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Abstract

High tumbling rates of uncooperative targets pose strong technical challenges
and collision risks that can prevent removal of the debris using contact strategies
such as robotic arms or capture nets. Electrostatic touch-less de-tumbling is a
promising technology that can be used to decrease an uncooperative object’s
rotational velocity in geosynchronous orbit (GEO), from a safe distance. This
thesis demonstrates the advantages of applying a Lyapunov optimal control, in
conjunction with a Surface Multi Sphere Model (SMSM) to describe the charge
distribution. This approach allows for the analysis of general shapes, eliminat-
ing the need for analytical approximations on debris shape and expected torque,
employed by previous work. Moreover, using this model, the robustness of the
system to uncertainties to the debris center of mass position is tested. This
analysis uncovers an unstable phenomena that was previously not captured us-
ing simpler models. An Active Disturbance Rejection Control (ADRC) ensures
robustness of the system in the cases analyzed, also granting an increase in its
effectiveness. It is shown in simulation that the system can exploit deviations
in the center of mass to achieve a higher level of controllability and completely
de-tumble all components of angular velocity.
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Estratto

Le alte velocità di rotazione in detriti non cooperativi possono portare a signi-
ficativi problemi tecnici e di sicurezza , che spesso rendono impossibile un’operazione
di cattura con classici metodi di contatto, come bracci robotici o reti. Il de-
tumbling elettrostatico è una nuova tecnica che consente di ridurre le rotazioni
di un oggetto in orbita geostazionaria (GEO) senza necessitare di un contatto
diretto. Questa tesi dimostra i vantaggi nell’utilizzare un legge di controllo
Lyapunov optimal, applicata ad un Surface Multi Sphere Model (SMSM) che
descrive la distribuzione di carica elettrica nei corpi. Questo approccio con-
sente di modellare detriti dalla forma generica, eliminando le assunzioni fatte,
in lavori precedenti, su forma del detrito e andamento analitico di forze e mo-
menti torcenti imposti. Inoltre, usando questo modello, è possibile testare la
robustezza del sistema a incertezze nella posizione del centro di massa e in-
erzia. Ciò ha portato alla scoperta di un comportamento instabile del sistema,
che non poteva essere osservato con modelli più semplici, precedentemente uti-
lizzati. Un Active Disturbance Rejection Control (ADRC) è implementato per
garantire stabilità e robustezza alle incertezze considerate, migliorando anche
la performance del processo stesso. Nei risultati è possibile osservare come il
controllo migliorato può sfruttare le piccole deviazioni del centro di massa del
detrito per ottenere una maggiore controllabilità del sistema e raggiungere un
completo de-tumble di tutte le componenti di velocità angolare.
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Chapter 1

Introduction

1.1 Motivation

The accumulation of space debris in Earth orbit presents a significant risk
to infrastructure and human presence in space [1, 2]. Active debris removal
is one approach that has been proposed to mitigate this risk to existing space
assets. This is especially challenging for debris in GEO, where the perturba-
tions due to atmospheric drag and Earth oblateness are too small to ensure
natural deorbiting, compared for example with low-Earth orbits (LEO), where
the lifetime of a debris can be significantly shorter.
The total number of inactive objects in the geostationary belt has increased
considerably over the last decade, leading to an accumulation of over a thou-
sand of debris, several meters in size, far surpassing the number of total active
spacecraft in orbit (around 500) [3–5]. The value of space assets, essential for
communication, in the region of GEO is estimated to be 13 Billion US dollars[6],
so protecting these objects from potentially catastrophic impacts is a priority.
Moreover, debris removal in this region is important not only to protect existing
satellites from impact, but also because each of these objects occupies a por-
tion of space very valuable, that could be used by another operational satellite.
Indeed the available spots in GEO will inevitably become scarcer with time, if
nothing is done to prevent that.
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1.2 State of the art

Most concepts for de-orbiting an uncooperative object, involve the use of
a chaser spacecraft that brings itself close to the debris and de-tumbles and
de-orbits it by imposing forces and torques mechanically on the debris. [7–11].
This requires the service spacecraft to touch the object, posing significant risks
since this can be tumbling uncontrollably with rates up to 10 deg/s [12, 13].

(a) Robotic arm (b) Capture net

Figure 1.1: Two contact de-tumble strategies, images taken from cnn.com

This value surpasses the current requirements of de-orbiting technology, that
is estimated to be around 1 deg/s [8–11]. It is then necessary to reduce these
rotations before employing the de-orbit technology. This can be done using
different contact strategies, reference [14] lists quite a few.
All of them require the service craft to attach to the debris, this can be done
in three main ways: with an harpoon, with a net or with a perch.

The harpoon is an object launched at the debris, that connects to it by piercing
the body in a certain soft point, while still attached to the service craft with a
link. This concept requires knowledge of the debris structure to correctly select
an appropriate location to aim for, and the ability to time the release correctly.
If the incorrect portion of the debris is hit, the harpoon may bounce off, knock
pieces off or it may even trigger an explosion. Moreover even if the attachment
is successful, as the end of the cable wraps around the tumbling debris, it will
likely pulling the service craft towards the debris at high speed. The system
would have to be designed to account for this.

A net would be a similar concept that does not require any specific attachment
point to be aimed for, but the net itself has to be designed to be able to deploy
correctly and wrap around several possible debris shapes. Once it is positioned,
there is still the same problem in which the service has to ”reel in” the debris,
that could prove very difficult if the debris is spinning at a fast rate.
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Lastly, a perch consists in a stiff arm with microspines at the extremities
that dig in the debris much like a climber ice pick digs in a wall. The location
of the attachment point is not predetermined in this case, since it all depends
on what surface asperities the perch hooks on and this is difficult to predict
and control. The rigid arms give more control on the effect of the debris on the
service, provided that the link is able to handle the resulting loads.

Figure 1.2: Perch attachment, figure taken from [14]

Once the service is correctly attached and tumbling with the debris two main
effects can be employed to de-tumble the system: impose a torque that dissi-
pates the angular velocity, or increase the angular Inertia so that the rotations
decrease thanks to the conservation of angular momentum.

Applying a dissipating torque can be done in numerous ways, like for example
using magnetic torquers, either inflatable or fixed; using the rope deployed to
attach the debris to act as a winch once it is wrapped around it; also a swarm
of nano sats can be used, each with a propulsive system capable of providing
enough thrust to generate the desired torque or even directly de-orbit the de-
bris.

Increasing the angular inertia of the debris with attachable masses or expanding
foam, will decrease its rotational velocity but does not ensure a full de-tumble
and also grants very little controllability. The evolution of the rotations will
only depend on the dynamics of the system itself. It is also possible to cut the
debris in smaller pieces and separate them with ropes, in order to increase the
inertia even further.

A more in depth analysis is given in [14], but in the end it can be said that
despite everything, most of the problems that these solutions have to face have
the same origin: the need of a contact between debris and service spacecraft.
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It would be preferable to perform the de-tumble at a safe distance from the
debris itself, so that the issues listed above can be avoided. For this reason
different touchless de-tumbling strategies have been developed, like the Ion-
beam Shepard[15, 16] or Electrostatic de-tumbling[17–19].

Figure 1.3: Diagram of Ion Shepherd basic principle

Both of these methods trade the speed and effectiveness of a contact strategy
for the reduced risk of impacts and ability to handle high tumbling rates.

In the case of the Ion Shepard, an ion beam is used to shoot heavy ionized
particles on the debris surface. The forces generated by this impact on the
debris can be used to create torques that de-tumble the debris or also be directly
used to remove it from orbit in a matter of 3 to 4 months, so that no contact
is required at all.
One drawback of this method could be the burst of particles that are generated
by the ablation of the material hit by the Ion beam. These plumes could hit
delicate components of the debris or (more importantly) of the service craft and
could thus damage them, also the momentum given by these ejection of material
could modify the behaviour of the de-tumble. Great care must be taken in trying
to anticipate this behaviour and possibly use it to boost performances. Despite
these minor problems the Ion Shepherd still represents a valid alternative for
touchless de-tumbling and it is being currently researched.
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Figure 1.4: Ion-Beam Shepard, taken from leonsweep.com

1.3 Thesis Objectives

The electrostatic de-tumbling is the touchless de-tumble alternative exam-
ined in this thesis. Electrostatic charging is used to directly generate forces and
torques on the debris by taking advantage of the Coulomb law. In recent years,
studies have been conducted on the feasibility of imposing an electric potential
on a debris and a service spacecraft, using electron beams and ion emitters [20].
Then using the electrostatic forces generated, the rotational kinetic energy of
the debris can be decreased touchlessly and even a net push or pull force can
be applied to de-orbit the object. [21, 22].

