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Technological progress has facilitated an increase in investigations of multi-spacecraft solu-

tions for science and commercial applications. Future space missions will require that spacecraft

operate in close proximity autonomously, for applications such as rendezvous and docking, servic-

ing and inspecting, and also for distributed space systems. For such things to take place beyond

low-Earth orbit, the traditional means of spacecraft formation flying must be extended to develop

techniques that work in a variety of dynamical environments. This dissertation aims to demon-

strate novel dynamics and control methods for close-proximity satellite relative motion in a variety

of settings.

First, a procedure is developed and applied for accurately deriving approximate linear models

(and their analytic solutions) for spacecraft relative motion under the influence of non-Keplerian

perturbations. This is used for computationally efficient modeling of relative motion under the

influence of low degree and order gravitational harmonics and solar radiation pressure. The models

derived are used for closed-loop spacecraft relative motion control with differential solar radiation

pressure and closed-loop orbit control in an asteroid environment. The concept of linear sensitivity

dynamics is then used for developing control that is insensitive to various uncertain dynamical

parameters, and also for efficient study of uncertainty propagation in the relative motion problem.

Finally, the idea of modal decomposition of close-proximity spacecraft relative motion is introduced,

for which the relative state can be represented as a linear sum of simpler motions that are chosen

for geometric convenience. The concept extends beyond Keplerian relative motion and into more

exotic environments, providing a unifying and simplifying view of the close-proximity spacecraft

relative motion problem. It also enables elegant rendezvous and relative orbit control solutions.
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Chapter 1

Introduction

1.1 Motivation

Recent trends in spaceflight anticipate a future where many missions will adopt fractionated

multi-spacecraft architectures. The inherent flexibility, robustness, serviceability, and expanded ca-

pabilities of this approach have been discussed extensively [5, 86, 101], but the concept has advanced

beyond the point of speculation. Missions are in various stages of study, design, or deployment

where a multi-spacecraft architecture has been chosen over a more traditional single-spacecraft

framework. Multiple demonstrator missions are planned for close-proximity coordination of small,

modular spacecraft. Figure 1.1 depicts one example: ESA’s upcoming Rendezvous Autonomous

CubeSats Experiment (RACE) double CubeSat mission. This mission will demonstrate relative

motion control between two CubeSats built on the standard GomSpace 6U platform. The in-

creased interest in multi-spacecraft solutions is facilitated by the need for expanded capability, and

further enabled by recent technological progress. Via miniaturization and maturation of spacecraft

components, hardware can be packaged on smaller and more modular platforms [5]. Secondary

payload adapters have become a common feature accompanying NASA science missions, and allow

multiple small spacecraft to be launched to a destination more quickly. Additionally, the new NASA

SIMPLEx program enables SmallSats to conduct stand-alone science missions. These developments

are normalizing the small multi-spacecraft mission design concept for destinations more challenging

and more scientifically interesting than low-Earth orbit (LEO). As these trends continue, future

missions will increasingly find the need to safely regulate and coordinate the operation of multiple
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Figure 1.1: ESA’s RACE Close-Proximity Formation Flying Mission (Credit: GomSpace)

spacecraft in distant and dynamically challenging environments. This will sometimes take place in

close-proximity – especially whenever rendezvous, coordinated remote sensing, formation flying, or

servicing are part of the mission design. Efficiently modeling and understanding the natural dy-

namics of close-proximity spacecraft relative motion is a necessary undertaking to facilitate these

missions [3, 1]. This dissertation considers multiple aspects of the combined problems of modeling,

planning, and controlling spacecraft formation flying and proximity operations in highly perturbed

environments. Topics of interest and relevance are now briefly discussed, before an extensive review

of past work and a concluding summary of the contributions of this dissertation.

The forces at work in most orbital environments are well-understood theoretically, and the

relative motion of multiple spacecraft can be numerically simulated in high-fidelity physical models.

However, this approach does not readily offer insights into the dynamics and is not a workable im-

plementation for traditional spacecraft control and estimation applications. As a result, many works

have addressed the concept of accurately modeling the dynamics of spacecraft relative motion in for-

mulations that are expressed in coordinates centered on one of the spacecraft in close-proximity. If

the relative motion dynamics of N spacecraft are linearized about a true or virtual chief spacecraft

motion, the formation translational dynamics are reduced from a coupled 6N degree-of-freedom

(DOF) problem to N − 1 decoupled 6-DOF problems that share a common approximate dynami-
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cal structure. This massive reduction in complexity is particularly useful for spacecraft formation

flying, rendezvous, and servicing applications, with the caveat that suitable coordinates for accu-

rate linearization must be identified [67, 70], and the chief orbit must be propagated in parallel or

reasonably well-approximated.

In some instances, the dominant environmental dynamics are modeled, but the values of

certain parameters are not well known. For example, consider orbits about small bodies, for which

it is known that the low degree and order gravitational harmonics will be dynamically important,

but a gravity model might be unavailable or untrustworthy. Or, solar radiation pressure forces

on a spacecraft might be important but only approximately modeled. For these situations it

is necessary to develop control whose performance is relatively predictable and robust despite

dynamical unknowns. Various approaches have been proposed for doing this, including strategies

where the true nature of the dynamics is discerned over time, such as in adaptive control techniques

[69]. Another approach is to explicitly model the sensitivity of the system states to the poorly-

known dynamical parameters [72]. If the relative motion dynamics are rendered in an analytic form,

the sensitivity has its own analytic linear equations of motion which are additionally linearly forced

by the relative state. In this case, linear control designs may be naturally adapted to additionally

consider the system sensitivity, yielding an elegant approach for mitigating the effects of dynamic

uncertainties.

Aerodynamic drag and solar radiation pressure are two common perturbations which vary

with the attitude of the spacecraft. If these forces are strong enough to produce noticeable effects

on the relative motion of uncontrolled formations over reasonably short timespans, they can also

be used for differential state control. The differential drag formulation is in an advanced state of

development, and even flies on some missions in LEO [48], but an SRP control formulation is also

potentially promising and is comparatively less explored. The differential SRP acceleration between

two spacecraft scales with differences in illuminated spacecraft area, while most other differential

accelerations scale with separation. Figure 1.2 depicts the solar radiation pressure perturbation

acting on a spacecraft. SRP-based control also presents a feasible fuel-free formation control option
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Incident Solar Radiation

Scattering/Reflection

Net resultant force

Figure 1.2: Solar Radiation Pressure Perturbation

for orbits in GEO, or around small bodies such as asteroids and comets. For sail-like structures

or high area-to-mass ratio spacecraft, a linear feedback controller works well. For more traditional

spacecraft geometry, one might seek a controller that properly takes advantage of the full range of

solar radiation pressure differences between spacecraft for large attitude differences.

For more general perturbed formation flying problems, it is possible to compute and target

desired natural relative motion solutions if the perturbations are sufficiently well-modeled. The

linearized plant matrix used to approximate the relative motion tends to be time-varying for many

problems, but for bounded and regularly repeating orbits, it is almost-periodic, and this enables

interesting transformations (or approximate transformations) to study stability and linearized rela-

tive motion solutions using tools from Floquet theory [120]. It also enables a modal decomposition

in a transformed space for which the dynamics are linear time-invariant (LTI). From this, condi-

tions for desired relative motion (such as long-term boundedness) can be identified easily, and such

solutions can serve as an initial guess for identifying various useful motions. The modal analysis

can be performed with an analytic model or with one obtained by numerical linearization in a

nonlinear dynamic simulation. Such approaches that combine numerical techniques and appropri-

ate analytical tools are potentially useful for practical design of safe and efficient formation flying

and proximity operations in highly perturbed orbital environments. Critically, this approach ac-
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counts for the influence of perturbations in the formation design itself instead of treating them as

a disturbance to be rejected.

1.2 Related Work

1.2.1 Satellite Relative Motion Modeling

Spacecraft relative motion dynamics have been a topic of study for over 60 years, since

the introduction of the well-known Clohessy-Wiltshire (CW) linearized model [36]. This model is

valid for cases of small separation between two spacecraft in near-circular Keplerian orbits. The

differential equations are very simple, with constant coefficients, and the resulting time-explicit

solutions of the evolving Cartesian relative state are extremely compact. This model is used ex-

tensively in formation flying to this day, despite its limited accuracy. By neglecting the effects of

orbital perturbations, the CW model is useful in practice only for a limited timespan, the length

of which is determined by fidelity requirements and the magnitude of the orbital perturbations.

While most spacecraft are in near-circular orbits, the circular orbit assumption is also limiting.

The Tschauner-Hempel equations [126] are another set of linear differential equations, developed

for studying satellite relative motion in the vicinity of eccentric Keplerian orbits. These equations

notably use true anomaly as the independent variable instead of time.

Two of the most popular sets of solutions of the Tschauner-Hempel equations are found in

the work of Carter [34] and Yamanaka and Ankerson [129]. There is quite a bit of literature on

the solutions of the Tschauner-Hempel equations due to difficulties in developing singularity-free

solutions, and in developing useful geometric interpretations. The interested reader can find a

discussion in Reference 123. Other notable literature on the topic of relative motion in eccentric

Keplerian orbits includes References 43, 73, and 93, which discuss time-explicit representations

of relative motion in eccentric orbits and nonlinear Keplerian relative motion models. There has

also been a lot of work examining the Keplerian relative motion problem through orbit element

differences instead of Cartesian coordinates. See for example References 108, 109, and chapter
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14 of Reference 111 and references therein. Also relevant is work modeling the relative state in

curvilinear coordinates [29, 31], which have a larger region of validity than the Cartesian coordinate

relative motion models, but not as large as the orbit element differences. Relative orbital elements

(ROEs) in particular are of note because they describe relative motion similarly to orbit elements,

but with more of a local geometric interpretation [40].

In addition to exploring relative motion of orbits of general eccentricity, another useful area

of research has been in modeling spacecraft relative motion under the influence of various pertur-

bations. Authors have considered the effects of various perturbations common in planetary orbits,

including atmospheric drag [33, 76], zonal gravity [11, 116], and solar radiation pressure [53, 102].

In the context of this dissertation, modeling relative motion perturbed by Earth’s oblateness is

of particular relevance. The most well-known and widely adopted state transition matrix (STM)

model of J2-perturbed relative motion is the Gim-Alfriend STM (GA-STM) [50]. It is highly accu-

rate, using propagation of the J2 effect in orbit element differences facilitated by Brouwer-Lyddane

theory, and a geometric transformation back to local Cartesian coordinates. It is also extremely

complex, and other authors have sought simpler solutions, particularly for control and maneuver

planning purposes.

One of the most well-known linear models of relative motion subject to J2 was developed by

Schweighart and Sedwick. Their approach was to time-average the gradient of the J2 potential to

obtain constant coefficient linearized equations. They noted that such averaging resulted in a loss of

some information about the perturbed relative motion, and made efforts to correct for this. Their

procedure introduced analytic corrections to an initially unperturbed chief orbit, instead of treating

the kinematics of the perturbed local vertical-local horizontal (LVLH) frame in the more formal

manner of describing the angular velocity of the frame in terms of the perturbed orbit element

rates, outlined in Prussing and Conway [104] and implemented also by Casotto [35]. Casotto’s

implementation still did not result in a stand-alone model, but his work provides very important

insights to the general perturbed relative motion problem in local Cartesian coordinates. Another

useful read on this topic can be found in Kechichian [76]. Also relevant is the work of Riggi and
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D’Amico [106], who proposed a modified STM mapping orbit element differences for J2-perturbed

relative motion using a new set of elements to separate the in-plane and out-of-plane motion. There

is also related work by Koenig et al. [78], as well as very recent work by Willis and D’Amico in

exploring the J2-perturbed relative motion problem for eccentric orbits using a local Cartesian

coordinate formulation [128].

1.2.2 Use of Solar Radiation Pressure for Spacecraft Propulsion and Control

The most frequent exploration of using solar radiation pressure (SRP) for control has been

in the solar sailing literature. See e.g. Reference 89 or 38 for a discussion of the basics of solar

sailing. Applications of solar sailing have been frequently explored in literature for use in and near

the Earth system, particularly by McInnes [87, 90] and others [86, 107]. Parsay notably explored

formation flying with solar sails, with and without electric propulsion [101, 102, 103].

Outside of the context of solar sailing, the topic of natural SRP-perturbed orbital dynamics

has been frequently studied, especially in the vicinity of small bodies [114]. Many works use

a cannonball SRP model, and focus on finding stable orbits while assuming the force variation

with attitude is not significant [41, 32]. Some works also discuss orbit-attitude coupling in the

uncontrolled dynamics, or the coupled effects of multiple perturbations [77, 82, 94]. Recent work

by Kenshiro Oguri and Jay McMahon focuses on SRP-based orbit control around asteroids [99].

The optical force SRP model used in their work is essentially equivalent to the one used in this

dissertation, but their approach is otherwise quite different. Their work studies orbit control via a

chosen subset of the orbit elements, namely semimajor axis and inclination. The optimal attitude

for control is parameterized by two angles, whose values are obtained numerically based on the

current system state.

The use of SRP for spacecraft control has already been demonstrated in flight. The K2 mission

was able to make use of SRP effects to extend the life of the Kepler space telescope mission, which

was suffering from attitude control under-actuation due to reaction wheel failure. This was done

by achieving and maintaining an orientation to passively minimize the SRP disturbance along the
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roll axis [62]. The Messenger mission to Mercury used SRP for precision orbit control, which is

particularly notable and relevant to this work. In that mission, pre-planned attitude and solar

array articulations were used to improve the accuracy of Mercury flybys [100]. This was done in

an open-loop fashion.

