hours, and high fuel-

consumption is expected during the duration of the maneuver. The orientation of the

two spacecraft with respect to one another is only important for a relatively brief portion

of the mission. Docking is highly assisted by well-engineered grappling devices that allow

the two vehicles to interface regardless of small relative attitude errors. Further, docking

maneuvers are often performed by an astronaut. Optimally, a spacecraft formation would

§ http://hubble.nasa.gov/
¶ http://spacelink.nasa.gov/NASA.Projects/Human.Exploration.and.Development.of.Space/

Human.Space.Flight/Gemini.Missions/
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be able to maintain configuration without a person-in-the-loop. The useful lifetime of the

mission is dictated by the available fuel; therefore efficient orbit control is imperative.

However, perhaps the most important distinction between rendezvous and formation

flying is the purpose of the mission. During rendezvous operations the primary mission

objective is to approach and dock with the target spacecraft. In contrast, the mission

during formation flying operations is based on scientific or strategic goals: formation

flying is the means to perform the mission, not the mission itself.

1.2 Formation Flying in the Laboratory

This ‘secondary’ status places a great deal of emphasis on a set of new, unproven tech-

niques and technologies. Obviously, the benefits of formation flying are minimal if the

spacecraft are unable to communicate or otherwise work together after launch. It is

risky to demonstrate new space technologies because launch costs are so expensive; this

risk explains why the Nickel-Cadmium (NiCad) rechargeable battery chemistry is still so

widely used in space despite major improvements in power and energy density available

in newer cell types. Another example of the space industry’s reticence towards change

are the flight computers in the Space Shuttle Orbiter: the five-unit IBM AP-101S system

was upgraded from the original AP-101B processors in 1991, providing the Shuttle with

a flight computer with processing speeds on the order of an Intel 386 and the memory to

store 524,288 16-bit words.‖

One way to mitigate much of this risk is to demonstrate hardware and algorithm per-

formance in ground-based testbeds. However, it is difficult to experimentally replicate

satellite dynamics in an Earth-bound laboratory because of the influences of gravity and

friction. An air bearing provides a low-torque environment for experimentation, thereby

replicating the freedom of the space environment as effectively as possible. Depending

upon configuration, air-bearing systems provide some combination of translational and

rotational freedom; the three degrees of rotational freedom provided by a spherical air

bearing are ideal for investigation of spacecraft attitude dynamics and control problems.

‖ http://spacelink.nasa.gov/NASA.Projects/Human.Exploration.and.Development.of.Space/

Human.Space.Flight/Shuttle/Shuttle.Frequently.Asked.Questions/Second.Generation.Computers.FAQ

Interestingly, even the upgraded computers are now so obsolete that NASA looks for sources of
replacement parts by browsing eBay auctions! (NASA does not purchase flight computers on eBay.)
http://www.computerworld.com/hardwaretopics/hardware/story/0,10801,71140,00.html



1.3 Dissertation Overview 4

1.3 Dissertation Overview

An interest in experimental demonstration of formation flying led directly to the develop-

ment of the DSACSS. The DSACSS is a unique facility, as it provides a pair of ‘spacecraft’

three degrees of attitude freedom by coordinating the behaviors of two spherical air bear-

ings. Through use of the DSACSS we are able to replicate the relative attitude dynamics

between nodes of a formation such as might be required for co-observation of a terrestrial

target. Initial planning and hardware procurement for this project began in 1998, but

the main development emphasis did not start until 2002.

Many dissertations present a new mathematical technique or prove a new theory. This

dissertation presents the design and development of a new experimental system. Al-

though the DSACSS is not yet fully operational, a great deal of work has gone into its

development thus far. This work has ranged from configuration design to nonlinear anal-

ysis to structural and electrical manufacturing. In Chapter 2 we present the equations of

motion for a formation of spacecraft, including both orbital and attitude dynamics. In

Chapter 3 we provide a review of air-bearing spacecraft simulators. We also give an intro-

duction into a new technique for including orbital dynamics in the experiment: the use

of GPS simulators. Chapter 4 documents the bulk of the work in this dissertation. We

begin with information on the design, development, and current status of the DSACSS

system. We derive the specific equations of motion for the DSACSS air bearings. We

present the sensor suite in detail and derive algorithms for nonlinear filtering of the sensor

information. In Chapter 5 we summarize this text, provide some concluding thoughts,

and offer suggestions for future work.
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Chapter 2

Satellite Dynamics and Formation

Flying

The earliest formation flying problems were, in truth, rendezvous problems. Most analysis

of the rendezvous problem neglects the terminal attraction between vehicles, making it

somewhat relevant to the formation flying problem. However, there are key differences

between these two classes of problems. First, spacecraft rendezvous is typically controlled

by a pilot whereas the ultimate goal of formation flying is to have the fleet of spacecraft

operating autonomously. These two control approaches require very different sensor suites

and communication requirements between the vehicles. Next, only one vehicle is actively

maneuvered during rendezvous — a very inefficient technique for controlling a formation

of spacecraft. Perhaps most importantly, rendezvous problems take place over relative

short time frames, normally only a few orbital periods. A spacecraft formation has a much

longer mission timeline. This difference in time scale causes the linearized equations of

motion — which work quite well in the short term — to be less applicable for analysis

of formation dynamics. We consider the most interesting spacecraft formations to be

long term, autonomous missions wherein each satellite plays an active role in formation

maintenance.

The Landsat-7 / Earth Observing-1 (EO-1) mission is often called out as the first on-

orbit demonstration of formation flying. However, it does not meet all of the criteria

proposed above. EO-1’s orbit is controlled relative to Landsat-7’s orbit, but the control

is commanded from the ground. The two spacecraft do not communicate, and Landsat-7

does not maneuver to maintain the formation.11 Further, the two satellites are much

farther apart than most proposed formation flying missions; EO-1 is 60 s (approximately

450 km) behind Landsat-7 in a same-ground-track orbit. This spacing is dictated by
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the science mission, but it causes the relative dynamics of this two-satellite cluster to

be dissimilar to formations with only a few meters of separation between nodes. Also

dictated by the science mission, both spacecraft are nadir pointing; the dynamics of

a formation become much more interesting when precision pointing requirements are

introduced.

Thus spacecraft formation flying is an exciting area of research with a great deal of

technology demonstration yet to be performed. In this chapter, we develop the equations

of motion for spacecraft formation flying. We begin with the orbital dynamics, proceed to

the attitude dynamics, and finally formulate the coupled problem of precision pointing —

coupled orbit and attitude control. Throughout this development we make reference to

analysis of this problem in the literature, and we conclude with a brief discussion of the

distributed control problem as applied to a spacecraft formation.

2.1 Equations of Motion

An understanding of the formation flying problem begins with an understanding of the

equations that govern single-vehicle orbital dynamics. Using these tools, we can then

develop the equations that govern the relative motion between elements of a formation.

We begin with the general, nonlinear equations of motion for a single orbiting spacecraft.

These equations are easily extended for the relative motion problem, as we show. In

doing so, we find that it is convenient to introduce the concept of ‘chief’ and ‘deputy’

spacecraft. However, it is important to keep in mind that this notation has no bearing on

the ultimate implementation of any distributed control logic. Rather, the orbit defined

by the chief satellite need not be inhabited by an actual spacecraft in the formation; it

may simply be a convenient reference trajectory for the formation to track.

2.1.1 Two-Body Orbital Dynamics

The motion of a spacecraft orbiting a central body in the presence of no perturbations —

that is, the two-body problem — is governed by

r̈ = −G (M +m)

r3
r (2.1)

where G is the gravitational constant, M is the mass of the central body, m is the mass

of the spacecraft, and r is the position vector of the spacecraft.
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If we include the effects of external forces, the equation becomes

r̈ = −G (M +m)

r3
r + fext/m (2.2)

For a two satellite formation including a chief spacecraft and one deputy, we have two

such equations

r̈c = − µ

r3
c

rc + fcext/mc (2.3)

r̈d = − µ

r3
d

rd + fdext/md (2.4)

where we have defined the gravitational parameter µ ≈ GM , which is a good approx-

imation for m << M . We define the position of the deputy with respect to the chief

spacecraft as ρ , rd − rc and obtain the relative motion equation

ρ̈ = − µ

ρ3
ρ + a(d−c)ext (2.5)

where a(d−c)ext is the differential disturbance acceleration (relative acceleration is a con-

venient quantity when coordinating spacecraft with different masses).

Equation 2.5 is the most basic relative motion equation for orbital dynamics. However,

although this equation is exact, it is not particularly useful. In the remainder of this

section we develop alternative, approximate representations of the relative motion. In

doing so, we exchange generality for useability.

2.1.2 Unperturbed Nonlinear Dynamics in a Rotating Refer-

ence Frame

Following the development by Schaub and Junkins, we note that it is convenient to

express the relative motion equations in a rotating reference frame defined by a circular

reference orbit with radius rc.
12 The rotating reference frame, termed the Hill frame,

rotates once per orbit with respect to inertial space. The axes of the Hill frame, ôr, ôθ and

ôh are defined (like most orbit-fixed coordinate systems) in the radial, near-velocity, and

orbit-normal directions, respectively. Thus the reference frame has an angular velocity

of

ωHi = ν̇ôh (2.6)

where ν is the true anomaly of the chief satellite’s orbit.
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The position vector of the deputy spacecraft can be expressed as

rd = rc + ρ (2.7)

= (rc + x) ôr + yôθ + zôh (2.8)

where x, y and z are the components of ρ in the Hill frame.

Taking two time derivatives of this equation yields

r̈d =
(
r̈c + ẍ− 2ẏν̇ − ν̈y − ν̇2 (rc + x)

)
ôr (2.9)

+
(
ÿ + 2ν̇ (ṙc + ẋ) + ν̈ (rc + x)− ν̇2y

)
ôθ + z̈ôh

Recall that the magnitude of the orbital angular momentum of the chief satellite is

h = r2
c ν̇. This quantity is a first integral of two-body motion, thus

ḣ = 2rcṙcν̇ + r2
c ν̈ (2.10)

= 0 (2.11)

providing a constraint on the second derivative of the true anomaly of the chief satellite’s

orbit,

ν̈ = −2
ṙc

rc

ν̇ (2.12)

This constraint simplifies the chief satellite’s acceleration equation by canceling terms in

the in-track direction

r̈c =
(
r̈c − rcν̇

2
)
ôr + (2ṙcν̇ + rcν̈) ôθ (2.13)

=
(
r̈c − rcν̇

2
)
ôr (2.14)

We have assumed that there are no perturbations in the development of Equation 2.10.

Maintaining that assumption, we relate Equations 2.3 and 2.14 to obtain a scalar equation

for the acceleration of the chief satellite:

r̈c = rcν̇
2 − µ

r2
c

(2.15)

We make use of Equations 2.4 and 2.15 to develop a final vector expression for the motion

of the deputy:

r̈d =

(
ẍ− 2ν̇

(
ẏ − y

ṙc

rc

)
− xν̇2 − µ

r2
c

)
ôr (2.16)

+

(
ÿ + 2ν̇

(
ẋ− x

ṙc

rc

)
− yν̇2

)
ôθ + z̈ôh

= − µ

r3
d

rd (2.17)
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This vector expression can be written as three scalar equations:

ẍ− 2ν̇

(
ẏ − y

ṙc

rc

)
− xν̇2 − µ

r2
c

= − µ

r3
d

(rc + x) (2.18)

ÿ + 2ν̇

(
ẋ− x

ṙc

rc

)
− yν̇2 = − µ

r3
d

y (2.19)

z̈ = − µ

r3
d

z (2.20)

These are the full, nonlinear equations of relative motion for a deputy spacecraft with

respect to a chief spacecraft in an arbitrary, unperturbed orbit. Note that the cross-track

equation is only loosely coupled with the others via the rd term.

rd =

√
(rc + x)2 + y2 + z2 (2.21)

= rc

√
1 + 2

x

rc

+
x2 + y2 + z2

r2
c

(2.22)

≈ rc

√
1 + 2

x

rc

(2.23)

Upon first inspection, Equation 2.23 seems much more useful than Equation 2.5. In

practice, however, the full nonlinear equations are rarely used. When this set of equations

is invoked, it is common to immediately simplify the bounds of the problem by assuming

constant mass and external forces, for example. The work of de Queiroz, Kapila and Yan

begins with the nonlinear relative motion equations but assumes the mass and disturbance

accelerations to be slowly varying.13 Thus, although their formulation begins with the

premise of complete nonlinearity, it is unclear that the globally asymptotically stable

Lyapunov control law which they derive is any more general than those presented later

in this review.

2.1.3 The Hill–Clohessy-Wiltshire Equations

Recall from basic orbital dynamics that

µ

r3
c

=
ν̇2

1 + e cos ν
(2.24)

where e is the eccentricity of the chief satellite’s orbit.12

If we assume the chief’s orbit to be circular the change-in-radius (ṙc) and eccentricity

terms drop out, and the derivative of the true anomaly can be replaced by the mean
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motion, n. Making use of these substitutions in Equations 2.18–2.20 we obtain the

classic Hill–Clohessy–Wiltshire (HCW) equations:

ẍ− 2nẏ − 3n2x = 0 (2.25)

ÿ + 2nẋ = 0 (2.26)

z̈ + n2z = 0 (2.27)

The first documentation of these equations comes from Hill in 1878.14,15,16 In these works,

Hill described the motion of the Moon relative to the Earth. Hill’s original derivation of

the relative motion equations includes a term µ/r3 that, when removed, yields the linear

equations presented by Clohessy and Wiltshire in 1960.17 The HCW equations were

then published nearly simultaneously by several groups, including conference and journal

papers by Clohessy and Wiltshire,18 a book on space technology edited by Seifert,19 and in

individual journal publications by Spradlin,20 Eggleston,21 and Geyling,22 several of which

cite Clohessy and Wiltshire’s 1959 conference publication.18 These linearized equations of

motion, although first derived for investigation of orbital rendezvous problems, are useful

in describing the relative orbital dynamics in spacecraft formation flight. However, one

must recall an important difference between formation flying and rendezvous problems:

duration. Rendezvous missions are relatively brief: typically, one spacecraft executes a

series of large maneuvers during the course of just a few orbits. As such, rendezvous

missions are not grossly affected by the perturbative effects that cause satellites in a

formation to drift apart. Similarly, errors that arise from the use of this linearized model

do not have sufficient time to amass in the duration of a rendezvous mission.

The unperturbed version of the HCW equations, shown in Equations 2.25–2.27 can be

solved analytically:

x(t) = (ẋ0/n) sinnt− (3x0 + 2ẏ0/n) cosnt+ 4x0 + 2ẏ0/n (2.28)

y(t) = (2ẋ0/n) cosnt+ (6x0 + 4ẏ0/n) sinnt− (6nx0 + 3ẏ0) t− 2ẋ0/n+ y0 (2.29)

z(t) = (ż0/n) sinnt+ z0 cosnt (2.30)

Note that Equation 2.29 includes a secular term — that is, a term that increases linearly

in time. We can enforce an additional constraint to eliminate the secular drift by choosing

ẏ0 = −2x0n (2.31)

Invoking this constraint results in a relative orbit that is displaced from, but has the

same energy — and thus the same semimajor axis — as the (circular) reference orbit,
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leading to

x(t) = (ẋ0/n) sinnt+ x0 cosnt (2.32)

y(t) = (2ẋ0/n) cosnt− 2x0 sinnt− 2ẋ0/n+ y0 (2.33)

z(t) = (ż0/n) sinnt+ z0 cosnt (2.34)

These equations have been used as the basis for analysis of rendezvous and formation

flying missions since 1960. By inspection, we observe that the relative motion in the

cross-track direction, z, is decoupled from the radial, x, and along-track, y, components.

Specifically, the cross-track relative motion behaves as an harmonic oscillator. This

separation in the linearized system is reasonable, as the cross-track relative motion is

only weakly coupled in the complete nonlinear solution. In the linearized system the

radial / along-track motion always follows a 2:1 ellipse.

The simple nature of these equations has led to their application in an abundance of

papers. Some of this work has led to valuable insights. Other contributions have, de-

batably, served only to obfuscate the objective at hand. Due to their simplicity, the

HCW equations have been seized upon by the mathematically-minded research commu-

nity, in the quest for simple, elegant solutions to esoteric control problems. However,

they do not necessarily provide the best engineering solutions to the formation flying

problem. Rather, these equations are perhaps so simple that they can distract from the

true problem at hand.

Mathematicians are attracted to the HCW equations in part because they yield several

linearly stable solutions: in-plane, in-track, circular, and projected circular relative orbits.

The in-plane formation is perhaps the simplest of all formation designs: the spacecraft are

in the same orbital plane and are separated only by a difference in anomaly (time). This

formation is initialized by setting all conditions to zero except for the y displacement,

which yields a constant, nonzero offset in the along-track direction. The along-track

initial condition is related to the mean anomaly separation.

Just as the in-plane formation provides context for a formation of satellites to maintain

the same orbital plane, the in-track configuration sets a formation up to have each vehicle

trace out the same ground track. The circular formation maintains the three-dimensional

distance among spacecraft. The projected circular formation maintains this constraint

only in the along-track / cross-track plane. Sabol, Burns and McLaughlin provide an

analysis of the natural stability of these linearly stable formations in the presence of

perturbative forces.23 The formations are initialized based on the HCW equilibria and

the exact solution is calculated by propagating mean elements are through the Draper

Semianalytic Satellite Theory.23 The authors consider two cases of in-plane formations,
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one with a 100-revolution-per-seven-nodal-day repeat ground track cycle, and one with a

14-revolution-per-nodal-day cycle. The 100:7 cycle is a short repeat ground-track orbit;

such orbits are relatively stable in the presence of gravitational perturbations. The 14:1

cycle is a daily repeat ground-track orbit; these smaller ratio orbits are sensitive to tesseral

resonances, causing periodic variation in the along-track separation of the formation.23

The authors considered the same two cases for the in-track formation configuration.

Because the spacecraft cross the same points on the Earth in an in-track formation, they

encounter identical gravitational perturbative forces. However, because the spacecraft are

in different orbital planes atmospheric drag causes an along-track drift. This drift causes

an unbounded along-track separation in the formation for both cycles.23 The circular and

projected-circular formations are unstable, primarily due to Earth-oblateness effects.23

Despite these shortcomings, not all applications of the HCW equations should be consid-

ered inappropriate. Certainly linearized equations of motion provide an unrivaled system

for initial analyses. A 1985 publication by Vassar and Sherwood is an early use of the

HCW equations for a simple satellite cluster, much like the Landsat-7 / EO-1 mission.

The authors derived a “practical control scheme” from the linearized system for a two

satellite leader–follower formation.24 Their formation of interest is a terrestrial laser com-

munication system. The chief satellite is in geosynchronous orbit; outfitted with a mirror,

it is used to relay laser signals from one ground station to another. The deputy satellite

must lead the chief in order to provide atmospheric calibration data to the transmitting

ground station. The only specification on the deputy’s orbit is an in-track separation from

the chief of 700 m ±3%. The authors determined that the primary perturbative force on

this formation would be differential solar radiation pressure; this disturbance would cause

the in-plane separation to grow without bound.∗ Assuming the deputy spacecraft to be

equipped with chemical propulsion, the authors proposed a closed-loop optimal digital

control law for formation-keeping based on similar controllers derived for stationkeeping.

Similarly, Howard, Lovell and Horneman make use of the HCW equations in preliminary

analysis of the collision avoidance problem for satellites flying in close formation.25 Per-

haps surprisingly, use of the linear equations in this case is valid for two reasons. First,

assuming the formation is composed of several of the same spacecraft, the perturbing

forces such as drag and solar radiation pressure should be comparable for each vehicle.

Similarly, in a tight formation we can expect the spacecraft to be in sufficiently close prox-

imity so as to experience the same gravitational perturbations. Secondly — and most

∗Intriguingly, the authors considered the engineering option of choosing the reflectivities of the two
satellites to mitigate the effects of this perturbation passively. They concluded that this option is
impractical for two reasons: varying spacecraft reflectivity while on orbit is not a clear-cut task; moreover,
the interests of the formation-keeping engineer and the thermal engineer would be at odds.
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importantly — this work is proposed as preliminary analysis, and the authors intend to

expand their work to include perturbations and general elliptical orbits.

In constrast, misapplication of the HCW equations can lead to rigorous mathematical

analysis of a non-physical system. Kapila, Sparks, et al. make use of the HCW equa-

tions in their development of linear, pulse-based, discrete-time feedback controllers.26

Through use of full-state feedback, the authors demonstrate closed-loop stability of the

linear system using standard LQ regulation techniques. They claim to have developed

“a mathematically rigorous control design framework for linear control of spacecraft rel-

ative position dynamics with guaranteed close-loop stability. . . that can potentially lower

the fuel consumption in multiple spacecraft formation flying.” It is unclear to this au-

thor that they have accomplished any such thing, as fuel potentially saved through their

novel control scheme will be wasted attempting to maintain a false equilibrium con-

dition. Veres and Gabriel also make use of the HCW equations to begin to solve a

challenging nonlinear control problem. Specifically, they note that there are few methods

for achieving constrained control in the formation flying class of problems because of

the complexity of calculating robust controllability sets. They use the linearized system

to find approximations to the controllability sets, and demonstrate the effectiveness of

these approximations in a nonlinear simulation.27 Again, constrained control around an

artificially stable equilibrium motion is prohibitively expensive for a practical distributed

spacecraft system. Similarly, Yeh, Nelson and Sparks derive a second-order sliding mode

controller based on the HCW equilibria specifically designed to cancel out the perturba-

tive forces.28 In general, this linearization of the relative motion should not be used in

the design of autonomous closed-loop control laws: the formation will quickly deplete its

available fuel.

The HCW equations can be improved upon to form augmented (though still linear) sys-

tems of equations that include select perturbative forces. By doing so, these dynamic ef-

fects can be recognized (and perhaps made) of use rather than countered. The most com-

mon terms to be reintroduced are the gravitational and drag perturbations. Schweighart

and Sedwick developed one of the more commonly referenced J2 extensions,29 which has

been extended by Roberts and Roberts.30 Ross developed another form for the J2 grav-

ity perturbation.31 Lovell, Horneman, et al. include the J2 gravity perturbation and a

simple drag model in their work on formation reconfiguration and maintenance.32 Many

other authors have investigated the drag perturbation, a difficult problem to model.33,34,35

Wiesel models both a simple drag force and gravitational perturbations through order 14

by combining periodic orbit, Floquet, and modal-perturbation theories for a restricted

class of nearly circular reference orbits.36

The relative orbit equations can be linearized in many different ways.37 At this point,
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we have discussed only inertial and orthogonal rotating reference frames. We could also

develop the equations in a rotating reference frame with non-orthogonal axes. Futher,

we have linearized about a circular orbit. The Tschauner-Hempel equations generalize

the relative motion equations to a chief satellite in any elliptical orbit. The Brumberg-

Kelly equations provide this same generality for elliptic reference orbits via a different

parameterization. Alternatively, Battin presents a linearization of the gravitational force

itself, rather than the relative state information.38 We mention these other options in

order to provide some perspective on the number of ways in which the formation flying

problem can be approached. We focus on only one other formulation: the very useful

relative orbital element technique.

2.1.4 Orbital Element Formulations

The HCW equations can easily be solved analytically in the case of an unperturbed, circu-

lar chief orbit. Analytic solutions for more realistic orbit conditions, although achievable

in Cartesian coordinates, are much more challenging to obtain. Moreover, the initial

Cartesian coordinates no longer provide intuition into the dynamics of the system. In

these cases, a relative orbital element formulation of the equations can be much more

useful.

