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In recent years, Space Situational Awareness (SSA) has become increasingly important as
the number of tracked Resident Space Objects (RSOs) continues their growth. One of the most
significant technical discussions in SSA is how to propagate state uncertainty in a consistent way
with the highly nonlinear dynamical environment. In order to keep pace with this situation, various
methods have been proposed to propagate uncertainty accurately by capturing the nonlinearity of
the dynamical system. We notice that all of the methods commonly focus on a way to describe the
dynamical system as precisely as possible based on a mathematical perspective.

This study proposes a new perspective based on understanding dynamics of the evolution
of uncertainty itself. We expect that profound insights of the dynamical system could present the
possibility to develop a new method for accurate uncertainty propagation. These approaches are
naturally concluded in goals of the study. At first, we investigate the most dominant factors in
the evolution of uncertainty to realize the dynamical system more rigorously. Second, we aim at
developing the new method based on the first investigation enabling orbit uncertainty propagation
efficiently while maintaining accuracy.

We eliminate the short-period variations from the dynamical system, called a simplified dy-
namical system (SDS), to investigate the most dominant factors. In order to achieve this goal, the
Lie transformation method is introduced since this transformation can define the solutions for each
variation separately. From the first investigation, we conclude that the secular variations, includ-
ing the long-period variations, are dominant for the propagation of uncertainty, i.e., short-period
variations are negligible. Then, we develop the new method by combining the SDS and the higher-
order nonlinear expansion method, called state transition tensors (STTs). The new method retains

advantages of the SDS and the STTs and propagates uncertainty analytically and nonlinearly.
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Chapter 1

Introduction

1.1 Dynamical Realism in Space Situational Awareness

The term Space Situational Awareness (SSA) refers to the ability to observe, characterize, and
predict the properties of natural and artificial objects orbiting the Earth [26] with the objective of
avoiding collisions, identifying untracked objects, guaranteeing safety for future space missions, etc.
In recent years, SSA has become increasingly important as the number of tracked Resident Space
Objects (RSOs) continues their increase. Approximately 16,500 objects, generally greater than 5
cm, exist in the public two-line element (TLE) catalog maintained by the Joint Space Operations
Center (JSpOC) [58] as of January 2013 and the number of objects in orbit under 1 ¢m in diameter
is believed to be in the hundreds of thousands, with one estimate as of May 2009 at 700,000 [79].
One of the most significant technical discussions in SSA is how one can propagate state uncertainty
(e.g., Figure 1.1) in a way that is consistent with the highly nonlinear dynamical environment
[17, 36, 38, 62, 77]. Traditional linearized mapping techniques, e.g., the State Transition Matrix
(STM) [76], assume Gaussianity of distributions over time. It has been shown, however, that the
Gaussian assumption is an inconsistent description of the actual uncertainty when the dynamics are
highly unstable or when propagation times become long [39, 40, 51]. Capturing this nonlinearity in
a computationally efficient way is paramount in assuring future SSA capabilities as space becomes
even more congested, contested, and competitive. As such, various mathematical expressions of
uncertainty have been applied in the context of SSA, e.g., Gaussian sums [17, 28, 36], polynomial

chaos expansions (PCEs) [38], State Transition Tensors (STTs) [27, 62, 63], and Taylor series
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polynomial [78].

We take special note that all of the aforementioned methods are focusing on a mathematical
perspective to describe the dynamics as precisely as possible. Since 1959, when Dirk Brouwer
proposed the analytic solutions for the problem of the artificial satellite theory [9, 10], a lot of
researchers have explored the analytic [14, 30, 33, 43, 45, 50, 71] and the semi-analytic solutions
[15, 25, 46, 47, 55, 56] for describing the motion of orbiting objects around a central body with
additional perturbations such as Solar Radiation Pressure (SRP), gravitational attractions due to
perturbing bodies, and atmospheric drag are encountered. Moreover, analytic and semi-analytic
solutions are able to provide profound insights about the dynamical system since they classify
variations in the motion of an orbiting object. These facts inspire a new perspective to account for
an evolution of uncertainty. In particular, if the most dominant factors are found for describing
the dynamics of a satellite over time, this perception may present the possibility to develop a
new method for the dynamical propagation of an object’s probability density function (PDF). We

address these questions in this dissertation and they naturally lead to the following thesis statement:

The identification of the most dominant dynamical factors in the motion of orbiting
objects provides the profound insight of the dynamics itself and presents the possi-
bility of developing new methods for the efficient propagation of orbit uncertainty
while ensuring accuracy. The semi-analytic solutions derived from the Deprit-Lie
canonical transformation method enable these factors to be recognized, and then
these solutions become the basis of a Simplified Dynamical System (SDS) that in-
cludes the dominant effects only. The new method is developed by combining the
SDS with a higher-order nonlinear expansion method, i.e., STTs, and enabling orbit

uncertainty propagation analytically and nonlinearly.

Let us introduce each facet of the Thesis Statement in detail.



1.1.1 The Most Dominant Factors in the Evolution of Uncertainty

One problem of concern is determining the role that the accuracy of the dynamical system
plays in consistent uncertainty propagation rather than finding a mathematical description of the
dynamical system as accurately as possible. This perspective simply poses the question: how accu-
rate must the mapped dynamics be in order to appropriately model the uncertainty distribution?
An original inspiration of this question is the discussion that the weak solution of Stochastic Differ-
ential Equations (SDE) has the same distribution as the sample path from the strong! solution but
does not depend on the particular noise realization even in the stochastic case [29]. More specif-
ically, determination of weak solutions often suffices because the first few moments of the exact
and weak solutions match to within the same order of magnitude. As these low-order moments are
those that are required in many engineering tasks, it is possible to employ a simplified model which
is computationally efficient [53, 68, 69].

The idea of the weak solutions is borrowed in our analysis to identify the most dominant
factors in the dynamical system since the propagation of uncertainty eventually maps probability
density functions (PDF). We define a SDS by assuming the short-period variations as the noise, that
is, the SDS plays the same role to the weak solutions of the full dynamical system. The identification
of the most dominant factors is investigated based on the general perturbation theory because it
divides the dynamical system into secular, short-period, and long-period variations.

In the first investigation, we introduce Brouwer’s theory [9, 50] and the averaged Lagrange
Planetary Equations [23, 67, 72] to idenfity the factor for a Low Earth Orbit (LEO) satellite,
perturbed by Jo gravity field harmonics, and a Medium Earth Orbit (MEO) satellite, perturbed by
Jo gravity field harmonics and gravitational attraction due to a third-body, respectively. In order to
simplify the motion of equations, a pseudo-moon [23], which has a planar motion, is introduced as
the perturbing body. For the each investigation, initial offset correction algorithms are implemented
to get a precise initial mean conditions in order to apply the SDS accurately [54, 72]. We verify the

accuracy of the propagated uncertainty with the SDS to the result from Monte Carlo simulations

! This solution describes actual sample paths for a given realization of the noise process.



with the full dynamical system through three statistical approaches [60, 61]: 1) a comparison of the
first four moments of PDFs based on the idea of the weak solutions [29], 2) the statistical energy
test for more rigorous comparison of PDFs [2, 3], and 3) a normalized standard deviation in order
to show the consistency of the propagation.

As the second step, the SDS is expanded with the three objectives of improving the accuracy
of the system, adopting additional perturbations, and verifying the accuracy of the SDS with
additional perturbations. The Deprit-Lie transformation method [19, 42] is applied to achieve these
goals since it provides a systematic way to expand solutions to higher orders and handle multiple
perturbations. The expanded SDS is derived from the Deprit-Lie transformation method through
two steps, i.e., simplification [18, 49] and normalization [20], and applied to map uncertainty of High
Area-to-Mass Ratio (HAMR) objects [59]. The propagated uncertainty with the expanded SDS is
also verified statistically. We remove the assumption, i.e., planar motion, in the first investigation
by introducing the angular distance.

Throughout the above discussions, we conclude that considering the secular variations, in-
cluding the long-period variations, is sufficient to capture the propagated uncertainty accurately
and consistently. This conclusion identifies the most dominant factors which we posed at the be-
ginning of this section and is herein referred to as dynamical realism. We have to remark that
the ignored short-period variations can be recovered whenever necessary based on the idea of the
Deprit-Lie transformation method [42].