1.2.3 Sensitivity Dynamics, Desensitized Control, and Uncertain Relative Motion

One topic explored in this dissertation is the dynamics and control of the linear sensitivities for

linear dynamic systems with uncertain parameters in the dynamics. This makes use of a technique

first developed by Kahne [72] in the 1960s, and fundamentally similar methods have been applied

in trajectory design [117] and optimal landing guidance [118]. Similar work has also been done in

desensitized optimal filtering, in which the estimator is designed to be tolerant of poorly known

dynamical parameters [74]. Application of this concept in the context of the spacecraft relative

motion problem has not been previously done. Reference 55 explored differential drag control in

the presence of an uncertain atmospheric density. This work is related to the other work presented

in this dissertation in chapter 5.

Part of this dissertation explores the spacecraft relative motion problem in the context that

the chief spacecraft is not observable and its orbit is additionally poorly known. The sensitivities

to chief orbit elements have their own dynamics, and these are used to propagate the resulting

relative motion uncertainty distribution efficiently. This is a small contribution to the larger study

of uncertainty propagation in spaceflight. One relevant work for this is Reference 84, which derives

analytic uncertainty propagation for the relative motion problem in elliptic orbits. Under the as-

sumption of a Gaussian white noise process, the authors explore the computation of the evolving

mean and covariance matrix of the relative states using Tschauner-Hempel equations [126]. Some

work has focused on designing guidance and control to mitigate collision risks in the presence of

uncertainties, both with active and passive methods. A classic passive means of minimizing impact

risk in formation flying is through the safe ellipse, which ensures that in the presence of along-

track drift in the relative motion, the spacecraft will not collide [83]. In Reference 13, Breger and
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How investigate tradeoffs between active and passive approaches to safety. They also develop a

strategy for generating safe, fuel-optimized rendezvous trajectories that guarantee collision avoid-

ance for a large class of anomalous behaviors. Reference 59 develops a Receding Horizon Control

(RHC) approach that enforces passive safety in the presence of common navigation or propulsive

system failures. They identify that adding cross-track relative motion also greatly reduces collision

probability.

There are several works which explore the problem of rendezvous and proximity operations

when the target orbit is uncertain, which leads to uncertainty in the linearized model. In these

works, the spacecraft relative state is assumed to be directly and accurately measured, but the

effects of dynamic uncertainty need to be mitigated. Reference 85 studies reliable impulsive state-

feedback control for autonomous spacecraft rendezvous under target orbital uncertainty with the

possibility of thruster faults. This is accomplished using Lyapunov theory and genetic algorithms.

Reference 130 addresses robust H∞ control for spacecraft rendezvous with a noncooperative target,

specifically for the case of CW dynamics, in which the target semimajor axis is uncertain. The

control design enables rendezvous in the presence of this dynamical uncertainty, while also allowing

for control input saturation. In both References 85 and 130, the uncertainty in the target orbit

manifests only as dynamic uncertainty in the linearized models. The relative position and velocity

are assumed to be observable.

1.2.4 Modal Decomposition of Spacecraft Relative Motion

One interesting line of work is in determining the simplest and most convenient parame-

terizations of natural relative motion. Largely a question of the choice of coordinates, this also

involves factoring the resultant solution in a given set of coordinates in a manner convenient or

illuminating for the astrodynamicist. The state transition matrix is an unwieldy means by which to

explore relative motion. Instead, other sets of fundamental linear solutions can be chosen to serve

as a functional basis. Custom geometric interpretations of the solutions might also be possible, in

which the relative motion solution is factored into a more concise or workable form. One example
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of this is the nonsingular relative orbit element set for the Clohessy-Wiltshire solution [10, 111].

The pursuit of desirable parameterizations of relative motion is a solved problem for the Clohessy-

Wiltshire case, a manageable problem for more general elliptic orbits, but is largely unexplored for

the wide variety of periodic and almost-periodic orbits in multi-body and small-body applications.

This dissertation uses the idea of the modal decomposition to efficiently parameterize the relative

motion problem, and the modal decomposition is a core concept in the theory of vibrations. See

Reference 92 or an equivalent introductory text on vibrations for discussion.

To compute the relative motion modal decomposition, this dissertation employs Lyapunov-

Floquet theory [97], whose application to the relative motion problem has seen relatively limited

study thus far. In Reference 120, an approximate Lyapunov-Floquet (LF) transformation relating

the Clohessy-Wiltshire and Tschauner-Hempel dynamics is exploited for relative motion control

design. In Reference 98, the authors apply the LF transformation to the Tschauner-Hempel problem

with cubic nonlinearities and examine the effect of the nonlinearities on the dynamical variables

via averaging theory. Additionally, a simple LF transformation is used in Reference 78 when

incorporating the secular effect of the J2 perturbation on orbit element differences. Floquet theory

has also been applied to the study and control of motion of spacecraft in the vicinity of Lagrange

points and periodic orbits in cislunar space. See e.g. References 51 and 61. The LF transformation

is applied to control design elsewhere in literature. Reference 42 studies control design for dynamical

systems with time-periodic coefficients using the LF transformation and the backstepping technique.

This is applied to control of a system with two statically coupled pendula subject to periodic forcing.

In Reference 95, control of systems with periodic coefficients is discussed and LF theory is applied

to control of an industrial mechanism.

1.3 Contributions of this Work

This dissertation contributes to the study and practice of close-proximity satellite relative

motion in several related areas. Specifically, the work develops new analytic and semi-analytic

methods of understanding and exploiting or mitigating the influence of non-Keplerian disturbances
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in close-proximity spacecraft formation flying and rendezvous applications. There is also some

new study of spacecraft relative motion dynamics and control in the presence of dynamic and

navigational uncertainties. Additionally, the work provides new insights into the nature of relative

motion solutions in perturbed and unperturbed orbits, with elegant control applications.

Figure 1.3: Spacecraft Formation Flying Guidance and Control in Perturbed Environments

This work focuses on techniques that apply to fractionated space systems, which can be

easily adapted for tasks as varied as short-term rendezvous and docking operations or long-term

high-precision close-proximity formation control. Figure 1.3 illustrates the concept of operations

and summarizes the general scope. Often, the techniques rely on the linearization simplification,

for which the complex formation design problem is reduced to having multiple agents obeying the

same linear dynamics. This work combines elements of astrodynamics, dynamics, control, and

approximation theory to accomplish the various research goals, which are given below:

(1) Develop approximations of perturbed relative orbital motion dynamics (Chapter 3)

(2) Derive, investigate, and demonstrate formation control using differential solar radiation

pressure (Chapter 4)
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(3) Investigate robust formation flying/rendezvous control techniques subject to significant

disturbances (Chapter 5)

(4) Develop, test, and apply a methodology for modal decomposition approximations of space-

craft relative motion in a variety of orbital scenarios (Chapters 6, 7)

After a review of necessary fundamentals in chapter 2, the novel contributions of this work

begin with chapter 3. This chapter focuses on deriving accurate state transition matrix (STM)

models of relative motion subject to various perturbations such as J2, with a focus on low-complexity

high-accuracy models. The efficacy of these models is compared with others in literature for the

J2 problem. The same techniques are used to derive corrective terms for the J3 perturbation as

well. Additionally, chapter 3 discusses various tools and techniques that can be used to further

improve relative motion model accuracy. The chapter also derives a linear model of relative motion

subject to some of the dominant disturbances encountered in orbits about large asteroids. The

model enables efficient exploration of the parameter space of possible chief orbits, and is revisited

in chapter 7. Lastly, the chapter briefly explores the problem of approximating the J2-perturbed

chief orbit in more general orbital settings, which is necessary for more accurate and globally valid

J2-perturbed relative motion models.

The same principles discussed in chapter 3 are further applied in chapter 4 to study the SRP-

perturbed satellite relative motion problem in detail. A simple analytic linear model of relative

motion is obtained and tested numerically. This chapter also explores satellite relative motion con-

trol with differential SRP accelerations. The chapter includes controllability analysis and insights

for achieving full regulation control with the differential SRP in a closed-loop fashion.

The dissertation pivots to the topic of relative motion sensitivities in chapter 5. This chapter

explores the dynamics of sensitivities of the relative state to error in dynamical parameters and in

the chief orbit. The main accomplishments of this chapter are spacecraft orbit control in asteroid

environments using the linear model developed in chapter 3, including both Linear Quadratic

Regulator (LQR) and a desensitized control approach, expected to be more robust to poorly known
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dynamical parameters. Also in this chapter is a study in efficient propagation of satellite relative

state uncertainty in the vicinity of a poorly tracked target object. This approach could have

applications to on-board uncertainty-aware control strategies.

Chapters 6 and 7 explore a very promising topic – the modal decomposition of close-proximity

spacecraft relative motion in a variety of applicable orbits. In chapter 6, the theory is introduced,

and exact analytic Lyapunov-Floquet (LF) transformations are computed for spacecraft relative

motion in Cartesian and curvilinear coordinates. Some of the fundamental modal solutions connect

to earlier solutions of the Tschauner-Hempel equations explored previously in literature. Chapter

6 also includes discussion of the analytic extension to weakly-perturbed orbits such as orbits per-

turbed by J2. Chapter 7 explores other applications of the modal decomposition, including satellite

relative motion modes in an asteroid orbital environment, with some new contributions for how

to apply the modal decomposition procedure numerically in orbits that are not exactly periodic.

Additionally, the modal constants (affiliated with the fundamental modes) are used to design a

highly computationally efficient impulsive maneuver-based control strategy that switches between

desired relative motion modes or combinations of modes. This is demonstrated for relative motion

analysis and control in the Keplerian problem and in the Earth-Moon circular restricted three-body

problem (CR3BP).

Figure 1.4: Near-Earth Asteroids Bennu (L) and Ryugu (R) (Credit: ESA)

Overall, the concepts developed and explored in this dissertation are all expected to be
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of relevance for future multi-spacecraft operations in a variety of complex environments. The

applications range from accurate relative motion and rendezvous planning in low-Earth orbits,

to multi-spacecraft missions to cislunar space and near-Earth asteroids, such as 101955 Bennu

or 162173 Ryugu (depicted in Figure 1.4). Most of the techniques and concepts explored in this

dissertation are generally applicable in or extendable to a variety of orbital regimes, contextualizing

the traditionally Earthly study of close-proximity spacecraft relative motion within the broader

realm of all applicable environments, known and unknown.
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Chapter 2

Preliminaries

In order to better understand the methodologies used in this research, this chapter provides

an introductory review of important concepts. First, the spacecraft relative motion problem is

introduced. Then, there is a discussion of common orbital perturbations, which are important phe-

nomena to consider in modern spacecraft formation flying and relative motion control. Afterwards,

perturbation methods are briefly discussed, which enable mathematically rigorous approximation

of the behavior of complex systems. This set of tools is used for general spacecraft relative motion

approximation, which is then discussed. Finally, this chapter discusses the basics of linear differ-

ential equations and reducibility of linear differential equations, which includes Lyapunov-Floquet

theory for reducing linear systems with periodic coefficients. This chapter draws on a large body

of literature to review mainly fundamental concepts. The novel contributions of this dissertation

begin with chapter 3. Note that this dissertation presupposes that the reader is familiar with fun-

damental orbital mechanics, so there is no review of those concepts. The interested reader should

consult References 7, 8, 37, or equivalent.

2.1 Spacecraft Relative Motion

2.1.1 Fundamentals

The spacecraft formation flying nomenclature used in this dissertation is as follows. The chief

satellite is a spacecraft about which all other nearby satellite motions are referenced. The other

satellites are referred to as “deputies”. The chief spacecraft is also sometimes referred to as the
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target spacecraft, in which case the deputy is typically called the chaser. Note that the chief orbit

need not be occupied by a physical spacecraft – it can be empty. This is referred to as a virtual

chief.

To describe the motion of the deputy spacecraft in the vicinity of the chief, the Local Vertical-

Local Horizontal (LVLH) or Hill frame is typically used. This is a coordinate frame with the origin

centered on the chief spacecraft, defined by the right-handed set of orthonormal basis vectors êr,

êt, and ên, which are defined in terms of the instantaneous chief position and velocity vectors r

and v:

êr =
r

r
(2.1a)

ên =
r × v
‖r × v‖ (2.1b)

êt = ên × êr (2.1c)

In cases where disambiguation is necessary, quantities belonging to the deputy are denoted by

subscript “d”, and quantities with subscript “c” belong to the chief. The relative position vector

is always resolved in LVLH frame components:

ρ = xêr + yêt + zên = H(x, y, z)> (2.2)

Figure 2.1 depicts the chief, deputy, and instantaneous relative position.The relative velocity of the

deputy with respect to the chief is the derivative of the relative position as seen in the LVLH frame:

ρ′ = ẋêr + ẏêt + żên = H(ẋ, ẏ, ż)> (2.3)

where ( )′ = H d
dt ( ) generally denotes the derivative of a quantity as seen in the rotating LVLH

frame, unless otherwise indicated. In some sections, a prime denotes the derivative with respect to

an independent variable other than time (such as an angle), but this is always explicitly specified.

Together, the relative position and velocity vectors form the relative state x =
(
ρ>, ρ′

)>
. Some

sections denote the relative position and velocity by ∆r and ∆r′ instead of ρ and ρ′, and this is

particularly common in sections where ρ = r/a appears, to avoid ambiguity with the relative range

‖ρ‖.
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Figure 2.1: Spacecraft Relative Motion in the LVLH Frame

Also, Figure 2.1 depicts, by the dotted line, the relative orbit traced by the deputy position

vector over the course of one chief orbit. This type of bounded relative motion occurs only when

certain conditions are specified, depending on the problem dynamics. With this in mind, the most

common case is now explored: The case of Keplerian dynamics, where the two-body equation

applies to both the chief and deputy. The nonlinear (and exact) Keplerian equations of relative

motion are given below. See Reference 111 for the full derivation, which makes use of elementary

expressions from orbital mechanics, the two-body equation r̈ = − µ
r3
r, and the transport theorem.