A relative orbit motion formulation based on an orbital element error expansion yields far

superior performance without losing the the simplicity and elegant functionality inherent

in a linear system. For example, Alfriend, Schaub and Gim demonstrate the effect of the

simplifying assumptions in the HCW equations (that is, that the chief satellite is in a

circular orbit, the Earth is spherically symmetric, and the nonlinear terms in the relative

motion variables can be neglected) on the required fuel for establishing and maintaining

a relative motion orbit.39 Specifically, linearizing the equations in terms of small orbital

element differences provides more accurate results than either rectilinear or curvilinear

Cartesian coordinates.40 Schaub, Vadali, Junkins and Alfriend have developed control

laws that incorporate linear feedback of the relative orbital elements or nonlinear feed-

back of the relative Cartesian coordinates.41 Moreover, there are multiple sets of orbital

elements to choose from; we can select a representation that best fits each particular

problem. For example, we would choose to use different coordinates when solving for

relative motion with respect to general elliptic chief orbits versus those with small eccen-

tricity, or near-circular chief orbits in order to avoid mathematical singularities. Further,

the relative orbital element forms provide an intuitive set of coordinates for formation de-

sign, even in the presence of perturbative forces. This usefulness is partly due to the fact

that we can choose sets of orbital elements such that some of the elements are unaffected
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by the perturbations, while the others are governed by simple additive terms. Finally,

obtaining a solution using the Cartesian representation requires integration of all six dif-

ferential equations; orbital element forms only require the integration of the current value

of the anomaly (which can be obtained algebraically in the absence of perturbations).

There are many sets of orbital elements from which we can choose to define the relative

motion equations.12 Recall that the classical orbital elements are

e = [a, e, i,Ω, ω, ν]T (2.35)

Just as this set of coordinates can be ill-defined in the two-body problem (e.g., the

periapsis direction is undefined for a circular orbit, and the line of nodes is undefined for

an equatorial orbit), so too can it cause singularities in the relative orbit problem.

A better choice of relative coordinates based on the classical elements is

δe = [δa, δθ, δi, δq1, δq2, δΩ]T (2.36)

where θ is the true latitude, θ , ω+ ν, q1 = e cosω, and q2 = e sinω; this form mitigates

the singularities for near-circular orbits.42

This choice of coordinates is also convenient because, for small formations, the relative

orbital elements can be mapped linearly to and from the HCW Cartesian coordinates.42,43

This mapping can be used to derive convenient hybrid-representation feedback control

laws: the relative orbit can be specified through orbital element differences while the

absolute orbit is expressed in Cartesian coordinates.44

However, using the true latitude and true anomaly is not ideal for elliptic chief orbits,

as the relative true anomaly will vary in time. Instead, we can make use of the mean

anomaly, M0, with relative orbital elements

δe = [δa, δM0, δi, δω, δe, δΩ]T (2.37)

The mean anomaly remains constant for unperturbed motion with an elliptical chief

satellite.42 We can, of course, convert between orbital element coordinate sets as neces-

sary.

There are many additional relative orbital element sets to choose from. When dealing

with secular perturbation it is convenient to switch to a mean orbital element formulation

rather than a set of osculating elements. These dynamics are easily represented by

either Lagrange’s planetary equations or Gauss’ variational equations, both of which are

well documented in orbital dynamics texts.38,45,12 Although this body of work is very
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interesting, it is beyond the scope of this text. We refer the reader to the textbook

derivations of the equations of motion and review only a few key sources below.

Schaub and Alfriend have worked to define a family of J2-invariant orbits and to design

controllers that work within the context of this natural motion.41,44,46,47,48 Impulsive

feedback control based on Gauss’ variational equations of motion allows specific orbital

elements to be controlled with minimal impact on the remaining osculating elements.49

Vadali, Schaub and Alfriend48 and Vaddi, Alfriend and Vadali50 have derived sub-optimal

controllers for formation establishment and reconfiguration. Gim and Alfriend develop

the state transition matrix of the relative motion of the deputy for a non-circular chief

orbit under the effect of perturbations.51

2.2 Formation Design

Up to this point we have discussed the equations of a single deputy spacecraft with re-

spect to the chief. Although those equations are easily generalized for multiple deputies,

analysis of an entire formation requires a more well-rounded approach. Of critical im-

portance for a formation flying mission is the balance between fuel conservation and

even fuel consumption among the satellites in the formation. Campbell has developed a

formation planner intended for large clusters that provides a context for calculation of

minimum-time and minimum-fuel maneuvers while maintaining a constraint for collision

avoidance. However, these maneuvers are optimized on a per-spacecraft basis, not for the

formation as a whole.52 If, for example, the chief satellite’s orbit was allowed to evolve

freely and all deputy spacecraft were controlled to track this drift the lifetime of the

formation would be determined by the fuel consumption of the most-controlled deputy.

However, when this spacecraft ran out of fuel the chief spacecraft would still have its full

amount of fuel remaining. Obviously managing a distributed system effectively requires

more than managing each node independently.

Vadali, Vaddi and Alfriend made use of their thorough understanding of the J2 perturba-

tion to derive a “drifting formation” control scheme to evenly distribute fuel consumption

about each of the spacecraft in a formation. Remarkably, their control concept requires

one-third of the fuel per vehicle than does a naively designed individual-spacecraft station-

keeping controller.53 Beard and Hadaegh create a cost function composed of two parts

to help mitigate fuel usage. The first part represents the total fuel required by the entire

formation in order to perform some maneuver. The second part is motivated by the neg-

ative entropy of a probability distribution; this term is minimized in the case of uniform

distribution. Thus they find the solution for a maneuver that uses the least total fuel
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possible while distributing the expenditure as evenly as possible.54 These two papers rep-

resent very different views of how to approach this problem: one with a solid knowledge

of the nonlinear dynamics of the system, and one with the logic of a mathematician.

It is important to keep in mind that formation flying is not a mission in and of itself,

it is rather a forum for scientific investigation. Therefore, it is important to understand

the needs of the science mission and address them in an efficient manner. Hughes and

Hall derived an algorithm to distribute the nodes of a constant shape formation equally

in time for an arbitrary elliptical chief orbit.55 Such an arrangement is important in

virtual aperture and coordinated remote sensing missions. Moreover, the authors define

additional mission performance metrics by extending those already developed for single-

satellite remote sensing missions.56 Inalhan, Tillerson and How derive solutions for the

necessary conditions on the initial states that produce T -periodic solutions that have the

vehicles returning to the initial relative states at the end of each orbit.57 Such a forma-

tion might be useful for specific Earth-observing objectives. Bailey, McLain and Beard

determine that complex scientific arrangements can provide substantial improvements in

fuel consumption by combining the retargeting and imaging maneuvers required to image

multiple stellar sources.58 However, it is unclear to this author if such a scheme could be

practical scientifically.

2.3 Coupled Attitude and Orbit Equations

Some of the work described in Section 2.2 alludes to the important coupling between the

orbital and attitude dynamics of spacecraft flying in formation. The two sets of equations

are often considered distinctly under the assumption that the attitude dynamics occurs at

a much faster rate than the orbital dynamics — this assumption is often true. However,

in the case of a close formation with limited thrust control, inaccurate modeling of the

attitude dynamics could lead to spacecraft collisions. Collision avoidance is beyond the

scope of this text; it is mentioned only to help motivate the problem. The two sets of

equations are coupled by the science mission of the formation, too: it does little good to

have a distributed aperture if the individual nodes are not pointed at the same target.

For example, consider the two-satellite formation shown in Figure 2.1a. The two space-

craft are in different orbits, and have different sub-satellite points as indicated by the

colored dots. The grey lines trace the ground tracks of the two vehicles. One possi-

ble co-observation mission would have the two satellites pointing at the centroid of the

sub-satellite points, indicated by the center dot in Figure 2.1b. Figure 2.1c shows the

operational requirements for one of the two spacecraft. The vehicle must point its bore-
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sight axis along the vector from the spacecraft to the target, rT/S. Further, it must must

orient its thruster opposite from the desired delta-vee direction, −∆v.

Figure 2.1: The Coupled Orbit and Attitude Formation Flying Problem

Consider a spacecraft with a single non-vectored thruster and a fixed camera angle. The

orientations of these hardware components are separated by an angle θconfig, a constant

known value. The above mission parameters also define a separation angle, θmission. This

value changes in time as the formation evolves

θmission = acos

(
∆vTrT/S

‖∆v‖‖rT/S‖

)
(2.38)

Only if θmission coincides with θconfig can these requirements be resolved exactly. Thus, ex-

cept in mathematical point-solutions, the desired attitude for either the scientific mission

or the formation maintenance requirement will not be maintained. Even in this simple

example, neglecting the attitude dynamics would result, minimally, in impaired system

performance.

Most of the literature in this area is very basic. It is common to ‘couple’ the equations

but then assume perfect orbit control, or to neglect the orbital dynamics entirely, thereby

implying the same assumption.8,59,60,61,62,63,64 Wang and Hadaegh present the most im-

pressive of these works; they include a partially decentralized control scheme.65 However,

they also decouple orbit control errors from their attitude controller. They are able to

effectively avoid the question of orbit perturbations by only considering J2-invariant rel-

ative orbits.

Philip and Ananthasayanam perform coupled analysis for the rendezvous and dock-

ing problem, but are motivated by the vision system rather than mission dynamics.66

Fragopoulos and Innocenti decouple the motions in their analysis, but then recombine
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them into a coupled H-infinity controller for rendezvous with a space station.67 Red-

ding, Persson and Bergmann derive a simultaneous solution of open-loop attitude and

orbital maneuvers as applied to the Space Shuttle in order to account for jet coupling

in all six control axes. They form the open-loop part of a feed-forward, feed-back rota-

tional / translation maneuver controller.68 Again we see that the problem of rendezvous

is related to formation flying, but takes place on a much shorter time scale.

In contrast, Naasz et.al present a thorough single-satellite analysis for a spacecraft with

limited thruster configurations.69 Moreover, the spacecraft can only fire thrusters when

above a certain power threshold. Yamanaka provides a similar level of analysis into a

large-scale formation reconfiguration problem.70 It is unclear to this author whether the

proposed formation is physically valid, but it does maintain a coupling between the orbit

and attitude dynamics throughout. Regardless, these papers represent the direction that

formation flying analysis must follow in order to produce physically valid relative motions

that can complete the intended mission.

2.4 Distributed System Dynamics and Control

Real time demonstration of distributed control of the DSACSS is beyond the scope of this

dissertation. However, it is important to mention the distributed nature of the testbed

in order to motivate some assumptions. A formation of satellites is a distributed sys-

tem, and as such has two control options: centralized or decentralized control. Further,

the observation problem can be equally split into centralized or decentralized naviga-

tion. In centralized control, one node receives information from the rest of the system

and determines the actions of the entire group. Such a technique requires a simplistic

communications scheme but has a single point of failure. Fully decentralized control

architectures require each node to communicate with every other node: the system is

wholly redundant, but has communication requirements that are typically prohibitively

high.71,72 Partially decentralized schemes attempt to find some balance between these

two schemes, trading communication load for risk.73 Carpenter has proposed several

distributed and partially distributed formation control techniques.71,72,73 Again, most

research has focused on the orbital dynamics aspect of this problem, although these

choices apply to both the orbital and the attitude estimation and control schemes.

Perhaps the most simple distributed control methodology is the leader-follower approach.

In a leader-follower formation, one of the spacecraft is designated as the the leader. The

other spacecraft in the formation track the state of the leader with some prescribed off-

set. There are numerous variations on leader-follower approaches, including designating
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multiple parallel lead spacecraft, recursive following (spacecrafti−1 follows spacecrafti),

and other tree structures.74,75,76

In the virtual-structure approach, the formation is treated as a single unit with func-

tional nodes rather than as a collection of individual vehicles. The formation is based on

a reference state and the motion of the components of the virtual structure are defined

with respect to that reference. Through this representation it is clear how to main-

tain constraints within the distribution of the formation. Ren and Beard demonstrate

that incorporating feedback control into a virtual-structure approach provides improved

performance over an open-loop controller.75

The main idea in the behavioral approach is to prescribe several desired, (often compet-

ing) behaviors for each spacecraft. The dynamics of the formation are then determined

through a weighted average of the inputs from each behavior. Typical behaviors include

collision avoidance, goal seeking, and formation keeping. Fundamentally, these behaviors

are functions of the relative states of a spacecraft and its neighbors.

The perceptive frame can be thought of as a conglomeration of the above techniques. It

has been used to integrate the decentralized feedback of each satellite with on-line sensor

information to achieve the goal of formationkeeping and intersatellite coordination.77

It has also been used to coordinate sliding mode tracking control laws for individual

satellites.78
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Chapter 3

Survey of Spacecraft Simulators

Air bearings have been used for spacecraft attitude determination and control hardware

verification and software development for nearly 45 years, virtually coincident with the

beginnings of the Space Race. Facilities vary widely, ranging from prodigious govern-

ment laboratories to simple university testbeds. In this chapter, we present the results of

our investigation into the historical development of these facilities, including what tech-

nologies have been incorporated into spacecraft simulators, what capabilities have been

developed, and what functionality current systems provide. This information can serve

as a benchmark for the development and use of future testbeds.∗

There are many solutions to the problem of simulating the functional space environment.

Air bearings offer only one of the possibilities. Particular techniques may be more ap-

plicable in one situation than another: whereas the underwater test tank provides an

invaluable part of an astronaut’s training, the usefulness of submerging a satellite is ob-

viously limited. Certainly air bearings cannot provide the full experience of microgravity;

however, they do allow for the manipulation of hardware in a minimal-torque environ-

ment. A low-torque environment is often central to the success of high-precision systems,

but duplicating it on the ground to validate controls concepts is difficult. Programs

that might benefit from hardware demonstration and testing often forego these stages

because the influence of gravity and friction render Earth-based behavior unrealistic. An

air bearing offers a nearly torque-free environment, perhaps as close as possible to that

of space, and for this reason it is the preferred technology for ground-based research in

spacecraft dynamics and control. Depending on the type of air bearing, some combi-

nation of virtually torque-free rotational motion and force-free translational motion can

∗An earlier version of Sections 0–6 of this chapter was previously published as Schwartz et al.;79

reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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be achieved. Magnetic suspension systems and gravity offload devices can also produce

low-torque dynamic environments, but such systems typically offer a smaller range of

motion than that provided by an air bearing.

Test facilities supported by air bearings are intended to enable payloads to experience

some level of rotational and translational freedom. Pressurized air passes through small

holes in the grounded section of the bearing and establishes a thin film that supports the

weight of the moving section. This slow-moving air imparts virtually no shear between

the two sections of the bearing. Thus, the air film is an effective lubricant. An air bearing

that can support a payload weighing several thousand pounds may require air pressurized

to only about 100 psi with a flow rate of only a few cubic feet per minute. A familiar

example of such a device is an air-hockey table. These planar air-bearing systems provide

one rotational and two translational degrees-of-freedom for a plastic puck.

Spherical air bearings are one of the most common devices used in spacecraft attitude

dynamics research because (ideally) they provide unconstrained rotational motion. As

the name implies, the two sections of the bearing are portions of concentric spheres,

machined and lapped to small tolerances. One spherical section rotates on an air film

bounded by the other section in three degrees-of-freedom. The rotating surface is rarely

a 4π steradian sphere, as equipment affixed to the bearing limits the range of motion.

Of course, other mechanical arrangements can serve a similar purpose — ball-and-socket

joints, for example — but air bearings yield much lower friction. Systems of multiple

gimbals can be used for this purpose, but such arrangements introduce the problem of

gimbal lock. Even if rotational freedom is constrained to avoid this situation, the gimbal

dynamics will still interact with the payload dynamics through some nonlinear function

of gimbal angle, making realistic simulation much more difficult. Spherical air bearings

provide a payload rotational freedom without the friction or the singularities inherent in

these other mechanical examples while enforcing an analogous level of constraints on the

configuration.

The primary objective of air-bearing tests is faithful representation of spacecraft dynam-

ics. With the problem of a representative plant addressed, experimenters have used these

simulators to evaluate control schemes ranging from rigid-body dynamics and control of a

single spacecraft to jitter suppression in flexible systems. Some have considered problems

of relaying laser light for communications or for transferring power; others have used air

bearings for fluid-damping measurements, for missile-defense and formation flying demon-

strations, and for testing the viability of agile spacecraft attitude control. Regardless of

their scientific or engineering merits, air-bearing based simulators have proven to be valu-

able pedagogical tools and have, from time to time, played a marketing role during the

proposal stages of commercial and government space programs.
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In this chapter, we provide an overview of air-bearing spacecraft simulators. Natural

divisions in testbed capabilities are used to organize the chapter. First, we present a

survey of planar systems, those that give a payload freedom to translate and spin. These

facilities are ideal for the understanding of tasks such as formation flying, rendezvous,

and on-orbit construction. We then discuss several classes of rotational air bearings,

which allow for the recreation of three-axis satellite attitude dynamics. We follow these

sections with a discussion on perhaps the most interesting facilities: those that provide

both translational and three-parameter rotational freedom. Within these three sections

we outline the diverse capabilities air-bearing testbeds provide and the varied facilities

which house them. We focus on the use of air bearings in the support of manned space

flight in a separate section. Finally, we note that air-bearing performance can be enhanced

through careful facility design. We discuss how such improvements have been achieved

before offering some concluding thoughts and closing. We then provide an overview of

GPS simulator testbeds used for analysis of formation flying problems.

3.1 Planar Motion

Planar motion — one rotational and two translational degrees-of-freedom — is of interest

for simulations of rendezvous and docking. The other two axes of rotation and out-

of-plane translation are arguably less important in the investigation of relative orbital

dynamics, at least for the level of effort required. In almost all cases, the test body

carries its own air supply and produces its own cushion of air, allowing it to hover on

a polished surface. Although we have not found many specific historical references on

these testbeds, such facilities were common enough by the mid-1970s to warrant a NASA

Technical Memorandum on how to pour large floors that are sufficiently smooth and level

for floating air-bearing vehicles.80 We have also found documentation on the design of

a payload support pad capable of floating 200 lb manned and unmanned test vehicles.

This system was designed and manufactured by the Space Maneuvering Devices section

of the Space Division of North American Rockwell Group in 1967 for NASA Marshall

Space Flight Center.81

There are many contemporary planar air-bearing facilities being used to investigate top-

ics in orbital rendezvous. These facilities typically float small, low-mass, generic test

bodies, as they are more commonly used for controller validation than inertia-equivalent

simulation of a flight payload. Researchers at Stanford University’s Aerospace Robotics

Laboratory (ARL) have several air-bearing test facilities used to investigate many topics.

One such subject of interest involves the challenges inherent in the use of robotics for

on-orbit construction, servicing, assembly and repair. A crucial topic in the development
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of robotic construction techniques is the level at which human operators should be in-

volved. Currently, space robots such as the Space Station Remote Manipulator System

are controlled by human teleoperation. This technique takes full advantage of the par-

ticular abilities that only a person can bring to a closed-loop control system. However,

doing so leads to higher levels of cost and risk than would be present in an autonomous

system. Experiments to define the useful envelope for human-assisted control are per-

formed using a two-link manipulator arm operating on a passive, free-floating object. As

shown in Figure 3.1, the arm and target body are able to travel freely on a 6 ft × 12 ft

polished granite table.1

Figure 3.1: The Two-Link Manipulator Arm in Stanford University’s Aerospace Robotics

Laboratory1

Another current area of interest in the field of on-orbit rendezvous is the problem of

capturing a damaged satellite. Solving this problem is substantially more difficult than

that of construction, as the target may be maneuvering autonomously and likely does

not have effective grappling points. The Tokyo Institute of Technology is investigating

this topic on a 10 ft × 16 ft plate glass planar air-bearing table with a pair of seven

degree-of-freedom articulated arms; one arm randomly executes commands in simulation

of a failing spacecraft, while the other attempts to capture it.82

The University of Victoria has a planar air bearing that hosts a single robotic arm. It is

being used to investigate the optimal joint trajectory of an articulated arm to minimize

vibration excitation within the arm elements during a designated maneuver. Through

this experimentation they have proven that joint trajectory optimization can significantly

reduce the total strain energy incurred within structural elements during point-to-point

motions.83

The Naval Postgraduate School’s Flexible Spacecraft Simulator includes a rigid central

body and a two-link appendage, representative of a satellite with a flexible antenna. The

main body can float on a set of air pads or remain fixed, and the arm is floated at each

articulation point. This facility has primarily been used for the investigation of vibration
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suppression within the arm.84 It has recently been adapted for use in investigating

formation flying.85

Formation flying of two or more functional satellites presents its own set of optimization

challenges. The Autonomous Extravehicular Robotic Camera (AERCam) is intended

to fly freely about the Space Shuttle and International Space Station in order to pro-

vide video images of external features without requiring an EVA. AERCam Sprint was

teleoperated within the payload bay during a 1997 Space Shuttle mission; AERCam II

is intended to complete pre-assigned tasks autonomously during a future mission. En-

gineers have ground tested control algorithms for AERCam II on an air-bearing table

equipped with six GPS pseudolites for real-time position and velocity sensing.86

Similarly, a joint venture between three Japanese corporations has produced a 12 ft× 18 ft

planar testbed, which is being used to test control laws for another EVA-replacement

free-flying telerobot concept.87 Stanford University is investigating the use of GPS mea-

surements in formation flying algorithms on a 9 ft × 12 ft polished granite table top

hosting three independent prototype spacecraft. These prototypes are modeled from

their ORION microsatellite, also intended for launch on the Space Shuttle.88

A useful testbed that has complete freedom in all six degrees is an unlikely achieve-

ment within the confines of an Earth-based laboratory. Therefore, students from the

Massachusetts Institute of Technology took their Synchronized Position Hold, Engage,

and Reorient Experimental Satellites (SPHERES) project on NASA’s KC-135 “Vomit

Comet” for short-term six degree-of-freedom experimentation in microgravity. Further,

SPHERES has been manifested to fly on the International Space Station and Space

Shuttle (ISS-12A.1 / STS-116), originally scheduled for May 2003 (no current launch

date available). Initial experimental work, however, took place on a planar air-bearing

table. Up to three SPHERES were floated on the 4 ft × 4 ft glass air-bearing table.

Figure 3.2 shows a SPHERES unit mounted on a float interface for the planar testbed.89

A tethered satellite system offers several design features: gravity gradient stability, vi-

bration and electromagnetic isolation of subsystems, power production, and propulsion.

Unfortunately, there has been only one successful tethered space system to date, TiPS,

the Tether Physics and Survivability Satellite Experiment. Another effort from Stanford

University’s ARL, this time to understand some of the complications which lead to tether

system failures, led to the development of a planar air-bearing testbed that simulates the

microgravity field experienced by a 1.25 mi long tethered satellite. One end of the tether

is fixed, while the natural dynamics of the free end are used to control the attitude of

the payload.90

Researchers at the University of Washington have investigated the usefulness of micro-
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Figure 3.2: One of MIT’s SPHERES During a Planar Test2

electromechanical system (MEMS) actuators for docking in the low-torque translational

environment provided by a planar air bearing. Each ‘puck’ consists of a set of vertically

stacked decks, floating by means of an on-board air system. Two cameras provide stereo-

scopic imagery for range finding. The effectiveness of such MEMS actuators scales: these

experiments have proven their usefulness in moving a 1 lb puck with an actuator area of

0.3 in.2, and scaling indicates that a patch of only 10 in. radius would be sufficient to

position satellites weighing 90 lb when in orbit.91

3.2 Rotational Systems

The ideal spherical air-bearing testbed would allow its payload unconstrained angular

motion in three axes. Actually providing this level of rotational freedom is difficult

and in practice requires constraining payload volume. ‘Tabletop’ and ‘umbrella’ style

platforms (Figure 3.3, parts (a) and (b), respectively) provide full freedom of spin in the

yaw axis but pitch and roll motion are typically constrained to angles of less than ±90◦.