Reference [20] shows that this is feasible to accomplish using current technol-
ogy, moreover it is possible to charge objects to tens of kilovolts in a matter
of microseconds and using as little as watts level electric power. In GEO the
charged objects are able to exert significant electrostatic forces even with sep-
aration distances of tens of meters, because Debeye lengths are approximately
around 200 m [23, 24]. This is not possible in high density plasma environ-
ments, such as in LEO, where the effects of Debeye shielding are much more
intense[25].
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Figure 1.5: Electrostatic detumbling, taken from [26]

In order to predict the generated torques and thus compute the voltage
required at faster than real time, the Multi Sphere Model (MSM) has been
developed [27]. It models the charge distribution as a population of spheres
placed in various parts of the body. Based on the radius of the spheres and
their position, the MSM computes the charge contained in each sphere by solv-
ing a linear system and then the forces and torques can be obtained in a fraction
of a second. A more in depth theoretical background is given in chapter 2.

In previous work [21, 22, 26], the MSM has been applied to study the de-
tumbling of an axial-symmetric cylindrical debris, where the torque around
the transversal axes could be modeled as a function of the angle φ between
the symmetry axis and the service craft position. This way the torque and
thus the potential to impose can be directly obtained from analytical functions
L(φ) and V (φ), this allows to make some considerations on equilibrium condi-
tions of the system and their stability, but some generality is lost in the process.
No effect on the rotations around the symmetry axis is considered, and also the
results obtained do not apply to general shapes.

This thesis implements the method developed in [28] to generate a MSM of com-
plex shapes and simulate the de-tumbling by computing the generated forces
and torques by directly applying the Coulomb law on each sphere, instead of
relying on analytical functions. The control strategy employed is a Lyapunov
optimal controller that aims to obtain the fastest decrease of kinetic energy
possible, by selecting the correct voltage to impose at each time step. This new
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control law is also able to handle general spacecraft tug and debris geometries,
since it does not rely on any shape assumption.

Once the detumbling has been performed for an ideal case, the robustness of
the system to various types of uncertainties is analyzed, the control system is
then improved based on the results obtained. For example, the application of
an Active Disturbance Rejection Control (ADRC) [29–32], that estimates the
lumped uncertainties accounting for them in the control, is tested.
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Chapter 2

Multi Sphere Model

In order to correctly control the system, a certain degree of knowledge of
the charge distribution is required. There are different ways to compute the
electric charge in an object, going from the simplest point charge assumption
to a Finite Element Model, each with its different advantages and drawbacks.
Simple models like point charge and effective sphere are quick to setup and
can give acceptable results for applications like formation flying or in general
when only the net force effect on the body is necessary. If, like in the case of
this study, a more in depth knowledge of the distribution across the body is
required, a more precise model is necessary, with the best one being a Finite
Element Model. A FEM analysis can not be performed at faster than real time
though and requires several minutes if not hours to complete.

Figure 2.1: Comparison of different methods of computing electric charge dis-
tribution, picture taken from [33]
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The Multi Sphere Model is a middle ground between these two extremes, that
can be used to estimate charge distribution generated in a body with a given
potential at faster than real time speed. In general the object is approximated
with a group of spheres that, based on their size, distance from one another,
and imposed electric potential, contain a certain amount of charge. The elec-
trostatic forces can then be computed by applying the Coulomb’s law on each
sphere pair. The model assumes the bodies to consist of uniform conductors,
which is reasonable for most spacecrafts due to the high conductivity of the
external Mylar protective layers [34]. The higher the number of spheres, the
more precise the results obtained are going to be, but also the computational
effort will rise, so different techniques have been developed to choose the correct
model for the case considered. In this chapter the two different versions of the
MSM will be presented: the Volume Multi Sphere Model (VMSM) and Surface
Multi Sphere Model (SMSM).

(a) VMSM (b) SMSM

Figure 2.2: Same geometry represented using the two Multi Sphere Models

Both of these models represent the body as N spheres with variable position
and radii, they only differ in the number, size and placement of the spheres in
the conductor. The voltage on any sphere is a function of both its own charge
and the charge of all nearby spheres. If these spheres are far enough away to
be approximated as point charges, the voltage is given by:

Vi =
1

4πε0

qi
Ri

+

n∑
j=1,j 6=i

1

4πε0

qj
ri,j

(2.1)

qi and Ri are respectively the charge and radius of the ith sphere, ri,j is the
distance between the ith and jth spheres and ε0 is the permittivity of free space
constant.
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For a total of N spheres this can be summed up in the linear system:
V1
V2
...
VN

 =
1

4πε0


1/R1 1/r1,2 · · · 1/r1,N
1/r2,1 1/R2 · · · 1/r2,N

...
...

. . .
...

1/rN,1 1/rN,2 · · · 1/RN



Q1

Q2
...
QN

 (2.2)

V = [S]Q Q = [C]V

Note how the elastance matrix [S] and its inverse [C] only depend on the ge-
ometry of the body and its spheres, so they do not change if the shape of the
body stays constant. The procedure to select position and radius of the spheres
depends on the model used.

2.1 Volume Multi Sphere Model

The Volume MSM (VMSM) represents the body as a small number of rela-
tively big spheres, positioned in its volume, each of these spheres has a specific
radius and position that are varied by an optimizer to best match force and
torque data produced by a commercial FEM program[26]. This is repeated for
several relative position and attitudes, until a set of parameters can be identi-
fied, that best describe the system in all possible different conditions.

Figure 2.3: Example of position sweep performed in [35]

This procedure is slow, since a FEM model must be generated for each of these
points and this could require hours of hand tuning and computations. Follow-
ing studies have found that matching the electric field generated by the electric
charge is easier since only one body needs to be modeled [35, 36] but still it
requires several hours of work. This method has been used in cases of simple
shapes like the one depicted in Fig.2.2 where no torque around the symmetry
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axis was considered. Also it works very well when the separation distance be-
tween the two objects is above 10 craft radii, but its precision decays quickly
as the distance decreases.
As stated before, control laws that use this model assume a certain expected
analytical torque function, that depends on the inclination of the cylinder axis,
completely ignoring any possible effect on the angular velocities around the
symmetry axis[17–19]. In fact it is easy to see that the model depicted in
Fig.2.2a can not describe any symmetry axis torque, since the spheres are per-
fectly aligned along it. It is also possible to generate more precise models, by
increasing the number of spheres distributed in the object’s volume, thus grant-
ing a better description of the torque in all axes but again the position in which
the spheres are generated can be arbitrary and complex to implement.

2.2 Surface Multi Sphere Model

The second model switches to generating a greater number of spheres on
the conductor surface and is thus called Surface MSM (SMSM) [33]. It is faster
to setup and it yields more precise torque estimations with just a small increase
of computational effort. Also it represents more accurately the behavior of real
electric charges, that always position themselves on the objects’ surface.
The spheres were initially positioned homogeneously on the surface but this
does not give enough flexibility for general shapes and is also hard to setup in
the case of curved surfaces. It has been found that using a triangular mesh
to divide the object surface leads to better results[28, 33], it also simplifies
the process itself since these meshes can be easily generated for most shapes.
The radii of the spheres are selected by matching the diagonal elements of the
elastance matrix [S] from Eq. 2.2 to the ones given by a different theoretical
model, that could be for example the boundary element method or the method
of images[28].
In this thesis the method described in [28] is employed, it uses the Method of
Moments to provide a foundation for convergence of the results. The spheres
are positioned in the centroids of the mesh triangles and the radii are obtained
from the MOM elastance matrix elements:

Ri =
1

4πε0Si,i
(2.3)

The procedure to obtain Si,i is described in Chapter 3.
The main advantages given by the SMSM are the greatly reduced setup times,
since the truth model used for its matching are much faster to compute than
performing a FEM analysis multiple times.
Also the SMSM gives better results for separation distances within 10 craft
radii. This is because by having an higher number of spheres, the system has
more degrees of freedom to redistribute its charge and induced effects can be
considered.
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For example, let’s observe the situation depicted in this figure:

(a) FEM (b) VMSM

Figure 2.4: Surface charge comparison between FEM and VMSM, figure taken
from [27]

As it can be seen, representing the system with only 4 total spheres greatly
limits the distribution in charge that is present in the real case. The spherical
spacecraft can only be described as an equipotential sphere and only three dis-
tinct charge levels are present in the cylinder. In the case of a SMSM the real
case is represented more accurately at the cost of an increased computational
burden. This may be worth it when the two objects are at close distance, where
these induced effects are more intense, but it is a waste of resources when the
two objects are at more than 10 craft radii of separation.
Another benefit is that since the number of spheres considered only depends on
the number of triangles in the mesh, it is easier to control the precision of the
model and the same geometry can be easily modeled with different levels of ac-
curacy. The analysis performed takes advantage of this by employing different
models of varying precision, to observe how the performances of the de-tumble
are affected.
Moreover most of the procedure can be completely automatized, apart from the
generation of the 3D model itself, so there is no time consuming manual tuning
required.