ẍ− 2ḟ

(
ẏ − ṙc

rc
y

)
− ḟ2x− µ

r2
c

= − µ

r3
d

(rc + x) (2.4a)

ÿ + 2ḟ

(
ẋ− ṙc

rc
x

)
− ḟ2y = − µ

r3
d

y (2.4b)

z̈ = − µ

r3
d

z (2.4c)

For the Keplerian problem, regardless of the separation between the chief and deputy, the deputy

will trace a bounded relative orbit with respect to the chief (as seen in the LVLH frame) if the two

spacecraft have the same orbit period, Td = Tc. Equivalently, this requires that the two spacecraft

possess the same semimajor axis, δa = ad − ac = 0.

The complexity of Eq. (2.4) is a function of the coordinate representation. If the state were

expressed in terms of orbit element differences δoe = oed−oec, then for the Keplerian problem,

the relative state vector will be constant for all elements, or for all except one, depending on the
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choice of the anomaly in oe. In this case, the complexity of the relative motion dynamics is greatly

simplified, but direct geometric interpretation and convenience of the coordinate set is somewhat

reduced. With this in mind, some authors have derived alternative coordinate representations

such as Relative Orbit Elements (ROEs) [39], to try and recover a state representation that is

dynamically convenient but possesses simple geometric interpretation.

Because much of spacecraft formation flying and spacecraft relative motion control happens in

scenarios where the chief and deputy are in fairly close proximity, one major simplifying assumption

is to linearize the equations of relative motion. Such linearized expressions are the most common

focus of the work in this dissertation. By far the most popular linearized relative motion equations

in formation flying are the Clohessy-Wiltshire equations. These are derived next.

2.1.2 Clohessy-Wiltshire Dynamics

The Clohessy-Wiltshire (CW) dynamics [36] apply to close proximity of a deputy and chief

spacecraft in the case that the chief orbit is very nearly circular, and perturbations are small

enough to be ignored for the timespan of interest. First, the kinetics of the problem are treated,

by subtracting the two-body accelerations acting on the chief from those acting on the deputy:

ρ̈ = − µ
r3
d

rd +
µ

r3
c

rc (2.5)

Noting rd = rc + ρ, expand the equation:

ρ̈ = − µ

((rc + ρ) · (rc + ρ))
3
2

(rc + ρ) +
µ

r3
c

rc (2.6)

Factoring the denominator of the deputy acceleration term, and keeping only terms linear in ρ:

ρ̈ ≈ − µ
r3
c

(
1 + 2

(ρ · rc)
r2
c

)− 3
2

(rc + ρ) +
µ

r3
c

rc (2.7)

Note that linearization renders the equality in Eq. (2.6) as an approximation in Eq. (2.7), but the

approximation notation will be dropped. Using a binomial expansion (1 + ε)k ≈ 1 + kε to linearize

the exponential term, and factoring:

ρ̈ = − µ
r3
c

((
1− 3

(ρ · rc)
r2
c

)
(rc + ρ)− rc

)
(2.8)
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Expanding the expression in parentheses and keeping only terms linear in ρ, dropping the subscript

notation so rc = r:

ρ̈ = − µ
r3

(
ρ− 3

(ρ · r)

r2
r

)
(2.9)

Noting r̂ = r/r and expressing this in matrix-vector form:

ρ̈ = − µ
r3

(
[I3×3]− 3r̂r̂>

)
ρ (2.10)

Resolving ρ into its LVLH components as ρ = xêr + yêt + zên, and noting r̂ = êr, obtain

the linear terms due to the difference in acceleration felt by the deputy and chief:

ρ̈ =
µ

r3
(2xêr − yêt − zên) (2.11)

For a circular chief orbit, r = a, so this can be rewritten using the definition of the mean motion:

ρ̈ = 2n2xêr − n2yêt − n2zên (2.12)

The inertial acceleration of the relative position vector must be resolved into the LVLH frame as

well, which rotates with angular velocity ωH . This is done by applying the transport theorem

twice:

ρ̈ =
Hd2ρ

dt2
+ ω̇H × ρ+ 2ωH ×

Hdρ

dt
+ ωH × (ωH × ρ) (2.13)

If the chief spacecraft is in a circular orbit, ωH = nên is constant:

ρ̈ =
Hd2ρ

dt2
+ 2ωH ×

Hdρ

dt
+ ωH × (ωH × ρ) (2.14)

Resolving this in LVLH components and simplifying:

ρ̈ =
(
ẍ− n2x− 2nẏ

)
êr +

(
ÿ − n2y + 2nẋ

)
êt + z̈ên (2.15)

Setting the vector Eq. (2.15) equal to Eq. (2.12), simplifying, and separating by component, the

three well-known CW equations are obtained:

ẍ = 3n2x+ 2nẏ (2.16a)

ÿ =− 2nẋ (2.16b)

z̈ =− n2z (2.16c)



23

The solution to this set of linear ODEs can be shown to be [104]:

x (t) = (4− 3 cosnt)x0 +
sinnt

n
ẋ0 +

2

n
(1− cosnt) ẏ0 (2.17a)

y (t) = 6 (sinnt− nt)x0 + y0 −
2

n
(1− cosnt) ẋ0 +

4 sinnt− 3nt

n
ẏ0 (2.17b)

z (t) = cosnt z0 +
sinnt

n
ż0 (2.17c)

Taking the time derivative of these equations, one can easily obtain ẋ (t) , ẏ (t) , ż (t) as well:

ẋ (t) = 3n sinnt x0 + cosnt ẋ0 + 2 sinnt ẏ0 (2.18a)

ẏ (t) =− 6n (1− cosnt)x0 − 2 sinnt ẋ0 + (4 cosnt− 3) ẏ0 (2.18b)

ż (t) =− n sinnt z0 + cosnt ż0 (2.18c)

Since these solutions to the CW equations are linear in the initial conditions, they can be rearranged

to obtain a state transition matrix. There are many uses for the resulting STM for spacecraft relative

motion, including linear impulsive rendezvous for bringing two spacecraft in similar near-circular

orbits close enough for docking or other proximity operations.

By collecting terms linear in time from y(t) in Eq. (2.17), one obtains −3 (2nx0 + ẏ0) t, which

isolates a “no-drift” condition when set to zero:

2nx0 + ẏ0 = 0 (2.19)

If the initial conditions (x0, ẏ0) satisfy this equation, then the CW equations yield completely

bounded periodic relative motion. It can be shown that this condition is essentially a linearized

approximation of δa = ad − ac = 0, which ensures that both the chief and deputy orbit have the

same orbit period and their relative motion will remain bounded under two-body dynamics [111].

Since it is only an approximation of the no-drift condition, true non-drifting relative orbit initial

conditions will not exactly agree with Eq. (2.19).
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2.2 Perturbed Orbits

2.2.1 Representing the Perturbed Two-Body Problem

Formation flying in the presence of orbital perturbations is a common focus of this disser-

tation. In the context of this dissertation, the dynamics are generally expressed in the following

form:

r̈ = − µ
r3
r + ap (2.20)

where ap is the perturbing acceleration, often sub-dominant from the two-body acceleration. In

this set of coordinates (position and velocity), the coordinates vary rapidly, and the influence of

the perturbation is difficult to geometrically or analytically discern.

Commonly in this dissertation, the influence of perturbations on the orbital elements are

considered. These quantities are constant (typically except for an anomaly), but their behavior for

the perturbed system can be computed via variation-of-parameters [111]. For small perturbations,

the variations induced in these quantities from their unperturbed values are typically small. The

variations in the orbit elements are given below by Gauss’ form of the variational equations [8]:

Ω̇ =
r sin θ

h sin i
an (2.21a)

i̇ =
r cos θ

h
an (2.21b)

ω̇ =
1

he
(−p cos f ar + (p+ r) sin f at)−

r sin θ cos i

h sin i
an (2.21c)

ȧ =
2a2

h

(
e sin f ar +

p

r
at

)
(2.21d)

ė =
1

h
(p sin f ar + ((p+ r) cos f + re) at) (2.21e)

Ṁ = n+
b

ahe
((p cos f − 2re) ar − (p+ r) sin f at) (2.21f)

where a = arêr + atêt + anên and θ = ω+ f is the argument of latitude. Note that only the mean

anomaly rate Ṁ remains nonzero in the absence of perturbations. An alternative parameterization

is to use the initial mean anomaly M0 as an element, for which M = M0 + nt, and then the set

of all elements oe = (a, e, i, ω, Ω,M0) is time-invariant, and the state X = (r>,v>)> can be
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recovered by specifying oe and time t. For example, Reference 114 uses the element σ = −ntp

in lieu of an anomaly, where tp is the time of periapsis passage, and M = n(t − tp) = nt − σ.

Also commonly used in this dissertation, in place of the mean anomaly, are the true anomaly or

argument of latitude, whose variational equations are given below:

ḟ =
h

r2
+

1

eh
(p cos f ar − (p+ r) sin f at) (2.22)

θ̇ = ω̇ + ḟ =
h

r2
− r sin θ cos i

h sin i
an (2.23)

Note that for any perturbed orbit problem, the orbit elements almost always remain a valid state

description (with the sole exception of the rare violation of geometric singularities). Eqs. (2.21)-

(2.23) can be applied in any setting, with any acceleration ap acting on the system. However, in

the case that the perturbing acceleration is sub-dominant, all elements (except for the anomaly)

will generally vary slowly in most circumstances. This is notably not true for the classical orbit

element description in perturbed near-circular orbits – the quantities ω and f will fluctuate rapidly

due to the small denominator e. In these circumstances, it is better to use the quasi-nonsingular

orbit elements, which replace e, ω, and f with q1 = e cosω, q2 = e sinω, and θ = ω + f . This set

of elements is frequently used in this dissertation. It has its own variational equations, which can

be easily obtained by direct differentiation, using Eqs. (2.21)-(2.23).

2.2.2 Common Orbital Perturbations

This dissertation focuses on the effects of several different perturbations: non-spherical grav-

ity, third-body gravity, and solar radiation pressure (SRP). Each of these is now briefly intro-

duced.

2.2.2.1 Non-spherical gravity

In reality, the isotropic two-body potential U(r) = µ/r is not representative of the true gravity

field of a body. For small bodies such as asteroids and comets, the non-spherical symmetry of the
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gravity field becomes quite important. Even for the Earth and the other planets, the non-spherical

gravity effects are noticeable, particularly in low orbits.

The overall body potential U is given by integrating the potential of a differential mass

element over the entire body:

U (r) = G

∫
B

dm (ρ)

‖r− ρ‖ (2.24)

where B is the collection of all mass elements in the body, ρ is the position vector for the differential

mass element dm, andG is the gravitational constant. The gravitational potential satisfies Laplace’s

equation outside of the body: ∇2U = 0. For a homogeneous sphere with constant density, mass

M, and radius R, Eq. (2.24) yields U = GM/r.

Laplace’s equation can be resolved in spherical coordinates:

1

r2

∂

∂r

(
r2∂U

∂r

)
− 1

r2 cosφ

∂

∂φ

(
cosφ

∂U

∂φ

)
+

1

r2 cos2 φ

∂2U

∂λ2
= 0 (2.25)

The spherical coordinates can be defined for the position vector r = xêx + yêy + zêz: r =√
x2 + y2 + z2, λ = tan−1 (y/x) is the longitude, and φ = sin−1 (z/r) is the latitude. Solution

of Eq. (2.25) via separation of variables yields the spherical harmonics, which are an orthogonal set

of solutions that form a basis for describing any other function satisfying Laplace’s equation [75].

The potential for any arbitrary physical gravity field can thus be expressed in a series in terms of

the spherical harmonics:

U(r, φ, λ) =
µ

r

∞∑
l=0

l∑
m=0

(
R

r

)l
Plm(sinφ)[Clm cosmλ+ Slm sinmλ] (2.26)

where R is the radius of the Brillouin sphere and µ is the gravitational parameter. Plm are the

associated Legendre functions, and Clm and Slm are the gravity field harmonic coefficients, which

are defined by the mass distribution of the body. Note that this expansion is only valid outside of

the Brillouin sphere of radius R.

In Eq. (2.26), m = n = 0 gives the “zeroth degree and order term” C00 = 1. This is the

largest contribution to the gravitational potential; a spherically symmetric “bulk” term equivalent

to assuming that the body is replaced by a homogeneous sphere of equal mass. The higher-order
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gravitational terms add and subtract “mass” to particular regions of the body to account for local

departures from a spherical shape. However, a few of the additional terms can be eliminated with

prudent choice of the body-fixed coordinate system. First, if the origin of the coordinate system is

chosen to coincide with the body center of mass, it can be shown that the first degree and order

terms are all zero: C11 = S11 = C10 = 0. Next, choosing the body-fixed coordinate system to be

aligned with the principal axes of inertia, one can eliminate some of the second degree and order

gravity coefficients: C21 = S21 = S22 = 0. Thus, a simple second degree and order gravitational

potential can be described with just the coefficients C20 and C22 – which together account for

first-order effects of the oblateness and ellipticity of a body. The resulting disturbance acceleration

is obtained by r̈ = ∂
∂r (U(r, t)) for the potential with just C00, C20, and C22:

r̈ = − µ
r3
r + aC20 + aC22 (2.27)

aC20 =
3µC20R

2

2r4

((
1− 5 (êr · â3)2

)
êr + 2 (êr · â3) â3

)
(2.28a)

aC22 =
3µC22R

2

r4

(
−5
(

(êr · â1)2 − (êr · â2)2
)
êr + 2 (êr · â1) â1 − 2 (êr · â2) â2

)
(2.28b)

where âi denotes the ith principal axis of the primary body. The C20 and C22 disturbances are

particularly important for modeling spacecraft orbits around asteroids.

Large bodies like the Earth and Venus are very nearly symmetric about their axis of rotation.