The main structure of a tabletop system usually mounts directly onto the flat face of

a hemispherical bearing, and components are mounted to this plate. Umbrella systems

interface via an extension rod protruding from the top of a fully spherical bearing, and the

primary structure typically extends outward and down, caging the bearing and pedestal

like an umbrella held on a very short handle. Careful design of the pedestal and cradle

can increase the motion-space of these configurations. Another possible style, again on

a fully spherical bearing, offsets the mounting area away from the center of rotation by

means of two opposing arms, ‘dumbbell’ style (Figure 3.4). This configuration greatly

reduces structural interference within the rotation space of the payload and thereby

provides unconstrained motion in both the roll and yaw axes. Note that the yaw axis for
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each configuration is defined to be nominally parallel to the gravity vector. For dumbbell

systems, the roll axis is defined by the mounting arms; roll and pitch are indistinguishable

for tabletop and umbrella systems. The bearings illustrated in Figures 3.3 and 3.4 must

of course each rest on top of a pedestal, not shown here for clarity. We continue the

discussion of air-bearing test facilities keeping these geometries in mind.

Figure 3.3: ‘Tabletop’ (a) and ‘Umbrella’ (b) styles: full freedom in yaw

Figure 3.4: ‘Dumbbell’ style: full freedom in yaw and roll

3.2.1 Tabletops and Umbrellas: Freedom in Yaw

Open documentation is available for more than 10 spherical air bearings in use during

the early 1960s. As is often the case with classic engineering, rigorous systems were

successfully developed without the benefit of precedent or heritage. The earliest system

on which we have complete information is shown in Figure 3.5: a three-axis spherical

air bearing developed in 1959 at the Army Ballistic Missile Agency (this facility merged

into NASA Marshall Space Flight Center in 1960). This umbrella style system provided

a 900 lb payload full freedom in yaw and ±120◦ in pitch and roll.3 Such performance

is impressive, even by modern standards. This air bearing was used in an experimental

case study on the effects of bearing imperfections on disturbance torques;92 extensions

of research on hydrostatic support structures had evolved into investigation of hydrody-

namic air bearings by 1960.93 Researchers at NASA Ames Research Center made use of
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this testbed along with their own 4000 lb capacity tabletop testbed in the development

of control laws for the NIMBUS second generation weather satellite (nadir pointing) and

the proposed Orbiting Astronomical Observatory (inertially pointing).94,95,96

Figure 3.5: NASA Marshall Space Flight Center’s Air Bearing, circa 19603

NASA Goddard Space Flight Center developed an early umbrella configuration spherical

air bearing designed for measuring energy dissipation. By 1976, poor (or nonexistent)

modeling of dissipation effects had caused failures on several NASA spacecraft, including

Explorer-1, Applications Technology Satellite-5, and TACSAT-1. Although the problem

had been recognized by this time, it had not been well resolved: modeling the diverse

processes that contribute to dissipation effects, including fluid slosh, mechanism move-

ment, and structural bending, is prohibitively complex. Experimental identification of

these processes had also proven challenging with previous facilities; measurement of in-

ternal dissipation is an area of experimentation where air bearings offer one of only a few

possible solutions.97
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Four types of energy dissipation processes were quantified on this testbed: fuel slosh,

passive dampers, reaction wheels, and active nutation dampers. In order to make the

tests as realistic as possible, payload mass properties were tuned to those of the flight

vehicle while actuator and sensor suite geometries were configured as per the flight vehicle.

The testbed permitted nutation angles of 12◦. Fuel-slosh tests were performed on six very

different vehicle geometries with a range of fill ratios within each physical configuration.

Engineering models of fluid-filled nutation dampers were installed on five flight-condition

models to experimentally measure their effectiveness. Two reaction wheel designs were

tested in simulation of nutation problems encountered during flight. Information gained

from these tests led to further development and testing of two active nutation dampers.97

The earliest spherical air bearing used at a university was evidently developed at Stanford

University in 1975. This tabletop facility was used for center of mass identification in an

otherwise fully known physical system. This research evolved from a preceeding planar

air bearing project.98

These systems represent, at a minumum, the first generation of unclassified air-bearing

test facilities. Concurrent literature makes reference to numerous other operational sys-

tems for which further documentation is not readily available.99,100 Early systems were

more than likely government classified or company proprietary, and hence open documen-

tation does not exist. During that time (and since) many other large- and small-scale

air-bearing testbeds were built at the facilities of spacecraft prime contractors including

Lockheed Martin, Boeing, TRW, and Hughes. However, because of the proprietary and,

often, classified nature of those programs, open documentation describing these testbeds

is generally unavailable.

Considering only the systems for which open documentation is available, however, the

initial technological understanding demonstrated in these designs is impressive. Major

efforts were made to keep the payload’s center of mass coincident with the bearing’s

center of rotation to minimize gravity effects. Primary mounting decks were designed

to maximize the useful rotation space of the systems, but were kept sufficiently rigid so

as to avoid platform flexure with changes in attitude — the anisoelastic effect. Opti-

cal and other non-contact sensors were developed specifically for these facilities. This

level of attentiveness to design details led to the development of unique, highly capable

air-bearing test facilities at McDonnell Douglas Astronautics Company–West, the Jet

Propulsion Laboratory, NASA Langley Research Center, United Aircraft Corporation,

Grumman Aircraft Engineering Corporation, the General Electric Company, and TRW

Systems by the early 1970s.101,99,102 Each of these systems was custom designed and

built. Much of the design and manufacturing information on these early systems has

been lost, and the machine shops that fabricated them closed. Modern commercial air
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bearings do not typically provide the same air gap stability as these original systems; a

group at NASA Marshall Space Flight Center has recently been recreating the historical

designs and manufacturing processes from available documentation in an effort to regain

this lost precision.103

Early use of air-bearing systems was largely limited to government and industry labo-

ratories. Now, state-of-the-art systems are common in university settings. The Naval

Postgraduate School’s Three Axis Attitude Dynamics and Control Simulator, shown in

Figure 3.6 during an optical relay simulation (with Dr. Marcello Romano in the back-

ground), is currently used in the Optical Relay Spacecraft Laboratory of Naval Post-

graduate School’s Spacecraft Research and Design Center. First developed in 1995, this

tabletop platform carries a suite of actuators and sensors including three reaction wheels,

cold-gas thrusters, rate gyros, a magnetometer, and an optical attitude sensor.104 The

air bearing, a Guidance Dynamics Corporation system, provides a 450 lb payload full

freedom in yaw and ±45◦ of tilt in pitch and roll.105 One objective of the simulator

is to demonstrate the dynamics and control of a twin-mirror bifocal relay satellite that

receives and re-targets laser beams. The school’s superintendent, Rear Admiral David

R. Ellison, describes the project as the “epitome of the joint, interdisciplinary research

efforts that will drive our nation’s future military capabilities, and which none of us could

do alone.”4 The Naval Postgraduate School has begun development of another spherical

air-bearing testbed in support of the bifocal relay mirror spacecraft program; the new

facility is intended to verify flight hardware in the loop.106

Figure 3.6: Naval Postgraduate School’s Three Axis Attitude Dynamics and Control Simula-

tor4
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Students at Utah State University designed and constructed a custom air-bearing test fa-

cility in 1997; initial system requirements were sized for the intent of testing the attitude

determination and control system of the Space Dynamics Laboratory’s Skipper space-

craft.107 The tabletop system provides ±45◦ of deviation from the horizon. Through the

use of this testbed, “a significant number of integration problems [between spacecraft

subsystems] were identified and resolved easily.”108

The Tele-Education in Aerospace and Mechatronics (TEAM) laboratory is an interna-

tional project that makes use of modern multimedia and telecommunications technolo-

gies in order to host a virtual laboratory among the seven member universities: three

in Canada, the Université de Sherbrooke, the University of Victoria, the University of

Toronto, and four in Europe, the University FH Ravensburg-Weingarten, the Università

di Bologna, the Aalborg University, and the University of Siegen. One of the lab facilities

located at the Université de Sherbrooke is TEAMSAT. TEAMSAT is unique among air-

bearing spacecraft simulators in that it is representative of the European Space Agency’s

PROBA spacecraft; all simulator hardware is mounted within the spacecraft’s struc-

tural bus. Flexible mock solar panels have been added to the design in order to allow

investigation of non-rigid body effects.109

The School of Aerospace Engineering at Georgia Tech has also recognized the value

of air-bearing research; they now have two tabletop style air bearings. Georgia Tech’s

first-generation system was developed to minimum operational capabilities in 2001. This

system is primarily being used for undergraduate and graduate education. It was designed

and manufactured by Specialty Components, Incorporated, and provides pitch and roll

angles of ±30◦ for a 300 lb payload.110,111 Georgia Tech’s second-generation system is

designed with advanced investigations of nonlinear control in mind; it is equipped with

a suite of eight cold gas thrusters and four variable speed control moment gyros, and has

the same performance characteristics as their first-generation testbed.112

We have presented some of the diverse settings that air-bearing test facilities can be

found in. Now we explore some of the many goals which are achieved through their

use. Certainly experimental facilities are found to be most useful in the investigation of

phenomena for which we do not have effective process models. The equations of motion

(and their solutions) for the problem of a rigid spin-stabilized projectile are documented:

solutions can be described by a slow precession mode with a fast nutation.113 In contrast,

analytical models of projectiles with liquid-filled cavities or free-floating internal debris

do not lend themselves to simple, closed-form solutions. Thus the accuracy of a testbed

for the investigation of real-life projectiles may be verified analytically for simple rigid

models and then extended upon for the investigation of more complex problems. Boeing

Satellite Systems (previously Hughes Space and Communications) has for decades been
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at the forefront of experimental research in fluid/structure interaction. Since the late

1980s, this research has included experimental testing using a small spherical air bearing

that supports a dual-spin spacecraft configuration. This rig has successfully predicted

damping time constants for several commercial and government spacecraft. Similarly,

the Department of Mathematics and Ballistics of the British Royal Military College of

Science developed a custom tabletop facility for the experimental study of low-mass (less

than 2 lb), liquid-filled projectiles in the early 1980s. By exchanging test sections, they

can investigate various model geometries and slosh materials with coning angles of 10◦.114

Complex structural dynamics are also difficult to model accurately without some sample

of experimental data for comparison. Two of the largest spherical air-bearing facilities,

the Air Force Research Laboratory’s Advanced Space Structure Technology Research Ex-

periments (ASTREX) and the Naval Research Laboratory’s Reconfigurable Spacecraft

Host for Attitude and Pointing Experiments (RESHAPE), provide facilities for the in-

vestigation of control/structure interaction. Both facilities were developed in the early

1990s.

ASTREX can support massive loads, up to 15,000 lb. Shown in Figure 3.7, the core of this

umbrella testbed is an 18.9 in. diameter spherical air bearing that provides full freedom

in one axis and ±20◦ of freedom in the other two axes. The initial payload structure

was modeled from a three-mirror space-based laser beam expander, a fairly generic yet

realistic payload body for engineering questions of current interest.115 The ASTREX

facility has been used to research topics ranging from robust nonlinear control and model

reduction techniques to the design and implementation of coupled attitude control/energy

storage schemes and lightweight composite structures with embedded sensors.5

Figure 3.7: Air Force Research Laboratory’s ASTREX Testbed5

RESHAPE provides±30◦ of motion about the horizontal axes for a 2500 lb payload. More

modest than ASTREX, this tabletop facility has nonetheless been used successfully in the
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experimental verification of nonlinear controls of rigid bodies with flexible appendages.116

RESHAPE has been used to verify the effectiveness of smart structures and was used for

early experimental work in GPS attitude determination techniques.117

Honeywell’s Momentum Control System and Line of Sight (MCS/LOS) Testbed, shown in

Figure 3.8, resembles an optical or radar satellite with a large dish at the nadir end. This

1000 lb testbed is the first phase in a project that will culminate with a 3000 lb system

steered by six 225 ft-lb-sec control moment gyros (CMGs). The core of this testbed is

an umbrella style spherical air bearing from Guidance Dynamics Corporation offering

unconstrained motion about the vertical and ±30◦ of motion about the horizontal axes.

The testbed structure is built of modular truss elements, any of which can be replaced

with structural dampers (D-StrutsTM). The structure can be reconfigured to represent

a number of spacecraft architectures, including those with booms and reflector dishes.

Its array of six small CMGs (0.25 ft-lb-sec momentum and 1 ft-lb torque) can also be

reconfigured to match any array geometry of interest. An array of three flight-quality

reaction wheels has also been designed as a modular, drop-in replacement for the six

small CMGs if reaction-wheel dynamics are of interest.

The CMG array is mounted on a hybrid active/passive vibration isolation and steering

system (VISS). The combination is known as a Momentum Control System (MCS). The

VISS attenuates CMG-induced disturbances and can be used to augment the attitude

control by steering the entire CMG array and introducing passive damping in the struc-

ture, generally adding phase to the attitude control. Mirrors mounted on the testbed are

used to reflect laser light from a pneumatically isolated table onto three CCD cameras

mounted on the same table. The resulting focal-plane data (six pieces of information)

are resolved into sub-microradian jitter measurements at a sample rate of up to 30 Hz

and, optionally, can be blended and used for attitude feedback as a virtual star tracker

via Markley’s FOAM algorithm. The rate sensor is an AG30 ring-laser gyro with less

than 1◦/rt-hr angle random walk.

Phase two of the project will include Honeywell’s Miniature Inertial Measurement Unit,

which provides less than 0.01◦/rt-hr random walk. Both phases of the project will incor-

porate the same adaptive, closed-loop mass-balance system: three prismatic actuators

with 10–50 lb weights used to eliminate mass-center offset from the air bearing rotational

center to well within 0.1 µm. Ultimately both the current, smaller testbed, and the larger

one are expected to be operational within the same lab, using two air bearings simultane-

ously. The facility will offer not only MCS and line-of-sight research capabilities but also

a testbed for intersatellite communication and relative-attitude steering for formation

flying.
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Figure 3.8: Honeywell Space Systems’s Momentum Control System and Line of Sight Testbed6

The next generation of agile, precisely pointed space systems will demand novel ap-

proaches to attitude dynamics and control. The paradigm of ever stiffer, ever more

massive designs is likely to give way to active, passive, or hybrid active/passive struc-

tural control of payloads with soft, well-damped bus-to-payload interfaces. Agility, often

achieved through the use of CMGs, can also benefit from the highly damped, readily

predictable dynamics characteristic of this new paradigm. The MCS/LOS testbed is

designed to assist in research, demonstration, and validation of hardware and software

architectures for such spacecraft. It is meant to be available not just to Honeywell, but

also to Honeywell’s customers, industry partners, and sponsoring government organiza-

tions.6

The problem of high-speed interception and rendezvous is also difficult to model without

experimental validation. Guidance Dynamics Corporation designed and manufactured

two tabletop test facilities to address this need. For Boeing North American Space

Systems Division, Guidance Dynamics Corporation developed an air-bearing platform

with ±5◦ of deviation from the horizontal for a 1000 lb payload. The platform includes
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1000 cubic inches of regulated cold gas to feed sixteen 25 lb high response thrusters. The

system also includes an arcminute-adjustable initialization and release system. In support

of the Air Force Brilliant Pebbles Interceptor program Guidance Dynamics Corporation

provided a system that supports a 100 lb payload through ±15◦ slews to Hughes Missile

Systems Company. This testbed provides roll accelerations of over 5000◦/s2. To keep roll

moments of inertia low, the flight guidance electronics were placed off-board and data

are provided via a fiber-optic link.118

International use of air-bearing platforms is documented in the same time frame as work

in the United States. Topics of interest are also comparable, including experimental

validation of attitude control systems,119 and the stability characteristics120 and con-

trollability121 of spinning spacecraft. More recent work has involved attitude control

by means of an actuated mass center122 and hardware in the loop testing of modern

spacecraft.123

3.2.2 Dumbbells: Freedom in Yaw and Roll

Perhaps the most drastic change in air-bearing test facilities since their earliest use is the

flexibility to allow a payload unconstrained rotation in more than one axis. Although

the facilities described above are undeniably useful tools for experimentation in nonlin-

ear rotational dynamics, there are many flight conditions which cannot be adequately

simulated with only one complete degree-of-freedom.

The University of Michigan’s Triaxial Air Bearing Testbed, developed in the late 1990s,

is based on an 11 in. diameter spherical air bearing produced by Space Electronics,

Incorporated. As shown in Figure 3.9, a stiff shaft passes through the center of the sphere

and supports a pair of mounting plates; the shaft is hollow, allowing the wiring harness

to pass through the center of the bearing and reach hardware on either plate without

interfering with the motion of the payload. The dumbbell configuration provides ±45◦ of

tilt in one axis, with the other two axes entirely free of motion constraints. The triaxial

testbed sensor suite includes a three-axis magnetometer, accelerometer, and rate gyro.

Actuators for this 360 lb payload include six custom reaction wheels and four fans used

as thrusters. Recent results include new approaches to parameter identification, adaptive

control, and nonlinear attitude control.124,125,7

The Air Force Institute of Technology’s SIMSAT is based on a similar air-bearing system

from Space Electronics, Incorporated; it can support a 375 lb payload and provides ±30◦

of freedom about the pitch axis. Developed in 1999, initial work with SIMSAT has

involved basic attitude control and the functional multimedia interface; current work is
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Figure 3.9: University of Michigan’s Triaxial Air Bearing Testbed7

investigating attitude determination requirements to recognize and locate parasite masses

added to the system.126

The bulk of the research effort detailed in this dissertation has led to a unique facil-

ity at Virginia Tech comprised of two spherical air-bearing platforms, the Distributed

Spacecraft Attitude Control System Simulator. Both air bearings are Space Electronics,

Incorporated, models: the smaller is a tabletop bearing supporting a 300 lb payload

that can tilt ±5◦ from the horizontal; the larger system is the same model of air bear-

ing being used for SIMSAT. Each air bearing is equipped with three-axis accelerometers

and rate gyros for attitude determination. Attitude control options include three-axis

momentum/reaction wheels, compressed air thrusters, and CMGs. The payload’s center

of gravity can be maintained at the bearing’s center of rotation via a triad of linear

actuators; alternatively, attitude control schemes by center of gravity placement can be

investigated. The uniqueness of Virginia Tech’s system stems not from particular in-

dividual capabilities of either platform, but rather the ability to implement distributed

control laws between the two. Coupled with a third, stationary system, it provides an

experimental facility for formation flying attitude control simulation. Planar air bear-

ings give the opportunity to test control schemes involving the relative motion of two

bodies, but the required coordination in pointing is typically lost. This testbed allows

algorithms for relative attitude control to be implemented.79 More details on this system

are provided in Chapter 4.

The UCLA / Cal Tech Model Spacecraft testbed uses a unique ‘Dyson Sphere’ design,†

†Terminology inspired by Freeman Dyson, “Search for Artificial Stellar Sources of Infrared Radiation,”
Science, 1959, http://www.sns.ias.edu/∼dyson/.
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providing even more freedom than a dumbbell configuration. As shown in Figure 3.10,

in contrast to all of the systems previously discussed, this testbed uses hollow spherical

bearings with all hardware mounted internally. These small systems provide ±180◦ of

freedom in all three axes. Despite this great advantage in attitude freedom, current tests

involve only single axis rotations. Two of the payloads are floated simultaneously, and

spin is controlled by an internal wheel. The ‘leader’ payload is given a predefined series of

velocity commands, and the ‘follower’ spacecraft tracks and matches that profile. Future

plans include formations with more than one follower spacecraft.8

Figure 3.10: The UCLA / Cal Tech Model Spacecraft Spheres8

3.3 Combination Systems

The most elaborate air-bearing systems combine planar and rotational motion into sim-

ulators that provide up to six completely unconstrained degrees-of-freedom. Marshall

Space Flight Center’s Flight Robotics Laboratory, described by the NASA Federal Labo-

ratory Review in 1994 as “a facility that provides a quality, capability, capacity, product,

technology, condition, or process recognized by the world aerospace community as among

the best in the world” has a 44 ft × 86 ft precision floor. The Air Bearing Spacecraft

Simulator used on the planar floor provides a 400 lb payload six degree-of-freedom motion

via a floating spherical air bearing coupled with a cylindrical lift. To further enhance

simulations, the Flight Robotics Laboratory also provides facilities for two-way radio

communication and a GPS satellite simulator. The Contact Dynamics Simulation Lab-

oratory provides the finer resolution experimental facility needed to test docking mech-

anisms. These simulation capabilities can be linked into the Avionics System Testbed,
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which produces real time simulations of the full mission timeline in the Vehicle Simulation

Laboratory, the Engine Simulation Laboratory, and the Actuator Test Laboratory.127

Lawrence Livermore National Laboratory has an ongoing effort to foster the development

of autonomous, agile microsatellites (defined as satellites with a mass of 20–220 lb).

Spacecraft of interest to Lawrence Livermore National Laboratory include those with the

ability to perform precision maneuvers autonomously, including rendezvous, inspection,

proximity operations, formation flying, docking, and servicing. Payloads up to 70 lb are

provided full freedom in yaw, ±15◦ in pitch and ±30◦ in roll on a Dynamic Air Bearing

test vehicle. The vehicle can then either be floated on a 5 ft × 25 ft glass top Dynamic

Air Table (first tested in the late 1990s), or can be mounted on one of two perpendicular

50 ft Dynamic Air Rails (a new development in this test facility). The planar testbed host

is shown in Figure 3.11. The large-scale, outdoor, linear rail system shown in Figure 3.12

yields five relative — four individual — degrees-of-freedom for a pair of payloads.128

Figure 3.11: Lawrence Livermore National Laboratory’s Dynamic Air Table host9

Figure 3.12: Lawrence Livermore National Laboratory’s Dynamic Air Rail Concept9
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We have previously discussed the experimental investigation of fuel slosh on three degree-

of-freedom testbeds. These systems enforce a somewhat unrealistic constraint: the center

of rotation of the test body is constrained to rotate about the center of curvature of the

bearing — a fixed point in an Earth-fixed, rotating reference frame. Generally, the center

of mass of the flight payload will be moving with respect to a body-fixed coordinate

system due to internal mass motion and propellant usage. Oral Roberts University

has developed a four degree-of-freedom air-bearing test facility for the investigation of

coning stability characteristics of non-rigid, spinning spacecraft in the presence of thrust.

They have solved the center of mass constraint problem by mounting a custom tabletop

air bearing on a turntable. The turntable traverses the air bearing about an 128 in.

diameter circular path at a speed of 1 Hz, providing a centripetal acceleration of 6.5 g’s.

Thus the 200 lb payload experiences a simulated thrust composed of the centrifugal and

gravitational forces. Modern rocket motors rely on small, active thrusters to control

coning motions; this testbed is being used to develop a passive mass-spring-damper

control device to eliminate these motions in a less expensive way.113

A new air bearing facility for validation of formation flying algorithms has been devel-

oped for the Terrestrial Planet Finder (TPF) mission, the Formation Control Testbed at

the NASA Jet Propulsion Laboratory. This facility will be used to demonstrate mission

scenarios including aspects of formation acquisition, collision avoidance, and observation-

on-the-fly maneuvers. The Formation Control Testbed allows up to five air-bearing vehi-

cles to maneuver simultaneously. Each vehicle is a tabletop-style air bearing with three

planar float pads, providing five degrees of freedom. A small amount of freedom in the

sixth direction is available via a vertical articulated stage. The vehicles are equipped with

flight-representative hardware, including thrusters, reaction wheels, and relative motion

sensors.129

3.4 Manned Space Flight

The US manned space flight program has benefitted from the use of air-bearing train-

ing facilities from the beginnings of the program. Starting in late 1959, each Mercury

astronaut was scheduled for 12 hours of “Essential” level training on the Air-Lubricated

Free-Attitude trainer, ALFA. Designed and developed by the NASA Manned Spacecraft

Center, the trainer translated across the floor and had full freedom in roll and ±35◦ in

pitch and yaw.10 Figure 3.13 shows the trainer. The astronaut would lie in the central

open area, above the spherical bearing. The base pads (as in the lower right corner)

provided the air cushion for planar motion.
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Figure 3.13: The ALFA Mercury Astronaut Trainer10

NASA Ames Research Center also had an early rotational motion training platform,99

and the Boeing Company shortly followed suit in their development of a Lunar Orbiter

Attitude Control Simulator.100

The manned space program continues to make use of planar air-bearing research. In

1998, a NASA Technical Publication detailed the use of Marshall Space Flight Center’s

Precision Air Bearing Floor in experimental evaluation of skill in EVA mass handling.