Lastly, the SDS reduces the nonlinearity of the full dynamical system. This leads to an ability
to propagate uncertainty more efficiently. The improvement of the computational efficiency is also
verified through a comparison of processing times between Monte Carlo simulations with the full

dynamical and the SDSs.

1.1.2 Development of a New Uncertainty Mapping Method

Another topic of recent interest is to propose a new method based on dynamical realism

for the accurate and consistent representation of an observed object’s uncertainty under nonlinear



dynamics [60, 61]. A motivational question of the new approach is how one can avoid using
Monte Carlo simulations [51] in propagating uncertainty without losing accuracy. In this study,
we propose a method by combining the advantages of the SDS and the STTs. More specifically,
the STTs include higher order terms of the Taylor series expansion of a given dynamical system in
order to capture nonlinearities [62, 63]. An advantage we focus on is that the STTs express a PDF
at any epoch as a function of the initial PDF and the reference trajectory; thus, once we generate
the STTs, we can map the initial PDF to any desired epoch directly. As we have demonstrated,
the SDS reduces the nonlinearity of the full dynamical system by eliminating the short-period
variations. Thus, the reference trajectory can be propagated more efficiently if the SDS is applied.
The new method is defined through two steps to combine these advantages: 1) defining the SDS
through the Deprit-Lie transformation method, and then 2) generating the STTs by expanding the
SDS as a form of Taylor series expansion.

For the sake of verifying the new method, we incorporate multiple perturbations, such as
Jo gravity field harmonics, a direct SRP, and gravitational attractions due to the Sun and the
moon, to the two-body motion. The JPL ephemeris file (DE405) has been applied to calculate
the positions of the Sun from January 19, 2008 00:00:00 UCT to February 2, 2008, 23:59:59 UCT.
In the same way, the propagated result from the new method is compared to that from Monte
Carlo simulations with the full dynamical system statistically. We also investigate several sets of
combinations to suggest an optimal set for considered examples at least. Overall, this method
succeeds in accurately propagating uncertainty with decreasing the computational burden. For
a proof-of-concept implementation under multiple perturbations, the optimal combination of the
two ideas is found to sufficiently capture the nonlinear effects. Analytically expressed PDFs based
on the STTs and the initial conditions allow one to compute the mean, variance, skewness, and
kurtosis of the uncertainty, for example, with the moments of the initial PDF as inputs without
any sampling.

Lastly, this study suggests us another possibility to combine the SDS to different mathemat-

ical expressions, e.g., Gaussian Mixture Model [17, 28, 36], for mapping PDFs.



1.2 Organization and Contributions

Following is a brief outline of the organization of this dissertation.

Chapter 3 Nonlinear Mapping of System Dynamics

Higher-order nonlinear mapping expandsion, i.e., STTs, the Fokker-Plank equation, and the
evolution of the Gaussian distribution are introduced. A closed-form solution of the STTs
in the Cartesian coordinate space is presented for the two-body problem to show a practical
application and to verify an improvement of accuracy as an order of STTs increases. This
theoretical framework is implemented numerically in MATLAB. The first two moments,
mean and covariance, of a PDF are calculated with analytic expressions [62, 63]. Finally,
we propose analytic expressions for the third and fourth order moments as a function of

the initial mean, covariance, and STTs.
Chapter 4 Canonical Perturbation Theory

The Lie transformation defined by Deprit [19] and its advantageous properties are intro-
duced. Then, more generalized expressions for applying the transformation method, pro-
posed by Kamel [42], is presented. The symplecticity of the transformation is also discussed.
Based on these theoretical frameworks, a symbolic manipulator is implemented in Mathe-
matica. This manipulator is the basis of the (semi) analytic solutions applied throughout
this research. Finally, the analytic solutions are tested with the problem of the artificial

satellite theory [9, 10] in order to verify the feasibility and the improvement of the accuracy.
Chapter 5 Dynamical Realism in Mapping Uncertainty

The question “how accurate must the mapped dynamics be in order to appropriately model
the uncertainty distribution?” is mainly discussed to understand the role of accuracy of the
dynamical system for consistent propagation of uncertainty. A SDS is introduced by elim-

inating the short-period variations from the dynamical system. Implementations of this



idea are based on Brouwer’s theory [9, 10] and on the averaged Lagrange Planetary Equa-
tions (LPEs) [67, 72]. For the sake of an accurate application of the SDS, a given initial
condition in the osculating elements space is converted into the mean space by developing
the initial offset correction algorithm. Finally, the SDS for the two-body problem with
secular perturbations from Jo gravity field harmonics and for the two-body problem with
multiple perturbations, Jo gravity field harmonics and a third-body attraction, are tested.
Verification of the accuracy of uncertainty mapping and the improvement of the computa-
tional efficiency is carried out through statistical approaches and through a comparison of

processing times, respectively.
Chapter 6 Fxpansion of the Simplified Dynamical System through the Deprit-Lie Transformation

Based on the discussion about the dynamical realism, the SDS is expanded based on the
Deprit-Lie transformation. The new SDS uses the advantages of the transformation method
in order to add higher-order solutions for the secular variation as well as to consider ad-
ditional perturbations exerting on orbiting objects. The generating functions provides an
analytic algorithm to define proper initial mean conditions for the SDS instead of applying
the initial offset correction. Lastly, simulated examples, uncertainty of orbiting objects
in the Medium Earth Orbit (MEO) and a highly elliptical orbit (Molniya), are given for

verifying the expanded SDS.
Chapter 7 Development and Application of the Hybrid Method

A new method, called a hybrid method, is introduced to map an initial PDF directly to any
desired epochs without applying Monte Carlo simulations. The hybrid method is defined by
combining the advantages of the STTs and the SDS. According to an order of semi-analytic
solutions and an order of the STTs, some sets of combinations are also investigated based
on changes in accuracy and processing time. Finally, the hybrid method is developed and
verified for the non-Keplerian motion under multiple perturbations, earth oblateness, a di-

rect SRP, and gravitational attractions due to the Sun and moon. Recommendations for an



optimal combination of the two ideas are made based on the discussion about the accuracy

and the efficiency.

Various methods have been developed and verified their capability to capture the future uncertainty.
These methods are mainly focusing on describing the real dynamical system as precisely as possible
with diverse mathematical approaches. Our study is initiated by proposing a different perspective
— the profound insight of the dynamical system itself could present a possibility to improve our
current capability — to propagate uncertainty accurately.

Our main contributions are summarized with two aspects. At first, from the new perspective,
the most dominant factors in an evolution of uncertainty are identified even when the motion of
an orbiting body is perturbed by gravitational and non-gravitational sources. Specifically, these
dominant factors are captured by the secular dynamics of an orbit. Next, based on the identified
dominant factors, we propose a hybrid method by refining the analytic nonlinear mapping technique
[62, 63] with the verifications of the accuracy in mapping uncertainty and of the improvement of
computational efficiency.

Lastly, it is worth noting that the current hybrid method uses the mathematical approach be-
hind the analytic nonlinear mapping technique. This naturally suggests potential future works, that
is, the dynamical realism, we address, can be combined with different well-defined mathematical

approaches such as Gaussian Mixture Model (GMM) [17, 28, 36].



Chapter 2

Mathematical Background

2.1 Review of Probability

2.1.1 Probability Theory and Random Process

Definition 1 (The Probability Density Function). For a given continuous random vector € R",

the probability of x in some volume B can be defined as:

p(x € B) = /B £(n) dn, (2.1)

where a function f(x) is called as a probability density function(PDF). Note that
(1) f(x) is non-negative for V.

(2) The area under the curve f(x) has to be 1:
/ f(n)dn =1

(3) The probability of  that belongs to a subset A is given by the integral of f(x) over that

interval:

Pz € A) = /A £(n) dn

(4) For a given constant C € R", a probability becomes 0:

p(a::C):/oo f(m)dn =0, for Ve
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Definition 2 (Moments of Probability Density Function) In statistics, the moment of PDF is a

specific quantitative measure of the shape of a set of points. Table 2.1 shows significance of moments

(raw, central, standardized) in connection with named properties of distributions.