From all the alternatives, the SMSM generated from the Method of Moments
has been picked because it combines both high precision of the charge de-
scription and simplicity of use for general geometries. In the next chapter the
generation of the model itself is explained more in detail.
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Chapter 3

Model Generation Procedure

In this chapter the SMSM is generated for the two objects considered: the
service spacecraft and the debris. First a triangular surface mesh is created,
then the Method of Moments (MOM) is applied to the mesh to generate the
sphere distribution. Finally the capacitance of the isolated body is computed
and matched to a thruth model, in order to improve performances. Once the
model of the two objects are obtained they are put together to build up the
system itself.

3.1 Mesh generation

A triangular mesh that describes the object external surface as a series
of triangles is generated, the higher the number of triangles used, the more
precise the model, with a higher number of spheres generated and thus a higher
computational complexity to the simulation. These meshes can be created
manually, generating each vertex and edge, but this is only feasible when using
very simple shapes like cubes and cylinders. It is far easier to use a 3D modeling
software to create stl files manually or starting from already existing 3D CAD
models.

(a) 68 faces (b) 160 faces (c) 127 faces mix

Figure 3.1: Three different levels of mesh precision

The software used during this study is 3D Builder [37], usually used for 3D
printing, so each part of the system can be customized to have as many triangles
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as necessary. By changing only a few parameters, it is possible to create .stl
files of many different number of total triangles for the same shape, even with
a heterogeneous distribution, for example by concentrating most spheres on
the parts closer to the debris (Fig.3.1c). The meshes are also modified using
MeshLab [38] in order to refine some aspects and delete triangles that may not
be necessary.
This is especially important in situations where two surfaces are close together
and can be described as a single plane, like in the case of solar panels. If
not addressed, this could lead to spheres that are too close together, creating
numerical singularity issues when the elastance matrix [S] and its inverse, the
capacitance matrix [C], are computed. The reason for this is explained at the
end of the next section.

3.2 From MOM to SMSM for the isolated object

Once the mesh is created, the MOM is used to compute the charge dis-
tribution on each of the N triangles the surface is divided into. This method
is based on the Gauss theorem, applied on each triangle (for a more in depth
description see [28]):

V (r) =

∫
dq′

4πε0||r − r′||
(3.1)

Where r is the observation point considered and r′ is the source point. If the
source region is discretized into area elements Ai, the voltage is:

V (r) =
1

4πε0

(∫
A1

dA′

||r − r′||
σ1 +

∫
A2

dA′

||r − r′||
σ2 + · · ·

)
(3.2)

Where σi is the surface charge density on the ith area element.
For all the triangles the following linear system is built:


V1
V2
...
VN

 =
1

4πε0


∫
A1

dA
||r1−r′||

∫
A2

dA
||r1−r′|| · · ·

∫
AN

dA
||r1−r′||∫

A1

dA
||r2−r′||

∫
A2

dA
||r2−r′|| · · ·

∫
AN

dA
||r2−r′||

...
...

. . .
...∫

A1

dA
||rN−r′||

∫
A2

dA
||rN−r′|| · · ·

∫
AN

dA
||rN−r′||



σ1
σ2
...
σN

 (3.3)
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Then each element in the central matrix is divided by the area of the element
to change the units of the elements to farad−1 and change the vector on the
right from the charge density σ to the total charge Q.

V = [S]Q Q = [C]V (3.4)

In this study the potential is assumed equal for all elements V1 = V2 = VN =
Vbody, then in order to compute the resulting charge, the Elastance matrix [S]
is inverted to obtain the Capacitance matrix [C].
Since the triangular elements are chosen as basis area, the elements of [S] can
be rewritten by considering two generic triangles (i and j) both formed by the
corners [ABC] as shown in the next figure:

Figure 3.2: triangular coordinate system taken from [28]

The separation term R = ||rN − r′|| can be written as ||PA+ uAB + uvBC||
where u and v are the parameterized coordinates, and the the area differential
becomes dA = u||AB ×BC||dudv.
This leads to the elements of [S] being computed as:

Si,j =
1

4πε0Aj

∫ 1

0

∫ 1

0

u||AB ×BC||dudv

||PA+ uAB + uvBC||
(3.5)

The integrals are solved numerically using the adaptative quadratic algorithm.
This procedure, while giving accurate results, is computationally heavy, since it
requires one to solve N2 integrals at each sampling time. Therefore, this is only
done once to setup the parameters for the SMSM by matching the elements of
[S].
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This is possible because the SMSM relates potential and charge in the sys-
tem in a similar way, with the following linear system:


V1
V2
...
VN

 =
1

4πε0


1/R1 1/r1,2 · · · 1/r1,N
1/r2,1 1/R2 · · · 1/r2,N

...
...

. . .
...

1/rN,1 1/rN,2 · · · 1/RN



Q1

Q2
...
QN

 (3.6)

As it can be seen the charge on each ith sphere depends only on its radius Ri

and the distance from all the other spheres ri,j , so the matrix [S] stays constant
as long as the object doesn’t change its shape.
The radius of the sphere is obtained by inverting the diagonal elements of the
[S] matrix given by the MOM in Eq.3.3, the spheres are then positioned at
the centroid of each triangle. This leads to good matching of all the elements
of the two [S] matrices, if the mesh has an high enough amount of triangles,
otherwise the errors increase noticeably. This happens because the resulting
matrix is mostly diagonal unless the radii of the spheres are too big compared
to the spheres distance (spheres should not intersect) leading to singularity ef-
fects when computing the inverse.
The elements of this matrix only depend on the geometric properties of the
isolated body and are conserved during rigid body rotations or translations, so
they can be computed only once during the pre-processing phase, as demon-
strated in [34, 39].
Because of this property the [S] matrix referred to the single body is called the
self-elastance matrix.
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3.3 Capacitance matching and two body setup

The total capacitance of the isolated body is computed by summing all the
elements of the self-capacitance matrix [C]. This can be used to obtain an
estimate of the capacitance of complex shapes, if a high sphere count model is
considered. Scaling the computed radius of the spheres to obtain the same total
capacitance of a truth model (FEM model or high number SMSM) increases
the precision of the computed torques and forces without increasing the com-
putational effort [28].

Figure 3.3: How capacitance changes by scaling the radiuses of the SMSM of a
parameter α

So the radiuses of the SMSM obtained are scaled by a radius parameter α,
until the total capacitance matches the desired value or at least comes as close
as possible without leading to any numerical instabilities (depicted in Fig.3.3).
This can generate considerable errors in the estimated charge distribution.
Once this has been done for both bodies considered (service craft and debris),
the two can be put together to compute the interactions between the charged
elements. In particular the charge will redistribute based on the distance be-
tween each sphere that is changing with the debris tumbling motion.
The obtained linear system can be summed up to obtain:

[
V 1

V 2

]
=

[
[S1] [Sm]

[Sm]T [S2]

] [
Q1

Q2

]
(3.7)

Where [S1] (N ×N) and [S2] (M ×M) are the constant self-elastance square
matrix of the service and debris respectively, and the elements of [Sm] are made
up by the inverse of the distance between the spheres of the two different bodies
and these are the elements that change during the tumbling motion.
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Also V 1 and V 2 represent vectors with the imposed potential for each sphere
of the two bodies, same for charge vectors Q1 and Q2.

(a) Box and panel servicecraft and cylindri-
cal debris

(b) Box and panel servicecraft with an-
tenna and magnetometer boom

Figure 3.4: Examples of SMSM

Given this particular structure of the total elastance matrix the Schur comple-
ment method can be used to obtain the capacitance matrix without having to
recompute the full matrix at each time step.

(
A B
C D

)−1
=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1)

)
(3.8)

Once the charge distribution is obtained, the forces and resulting torques for
each sphere pair (N spheres on service craft and M spheres on debris) are
computed using Coulombs law and the total torques acting on the bodies are
obtained.

F j =

N∑
i=1

1

4πε0

QiQj

rij3
rij (3.9)

L =
M∑
j=1

rj|b × F j (3.10)

First the total force F j on each j sphere of the debris is computed by summing
all Coulomb contributions from each i sphere of the service. Then the total
torque L acting on the debris is obtained by summing up all the contributions
given by the cross product between the position of the j sphere in body coor-
dinates rj|b and the total force resulting on it F j .

18



Once the model of the system is ready, the behavior of the electric charges can
be computed in a fraction of a second. Given a certain electric potential on
the two objects, the total resulting torque on the debris is obtained, so now a
way to correctly choose what potential to give the debris and the service craft
is necessary. This control law needs to pick the potential based on data that
is available from the sensors of the service only, these are values like angular
velocity and attitude of the debris with all the errors and uncertainties that
this includes.
In the next chapter the dynamical system used to simulate the de-tumbling is
presented and the Lyapunov optimal control law employed is described.
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Chapter 4

System Description

The dynamical system uses two different frames of reference, depicted in
Fig.2.2: a fixed one called N (i, j,k) that is centered in the service spacecraft
center of mass and a body frame B(b1, b2, b3) centered at the debris center of
mass that is initially set at a certain distance d on the axis j.
Only rotations of the debris are considered, this is because the service spacecraft
is assumed to use thrusters to offset the resulting torques on it. This assumption
can be considered reasonable given the low intensity of the resulting torques
(around 10−7 Nm for the symmetry axis and 10−4 Nm for the others) also the
same thrusters are assumed to be able to keep the separation distance imposed,
as demonstrated in [22].