Astronauts were assigned various EVA-related challenges in order to evaluate their adapt-

ability and skill in handling mass in a low-force environment. Although the planar motion

testbed does not provide the same level of freedom as the EVA simulation water tank, it

provides an easily instrumentable, low-drag facility.130

3.5 Facility Enhancements

There are many advantages of air-bearing facilities over other mechanical options in

providing an unconstrained motion-space. However, the low-torque setting provided by

the bearing is reasonably only as useful as the facility in which it is housed: eliminating
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gravity torque effects from the simulation provides little benefit if other environmental

torques affect the motion. Devising ways to mitigate these other disturbance torques is

nearly as well developed as the air-bearing facilities themselves. Depending upon required

precision, it is perhaps in this area that the effectiveness of a facility can be measured.

If papers can be defined generationally, the grandfather of this work is a conference paper

presented by G. Allen Smith at the Role of Simulation in Space Technology conference

held at Virginia Tech in 1964.99 Smith presented a description of several systems, along

with an overview of the torques which act on the rotor of an air bearing. Smith defined

four classes of disturbance torques and listed particular sources for each group, as shown

in Table 3.1.

Table 3.1: Torques Acting on Air-Bearing Systems

I. Torques Arising from Platform III. Torques from Environment

– Static Unbalance – Air Damping

– Dynamic Unbalance – Air Currents

– Anisoelasticity – Magnetic Fields

– Material Instability – Vibration

(stress, temperature, – Radiation Pressure

humidity, evaporation) – Equipment Motion (solenoids, relays)

– Gravity Gradient

IV. Torques from Test System

II. Torques from Bearing – Electrical Wire to Base

– Aerodynamic Turbine Effect – Mass Shift in Bearings and Loose Fits

– Exhaust Air Impingement – Battery Discharge

– Reaction Jet Supply Discharge

– Replacement of Components

Torques from the groups I and IV can be mitigated through testbed design: well de-

signed structures outfitted with well chosen components. Group II effects received more

attention in the early development of air-bearing systems than they do now; although

internal bearing effects may be important in the design and operation of industrial gas

bearings, they impart a negligible effect upon the classes of systems we are considering.

The third class of disturbance torques, those from the laboratory environment, are the

most challenging to resolve.

Several facilities have developed large scale means to mitigate environmental torques.

Thermal and air currents often cause the grossest effects and are simplest to eliminate:
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several NASA facilities are installed within vacuum chambers.96,97 The facility designed

for the Boeing Company’s Lunar Orbiter Attitude Control Simulator could not make

use of this solution, as it was piloted. Instead, the room design included full air circu-

lation and thermal control. Further, the system was mounted on a 90,000 lb concrete

slab supported by seven air springs; thus the system was effectively isolated from seis-

mic effects.100 Marshall Space Flight Center installed one of their systems within a set

of Helmholtz coils in order to cancel the effect of the terrestrial magnetic field on the

payload.99

3.6 Summary of Air-Bearing Spacecraft Simulators

Sputnik launched in 1957. Explorer-1 launched in 1958. The earliest air-bearing space-

craft simulator is documented in 1960. Truly these systems have played an integral role

in improving space technology since the beginnings of space exploration.

Planar air bearings provide an ideal testbed for simulating two-vehicle dynamics. Con-

trol techniques for relative orbital maneuvers — formation flying, rendezvous, docking,

space construction, tethered systems — can be fully developed and tested prior to launch.

Spherical air bearings offer the freedom to experiment with attitude control techniques:

pointing, tracking, performing system identification, and compensating for unmodeled

dynamics. Facilities that combine these techniques can nearly replicate the actual low-

force, low-torque flight environment. Such systems have played a vital role in the devel-

opment of both manned and unmanned spacecraft.

In Figures 3.14 and 3.15, we attempt to summarize the spherical air-bearing facilities

discussed in this historical survey. Two measures of testbed effectiveness, payload weight

and angular freedom, are plotted against testbed development date. As all of the systems

provide full freedom in yaw (±180◦), this value is not indicative of performance; the larger

of the pitch and roll angles is plotted. We distinguish four classes of air-bearing systems

in these plots. First we group by development setting: systems from government and

industry laboratories versus those in university settings. We further subdivide each of

these into domestic and international systems. Shaded symbols indicate government and

industry facilities, and hollow symbols indicate university testbeds. Squares represent

domestic systems, circles international. Note that the sampling of data in Figures 3.14

and 3.15 may appear inconsistent; the disparities are due to incomplete data recorded in

the literature.

The payload weight distribution plot shown in Figure 3.14 demonstrates several trends.

As might be expected, government and industry facilities were developed several years
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Figure 3.14: An Overview of Air-Bearing Testbed Capabilities: Payload Weight [lb]

Figure 3.15: An Overview of Air-Bearing Testbed Capabilities: Tilt [deg ±]
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prior to the first university facilities. This trend is likely due to the classified nature of

the research and technology validation studies being performed. Also, because university

facilities are typically smaller and less-equipped than government and industry labs,

the payloads are necessarily smaller. Figure 3.15 demonstrates some additional trends.

Early government and industry facilities were designed to provide heavy payloads a large

motion-space to operate in, and each laboratory developed its own testbed. After an

overall decline in testbed capabilities in the mid-1970s through the 1980s, there are

now a few highly capable government and industry facilities that are shared by the

community. Modern university facilities provide greater angular freedom than those in

government and industry, perhaps because university researchers are more interested

in the development and validation of new control schemes rather than demonstrating

real-world technologies.

The list of references listed here is not exhaustive, though we have included at least one

reference for each system. Some systems, ASTREX for example, have been involved in

many research projects that are not cited here. We would encourage anyone interested

in this subject to only begin their investigations making use of our bibliography. The

facilities we have discussed will advance in capability, and new ones will develop. With

further research, perhaps additional historical systems can be rediscovered.
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3.7 GPS Testbeds

Air bearing testbeds can only serve to demonstrate the relative attitude dynamics or

small-scale relative motion among elements of a formation. A different type of simulation

is required in order to bring orbital dynamics back into the loop. Because position

and relative position knowledge is of such importance in formation flying, much of the

component development for these missions revolves around new GPS and cross-linking

technologies.

There are several testbeds that have been developed, including the Formation Flying

Testbed (FFTB) at NASA Goddard Space Flight Center.131,132 The FFTB has been

used for several technology demonstrations, including hardware-in-the-loop testing and

demonstration of GPS for precise decentralized relative navigation.133,134 Relative navi-

gation using GPS involves more than simply differencing the filtered position and velocity

solutions between spacecraft. Although such a process is certainly possible, it provides a

relative navigation solution with errors on the order of the absolute navigation solution;

improvements beyond this resolution are possible for spacecraft flying in formation be-

cause, typically, each of the formation spacecraft receive signals from the same set of GPS

satellites. Moreover, the GPS signals are all traversing nearly the same path through the

ionosphere. As such, the errors in the raw GPS signal are very similar for each spacecraft

in the formation. By processing the relative signal in this form it is possible to achieve

much greater accuracy in the relative navigation solution.133 Carpenter and Schiesser

have investigated the problem of semi-major axis knowledge via GPS orbit determina-

tion; they conclude that errors in the semi-major axis estimate are largely due to poor

velocity solutions, and would not benefit from inclusion of carrier-phase data alone.135

Proper filtering that takes advantage of orbital dynamics is necessary for a ideal solution,

however, several simple techniques are available to provide improved estimates beyond

the initial GPS solution. An example of such an enhanced filter is presented by Moreau

et. al.136

Researchers at Stanford University developed a planar air-bearing test facility with six

pseudolite GPS transmitters for demonstration of GPS in a spacecraft formation.88 They

have used this system to demonstrate advanced processing of the GPS signal, including

the use of carrier-phase and differential carrier-phase GPS sensors.137,138

Technology combining standard crosslink communications with sensors for measuring

relative ranges and range rates is being actively developed in support of formation flying

missions.139 More recently, GPS receivers have been packaged with crosslink transceiver

systems for easy integration.140,141,142,143,142
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Chapter 4

The Distributed Spacecraft Attitude

Control System Simulator

As described in the previous chapters, formation flying is an exciting new area of research

and development. However it is also a difficult endeavour, and launching a group of

satellites into space is an expensive and risky undertaking. Ventures in formation flying

are not undertaken lightly.

The Distributed Spacecraft Attitude Control System Simulator (DSACSS) is a laboratory

testbed designed for the purpose of developing and testing formation flying algorithms in

a low-risk, low-cost environment. In this chapter, we describe the design and development

of the air-bearing hardware and software. We present the equations of motion that govern

DSACSS experiments. We describe the problems of real-time attitude estimation, as well

as estimation of the mass properties of the systems.

4.1 Design and Development

The design and construction of the DSACSS payloads was as much of an educational

experience as the dynamics and control aspects of the project. In this section, we present

an overview of the design process for the two air-bearing payloads. As described in

Chapter 3, the system dubbed ‘Whorl-I’ is a tabletop air-bearing with ±5◦ of freedom

in tilt; ‘Whorl-II’ is a dumbbell-style system with ±30◦ of freedom; these two platforms

are the basis of the DSCASS testbed. We also discuss design and development of the

DSACSS Operational (DSACSS-Ops) software.
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4.1.1 Whorl-I Hardware

The initial design concept was formed by a few preexisting components. The hemispher-

ical air bearing, of course, was the focus of the design process. Early work with this air

bearing led to the fabrication of a 3 ft diameter circular aluminum plate with an elaborate

bolt pattern for mounting components. A SM3420 SmartMotor equipped with a solid,

6in outer-diameter bronze flywheel provided means for single-axis control. The Smart-

Motor was controlled by a laptop computer. The sensor suite included a three-axis linear

accelerometer and a two-axis tilt sensor, both of which were sampled by a TattleTale8

microcontroller board. The system was powered by a pair of wet lead acid batteries.

System problems in this initial design necessitated several design changes. The primary

disadvantage of this design was the system weight: the aluminum plate was unnecessarily

massive, as were the wet lead acid batteries. Further, the laptop computer was bulky and

awkward. The sensors and actuators functioned, but interfaced with different command

computers, making real-time operation impractical. Therefore, after developing some

level of comfort with these components, we refined the design.

This effort, which led directly to the configuration design of the Whorl-I payload, was in

part dictated by preexisting knowledge held by team members; many components were,

as in the initial design, selected unilaterally. Although such procedures do not follow

an approved systems-engineering technique for selecting components, every project must

start somewhere! This laissez-faire attitude should not suggest that design analysis was

approached lightly. Rather, we began with performance goals to minimize payload weight

and maximize system effectiveness. Effectiveness, in this case, involved finding a balance

between available funding and ultimate performance.

The first major design decision was to switch from a solid aluminum plate to an aluminum

honeycomb deck. Commercial grade honeycomb is reasonable in price, readily obtainable,

and easy to machine. The main issue that arises when working with honeycomb is that

screws cannot be inserted directly into the material; an insert must be installed first. This

requirement must be considered in the design process, as the inserts — and the epoxy used

to hold them in place — add a substantial amount of mass to the structure. However,

in this case the added mass is not comparable to the mass of a solid plate structure. A

secondary issue when considering honeycomb is the potential for re-machinability. As

the system is used for more diverse tasks and new requirements are identified we expect

additional mounting requirements to arise, and installing new inserts is less trivial than

drilling new holes in a plate. We elected not to pre-install a uniform hole pattern to aid

in future functionality because so few components would be able to interface with the

pattern without the use of a bracket; brackets add unnecessary mass.
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The selection of honeycomb was a good design choice. Weighing under 11 lb, the finished

structure (including inserts, epoxy and protective edging) is 77% lighter than the original

aluminum plate. The non-conductive outer surface of the honeycomb has an unintended

benefit; it prevents many inadvertent electrical shorts. We have not added any new

inserts to the honeycomb since its initial manufacture. However, the reticence to do so

is largely due to the need to remove all of the current components, including the wiring

harness; it is not clear that a solid aluminum structure would have been remachined in

the interim, either. We were initially concerned about the potential for internal damage

to the honeycomb due to impact shocks but thus far we have observed no weakening

of the structure. The current Whorl-I configuration, including a control moment gyro

(CMG) unit developed later, is shown in Figure 4.1.

Figure 4.1: Whorl-I

We compared many performance metrics for several different battery chemistries. Sealed

lead acid cells proved to be the most useful for this application, as they are widely

available, robust, and reasonably compact. Using pairs of 6 VDC cells provided ease

in configuration and a wide range of 12 VDC battery chargers to choose from. Several

packs are visible hanging below the main structure in Figure 4.1. We initially designed

a 48 VDC bus, but after damaging a SmartMotor through an over-voltage / back-EMF

condition, stepped down to 24 VDC parallel bus. The lower bus voltage limits the

maximum wheel speed, but provides a necessary safety margin and nearly twice the

operational time as the original system. High voltage components are powered directly
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from the bus; all other components receive power from a 24–12 V DC/DC converter. The

converter system works well, as the low-voltage components are typically low power and

often more sensitive to power conditioning. It is also a safer and more robust design than

would be obtained by pulling different supply voltages off of a single power bus. Motor

performance changes as the bus voltage drops, but this can be partly compensated for by

including the current bus voltage in the low-level wheel speed controller. One important

lesson in power system design that we did not learn early enough is to fuse the main bus

and each individual component, and to choose wire gages appropriate for the fuse level.

The current system has worked well overall, although we have damaged several batteries,

probably due to improper charging.

We also recognized the inefficiency of the solid flywheel design at this point in the design

process. For ease in manufacturing, we switched to a simple two-piece design with a steel

rim and an aluminum hub. The steel / aluminum design is a good one for several reasons.

First, it allows the flywheel rim to be much more massive than the hub, mitigating

the need to machine a complex series of radial cuts in the hub to reduce mass. Also,

aluminum has a lower rotational burst speed than steel, thus as the flywheel spins the

interface between the two surfaces becomes tighter; if the opposite were true we would

need a more complicated structural interface than radial bolts. These six bolts also serve

as a simple means for balancing each flywheel in order to compensate for small variations

in the machining process; washers can be individually added to adjust the mass in fine

increments. This interface is apparent in the foreground of Figure 4.2.

The remainder of this design phase included additional component selection and config-

uration analysis. After damaging one SmartMotor beyond repair, we elected to upgrade

to the SM3430 model for its improved performance and flatter continuous-torque pro-

file. Based on experience from a previous project, we switched to a single sensor unit

containing three-axis rate gyros and three-axis linear accelerometers, a BEI Systron Don-

ner MotionPak II. More information on this component is provided in Section 4.4. As

flight-grade thruster systems are prohibitively expensive, we designed a simple N2 cold

gas thruster system using solenoid valves and nozzles normally used for milling machine

coolant systems. Portions of the thruster system can be seen in the foreground of Fig-

ure 4.1 and on the rear panel of Whorl-II in Figure 4.2.

Although a major focus of the configuration analysis was to co-locate the center-of-mass

of the system with the center-of-rotation of the air bearing, we recognized that accurate

static placement would be impossible. At a minimum, the gas tank for the thrusters will

cause a change in center-of-mass during thruster maneuvers; although the tank is placed

to cause a minimal mass center change in-plane, there is no way to prevent motion in all

three directions. Further, a primary source of error in the configuration analysis is the
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wiring harness; the harness is too complex to model effectively in a CAD program. As

such, it is desirable to have the ability to easily adjust the mass center in all three axes.

The battery brackets were designed with this in mind; they are slotted such that they

can be moved to aid in coarsely balancing the system. We also chose to include three

linear actuators to dynamically move mass in all directions. Each Servo Systems model

LPS 8-20 actuator can traverse up to 30 lb across 8 in. This system has proven useful in

fine manual balancing and will autonomously perform center-of-mass adjustment during

experimental runs as necessary. Two of the Whorl-I linear actuators are visible in the

background of Figure 4.1.

We selected components of a PC/104 computer stack after a semester elective course

investigating real time systems. We determined that DSACSS does not have any hard real

time critical operations, thus options for computer processors and operating systems were

nearly unlimited. As shown in the foreground of Figure 4.1, the PC/104 form factor is a

small, popular design for embedded computing applications. Each board performs a small

set of functions, allowing for development of a fully customized computer. There are many

PC/104 manufacturers and vendors, providing a wide selection of parts and competitive

pricing. We initially selected a CPU board with a 32-bit 133MHz Tri-M MZ104+ ZFx86

processor with 64 MB of RAM running a lean, customized version of Slackware Linux.

An upgrade of this system which will allow faster closed-loop performance is in progress.

Several components are commanded through the serial communication interface on the

CPU board, easily expandable through the USB bus. The MotionPak II is sampled by a

16-bit Diamond Systems DMM-32 A/D board. Along with the 32 analog channels, the

DMM-32 also provides 24 programmable-direction and eight fixed-direction digital lines

for logic switching. These digital lines are used to control the thruster solenoid valves.

The stack is completed by a power conversion and conditioning board that provides a

clean 5 VDC signal. The computers communicate via a local wireless area network.

Although the current Whorl-I design has proven to be viable, it became clear during the

development process that more stringent analysis and peer review would be beneficial.

This recognition led to a process of multiple, formal design reviews for all new hardware

developments, including the design of the Whorl-II payload. We have been extremely

successful with most of the components that were designed in this review-intensive envi-

ronment.

4.1.2 Whorl-II Hardware

This Whorl-II hardware review will not include such elaborate detail as above, partly

because the Whorl-II design was highly based on the Whorl-I design, leaving little to
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accomplish beyond component placement (which was by no means an easy task). More

to the point, I did not design the Whorl-II payload and thus have less commentary to

include. These comments are largely based on my participation in the many design

reviews leading up to the Whorl-II final design.

Whorl-II presented several new challenges because of the dumbbell system configuration.

Components had to be positioned to impact neither the pedestal nor the surrounding

cage. Geometric analysis of these constraints led to the development of the shaft exten-

sions and honeycomb end panels as shown in Figure 4.2.

Figure 4.2: Whorl-II

We determined early in the review process that it would be undesirable to put the entire

payload on one side of the bearing and balance with ballast on the other side. Instead,

we run cables through the hollow center of the bearing as necessary. However, the cross-

sectional area available for cabling is small, making it important to group components
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intelligently. For example, all thruster components are grouped on one end panel to

eliminate the need to route any plumbing through the bearing.

Balancing this payload is more difficult than with Whorl-I because all three axes must be

neutrally aligned for proper operation. Moreover, it is not possible to simply place ballast

as needed to account for changes in configuration. Instead, an elegant three-axis ballast

system was designed. Three-axis linear actuators are also included; in this configuration

use of the thrusters changes the mass center dramatically.

4.1.3 DSACSS Software

Our intent in the software development process was to develop modular, easy-to-use,

easy-to-maintain code. We achieved this intent through the application of object-oriented

software design concepts. In object-oriented programming, classes of software are suffi-

ciently abstracted so as to be useful without requiring knowledge of the internal code.

As such, a user can create an instance of a ‘rate gyro’ without regard to the specific rate

gyro hardware in use, just the knowledge that it will return rates in a particular set of

units. Similarly, the developer of the driver software for a new rate gyro component can

construct his code wholly differently than any other developer; only the interface must

match.

The DSACSS-Ops software tools are custom-designed with particular DSACSS hardware

in mind. However, the abstraction obtained by use of object-oriented programming allows

it to be easily extensible. As such, a research group using a similar payload outfitted

with different hardware components would only have to modify the lowest level of the

code; all higher-level useability interfaces would remain unchanged. The DSACSS-Ops

code includes several key features:

1. Configuration parsing: Rather than recompiling the code in order to accommodate

a new hardware configuration or controller gain setting, all options are defined in

a configuration file that is read in at run time.

2. Algorithms: Includes observers and controllers. Adding a new control law is as

simple as writing the equation in C++ syntax. We have written a family of Kalman

filters, ready to customize for the dynamics of a particular system.

3. Logical devices: The algorithm interface with the hardware. This code is generic

for a type of hardware (e.g. ‘rate gyro’) rather than a particular component.

4. Physical devices: The driver interface with the hardware. This code is customized
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for the particular components used on the DSACSS (e.g. ‘Systron Donner Motion-

Pak II rate gyro’).

In all, the object-oriented approach to the DSACSS code has gone well. We have con-

tributed this software to the open source community, and hope that it will be beneficial

to other students or system developers.∗ The primary operational complaint with the

code structure is that object-oriented code runs slower than a comparable monolithic

main file. However, it has proven to be reasonably readable and simple for new students

to augment. Also, an inline documentation program, Doxygen, has proven invaluable in

developing and maintaining software documentation.† We have had some problems with

developers writing very low-level code that is difficult to read and poorly commented. In

retrospect, it would have been useful to define a variable naming scheme; such policies

are difficult to implement after the fact. The lab would benefit greatly if a dedicated

student were to critique and improve the current software while implementing techniques

to mandate the quality of new code.

4.2 Experimental Equations of Motion

In this section, we derive the equations of motion for the DSACSS air bearings. We

begin with an outline of some of the available attitude representations. The attitude

kinematics of a vehicle can be considered distinctly from its dynamics, so after describing

these variants of the kinematic equations we then proceed on to the dynamics equations.

We consider both a rigid body with only external torques and a gyrostat system with

both external and internal torques.

4.2.1 Kinematic Equations

There are many ways to represent the kinematics of a rotating body. A thorough discus-

sion of the many variables and their relative merits is beyond the scope of this text; we

refer the reader to one of the many excellent mechanics texts available.144,145,12,146,147

The set of rotations is defined by the group SO(3), which is the set of all 3 × 3 or-

thonormal matrices with determinants of +1.148 That is, SO(3) is a three-dimensional

manifold described by the set of proper rotations. A rotation matrix, R, provides a valid

description of the SO(3) group, but is a nine-term parameterization. It is reasonable to

∗Available for download at http://dsacss.sourceforge.net/.
† http://www.doxygen.org/
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expect that a three-term parameterization of this three-dimensional space is possible, as

is the case with Cartesian coordinates. We can parameterize the rotation matrix using

only three-terms by making use of Euler angles, θ; just as with an aircraft, we can define

roll, pitch, and yaw angles for a spacecraft. For example, a 3-1-3 rotation sequence of

Euler angles is the classic choice to define the attitude of a spacecraft with respect to its

local orbital frame. However, the Euler angle parameterization is not ideal. Specifically,

any three-term attitude parameterization has at least one numerical singularity; for Euler

angles, the singularities occur when the second rotation reaches some critical angle. The

value of those angles depends upon the rotation sequence in question. Fundamentally, the

problem with all three-term parameterizations is that the SO(3) manifold is curvy. Un-

like the rectilinear manifold of Cartesian space (which is fully spanned by any three-term

set), the order of operations in SO(3) is critical. This behavior provides some interesting

dynamic properties — such as combining small changes in pitch and roll angles to achieve

a change in yaw, or the ability to parallel park a conventional automobile — but requires

a more complex mapping than is needed in a linear space.