Table 2.1: Definition of the moments of probability densify function

Order (k)

Raw moment Central moment Standardized moment

1

S U W N

mean 0 0
- variance 1
- - skewness
- - kurtosis
- - hyper skewness

- - hyper kurtosis

In particular,

the moments up to fourth-order, i.e., mean, variance, skewness, and kurtosis, provide information

about a shape of PDFs [65, 76].

Definition 3 (Mean and Covariance Matrix). The mean and covariance matrix for a given random

vector ¢ € R"™ with a PDF f(x) are calculated by:

or

K:nﬂmmw

Pij = E[(z; — my)(x; — my)]
= E[xl.f]} — m;my

=/ nin; f(m)dn —mym;.

—00

(2.2a)

(2.2b)

(2.3a)

(2.3b)

Note that the variances appear along the diagonal and covariances appear in the off-diagonal

elements.
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Definition 4 (Skewness). The skewness is the third-order standardized moment,

_ B[z —E[=z]]?
/“1’3,1' - 3/2
Ha

It is a measure of symmetry, or more precisely, the lack of symmetry. Figure 2.1 shows how the

skewness and the asymmetry are connected.

0.6 ~
030 77 05! G 0.30} 0
0.25¢F 0.4l 0.25¢
0.20¢ 03 0.20¢f
0.15} it 0.15}
0.10} 0.2 0.10¢
0.05} 0.1} 0.05}
0000 ——g—=%" 3 2 0 2 5 -1 0 1 2 3% s e
(a) Bz = —3.0 (b) 15 = 0.0 (c) 73 = 3.0

Figure 2.1: Example distributions with third-order standardized moments (skewness): (a) negative
skewness, (b) normal distribution, and (c) positive skewness

Definition 5 (Kurtosis). The kurtosis is the fourth-order standardized moment,

Bl Bl
e N%,i

It is a measure of whether the data are peaked or flat relative to a normal distribution.
In general, an i-th order moment can be obtained by

The central moment is a moment of a probability distribution of a random variable about the

random variable’s mean, which can be defined as follows:
i :E[(l‘l *ml)($2 —mg)(xl—mz)] (25)

Definition 6 (Characteristic Function) The joint characteristic function(JCF) of a continuous

random vector & € RY is defined as:

X(u) = E[e"®], (2.6)
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where j = v/—1. The higher moments can be computed by

Ela™]=j"" 85;(?1) . (2.7a)

B[z 27?] = j2 m - (2.7b)

B[z x2x73) = j73 m s (2.7¢)
(2.7d)

E[lxg"x .. &’ =57 Ju ;:’YZ(FQ.L.)@uVm u:o' (2.7¢)

2.1.2 The Gaussian Probability Distribution

Definition 7 (Gaussian Probability Density Function). Let & be a Gaussian random vector, x ~
N(m, P), where m is the mean vector and P is the covariance matrix. The Gaussian probability

density function for x is defined as:

_l(m —m)TP Yz - m)} , (2.8)

(@)= {
p(xr) = ——— exp

v (2m)N [P 2
where N is the dimension of the state. The Gaussian probability density function for the univariate

distribution is shown in Figure 2.1(b).

First two moments, i.e., 7 and P, are sufficient to describe the statistics of the Gaussian random
vector & completely [21, 52, 74]. This property of the Gaussian probability distribution makes it
possible to express the higher moments, e.g., E[z;x;z |, E[zizjxpx |, E[zxj ... 2 ], as functions
of m and P. For a nonzero mean Gaussian random vector, & ~ N(m, P), the higher-order

moments can be obtained by substituting the Gaussian JCF

x(1) = exp {juTm - ;uTPu} (2.9)
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into Equation (2.7). As a result, the first four moments of the Gaussian probability density function
are obtained by
E[z;] =m;
Elziz;] = mim; + Py
Elzjzjxy] = mymymy, + (myPij + mj Py, + m Pj,)
Elzizjzpa] = mimjmpmg + (mgmy Py + mgmy Py, + mymy Py + mymy Py, + mymy, Py + mymj Pyy)
+ Py Pjy + Py Pj + P Py

(2.10)

2.2 Review of Statistics

2.2.1 Goodness-of-Fit

The goodness-of-fit(GoF) of a statistical model indicates how well it fits a set of observations.
In general, measures of the GoF summarize the discrepancy between the modeled and observed
values in question. The GoF test can be used to make a decision in statistical hypothesis testing:
to test whether two samples are obtained from identical distributions (Kolmogorov-Smirnov test),

or whether outcome frequencies follow a specified distribution (Pearson’s y-squared test).

2.2.2 Hypothesis Testing

Hypothesis testing is the method to determine the probability that a given hypothesis is true.
In statistics, there are two ways, “critical value approach” and “p-value approach”, to determine
whether the evidence is likely or unlikely given the initial assumption. We use the p-value! approach
in this study since this approach is used more generally, such as in research, journal articles, and

statistical softwares. The usual hypothesis testing consists of four steps as follows:

Step 1. Making an initial assumption, the null hypothesis Hy, and the alternative hypothesis, Hj.

! The p-value is the probability that a test statistic at least as significant as the one observed would be obtained
assuming that the null hypothesis were true.
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Step 2. Define a test statistic in order to assess the truth of the null hypothesis.

Step 3. Compute the p-value.

Step 4. Make the decision by comparing the p-value to an acceptable significance level(a.)

*or “fail

At the last step, we always make the decision either “reject the null hypothesis (p < «)’
to reject the null hypothesis (p > «).” This implies that there is always a chance that we made an
error whatever the decision is. These potential errors are called by two different names — one is a

“Type I error,” and the other a “Type II error.” Table 2.2 shows how they correspond to the two

types of errors in hypothesis testing. Here are the formal definitions of the two types of errors:

Table 2.2: Type I and II errors in the hypothesis testing

Truth
Decision Null Hypothesis Alternative Hypothesis
Fail to reject null OK Type II error
Reject null Type I error OK

- Type I error: The null hypothesis is rejected when it is true.

- Type II error: The null hypothesis is not rejected when it is false.

The significance level, «, is the probability of a Type I error: the probability of rejecting a true null
hypothesis. In other words, if the null hypothesis is not rejected, it is close to the truth as large as
(1 —a), called the confidence level. The probability of a Type II error, the probability of accepting
a false null hypothesis, is given by the value of S that will be small as a difference between the null

hypothesis and the truth.

2.3 Statistical Approaches of Probability Density Functions Comparison

In order to verify the accuracy of the propagated uncertainty, we introduce three statistical
methods: 1) comparing the moments of the PDF up to fourth-order, which has a graphical inter-

pretation, 2) applying the statistical energy test for a more rigorous comparison of the multivariate
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PDFs, and 3) defining a normalized standard deviation, which may be computed the fastest of
the three methods, to prove the consistency in mapping uncertainty regardless of the propagation

interval. Each of these statistical methods is briefly presented here.

2.3.1 Comparison of the Moments

In order to verify if PDFs are compatible, a natural and simple approach is to compare the
first a few moments of the sample (or distribution). As demonstrated in Section 2.1.1., especially,
first four moments are introduced as quantified values describing the shapes. A basic idea of this
approach is to verify if PDFs are compatible based on comparing their shapes [53, 66]. We select
the mean, the variance, the third-order standardized moment, and the fourth-order standardized
moments among the summarized moments in Table 2.1 in the comparison. The chosen first four

moments characterize the shape of most histograms as follows:

- The mean: a measure of location
- The second moment: a measure of spread
- The third moment: a measure of skewness

- The fourth moment: a measure of peakedness (or fat tails)

2.3.2 Statistical Energy Test

For the sake of comparing distributions in a more subtle way, we introduce a statistical en-
ergy test. This test measures the goodness of fit (GoF) that represents the discrepancy between
observed values of a system and sample values from its model [3]. A measure of the test can be
used for a statistical hypothesis testing to decide if some observed and estimated PDFs are iden-
tical. The most important property of the statistical energy test over traditional methods, e.g.,
the Kolmogorov-Smirnov test and Pearson’s chi-squared test, is to provide a manageable way to

measure the GoF of a distribution of multivariate random variable [2, 3].
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A basic assumption of the statistical energy test is that statistical observations have similar re-
lationship to the notion of electrostatic potential energy [2, 75]. Equation (2.11) shows a total

energy of a continuous charge density distribution p.