The gravitational potential of an axially symmetric body can be expressed in terms of the so-called

zonal gravitational harmonics Jl = −Cl0 alone. These describe contributions to the gravitational

potential that vary with latitude but not longitude. However, more accurate models of the Earth’s

gravity field will include additional harmonics: the sectoral harmonics Cll, which vary with longitude

but not latitude, and the tesseral harmonic, which trace a “checkerboard” pattern with dependence

on both latitude and longitude. For an excellent depiction of these three types of terms in the

spherical harmonic expansion, see Reference 127. For Earth, the J2 term, which accounts for the

oblateness of the Earth, is particularly important, and is given by Eq. (2.28), where J2 = −C20.
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The J2 perturbation produces short-period variations in all orbit elements, but its primary

effects are via the two secular variations induced, in the argument of periapsis and R.A.A.N:

dΩ

dt
= − 3

2
J2

(
R

p

)2

n cos i (2.29a)

dω

dt
=

3

4
J2

(
R

p

)2

n
(
5 cos2 i− 1

)
(2.29b)

These two effects are respectively called the regression of the node and the rotation of the line of

apsides. These combine to produce a precession of the angular momentum vector. This is illustrated

in Figure 2.2, borrowed from Reference 127. Note that the magnitude of J2 was increased by a

factor of 20 to produce this figure.

Figure 2.2: Orbital Effects of J2 [127]

2.2.2.2 Third-body effects

For a third body, such as the sun, with position vector d relative to the central body, the

perturbing acceleration due to its gravity is given as the difference between the acceleration that

the spacecraft feels and the acceleration that the nearby primary body feels, as below [114]:

ag = −µs
(

(r − d)

‖r − d‖3 +
d

d3

)
(2.30)

For orbits in the vicinity of small asteroids, this effect and the disturbance acceleration due to solar

radiation pressure are quite important. Together, these two disturbances combine to compete with
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the gravitational pull of the asteroid. In this dynamical system, terminator orbits are a natural

stable periodic orbit that can arise. These orbits track the sun and are fixed in the asteroid’s Hill

frame. These will be discussed in chapter 7.

2.2.2.3 Solar radiation pressure

The force due to solar radiation pressure on a general body surface element Ai is given below

[91, 112]:

FSi = −P (R)Hi(û)Ai

[(
ρisi

(
2n̂n̂> − [I3×3]

)
+ [I3×3]

)
û (û · n̂i) + a2in̂i (n̂i · û)

]
(2.31)

with

P (R) ≈ G1

R2
(2.32)

a2i = B(1− si)ρi + (1− ρi)B (2.33)

The function P (R) is the solar radiation pressure at distance R, and G1 is the solar radiation force

constant at 1 AU. The specular and diffuse reflectivity coefficients are si and ρi, and B is the

Lambertian scattering coefficient, û is the unit vector to the sun, n̂i is the normal vector of the

surface element, and H(û) is a visibility delta function, equal to 1 or 0, depending on whether or not

the face is directly illuminated by sunlight. Neglecting secondary reflections, the total disturbance

acceleration felt by a spacecraft will be simply the sum of all facet forces divided by the mass:

aS =
1

m

∑
i

FSi (2.34)

A common representation of SRP encountered in orbital simulations is the simple “cannon-

ball” model, which neglects geometric characteristics of the spacecraft [80]:

aS = −CR
A

m

Φ

c
û (2.35)

where CR is a radiation pressure coefficient, Φ is the solar flux, and c is the speed of light.
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2.3 Perturbation Methods

Many of the problems facing mathematicians, physicists, and engineers include difficulties

such as nonlinear governing equations and complex boundary conditions that preclude an exact

solution from being found. In these situations, it is often beneficial to find an approximate solution

to a problem. This is frequently accomplished by starting with the exact solution of a simpler

related problem, and exploring the effects of the troubling terms order-by-order in a small param-

eter, hence the name “perturbation methods”. What is recovered is a “precise approximation” –

an analytic approximation whose error is understood and controllable [58]. Perturbation meth-

ods have numerous applications in celestial mechanics, fluid mechanics, the theory of vibrations,

quantum mechanics, and in other fields. Examples can be found in References 9, 58, 96, and 97.

Note that the modern proliferation of numerical methods has not eliminated the usefulness of per-

turbation methods – indeed, the two practices are often complementary. Various examples of this

complementary relationship can be found in References 9 and 58.

In this dissertation, the perturbed relative motion problem is often analyzed using pertur-

bation methods, because the problem lacks an analytic solution. In particular, two methods are

frequently used: (1) the straightforward perturbation expansion and (2) the Lindstedt-Poincaré

method. A simple example quickly illustrates the application of these two methods. Consider the

undamped, unforced weakly nonlinear Duffing equation given below:

ẍ+ x+ εx3 = 0 (2.36)

While this equation is not solvable in terms of standard analytic functions, there are some important

insights that can be gained. First, there exists an energy integral for this system:

E =
1

2
ẋ2 +

1

2
x2 +

1

4
εx4 (2.37)

Using conservation of energy, it can be shown that the maximum extension is:

|x| ≤

√
−1 +

√
1 + 4εE

ε
(2.38)
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Furthermore, the period of the oscillation is a function of the amplitude, and can be obtained as

below in terms of the maximum extension x̃:

T = 2

∫ x̃

−x̃

1√
2 (E − F (x))

dx (2.39)

where F (x) = 1
2x

2 + 1
4εx

4.

Consider the case x(0) = 1, ẋ(0) = 0. Examining Eq. (2.36), it is clear that as ε → 0,

the solution should behave like the unperturbed solution, x(t) = cos (t). With this in mind, a

straightforward perturbation solution poses that the perturbed solution behaves as below:

x(t) = x0(t) + εx1(t) + ε2x2
2(t) + . . . (2.40)

where x0(t) = cos (t) is the unperturbed solution, and the small perturbation-induced deviations

are sought. This is achieved by substituting Eq. (2.40) into Eq. (2.36), and isolating terms grouped

by their order in ε, stopping after O(ε2):

(
ẍ0 + εẍ1 + ε2ẍ2

)
+ x0 + εx1 + ε2x2 + ε

(
x3

0 + 3εx2
0x1

)
= 0 (2.41)

O
(
ε0
)

: ẍ0 + x0 = 0 (2.42a)

O
(
ε1
)

: ẍ1 + x1 = −x3
0 (2.42b)

O
(
ε2
)

: ẍ2 + x2 = −x2
0x1 (2.42c)

Solving Eq. (2.42) order-by-order, successively substituting, and specifying the constraints on the

deviations xj(0) = ẋj(0) = 0, j 6= 0, the following result is obtained:

x(t) ≈ cos (t) +
1

32
ε (cos (3t)− cos (t)− 12t sin (t))

+
1

1024
ε2
((

23− 72t2
)

cos (t)− 24 cos (3t) + cos (5t) + 96t sin (t)− 36t sin (3t)
) (2.43)

There are three things worth noting from the perturbation solution in Eq. (2.43). First, the

perturbation affects the frequency of the oscillation, as expected, and as seen by examining the

first O(ε) term. Second, note that the corrective terms tend to become longer with higher order
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in ε. This is a common characteristic of such solutions, and it is quite common to stop with the

O(ε) correction. Third, note from Eqs. (2.38) and (2.39) that a bounded solution was expected,

but there are secular terms in Eq. (2.43) – terms that grow without bound, and do not match the

true physical behavior of the solution. These terms arise because the straightforward perturbation

expansion doesn’t have a mechanism for consideration of the frequency-amplitude relationship

induced by the nonlinearity. Nonetheless, the approximation given by Eq. (2.43) remains valid for

a finite time t ∈ [0, 1/ε], dictated by the time for the secular corrective terms to grow too large. It

is quite a common problem in perturbation theory to develop solutions that are only accurate for

some limited timespan.

The Lindstedt-Poincaré method is specifically designed to remove non-physical secular terms.

This method is limited to autonomous weakly nonlinear differential equations with bounded os-

cillatory solutions. In addition to expressing the solution as an asymptotic series, an alternate

timescale with frequency ω is introduced, and the frequency itself is expanded:

τ = ωt (2.44a)

x = x0(τ) + εx1(τ) + ε2x2(τ) + . . . (2.44b)

ω = ω0 + εω1 + ε2ω2 + . . . (2.44c)

Transforming Eq. (2.36) via the new independent variable τ , noting ( )′ = d
dτ ( ):

ω2x′′ + x+ εx3 = 0 (2.45)

Substituting Eq. (2.44) only to O(ε), noting ω0 = 1 from x0(t) = cos (t):

(1 + 2εω1)
(
x′′0 + εx1

)
+ x0 + εx1 + εx3

0 = 0 (2.46)

O
(
ε0
)

: x′′0 + x0 = 0 (2.47a)

O
(
ε1
)

: x′′1 + x1 = −2ω1x
′′
0 − x3

0 (2.47b)
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Solving Eq. (2.47) and applying the initial conditions yields:

x0 = cos τ (2.48a)

x1 =
1

32
(− cos τ + cos 3τ + 4 (8ω1 − 3) τ sin τ) (2.48b)

From Eq. (2.48), the choice ω1 = 3
8 eliminates the secular term. Thus, the solution, to first order

in ε, is given below:

x(t) ≈ cos

((
1 +

3

8
ε

)
t

)
+

1

32
ε

(
− cos

((
1 +

3

8
ε

)
t

)
+ cos

(
3

(
1 +

3

8
ε

)
t

))
(2.49)

Note the slight change of the fundamental frequency induced by the nonlinear perturbation, and

the secular term has been removed. The application of these techniques to the three-dimensional

nonlinear perturbed relative motion problem is more complicated, but the fundamental principles

discussed above remain relevant. One of the most important takeaways from this exercise is the

systematically uniform treatment of expressions at various orders in the small parameters. It is

critical that all terms linear in the perturbative term be accounted for, otherwise the accuracy

of the approximation is compromised. There is also the additional challenge of having multiple

small parameters of different scales. Other techniques and insights from perturbation theory are

discussed as they appear in this dissertation.

2.4 Relative Motion Approximation

2.4.1 Fundamentals

The general orbit problem is a nonlinear dynamic problem of the following form:

Ẋ = f0(X) +

m∑
i=1

αifi(X, t) (2.50)

where X is a 6-element state vector of augmented position and velocity vectors, or a set of orbit

elements. The function f0 is the two-body component of the dynamics, and the αifi are perturba-

tions with factored scaling terms αi such that ‖fi‖ ∼ ‖f0‖, and typically |αi| � 1. This formulation

explicitly considers the influence of m distinct perturbations. In the case of N bodies in neighbor-

ing orbits, their equations of motion are expressed by N independent nonlinear vector differential
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equations of the form given by Eq. (2.50), and this is not a particularly useful or insightful ar-

rangement. An alternative arrangement is obtained by linearizing about one of the orbits – one of

the solutions Xc(t) to Eq. (2.50), and studying the dynamics of the deviation, δX = X −Xc. For

brevity, let x ≡ δX. Subtracting the dynamics and keeping only the terms linear in x, we obtain

a model valid for all spacecraft orbits in the vicinity of Xc(t) that are close enough to justify the

linearization approximation:

ẋ =

(
df0(X)

dX

∣∣∣∣
Xc

+
m∑
i=1

αi
dfi(X, t)

dX

∣∣∣∣
Xc

)
x (2.51)

The size and shape of the domain of validity of Eq. (2.51) is a consequence of the choice of

coordinates used to parameterize X. In the case that X is given in terms of orbit elements,

this domain can be quite large. The plant matrix in Eq. (2.51) can be computed numerically,

but analytic approximations prove useful for control applications. In practice, if the chief orbit

solution can be explicitly approximated to reasonable accuracy by the vector function X̃c(t) for

some timespan t ∈ [t0, tu] and the n � m dominant perturbations are identified, we obtain an

approximation of the relative motion dynamics that is a function of only Xc(t0) and the dominant

terms in the Jacobian matrices in Eq. (2.51):

ẋ =

(
df0(X)

dX

∣∣∣∣
X̃c

+
n∑
i=1

αi
dfi(X, t)

dX

∣∣∣∣
X̃c

)
x = [A (Xc(t0), t)]x (2.52)

The result that is obtained is a linear time-varying approximation of the relative motion dynamics

that requires no updates on knowledge of the chief orbit for the duration of time tu − t0 and

can be used to study the relative motion dynamics of all spacecraft in the vicinity of the chief. In

principal, this equation can also be solved (or approximately solved) analytically. In this work, that

is typically done via a perturbation expansion [58, 96]. The resulting solution is a time-explicit

or anomaly-explicit model of relative motion that is linear in the initial relative state x0. This is

a relative motion STM model of the form x(t) = [Φ(t, t0)]x0, completely analogous to the STM

model obtained by Clohessy and Wiltshire [36], but adapted for the specified perturbed problem.

It is a very useful result to obtain, enabling rendezvous and relative motion control via impulsive
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maneuvers in a manner that explicitly accounts for the influence of the dominant perturbations. If

the perturbations exert significant effects in the time between impulsive maneuvers, then impulsive

control strategies using Keplerian relative motion STMs can fail altogether.

The LTV equations given by Eq. (2.52) are still highly useful in and of themselves for linear

formation control applications, by providing an analytic approximation of the relative motion plant

matrix. Possible strategies include the commonly used Linear Quadratic Regulator (LQR), or an

extension of LQR for which one uses Eq. (2.52) to derive develop dynamic equations for the system

sensitivity to variations in important but uncertain dynamic parameters. Interestingly, the effect

of uncertainty in the chief orbit itself can be compensated for in this way, because the initial chief

orbit parameters appear in the plant matrix in Eq. (2.52). This is discussed with chapter 5. In the

case of SRP-perturbed relative motion, the resulting plant matrix is also useful for linear control

using the differential SRP acceleration.