4.1 System description

At each time step, the relative attitude between the two frames is described by
the Direction Cosine Matrix (DCM) AB/N and used to compute the resulting
electrostatic torques on the debris using the SMSM and equations 3.9 and 3.10.
In particular the torques are first computed by the controller, that selects the
electric potential to impose on the objects based on a less precise sphere popula-
tion (Fig.3.1a), then this potential is given to the physics model that computes
the real value of the resulting torques, using a better sphere model (Fig.3.1b),
that are then applied to the system.

Figure 4.1: Controller and physics simulation structure
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Thanks to the customization proprieties of the SMSM it is thus possible to
mimic the modeling errors that are present in a real case and study their effect
on the system performance. Ideally the physics population would have a spheres
count in the thousands, to better represent the real charge distribution but this
is limited by the performances of the machine used to run the simulation.
Also no uncertainties in angular velocity reading or attitude imprecision are
included, it is assumed that the service spacecraft is able to reconstruct the
debris state using cameras or LIDAR with an error well below 0.1 deg/s for
velocity and 10 cm for the position of the debris. This would not contribute
significantly to the performance of the de-tumble and is a reasonable assump-
tion given the precision granted by modern imaging systems [40–42].
Beside the parts depicted in Fig.4.1 the system is composed by the blocks that
compute the angular velocity (Euler’s equations), the one that computes the
DCM and errors in torque estimations.
After the electrostatic torque is computed, more effects can be added like Solar
Radiation Pressure torques, gravity gradient and center of mass deviations, this
way it is possible to study the effects these aspects have on the debris and the
de-tumbling performance.

4.2 Control law

The Lyapunov optimal control law used to ensure the de-tumbling of the
debris is based on the minimization of the Lyapunov function V(ω) [43], defined
as the expected total kinetic energy of the debris. From now on all estimated
quantities are identified with an asterisk:

V (ω) = T ∗ =
1

2
ωT [J ] ω (4.1)

V̇ (ω) = Ṫ ∗ = ωT [J ] ω̇ = ωT ([J ]ω × ω +L∗) = ωTL∗ (4.2)

The angular velocity ω, the expected torque L∗ and inertia matrix [J] are ex-
pressed along the principal axes in body coordinates, also the term [J ]ω×ω is
deleted since it is perpendicular to ω and thus its scalar product goes to zero.
The expected torque L∗, that is different from the real one evaluated in the
physics model, depends on the imposed potential on the two objects, so the
Lyapunov derivative also depends on the chosen potential V1 for the spacecraft
and V2 for the debris.
Initially the controller was given the ability to pick both potentials from an
interval of ±20 kV but first results showed that Ṫ ∗ varies almost linearly with
the imposed potential as it can be seen in Fig.4.2, and also that the value does
not change if the two potentials V1 and V2 are swapped. Since the objective of
the de-tumbling is to decrease the kinetic energy as fast as possible without a
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real interest in the final attitude of the debris, only the maximum values of ±20
kV are evaluated for the service spacecraft and the debris is kept at a constant
20 kV, effectively limiting the controller to a Bang-Bang control.

Figure 4.2: Lyapunov derivative variation with imposed potential for first 100
time steps

So, at each time step, the controller computes the resulting Ṫ ∗ for positive and
negative imposed potential, selecting the one that ensures a negative value of
Ṫ ∗, if neither of the two potentials grant the desired negative derivative, the
controller sets both potentials to zero in order to avoid any possible increase of
the kinetic energy of the system.
This only works as long as the controller is able to correctly predict the torque,
if the prediction is off by a big enough value the debris kinetic energy could
actually increase, leading to instability in the system.
This can be easily understood by adding and subtracting the computed Lya-
punov derivative Ṫ ∗ to the real kinetic energy derivative:

T =
1

2
ωT [J ] ω (4.3)

Ṫ = ωT [J ] ω̇ = ωTL = ωT (L+L∗ −L∗) = ωTL∗ + ωT εL (4.4)

The real kinetic energy derivative consists of a first term that is negative because
the controller ensures so, and a second one that depends on the error in torque
estimation εL, this could either be negative or positive depending on the error
and could, if bigger than the first term, bring the kinetic energy derivative up
to positive values.
Nevertheless, the torque estimation is good enough if an appropriate number
of spheres is set, to avoid this from happening. It can also be seen that if the
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expected torque is high, the margin for error is also higher, so systems where the
torques generated are higher can ensure a correct de-tumbling with higher error
values. This means that larger objects may take longer to de-tumble because of
the bigger inertia but also are more stable to errors in the estimation of torques,
also this holds true for different torques components in the same object. For
example in the case of the cylindrical debris, the rotations around the symmetry
axis b3 should be less stable, because the torques generated are very low.
This hypothesis is later confirmed by the results obtained in chapter 6.

The dynamical system presented is simple yet effective for the analysis that has
to be performed. Thanks to its modular structure the cases that can be analyzed
are countless and this will help greatly in ensuring a correct behavior of the
de-tumble in many different conditions. Moreover, the control law employed
is general and can be applied to any possible scenario, its effectiveness only
depends on the precision of the input parameters. The better the data available,
the better the control effect is going to be, leading to faster de-tumbling and
smaller residuals. In the next chapter the first results are going to be presented,
these include the ideal case with different precision of the SMSM, once it has
been shown that the system can handle these basic cases, uncertainties will be
added.
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Chapter 5

Ideal Case Results

The method developed has been applied initially to the simple geometry
case with a cylindrical debris of height 3 m and radius 1 m and spherical service
spacecraft of radius 2 m, to compare the results with the ones obtained with
the VMSM in previous papers [26]. Once that is done, a different and more
complex geometry of the service spacecraft has been considered. The same
initial conditions have been used here and thruought the rest of cases analyzed,
all the parameters used are provided in appendix.
In order to select the appropriate amount of spheres for the two objects, the
transversal and symmetry axis torques have been computed for different spheres
counts, the procedure for the box panel and cylinder geometry generated the
next two figures:

(a) Symmetry axis torque (b) Transversal axis torque

Figure 5.1: Torque on the debris for different spheres count

As it can be seen, the torque computed stays within 2 % of the truth value
for the transversal torque after more than 100 spheres are considered, but it
can change considerably for the symmetry axis one.
Three different spheres count are selected in the following simulations, one for
the physics modeling of the system and two different ones for the controller.
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These are highlighted in Figure 5.1: as it can be seen the physics sphere count
(in black) gives very similar results to the truth solution considered and both
the controller models give transversal torque results within 1% of the truth
solution (green lines in fig 5.1b). On the other hand, the symmetry axis torque
results varies considerably between the two sphere counts chosen (green and
red lines in fig 5.1a). This has been done in order to obtain some insight in
the robustness of the system and how it behaves when the spheres considered
have not been chosen correctly, this will be showed in the next sections and in
chapter 6.

5.1 Deep space condition

In these first two cases the same number of spheres have been used in the
physics model, 112 for the debris and 100 for the service, also the objects are
at 10 m distance, with the debris fixed on the axis j (less spheres are necessary
for this simpler geometry than in the box panel service case).

(a) Angular Velocity - VMSM Controller (b) Angular Velocity - SMSM Controller

(c) Kinetic Energy - VMSM Controller (d) Kinetic Energy - SMSM Controller
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(e) Angular Momentum - VMSM Con-
troller

(f) Angular Momentum - SMSM Con-
troller

(g) Torque - VMSM Controller (h) Torque - SMSM Controller

Figure 5.2: Spherical service and cylindrical debris for VMSM controller and
SMSM controller with 56 spheres debris and 60 spheres service

The results obtained are consistent with the previous experience, with the
debris’ kinetic energy decreasing monotonically until the only component of
angular momentum remaining is the one along the j axis, thus along the line
that links service and debris. Using an SMSM model for the controller, instead
of a VMSM does not seem to influence the results obtained, so in this case the
SMSM does not provide any particular advantage. This confirms the validity
of the VMSM when dealing with simple shapes, since it gives the exact same
results.
For the box and panels service spacecraft case depicted in Fig.3.4a:
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(a) Angular velocity (b) Kinetic energy

(c) Angular Momentum (d) Torque

Figure 5.3: Satellite service and cylindrical debris, respectively 68-56 spheres
controller (red line in figure 5.1a ), 160-112 spheres physics

Using the lower sphere count model does not cause any problems in the
de-tumble and the system behaves correctly. Also the angular velocity of the
debris does not stay constant after the initial decrease but continues to fall very
slowly in time, also the component of angular momentum Hj is not constant
anymore even if the time it would take to go completely to zero is in the order
of months/year (the simulation time in Fig.5.3 is more than double the one
in Fig.5.2). This demonstrates that the controller is able to utilize the small
torques generated around j by the geometry and induced effects, effectively
granting an higher level of control on the debris.
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5.2 Orbit case

Figure 5.4: Debris and service spacecraft in a leader follower configuration

Nevertheless this effect is not exploitable given the long times it takes to
bring the kinetic energy down. Moreover in the case of a GEO system, the two
bodies are not fixed in the inertial frame, but are in an orbit around the equator
that causes a rotation of the two frames of reference, as it can be seen in Fig.
5.4. Since the frame N is considered fixed in the relative system, the body
frame B completes a rotation around it with each completed orbit, thus the
whole debris rotates in the i− j plane with an angular speed of 360/24 deg/h.
This is modeled in the system by moving the origin point of B, and thus the
coordinates of the spheres of the debris, around the vector k, at a constant
distance d.