_ 1 pr)p(r’)
ﬁ_&rq}// —— drd (2.11)

Suppose that there exists an external continuous charge density distribution, p.;, as seen in
p(r) (\ K)

pex

o

Y//

Figure 2.2: Two continuous charge density distributions

Figure 2.2. The total energy U of p., with p can be calculated by Equation (2.11):

_ 1 [p(7) + pex(T) ][ p(T") + pex(r’)] rdr'
m_Sﬂ'GQ// drdr’. (2.12)

[ — 7|

Then, by considering a system as a positively continuous charge density distribution p and a

negatively external continuous charge density distribution —pe, with

/[p('r) — pex(r) Jdr =0, (2.13)

we can make the total energy to be zero, i.e., free of charges. This property is applied to compare
statistical distributions through the statistical energy test by replacing probability density functions,

p and peg, with obervations [2, 3.

Definition 8 (Test Statistic) The test statistic(V) is a quantity, the energy, which measures the

difference between two PDFs fy(x) and f(z), € R?, by

V= ;//[f(w) — fo@) ][ f(&) = fo(z')] R(z, «') dwda’. (2.14)
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The distance function R(x, ') is a continuous, monotonic decreasing function of the Euclidian
distance between the charges, | — 2’|. Equation (2.14) becomes a form of the electrostatic energy
of two charge distributions f and fy of opposite sign when R(x, ') = 1/| — 2’|, which is minimum

if the charges neutralize each other.

In order to calculate the test statistic conveniently, we rewrite Equation (2.14) as a function of the

expectation values of the distance function R:

- ;//[f(m)f(m’) + fo(®) fo(x") — 2f(2) fo(x')] R(|lz — 2'|) dzda’ (2.15)

= %El + %Eg — Es.
Since finite samples are considered in statistics, e.g., Monte Carlo approach, for a practical calcula-
tion, the integrals in Equation (2.15) can be replaced with corresponding sample means. Therefore,
by assuming the number of samples of the reference M and that of the other IV, the test statistic,

W, can be obtained through

1 al 1 M
Unm = NN =1) ;R(m — ;) + MO =1 ;Rﬂyi - y;l)
Lo ’ ! (2.16)
_W;;Rﬂml—yﬂ)

The distance function for the electrostatic energy follows inverse power laws, 1/r. There exist,
however, more options since the distance function R should be adjusted to a specific statistical
problem [2]. Throughout this research, we use a different distance function, called logarithmic
distance function,

R(lz —2'|) = —In (|l — «'| +¢). (2.17)

€ is applied to avoid the singularity of the logarithm for In0. This new distance function allows
the test is scale invariant, has no free parameter, and offers a good rejection power against many

alternatives to the null hypothesis [81].



19

As demonstrated above, the statistical energy test measures the GoF for the hypothesis testing. A

practical application of the test statistic from Equation (2.16) is as follows:

(1) set the null and alternate hypotheses:
Hy: f(x) = fo(=),
Hy: f(x) # fo(x).

(2.18)

(2) assume a significance level a (5% in general.)
(3) estimate a critical energy value ¥, with a Monte Carlo approach [3, 24, 34].

(4) acquire the p-value by comparing the test statistic to its critical value:

two distributions are compatible at level « if the statistical energy W s is less than W..

As a result of these steps, we can conclude if two distributions are compatible, i.e., the null hy-
pothesis is accepted, (or incompatible, i.e., the alternate hypothesis is accepted) with a (1 — «)

confidence level.

2.3.3 Normalized Standard Deviation

We are interested in a comparison of the positional standard deviations of the propagated
uncertainties. The dynamics, however, tend to enlarge the positional uncertainty over time, i.e., the
standard deviation increases, making an absolute comparison unsuitable to show the consistency
of a propagation. For this reason, we define a normalized standard deviation (normalized STD) as
a relative metric so as to account for this intrinsic growth in positional uncertainty. By defining
the normalized STD as Equation (2.19), we will show the consistency of the proposed propagation
method in uncertainty propagation regardless of the propagation interval. Let us assume that the
result from the Monte Carlo simulation with a full dynamical system be the truth, X,,m(t).

o(Adx)

Normalized STD = (%o

(2.19)

where 0x and Adx represent a deviation with respect to the reference trajectory based on the

proposed method, which is a propagated state from a given initial state, and the error of each
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component(0X — 0Xpum), respectively. d&,,, means a true deviation with respect to the true

reference trajectory, Xum(t).

2.4 Review of Hamiltonian Systems

2.4.1 Dynamics and Properties of the System

Definition 9 (Lagrangian Equations). The Lagrangian equations are defined as

d (0L\ 0L .
dt(@(b)_a%_o, ie{l,2,...,n} (2.20)

where the scalar function L = L(q, g, t) and ¢; are the Lagrangian function and the generalized
coordinates, respectively. The Lagrangian function is a combination of the kinetic energy, T', and

potential energy, V', as

L(q, q,t) =T(q, 4) = V(q, t)

Definition 10 (Hamiltonian Equations). The hamiltonian can be obtained from the Lagrangian

through the Legendre transformation.

H(g, p,t)=q-p—L(g, 4, t) (2.21)

By substituting Equation (2.21) into the Equation (2.20),

d [0L(g, 4, t)] OL(q, 4, t) _
dt [ g | oq 222
we can get
10 (Gop—Hla p 1) |~ 2(d-p—Hig pr 1) =0 (223)
dt aq q-p q, D, | aq q-p q, D, - Y- .

As a result, the Hamiltonian equations are defined as

oM. oA
%—8]%7 i = aqi'

(2.24)

The Hamiltonian is the natural mathematical structure in which to develop the theory of conser-

vative mechanical system; and a system that satisfies Hamiltonian equations is called canonical.
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Note that the Hamiltonian equations can be written with the symplectic unit matrix as

q OH

=J|% (2.25)
. OH
p Op;

Definition 11 (Symplecticity). For a given 2n x 2n matrix A, the matrix is called symplectic if
it satisfies

ATJA =17, (2.26)

where

Oan ITZX?’L

J = Jonwon = . (2.27)

_Ian Oan

J is the symplectic unit matrix.

Properties of the symplectic unit matrix are

JIy=-31=1, (2.28a)
JaiJaj = _JiaJaj = 5ij; (228b)
det(J) =1, (2.28¢)

where d;; represent the Kronecker delta function. Note that the the inverse of the symplectic

matrix, e.g., A~!, can be obtained without a matrix inversion as:
Al =_3A77. (2.29)

Definition 12 (Canonical Transformations). The canonical transformations change the given vari-

ables (g;, p;) into a new set (Q;, P;)

(g, pi) — (Qi, B) (2.30)

while preserving the canonical form of the equations.

. OH OH : oOH* : oOH*
qi = Di = —5— '—>Q1787P¢’ P’L*_TQi7

(2.31)

where H and H* represent the given Hamiltonian and a new Hamiltonian, respectively.
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2.4.2 Poisson Brackets

The Poisson bracket, {—, —}, for two functions of the canonical variables can be defined as
n
OF 0G  0GOF
F, G} = - = , 2.32
G ; <8Qi Opi  0Ogi 3pi> (2:32)
where ¢ = (q1,...,qn) and p = (p1,...,pn) are generalized coordinates. It is worth mentioning

that Hamiltonian equations, Equation (2.24), can be rewritten with the Poisson brackets as

¢ = {ai, "},
(2.33)

pi = {p2> H}v
where the Hamiltonian H = H(q, p). The Poisson brackets can be rewritten with the symplectic

matrix, J, as
OF aa\"
{F,G} =VF-(J-VQG) <8z> J <8z> , (2.34)

where z; = ¢q; and z;4, = p;. Lastly, the Poisson brackets have four useful properties as follows:

(1) The Skew-symmetry (antisymmetry)
{F, G} = —{G, F}. (2.35)

(2) The linearity and bilinearity

{a1F1 + ao Fh, G} = al{Fl, G} + OzQ{FQ, G},
{1 F1 + aoFy, f1G1 + $2Ga} = aq fi{F1, G} + cqfo{F1, Ga} (2.36)

+ azf1{F2, G1} + aofBo{Fy, Ga}.