The unit quaternion, q̄, often called the Euler parameter, is the lowest-order singularity-

free attitude representation. This lack of singularities makes the unit quaternion ex-

tremely popular for use in analysis of unconstrained rotations. Moreover, use of the

unit quaternion allows us to avoid the trigonometric manipulations required by Euler

angle representations. However, the four terms of the unit quaternion doubly span the

SO(3) set: the negative of a unit quaternion defines the same rotation as the original

set: q̄ = −q̄. It is convenient to define two special quaternion operators, similar to the

skew operator, ×, for ease in notation:149[
q

q4

]
� ,

[
q× + q41 q

−qT q4

]
(4.1)[

q

q4

]
� ,

[
−q× + q41 q

−qT q4

]
(4.2)

where

q̄3 = q̄1 � q̄2 = q̄2 � q̄1 (4.3)

Note that four-term column vectors such as unit quaternions are denoted by an overbar.

Another useful attitude representation is the Modified Rodrigues Parameter (MRP), σ.

The MRPs are potentially more robust than other three-term attitude representations,

as the sole singularity occurs at a rotation of 2π. This singularity can be avoided through

use of a shadow set of MRPs phased from the original set by π.12 For small rotations we

can neglect the singularity entirely.



4.2 Experimental Equations of Motion 55

Each of the attitude representations follows a similar form in the kinematics. The kine-

matics in terms of a rotation matrix are

Ṙ = −ω×R (4.4)

where ω is the angular velocity of any general coordinate system under analysis.

The Euler angle kinematics require the use of a 3× 3 transformation matrix S(θ) which

must be uniquely derived for each of the 12 possible rotation sequences. We leave this

matrix in its symbolic form,

θ̇ = S(θ)−1ω (4.5)

Using the quaternion operators defined above, we can write

˙̄q = q̄ � ω̄ = ω̄ � q̄ (4.6)

where the four-term angular velocity is ω̄ ,
[
ωT 0

]T
.

The MRP kinematics are governed by

σ̇ =
1

4

[ (
1− σTσ

)
1 + 2σ× + 2σσT

]
ω (4.7)

4.2.2 Rigid Body and Gyrostat Dynamics

Each DSACSS air bearing has two sets of three-axis control actuators: momentum wheels

and cold gas thrusters. These two actuator suites are fundamentally different; thrusters

produce external torques, whereas momentum wheels produce internal torques. The

dynamics of a rigid body perturbed only by external torques are simpler to describe,

so we begin our derivation there. We then proceed to the derivation of the gyrostat

equations — those that govern a body with both internal and external torques. As with

the kinematics, these equations are well documented in textbooks and so are stated here

without proof.144,145,12,146,147

The equations of motion for a spherical air bearing (with external torques only) are

analogous to those in the classical problem of the spinning top, shown in Figure 4.3. In

the case of a spinning top the pivot point of the top remains fixed, and this point is

not coincident with the top’s center-of-mass. There are two reasonable ways to approach

this problem: define the origin of a body-fixed reference frame at either the center-of-

mass or the center-of-rotation of the top. The center-of-mass representation is attractive

because the first moment terms sum to zero, however, it requires knowledge of the normal
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Figure 4.3: The Spinning Top

forces acting at the center-of-rotation. The center-of-rotation formulation requires the

first moment terms to be retained but eliminates the external forces.144 By consideration

of this problem we recognize that formulating the equations about the center-of-mass

will not ultimately be of use in our application; we have no way of knowing the forces

acting inside the air bearing. We instead write the equations of motion about the center-

of-rotation of the body, thereby eliminating all translational motion (and, importantly,

bearing force) terms from the equations. Therefore, we state that the dynamics of a rigid

body with external torques rotating about an inertially fixed point are governed by

ω̇bi = Ib
−1
(
−ωbi×Ibω

bi + gext

)
(4.8)

where the external torques can include control torques from the thrusters, a gravity

torque from the offset of the mass center from the center-of-rotation, and other external

disturbance torques such as drag. The superscript {·}bi indicates a quantity of the body

frame with respect to the inertial frame. Additionally, all terms are expressed in the

body frame.

In the case of a gyrostat, it is convenient to make use of the definitions of total and axial

angular momentum:

hbi = Ibω
bi + AIsωs (4.9)

ha = Is

(
ATωbi + ωs

)
(4.10)
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where ωs is the length-n column matrix of wheel speeds with respect to the body, Is is

a diagonal matrix containing the spin-axis moments of inertia of the wheels, and A is a

3× n matrix that defines the alignment of each wheel in the body frame.

We can recapture the body angular velocity through

ωbi = J−1
(
hbi −Aha

)
(4.11)

where we have defined an inertia-like matrix

J = Ib −AIsA
T (4.12)

Thus, the dynamics of a gyrostat are

ḣbi = hbi×J−1
(
hbi −Aha

)
+ gext (4.13)

ḣa = ga (4.14)

4.3 Perturbations

It is important to understand the dominant perturbations acting on the system. Pertur-

bations potentially worthy of consideration for the DSACSS system include air currents

(atmospheric drag), internal bearing drag, and the rotation of the Earth. We recognize,

however, that modeling atmospheric drag of each Whorl is prohibitively complex. If the

lab atmosphere were steady-state (particularly if the air mass was nearly stationary) we

could develop a cross-sectional area model of each air-bearing payload and calculate a

first-order drag model accordingly. However, the air currents change in time due to the

building climate control system (which is out of our control). Given that we cannot

include an accurate model of these torques in the system dynamics, any torques of lower

magnitude can also be neglected. In this section, we derive the perturbations on the

system due to the rotation of the Earth. We also analyze the atmospheric and bearing

drag perturbations and compare the magnitudes of these three torques.

4.3.1 Rotating Earth Perturbation, Newtonian Derivation

We have already recognized the efficacy of writing the dynamic equations of each air

bearing about its center-of-rotation. Now we consider an inertially fixed coordinate

system located at the center of the Earth, Fi. We define an intermediate reference frame

at point l, the center of rotation of the air bearing and the origin of an Earth-fixed, local
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reference frame. In this case, the linear velocity of Fl is due solely to the rotation of the

Earth.

The Earth-Centered Inertial (ECI) frame Fi is defined in the conventional astronomical

manner: Î and Ĵ lay in the equatorial plane with Î in the direction of the vernal equinox,

à, and K̂ points towards the geographic north pole.

The Earth-Fixed Local (EFL) frame Fl is also defined in the conventional manner, this

time from convenient local South-East-Zenith (SEZ) geometries. The ı̂ vector is tangent

to the meridian circle and points South. Similarly, ̂ is tangent to the parallel, pointing

East. The k̂ vector is in the direction of the radial vector, ~ρ, pointing from the center of

the Earth to the point l on the surface and provides the local definition of ‘up’ (zenith).

We assume that the acceleration of the Earth about the Sun is negligible; such an as-

sumption is a valid approximation for a laboratory reasonably far from the poles.144

Blacksburg is located at a latitude of 37.21◦ North. We take the Earth to be a sphere

of uniform density and assume that Earth’s axis of rotation is fixed in space. Thus, we

represent the center of the Earth as a fixed point with the Earth spinning at a constant

angular rate ~Ω about true (geographic) North. Considering an Earth-fixed laboratory

located in Blacksburg,

~vBlacksburg = ~Ω×~rBlacksburg (4.15)

It is useful to express the angular rate of the Earth in Fl

Ωl = −
(
Ω cosλ

)̂
ı +
(
Ω sinλ

)
k̂ (4.16)

where λ is the latitude of point l, so that we can obtain the velocity equation

vli = Ωl
×ρl (4.17)

We begin our dynamic analysis of the rotating Earth perturbation with the definitions

of rigid body motion,

ḣbi = −ωbi×hbi − vli×pbi + gext (4.18)

where pbi is the linear momentum of the body with respect to inertial space, as follows

pbi = mvli − cb
×ωbi (4.19)

hbi = cb
×vli + Ibω

bi (4.20)

and cb is the mass moment of inertia of the body.
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We begin by rotating the velocity term into the body-fixed frame:

ḣbi = −ωbi×

(
cb

×Rbl
(
Ωl

×ρl

)
+ Ibω

bi

)
+ Rbl

(
Ωl

×ρl

)×(
cb

×ωbi
)

+ gext (4.21)

Note that the total angular velocity of the body can be rewritten as

ωbi = RblΩl + ωbl (4.22)

Fully expanding, this equation becomes

ḣbi = −ωbl×Ibω
bl + gext (4.23)

−
(
RblΩl

)×
Ibω

bl +
(
cb

×RblΩl
×ρl

)×
ωbl +

(
IbR

blΩl

)×
ωbl +

(
RblΩl

×ρl

)×
cb

×ωbl

+
(
RblΩl

×ρl

)×
cb

×
(
RblΩl

)
−
(
RblΩl

)×
cb

×
(
RblΩl

×ρl

)
−
(
RblΩl

)×
IbR

blΩl

It is convenient to replace the angular momentum quantities with angular velocities.

To do so, we must first take the time derivative of Equation 4.20 to obtain a second

expression of ḣbi:

ḣbi = −cb
×ωbl×RblΩl

×ρl − Ibω
bl×RblΩl + Ibω̇

bl (4.24)

Substituting into Equation 4.23 and grouping like terms yields the following equations

of motion

gext = Ibω̇
bl + ωbl×Ibω

bl (4.25)

+

[
cb

×
(
RblΩ×

l ρl

)×
+ Ib

(
RblΩl

)×
+
(
RblΩl

)×
Ib

−
(
cb

×RblΩl
×ρl

)×
−
(
IbR

blΩl

)×
−
(
RblΩl

×ρl

)×
cb

×

]
ωbl

−
(
RblΩl

×ρl

)×
cb

×
(
RblΩl

)
+
(
RblΩl

)×
cb

×
(
RblΩl

×ρl

)
+
(
RblΩl

)×
IbR

blΩl

where the expressions in the first line of this equation define the dynamics of the body

with respect to the non-inertial reference frame Fl. The terms in the last line are due

to the motion of Fl, and the bracketed term arises from the cross-coupling of the two

motions.
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4.3.2 Rotating Earth Perturbation, Lagrangian Derivation

A preferred method for verifying a derivation is to arrive at the same result using a dif-

ferent technique. In the case of dynamic equations, it is reasonable to suggest attempting

a Lagrangian derivation to produce matching final equations. However, Lagrangian dy-

namics are not commonly used in attitude dynamics problems — for good reason! The

curviness of the SO(3) manifold causes the time derivatives to be quite complicated.

While the derivation begins cleanly, the ultimate solution is bogged down in a great deal

of algebra, not shown here.

We do not want to make any assumptions about the classes of forces acting on the system.

Therefore, we start with the most basic form of Lagrange’s equations:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= Qqj
(4.26)

where the Lagrangian is exactly the kinetic energy, L = T . We choose our generalized

coordinates to be any valid rotation sequence of Euler angles, qj = θj. Therefore, we

recognize that our generalized forces, Qθ, are something like torques.

The total kinetic energy of a rigid body is defined by

T = Ttranslation + Trotation (4.27)

=
1

2
mvliTvli +

1

2
ωbiTIbω

bi (4.28)

= ωbiTcb
×vli +

1

2
ωbiTIbω

bi (4.29)

=
(
RblΩl + ωbl

)T

cb
×RblΩl

×ρl +
1

2

(
RblΩl + ωbl

)T

Ib

(
RblΩl + ωbl

)
(4.30)

We can take the partial derivatives with respect to θ and θ̇, the Euler angles and Euler

angle rates of the body with respect to the lab. Note that the latter derivative is simplified

by use of the chain rule:

∂L
∂θ̇

=
∂L
∂ωbl

∂ωbl

∂θ̇
(4.31)

=

(
cb

×RblΩl
×ρl + Ib

(
RblΩl + ωbl

))
S(θ) (4.32)

Mundane algebraic manipulations are not included here. However, showing that the two

derivations are equivalent requires two additional identities. First,

Qθ = S(θ)Tgext (4.33)
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This identity serves to transform the torques in the Newtonian formulation into the

generalized torques of the Lagrangian equation. The derivation of this identity follows

the derivation of the Euler angle kinematics, as in Equation 4.5, where the S(θ) matrix

transforms the Euler angle rates into the angular velocities.

Secondly, for any vector x that is independent of the attitude,

∂ (Rx)

∂θ
=

(
Rx
)×

S(θ) (4.34)

where the matrices R and S(θ) refer to the same rotation. This expression can be derived

starting from a well-known identity:

dR

dt
= −ω×R (4.35)

d (Rx)

dt
= −ω×Rx (4.36)

d (Rx)

dt
= −

(
S(θ)θ̇

)×
Rx (4.37)

∂ (Rx)

∂θ

dθ

dt
=

(
Rx
)×

S(θ)θ̇ (4.38)

From this point all that need be done is to cancel the time derivative terms to regain

Equation 4.34. Note that this derivation is not a new proof, although we had derived it

independently before finding it in the literature.150

4.3.3 Drag Perturbations

Having derived the effect of Earth’s rotation on the motion of the air-bearing payloads,

it is necessary to evaluate the relative magnitude of this perturbation with respect to the

other unmodeled forces acting on the system. As described in Chapter 3, the most ad-

vanced testbeds are housed in such a way to mitigate as many perturbations as practical,

including seismic effects and atmospheric drag. Further, the highest precision bearings

are ground precisely to effectively eliminate internal bearing forces. The DSACSS facil-

ity includes none of these advances and thus we must be aware of these perturbations in

order to ensure robustness against them.

From observation of the uncontrolled air-bearing payloads it is apparent that local air

currents cause the dominant perturbation on the system. However, because the air

currents are neither under our control nor steady state it is impractical to predict the

effects of this phenomenon. A comparison of the magnitudes of this drag torque against

the rotating Earth torque resolves the question of whether to model the rotation of the

Earth.
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The minimum drag case will occur when the air mass in the laboratory is stationary.

We can create a simple cross-sectional area model to analyze this case by manipulating

three-view projections of the CAD model; we consider the Whorl-I configuration. The

flat-spin motion is the minimum-drag motion for the system; we consider a fast flat-

spin of 5 rad/s with large out-of-plane angular excursions (±π/3). We recall from basic

aerodynamics that the drag force is governed by D = 1
2
ρV 2ACD. Errors in the simple

cross-sectional area model are of the same order as those from an assumed drag coefficient

of CD = 1 for a low-speed bluff body. More important is an accurate velocity model;

we assume a uniform linear velocity proportional to the angular velocity, and adjust the

cross-sectional area terms to reflect the minimal contribution of the central components.

Errors from these simple assumptions are mitigated by investigating a range of angular

velocities.

The internal bearing dissipation should be negligible when the bearing is working prop-

erly; we include a simple, constant friction model of the this perturbation for compari-

son.92

Figure 4.4: Magnitude of Perturbation Torques

Figure 4.4 shows the results of this analysis. The uncertainty in the atmospheric drag

torque is high; it will increase with consideration of dynamic air currents. However, it is

clear that even in the stationary air mass model the atmospheric drag torque dominates

the other perturbations. Therefore, we need not include the model of the Earth’s rotation

in the operational equations of motion. Having determined that the rotating Earth
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perturbation can be neglected, we limit the scope of the equations of motion to just one

angular velocity, the motion of the body with respect to the lab. As such, we can simplify

notation by dropping the superscript {·}bi when describing this term.

4.4 Whorl Sensor Equations

The nominal sensor suite for the Whorl payloads includes three-axis rate gyros and three-

axis linear accelerometers. Note that this sensor data is insufficient for complete attitude

determination — a minimum of two vector measurements are required for complete atti-

tude determination. With low-noise sensors the incomplete measurement would not be a

noteworthy problem because the rates could be integrated smoothly, but the rate gyros

are noisy in the velocity range applicable for DSACSS maneuvers.

The rate gyros measure the angular velocity of the system directly.

yrg = ω (4.39)

The accelerometers measure

yaccel = ω̇×ry + ω×ω×ry − gRbik̂ (4.40)

where ry is the position of the sensor with respect to the center-of-rotation of the air

bearing and g is the magnitude of gravity, assumed to be 9.81 m/s2.

Note that any constant offsets due to perturbations acting on the system are calibrated

out of the sensor measurements. Periodic variations are masked by the random noise

spectrum added to the system.

The MotionPak II provides data through either a digital or an analog interface. The digi-

tal signal is pre-processed by an internal algorithm and updated at a rate of 32 Hz.151 It is

unclear what signal manipulations are performed on the digitized data; we assume that,

minimally, it has been de-biased due to temperature variations. Regardless, the digital

signal is both slow and noisy. Working with the raw analog data, although more compu-

tationally and processor intensive, provides dramatically better results. At this time we

are not compensating for temperature variation; we recommend further investigation in

this area.

The family of Kalman filters expect Gaussian sensor noise. Thus, it is reasonable to inves-

tigate if the MotionPak II sensors produce signals with a Gaussian distribution. Further,

an understanding of the sensor characteristics provides a good starting point for filter
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tuning. We seek to identify the mean and standard deviation of the stationary signals

and verify that the signals closely match this Gaussian distribution. Further, we desire

to verify the output response of the sensor with respect to the published specifications.

Characterizing three-axis accelerometer response requires data sampled in six orthogonal

sensor orientations. The configuration for this procedure is shown in Figure 4.5. The

sensor is positioned on a platform with adjustable-height feet and aligned using a circular

bubble level for reference. Bubble level readings are not consistent across the outer

casing of the MotionPak II; errors of up to 1.0◦ are attributable to this uncertainty.

Most alignments are verifiable to well within 0.5◦. To obtain non-zero rate data, the

MotionPak II is rotated a known distance about a single axis; the data can then be

integrated to obtain and verify the angular position in time. This setup is shown in

Figure 4.6.

Figure 4.5: MotionPak II Test Setup for Accelerometer Calibration

The mean, µ, and standard deviation, σ, of the signals are easily calculable. The zero-

mean values are used to determine the offset for each sensor; the misalignments described

previously produce small variations in the zero-mean signal values. The non-zero means

are used to calculate the response slope of the accelerometers; these values agree with

the published specifications to within 2%. A sample of these data is shown in Figure 4.7.

The integrated rate gyro data can be compared to the known boundary conditions in

order to calculate the response slope, as in Figure 4.8. Again, experimental data agree

with the published specifications to within 5%.



4.4 Whorl Sensor Equations 65

Figure 4.6: MotionPak II Test Setup for Rate Gyro Calibration

We use the chi-squared goodness-of-fit test to verify the applicability of the ideal Gaussian

distribution to the experimental data. We sort the raw data into a histogram with k class

intervals nominally using the optimal bin width of k = 0.4σ.152 However, class intervals

need not be of equal width; bins with fewer than five counts are merged with the adjacent

class closer to the mean. A data histogram and ideal normal distribution are shown in

Figure 4.9. The top of each histogram bar represents the observed frequency in that

interval, Oi. The value of the normal distribution at the center of each class interval

defines the expected frequency, Ei. The test statistic is153

χ2
0 =

k∑
i=1

(Oi − Ei)
2

Ei

(4.41)

If the data follows the expected distribution then χ2
0 has, approximately, a chi-square

distribution with ν = k − p − 1 degrees of freedom. The factor p compensates for

the reduced degree(s) of freedom caused by using experimental statistics to define the

expected distribution. For this analysis, p = 2, as we have calculated the mean and

standard deviation of the Gaussian distribution via inspection of the data set.

Therefore, we wish to verify that χ2
0 < χ2

α,k−2−1, where α defines the 100(1− α)% confi-

dence region.153 The value of χ2
α,ν is given by

χ2
α,ν =

e−0.5x x0.5ν−1

20.5ν Γ(0.5ν)
for x ≥ 0 (4.42)
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Figure 4.7: MotionPak II Acceleration Calibration Data

where

Γ(a) =

∫ ∞

0

ta−1 e−tdt (4.43)

However, the value of χ2
α,ν is most often obtained by using a lookup table of common

(α, ν) pairs.

The data set shown in Figure 4.9 is divided into 19 classes. We choose a typical confi-

dence region, α = 0.01, yielding the specific test condition χ2
0 < χ2

0.01,16 = 32.0.153 The

calculated chi-square value for this data set is χ2
0 = 31.0, which passes the goodness-of-fit

test. Therefore we can conclude that the data is well-represented by the ideal Gaussian

distribution. We can demonstrate this performance on each of the raw signals.
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Figure 4.8: MotionPak II Rate Gyro Calibration Data

Figure 4.9: Histogram of MotionPak II Data and Ideal Gaussian Distribution
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4.5 Extended Kalman Filter

A major step toward getting DSACSS operational is a working sequential, real-time

state estimation technique. The standard algorithm in the aerospace industry for such a

problem is the Extended Kalman Filter (EKF). The DSACSS air bearings follow either

the gyrostat or rigid body equations of motion, depending upon the control suite in use.

The development of Kalman filters for this application is well documented. The answer,

however, is not as straightforward as one might be led to believe by the simplicity of the

algorithm presented below. In this section, we outline the EKF algorithm and analyze the

different options for the attitude estimation problem. We demonstrate the effectiveness

of the final algorithm through comparison of simulated and experimental data.

4.5.1 Extended Kalman Filter Equations

The family of Kalman filters can be developed in both continuous- and discrete-time

forms. We make use of a hybrid set of equations that are continuous in the process and

discrete in the measurement. We do not present a thorough derivation and instead refer

the reader to one of the several excellent estimation texts available.154,155,156

The time-update step for the continuous / discrete EKF is

˙̂x(t) = f
(
x̂(t),u(t),Π, t

)
(4.44)

Ṗ(t) = F(t)P(t) + P(t)F(t)T + Q(t) (4.45)

ỹk = h(xk) (4.46)

where the first-order Jacobian approximation to the derivative of the process equation is

F(t) ,
∂f

∂x

∣∣∣
x(t)=x̂(t)

(4.47)

The model is initialized with the expected value and uncertainty of the initial state

estimate

x̂(t0) = x̂0 (4.48)

P0 = E
{(

x(t0)− x̂0

)(
x(t0)− x̂0

)T}
(4.49)

The first order approximation to the ideal (linear) Kalman gain matrix is calculated by

Kk = P−
k H−

k
T
[
H−

k P−
k H−

k
T + Rk

]−1

(4.50)
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where

H−
k ,

∂h

∂x

∣∣∣
xk=x̂−k

(4.51)

The Kalman gain is used in the measurement-update step for both the state vector and

the covariance matrix

x̂+
k = x̂−k + Kk

[
ỹk − h(x̂−k )

]
(4.52)

P+
k =

[
1−KkH

−
k

]
P−

k (4.53)

4.5.2 Quaternion / Angular Velocity Filter

It is intuitive to design a filter with a state vector containing the quaternion and angular

velocity vector of the body-fixed coordinate system with respect to inertial space. The

rigid body dynamics for this system are described by the vector field

f =

[
ω̄ � q̄

I−1
b

(
−ω×Ibω −mgrg

×Rbik̂ + gext

) ] (4.54)

The Jacobian matrix for these dynamics is naturally divided into four quadrants:

F =

[
ω̄� q̄�

I−1
b

(
−mgrg

× ∂Rbi k̂
∂q̄

)
I−1
b

(
−ω×Ib + (Ibω)×

) ] (4.55)

We can define three-term vectors to aid in expressing the derivatives of the rotation

matrix with respect to the quaternions, q±l,±m,±n , [±ql,±qm,±qn]T, such that

∂Rbi ı̂

∂q̄
= 2

[
q11 + q4,−3,2

× q4,−3,2

]
(4.56)

∂Rbi ̂

∂q̄
= 2

[
q21 + q3,4,−1

× q3,4,−1

]
(4.57)

∂Rbi k̂

∂q̄
= 2

[
q31 + q−2,1,4

× q−2,1,4

]
(4.58)

Now that we have developed the state filter equations we progress to the measurement

equations. One crucial difference between the ‘industry standard’ and the DSACSS is

that the air bearings are not equipped with a complete sensor suite. Rather, the Motion-

Pak II sensor provides measurements of the angular velocities and linear accelerations
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only. Recall that full-state feedback in the attitude sense is achieved by angular velocity

measurements (which we have) and at least two vector measurements (which we do not

have). Note that the accelerometer vector has much more nonlinear dynamics than a

simple inertial vector, making it more complex to integrate into a first-order filter. For

the purpose of theoretical development, we also include a suite of three orthogonal vector

measurements.

h =


ω

ω̇×ry + ω×ω×ry − gRbi k̂

Rbiı̂

Rbi̂

Rbik̂

 (4.59)

The sensor Jacobian can be subdivided in a similar manner to the state Jacobian,

H =


0 1(

ry
×I−1

b mgrg
× − g1

)
∂Rbik̂

∂q̄
−ry

×I−1
b

(
−ω×Ib + (Ibω)×

)
− (ω×ry)

× − ω×ry
×

∂Rbi ı̂
∂q̄

0
∂Rbi ̂

∂q̄
0

∂Rbi k̂
∂q̄

0


(4.60)

The first problem with this filter stems from the requirement that the quaternion be

of unit length. This constraint causes several issues. First, the quaternion update in

this filter is additive, making it unclear as to when to enforce the constraint. That

is, if the quaternion is normalized during integration it will not be of unit length after

the measurement update. Normalizing at several points in the filter is not satisfactory

analytically. Secondly, note that the derivatives shown above assume that the quaternions

are independent — which is incorrect. Finally, the interdependency of the quaternions

causes the covariance matrix to be singular.157,158,159,160,161,162,163

4.5.3 Attitude Error / Angular Velocity Filter

There are several possible solutions that can be used to account for the normalization

problem. Clearly, one option is to change to a different set of variables; as the primary

benefit of the quaternion formulation is the lack of singularities in the kinematics equa-

tions, if the attitude is known to be constrained, a singularity-free Euler angle rotation

sequence could be used. A more general solution is to use the filter to update a three-

component attitude error term. This error rotation can be defined in terms of a variety
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of attitude representations — the vector part of the quaternion, the Gibbs vector, the

Modified Rodrigues Parameter — and the representations are identical to second order.