2.4.2 Local Cartesian Coordinates

Developing a linear dynamic approximation of the perturbed relative motion problem in local

chief-centered Cartesian or spherical coordinates involves computing the differential accelerations

induced by the two-body acceleration and the perturbation (the kinetics of the problem) and also

computing the Coriolis and centripetal terms induced by the time-varying angular velocity of the

perturbed LVLH frame (the kinematics). The governing equations for the general perturbed linear

problem are given below [35]:

ẋ =

 03×3 I3×3

∂
∂ρ (r̈d − r̈)−

[
˜̇ω
]
− [ω̃] [ω̃] −2 [ω̃] + ∂

∂ρ̇ (r̈d − r̈)

x (2.53)

ω =
r

h
(r̈ · ên) êr +

1

r
(ṙ · êt) ên (2.54)

ω̇ =
r

h

(
ṙ

r
(r̈ · ên)− 2

r

h
(r̈ · êt) (r̈ · ên) + (

...
r · ên)

)
êr

+
1

r

(
(r̈ · êt)− 2

ṙ

r
(ṙ · êt)

)
ên

(2.55)
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where the tilde on a symbol denotes the transformation of its vector into the cross-product matrix,

and all matrices appear in square brackets. Alternatively, the perturbed angular velocity can be

expressed directly in terms of orbit element rates, and this is typically a simpler approach. This

will be discussed more in chapter 3.

Computing a perturbed relative motion state transition matrix from the above linear equa-

tions involves approximating the perturbed chief orbit using the perturbation methods discussed

earlier. A stand-alone linear model that is only a function of the chief initial conditions and time

must be developed. Then, the perturbed relative motion solution is modeled as a small deviation

from the corresponding unperturbed problem. For example, for perturbed relative motion in the

vicinity of a near-circular orbit, the relative motion model will be given as x(t) = x0(t) + εx1(t),

where x0(t) is the Clohessy-Wiltshire solution, x1(t) is a time-explicit perturbation-induced devi-

ation, and ε is a small term from the perturbed dynamics.

2.4.3 Orbit Element Differences

As opposed to approximating the perturbed dynamics in local Cartesian coordinates, the

perturbed dynamics in orbit element differences are more straightforward. These are obtained

directly by linearizing the Lagrange planetary equations in their Gaussian form:

ȯe = f(oe,ap) (2.56)

δȯe =
df(oe,ap)

d oe

∣∣∣∣
oec

δoe (2.57)

Depending on the choice of orbit elements, at least 5 of the 6 elements in oe are constant for the

unperturbed problem. Noting that in many contexts, the perturbing acceleration is sub-dominant

to the two-body dynamics, Eq. (2.56) can be rewritten:

ȯe = f0(oe) + εf1(oe,ap) (2.58)

Thus, Eq. (2.57) can also be rewritten:

δȯe =

(
df0(oe)

d oe

∣∣∣∣
oec

+ ε
df1(oe,ap)

d oe

∣∣∣∣
oec

)
δoe (2.59)
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The first matrix in the parentheses in Eq. (2.59) will be quite sparse, and the second matrix will

be rather complex. In this context, averaging of the perturbed part of Eq. (2.59) is often used to

simplify the analysis. A resulting relative motion solution in the orbit element differences would

be of the form δoe = δoe0(t) + ε δoe1(t), where most of the elements in δoe0 will be stationary. This

dissertation does not focus heavily on relative motion modeling with orbit element differences, but

this approach and inspired ideas do appear in later chapters.

2.5 Linear Differential Equations, Reducibility, and Lyapunov-Floquet The-

ory

This dissertation makes extensive use of linear time-varying (LTV) differential equations,

such as below:

ẋ = [A(t)]x (2.60)

These are generally obtained by linearizing about an orbit or trajectory of interest, which is the

fundamental generalization of the close-proximity spacecraft formation-flying problem. Not only

are the linearized dynamics important for applications such as control and estimation, but in this

dissertation, the solution of Eq. (2.60) is also of interest. In chapters 6 and 7, this dissertation

explores the problem of efficiently representing the unperturbed and perturbed satellite relative

motion problems. This is done by identifying a convenient basis of fundamental solutions ξ(t), for

which the relative motion can be expressed as a linear sum x(t) =
∑6

i=1 ciξi(t), where the vector of

constants c = (c1, . . . , c6)> is a function of the initial conditions x0. Obtaining these fundamental

solutions involves finding the solutions of Eq. (2.60), which is often challenging to do analytically

for multidimensional LTV systems. Note that it can always be done numerically by integrating

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)] with initial condition [Φ(t0, t0)] = [I]. In this case the fundamental

solution matrix obtained is the state transition matrix, so ξi = φi and c = x0. However, a

systematic analytic means of obtaining fundamental solutions ξi(t) is obtained if Eq. (2.60) can

be related via an analytic linear time-varying transformation to another set of coordinates with an

LTI dynamic form. This enables the modal decomposition approach, to be discussed in chapters 6
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and 7.

This section discusses the basics of the reducibility of Eq. (2.60) when the plant matrix [A(t)]

satisfies various properties, drawing mainly from References 105 and 119. An equation such as

Eq. (2.60) is said to be reducible if there exists a linear time-varying, non-singular, and invertible

change of variables [P (t)] called the Lyapunov-Perron or reducing transformation satisfying the

following:

x = [P (t)]z (2.61)

ż = [Λ]z (2.62)

where [Λ] is a constant matrix. Whenever a system is reducible to a system with a constant plant

matrix like Eq. (2.62), many properties of the system in z (including growth/decay of the solutions

and their boundedness) are retained in x. In the context of reducibility, only three particular cases

of the temporal variations in [A(t)] are relevant to this dissertation: (1) the plant matrix is periodic,

(2) the plant matrix is quasi-periodic, and (3) the plant matrix is almost-periodic, such that there

exists some time T for which [A(t)] ≈ [A(t + T )] to some satisfactorily small error. Each of these

cases will now be introduced and discussed.

In the case that the plant matrix is periodic [A(t)] = [A(t + T )], Lyapunov-Floquet theory

applies. To motivate this discussion, consider the following identity with the state transition matrix

for the system with periodic plant matrix with period T :

[Φ(t+ T, t0)] = [Φ(t+ T, t0 + T )][Φ(t0 + T, t0)] = [Φ(t, t0)][Φ(t0 + T, t0)] (2.63)

The constant matrix [Φ(t0+T, t0)] is referred to as the monodromy matrix. This matrix encodes the

stability of the linearized motion. In particular, any eigenvalues less than unit norm are “stable”

(corresponding to convergent modal motion), any outside are “unstable” (corresponding to modal

motion that departs from the origin), and any of unit norm correspond to oscillatory modes. The

monodromy matrix can be written as below:

[Φ(t0 + T, t0)] = [P0]e[Λ]T [P0]−1 (2.64)
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where [Λ] is a constant matrix and [P0] is constant and invertible. Rewriting Eq. (2.63) using

Eq. (2.64):

[Φ(t+ T, t0)] = [Φ(t, t0)][P0]e[Λ]T [P0]−1 (2.65)

Now, the matrix [P (t)] is defined as below:

[P (t)] = [Φ(t, t0)][P0]e−[Λ](t−t0) (2.66)

Evaluating Eq. (2.66) at t0 yields [P (t0)] = [P0]. Additionally, Eq. (2.66) can be shown to be T -

periodic by expanding and using Eqs. (2.63) - (2.65). Inverting this expression leads to a traditional

general definition of Floquet theory:

[Φ(t, t0)] = [P (t)]e[Λ](t−t0)[P (t0)]−1 (2.67)

Lyapunov’s extension of Floquet theory directly relates the system with linear time-periodic

plant matrix to a system that is LTI via the periodic transformation [P (t+ T )] = [P (t)]:

x = [P (t)]z (2.68)

ż = [Λ]z (2.69)

The Lyapunov-Floquet (LF) transformation and the LTI matrix are any pair of matrices [P (t)],

[Λ] satisfying the following matrix differential equation, which can be obtained using Eqs. (2.60),

(2.68), and (2.69):

[P (t)]−1
(

[A(t)][P (t)]− [Ṗ (t)]
)

= [Λ] (2.70)

In analytically solving this equation, which can be challenging, one seeks periodic solutions for the

individual elements of [P (t)] while also requiring the elements of [Λ] to be constant. In practice,

the periodicity conditions for all non-trivial elements of [P (t)] constrain the admissible forms of

[Λ], but still allow for variations in the values of elements in [Λ] depending on the form of [P (t0)].

As a result, there can be more than a single pair of matrices satisfying Eq. (2.70). However,

a unique definition of the LF transformation is given below using the monodromy matrix. This



40

transformation conveniently equals identity at the epoch time:

[P (t)] = [Φ(t, t0)]e−[Λ](t−t0) (2.71)

[P (t0)] = [P (t0 + kT )] = [I] (2.72)

[Λ] =
1

T
ln (Φ(t0 + T, t0)) (2.73)

This definition will be used frequently in chapters 6 and 7 with the modal decomposition and with

other related analysis. The modal decomposition explores factoring the relative motion in x in

terms of a linear sum of the transformed individual stable, oscillatory, and unstable modes from z.

Given the above definitions for the case that [A(t)] = [A(t + T )], it is natural to ask if

reducibility can be obtained for other conditions. Consider for example the case that [A(t)] is

quasi-periodic. In other words, [A(t)] is characterized by d distinct frequencies in the frequency

vector ω:

[A(t)] = [A (ωt+ φ)] (2.74)

Significant work has been done in studying the general reducibility of such a linear problem, or

constrained versions of it. See e.g. References 105 or 66. For tractable reducibility of [A(t)], these

works typically require that, among other things, the frequency vector satisfies a non-resonance or

diophantine condition. The reducibility of the system is still not trivial when this is satisfied – i.e.,

computing the transformation [P (t)] is quite challenging. To illustrate the depth of difficulty, note

that even the reducibility of the scalar system ẋ = a(t)x for quasi-periodic scalar a(t) is not trivial.

With the above challenges in mind, this dissertation includes some work about the pertur-

bative application of standard Lyapunov-Floquet theory to the fairly general case that [A(t)] is

almost periodic. In particular, there exists some T such that [A(t)] ≈ [A(t + T )] to some satis-

factory level. This can be accomplished with quasi-periodic systems when one of the frequencies

ωi ∈ ω is much more important to the behavior of [A(t)] than the others. However, it extends

beyond this to more general variations in [A(t)]. This is discussed some more in chapter 7, which

includes basic analysis of the applicability of modes computed for a similar system with plant matrix
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[A(t)] = [A(t + T )] = [A(t)] − [δA(t)], where [δA(t)] is a sub-dominant matrix perturbation. The

matrix [A(t)] can be achieved by Fourier fit of [A(t)] with prudent choice of T , or can additionally

be computed simply by omission of higher-order terms in [A(t)], as in References 78 and 24, for

example.



Chapter 3

Spacecraft Relative Motion Modeling

This chapter discusses some of the foundational work in this dissertation: Approximating

the perturbed spacecraft relative motion problem in a manner that is computationally efficient for

onboard operations, but sufficiently accurate for various practical uses. This chapter applies the

fundamentals of perturbed relative motion dynamics discussed in chapter 2. First is an in-detail

application to the J2-perturbed relative motion problem. Some results are shown to demonstrate

that the model obtained is quite accurate, even in the context of the many other models obtained

for this popular relative motion problem. Then, a similarly obtained model for C20, C22, and solar

radiation pressure (SRP) perturbed relative motion is discussed. The derivation of the C20 and

C22 perturbative terms is shown. The SRP perturbative terms are discussed more thoroughly in

chapter 4, which studies SRP-perturbed relative motion and SRP-based spacecraft relative mo-

tion control in great detail. This model is used to illustrate the benefit of the relative motion

approximation procedure for analysis. This method and these models appear repeatedly later in

the dissertation, hence their early presentation. Note that much of the work in this chapter also

appears in References 18, 17, and 24, and 25.

3.1 Modeling J2-Perturbed Relative Motion

As discussed in chapter 2, the gravitational effect of the Earth’s oblateness (captured primar-

ily by the J2 zonal harmonic) is one of the dominant perturbations in low-Earth orbit. Under the

action of this perturbation, the analytically elegant predictions of spacecraft relative motion under
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Keplerian dynamics lose their validity on long timespans. In particular, drifting of the relative

motion becomes a greater problem, and the initial conditions for bounded relative orbits must be

modified from the Keplerian case [110]. Additionally, the shape of the relative motion is affected,

and the frequency of the relative orbits is altered slightly. For formation flying mission architec-

tures demanding long durations between maneuvers, or requiring very high precision in controlled

relative motion, the effects of J2 must be considered.

This first section explores the application of the methodology discussed in chapter 2 to model

the spacecraft relative motion in local Cartesian coordinates with a time-explicit linear model that

incorporates the effects of the J2 perturbation on both the kinetics and kinematics of relative

motion. The model is derived to consider near-circular orbits, because the majority of orbits in the

J2-perturbed LEO region are near-circular. This thus produces a model that is the first-order J2-

corrected version of the Clohessy-Wiltshire solution. The model is derived in detail, then validated

with an application to modeling relative motion in Earth orbits. The results are compared to other

models in literature. Additionally, some demonstrations with fictitiously large J2 and J3 coefficients

illustrate the geometric effects of these perturbations and the power of the relative motion state

transition matrix (STM) approximation method to describe the resulting motion efficiently.

3.1.1 Derivation of Base Model

To obtain a linearized relative motion model in terms of the relative position ∆r = rd− rc =

xêr + yêt + zên, the procedure is to subtract and linearize the perturbed orbital dynamics of

the chief and deputy (the kinetics of the problem), and resolve the differential dynamics into the

perturbed LVLH frame centered on the chief spacecraft (the kinematics). The resulting system of

approximate linear differential equations is then solved explicitly.

The kinetics of the problem are straightforward, obtained by linearizing the differential two-

body and J2-perturbed acceleration, ∆r̈ = a(rd) − a(rc), where rd = rc + ∆r. The linearized

differential accelerations are presented in a compact form below for conciseness, but will later be
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expressed in LVLH frame components:

∆r̈ = − µ
r3

(
[I3×3]− 3r̂r̂>

)
∆r − 3µJ2R

2

2r5

{[(
1− 5 (â3 · r̂)2

)
[I3×3]

+ 2â3â
>
3 + 5

(
7 (â3 · r̂)2 − 1

)
r̂r̂>

− 10 (â3 · r̂)
(
â3r̂

> + r̂â>3
)]

∆r

} (3.1)

where â3 is the polar axis, r̂ is the chief orbit radial unit vector, and R is the planetary equatorial

radius.