(3) The Leibnitz property (product rule)

{F, GH} = G{F, H} + {F, G}H. (2.37)

(4) The Jacobi identity

(F, {G, H}} +{G, {H, F}} + {H, {F, G}} = 0. (2.38)
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2.4.3 The Extended Phase Space

The extended phase space is necessary when we consider non-autonomous Hamiltonian dy-
namics, which is a particular case of autonomous Hamiltonian dynamics. For a given non-autonomous

Hamiltonian in 2n-dimensional phase space, the extended phase space can be defined by introducing

the time, ¢, and its conjugate momenta, p; into the original phase space as seen in Equation (2.39).

q = (QL q2,---,4n, t)a (2393)

pP= (pl)p27"‘7p7"mpt)' (239b)

By assuming that the generalized coordinates are a function of a parameter 7, the Hamilton’s

equations become

dg; ,OH dp; ,OH .
i L I =1,2. ... 2.4
dr t op;’ dr 0q; (@ »2000m) (240)

where t’ denotes the derivative of ¢ with respect to 7. As t’ is independent of the variables ¢; and

pi, Equation (2.40) can be rewritten as

dg; _ O(Ht') dp;  O(Ht')

dr N 8}?@ ’ dr B 8qi

(2.41)

If p; is the conjugate momentum of the time ¢, a complementary differential equation may be

introduced based on the Hamilton’s equations as

J_dt_0p)

=— = 2.42
dr 3pt ( )
An unified form of these equations becomes
dg; OK dp; oK
- = - == 2.43
dr 6]% ’ dr 8qi ’ ( a)
dt 0K dpy oK
- = a3 - = ——F 2.43b
dr  Op;’ dr ot’ (2.43b)
where
K(ai> t, pi, pe) = t'H +t'pr. (2.44)

K is the new Hamiltonian of the given system in the extended phase space. In practical applications,
the relation between the time ¢ and the parameter 7 is an identity; thus, ' = 1 in general. The

moment conjugates to the time, p;, is usually an opposite energy, i.e., —H.



Chapter 3

Nonlinear Mapping of System Dynamics

In this chapter, we discuss an analytic method of nonlinear uncertainty propagation and of
an evolution of PDF. A special solution to the Fokker-Planck equations for deterministic systems
and the concept of the State Transition Tensors (STTs) are combined so that, given an analytical
expression of both the initial probability distribution and the dynamics, the probability distribution
may be expressed analytically for all time. Moreover, the analytic expressions for calculating the
third and fourth order moments are introduced as an expansion of the previous studies [27, 62, 63].
In order to understand the STTs more clearly, the two-body dynamics is applied to the above
framework.

The outline of this chapter is as follows. A brief review of the STTs is presented. Then,
the solution of the Fokker-Planck equation for a deterministic dynamical system is discussed with
a focus on the integral invariance. This property provides a theoretical background to define the
analytic expressions of an evolution of the Gaussian distribution. Additional analytic expressions
to compute the third and fourth order moments are introduced. Then, finally, this theoretical
framework is implemented numerically in MATLAB. Lastly, by taking an example with a two-
body problem, the accuracy of the propagated uncertainty and the PDF from STTs with different

orders (up to fourth order) are investigated.
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3.1 Higher Order Nonlinear Mapping Expansion

Suppose that dynamics of an orbiting object is governed by the equations of motion as

w(t) = f(t, z(t)), (3.1)
where x and f represent state vector and the equations of motion [27, 62], respectively.

Definition 13 (Solution Flow) A solution flow maps an initial state ° (t = %) to a state x(t) at
any time t = t. A solution of Equation (3.1) can be expressed as a function of the solution flow, ¢,

as follows:

2(t) = o(t; 2, 10). (3.2)
Then, the solution flow satisfies

do 0,0
dt ’ (3.3)

¢(t°; a0, 1°) = @(t°).
Definition 14 (Phase Volume) A phase volume is a subset of Euclidean space RY that is closed
and bounded. Suppose that the phase volume of any given initial distribution is By, then a phase

volume at time ¢ is

B(t) = {x(t)|xz(t) = o(t; x°, t°), Va° € By}. (3.4)

Since the solution flow describes a future state as a function of the initial conditions, it allows to
express an evolution of distribution more conveniently. For a given reference initial condition x,

the relative motion of dx(¢) with respect to the reference (nominal) trajectory becomes
Sxx(t) = o(t; xo + 020, 1%) — o(t; x°,1%), (3.5)

where dx( represents a deviation in @y. Then, the relative motion satisfies the equation of motion

shown in Equation (3.5):

51:@) = .f(tv ¢(t; x° + (5330,750)) - f(tv ¢(t; mO’tO))' (36)
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Definition 15 (Taylor Series Expansion) Suppose that a given equation, F(x), is an infinitely
differentiable and real function with (F(x), ) € RY, the Taylor series expansion about a point
x = a is defined as:

9] N J
fi(xl,...,a:N):Z,l[Z(mk—ak>a§k1 }""(51,...,51\/) , (3.7)

J:0 .] k=1 £l:al

where &€ represents a dummy variable.

By substituting Equation (3.5) or (3.6) into F(x) and expanding it with respect to the initial state
20, the relative motion and the relative trajectory dynamics, respectively, can be rewritten using

the Einstein summation convention as:

1
ox(t) = Z —'q)i,kln_kpéscgl ...5w2p, (3.8a)
p=1
. 1
ox(t) = Z EAi,kl,_,kpamkl ... 0y, (3.8b)
p=1""

where k; € {1,2,..., N}, kj represents the kj-th component of the state vector.

P’ (t; x, 1°)
0 0

awkl e 8wkp

_ OPf(t, =(1))

- 9y
P 833k1 PN &ka J—

Digyky, = , (3.9)

Ak ks (3.10)

denote STTs and a local dynamics tensor (LDT) [27], evaluated along the nominal trajectory a*.
The STT in Equation (3.9) is equivalent to the State Transition Matrix (STM) [76] where m = 1.
In general, since we may have dynamics model rather than the solution flow, it is impossible to
generate the STT directly in most cases. For that reason, in order to get the STT, we need to use
two different expressions of the relative trajectory dynamics d@(t). The first expression is from a

time derivative of Equation (3.8a) as follows:

m
. 1.
da(t) =) H@,kl,,,kpawgl...(sxgp. (3.11)
p=1""

The other is to substitute Equation (3.8a) into Equation (3.8b), then the relative trajectory dy-
namics can be defined as a function of the STT and initial deviations. By comparing it to Equa-

tion (3.11), one can obtain the differential equations of the STT, which are given below up to fourth
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order.
(i)i,a _ Aiva(I)O"a’ (312&)
(i)i,ab:Ai,aq)a,ab_'_Ai,aﬁq)a,a(I)B,b’ (3121:))

(;'[)i,abc :Ai,a(I)a,abc+Ai,a,@(q}a,a@ﬁ,bc+(I)a,abcpﬁ,c+(Da,ac(I),B,b)+Ai,a67q)a,aq),8,b(1)'y,07 (312C)
(i)i,abcd — Ai,aq)a,abcd+Ai,aﬁ(q)a,abc(l)ﬂ,d+(I)a,abdq)6,c+q)a,acdq),8,b+(Da,abq)ﬂ,cd (3.12d)
+(I)a,va)B,bd+q)a,ad(I),8,bc+(I)a,a(I),B,bcd)+Ai,aﬁ'y((I)a,abcI),B,c(I)v,d+q)a,ac(I)B,b(I)7,d