(a) Angular velocity (b) Kinetic energy
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(c) Angular Momentum (d) Torque

Figure 5.5: Same spheres as Fig.5.3 but the debris completes a rotation around
the service every 24 hours

Thanks to this, the angular momentum components Hi and Hj decrease
uniformly, the total de-tumble time is reduced, also bringing the residual angu-
lar velocities ω1 and ω2 to zero. Also it can be seen how using the low sphere
count controller model the system is still able to handle the de-tumbling effec-
tively. The symmetry axis component ω3 is not affected though, the reason
can be found in the small magnitude of the torques around this axis, around 5
10−7 Nm compared to the 1 10−4 Nm around the other ones. Since the torque
is so low, the error in torque estimation εL (that is in the order of 10−6 Nm)
may prevent the de-tumbling from happening.
If this is true, then reducing the error εL may lead to an effect on the symmetry
axis rotations too, this can be accomplished by utilizing a better model for the
controller. Using the increased sphere count (green line in figure 5.1a) is not
enough though; no significant effect is noticeable on the symmetry axis angular
speed. Even using the same sphere model for both controller and physics, thus
assuming a complete knowledge of the system (which is of course not possible),
the following plots are obtained:

(a) Angular velocity (b) Kinetic energy
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(c) Angular Momentum (d) Torque

Figure 5.6: System with 160-112 spheres for both controller and physics

ω3 barely decreases from 0.5 deg/s to 0.455 deg/s in 33 days, at this rate it
would take one year to fully detumble the debris and that is assuming perfect
knowledge of the system, which is not possible to have. Thus even an SMSM
based system is not able to fully detumble a perfectly axial-symmetric debris,
in a reasonable time frame.
It should be noted how it has been demonstrated in previous studies that the
relative orbit between the two bodies can influence the performances of the
de-tumbling, and there is a way to exploit this in order to obtain better results.
In [44] an optimizer is setup to select, at each time step, the relative orbit of
the service spacecraft around the debris that maximizes the obtainable torque
and thus decreases the total de-tumbling time. In the case of the study it was
found that the best orbit possible is the one that keeps the position vector of the
service as perpendicular as possible to the angular momentum H of the debris.
This is because, with the simple geometries and models considered, that was
the condition that maximizes the torque on the debris. The solution obtained
was able to give better results than a simple leader follower condition without
any change in absolute distance or imposed potentials.
In the case of this thesis the same approach could be employed, further increas-
ing the final performance of the system. For simplicity, this was not included
since it can be considered as an added bonus that does not influence the validity
of the cases analyzed.
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5.3 Mixed precision models

As stated previously, the mesh generation procedure is customizable to ob-
tain whatever precision of the SMSM is needed, even not heterogeneous ones
are possible. With this in mind, it could be interesting to examine how having
a mixed precision SMSM model, changes the behavior of the system. Is it pos-
sible to increase the precision of the results by increasing the number of spheres
in a portion of the model?
A lower error could lead to an effect on the ω3 residual or an improvement in
the de-tumbling time of the other two. In this next case the debris SMSM is
changed, the half closer to the debris is described with the same spheres as the
physics model, as depicted in Fig. 3.1c (an ideal condition).

(a) Angular velocity (b) Kinetic energy

(c) Angular Momentum (d) Torque

Figure 5.7: Controller has the reduced precision model for the debris with 56
spheres but the service spacecraft is modeled with the mesh in Fig.3.1c, 127
spheres.

As it can be seen there is no visible effect in the symmetry axis rotations
or the de-tumbling time. It means that the increase of precision granted is too
low to really have any effect in the performances of the system. This should
not be a surprise, given that even using the maximum precision possible for the
controller model (Fig.5.6) was not enough to bring the total de-tumbling time
to a feasible value.
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The errors εL for both this mixed and the standard case can be seen here:

(a) Error for standard case in Fig.5.5 (b) Error for mixed case in Fig.5.7

Figure 5.8: Errors for the standard and mixed mesh.

As it can be seen, for the case analyzed there is no improvement in the maxi-
mum error obtained, only a decrease in the times the maximum error is reached
which is still a good result. It may be due to the relatively small size of the
system; in a case with bigger objects, a mixed model could prove more useful
to decrease the total number of spheres required to describe the bodies and still
get precise results. Most objects in GEO are indeed much bigger than the ones
considered in this study and are usually in the order of 50 or more meters in
length, so the mixed meshes may be necessary in some cases.

During this chapter it was shown how the system created is able to correctly
handle different conditions and always bring the system to a minimum in kinetic
energy. In particular it was shown how the SMSM model does not bring any
considerable benefits for simpler cases but can help describe the induced effects
in a more complex geometry like the box and panel service case. These induced
effects are very small and hard to describe correctly and even in the case of
a perfect torque knowledge their magnitude is so small that a full de-tumble
would take more than a year.
The rotation of the debris around the service, caused by the leader follower
orbiting configuration, allows for a much faster and complete detumbling of the
two transverse axis spins. None of the alternatives analyzed leads to a substan-
tial decrease in the angular velocity around the symmetry axis, even in the case
of ideal precision models.
The next chapter will move to analyzing the robustness of the system to uncer-
tainties, an aspect that was not considered in previous studies.
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Chapter 6

Robustness analysis

An important goal of this study is to obtain a numerical quantification of the
effect of system parameters uncertainty, on the stability and performance of the
de-tumbling. Previously, it was shown how this can be obtained for the error
in torque estimation εL, but this can be further expanded by adding different
contributions to the errors like solar radiation pressure or, most importantly,
errors in the estimated Inertia matrix and center of mass of the debris.
Both J2 disturbances and magnetic torques are not included since they are
usually negligible in the GEO regime, due to the high altitude of the orbit.

6.1 Solar radiation pressure

The effect of solar radiation pressure is modeled as a separate torque Lsrp

that acts on the debris. This is done in a separate block that takes as an input
the position and attitude of the debris and uses it to compute the disturbance.
Since there is no simple way to obtain the force resulting from the pressure
distribution on the curved surface of the cylinder, the debris is modeled as an
octagonal prism.

n ni

ni+1

n niSL Sb SbSi

Figure 6.1: Cylinder debris modeled as equivalent octagonal prism
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The prism has the same base area Sb as the cylinder and each side is sized such
as the summation of all the 8 lateral rectangles is the same as the lateral surface
SL of the cylinder. This results in dimensions that do not fit together since the
edges of the octagon are shorter than the rectangles smaller sides. It does not
matter though since only the area Si and the direction vector ni, of each i face,
are important.
Indeed the torque component given by each surface is given by:

FSi = PsSi(S · ni)[(1− ρS)S + (2ρS(S · ni) + 2/3ρD)ni] (6.1)

FEi = PeSi(h · ni)[(1− ρS)h+ (2ρS(h · ni) + 2/3ρD)ni] (6.2)

LSRPi = ri × FSi+ ri × FEi (6.3)

Two force components are computed on each i surface: the force resulting
from the Sun radiation FS and the one from the Earth albedo FE . these two
components come respectively from the Sun direction S and Earth horizon h,
both computed from Ephemeridies considering the initial date of the simulation
to be the 21st of June 2019.
The radiation pressures Ps and Pe, are obtained by using models that take
into account both the altitude of the orbit and eclipses caused by the Earth
and atmosphere blocking the Sun rays to the debris. Also the direction of the
surface normal ni is taken into account thanks to the cosine law, so that the
faces that are in shadow do not contribute to the total. The resulting force is
then vectorially multiplied by the surface center position vector ri to compute
the torque LSRP .
The disturbance torque is several order of magnitudes lower than the control
torque provided by the system and no effect is noticeable in the performance of
the de-tumbling. For these reasons the result plots are not given here as they
would be identical to the ones in Fig. 5.5.
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6.2 Center of mass deviation

This is the first time that this kind of analysis is conducted for an elec-
trostatic de-tumbling system, the effects of center of mass deviation have been
analyzed before, but only in terms of controllability of the system [45] so it was
not stated what would happen if the center of mass of the debris is different
from the one the controller expects.
This can easily be modeled in the system by adding a contribution to the torque
in Eq.3.10 :