Thus they are all equivalent within the context of an EKF.164 We choose to use a modified

form of the Gibbs vector, a , 2q/q4, where the factor of 2 is included so, for small

rotations,
√

aTa ≈ φ, where the rotation angle φ is as defined in an Euler axis / angle

pair.164 This multiplicative ‘quaternion error’ is defined as

q̄ = δq̄ (a) � q̄ref (4.61)

with kinematics of

˙̄qref = ω̄ref � q̄ref (4.62)

ȧ =

(
1 +

1

4
aaT

)
(ω − ωref)−

1

2
(ω + ωref)

× a (4.63)

The state dynamics for this filter are

f =

[ (
1 + 1

4
aaT

)
(ω − ωref)− 1

2
(ω + ωref)

× a

I−1
b

(
−ω×Ibω −mgrg

×Rbbref (a)Rbref i(q̄ref)k̂ + gext

) ] (4.64)

with

F =

[
1
4
a (ω − ωref)

T + 1
4
1 (ω − ωref)

T a− 1
2
(ω + ωref)

× 1 + 1
4
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2
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2
aTr̂ref31 + 1

2
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T
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(
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(4.65)

where r̂ref3 is the third column of Rbref i(q̄ref) and we have made use of a second-order

approximation

Rbbref (a) =
1

1 + 1
4
aTa

(
1− a× − 1

2

(
1

2
aTa1− aaT

))
(4.66)

≈ 1− a× − 1

2

(
aTa1− aaT

)
(4.67)
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The sensor function is as in the previous subsection. However, the sensor Jacobian must

be restated in terms of the new state vector:

H =


0(

ry
×I−1

b mgrg
× − g1

) (
r̂ref3

× − r̂ref3a
T + 1

2
aTr̂ref31 + 1

2
ar̂ref3

T
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× − r̂ref1a

T + 1
2
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2
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2
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2
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b
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)
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0
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(4.68)

This filter works well if each of the terms in the dynamics equation is well-known. That

is, we must have a good model for the mass properties of the system. We must also

have a thorough understanding of the control suite performance, and confidence that all

unmodeled disturbance torques are small. Moreover, we must derive a new filter using

the gyrostat equations if momentum wheel control is to be used. The Jacobian matrix

approximations for both the dynamic equations and the accelerometer measurements are

already lengthy; these terms will only become more complex if the gyrostat dynamics are

included.

4.5.4 Attitude Error / Rate Gyro Bias Filter

An alternative representation for the angular velocity is to use the rate gyro bias as the

state rather than the angular velocity.165,157,164

In such a filter, the rate gyro measurements are used in the state equations rather than in

the measurement equations. The advantage of such a filter is that it requires no knowl-

edge of the parameters in the dynamics equations, nor the applied torques (internal or

external), allowing a sensor system to be developed for multiple platforms simultaneously.

Thus we now have the following state equations

f =

[
−ωref

×a +
(
1 + 1

4
aaT + 1

2
a×
)
(bref − b− η1)

η2

]
(4.69)

where b is the rate gyro bias and bref is the reference bias associated with ωref . Note that

now it is clear where noise enters into the equations, making the choice of the G matrix
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trivial. These terms are, of course, neglected in the propagation phase of the filter. Also

recall that the attitude error must be reset to zero at the beginning of each propagation

step. Because the bias is a random process it must also be reset to zero at each step.

The state Jacobian matrix now simplifies to

F =

[
−ωref

× + 1
4
aT (bref − b)1 + 1

4
a (bref − b)T − 1

2
(bref − b)×

0 · · ·

−
(
1 + 1

4
aaT + 1

2
a×
)

0

]
(4.70)

The only measurements available are from the accelerometer and the false vector sensors

we include for development purposes, thus

h =


∆b
∆t

×
ry + (yrg − b)× (yrg − b)× ry − gRbi k̂

Rbiı̂
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 (4.71)

with sensor Jacobian matrix

H =


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 (4.72)

One could eliminate the terms which depend upon the position of the sensor, ry. This

simplification would make the sensor model platform independent, as the state model

already is. Although this causes only a small change in the sensor model, such an

assumption makes the sensor Jacobian matrix become singular; this approximation ef-

fectively linearizes the sensor dynamics and causes a substantial degradation in filter

performance. If we assume that the accelerometer is located in the geometric center of

the MotionPak II structure, this vector is easily determined from a CAD model and must

be called as a variable within the EKF algorithm.

Several simulations are used to test filter performance, considering both air bearings’ mass

properties and attitude freedoms. Because the bias filter does not assume any dynamics,
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filter performance does not change with the application of control torques. Therefore, we

can test the filter in a simple, uncontrolled simulation with periodic dynamics and see

which errors grow in time.

We demonstrate the performance of the filter for a nominal Whorl-I maneuver in Fig-

ures 4.10 – 4.14. The bulk motion is a flat spin about the z-axis with an initial rate of
π
4

rad/s. The asymmetry of the body causes small out-of-plane deflections. The filtered

estimates of the states are shown in Figure 4.10.

The error of the estimates with respect to the simulated truth model are shown in Fig-

ure 4.11. Also shown are the maximum covariance estimates for the attitude and rate.

The covariance estimates bound the errors in a reasonable way; thus we can conclude

that the filter is well-tuned. For consistency, we maintain this set of tuning parameters

for all results.

We consider a two-term attitude parameterization in order to demonstrate the importance

of the second vector measurement. With only one vector measurement (from the linear

accelerometer) the filter may still be able to estimate out-of-plane motions accurately.

However, the clocking angle about the nadir vector will be poorly determined. We

introduce a pair of angles, (ψ, θ), where θ is the maximum out-of-plane deflection and ψ

defines the orientation of that angle in the local x − y inertial plane. These definitions

are shown in Figure 4.12. The estimates of these angles are shown in Figure 4.13. Note

that the clocking angle ψ in fact grows continuously in time; we bound the plot range

for convenience.

Both the truth value of the two-angle attitude parameterization and the estimated values

from the filter are shown in Figure 4.13. However, the estimates are of sufficient quality

that the filtered points are not clearly distinguishable from the exact solution. The errors

in the two-angle attitude estimates are shown in Figure 4.14. The amplitude of the scatter

in the errors is based on the quality of the sensor suite. Note that the accelerometer

appears to provide better data than the true vector sensor; this performance is more

likely attributable to the small out-of-plane deviations rather than some benefit from

including additional nonlinearities in the filter dynamics.

Figures 4.14 and 4.15 demonstrate the importance of the second vector measurement.

The filter results presented in Figure 4.15a are based on a vector sensor that is an order

of magnitude noisier than the sensors in the previous filter (Figure 4.14). Reasonably,

the noisier sensor causes the filter to produce lesser quality estimates. However, the error

is again random; there is no persistent drift. The filter results presented in Figure 4.15b

are calculated without the benefit of a second vector measurement; the estimate of the

clocking angle diverges from the truth.
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Figure 4.10: Estimated Attitude and Angular Velocity, x̂bi, for Nominal Whorl-I Maneuver

Figure 4.11: Filter Error and Covariance Envelope, xbb̂, for Nominal Whorl-I Maneuver
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Figure 4.12: Definition of Two-Angle Parameterization

The rate at which the clocking angle estimate drifts is a function of the flat spin rate.

Recall that the results presented to this point are based on an initial spin rate of π
4

rad/s.

Figure 4.16 presents the effect of spin rate on the divergence of this estimate. Figure 4.16a

shows the filter results for a π rad/s maneuver; Figure 4.16b for a 2π rad/s maneuver.

As might be expected, the faster the spin, the faster the estimate diverges.

It is also interesting to consider motions with large out-of-plane deflections that could

be performed by Whorl-II. The simulation shown in in Figure 4.17 in fact goes beyond

the performance bounds of the Whorl-II air bearing but is useful in demonstrating filter

behavior. Figure 4.17a presents the truth model and estimates of the solution for a

π rad/s flat spin with out-of-plane deflections up to 60◦. The error plot in Figure 4.17b

shows less periodicity in the spin angle than seen in the Whorl-I maneuvers, but again

demonstrates the filter’s ability to accurately estimate the out-of-plane angle even for

large displacements.

Thus we can conclude that the limitations of the current sensor suite prevent accurate

large slew maneuvers. However, it is worthwhile to explore the performance of the fil-

ter when estimating maneuvers consisting of largely out-of-plane motions. Figure 4.18

shows the results of out-of-plane motions achievable by Whorl-I (a) and Whorl-II (b).

The out-of-plane angle is estimated well in both simulations. The clocking angle in the
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Figure 4.13: True and Estimated Two-Angle Attitude for Nominal Whorl-I Maneuver

Figure 4.14: Two-Angle Attitude Error for Nominal Whorl-I Maneuver
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Figure 4.15: Two-Angle Attitude Error for Nominal Whorl-I Maneuver. (a) Low-Quality

Vector Sensor; (b) No Vector Sensor

Figure 4.16: Effect of Spin Rate on Two-Angle Attitude Error, No Vector Sensor. (a) π rad/s

Flat Spin; (b) 2π rad/s Flat Spin
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Whorl-I simulation quickly drifts, reaching an error of 90◦ in less than 60 s of simulation

time. Interestingly, the larger out-of-plane deviations in the Whorl-II simulation prevent

the clocking angles from diverging; the component of gravity measured in the ψ direction

during the large excursions provides a reset to the estimate. This phenomenon is analo-

gous to magnetometer-only attitude determination, wherein the slowly-varying magnetic

field vector can be used to incrementally estimate the complete attitude.

4.5.5 Experimental Filter Performance

Qualifying the experimental performance of an estimation scheme is challenging because

the truth model is unknown. We can prevent the Whorl-I air bearing from moving,

thereby providing a simple signal for the filter to analyze as well as a reasonably known

truth model. The results from this testing are shown in Figure 4.19. The full-state

estimate is shown in part (a), and the two-angle attitude parameterization is shown in

part (b). The out-of-plane deflection estimate appears reasonable, although we do not

have independent verification of the value. The clocking angle errors exhibit some random

chatter effects, but begin to drift after only 60 s.

Results from a more elaborate maneuver are shown in Figure 4.20. In this maneuver, the

Whorl-I platform was articulated about the x-axis in a periodic manner. Initial motion

was maintained at a 4 s period; after 30 s the motion changed to a 6 s period. The

filter again appears to accurately capture the out-of-plane motions. However, the spin

estimate quickly drifts. We expect this result based on results of the simulation shown in

Figure 4.18a. Note that neither of these filters were calculated in real-time. The filters

are extremely sensitive to sensor offset values; these corrections are easily applied during

post-processing, but real-time filtering is not feasible at this point.

In this section we documented the development of an EKF for the DSACSS air bear-

ings. We discussed the current limitations of the attitude determination hardware and

have demonstrated the expected capabilities of the filter for both the current and fu-

ture sensor suites. Although experimental performance at this point is not adequate,

we demonstrated the effectiveness of these techniques through simulation and provided

a simple framework through which the current software can be modified to include addi-

tional sensor information.
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Figure 4.17: Effect of Out-of-Plane Motion on Two-Angle Attitude Error, No Vector Sensor.

(a) Angle Estimates; (b) Angle Errors

Figure 4.18: Two-Angle Attitude Estimation for Out-of-Plane Maneuver. (a) Whorl-I; (b)

Whorl-II
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Figure 4.19: Experimental Performance, Non-moving Platform. (a) Full-State Estimates; (b)

Two-Angle Estimates

Figure 4.20: Experimental Performance, Small-Amplitude x-Rotation. (a) Full-State Esti-

mates; (b) Two-Angle Estimates
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4.6 Parameter Estimation

For many applications, high-precision knowledge of the mass properties of a system is

not required. Alternatively, it may be more practical to accept the loss in performance

from freezing the model of a system to a set of inaccurate parameters rather than taking

the risk of adjusting these terms during a mission and causing potentially unpredictable

changes. For such cases — both the low-cost and the high-risk — a simple batch estima-

tion technique for parameter determination is ideal. When maximizing performance is

crucial, the computational costs and potential risks associated with an on-line, adaptive

estimation scheme become acceptable. In the case of DSACSS, we have the freedom to

experiment with both techniques in a low-risk environment.

Most modern aerospace engineering design efforts begin within the framework of a

computer-assisted drawing / design (CAD) program. Many CAD programs can be used to

compute estimates of the model’s mass properties. Such system models can be extremely

high resolution: for example, many programs include libraries of fasteners and commonly

used commercial parts that are easy to incorporate. However, commercial components

are typically drawn as volume models with uniform density. Moreover, flexible items in-

cluding thruster air harnessing and system wire harnessing can be prohibitively complex

to model, yet significantly massive. Particularly in less formal engineering environments

(such as those in university settings) production-time design changes may not be reflected

in the CAD model. Therefore, the mass properties estimate from a CAD model can be

considered a useful tool and an accurate starting place for analysis, but may require

substantial improvement.

A reasonable first step for parameter estimation is to use the mass properties from a

CAD model to design a maneuver. The subsequently obtained attitude and rate data

can then be used as the inputs for a batch estimation technique such as least-squares es-

timation (LSE). Such schemes have been used successfully for the air-bearing spacecraft

simulators at Georgia Tech110 and the Air Force Institute of Technology.166,107,167 Im-

provements in batch estimation effectiveness and efficiency are possible through careful

choice of the input signal used to excitate to the system. These kinds of algorithms have

been used for the Naval Postgraduate School’s air-bearing system,168 the University of

Michigan’s spherical air bearing,169 as well as for simulated and flight-data analysis of

several spacecraft.170,171,172,173,174,175

The literature on batch estimation techniques extends far beyond simple LSE. We could

enhance the realism of the model by means of a recursive optimization technique in which

constraint equations are enforced.176,177 A recursive least squares algorithm could enforce

Sylvester’s inequalities and the triangle inequalities, preventing physically unrealizable
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solutions. Alternatively, we could invoke a recursive algorithm that attempts to minimize

the difference between the estimated parameters and the best-guess of the parameters

as obtained from the CAD model.172 Modeling uncertainty through a Markov estimate

rather than using LSE could also lead to improved convergence behavior.178,171 With

improved attitude estimation, we could make use of a total least squares algorithm.175

Adaptive, or sequential, techniques vary widely. Adjustments can be made within the

observer or the controller algorithm; we consider only the adaptive observer problem here.

There are two possible techniques for updating the parameters of a system within the

observer step in a classical Kalman filter context: dual- and joint-filtering.179 A joint filter

estimates the states and parameters simultaneously within a single nonlinear Kalman

filter (EKF or otherwise). A dual filter intertwines two filters, one for state estimation

and a second for parameter estimation. We have investigated multiple techniques for

sequential parameter estimation, with varying levels of success.179,180,181 We provide a

basic motivation and approach to this problem but do not elaborate on the details.

In this section we document the development and application of batch system identifica-

tion techniques for the DSACSS air bearings. We demonstrate the parameter dependen-

cies within the equations of motion of the system. We document the initial estimate for

the parameters obtained from a CAD model and derive several candidate LSE techniques

that could be used to refine this estimate. The usefulness of each of these techniques is

demonstrated through simulation. We identify possible sources of error in an effort to

predict the accuracy of the experimental results. Current experimental results are not

adequate due to deficiencies in the sensor suite, as explained in Section 4.5. We conclude

with a brief discussion of sequential filtering techniques.

4.6.1 Equations of Motion

Accurate system identification of both the state vector of attitude quaternions and body

angular velocities, along with the nine-term parameter vector (the six unique elements of

the moment of inertia matrix along with the three components of the center-of-gravity

vector)

Π =
{
Ixx, Ixy, Ixz, Iyy, Iyz, Izz,mg rgx,mg rgy,mg rgz

}T
(4.73)

is crucial for successful control of the DSACSS.

In order to show that a linear least squares formulation is applicable to the problem we

must first demonstrate that the system is linear with respect to the parameters. Note

that the parameter vector does not enter into the kinematic equation. However, the
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attitude of the system is coupled into the solution of the parameters due to the gravity

gradient torque. Spacecraft attitude is typically not coupled in the analysis of a torque-

free gyrostat rotating about its center of mass.

We begin with consideration of the simpler problem formulation of a rigid body. This

restatement of the problem, although not applicable in the final solution, is a cleaner

statement of the equations. We restore the cross-coupling gyrostat terms in the derivation

later. The dynamic equations for both systems were presented previously.

By intelligently grouping like terms, the dynamics can be written in such a way that the

system is clearly linear with respect to the parameters:

gext = Ibω̇ + ω×Ibω +mg rg
×Rbi k̂ (4.74)

=
[
ω̇
]{

Ib

}
+
[
ω2
]{

Ib

}
+
[
q̄2
] {

mg rg

}
(4.75)

=

[([
ω̇
]
+
[
ω2
])
,
[
q̄2
]]
·Π (4.76)

, Ω′ ·Π (4.77)

Equation 4.74 is a trivial rearrangement of Equation 4.8. In Equations 4.75 and 4.76

we manipulate terms in order to form matrices of the states multiplied by vectors of

the parameters. Thus
[
ω̇
]

is a 3×6 matrix composed of elements that are functions

of ω̇,
[
ω2
]

is a 3 × 6 matrix filled with quadratic functions of ω, and
[
q̄2
]

is a 3 × 3

matrix containing quadratic functions of the quaternions. The term
{
Ib

}
is a vector of

the six unique elements in the inertia matrix, and
{
mg rg

}
completes the parameter

vector Π with the components of the center-of-gravity vector, as in Equation 4.73. It

is clear from Equation 4.75 that the moments and products of inertia can be calculated

given knowledge of the control torques, the angular velocities, and their derivatives. The

mass and center of gravity are coupled and cannot be determined independently of one

another; these terms are functions of the control torques and the attitude only.

4.6.2 A Priori Estimates

We obtain initial estimates of the parameters through mass properties analysis of a CAD

model. This model is of sufficient detail to include many minor components but does

not include the wiring harness. All commercial components are assumed to be uniform

in density. Values obtained from the CAD model are shown in Table 4.1.
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Table 4.1: Parameter Estimates From CAD Model

Parameter Estimate

Ixx 6.2 kg·m2

Ixy −0.9 kg·m2

Ixz −0.2 kg·m2

Iyy 7.5 kg·m2

Iyz 0.1 kg·m2

Izz 12.1 kg·m2

mg·rgx −0.02 Nm

mg·rgy −0.07 Nm

mg·rgz −2.0 Nm

4.6.3 Batch Least-Squares Parameter Estimation

One way to update the values obtained from a CAD model is through a least-squares

estimation (LSE) algorithm. We investigate the basic requirements for effective use of an

LSE method and develop several formulations for comparison. Fundamentally, LSE only

implies use of some technique to find the best solution to an overdetermined problem in a

least-squares sense. The development of the particular formulation of technique requires

a working understanding of the physics of the system. In this subsection, we derive three

different techniques for solving the parameter estimation problem within the context of

LSE.

Torque Method

The progression from Equation 4.77 into the first least squares implementation requires

only the definition of the pseudo-inverse. Using the definition of the matrix Ω′, we solve

Equation 4.77 via

Π̂ =
(
Ω̆

′TΩ̆
′)−1

Ω̆
′Tğext (4.78)

where the overbreve notation indicates that the torque vector and state matrix are aug-

mented by multiple sets of data. That is, Ω̆
′
=
[

Ω′T
∣∣
t1
, Ω′T

∣∣
t2
, Ω′T

∣∣
t3
, · · ·

]T
and so too

with the torque vector. Note that the Ω′ matrix must have more rows than columns for

implementation of a regression technique, thus requiring the use of the pseudo-inverse

equation as shown. This formulation is dubbed the torque method.171 Implementation
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requires application of a control torque to provide a persistent excitation to the system.

The applied control must sufficiently excite every parameter in order for the algorithm

to converge.

Recall that the matrix Ω′ contains functions of the states as well as the derivatives of

the angular velocities. In an alternative formulation we integrate Equation 4.77, leaving

functions of the states and their integrals. The integrated form of the torque method is

simply ∫ t

t0

Ω′ ·Π dτ =

∫ t

t0

gext dτ (4.79)

Ω ·Π =

∫ t

t0

gext dτ (4.80)

where the new matrix of states, Ω, contains functions of the angular velocities, quater-

nions, and their integrals — but no derivative terms. Motivation for this step is provided

below.

The torque method is the most intuitive LSE formulation to derive. More refined LSE

schemes for spacecraft parameter estimation make use of some of the special character-

istics of the attitude dynamics associated with an orbiting spacecraft: the conservation

of energy and the conservation of angular momentum. Before progressing to these tech-

niques, however, we must expand this derivation to the gyrostat equations.

Rewriting Equations 4.13 and 4.14 in terms of body and wheel angular velocities rather

than angular momenta results in

Ibω̇ + ω×Ibω +mg rg
×Rbi k̂ = AIsA

Tω̇ − ω×AIsωs −Aga + gext (4.81)

where all of the terms on the right hand side are considered to be known. The left hand

side is of the identical form to the rigid body equations, thus

Ω′ ·Π = AIsA
Tω̇ − ω×AIsωs −Aga + gext (4.82)

Integrating both sides of the equation yields

Ω ·Π = −AIsωs −
∫ t

t0

ω×AIsωs dτ +

∫ t

t0

gext dτ (4.83)

Momentum Integral

An extension of the torque method LSE implementation is the momentum integral. This

method makes use of the ideally torque-free nature of the system such that for any pair
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of data points in time, t1 and t2, the total angular momenta differ only by the rotation

of the body in that time, R21, yielding(
Ω′ ·Π− gext

)
t2

= R21
(
Ω′ ·Π− gext

)
t1

(4.84)(
Ω′
∣∣∣
t2
−R21Ω′

∣∣∣
t1

)
·Π = gext

∣∣∣
t2
−R21gext

∣∣∣
t1

(4.85)

This formulation is a time-shifted difference of two torque method equations, and as

such can be integrated in exactly the same way. The length of the time lag is determined

by the magnitude of the shift: if t2 and t1 are subsequent data points, we term that a

singly-shifted momentum integral technique. The momentum integral technique offers

an advantage of additional smoothing of the data. Skipping one or more data points

(doubly- or triply-shifting) can further smooth the data, but becomes unstable in the

presence of unmodeled dissipation forces. Note that this technique halves the size of the

data set, requiring a longer time span for data collection.