+(Da,adq)ﬂ,bq)'y,c+(I)a,aq)ﬁ,bc(p%d_|_(Da,aq)ﬁ,bd(I)%c+q>a,a(bﬁ,bq)'y,cd)_’_Az',aﬁﬂ/éq)a,a(bﬁ,bq)'y,ci)é,d

The initial conditions for STT can be simply defined identity tensors because @?’a =1,iff i =a,
otherwise <IJ?7a = 0. After solving for the STT, one can compute deviations at time t (¢ > t°)
analytically by adding the higher-order solution to the nominal trajectory, x;(t) = =} (t) + ®-dx! =

x;(t) + ox;(t).
3.2 Solution of the Fokker-Planck Equation for a Deterministic Dynamics

Orbital dynamics problems entailing uncertainty can be expressed with the It6 stochastic

differential equation,

Sx(t) = f(x(t), ) dt + G(z(t),t) dB(t), (3.13)

where G and 3 are an n-by-m matrix characterizing the diffusion and the diffusion vector, respec-
tively. Suppose that a given system satisfying the Ito stochastic differential equation, the time
evolution of a probability density function (PDF), p(x,t), over x at time ¢ is described by the

Fokker-Planck equation [51],

op(a, Al
o=~ 2 g, V(@ (@ 1) £330 o (M@ D(E@ QWG @ 0)]. (314

i=1 j=1

where a single subscript and a double subscript indicate vector components and matrix components,

respectively. If one defined the Fokker-Planck equation without the diffusion terms, i.e., 3(¢t) = 0,
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it would become simpler as

w1 Z ool i, 0] (3.15)

Note that solutions of the FPE give the true evolution of the probability density function. However,
including these partial differential equations in the trajectory navigation problem introduces addi-
tional difficulties and is usually avoided for practical reasons. In this thesis, we consider systems
with no process noise and the probability density function satisfies the Fokker-Planck equation de-
fined in Equation (3.15). This is a reasonable model for astrodynamics problems with no thrusters

and no dissipative forces acting on the spacecraft.

Definition 16 (Integral Invariance) Consider a dynamical system with the governing equations of

motion & = g(x, t) and let I(x, t) be an integral of a vector field M (x, t) over some volume B:

(e, {) = /BM(J:, ) da. (3.16)

The integral I(x, t) is called an integral invariant if it is constant for all time, i.e., dI/dt = 0. In

general, the sufficiency condition for integral invariance can be explicitly stated as

aM:ct i

which is known as Liouville’s equation.

, 1) g'(x, )], (3.17)

By comparing Equation (3.15) with Equation (3.17), we see that p(x, t) satisfies the sufficiency
condition for the probability to be an integral invariant. Hence, this implies that probability of any
dynamical system with no diffusion term is an integral invariant.

The integral invariant can be shown as well by using the deterministic Hamiltonian. Let us consider
a Hamiltonian H(q, p), which is a function of n-dimensional generalized coordinate g and conjugate
moment p. The equation of motion, @& (t), can be written with the symplectic identity matrix J as
follows:

&(t) = JHL, (3.18)
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where « = [q7 p']. Assuming a deterministic Hamiltonian, the Fokker-Planck equation in

Equation (3.15) can be written as follow.

o S i 4 p(x, ) tr (JHL,) | (3.19)

op(@t) _ i [ op(z, t)
81‘1'

i=1
where tr(-) represents the trace of a matrix, i.e., a summation of diagonal elements. The second

term on the right-hand side is

H H
(L) =t | T P =o0.

This fact reduces the Fokker-Planck equation to:

dp(x,t)
——=0. 3.20
o (3:20)
Thus, the solution of the Fokker-Planck equation is:
pla, t) =p[o(t; 2% t°), t] = (=, 1), (3.21)

where p(z°, t°) is assumed to be specified. A time invariance in Equation (3.20) shows that the

probability of the state in some phase volume B(t) is an integral invariant. Then, this lead to

Pr(x € B) :/ p(x, t) de

B
ox

= [ plotes a0 0, )| 25 aa (3.22)

0

— [ st ae’,
Bo
which gives
Ox

p(o(t; 2°, %), t) '8:1:0 = p(x?,1%). (3.23)

Since the mapping from « to « is canonical in the Hamiltonian system, the determinant |8w / 6:1:0}
becomes 1. Equation (3.23) indicates that the PDF at a specific epoch ¢ (¢ # t°) can be characterized

by the initial PDF; thus, if the solution is known as a function of initial conditions and the PDF is

known at any arbitrary epoch, the PDFs for all time can be found.
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3.3 Nonlinear Mapping of the Gaussian Distribution

Using the aforementioned property, shown in Equation (3.23), the mean of PDFs at any

arbitrary epoch can be rewritten as a function of the initial conditions as

El[z(t)] :/ x(t) p(x,t) de
o0 (3.24)

= [ ot e 1) o’
o0
We observe that Equation (3.24) is suitable for computation of the state uncertainties using the STT
formulation because the solution flow can be expanded using the Taylor series and higher moments
can be computed using the joint conditional function(JCF) of the initial Gaussian distribution [62].
Consider the Gaussian boundary condition for the PDF. The PDF for the state 6x° can be obtained
via a linear transformation, ¥ = §x° + m° — §mP?, where m? is the initial mean and §m0 is the
initial mean of the deviation by assuming a nonzero mean for the initial state. By substituting

these relations into Equation (2.8), the PDF yields

1

(02, 1) = ———e
(2m) det PP

exp {—;((5:1:0 — omO)TA (52" — 5m0)} . (3.25)

Since the expectation of the nominal trajectory does not change, by definition, it is easier to instead
analyze the statistics of the deviated state. As seen in Equation (3.8a), a state at future can be
mapped with the STTs and initial deviations. The nominal trajectory is fixed in time, thus the
current state mean and covariance are defined with the deviated state and STTs

1
S (t Z —Pikrky E[5a), ... 0z ], (3.26a)
p=1

m m
1
Pij(t) = Z Z g P, K1 kp Gy E[5m21 - 513217(533?1 - 5m?p]

p=1q=1
— omy(t)om;(t), (3.26b)
where {k;, [;} € {1,...,2n} and m is the order of the expansion of the dynamics. Consequentially,

Equation (3.26) gives an analytic method to compute the mean and covariance of a current PDF

directly.
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Up to 2m-order moment of the initial PDF is required to propagate the covariance matrix, where

an n-th order moment, k¥ is defined Equation (2.5) [35, 52| as

KT = B[ (2 = Moy ) (T — May) - (34, — M) |-

In this research, we derive the third and fourth order central moments based on the above equation

as follows:

m m m
1
ik
50 = (3353 s i i 3o

E[dw%l e 5:E2p61:?1 . 61:?q5:n9n1 . 53:9,%0 — <5mi(t)ij(t) + 6m? () P™* () + om* (t) PY (t))

— om(t)om? (t)om* (1),

m m m m
ikl
i (t) = Zzzzpq'r's' Pikyo by ity 1 Phmy e Piny . s (3.27b)

p=1qg=1r=1 s=1

E[éz), .. .(53:2p5x?1 ...5x?q5x9n1 .6zl s L.exd ]| — {5mi(t)5mj(t)Pkl(t)

+mt (£)om® (1) PI(t) + m (£)dmPF (£) PU(t) + sm’ (t)dm! () P*(t) + om? (t)om' (t) P™* (1)

+om*(t)om! (t) P (t) } — (PUPM 4 pikpil L plpiky — smi(t)dmI (£)dmE (t)om!(t).