To treat the kinematics, the inertial differential acceleration is first equated with the accel-

eration in the LVLH frame, plus transport terms, because the LVLH frame rotates with angular

velocity ωH :

∆r̈ =
Hd2∆r

dt2
+ ω̇H ×∆r + 2ωH ×

Hd∆r

dt
+ ωH × (ωH ×∆r) (3.2)

The perturbed angular velocity is defined in a hybrid coordinate system in terms of the rates of

change of the orbit element angles [35]:

ωH = Ω̇â3 + i̇
â3 × ên
‖â3 × ên‖

+ θ̇ên (3.3)

An alternate but fundamentally equivalent expression is given below, illustrating the fundamental

geometric constraint ωH · êt = 0 [35, 76]:

ωH = (Ω̇ sin i sin θ + i̇ cos θ)êr +
(
θ̇ + Ω̇ cos i

)
ên (3.4)

Successful treatment of the kinematics requires a careful accounting of all first-order J2 effects in the

right-hand side of Eq. (3.2). This requires the perturbed orbit element rates Ω̇, i̇, and θ̇, and will be

shown to also require approximation of the J2-perturbed variations in r. The derivation starts with

the angular rates Ω̇ and i̇, which are given below in terms of the perturbing acceleration [8], along

with the J2 perturbing acceleration in LVLH radial, transverse, and orbit-normal components.

Ω̇ =
r sin θ

h sin i
NJ2 (3.5a)

i̇ =
rcosθ

h
NJ2 (3.5b)
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aJ2 = RJ2 êr + TJ2 êt +NJ2 ên (3.6)

RJ2 =− 3µJ2R
2

2r4

(
1− 3 sin2 i sin2 θ

)
(3.7a)

TJ2 =− 3µJ2R
2

2r4

(
2 sin2 i sin θ cos θ

)
(3.7b)

NJ2 =− 3µJ2R
2

2r4
(2 sin i cos i sin θ) (3.7c)

Substituting NJ2 into equation 3.5, the following is obtained:

Ω̇ =− 3µJ2R
2

hr3
cos i sin2 θ (3.8a)

i̇ =− 3µJ2R
2

4hr3
sin 2i sin 2θ (3.8b)

Now, the angular rate θ̇ is obtained. First, Eq. (3.4) indicates the following:

θ̇ = ωn − Ω̇ cos i (3.9)

where ωn is the instantaneous orbit-normal component of the angular velocity. An estimate for

this term can be obtained starting with the radial component of Newton’s second law in spherical

coordinates:

r̈ − ω2
nr = − µ

r2
+RJ2 (3.10)

Isolating ωn and factoring and binomial-expanding the square root of the other terms, the following

is obtained:

ωn ≈ nρ−3/2

(
1− ρ3

2rn2
RJ2 +

ρ3r̈

2rn2

)
(3.11)

where ρ = r/a. The last term exerts a small influence for near-circular orbits and is neglected.

Then, substituting Eq. (3.7) into Eq. (3.11):

ωn = nρ−
3
2

(
1 +

3

4
J2

(
R

r

)2 (
1− 3 sin2 i sin2 θ

))
(3.12)

Then an approximation for θ̇ is given by Eqs. (3.12), (3.9) and (3.8). For now, the model is derived

making the pure circular orbit assumption r ≈ a, as is done in the Clohessy-Wiltshire derivation.
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Later, an improvement on this model will be introduced, accounting for small radial variations

induced by two-body gravity and J2 – demonstrating a more correct approach. This exercise

illustrates the importance of correctly capturing all first-order perturbative terms.

In LVLH components, Eq. 3.2 becomes:

∆r̈ =
(
ẍ− ω̇ny − 2ωnẏ − ω2

nx+ ωnωrz
)
êr

+
(
ÿ + ω̇nx+ 2ωnẋ−

(
ω2
n + ω2

r

)
y − ω̇rz − 2ωrż

)
êt

+
(
z̈ + ωnωrx+ ω̇ry + 2ωrẏ − ω2

rz
)
ên

(3.13)

where ωr = Ω̇ sin i
sin θ = r

hNJ2 , ωt = 0, and ωn was given previously. At this point, it is necessary to

resolve Eq. (3.1) in LVLH components, noting the following:

H r̂ =


r

0

0

 (3.14)

H â3 =


sin θ sin i

cos θ sin i

cos i

 (3.15)

Eq. (3.1) is now resolved in LVLH frame components and expressed in a matrix-vector form as

∆r̈ = ∆r̈J0 + ∆r̈J2 :

∆r̈J0 =
µ

r3


2x

−y

−z

 (3.16)

∆r̈J2 =
−µJ2R

2

r5


O11 O12 O13

O21 O22 O23

O31 O32 O33




x

y

z

 (3.17)

where Oij = Oji with all unique elements defined in Table 3.1 At this point, all components are

needed for constructing the base linear model. Eqs. (4.32) and (3.17) are used with Eq. (3.13),

with all angular velocity terms given previously. To first order in J2, assuming r ≈ a, ȧ ≈ 0 and
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Table 3.1: Unique O Matrix Terms in Eq. 3.17, Oij = Oji

O11 = −6 + 9 sin2 i (1− cos 2θ) O12 = −6 sin2 i sin 2θ

O13 = −6 sin 2i sin θ O22 = 3
2 − sin2 i

4 (9− 21 cos 2θ)

O23 = 3
2 sin 2i cos θ O33 = 3

2 + 3 cos2 i− 15
2 sin2 θ sin2 i

ė ≈ 0, it can be shown that the only nonzero angular acceleration term is ω̇r, given below with a

the nonzero angular velocity squared terms:

ω̇r = n
sin i

sin θ

(
d

dθ

(
Ω̇
)
− Ω̇

cos θ

sin θ

)
(3.18)

ωnωr = nρ−3/2Ω̇
sin i

sin θ
(3.19)

ω2
n = n2ρ−3

(
1 +

3

2
J2

(
R

r

)2 (
1− 3 sin2 i sin2 θ

))
(3.20)

For deriving the base model, the circular orbit assumptions r ≈ a, ρ = r/a = 1, and e = 0 are

substituted everywhere. The effect of J2 is still incorporated in the perturbed angular velocity and

in the differential acceleration, but its effect on the orbit radius is ignored for now. After applying

the necessary substitutions into Eq. (3.13) and collecting the small dimensionless scaling parameter

α = J2

(
R
a

)2
, the linear model is given below in matrix-vector form:

ẍ

ÿ

z̈

 = n2


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33




x

y

z

+


0 2ωn 0

−2ωn 0 2ωr

0 −2ωr 0




ẋ

ẏ

ż

 (3.21)
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The terms in the Q matrix are given below, followed by the angular velocity terms ωn and ωr.

Q11 =3 +
15

2
α
(
1− 3 sin2 i sin2 θ

)
(3.22a)

Q12 = 6α sin2 i sin 2θ (3.22b)

Q13 = 15α cos i sin i sin θ (3.22c)

Q21 = Q12 (3.22d)

Q22 = − 3α cos 2θ sin2 i (3.22e)

Q23 = − 6α cos i sin i cos θ (3.22f)

Q31 = Q13 (3.22g)

Q32 = 0 (3.22h)

Q33 =− 1 +
3

2
α
(
5 sin2 i sin2 θ − 2 cos2 i− 1

)
(3.22i)

(3.22j)

ωn = n

(
1 +

3

4
α
(
1− 3 sin2 i sin2 θ

))
(3.23)

ωr = −3αn cos i sin i sin θ (3.24)

3.1.1.1 Deriving a Perturbed Relative Motion STM

A time-explicit solution is obtained, via straightforward perturbation expansion [96], after

converting to a non-dimensional form of the model for the case of near-circular orbits. The difference

between the dimensional and non-dimensional forms is simple. First, all variables with distance

units are divided by the chief semimajor axis. The normalized time is τ = nt, so the time derivative

transformation is d
dt( ) = n d

dτ ( ), where differentiation with respect to normalized time is represented

by ( )′. Thus, normalized velocity terms are obtained via division by the mean motion n. Finally,

the model should be rearranged into a form separating the linear J2 perturbations (constituting
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F1) from the dimensionless Clohessy-Wiltshire (CW) ODE equations:
x′′ − 2y′ − 3x

y′′ + 2x′

z′′ + z

 = F1

(
τ, x, y, z, x′, y′, z′, α

)
(3.25)

The solutions to the dimensionless O (α) equations can be found efficiently using symbolic software

to evaluate the following inverse Laplace transform:
x2 (τ)

y2 (τ)

z2 (τ)

 = L−1




s2 − 3 −2s 0

2s s2 0

0 0 s2 + 1


−1

L (F1 (τ))

 (3.26)

where the inverted matrix is the transfer matrix of the CW system and F1 (τ) is obtained by

substituting the normalized CW solution (3.27) into the right side of Eq. (3.25). The resulting

perturbation solution to Eq. (3.25) is the sum of Eq. (3.27) and the corrective terms in Eqs. (3.28)

- (3.30), where τ − τn is the normalized time since node crossing.

x1(τ) =4x0 + 2y′0 −
(
3x0 + 2y′0

)
cos τ + x′0 sin τ

y1(τ) =− 3τ
(
2x0 + y′0

)
− 2x′0 + y0 + 2x′0 cos τ + 2

(
3x0 + 2y′0

)
sin τ

z1(τ) =z0 cos τ + z′0 sin τ

(3.27)

xα (τ) =
1

64
α

((
768− 1152 sin2 i

)
x0 +

(
288− 432 sin2 i

)
y′0 + 24

(
3 sin2 i− 2

) (
16x0 + x′0τ + 6y′0

)
cos τ

− 12 sin2 i
(
41x0 + x′0τ + 20y′0

)
cos (τ − 2τn) + 37 sin2 i

(
3x0 + 2y′0

)
cos (3τ − 2τn)

− 96 cos i sin iz′0 cos (τ − τn) + 80 sin2 i
(
2x0 + y′0

)
cos (2 (τ − τn)) + 32 cos i sin iz′0 cos (2τ − τn)

+ 96 cos i sin iz′0 cos τn + 160 sin2 i
(
3x0 + y′0

)
cos 2τn − 32 cos i sin iz′0 cos (τ + τn)

− 37 sin2 i
(
7x0 + 2y′0

)
cos (τ + 2τn) + 24

(
3 sin2 i− 2

) (
3x0τ − x′0 + 2y′0τ

)
sin τ

+ 12 sin2 i
(
3x0τ − 12x′0 + 2y′0τ

)
sin (τ − 2τn)− 37 sin2 ix′0 sin (3τ − 2τn)

− 384 cos i sin iz0 sin (τ − τn) + 64 sin2 i
(
2x′0 − y0 + 3τ

(
2x0 + y′0

))
sin (2 (τ − τn))

− 32 cos i sin iz0 sin (2τ − τn)− 864 cos i sin iz0 sin τn − 64 sin2 i
(
x′0 + 3y0

)
sin 2τn

+ 448 cos i sin iz0 sin (τ + τn) + sin2 i
(
11x′0 + 128y0

)
sin (τ + 2τn)

)

(3.28)
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yα (τ) =
1

32
α

(
− 912τx0 + 1368 sin2 iτx0 − 144x′0 + 216 sin2 ix′0 − 384τy′0 + 576 sin2 iτy′0

+ 24(−2 + 3 sin2 i)(3τx0 − 3x′0 + 2τy′0) cos τ + 12 sin2 i(3τx0 − 8x′0 + 2τy′0) cos (τ − 2τn)

+ 13 sin2 ix′0 cos (3τ − 2τn)− 384 cos i sin iz0 cos (τ − τn)

+ 8 sin2 i(2x′0 − y0 + 3τ(2x0 + y′0)) cos (2(τ − τn))

+ 32 cos i sin iz0 cos (2τ − τn)− 96 cos i sin i(z0 + 2τz′0) cos τn

− 8 sin2 i(−7x′0 + 15y0 + 15τ(3x0 + y′0)) cos (2τn)

+ 448 cos i sin iz0 cos (τ + τn) + sin2 i(11x′0 + 128y0) cos (τ + 2τn)

− 24(−2 + 3 sin2 i)(22x0 + τx′0 + 10y′0) sin τ + 12 sin2 i(29x0 + τx′0 + 12y′0) sin (τ − 2τn)

+ 13 sin2 i(3x0 + 2y′0) sin (3τ − 2τn) + 96 cos i sin iz′0 sin (τ − τn)

− 112 sin2 i(2x0 + y′0) sin (2(τ − τn)) + 32 cos i sin iz′0 sin (2τ − τn) + 96 cos i sin i(8τz0 + z′0) sin τn

− 16 sin2 i(6x0 − 3τ(x′0 + 3y0) + y′0) sin (2τn)

+ 32 cos i sin iz′0 sin (τ + τn) + 37 sin2 i(7x0 + 2y′0) sin (τ + 2τn)

)

(3.29)

zα (τ) =
1

64
α

(
24(2 + 4 cos2 i− 5 sin2 i)τz′0 cos τ − 60 sin2 i(z0 + τz′0) cos (τ − 2τn) + 15 sin2 iz0 cos (3τ − 2τn)

− 96 cos i sin i(x′0 + 4τ(2x0 + y′0)) cos (τ − τn) + 32 cos i sin ix′0 cos (2τ − τn) + 96 cos i sin ix′0 cos τn

− 32 cos i sin ix′0 cos (τ + τn) + 45 sin2 iz0 cos (τ + 2τn)− 24(2 + 4 cos2 i− 5 sin2 i)(τz0 + z′0) sin τ

− 60 sin2 iτz0 sin (τ − 2τn) + 15 sin2 iz′0 sin (3τ − 2τn) + 192 cos i sin i(2x0 + y′0) sin (τ − τn)

+ 32 cos i sin i(3x0 + 2y′0) sin (2τ − τn) + 96 cos i sin i(3x0 + 2y′0) sin τn

+ 64 cos i sin i(3x0 + y′0) sin (τ + τn) + 15 sin2 iz′0 sin (τ + 2τn)

)

(3.30)

The position components of the J2-perturbed relative motion solution are given as a linear correction

on the position components of the CW solution:
x(τ)

y(τ)

z(τ)

 =


x1(τ)

y1(τ)

z1(τ)

+


xα(τ)

yα(τ)

zα(τ)

 (3.31)

where the first term on the right is the normalized CW solution and the second term is the O(α) J2

correction. Note that both of these terms are linear functions of the relative state, so an STM model

can be easily obtained by differentiation of the position component equations, then factorization of

the 6 state equations:

x(τ) =

(
[ΦCW(τ)] + [δΦJ2(τ, τn)]

)
x(0) (3.32)
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The resulting solution is valid for the J2-perturbed relative motion problem in the vicinity of a

near-circular chief orbit. However, there are some additional strategies that can be applied to this

base solution to improve its performance.