Energy Balance

The energy balance has been proposed as a more computationally efficient technique

because it combines the three equations obtained at each time step into a single equa-

tion.170,171 This energy-like expression is obtained by dotting the angular velocity vector

with the equations of motion of the system

ωT
(
Ibω̇b + ω×Ibω +mg rg

×Rbi k̂
)

= ωT
(
gext

)
(4.86)

This transformation eliminates the rigid body contribution to the motion, because

ωT
(
ω×Ibω

)
= 0 (4.87)

However, by only considering the motion in the direction of the angular velocity vector

there is a risk of losing observability of one or more parameters.171

The integrated form of the energy balance equation is∫ t

t0

ωT
(
Ibω̇ +mg rg

×Rbi k̂
)
dτ =

∫ t

t0

ωT
(
gext

)
dτ (4.88)

Note that the first term is the derivative of rotational kinetic energy

ωTIbω̇ =
1

2
ωTIbω̇ +

1

2
ω̇TIbω (4.89)

= Ṫrotation (4.90)
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and as such can be symbolically integrated to obtain

ω(t)TIbω(t)− Trotation(t0) +

∫ t

t0

ωT
(
mg rg

×Rbi k̂
)
dτ =

∫ t

t0

ωT
(
gext

)
dτ (4.91)

Unfortunately, there is no analog to the energy balance formulation for the gyrostat equa-

tions. Considering Equations 4.82 and 4.91 we can see a term involving the integration of

ω̇ and ωs. It is not possible to evaluate this integral analytically. Numerical evaluation

results in calculation of derivative terms, a step we are endeavoring to avoid. As such,

we choose not to implement the energy balance technique.

4.6.4 Least-Squares Estimation Performance

In the previous subsection we developed three different LSE techniques. We have already

discounted one of these techniques due to the requirement of calculating a numerical

derivative. We justify this position below.

Several factors contribute to the convergence of the estimates. The control input must

provide excitation of each parameter. Because we are relying on a simple numerical

integration technique, step size plays a significant role in maintaining accurate numeric

integration. Moreover, the dynamics of the system dictate the minimum step size for

full observation as per the Nyquist criterion. Simulation time determines the size of

the data set; however, longer simulation times lead to increased uncertainty levels due to

inadequacies of the available sensor suite, discussed previously. Robustness to sensor noise

is imperative. Note that noise can only impair the quality of an estimation: if a noise-free

data set is degenerate in estimating one or more parameters, those parameters will not

be accurately identified after the addition of random noise. Any apparent improvement

is a numerical artifact only.

If any of the parameters are unobservable (or nearly so), Ω̆
T
Ω̆ will have a corresponding

number of singular values that approach zero. A singular value of exactly zero indicates a

parameter that is not affecting the motion: such terms can be dropped from the solution

set without loss of information. However, very small singular values may indicate only

that a significant parameter is not being sufficiently excited, thus potentially leading to

inaccurate estimation of the entire vector of parameters.

Natural vs. Integrated Forms

Batch estimation techniques compensate for random noise. However, the original ma-

trix of states, Ω′, includes the derivatives of the angular velocity. Such terms must be
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computed numerically from the noisy rate gyro data; numerical derivatives, regardless of

order, are highly unstable in the presence of noise. As such, performing LSE analysis by

computing the natural form of the state matrix, as as in Equations 4.82, 4.85, and 4.91

results in parameter estimates that are highly sensitive to the sensor noise. In contrast,

the solution of the integrated form shown in Equation 4.83 requires that we compute

numerical integrals rather than derivatives; numerical integration is robust to random

noise.

We demonstrate this phenomenon in Figure 4.21. These plots present the performance of

the natural (left plot) and integrated (right plot) forms of the torque method technique.

We simulated a rigid body excited by a square wave thruster profile, firing about the

z-axis only. The period of the square wave input, used as the ordinate axis for these

plots, is representative of the excitation of the input. The amplitude of simulated white,

zero-mean, constant amplitude sensor noise defines the abscissa. The colormap axis

presents the median percent-error of the nine-term parameter estimate. The parameter

estimation problem is inherently numerically ill-conditioned: these physical values can

easily span three orders of magnitude. This range of values does not cause problems in the

numeric solution of the LSE, but it can make the results of the percent-error calculation

unclear — the same absolute error in two parameters can yield very different percent

error results. As such, the median value of the nine-term percent error vector provides a

more consistent representation of algorithm performance than either the maximum value

or the mean.

It is clear from the plots in Figure 4.21 that the integrated form of the equations is a much

more stable formulation of the problem. High-frequency excitations are not observable

due to the step size of the simulation; this Nyquist frequency cutoff is indicated by the

label ‘Ny’ on the ordinate axis. It is well-understood that these data will not produce

valid estimates regardless of sensor quality. However, once the system is maneuvering

in an observable way, we expect that noisy sensor data could still be used to observe

large-amplitude maneuvers, whereas higher-quality data should be able to produce good

estimates from smaller motions. We see this behavior from the integrated techniques

only. The natural form of the equations produces estimates only as good as the sensor

data, regardless of the input signal: that is, the convergence of the solution is driven by

the quality of the numerical derivatives. Whereas the natural form only produces valid

results with up to 1% sensor noise, the integrated form is shown to be robust to data

with ten times that noise level. We continue considering only the integrated forms, and

therefore only the torque method and momentum integral techniques.
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Figure 4.21: Torque Method LSE Performance in Natural and Integrated Forms [% Median

Error]

Data Generation and Sample Performance

Here we present the full simulation of the Whorl-I gyrostat. We begin with the simulation

of a rigid body controlled by thrusters. We choose a simple, bang-bang thrust profile

about the x-axis. The open-loop controller applied ±0.01 Nm external torques at a

period of 10 s. This controller produces out-of-plane motions up to 5◦, the limit of the

Whorl-I air bearing. We run 100 s simulations with a step size of 0.1 s. The parameter

estimates using data from the noise-free simulation are shown in Table 4.2.

The results shown in Table 4.2 demonstrate that the parameters are well excited and

therefore easily identified to great accuracy. This performance is as expected for the

zero-noise case. The two integrated techniques perform comparably; all error is due to

the step-size of the first-order numerical integration technique. Note that a negative

percent error indicates that the estimated parameter is smaller than the expected value.

In order to predict the realistic performance of the LSE algorithms, we add noise to the

sensor data and process it through the EKF, as described in Section 4.5. We consider

both the two-vector and accelerometer-only sensor configurations. We assume that the
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Table 4.2: Parameter Estimates Obtained Using Perfect Data

Parameter Torque Method Momentum Integral

Estimate % Error Estimate % Error

Ixx 6.15 0.77 6.15 0.73

Ixy -0.89 -0.86 -0.89 -0.98

Ixz -0.20 -0.48 -0.20 -1.02

Iyy 7.44 0.81 7.43 0.97

Iyz 0.10 0.47 0.10 0.74

Izz 12.05 0.45 11.97 1.04

mg·rgx -0.02 -0.80 -0.02 -0.97

mg·rgy -0.07 -0.80 -0.07 -0.95

mg·rgz -1.98 -0.80 -1.98 -0.96

external torques are exactly known; we have investigated the effects of several sources of

uncertainty on LSE performance previously.180

The results using estimates from a filter with a second vector measurement are shown

in Table 4.3. These results demonstrate that some parameters were more effectively

excited than others, thereby allowing them to be better identified in the presence of noise.

This effect can be mitigated by applying a more elaborate control law, or by combining

several simple maneuvers into one augmented data set. Regardless, this simulation clearly

demonstrates the effectiveness of the LSE techniques for experimental scenarios. The

torque method performance is superior to the momentum integral technique; this trend

holds for all simulations.

In contrast, the estimates obtained using simulations of the current sensor suite are

unacceptable. These results are shown in Table 4.4. Batch estimation techniques are

robust to random noise but not to persistent drifting of the state estimates. As such,

attempting experimental parameter estimation is impractical at this time.

4.6.5 Sequential Parameter Estimation

The Extended Kalman Filter (EKF) is the most commonly used sequential filter for

online estimation of spacecraft attitude dynamics. A first-order nonlinear filter, its op-

timality cannot (as in the case of the linear Kalman filter182) be proven. However, the

EKF is commonly successfully used to provide state estimates of continuous-time, non-
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Table 4.3: Parameter Estimates Obtained Using Filtered Data, Two Vector Sensors

Parameter Torque Method Momentum Integral

Estimate % Error Estimate % Error

Ixx 6.34 2.32 6.96 12.3

Ixy -0.84 -7.00 -1.06 -18.2

Ixz -0.00 -99.4 0.05 -123.

Iyy 7.72 2.99 8.49 13.2

Iyz -0.20 295. -0.02 119.

Izz 0.14 98.9 0.09 99.3

mg·rgx -0.02 -3.90 -0.02 -11.6

mg·rgy -0.07 -3.52 -0.08 -11.7

mg·rgz -2.07 -3.58 -2.25 -12.5

linear dynamic systems from noisy, discrete-time measurements. Attempts to address the

first-order approximation shortcomings of the EKF — which can lead to instability of the

filter — are not new.183,184,185,186,187,188 Coupled attitude and parameter estimation tech-

niques benefit from these higher-order nonlinear filters because the problem is so tightly

coupled. The current sensor suite will not support sequential parameter estimation, but

such techniques are worth exploring for future application.

Recent proposed improvements to the EKF have branched out into two areas of research.

The two branches offer improved performance against different sources of error.189 One

technique seeks to improve the convergence of the first-order filter by iterating at the

measurement update step. These Iterated Extended Kalman Filters (IEKF) reduce the

effective measurement noise. As such, they can be more tolerant to process noise and

errors in initial conditions. Iterating in the measurement step also provides robustness

against the first-order approximations of the derivatives.156,189

The second family of modified nonlinear filters improve performance by eliminating the

Jacobian representation of the derivatives. These filters can yield drastically improved

behavior beyond the convergence of the EKF for the same order of floating point oper-

ations (flops). A thorough review of these Linear Regression Kalman Filters (LRKF) is

beyond the scope of this dissertation.190,191,192,193,194,195,196,197,198,199,200,201,202,203 Some

of these techniques have been further enhanced to capitalize on the improvements ob-

tained through iteration in the IEKF and apply similar techniques to these higher-order

filters. The Unscented Kalman Filter (UKF), a member of the LRKF family, has recently

been documented for application to spacecraft attitude and orbital dynamics; such ap-
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Table 4.4: Parameter Estimates Obtained Using Filtered Data, Accelerometer-Only Sensor

Suite

Parameter Torque Method Momentum Integral

Estimate % Error Estimate % Error

Ixx 0.03 99.5 0.01 99.9

Ixy 0.03 -103. -0.06 -92.8

Ixz -0.03 -87.4 -0.04 -80.4

Iyy -0.02 100. -0.04 100.

Iyz 0.01 89.0 -0.07 171.

Izz -0.00 100. -0.13 101.

mg·rgx 0.00 -103. 0.00 -101.

mg·rgy 0.00 -103. 0.00 -105.

mg·rgz 0.07 -103. 0.04 -102.

plications are unusual in a literature dominated by theory papers and neural network

applications.204,205,181

There are two simple extensions that can be applied to any Kalman filter. These tech-

niques — joint and dual filtering — use an analogous filter to estimate the parameters

concurrently with the states. The joint method is the simpler to conceptualize: the pa-

rameter vector of interest is simply appended onto the true state vector. The time-update

for the latter portion of the augmented state vector allows no changes beyond the effects

of process noise (i.e., the parameters should be constant) but the entire augmented covari-

ance matrix is propagated as one.155,154,156,206 The dual filtering technique intertwines a

pair of distinct sequential filters, one estimating the true states and the other estimating

the parameters.200,207,208,206,209,210,211,212 The parameter estimation equations for each of

the aforementioned filter types are similar to those for state estimation. We present the

parameter estimation equations in the EKF context below and do not provide explicit

derivations for the IEKF and UKF filters here. We have investigated this problem in

previous works.179,181

Joint Filtering The joint filter is initialized with

x̂aug(t0) =
[
x̂T

0 , Π̂
T

0

]T
(4.92)

Paug0 = E
{(

xaug(t0)− x̂aug0

)(
xaug(t0)− x̂aug0

)T}
(4.93)
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with a time update step of

˙̂xaug(t) =

[
f(x̂(t),u(t), Π̂, t)

0

]
(4.94)

The actual filtering equations are as in the standard Kalman filter.

Dual Filtering The Dual Filtering equations are analogous to the state filtering equa-

tions. The time-update equations are the trivial (constant) case, provided here in discrete

time form

Π̂
−
k = Π̂

+

k−1 (4.95)

PΠ
−
k = PΠ

+
k−1 + QΠk−1 (4.96)

There are several techniques for choosing the parameter process-noise matrix, QΠ. We

follow the ‘forgetting factor’ technique here,

QΠk , (λ−1 − 1)PΠ
+
k (4.97)

PΠ
−
k = PΠ

+
k−1 + (λ−1 − 1)PΠ

+
k (4.98)

= λ−1PΠ
+
k−1 (4.99)

The memory constant λ ∈ (0, 1]; λ is typically in the range from 0.997− 0.999.208

The Kalman gain and associated measurement-update equations for the parameter EKF

are

KΠk
= P−

Πk
ET

k

[
EkP

−
Πk

ET
k + RΠk

]−1

(4.100)

Π̂
+

k = Π̂
−
k + KΠkek (4.101)

The innovations process of a dual filter can be conceptualized as the error in the equation

of interest. To determine the parameters of an arbitrary system of equations, the error,

e, and its Jacobian matrix (with respect to the parameters, Π), E, are defined as

ek = dk −Gk (4.102)

Ek = − ∂e

∂Π

∣∣∣
Π=Π̂

−
k

(4.103)

To learn the parameters that dictate the state dynamics, dk → ˙̂x(tk) and Gk → f(x̂k, Π̂k),

yielding first-order approximate equations of

ek =
x̂+

k − x̂+
k−1

tk − tk−1

− f(x̂+
k , Π̂

−
k ) (4.104)

Ek =
∂f(x̂+

k , Π̂
−
k )

∂Π

∣∣∣
Π=Π̂

−
k

(4.105)
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The measurement-update equations could be recast in terms of the IEKF framework by

iterating to evaluate the error vector of Equation 4.104 and its Jacobian (Equation 4.105)

with the updated parameters. Of course, both of these techniques can be restated in terms

of the IEKF, UKF, or any other LRKF.



96

Chapter 5

Conclusions and Recommendations

This dissertation documents the design and development of a unique laboratory testbed,

the Distributed Spacecraft Attitude Control System Simulator (DSACSS). The DSACSS

is not yet fully operational, but a great deal of work has already gone into its development.

When a few additional components are included the system will be fully functional.

Ultimately, the DSACSS will prove to be a valuable testbed for spacecraft formation

flying analysis and demonstration.

5.1 Summary

We motivate the development of the DSACSS by providing a brief review of the formation

flying problem. Formation flying has proven to be an exciting area of research, the bulk of

which focuses exclusively on the orbital dynamics aspect of the problem. We demonstrate

a deficit in the literature: the need to address the entire dynamic system in a coupled

attitude and orbital dynamics problem. The DSACSS will be a useful tool in experimental

demonstration of this work.

We place the DSACSS in an experimental context through a survey of air-bearing space-

craft simulators. These systems have been documented as important test facilities since

1960. This family of experimental facilities is highly diverse, ranging from miniature

desktop models to massive 15,000 lb payloads. Some have just one complete degree-of-

freedom, others are nearly unlimited in both translation and rotation. Systems may be

manned. They may be used in a nominal laboratory environment or maintained within

vacuum chambers and mounted on seismic dampening structures. Some air bearings are

custom designed and built for government or industry use, while others are developed
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by engineering students in university labs. Such a range of systems provides the abil-

ity to investigate a wide array of research topics. The DSACSS adds yet another new

capability, by allowing investigation of multi-vehicle systems.

We also present an exciting new tool for experimental demonstration of formation flying:

GPS simulators. Far from serving only as a deus ex machina plot device in a James Bond

movie,∗ GPS simulators allow for closed-loop experimental demonstration of orbit con-

trol schemes. When coupled with the DSACSS true six degree-of-freedom experimental

formation flying will be possible.

We provide a wide range of information on the DSACSS system in this dissertation,

including a brief history of the design choices that led to the present hardware and soft-

ware configuration. We derive and analyze the experimental equations of motion for the

system and for the sensor suite. Using this knowledge, we derive and simulate the per-

formance of nonlinear estimation schemes using the Extended Kalman Filter algorithm.

We extend the estimation problem to also include the mass properties. We demonstrate

the performance of these algorithms and their robustness to noise.

5.2 Recommendations

The most obvious recommendation from this work is to develop an additional attitude

sensor. Effective attitude determination requires either another vector measurement or

higher quality rate gyros. Better rate gyros are likely to be prohibitively expensive and

would mask the problem rather than solving it. However, there is an interesting body of

work which documents using suites of linear accelerometers for angular rate sensing; this

would be an interesting future development for use on DSACSS.213,214 Possible spacecraft-

like techniques for additional vector measurements include lab-based sun sensors, star

(pattern) cameras, and magnetic field sensors. Several of these techniques are currently

under investigation by students in the lab.

Another key recommendation involves the DSACSS-Ops software. Much of this code was

rapidly developed with minimal team input. It would be beneficial — especially with

the large personnel turnover currently taking place in the lab — to thoroughly review

the software architecture. Certainly there are constructs which were implemented early

in the coding process that are no longer useful. Further, it is likely that the current state

of the software will suggest new methods. Although aerospace engineers are typically

reticent to develop code, it is important to maintain the quality of the software so that

∗ Tomorrow Never Dies, R. Spottiswoode (director), Metro-Goldwyn-Mayer Studios, 1997.
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it remains useful for many generations of students.

In a related note, it would be beneficial to develop software simulation stubs for all

of the DSACSS hardware. Currently, the only way to run DSACSS-Ops code, even in

the initial phases of testing, is to run it on the embedded computer system with all of

the hardware in-the-loop. This operational requirement is troublesome for several rea-

sons. For example, if a component is removed from the system, otherwise functional

code will crash. More importantly, there is no opportunity for debugging software safely.

Certainly it is possible to comment out or artificially limit commands to the hardware.

However, it is not feasible to wholly debug algorithms in this limited operational state.

A DSACSS software simulator† would allow developers to run with the hardware only

when ready, and would allow for multiple students to test code simultaneously. Cur-

rent plans for the software include implementing a communications strategy which runs

all computationally-intensive algorithms on a modern desktop processor; fast PC/104

processor cards are much more expensive than comparable desktop processors. This in-

frastructure opens up the possibility for real-time linking with Matlab r©. This would

also ease in the debugging process, as most controller and observer algorithms are first

developed in this environment.

In all, the first DSACSS team has developed an exciting new facility with much promise.

It will be interesting to follow the system’s progress and learn of new developments that

have not presently even been conceived.

†DSACSSSS, perhaps?
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Appendix A

Lessons in Management from the

Space Systems Simulation

Laboratory

This dissertation would be incomplete (and I would be remiss in the telling) were it not

to include a section on the lab that hosts the DSACSS, the Space Systems Simulation

Laboratory (SSSL). Although much of the Whorl-I hardware was in hand as early as

1999, the program did not really begin to come together until the right group of students

began working together several years later. Prior to that time the students working in the

SSSL all had very similar skill sets. We were finally able to bring together a sufficiently

disparate team, with interests and knowledge ranging from low-level computer operation

to mechanical analysis and design. Since then, the SSSL has been a host to a diverse

group of graduate and undergraduate students. We recognize the long-term benefits of

maintaining a broad team, from freshmen through doctoral students.

As the senior graduate student in the lab, it has been my responsibility and privilege to

help direct the course of lab activities. Whether I have done well in these tasks I suppose

will only be reflected in how much of what I have started is maintained after I am gone.∗

I certainly hope that the lab has benefitted from my efforts as much as I have from the

work of the individuals in our lab group.

Running lab activities has also provided a unique component of my graduate work. In

this section I provide a brief listing of some of the lessons I have learned as a leader and

as a systems engineer. It is my hope that this section will prove beneficial to the next

∗Among other things, I hope that the lab webpage will continue to be maintained at
http://www.aoe.vt.edu/research/groups/sssl.
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SSSL group leader.

I learned a great deal about leadership through my managerial roles in the HokieSat and

ION-F programs. However, work in the lab has a very different dynamic. The SSSL team

is a much smaller group of students; as such, I have been better able to interact with

each team member. In turn, this has required me to learn the best way to motivate each

individual. This is a much harder problem than when dealing primarily with subsystem

team leaders, as such students are typically the most interested and motivated subset of

the greater team: the elite tend to manage themselves. I do not wish suggest that SSSL

members are not dedicated — quite the contrary! However, the team is largely comprised

of unpaid students with many commitments. Some students spread themselves too thin

unless kept in check. Others produce very little unless tightly managed or put in charge

of a small team of their own. It has been a challenge to determine the best managerial

strategy for each group member — which is not to say that I have done so successfully.

It is not important for the team leader to be friends with every person on the team. What

is important is that each member of the group respect the lab and its goals. It is easier

if each person also has a modicum of professional respect for the team leader, but even

that is not required; it is possible to work with a student indirectly through other team

members if need be. However, it is indicative of a problem if multiple team members are

not friendly with an individual: this tends to signal that the student in question has lost

sight of the goals of the lab and is focused on individual achievements. Sometimes it is

possible to resolve these conflicts by discussing the problem with the student, and such

efforts should be attempted. If such talks are not successful, it is difficult, but the best

thing to do is to eliminate reliance on this student from progress in the critical path of

the program. Students work best on what interests them, and their energies may still

lead to something of use for the lab in the long term. However, such a person is no longer

an effective member of the team and cannot be counted on to produce on demand.

Meetings should be ‘long enough,’ but as brief as possible. Importantly, meetings should

only contain content that is relevant to most everyone in attendance; subsystem meetings

are useful for those areas that only affect a few students’ work. The team leader should

not be afraid to cut off a member who is overly expounding on a topic and redirect that

conversation to another time. Meeting notes are important, even if it seems that no one

reads them. Deadlines and targeted goals are very useful, and it is not impractical to

assign a target date to every item on the list.

Design reviews are critical for several reasons. The Preliminary Design Review (PDR)

forces a student to fully understand the purpose of the component under design. It allows

the student freedom to be creative and brainstorm unique solutions to the problem. Even
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if the ‘most obvious’ solution is selected as the best option after this review, the PDR

has still forced the student to think fundamentally about the problem rather than diving

directly into analysis. Further, PDR presentations are difficult to give. A student will

typically come prepared with hand sketches and half-formed ideas rather than a flashy

slide show littered with complex equations. It is much easier for the rest of the team to

ask relevant hard questions at a PDR than at any of the other design reviews. This level

of interaction is good, because it is important for the team to learn to think critically

and for the presenter to learn how to receive professional criticisms.

The Conceptual Design Review (CoDR) allows the student to present what he believes to

be the best design based on the results of the PDR. This review is the best time for input

from the support staff from the electrical and machine shop (although their attendance at

all design reviews should be encouraged!) and from those students who have experience

in related tasks. This design review often includes a description of algorithms that can

be difficult to convey quickly, thus the presenter should be encouraged to take as much

time as needed to wholly describe the solution he has devised. If the CoDR goes well,

the Critical Design Review (CDR) can often be performed quickly and informally, as a

part of a normal meeting.