L =
M∑
j=1

(rj|b − δ)× F j =
M∑
j=1

rj|b × F j +
M∑
j=1

(−δ)× F j = LI +Ld (6.4)

So the real torque is now composed by two contributions, the first LI given
by the ideal position of the center of mass and the second one Ld given by its
deviation, only present in the physics model and not in the controller.
Also the expected torque L∗ and the error in torque estimation εL, can be
changed to L∗I and εI for clarity since they refer to the estimate of the ideal
torque LI with respect to the ideal center of mass (CM).
This way it is easy to see that the kinetic energy derivative (Eq. 4.4) now has
the same contribution as before regarding the ideal torque and another one
given by the deviation in the CM:

Ṫ = ωTL∗I + ωT (εI +Ld) (6.5)

In order to better understand how different deviations affect the system,
simulations with δ components only along one axis at the time have been per-
formed. Again the specifics of the parameters used can be found in appendix:
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(a) Angular Velocity - b1 deviation (b) Angular Velocity - b3 deviation

(c) Angular Momentum - b1 deviation (d) Angular Momentum - b3 deviation

(e) Kinetic Energy - b1 deviation (f) Kinetic Energy - b3 deviation

(g) Torque - b1 deviation (h) Torque - b3 deviation

Figure 6.2: Stability analysis for center of mass deviation along b1 in the first
row and b3 in the second one, using the higher sphere model
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As it can be seen the system is not significantly affected by the deviations
of the center of mass position, but there is still a small increase in ω3 that if
not appropriately handled could lead to unstable behavior.
In fact, if the simulation is repeated with the lower sphere count for the con-
troller model:

(a) Angular Velocity - b1 deviation (b) Angular Velocity - b3 deviation

(c) Angular Momentum - b1 deviation (d) Angular Momentum - b3 deviation

(e) Kinetic Energy - b1 deviation (f) Kinetic Energy - b3 deviation
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(g) Torque - b1 deviation (h) Torque - b3 deviation

Figure 6.3: System with CM deviation and controller spheres of debris reduced
to 56

If the center of mass is moved from the symmetry axis, the system reaches
instability very quickly, even 2 cm are enough to cause unstable behavior of
ω3, this demonstrates how sensitive the rotation around this axis can be to the
model used, so great care must be taken when selecting the sphere count to
use.
As expected the system is much more stable to deviations of the center of mass
along the symmetry axis, that do not lead to instability for reasonable devia-
tions, only the total de-tumbling time can be affected by big enough δ3.
Moreover it is interesting to see how the increase in angular velocity happens
only after the other two components have been brought to almost zero. This is
a result of the structure of the controller that tends to prioritize potentials that
give torques around the first two axes as these also grant higher torques on the
debris thus decreasing the kinetic energy the most. Once both these compo-
nents are brought to zero the controller tries to utilize the small torques around
b3, given only by the induced effects and small asymmetries of the charge distri-
bution, to further decrease the kinetic energy but since the resulting torque is
different because of the deviation component, the angular velocity can end up
increasing uncontrollably, as the system has no way of dealing with this effect.
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6.3 Inertia parameters uncertainty

In a real case, if the center of mass is in a different position than expected,
then also the rotational inertia of the body is going to change. This is the next
uncertainty included in this study, to try and understand the effect of a non
axis symmetric mass distribution, on the system dynamics.
For simplicity it is assumed that the unexpected change in inertia and CM
position is given by a point mass propellant tank mp, positioned on the axis b1
and then on b3.

b

mp

3

b1

b3

b1

mp

Figure 6.4: Tank position in the cylindrical debris, in the two cases considered

The value and distance from the center of the tanks have been picked to
give the exact same CM deviations of Fig.6.3. For the deviation along b1 the
tank has a mass mp = 100kg and a distance of 0.55 m, for the one along b3 it
is mp = 200kg at a distance of 1.2 m. Then the change in inertia change on
each component is obtained as:

Ii = I∗i +mcylδ
2
j +mp(δj − rpj)2 (6.6)

So the real Inertia component Ii is given by the assumed ideal one I∗i , plus a
contribution given by the change in CM itself and one given by the point mass
tank in rp. The two cases presented below have an inertia matrix of respectively
[J ] = diag[812.5 840 152.5] kg m2 and [J ] = diag[1052.5 1052.5 125] kg m2:
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(a) Angular Velocity - b1 deviation (b) Angular Velocity - b3 deviation

(c) Angular Momentum - b1 deviation (d) Angular Momentum - b3 deviation

(e) Kinetic Energy - b1 deviation (f) Kinetic Energy - b3 deviation

(g) Torque - b1 deviation (h) Torque - b3 deviation

Figure 6.5: System with same spheres as Fig.6.3
but inertia variations are included too
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An unexpected mass along b1 has a substantial effect on the dynamics of
the cylinder: since the debris is not axis-symmetric anymore, ω1 and ω2 do
not follow the same evolution as before, also ω3 can be seen oscillating in the
first part, before settling and returning to normal unstable behavior. It can be
noted that, while the evolution of the rotations is much more unpredictable,
thus more dangerous, the total de-tumbling time and residual is not affected at
all, so in the end the performance stays the same.
The opposite happens in the case of a deviation along b3: as it can be seen
the rotations are still symmetrical and stable, since the debris is still axis-
symmetric, but the total de-tumbling time is around 30% higher than before
since the inertia has increased.

6.4 Improving the robustness

In the previous sections it was highlighted how the system can be hindered
by various uncertainties, and how these can have an effect on both performances
and safety of the operation. In particular the monotonic increase of the angular
velocity around the symmetry axis is the most concerning. This could lead to
an extreme increase in the total kinetic energy of the debris, rendering any
future de-orbiting attempts impossible.
Two main solutions could be employed:

• Since the unstable behavior manifests itself only after ω1 and ω2 are
brought to zero, the controller could be setup to turn itself off after the
components of kinetic energy (Ti = Iiωi

2) that depend on those two are
decreased below a certain portion of the third one (T1 and T2 < k T3).
This way the system is able to de-tumble most of the debris kinetic energy
without incurring in any unstable behavior.

Figure 6.6: Angular velocity with shutoff control in unstable case

This strategy is simple and effective but has some significant issues, first of
all it completely removes any possible control authority on the symmetry
axis which could be a problem if the angular velocity around it is too big
to be acceptable. Also it relies on the ability of the system to recognize
which axis would yield the lowest torque and thus be more susceptible
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to unstable behavior. This is not a simple task to accomplish and could
require more work than reasonably possible, to setup correctly.

• A better alternative would be to estimate the deviation torque Ld and
other disturbances in the system and use this to predict instabilities and
avoid them. Easier said than done, there is a method developed in the
last decade called Active Disturbance Rejection Control (ADRC) that
has already proved very useful in many applications [29–32]. This has
been found to be very effective in the cases analyzed and a more in depth
explanation of its structure is given in the next section.
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6.5 Active Disturbance Rejection Control

The birth and large-scale deployments of the powerful yet primitive pro-
portional–integral–derivative (PID) control law dates back to the period of the
1920s–1940s in response to the pressing demands of industrial automation be-
fore, during, and particularly after World War II.
Its merit of simplicity in the analog electronics era has turned into a liability
in the digital control one as it cannot fully take advantage of the new compact
and powerful digital processors.

Reference [30] suggests that there are four fundamental technical limitations
in the existing PID framework, and proceeds to propose the following techni-
cal and conceptual solutions: 1) a simple differential equation to be used as
a transient profile generator; 2) a noise-tolerant tracking differentiator; 3) the
power of nonlinear control feedback; and 4) the total disturbance estimation
and rejection.

Figure 6.7: PID architecture, image taken from [30]

Together, these new tools combine to form the backbone of a new synthesis of
digital control law that is not dependent on an accurate and detailed dynamic
model of the plant and is extremely tolerant of uncertainties and simple to use.
This is called active disturbance rejection control or ADRC.
As the name suggests, the PID control depends on the difference between the
output of a system and its desired value, the derivative and integral of this error
itself.

u = kp e+ kd ė+ ki

∫ t

0
e dτ (6.7)

The gains k can be found, analytically when the model is given or by trial and
error when it is not. Although such simplicity and the ease of tuning could
very well be behind the popularity of PID, they also mark its fundamental
limitations. A hand tuning method, based on trial and error, can be hard to
set for complex systems, where there is not an analytical function that links
input (in the case of the de-tumbling system, the potential imposed on the
service craft) and output(debris kinetic energy).