3.1.2 Solution Improvement by Calibration

Previous work by Sinclair [122, 121] introduced a technique called calibration: using linearized

transformations between coordinates of differing dynamical nonlinearity to recover (in a given

nonlinear coordinate system) much of the benefit of a less nonlinear coordinate description. This

method can be used to improve the performance of the new linearized relative motion models

by using the nonlinear and linearized transformations between the Cartesian LVLH relative state

x =
(
∆r>∆v>

)>
and the orbit element differences, δoe = (δa, δe, δi, δω, δΩ, δf)>. An alternate set

of orbit elements remains defined for e = 0, by replacing e, ω and f with q1 = e cosω, q2 = e sinω,

and θ = ω + f . The nonlinear transformations are typically given in an algorithmic form (see e.g.

Vallado [127]), but can be written as x = g (oe, δoe) and δoe = k (oe,x). These transformations

can be linearized to give the approximate transformations x = [G (oe)] δoe and δoe = [K (oe)]x,

where [G (oe)] = [K (oe)]−1. These linearized time-invariant transformations are given in ch. 14

of Reference 111. A linearized time-varying transformation (accounting for J2 effects) is given by

Gim and Alfriend [50], but the effect of the time-varying terms is generally quite small.

In Reference 121, it was shown that the linearized propagation of a calibrated Cartesian

initial condition x̃ (t0) = [G0]k (δoe(t0),x(t0)) is equivalent to linearized transformation of the

propagation of δoe (t0) in the linearized dynamics of the orbit element differences. Because the

degree of dynamical nonlinearity is lower with the orbit element difference description [68], the

calibrated initial condition thus allows for more accurate linearized solution behavior than would

otherwise be possible using the true initial condition and Cartesian coordinate linearized dynamics.

However, the calibration process does introduce small error into the initial condition since x̃(t0) 6=

x(t0).

Using this calibration strategy, by the equivalence of linearized dynamics in Cartesian and
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spherical coordinates [31], the following linearized equivalencies are true without loss of generality:

x ≡ δr (3.33a)

y ≡ rcδθ (3.33b)

z ≡ rcδφ (3.33c)

ẋ ≡ δṙ (3.33d)

ẏ ≡ rcδθ̇ (3.33e)

ż ≡ rcδφ̇ (3.33f)

Note that equation 3.33 assumes that there is negligible change in rc, thus the chief orbit should be

nearly circular. Because the spherical coordinates more naturally fit the relative motion geometry,

they should have a lower degree of nonlinearity in their dynamics. The nonlinear transformation

from spherical coordinates to Cartesian coordinates can thus be exploited to further improve the

predicted relative position in Cartesian coordinates:

xn = (rc + δr) cos δθ cos δφ− rc ≡ (rc + x) cos

(
y

rc

)
cos

(
z

rc

)
− rc (3.34a)

yn = (rc + δr) sin δθ cos δφ ≡ (rc + x) sin

(
y

rc

)
cos

(
z

rc

)
(3.34b)

zn = (rc + δr) sin δφ ≡ (rc + x) sin

(
z

rc

)
(3.34c)

where the new “corrected” Cartesian components are denoted by subscript n, and these equations

again assume that variations in the chief orbit radius are negligible. By differentiating Eq. (3.34)

(with the assumption ṙc = 0), one would obtain equations for the “corrected” Cartesian compo-

nents of the relative velocity: ẋn, ẏn, and żn. This procedure is most useful for cases with large

separation or significant scale differences in the average radial, along-track, or cross-track separa-

tions. For small separations with similarly scaled radial, along track, and cross-track motion, this

procedure will often be unnecessary. While this calibration procedure might seem counterintuitive,

its usefulness will be unequivocally demonstrated with the numerical results later in this chapter.
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3.1.3 Solution Improvement by Accounting for Radial Variations

The previously obtained linear model made the assumption r = a and did not account for

small two-body and J2-induced effects in the chief orbital radius. Accounting for this variation

greatly improves model accuracy. Here, two corrections of orbit radius are discussed. The first is

a low-inclination analytic model of the J2-perturbed radius, and the second is an all-inclination

semi-analytic model. For the first two radial correction models, corrective terms are induced in the

STM, and these corrections are later demonstrated in numerical simulations.

For this work, the chief radius variations are approximated at O(α) via a general function

f(t,oe0), where oe0 are the initial chief orbit elements:

r(t) ≈ a0(1− αf(t,oe0)) (3.35)

With such an assumption, the corrections to the ODE model given in Eq. (3.48) are quite simple.

The changes are limited to two of the diagonal elements of the [Q] matrix, and ωn:

Q′11 =Q11 + 9αf(t,oe0)

Q′33 =Q33 − 3αf(t,oe0)

(3.36)

ω′n = ωn +
3

2
αnf(t,oe0) (3.37)

where the the new corrected quantities are denoted by a prime, and the original [Q] matrix elements

and ωn were given in Eqs. (3.22) and (3.23).

3.1.3.1 Low-Inclination Analytic Radial Solution

First, the radial accelerations are balanced with the gradient of the terms in the potential

that remain for i = 0:

d2r

dt2
− rθ̇2 ≈ ∂

∂r
(Uc(r)) =

∂

∂r

(
µ

r

(
1 + J2

R2

2r2

))
(3.38)

where Uc(r) is the total gravitational potential after neglecting terms that vary with latitude, so as

to obtain a central force problem. Next, change spatial variables to u = 1/r, and time derivatives
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to angular derivatives, such that d
dt = d

dθ
dθ
dt = h

r2
d
dθ :

d2u

dθ2
+ u =

µ

h2

(
1 +

3

2
J2R

2u2

)
(3.39)

The solution to this ODE may be described in terms of Jacobi elliptic functions, but these are

inconvenient for obtaining an analytic STM. Instead, anO(α) approximate solution is sought, which

will be the sum of approximations of the particular and homogeneous solutions. The particular

solution is obtained by straightforward perturbation expansion of the polynomial obtained assuming

stationary u in the ODE, and the homogeneous solution can be obtained by the Lindstedt-Poincaré

technique [96]. Their sum is given below:

u =
µ

h2
+

3

2
J2R

2µ
3

h6
+A cos θ − 3

4
µJ2

R2

h2
A2

(
1

4
cos 2θ − 1

)
(3.40)

Since Eq. (3.39) is autonomous (for equatorial orbits), the phase angle in the approximate solution

may be set to zero. Furthermore, the first-order frequency re-scaling is unity. The constant A is

obtained (to O(α)) from u(0) = 1/r0, noting h(0) =
√
µa0

(
1− e2

0

)
:

A =
1

r0
− 1

a0(1− e2
0)

(
1 +

3

2
J2

R2

a2
0

(
1− e2

0

)2
)

(3.41)

Substituting A, then rearranging u to obtain r(θ) and retaining only O(α) terms, an approximate

expression is obtained that can be simplified into the desired general form of Eq. (3.35):

r(θ) = a0γ0

(
1−

(
3

2
α

(
1

γ2
0

)
(1− cos θ) +

(
γ0

ρ0
− 1

)
cos θ

))

≈ a0

1− α

3

2
(1− cos θ) +

(
1
ρ0
− 1
)

α
cos θ

 (3.42)

where α = J2

(
R
a0

)2
, γ0 =

(
1− e2

0

)
, ρ0 = r0/a0, and γ0 ≈ 1 for near-circular orbits. Then

θ ≈ n0(t− tn) puts Eq. (3.42) in the form of Eq. (3.35).

3.1.3.2 All-Inclination Semi-analytic Radial Solution

For near-circular orbits, a useful time-explicit approximation for the chief orbit radius may

be given in terms of the time since node crossing, ξ = t− tn (the time since θ = 0):

r(ξ) ≈
(
a∗ −∆a

∣∣∣∣sin(n∗ξ2

)∣∣∣∣)+ (r0 − a∗) cos (n∗ξ) (3.43)
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The parameter n∗ is the J2-corrected average mean motion, and a∗ is the unperturbed semimajor

axis that would result in such mean motion:

n∗ ≈ n0

(
1 +

3

16
α(5 + 7 cos 2i0)

)
(3.44)

a∗ =
( µ

n∗2

) 1
3 ≈ a0

(
1− 1

8
α (5 + 7 cos 2i)

)
(3.45)

In the context of this discussion, all initial values of parameters refer to the value of that parameter

at ξ = 0. Note that the absolute values are unnecessary if the most recent node-crossing time is

used, such that (t− tn) < T . The parameter ∆a is the magnitude of the deviation of the osculating

perturbed semimajor axis. This term appears in Brouwer [16]:

∆a =
3

2

µ

n2
0a

2
0

J2

(
R

a0

)2

sin2 i0 =
3

2
αa0 sin2 i0 (3.46)

Eq. (3.43) is expanded and simplified and only terms of O(α) are retained to put it in the form of

Eq. (3.35), with the perturbing function given below:

f(ξ,oe0) =
3

2
sin2 i0

∣∣∣∣sin(n0ξ

2

)∣∣∣∣− 1

8
(5 + 7 cos 2i0) (cos (n0ξ)− 1)−

(
r0
a0
− 1
)

α
cos (n0ξ) (3.47)

The divisor in the final term implies that the numerator should be at most O(α), which it is. Note

the similarity, to O(α), of Eqs. (3.42) and (3.47) when i = 0.

The resulting STM corrections for both radial approximations are given in Reference 18. Later

in this section, the time-explicit relative motion model is tested with both of these incorporated.

3.1.4 Numerical Simulations

Here, the J2 models previously obtained are tested, and the benefits of the calibration proce-

dure are additionally demonstrated. First, the performances of the derived J2 models are compared

to one another and to the CW model. This is done for a range of inclinations from 0◦ to 90◦. The

J2 value of the Earth is used, J2 = 1082.63 × 10−6. Below, the initial chief orbit elements and

deputy orbit element differences are given. The orbit element differences are kept constant for
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Table 3.2: J2 Model Test, Variable Chief Inclination: 0◦ to 90◦

Parameter Value

oe0 = (a, e, i,Ω, θ) 7100, 0.0, i, 0.0, 0.0
δoe0 = (δa, δe, δi, δΩ, δθ) 0.0, 0.005, 0.2, 0.0, 0.0
LVLH Initial Conditions (m, m/s) ∆r0 = −3550êr, ∆v0 = 75.0êt + 26.3ên
Unperturbed Relative Orbit Dimensions (km) (x, y, z) = ± (35.5, 71.0, 24.8)

Figure 3.1: Model Error Norm vs. Chief Inclination

all simulations in this study; only the chief inclination is varied. The unperturbed relative orbit

dimensions and LVLH frame initial conditions are also given.

In Figure 3.1, the average error norm over one orbit is given vs. inclination for each model,

including a J2 model obtained using averaging in the kinematics [30] and the newly obtained J2

models, one assuming r = a0 and another using the time-varying approximation for the chief radius,

given in Eqs. (3.35) and (3.47). Results are also given for the calibrated and corrected J2 model

assuming r = a0. Coordinate correction offers great improvement for cases with larger separation

or with highly unequal radial, along-track, and cross-track relative motion scale. For this case, it

offers only small improvement (as ∆r → 0, the transformation Eq. (3.34) approaches identity).
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The approximation of the time-varying chief orbit radius greatly reduces the model error, to the

lowest curve. Calibrating the initial conditions and using coordinate correction on the model with

r = a0 offers almost comparable reductions in error, at least for this type of relative orbit.

Now, the initial conditions from Table 3.2 are used, with i = 10◦. The position error norm of

multiple models is compared for 5 orbits, including the J2-only GA-STM [50] and the Schweighart

& Sedwick model [116]. The results are given in Figure 3.2.

Figure 3.2: Error Norm for Various J2 Models for i = 10◦

Figure 3.2 shows that for this case, the J2-perturbed model with the approximation of the

time-varying chief radius has comparable performance to the GA-STM for 5 orbits, while also out-

performing the model obtained by Schweighart and Sedwick. Coordinate-correction was applied to

obtain these results, but the benefits are minor at this scale. The differential equinoctial element

GA-STM was used to generate these results, with only the J2 corrections included. This demon-

strates the benefits of approximating the variations in the chief radius. The calibrated and corrected

zonal model with r = a0 on average also has slightly better performance than the Schweighart and

Sedwick model for this case. Note that while the performance of the GA-STM is still slightly better
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than the best J2 model obtained, the latest model is analytically much simpler and computationally

much easier to implement than the GA-STM.