3.4 Uncertainty Propagation Using State Transition Tensors

In this section, results of MATLAB implementations of the analytic theory discussed above

are shown. Then, the moments of PDF are calculated with Equations (3.26)-(3.27). An initial
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condition is defined as:
757700.301
5222606.566
70 4851499.770
Xy = = , (3.28)
Vo 2213.250611

4678.372741

—5371.314404

where position and velocity are defined in m and m/s, respectively. For the Monte Carlo simula-
tions, 10,000 samples, normally distributed within some specified 3-o region, are generated with

respect to the initial state in the Cartesian based on 1-0 Gaussian error

diag (Po) = [1000.02, 1000.02, 1000.02, 2.52, 2.52, 2.52]. (3.29)

For this analysis, the initial uncertainty is propagated with the two-body dynamics for 12 and 48
hours with the STTs up to the fourth-order. Figures 3.1-3.2 show the results of the propagation
for each period. Even though the simple two-body dynamics are introduced, the first-order STT,
i.e., STM, does not describe the uncertainty accurately. However, about fourth order, the STT
approximation is close enough to the full dynamical system. Also, the nonlinearity grows as the
propagation time is made longer, as expected. Figure 3.2 is a representation of the Monte Carlo
simulations result after 48 hours. The second order STT could follow the nonlinear evolution of
the full dynamical system. Note that higher STTs continue to be sufficient approximations to
the complete two-body dynamics even after such long propagation times. In summary, the STT
propagation, particularly above third order, continues to retain uncertainty consistency after 48
hours. It is also more clear for this case how the expansion of the dynamics converges upon the
true dynamics as one includes higher order effects. Tables 3.1-3.4 summarize the relative errors
of the mean of deviations and of the diagonal terms of covariance matrices obtained from each
order of STTs in percentages from Equations (3.26)-(3.27). As seen in Table 3.1, after 12 hours
of propagation, the propagated uncertainty with the STM is inaccurate. On the other hand,

the relative errors imply that the STTs above the second order are sufficient to map the initial
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Table 3.1: Relative errors in m on each direction with respect to the order of STTs after 12 hours

of propagation (%)

STM STTs
2nd 3rd 4th
om, | 109.9525 18.0257e-3  17.35032e-3  26.8396¢-6
dmy 95.2005 12.9850e-3 13.6389e-3 6.7264e-6
om, | 1.42828e3 686.7043e-3 390.9971e-3  2.3752¢-3
omy 59.3448 10.4839¢-3 1.1685e-3 53.6116e-6
Omy | 912.2435  426.8609¢-3  264.8679¢-3  1.3774e-3
omy | 96.67917 10.9573e-3 11.0970e-3  11.7053e-6

uncertainty. After 4 days of propagation, the relative errors in the mean of deviations are presented

Table 3.2: Relative errors in variances(diagonal terms of a covariance matrix) on each direction
with respect to the order of STTs after 12 hours of propagation (%)

STM STTs
2nd 3rd 4th
P, | 348.6960e-3 46.0766e-3  37.5546e-6  240.2988e-6
Py, | 438.9232e-3  99.8500e-3  615.5324e-6  353.0359¢-6
P.. | 61.0509e-3 66.7837¢-3  9.0025e-6 12.6218e-6
Pi:z | 67.4613e-3  64.5812e-3  28.7991e-6  31.1886e-6
Pyy | 55.5510e-3  61.3321e-3  3.9085e-6 7.3276e-6
P:; | 812.6804e-3 99.9410e-3  793.3978e-6  440.4987e-6

in Table 3.3. The results also imply that the second order STT propagates the initial uncertainty

with the sufficient accuracy. It is worth noting that the propagated uncertainty from the fourth

order STT describes the full dynamical system most accurately.

Table 3.3: Relative errors in dm on each direction with respect to the order of STTs after 48 hours

of propagation (%)

STM STTs
2nd 3rd 4th
omg | 104.7124  311.7035e-3  295.9309e-3  384.3329e-6
omy | 100.9504 296.8674e-3  292.9992e-3  483.8280e-6
om, | 81.7932 214.1611e-3 279.4905e-3  1.0148e-3
omg | 94.6232 292.6597e-3  313.6472e-3 892.9517e-6
omy | 79.9286  276.5333e-3  349.0988e-3  1.6933e-3
omy | 101.2280 301.0879e-3  295.8066e-3 515.3685¢-6
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Table 3.4: Relative errors in variances(diagonal terms of a covariance matrix) on each direction
with respect to the order of STTs after 48 hours of propagation (%)

3.5 Conclusion

STM STTs
2nd 3rd 4th
P.. | 362.9316e-3 1.1741 3.8953e-3  3.6849e-3
Pyy 12.3554 1.2165¢  124.9981e-3  6.0906e-3
P.. 1.1441 1.1500 2.6303e-3  2.7136e-3
P;; | 818.0988¢e-3  1.1262 1.3458e-3  2.0978e-3
Pyy 1.1560 1.1588 2.7633e-3  2.8364e-3
P 7.0179 1.3374  74.0184e-3  7.2554e-3

In this chapter, an analytic method of nonlinear uncertainty propagation is discussed. A spe-

cial solution to the Fokker-Planck equations for deterministic systems and the concept of the State

Transition Tensors (STTs) are combined so that, given an analytic expression of both the initial

probability distribution and the dynamics, the probability distribution may be expressed analyti-

cally for all time. Propagation of uncertainty is then only a matter of changing the time parameter

t. In particular, two-body dynamics is applied to the above framework. The propagation results are

compared with numerical Monte Carlo simulations. This example demonstrated the potential effi-

ciency and accuracy of analytic uncertainty propagation even when compared to numerical results

employing realistic parameter models. Lastly, the good agreement between the analytic and Monte

Carlo results implies that further investigation in analytic uncertainty propagation may indeed be

beneficial.



35

69_><106

6.85

6.8

6.65

6.6 1 1 1 1 1 1 1
2.08 2.1 2.12 2.14 2.16 2.18 2.2 2.22

x (km) x10°
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Figure 3.1: Comparison of the propagated uncertainty on z-y phase space with the STTs up to
the fourth order after 12 hours. The accuracy of the propagated uncertainty with the higher-
order STT is higher. A magnified plot of the left tail (bottom-left) depicts that the fourth-order
STT (green crosses) maps the initial uncertainty with the highest accuracy: a result from the full
dynamical system, the second, and the third-order STTs is plotted in red circles, orange squares
and in magenta triangles, respectively.
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Figure 3.2: Comparison of the propagated uncertainty on z-y phase space with the STTs up to
the fourth order after 48 hours. The accuracy of the propagated uncertainty with the higher-
order STT is higher. A magnified plot of the left tail (bottom-left) depicts that the fourth-order
STT (green crosses) maps the initial uncertainty with the highest accuracy: a result from the full
dynamical system, the second, and the third-order STTs is plotted in red circles, orange squares
and in magenta triangles, respectively.
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Figure 3.3: Propagated uncertainty with the STTs on y-z and z-z phase spaces after 12 hours (left
column) and 48 hours (right column). The accuracy of the propagated uncertainty gets higher by
introducing a higher-order STT.



Chapter 4

Canonical Perturbation Theory

Historically, the first methods were developed in the non-canonical framework! . The per-
turbative methods, usually applied to deal with nonlinear dynamical problems, are defined based
on an expansion in power series of a “small” parameter with respect to the “known” solution of
a problem; thus, the “perturbed” and “unperturbed” systems differ in “small” quantities. Since
about a century ago, problems of celestial mechanics are exclusively dealt with the perturbative
methods; this celestial mechanical origin has characterized the structure of perturbation theory [7].
This historical background makes the perturbation techniques a powerful tool to obtain a solution
for a perturbed system for which there is already known non-perturbed solution, e.g., the two-body
motion. In this study, we use the canonical framework, originally suggested by Hamilton, since it
has the advantage that the equations of motion are written in a very simple form [7].

In this chapter, we summarize further details of the perturbation theory with a focus on
the Lie transformation method defined by Deprit [19, 42]. The properties of the transformation

method, such as
- providing a systematic way to derive higher-order solutions,
- deriving the solutions for the secular, short-period, and long-period variations separately,

inspire us to apply this specific transformation method instead of the classical Von Zeipel method

applied by Brouwer [9, 10, 50]. Advantages of the Deprit-Lie transformation method over the

! The first person introduced perturbative methods, even if they were exclusively geometric, was Isaac Newton in
Book III of the Principia to deal with the irregularities of lunar motions.
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Von Zeipel method are from these properties. The feasibility and advantages of the Deprit-Lie
transformation method are verified by revisiting the problem originally addressed by Brouwer [9, 10].
Lastly, it is worth mentioning that, in 1966, Hori also defined the perturbation theory based on
the Lie theory [33] and, after the Deprit’s work [19], Campbell showed that both methods were
mathematically equivalent [13].