43



In the case of the ADRC, the focus is not on completely understanding how
the system relates input and output and use this to get the desired results,
but on directly anticipating and canceling the disturbance itself. Once the
disturbance is handled the system can be controlled as usual, using the selected
control law (like the Lyapunov optimal law used in this thesis)

Figure 6.8: ADRC architecture, image taken from [30]

This control strategy is effective in cases where the disturbances in the system
are uncertain, which is the case of debris de-tumbling. These are often objects
on which very little information is available, apart from what can be observed
from the outside. More insight could be obtained if the objective of the de-
tumble is a known satellite or spacecraft so the blueprints and internal structure
can be analyzed but even then there could be some unexpected amount of fuel
left in some tanks or some parts of the structure could be missing.
In general it is impossible to know exactly all proprieties of the debris and in
particular the position of the center of mass and the inertia. The ADRC works
by using an extended state observer to reconstruct the differences between the
modeled system and the real one, by lumping all the differences together as a
single disturbance torque.

Moreover, by splitting the inertia in the expected and uncertain parts it can be
written:

[J ]ω̇ = ([J ]∗ + [∆J ])ω̇ = ([J ]∗ + [∆J ])ω × ω +L

[J ]∗ω̇ = [J ]∗ω × ω +L∗I + [∆J ]ω × ω − [∆J ]ω̇ +LD + εI︸ ︷︷ ︸
[J ]∗ω̇ = [J ]∗ω × ω +L∗I + d (6.8)

This way, the real system can be described using the expected values plus
an unknown d that includes all unexpected contributions to the dynamics of
the system.
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The extended state observed, taken from [29, 31] is given by:

{
[J ]∗ω̇∗ = [J ]∗ω∗ × ω∗ +L∗I + d∗ + β1(ω − ω∗)
ḋ
∗

= β2(ω − ω∗)
(6.9)

By comparing the real angular velocity ω of the debris (given by the sensors on

the service spacecraft) to the expected one ω∗, an estimate ḋ
∗

of the disturbance
derivative ḋ is obtained, and once integrated, fed into the controller to correct
the computed value of the Lyapunov function Ṫ ∗ that is now written as:

Ṫ ∗ = ωT (L∗I + d∗) (6.10)

Again, the controller checks the value of Ṫ ∗ for positive and negative service
electric potential, and picks the one that gives a negative Ṫ ∗. There are some
drawbacks in this though, because since the value of d∗ is received as an input
from the controller, it acts as a constant when in reality it also depends from
the chosen potential.
The system is then forced to assume the value of d∗ originated from the last
time step of integration, generating some inaccuracies that could prove sig-
nificant if the state of the objects couple changes very quickly. In the cases
examined, the evolution of the system is so slow that this does not seem to
hinder the efficiency of the control, regardless it is still something to take into
consideration during the analysis.
This updated Lyapunov derivative when added and subtracted to the real ki-
netic energy derivative gives:

Ṫ = ωTL = ωT (L+L∗I + d∗ −L∗I − d∗) (6.11)

Expanding the contributions of L and the lumped sum d∗ into its components
(the term ε∗I is not included since it is several order of magnitutes smaller than
other components of d∗ so it is not picked up by the state observer, unless the
precision given is very high) and deleting the perpendicular term, it becomes:

Ṫ = ωT (LI +Ld +L∗I + d̂−L∗I − d∗)
= ωT (L∗I + d∗) + ωT (LI −L∗I +Ld −L∗d + [∆J ]∗ω̇)

= ωT (L∗I + d∗) + ωT (εI + εd + [∆J ]∗ω̇)

(6.12)

45



Similarly to before there is a first term that is always negative since it is se-
lected as such by the controller (has a value of around −5× 10−5 kg m2/s2 for
the case shown below) and a second one given by the estimation errors of ideal,
deviation torque (10−7 kg m2/s2) and the estimated inertia uncertainty(2 ×
10−5 kg m2/s2). The error in torque estimation depends greatly in how quickly
the torque imposed changes, so it will be higher when the system switches
potential very quickly. In this example, the last contribution is the most signif-
icant and the one that is most likely to degrade the performances of the system,
this is a product of the way the ADRC estimates the unknown d. Since it is a
lumped sum there is no way to select the different contributions, so the term
given by the change in inertia is present and it can not be decreased without
obtaining a better knowledge of the debris mass proprieties.
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The next plots show some of the cases analyzed and give a plain picture of
how this improved control law is able to handle increasing deviations of the cen-
ter of mass and Inertia uncertainties, again the specifics are given in appendix:

(a) ∆J = 5% - 7.6 cm deviation (b) ∆J = 5% - 15.2 cm deviation

(c) ∆J = 10% - 7.6 cm deviation (d) ∆J = 10% - 15.2 cm deviation

(e) ∆J = 12.5% - 7.6 cm deviation (f) ∆J = 12.5% - 15.2 cm deviation

Figure 6.9: 68-84 spheres controller, 160-112 spheres physics with ADRC im-
proved control

The ADRC is able to effectively detect and utilize the unexpected center of
mass deviation, and the higher the deviation is, the easier it is for the system
to control and de-tumble the debris. As it can be seen, all the cases on the
bottom row where the deviation is double in magnitude (but has the same di-
rection) are able to reduce the rotations along the symmetry axis faster. On
the other hand the bigger the [∆J ] is, the more time the system needs to com-
pletely de-tumble the debris.
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If the same deviations and inertia uncertainty are given but with the lower
sphere count of Fig.6.3:

(a) ∆J = 2.5% - 7.6 cm deviation (b) ∆J = 2.5% - 15.2 cm deviation

(c) ∆J = 5% - 7.6 cm deviation (d) ∆J = 5% - 15.2 cm deviation

(e) ∆J = 10% - 7.6 cm deviation (f) ∆J = 10% - 15.2 cm deviation

Figure 6.10: 68-56 spheres controller, 160-112 spheres physics with with ADRC
improved control

The improved control is still able to grant total de-tumbling in the cases with
lower inertia uncertainty, but higher [∆J ] can considerably slow down the de-
tumbling and also lead to an increase in ω3.
So while the ADRC has proved to be a powerful tool that considerably improves
the robustness and performance of the system, it still necessary to select pre-
cise enough sphere models to ensure a correct behavior of the system, especially
when there is no precise knowledge of the debris inertia.
It is then advisable for the service spacecraft to spend some time before the
de-tumbling to analyze the free rotations of the debris and try to reconstruct
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an inertia matrix with the help of LIDAR and image processing algorithms like
[40–42].
Also the gains β1 and β2 do not need to be changed for each different use, since
they only depend on the speed at which the system needs to work and that is
based on the angular velocity of the debris itself.

At this point is possible to conclude that the ADCR is an exceptional tool to
greatly improve the robustness and performance of the de-tumble. Being able
to pick up and take advantage of small deviations in the center of mass of the
debris, allows for a complete de-tumble of the spacecraft. It is reasonable to say
that a small deviation of CM is likely present in most of axis symmetric debris,
this means that even the worst case scenario for an electrostatic de-tumbling
(axis symmetric debris), can be fully de-tumbled by taking advantage of these
small deviations. This is even easier to do in the case of a non symmetric debris,
where the attainable torques are all high enough to allow full controllability on
all axis.
Even in the case of a imprecise sphere model, the ADRC is able to grant ro-
bustness up to 10% in inertia uncertainty, and avoid any substantial increase
in angular velocity.
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Chapter 7

Conclusion

7.1 Final remarks on results

The results obtained in this study show that the Surface Multi Sphere Model
is an effective model to describe the charge distribution in a generic body,
without any constraints on its shape. The torques and forces acting on the
objects can be correctly computed at faster than real time speed if the number
of spheres considered is appropriate. Using these models and the Lyapunov
optimal control law, it was possible to decrease the kinetic energy of the debris,
even when accounting for uncertainties and disturbances.
In particular it was showed in Chapter 5 that the system can match the same
results obtained with a VMSM control based on analytical assumptions, for the
simple spherical service and cylindrical debris case.
This can be seen in the next table:

Case ω1/2 De-tumble time ω residual

3 spheres VMSM controller 100 [h] [1.5, 1.5, 0.5] [deg/s]
116 spheres SMSM controller 100 [h] [1.5, 1.5, 0.5] [deg/s]

Table 7.1: Deep space spherical service case for the two Multi Sphere Models

In this case the SMSM does not bring any benefits, but this can be expected
with these simple geometries, it must be kept in mind that the main advantage
of the SMSM is its flexibility and simplicity of implementation. As it was
described in chapter 3 the procedure to generate the SMSM model with the
MOM is faster and more general than the VMSM one. These first runs were
simply a way to confirm that the control law actually de-tumbles the system
as desired, without relying on any analytical control function, no substantial
improvements in performance were expected.
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Then the analysis is moved to a box and panel service spacecraft shape, the
debris is kept cylindrical since it represents on of the most common shapes in
GEO and one of the hardest to de-tumble, given its axis-symmetric structure.
When the debris is axis-symmetric the controllability is greatly reduced along
the symmetry axis, since the system is not able to generate large enough torques.
The results obtained can not be compared to a VMSM any longer since there is
no previous study for this service shape, but different precision SMSM models
were compared:

Case ω1/2 De-tumble time ω residual

124 sphere SMSM controller 150 [h] [1.2, 1.2, 0.5] [deg/s]
272 spheres SMSM ideal 140 [h] [1.1, 1.1, 0.5] [deg/s]