We have implemented a good design review policy for the design of major components.

However, small parts typically skip through the review phase, sometimes causing a single

piece to be remanufactured several times due to design flaws. Further, we have not

instituted design reviews for software, nor for individual research projects. Software

would be difficult to fit into the three-stage review process, but would benefit from peer

critique. A team critique of individual research project goals and procedures would

provide students with perspectives of how their work could be integrated into the lab

activities. I believe that instating reviews of these processes would produce an overall

improvement in lab effectiveness.

Documentation is critical in a student laboratory due to high personnel turnover. How-

ever, students typically dislike writing documentation and will neglect it if possible.

Operational procedures for new hardware are necessary in order to prevent inadvertent

damage to components due to misuse. Importantly, students must also be told to read

and understand the documentation!

Software documentation is an ongoing process, eased by the use of a software self-

documenting program, Doxygen.† By formatting comments in a Doxygen-specific way

we are able to auto-generate a helpful web interface to the code documentation. We do

not as yet have an automated technique for updating this site, but the process to upload

† http://www.doxygen.org
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a new webpage is simple. Further, use of Concurrent Versions System (CVS) for soft-

ware storage provides a robust tool for version control and documentation of changes.‡

In order to be a part of the open-source software community (and to avoid maintaining

a CVS repository on our own), we commit software changes to a repository hosted by

SourceForge.net.§ Each time a file is recommitted to the repository the author indicates

what changes have been made; these notes are automatically logged at the bottom of

the file and noted on the repository website. By use of a few key tools we have made

software documentation as simple as possible. Thus far it has been quite successful.

‡ http://www.cvshome.org
§ http://sourceforge.net



103

References

[1] H. C. Schubert and J. P. How, “Space Construction: An Experimental Testbed to

Develop Enabling Technologies,” in Proceedings of the Conference on Telemanipu-

lator and Telepresence Technologies IV, no. 98-17930, (Pittsburgh, Pennsylvania),

pp. 179–188, October 14–15, 1997.

[2] D. Miller, A. Saenz-Otero, J. Wertz, A. Chen, G. Berkowski, C. Brodel, S. Carlson,

D. Carpenter, S. Chen, S. Cheng, D. Feller, S. Jackson, B. Pitts, F. Perez, J. Szu-

minski, and S. Sell, “SPHERES: A Testbed For Long Duration Satellite Formation

Flying In Micro-Gravity Conditions,” in Proceedings of the AAS/AIAA Space Flight

Mechanics Meeting, (Clearwater, Florida), pp. 167–179, January 23–26, 2000.

[3] W. Haeussermann and H. Kennel, “A Satellite Motion Simulator,” Astronautics,

vol. 5, pp. 22–23, 90–91, December 1960.

[4] J. Stanton, “Navy, Air Force to Develop Twin-Mirror Laser-Retargeting Satellite

Technology,” National Defense Magazine, August 2002.

[5] D. T. Radzykewycz, J. L. Fausz, and W. R. James, “Energy Storage Technology

Development at the Air Force Research Laboratory Space Vehicles Directorate,”

in Proceedings of the Space Technology Conference and Exposition, no. 99-4503,

(Albuquerque, New Mexico), September 28–29, 1999.

[6] M. A. Peck, L. Miller, A. R. Cavender, M. Gonzalez, and T. Hintz, “An Airbearing-

Based Testbed for Momentum-Control Systems and Spacecraft Line of Sight,”

in Proceedings of the 13th AAS/AIAA Space Flight Mechanics Winter Meeting,

no. AAS 03-127, (Ponce, Puerto Rico), February 9–13, 2003.

[7] S. Cho and N. H. McClamroch, “Feedback Control of Triaxial Attitude Control

Testbed Actuated by Two Proof Mass Devices,” in Proceedings of the 41st IEEE

Conference on Decision and Control, (Las Vegas, Nevada), pp. 498–503, December

2002.



REFERENCES 104

[8] P. K. C. Wang, J. Yee, and F. Y. Hadaegh, “Synchronized Rotation of Multiple

Autonomous Spacecraft with Rule-Based Controls: Experimental Study,” Journal

of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 352–359, March–April

2001.

[9] G. Wilt and A. Ledebuhr, “Down-to-Earth Testing of Microsatellites,” Science and

Technology Review, pp. 24–26, September 1998.

[10] R. B. Voas, H. I. Johnson, and R. Zedekar, “Mercury Project Summary,” Tech.

Rep. NASA-SP-45.

[11] R. L. DeFazio, S. Owens, and S. Good, “Follow That Satellites: EO-1 Maneuvers

Into Close Formation with Landsat-7,” in Proceedings of the AAS/AIAA Astrody-

namics Specialists Conference, no. AAS 01-450, (Quebec City, Quebec, Canada),

July 30–August 2, 2001.

[12] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. Reston,

Virginia: American Institute of Aeronautics and Astronautics, 2003.

[13] M. S. de Queiroz, V. Kapila, and Q. Yan, “Adaptive Nonlinear Control of Multi-

ple Spacecraft Formation Flying,” Journal of Guidance, Control, and Dynamics,

vol. 23, no. 3, pp. 385–390, May–June 2000.

[14] G. W. Hill, “Researches in the Lunar Theory,” American Journal of Mathematics,

vol. 1, no. 1, pp. 5–26, 1878.

[15] G. W. Hill, “Researches in the Lunar Theory,” American Journal of Mathematics,

vol. 1, no. 2, pp. 129–147, 1878.

[16] G. W. Hill, “Researches in the Lunar Theory,” American Journal of Mathematics,

vol. 1, no. 3, pp. 245–260, 1878.

[17] W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance System for Satellite

Rendezvous,” Journal of the Aerospace Sciences, vol. 27, no. 9, pp. 653–658, 674,

September 1960.

[18] W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance System for Satellite

Rendezvous,” in Institute of the Aerospace Sciences Summer Meeting, no. 59-93,

(Los Angeles, California), June 1959.

[19] H. S. Seifert, ed., Space Technology, ch. 26-5, Satellite Rendezvous, pp. 26/28–

26/29. New York, New York: John Wiley and Sons, Inc., 1959.



REFERENCES 105

[20] L. W. Spradlin, “The Long-Time Satellite Rendezvous Trajectory,” Aerospace En-

gineering, vol. 19, pp. 32–37, June 1960.

[21] J. M. Eggleston, “Optimum Time to Rendezvous,” ARS Journal, vol. 30, pp. 1089–

1091, November 1960.

[22] F. T. Geyling, “Satellite Perturbation from Extra-Terrestrial Gravitation and Ra-

diation Pressure,” Journal of the Franklin Institute, vol. 269, no. 5, pp. 375–407,

1960.

[23] C. Sabol, R. Burns, and C. A. McLaughlin, “Satellite Formation Flying Design

and Evolution,” Journal of Spacecraft and Rockets, vol. 38, no. 2, pp. 270–278,

March–April 2001.

[24] R. H. Vassar and R. B. Sherwood, “Formationkeeping for a Pair of Satellites in

a Circular Orbit,” Journal of Guidance, Control, and Dynamics, vol. 8, no. 2,

pp. 235–242, March–April 1985.

[25] R. A. Howard, T. A. Lovell, and K. R. Horneman, “Collision Avoidance During

Rendezvous via Relative Motion Approximation,” in AAS/AIAA Astrodynamics

Specialists Conference, no. AAS 03-650, (Big Sky, Montana), August 3–7, 2003.

[26] V. Kapila, A. G. Sparks, J. M. Buffington, and Q. Yan, “Spacecraft Formation

Flying: Dynamics and Control,” Journal of Guidance, Control, and Dynamics,

vol. 23, no. 3, pp. 561–564, May–June 2000.

[27] S. M. Veres, S. B. Gabriel, D. Q. Mayne, and E. Rogers, “Analysis of Formation

Flying Control for a Pair of Nanosatellites,” Journal of Guidance, Control, and

Dynamics, vol. 25, no. 5, pp. 971–974, September–October 2002.

[28] H.-H. Yeh, E. Nelson, and A. Sparks, “Nonlinear Tracking Control for Satellite

Formations,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 2, pp. 376–

386, March–April 2002.

[29] S. A. Schweighart and R. J. Sedwick, “High-Fidelity Linearized J2 Model for Satel-

lite Formation Flight,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 6,

pp. 1073–1080, November–December 2002.

[30] J. A. Roberts and P. C. E. Roberts, “The Development of High Fidelity Linearized

J2 Models for Satellite Formation Flying Control,” in AAS/AIAA Sapce Flight

Mechanics Conference, no. AAS 04-162, (Maui, Hawaii), February 8–12, 2004.



REFERENCES 106

[31] I. M. Ross, “Linearized Dynamic Equations for Spacecraft Subject to J2 Perturba-

tions,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 4, pp. 657–659,

July–August 2003.

[32] T. A. Lovell, K. R. Horneman, S. G. Tragesser, and M. V. Tollefson, “A Guidance

Algorithm for Formation Reconfiguration and Maintenance Based on the Perturbed

Clohessy-Wiltshite Equations,” in AAS/AIAA Astrodynamics Specialists Confer-

ence, no. AAS 03-649, (Big Sky, Montana), August 3–7, 2003.

[33] D. Mishne, “Relative Formation Keeping of LEO Satellites Subject to Small Drag

Differences,” in Proceedings of the AAS/AIAA Astrodynamics Specialists Confer-

ence, no. AAS 01-455, (Quebec City, Quebec, Canada), July 30–August 2, 2001.

[34] T. Carter and M. Humi, “Rendezvous Equations in a Central-Force Field with

Linear Drag,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 74–

79, January–February 2002.

[35] T. Carter and M. Humi, “Clohessy-Wiltshire Equations Modified to Include

Quadratic Drag,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 6,

pp. 1058–1063, November–December 2002.

[36] W. E. Wiesel, “Relative Satellite Motion About an Oblate Planet,” Journal of

Guidance, Control, and Dynamics, vol. 25, no. 4, pp. 776–785, July–August 2002.

[37] T. E. Carter, “State Transition Matrices for Terminal Rendezvous Studies: Brief

Survey and New Example,” Journal of Guidance, Control, and Dynamics, vol. 21,

no. 1, pp. 148–155, January–February 1998.

[38] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics,

Revised Edition. Reston, Virginia: American Institute of Aeronautics and Astro-

nautics, 1999.

[39] K. T. Alfriend, H. Schaub, and D.-W. Gim, “Gravitational Perturbations, Nonlin-

earity and Circular Orbit Assumption Effects on Formation Flying Control Strate-

gies,” in Proceedings of the AAS Rocky Mountain Guidance and Control Confer-

ence, no. AAS 00-012, (Breckenridge, Colorado), February 2–6, 2000.

[40] J. L. Junkins, M. R. Akella, , and K. T. Alfriend, “Non-Gaussian Error Propagation

in Orbital Mechanics,” Journal of the Astronautical Sciences, vol. 44, no. 4, pp. 541–

563, October–December 1996.



REFERENCES 107

[41] H. Schaub, S. R. Vadali, J. L. Junkins, and K. T. Alfriend, “Spacecraft Formation

Flying Using Mean Orbit Elements,” Journal of the Astronautical Sciences, vol. 48,

no. 1, pp. 69–87, January–March 2000.

[42] H. Schaub, “Spacecraft Relative Orbit Geometry Description Through Orbit Ele-

ment Differences,” in Proceedings of the 14th U.S. National Congress of Theoretical

and Applied Mechanics, (Blacksburg, Virginia), June 23–28, 2002.

[43] H. Schaub, “Incorporating Secular Drifts into the Orbit Element Difference De-

scription of Relative Orbits,” in Proceedings of the 13th AAS/AIAA Spaceflight

Mechanics Meeting, no. AAS 03-115, (Ponce, Puerto Rico), February 9–13, 2003.

[44] H. Schaub and K. T. Alfriend, “Hybrid Cartesian and Orbit Element Feedback Law

for Formation Flying Spacecraft,” Journal of Guidance, Navigation and Control,

vol. 25, no. 2, pp. 387–393, March–April 2002.

[45] D. A. Vallado, Fundamentals of Astrodynamics and Applications. El Segundo,

California: Microcosm, Inc., 2001.

[46] H. Schaub and K. T. Alfriend, “J2 Invariant Relative Orbits for Spacecraft Forma-

tions,” Celestial Mechanics and Dynamical Astronomy, vol. 79, pp. 77–95, 2001.

[47] K. T. Alfriend and H. Schaub, “Dynamics and Control of Spacecraft Formations:

Challenges and Some Solutions,” Journal of the Astronautical Sciences, vol. 48,

no. 2, pp. 249–267, April–September 2000.

[48] S. R. Vadali, H. Schaub, and K. T. Alfriend, “Initial Conditions and Fuel-Optimal

Control for Formation Flying of Satellites,” in Proceedings of the AIAA Guidance,

Navigation and Control Conference, no. AIAA 99-4265, (Portland, Oregon), August

9–12, 1999.

[49] H. Schaub and K. T. Alfriend, “Impulsive Feedback Control to Establish Specific

Mean Orbital Elements of Spacecraft Formations,” Journal of Guidance, Naviga-

tion and Control, vol. 24, no. 4, pp. 739–745, August 2001.

[50] S. S. Vaddi, K. T. Alfriend, and S. R. Vadali, “Sub-Optimal Formation Es-

tablishment and Reconfiguration Using Impulsive Thrust,” in Proceedings of the

AAS/AIAA Astrodynamics Specialists Conference, no. AAS 03-590, (Big Sky, Mon-

tana), August 3–7, 2003.

[51] D.-W. Gim and K. T. Alfriend, “The State Transition Matrix of Relative Mo-

tion for the Perturbed Non-Circular Reference Orbit,” in Proceedings of the 12th



REFERENCES 108

AAS/AIAA Spaceflight Mechanics Meeting, no. AAS 01-222, (Santa Barbara, Cal-

ifornia), Febrary 11–15, 2001.

[52] M. E. Campbell, “Planning Algorithm for Large Satellite Clusters,” in Proceedings

of the AIAA Guidance, Navigation, and Control Conference, no. AIAA 2002-4958,

(Monterey, California), August 5–8, 2002.

[53] S. R. Vadali, S. S. Vaddi, and K. T. Alfriend, “An Intelligent Control Concept for

Formation Flying Satellite Constellations,” International Journal of Robust and

Nonlinear Control, vol. 12, no. 2-3, pp. 97–115, February–March 2002.

[54] R. W. Beard and F. Y. Hadaegh, “Fuel Optimization for Unconstrained Rotation

of Spacecraft Formations,” Journal of the Astronautical Sciences, vol. 43, no. 3,

pp. 259–273, July–December 1999.

[55] S. P. Hughes and C. D. Hall, “Optimal Configurations for Rotating Spacecraft

Formations,” Journal of the Astronautical Sciences, vol. 48, no. 2–3, pp. 225–247,

April–September 2000.

[56] S. P. Hughes and C. D. Hall, “Mission Performance Measures for Spacecraft Forma-

tion Flying,” in Flight Mechanics Symposium, (Greenbelt, Maryland), May 18–20,

1999.

[57] G. Inalhan, M. Tillerson, and J. P. How, “Relative Dynamics and Control of Space-

craft Formations in Eccentric Orbits,” Journal of Guidance, Control, and Dynam-

ics, vol. 25, no. 1, pp. 48–59, January–February 2002.

[58] C. A. Bailey, T. W. McLain, and R. W. Beard, “Fuel-Saving Strategies for Dual

Spacecraft Interferometry Missions,” Journal of the Astronautical Sciences, vol. 49,

no. 3, pp. 469–488, July–September 2001.

[59] W. Kang and H.-H. Yeh, “Co-ordinated Attitude Control of Multi-Satellite Sys-

tems,” International Journal of Robust and Nonlinear Control, vol. 12, pp. 185–205,

2002.

[60] J. R. Lawton and R. W. Beard, “Synchronized Multiple Spacecraft Rotations,”

Automatica, vol. 38, pp. 1359–1364, 2002.

[61] W. Rang, H.-H. Yeh, and A. Sparks, “Coordinated Control of Relative Attitude

for Satellite Formation,” in AIAA Guidance, Navigation, and Control Conference,

no. AIAA 2001-4093, (Montreal, Canada), August 6–9, 2001.



REFERENCES 109

[62] G. Q. Xing and S. A. Parvez, “Nonlinear Attitude State Tracking Control for

Spacecraft,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 3, pp. 624–

626, May–June 2001.

[63] H. Pan and V. Kapila, “Adaptive Nonlinear Control for Spacecraft Formation Fly-

ing with Coupled Translational and Attitude Dynamics,” in Proceedings of the

IEEE Conference on Decision and Control, no. WeM11-6, (Orlando, Florida),

pp. 2057–2062, December 2001.

[64] M. C. VanDyke, “Decentralized Coordinated Attitude Control of a Formation of

Spacecraft,” Master’s thesis, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia, 2004.

[65] P. K. C. Wang and F. Y. Hadaegh, “Coordination and Control of Multiple Mi-

crospacecraft Moving in Formation,” Journal of the Astronautical Sciences, vol. 44,

no. 3, pp. 315–355, July–September 1996.

[66] N. K. Philip and M. R. Ananthasayanam, “Relative Position and Attitude Estima-

tion and Control Schemes for the Final Phase of an Autonomous Docking Mission

of Spacecraft,” Acta Astronautica, vol. 52, pp. 511–522, 2003.

[67] D. Fragopoulos and M. Innocenti, “Autonomous Spacecraft 6DOF Relative Motion

Control Using Quaternions and H-infinity Methods,” in Proceedings of the AIAA

Guidance, Navigation and Control Conference, no. AIAA 96-3725, (San Diego,

California), July 29–31 1996.

[68] D. C. Redding, B. A. Persson, and E. V. Bergmann, “Combined Solution of Space-

craft Rotational and Translational Maneuvers,” in Proceedings of the AIAA Guid-

ance, Navigation, and Control Conference, no. AIAA 86-2106, (Williamsburg, Vir-

ginia), pp. 441–451, August 18–20, 1986.

[69] B. J. Naasz, M. M. Berry, H.-Y. Kim, and C. D. Hall, “Integrated Orbit and

Attitude Control for a Nanosatellite with Power Constraints,” in Proceedings of the

13th AAS/AIAA Space Flight Mechanics Meeting, (Ponce, Puerto Rico), February

9–12, 2003.

[70] K. Yamanaka, “Simulataneous Translation and Rotation Control Law for Forma-

tion Flying Satellites,” in AIAA Guidance, Navigation, and Control Conference,

no. AIAA 2000-4440, (Denver, Colorado), August 14–17, 2000.

[71] J. R. Carpenter, “A Preliminary Investigation of Decentralized Control for Satellite

Formations,” in Proceedings of the IEEE Aerospace Conference, (Big Sky, Mon-

tana), pp. 63–74, March 18–25, 2000.



REFERENCES 110

[72] J. R. Carpenter, “Decentralized Control of Satellite Formations,” International

Journal of Robust and Nonlinear Control, vol. 12, pp. 141–161, 2002.

[73] J. R. Carpenter, “Partially Decentralized Control Architectures for Satellite Forma-

tions,” in Proceedings of the AIAA Guidance, Navigation and Control Conference,

no. AIAA 2002-4959, (Monterey, California), August 5–8, 2002.

[74] J. R. T. Lawton, B. J. Young, and R. W. Beard, “A Decentralized Approach

to Elementary Formation Maneuvers,” in Proceedings of the IEEE International

Conference on Robotics and Automation, (San Francisco, California), April 2000.

[75] W. Ren and R. W. Beard, “Virtual Structure Based Spacecraft Formation Con-

trol with Formation Feedback,” in Proceedings of the AIAA Guidance, Navigation,

and Control Conference, no. AIAA 2002-4963, (Monterey, California), August 5–8,

2002.

[76] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A Coordination Architecture for

Spacecraft Formation Control,” IEEE Transactions on Control Systems Technol-

ogy, vol. 9, no. 6, pp. 777–790, November 2001.

[77] W. Kang, A. Sparks, and S. Banda, “Coordinated Control of Multisatellite Sys-

tems,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 360–368,

March–April 2001.

[78] E. Nelson, A. Sparks, and W. Kang, “Coordinated Nonlinear Tracking Control

for Satellite Formations,” in Proceedings of the AIAA Guidance, Navigation and

Control Conference, no. 2001-4025, (Montreal, Canada), August 6–9, 2001.

[79] J. L. Schwartz, M. A. Peck, and C. D. Hall, “Historical Survey of Air-Bearing

Spacecraft Simulators,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 4,

pp. 513–522, July–August 2003.

[80] K. E. Glover, “Development of a Large Support Surface for an Air-Bearing Type

Zero-Gravity Simulator,” Tech. Rep. NASA-TM-X-72780, April 1976.

[81] H. Fornoff, “Final Report for Air Bearing Platform T50-2,” Tech. Rep. NASA-CR-

97588, October 1967.

[82] S. Matunaga, K. Yoshihara, T. Takahashi, S. Tsurumi, and K. Ui, “Ground Ex-

periment System for Dual-Manipulator-Based Capture of Damaged Satellites,” in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, no. 92-4308, (Kagawa University, Takamatsu, Japan), pp. 1847–1852, Oc-

tober 30–November 5, 2000.



REFERENCES 111

[83] B. Pond and I. Sharf, “Experimental Demonstration of Flexible Manipulator Tra-

jectory Optimization,” in Proceedings of the AIAA Guidance, Navigation, and Con-

trol Conference, no. AIAA 99-4302, (Portland, Oregon), pp. 1869–1876, August

9–11, 1999.

[84] J. L. Meyer, W. B. Harrington, B. N. Agrawal, and G. Song, “Application of

piezoceramics to vibration suppression of a spacecraft flexible appendage,” in Pro-

ceedings of the AIAA Guidance, Navigation and Control Conference, no. AIAA

96-3761, (San Diego, California), July 29–31, 1996.

[85] M. G. Spencer, “Development of a Servicing Satellite Simulator,” in Proceedings of

the AIAA Space Conference and Exposition, no. AIAA 2001-4529, (Albuquerque,

New Mexico), August 28–30, 2001.

[86] H. Choset and D. Kortenkamp, “Path Planning and Control for Free-Flying Inspec-

tion Robot in Space,” Journal of Aerospace Engineering, vol. 12, no. 2, pp. 74–81,

April 1999.

[87] Y. Toda, T. Iwata, K. Machida, A. Otuka, H. Toriu, Y. Shinomiya, Y. Fukuda,

M. Asakura, and N. Matuhira, “Development of Free-Flying Space Telerobot,

Ground Experiments on Two-Dimensional Flat Test Bed,” in Proceedings of the

AIAA Guidance, Navigation and Control Conference, no. AIAA 92-4308, (Hilton

Head Island, South Carolina), pp. 33–39, August 10–12, 1992.

[88] T. Corazzini, A. Robertson, J. C. Adams, A. Hassibi, and J. P. How, “Experimental

Demonstration of GPS as a Relative Sensor for Formation Flying Spacecraft,”

Navigation: Journal of the Institute of Navigation, vol. 45, no. 3, pp. 195–207, Fall

1996.

[89] M. O. Hilstad, “A Multi-Vehicle Testbed and Interface Framework for the Devel-

opment and Verification of Separated Spacecraft Control Algorithms,” Master’s

thesis, Massachusetts Institute of Technology, June 2002.

[90] R. Kline-Schoder and J. D. Powell, “Experiments with the KITE Attitude Control

Simulator,” in Proceedings of the 3rd International Conference on Tethers in Space-

Toward Flight, no. 89-1576, (San Francisco, California), pp. 205–214, May 17–19,

1989.

[91] D. M. Meller, J. Reiter, M. Terry, K. F. Böhringer, and M. Campbell, “A Docking
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