The outline of this chapter is as follows. A general definition of the Deprit-Lie transformation
method and its advantageous properties are introduced [7, 19]. Then, the generalized expressions
proposed by Kamel [42] and the symplecticity of the transformation method are addressed. Finally,
we present a practical example by revisiting the problem of the artificial satellite problem [9, 10].
From the example, the analytic solutions from the Deprit-Lie transformation method are tested to

guarantee the feasibility and the improvement of the accuracy.

4.1 Lie Transformation Method

We overview the Lie series and transformations in brief, and specifically address the algorithm
of Lie transformation defined by Deprit[19] to investigate the Hamiltonian of the problem; then,
we present a generalized algorithm by Kamel[42] for solving a homological equations. The primary
feature of the Deprit-Lie transformation method is the application of the Lie transform operator

to construct a canonical transformation in expanded form.

Definition 17 (Lie Operator). For given two analytic functions f(q, p) and W(q, p) bounded in
a domain €2 of phase space, Lie derivative of the function f generated by W is defined as a form of

the Poisson bracket {f, W}, which we now denote by the symbol

" of OW  Of OW
Lwf={/, W}:Z<8qiapi ~ Ipi aqz'>7

i=1

where Lyy is called the Lie operator.

For Hamiltonian systems, the Lie transform between two functions H and W is equivalent to the

classic Poission bracket as seen in Equation (4.1), which is generally referred to as the Lie derivative
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of H generated by W. Further, the n-th Lie derivative is defined as L},H = Lyy (5%17{) and the
zeroth order derivative is the identity operator, i.e., £?/V’H = H. As mentioned in Definition 17,
the functions H and W are assumed real and analytic in a bounded domain of the phase space,
e., ). This guarantees a convergent, real-valued series expansion for the resultant canonical
transformation in a neighborhood of the unperturbed system. Detailed properties and descriptions

about the Lie series and Lie transformation can be found in Appendix D.
In the original formulation, given Hamiltonian and generating functions are represented by

the series expansion about the small parameter € as follows:

o0

= SHaC:0), (4.25)
n=0

Wi e =) %Wn+1(c; 0). (4.2b)
n=0

The 2n-dimensional vector ¢ is defined as { = (g, p), where ¢; and p; are generalized coordinates

and conjugate momenta. Then, it is possible to obtain

)= S Hua (¢ ), (4.33)
n=0

LwH(C Z ;" Z L1 Hn-m(¢:0). (4.3b)

For the sake of simple notations, let us put £y, = L¢. A subscript £ denotes an order of generating

function. The Lie transformation Ayy f [7, 19] is represented by the formal series as

AwH = Z H (¢ 0), (4.4)

and the recurrence extends to any n (n > 0) is given by

=" e o). (4.5)
n=0

Equation (4.5) can be rewritten as a generalized form as

HP(Q) = M5 + Z L M. (4.6)
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In particular,

HOC;0)=HT (¢ o) = HETY 4 LoD, (4.7)

Lastly, the recursion Equation (4.6) is easily visualized as shown in Figure 4.1. The figure is called

Ho,o

7'[|10 — Hoa

7'1|20 - 7'[|1,1 - Hope

HLO - H|2,1 - 7'l|12 — Hoza

HLO — 7‘[|31 — H|2,2 — H‘l?) — Hoa

7'1|50 - HL1 - H|32 - H‘23 - 7'1|14 - Hos

Figure 4.1: Recursive transformation of an analytic function under the Lie transformation (Deprit’s
triangle)

the Deprit’s triangle and provides a simple way to compute transformed Hamiltonian functions,

7{5[“). Some examples from the Deprit’s triangle are given below:
O(e%) : 1Y = Hog,
O(e") : HE = Hor = Hio+ Ly Hoy,
O(é?) : 7'[((]2) =Ho2 = Hi1 + Lw, Ho1 = Hopo + L, (Hio + Ho1) + L, Hos “8)
O : H(()S) = Moz = Hso + L, (2Ha,0 + Ho2) + L, (2H1,0 + Ho,1) + L, Hoo |

+ £W1 £W1H170 + [’Wl ﬁWQHO,OJ

Lastly, for every order of € shown in Equation (4.8), the generating functions can be written as a
form of the PDE (partial differential equation) as follows, which is called the homological equation
[19, 42].

LoOWn) + K = Hoom, (4.9)

where ﬁO,n, K, and Lo(—) are a collection of all terms known from the previous order, transformed

Hamiltonians, and {—, Ho}, respectively. A purpose of the homological equation is to separate the
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given Hamiltonian into two parts, constant and varying terms with respect to a specific variable.
The constant terms may be assigned as the transformed Hamiltonian, and the generating function,
W, is defined as a function including the varying terms.

For the sake of applying the Deprit-Lie transformation method, the generalized algorithm
proposed by Kamel [42] is discussed in this section. Based on the transformed Hamiltonian and
generating functions, i.e., K, and W,, the (semi) analytic solutions can be obtained based on
the definition of the perturbation theory. Let us assume an original set of variables as (x, X)
and a transformed set of variables as (y, Y). The transformation is a near-identity canonical
transformation ¢ : (y,Y;€) — (x, X), defined by the solution x(y,Y;¢) and X (y,Y;¢). The

solutions satisfy that

de W  dX W

de _OW - dx OV 4.10
de 0X de ox (4.10)
with initial conditions x(y,Y;0) = y and X (y,Y;0) = Y [19]. In the original set of variables
space, an Hamiltonian, H(x, X;€), and generating, W(x, X;¢€), functions are defined as a power

series of the small parameter €

Hia, X;6)= > S Ho(2,X) =Y SHol@, X), (4.11a)
= n! = n!

Wiz, X;¢) =Y %Wnﬂ(x, X), (4.11D)
n>0

both of them are based on Equation (4.2). The given Hamiltonian function can be transformed
term by term up to required order in a recursive way through Equation (4.6). This procedure is
carried out systematically by solving the homological equation.

Then, suppose that the transformed Hamiltonian, /C, is

K(y,Yie)=> Ky, Y) = > —THon(y,Y). (4.12)
n=0 n=0

If the variables satisfy the canonical equations, one can get relations from the transformed Hamil-

tonian
dy; oK, dY; oK,

i oY, a oy e e
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where y; and Y; indicate the generalized coordinates, and conjugate momenta. m represents the

number of variables. Figure 4.2 shows a procedure of the transformation. In general, the motion

P I A= P i i
or e e i
EF1E@>EF{‘ i ;ffg@gff* —Fe
1

SN IR TS B
IS FEH [ i
[S——— o o o o e tmmmm=! tmmmccmmcme = a3

{ “Original Hamiltonian | | Nofastvariable | | Noangular variable !

Figure 4.2: Two steps in the canonical transformation for eliminating the periodic variations from
a given Hamiltonian dynamics: 1) W extracts all terms dependent on the fast variable, e.g., mean
anomaly, from the given Hamiltonian F in order to remove the short-period variation, and 2) the
long-period variation is eliminated by W* from a transformed Hamiltonian in the first step, i.e.,
F*. As a result of this procedure, the Hamiltonian at the final stage, 7**, has no variations which
evolve periodically.

of an orbiting object around a central body includes two different periodic variations, that is,
the short-period and long-period variations. Through the two-step transformations, these periodic

variations can be eliminated.

4.1.1 The Secular Variations

After completing the transformations, the transformed Hamiltonian can be expressed by

Equation (4.12) based on the relation given below.
Ko =Hoo = F5"
K1 =Hoa1 =777,
Ko =Hoz = F5", (4.14)

Ks=Hoz=F3",
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Then, the transformed Hamiltonian /C has no periodic variations; thus, one can get the analytic
solutions for the secular motion of an orbiting object through Equation (4.13).
The semi-analytic solutions eliminates only the short-period variations; thus, these solutions

can be defined by replacing F}* in Equation (4.14) with F

~, 1.e., transformed Hamiltonians after

the first step. In particular, we focus on the semi-analytic solutions in analyzing the dynamical
realism since a magnitude of the long-period variations may be greater than tha