Table 7.2: Deep space box and panel service case

The main part of the kinetic energy is dissipated in 150 hours, after that the
residual decreases slowly until the value above is reached in around 800 hours.
It would go until zero if the simulation is left running for longer. This is faster
if the model used is very precise, like in the second case that uses the same
spheres for both controller and physics, but it is still too slow to be feasible in
a real case. Moreover only the transversal components are decreased, no effect
is present on the symmetry axis rotations.
If the rotations of the debris around the service, in a leader follower condition
are included, the performances increase considerably:

Case ω1/2 De-tumble time ω residual

124 sphere SMSM controller 220 [h] [≈ 0, ≈ 0, 0.5] [deg/s]
195 sphere mixed SMSM 220 [h] [≈ 0, ≈ 0, 0.5] [deg/s]

272 spheres SMSM ideal 220 [h] [≈ 0, ≈ 0, 0.45] [deg/s]

Table 7.3: Leader-follower configuration, box and panel service case

Now that the debris CM position is not fixed relative to the service craft’s one,
the two components of transversal rotations are decreased almost completely
(the residual is negligible), but there is still no effect on the third symmetric
component, even with a mixed mesh. Only the ideal case with a perfect charge
model is able to decrease the rotations by 0.05 deg in around 800 hours. Even
the ideal case would not be fast enough to achieve a full de-tumble in feasible
times.
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Once the performances of the system were analyzed in the nominal case,
uncertainties in CM position and solar pressure torque are added in chapter 6:

Case ω1/2 De-tumble time ω residual

Higher sphere SMSM, b1 deviation 220 [h] [≈ 0, ≈ 0, 0.7] [deg/s]
Higher sphere SMSM, b3 deviation 240 [h] [≈ 0, ≈ 0, 0.5] [deg/s]

Lower sphere SMSM, b1 deviation 270 [h] [≈ 0, ≈ 0, 1.7] [deg/s]
Lower sphere SMSM, b3 deviation 280 [h] [≈ 0, ≈ 0, 0.5] [deg/s]

Table 7.4: Robustness analysis for the box and panel service case

If the spheres model used is not precise enough, the axis- symmetric system
is unstable to small deviations of the center of mass along non symmetry axes,
so great care must be taken in selecting models with an appropriate sphere
count. Moreover the less precise model also takes longer to bring the angular
velocity components to zero. Deviations along the symmetry axis only increase
the total de-tumbling time instead.
The introduction of an Active Disturbance Rejection Control improves both
the robustness and performance considerably, granting a complete de-tumble
for all analyzed cases with a precise enough model. In addition, for a lower
sphere count model the unstable behavior is avoided if the uncertainty in the
inertia components is less than 10%.

Case ω1/2 De-tumble time ω residual

Lower spheres, low dev., low ∆J 500 [h] [≈ 0, ≈ 0, ≈ 0] [deg/s]
Lower spheres, high dev., low ∆J 360 [h] [≈ 0, ≈ 0, ≈ 0] [deg/s]
Lower spheres, low dev., high ∆J 580 [h] [≈ 0, ≈ 0, 0.5] [deg/s]

Lower spheres, high dev., high ∆J 550 [h] [≈ 0, ≈ 0, >2] [deg/s]

Higher spheres, low dev., low ∆J 480 [h] [≈ 0, ≈ 0, ≈ 0] [deg/s]
Higher spheres, high dev., low ∆J 420 [h] [≈ 0, ≈ 0, ≈ 0] [deg/s]
Higher spheres, low dev., high ∆J 600 [h] [≈ 0, ≈ 0, ≈ 0] [deg/s]

Higher spheres, high dev., high ∆J 550 [h] [≈ 0, ≈ 0, ≈ 0] [deg/s]

Table 7.5: ADRC enhanced control cases with high and low deviation
(7 cm - 14 cm) and inertia uncertainty (2.5% - 12.5%)

In all the cases analyzed higher deviations help the system to de-tumble faster,
and higher ∆J uncertainties increase the total de-tumbling time. This also
confirms that an object less axis-symmetric is easier to de-tumble since higher
torques can be generated.
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7.2 Further steps and challenges

In future work more cases and different geometries should be analyzed,
in order to gain a better understanding of how the geometry of the service
spacecraft affects the control performance. Moreover the impact of the attitude
of the service spacecraft on the control performance could be modeled too. It
may be possible to optimize the de-tumbling control further by changing the
attitude of the service spacecraft too, so a control law able to take advantage
of this could grant smaller de-tumble times. Regardless of these improvements
it’s clear that this technology has proved very promising and a valid solution to
help solve the debris accumulation issues in GEO. At this point more research
needs to be done on different aspects that are more specific on the systems
of the service spacecraft itself, like the ion gun control, remote sensing of the
debris potential to ensure that the correct electric Voltage is imposed and much
more.

53



Appendix A

Numerical simulation
parameters

In this section the data used to obtain the results and plots present in the
paper are given, in particular the parameters and dimensions of the objects
examined, initial conditions considered, and the deviations and uncertainties
randomly selected for testing the ADRC.
In all cases, unless stated otherwise, the initial angular velocities and initial
quaternion vector are respectively ωB0 = [-1.374;1.374;0.5] [deg/s] and q0 =
[0;0;0;1]. The integration method used is ODE113 with relative and absolute
tolerances of 10−9 and 10−8.
Also when inertia matrix uncertainties are considered, the unknown real [J ] is
obtained by adding a certain percentage of the mean inertia value of the ideal
one, to all elements multiplied by a random number between 0 and 1.
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Table A.1: Simulation data for cases with no uncertainties

(a) Data for sphere and cylinder debris case in Fig.5.2

Parameter Value Description

Rs 2 [m] Spherical spacecraft radius
Rd 1 [m] Cylinder radius
h 3 [m] Cylinder height
I1 125 [kg m2] Debris axial inertia

I2, I3 812.5 [kg m2] Debris transverse inertia
Vmax ±20 [kV] Maximum potential imposed

R1 −R3 0.5909 [m] External spheres radius
R2 0.6512 [m] Middle sphere radius
l 1.1569 [m] External spheres offset from center of cylinder

Rdeb 1.7334 - 1.4313 [-] α for debris spheres (56-112)
Rserv 1.9 - 1.9 [-] α for service spheres (60-100)

(b) Data for cubic spacecraft and cylinder debris case in Fig.5.3

Parameter Value Description

Lc 1x1x1 [m] Cubic spacecraft size
Lp 2x1 [m] Solar panels size
Rd 1 [m] Cylinder radius
h 3 [m] Cylinder height
I1 125 [kg m2] Debris axial inertia

I2, I3 812.5 [kg m2] Debris transverse inertia
Vmax ±20 [kV] Maximum potential imposed
Rdeb 1.628 - 1.4313 [-] α for debris spheres (84-112)
Rserv 1.3180 - 1.3420 [-] α for service spheres (68-160)
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Table A.2: Simulation data for cases with uncertainties

(a) Data for unstable cases in Fig.6.2 and Fig.6.3

Parameter Value Description

Lc 1x1x1 [m] Cubic spacecraft size
Lp 2x1 [m] Solar panels size
Rd 1 [m] Cylinder radius
h 3 [m] Cylinder height
I1 125 [kg m2] Debris axial inertia

I2, I3 812.5 [kg m2] Debris transverse inertia
Vmax ±20 [kV] Maximum potential imposed
|δ1| |δ2| 2 [cm] CM deviation along transversal axis
|δ3| 20 [cm] CM deviation along symmetry axes

(b) Data for control shutoff and no inertia uncertainty case in Fig.6.6

Parameter Value Description

Lc 1x1x1 [m] Cubic spacecraft size
Lp 2x1 [m] Solar panels size
Rd 1 [m] Cylinder radius
h 3 [m] Cylinder height
I1 125 [kg m2] Debris axial inertia

I2, I3 812.5 [kg m2] Debris transverse inertia
Vmax ±20 [kV] Maximum potential imposed
|δ1|, |δ2| 2 [cm] CM deviation along transversal axis
|δ3| 20 [cm] CM deviation along symmetry axes
k 3 [-] Shutoff condition

(c) Data for ADRC case in Fig.6.9 and Fig.6.10

Parameter Value Description

Lc 1x1x1 [m] Cubic spacecraft size
Lp 2x1 [m] Solar panels size
Rd 1 [m] Cylinder radius
h 3 [m] Cylinder height
I1 125 [kg m2] Debris axial inertia

I2, I3 812.5 [kg m2] Debris transverse inertia
Vmax ±20 [kV] Maximum potential imposed
δ [4, -2.5, 6] and [8, -5, 12] [cm] CM deviations considered

[∆J1] percentage 5% - 10% -12.5% Inertia Uncertainty for Fig.6.9
[∆J2] percentage 2.5% - 5% -10% Inertia Uncertainty for Fig.6.10

β1, β2 0.5 - 50 [-] Full state observer gains
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