An additional case result clearly shows the benefits of solution calibration and coordinate

correction. In this case, consider an Earth-mass body with J2 = 8× 10−3 and J3 = 2× 10−3. The

perturbative effects of J3 are on the same scale as J2, and the analytic procedure in this chapter is

extended to include the J3 terms. Those corrective terms are available in Reference 18 and their

derivation is not discussed here. The orbit elements and initial conditions are given in Table 3.3. It

is clear from the large inclination difference and small eccentricity difference that the out-of-plane

motion will be on a different scale from the in-plane motion. This is a situation in which the model

performance would clearly benefit from coordinate correction, Eq. (3.34).

Table 3.3: Initial Conditions for Simulation with Large J2 and J3

Parameter Value

oe0 = (a, e, i,Ω, θ) 6800, 0.0, 2.0, 0.0, 0.0
δoe0 = (δa, δe, δi, δΩ, δθ) 0.0, 0.0002, 3.82, 0.0, 0.0
LVLH Initial Conditions (m, m/s) ∆r0 = −1360êr, ∆v0 = −14.0êt + 510.2ên

(a) Relative Orbit (b) Model Error Norm

Figure 3.3: Benefits of Solution Calibration and Correction

Figure 3.3 shows the true and model-predicted relative motion (a) and the model error norm

(b). In this relative motion case, the CW model completely fails to predict the behavior, and
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predicts large along-track drift. Note that the results of the new models without calibration are

not shown, since they will diverge much like the CW solution. This figure shows the successive

improvements of calibration, inclusion of J3 terms, and finally coordinate correction. It shows

that only coordinate correction allows the model to recover the complex “boomerang” shape of the

relative motion with high accuracy. The extension of these linear models simply using coordinate

transformations is a significant development, as it greatly extends the region of validity in which

these models can be used.

Overall, these simulation results demonstrate that the method of developing linear models of

perturbed relative motion offers solutions with significant improvement over the popular Clohessy-

Wiltshire (CW) model. The position error scale is generally reduced by 1 - 2 orders of magnitude,

enabling computationally efficient modeling of relative motion in situations that classical relative

motion models such as the CW model cannot handle. The results with the additional J3 perturba-

tive terms demonstrate that the procedure can be extended to include more than one perturbation,

which facilitates the arguments in the next section – where a linear relative motion model is obtained

for oblateness (C20 = −J2), ellipticity (C22), and solar radiation pressure (SRP).

3.2 Model for Oblateness, Ellipticity, and Solar Radiation Pressure

In this section, the analytic arguments and techniques developed and reviewed in this chapter

are applied to the problem of perturbed formation dynamics in near-circular orbits around large

asteroids. In particular, the approximate modeling method is applied to the combined perturbations

due to oblateness (C20 = −J2), ellipticity (C22), and cannonball solar radiation pressure (SRP).

These represent some of the dominant effects for orbits about large asteroids. It is not necessary

to repeat the full derivation of this model, which is obtained by applying the same principles as

were used in deriving the J2 model. To see the full derivation for terms accounting for C20 and

C22, see Reference 17. Note that, as in the first J2 model introduced in the previous section, the

assumption r = a0 is reused in the derivation of these terms. The additional linear perturbative

terms due to SRP are discussed in Reference 19. Additionally, the SRP perturbative effect is
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discussed extensively in chapter 4.

Figure 3.4: Problem Geometry, Asteroid Orbiter

Figure 3.4 shows that the spacecraft orbit is described with respect to the plane perpendicular

to the asteroid rotation axis. The axes â1, â2, â3 are aligned with the principal axes of inertia of

the asteroid, and the asteroid is assumed to be in a spin about the axis of maximum inertia. The

right ascension Ω is measured from an inertially fixed reference direction γ in this plane, along

with the asteroid rotation angle ψ = ψ0 + ct tracking the â1 vector. The vector û points towards

the sun, and the plane perpendicular to this vector is the terminator plane. It is assumed that

the formation is centered about a chief in a near-circular orbit, for which the argument of latitude

θ = ω + f is a convenient angular coordinate.

The dominant effects of the gravity field (captured by coefficients C20 and C22) are accounted

for by the linearized model, along with the influence of SRP disturbances, using a body-averaged

cannonball SRP model. Third-body gravity terms are neglected, as the orbit is assumed to be of

a radius such that the dominant gravity perturbations are from low degree and order coefficients

of the asteroid gravity field, and not from external bodies or particular surface features. The task

of including third-body influence in the linearized model will still often be important, particularly
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for high orbits or for orbits about smaller asteroids, but this is left as future work. The effects of

the orbit geometry play an important role in the formation dynamics, but the assumptions r ≈ a0

and θ ≈ θ0 + nt are appropriate for the time span of several orbits, where n =
√
µ/a3 is the

unperturbed mean motion. The angular rate ratio is defined as Γ = c/n, R is the Brillouin sphere

radius, ϕ is the asteroid argument of latitude, and h is the orbit angular momentum. The model

is given below, in which the kinematics of the perturbed LVLH frame are well-approximated for

several orbits, and the perturbed chief orbit parameters a, Ω, and i may be updated as needed:


ẍ

ÿ
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F11 = 3− 3

8
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(
R

a

)2 [
20
(
1− 3 sin2 i sin2 θ

) ]
+

3

8
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R

a
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F21 = F12 (3.49d)
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F31 = F13 (3.49g)
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The angular velocities of the perturbed LVLH frame are given below:

ωn = n

(
1− 3
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(
1− 3 sin2 i sin2 θ

)
+ 6C22

(
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ωr = 3n

(
R

a

)2
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2C22 sin (2 (Ω− ψ)) cos θ +
[
C20 + 2C22 cos (2 (Ω− ψ))

]
cos i sin θ
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h
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Note that the C20 terms in Eq. (3.49) match their J2 counterparts in Eq. (3.22), and the C22 terms

are obtained in the same way, but with the added difficulty of accounting for the time-varying

geometry relating the asteroid and orbit orientations. The term NSRP is the ên component of the

SRP disturbance acceleration acting on the chief spacecraft:

NSRP = −P (RO)
A

m

(
(1− ρs)
C1(1,1)

+ a2 + 2ρsC1(1,1)

)
C1(1,1)

(
ê>ξ [C1(σr)]

>ê1

)
(3.52)

where A/m is the spacecraft illuminated area-to-mass ratio, ê1 = [1, 0, 0]> and the unit vector êξ

is not a function of θ due to the problem geometry:

êξ =


sinκ sinϕ cos i− sin Ω cosϕ sin i+ cos Ω cosκ sinϕ sin i

sinκ cosϕ cos i+ sin Ω sinϕ sin i+ cos Ω cosκ cosϕ sin i

cosκ cos i− cos Ω sinκ sin i

 (3.53)

with solar radiation pressure terms defined below, for a single-plate model of a spacecraft:

P (RO) ≈ G1

R2
O

(3.54)
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a2 = B(1− s)ρ+ (1− ρ)B (3.55)

The function P (RO) is the solar radiation pressure at asteroid orbit distance RO, and G1 is the solar

radiation force constant at 1 AU. The specular and diffuse reflectivity coefficients are s and ρ, and B

is the Lambertian scattering coefficient. In this work, resultant SRP acceleration is projected purely

along the line from the sun, and the dynamics are thus identical to a cannonball SRP model for

chief and deputy. The model also assumes that the spacecraft orbits are near-circular. The model

assumes that the chief and deputy spacecraft are subject to similar net resultant SRP acceleration,

so the primary relative motion effect from SRP is due to the kinematics of the perturbed LVLH

frame. Accounting for the differential SRP acceleration would require introducing independent

deputy geometric and optical parameters, as well as tracking the deputy attitude (see chapter 4).

That would not be desirable for this work in studying the deputy-agnostic relative motion dynamics,

so it is not done here. Lastly, note that the SRP model does not account for eclipse effects without

modification.

The matrix [C1(σr)] is the rotation matrix from the asteroid-centered Hill frame to the

spacecraft reference orientation. The primary body Hill frame HP is defined by orthonormal vectors{
û, Ĥ × û, Ĥ

}
, where û points toward the sun and Ĥ is out of the orbit plane of the primary

body. In all cases studied here, [C1(σr)] = [I3×3] and thus C1(1,1) = 1 (sun-facing). The angle κ is

the obliquity of the ecliptic plane and ϕ is the argument of latitude, or the rotation angle (in the

orbit plane) from the Vernal Equinox to the radial vector from the sun to the planet. This model

is derived from the facet-based SRP model given by McMahon and Scheeres [112, 91]. The model

assumes that the asteroid is in a circular orbit about the sun, but this could be updated without

great difficulty. The timescale of large variations in ϕ is very slow compared to the spacecraft orbit

period. The motion of the asteroid orbit around the sun is not important here, as these studies

focus on short-term formation behavior of 1− 5 spacecraft orbits, a timescale on the order of days

to a week. In this context, terms that are functions of ϕ are examples of long-period terms that

can be ignored by assuming ϕ ≈ ϕ0 for the timescale of interest.
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In Eq. (3.49), the appearance of only the ên component of the SRP disturbance acceleration,

NSRP , should be briefly explained. Recall that because the differential SRP acceleration between

chief and deputy is assumed to be negligible in this work, the main effect of SRP is in the kinematics

of the perturbed chief-centered LVLH frame. The angular velocity of the LVLH frame with respect

to the inertial frame may be described in terms of the perturbed orbit element rates, as before [35]:

ωH =
dΩ

dt
â3 +

di

dt

â3 × ên
‖â3 × ên‖

+
dθ

dt
ên (3.56)

where the SRP-perturbed orbit element rates are given below as functions of the orbit geometry

and NSRP :

dΩ

dt
=
r sin θ

h sin i
NSRP (3.57a)

di

dt
=
rcosθ

h
NSRP (3.57b)

dθ

dt
=

dω

dt
+

df

dt
=

h

r2
− r sin θ cos i

h sin i
NSRP (3.57c)

If the effect of the SRP disturbance is secondary, then its effect on r(t) and h(t) will not be par-

ticularly pronounced over short timespans. Thus, the dominant effect will be in the ên component

of the SRP disturbance acceleration, NSRP . More advanced analysis could incorporate approxima-

tion of the SRP-induced changes to chief orbit radius and angular momentum in the linear relative

motion system matrix, but that level of fidelity is unnecessary for the numerical studies in this

work.

Note that unlike in the previous section, an STM will not be obtained for the linear model

given by Eqs. (3.48) - (3.51). Instead, simulations are conducted with linear propagation of the

model dynamics, without any restarting/update of the chief orbit parameters, to replicate the

performance of an STM.
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3.2.1 Further Analysis of the Linear Model

Note that as i→ 0, ignoring long-period SRP effects, the equations of motion can be shown

to reduce to the following highly simplified form:
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)
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)
z − 2

a

h
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where α = −C20

(
R
a

)2
and β = C22

(
R
a

)2
, and Θ = 2

(
(1− Γ) θ + (Ω + Γθ0 − ψ0)

)
. For a purely

equatorial orbit i = 0, and Ω is undefined, so θ is measured from the reference direction γ, then

Θ = 2
(

(1− Γ) θ + (Γθ0 − ψ0)
)
.

Previous analysis [20] studies these equations without SRP, including their further reduced

LTI form for Γ = 1, and finds that the reduced LTI model can successfully predict the stability

properties of the libration points [75] collinear with the â1 and â2 in the rotating asteroid-fixed

frame, and the associated eigenvectors can be used to produce the stable and unstable manifolds.

This linearized relative motion model can then be viewed as a generalization of the classical problem

of studying motion in the vicinity of equilibrium points in the rotating body-fixed frame.

3.2.2 Identifying Important Parameters for Numerical Simulations

The form of Eqs. (3.49) – (3.51) lends some insight into important parameters in the formation

dynamics. First, note that all C22 associated terms are multiplied by either cos (2 (Ω− ψ)) or

sin (2 (Ω− ψ)), representing the importance of the evolution of the relative configuration of the

orbit plane and the asteroid orientation. For cases of Γ ≈ 1 these terms change slowly, and the

value of Ω−ψ0 becomes quite important. As the value of Γ is increased (corresponding to a raising

of the chief semimajor axis), these terms oscillate more quickly, and the importance of Ω − ψ0 on

formation dynamics is reduced.

Recall that as i→ 0, the in-plane x and y dynamics nearly decouple with the out-of-plane z

dynamics, with the exception of kinematic coupling terms due to the SRP disturbance. The fact
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that inclination has such an influence on the dynamics suggest that it is also important to consider.

The value of semimajor axis is vitally important to formation dynamics, manifesting through

the small parameters premultiplying the time-varying disturbance terms, C2j(R/a)2, j = 0, 2. It

also affects the magnitude of Γ, determining whether or not the initial relative configuration of the

chief orbit and asteroid attitude has an important role.

Lastly, the optical coefficients are important due to their effect on the SRP disturbance,

and so is the geometry of the chief orbit with respect to the direction to the sun, captured by

the coupled orbit angle terms in êξ in Eqs. (4.28) – (4.29). For simplicity, the studies in this

section assume that the asteroid spin axis orientation is known, along with the spacecraft optical

coefficients. The studies consider a family initially near-circular chief orbits (at varying inclinations

both near and far from the terminator plane) on which to center the formation. The semimajor axis

and inclination are chosen as the main independent parameters for studying the highly perturbed

formation dynamics in this problem.

3.2.3 Angular Momentum of the Relative Orbital State

Because the relative motion is characterized by time-varying relative position and velocity,

a vector quantity that captures large variations in either of these vectors is sought. The angular

momentum of the relative orbital state (AMROS) provides an intuitive view of perturbed formation

behavior, defined as the cross-product of the relative position ∆r = (x, y, z)> and velocity

∆r′ = (ẋ, ẏ, ż)>:

∆h = ∆r ×∆r′ (3.59)

It is important to note that this term is not the same as the difference between the angular momen-

tum of the deputy and the chief, δh. This term is only the component of the angular momentum

difference that is purely associated with the chief-centered relative state, and independent of the

chief position and velocity:

δh = hd − hc = ∆h+
(
rc ×∆r′

)
+ (∆r × vc) (3.60)
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A simple argument for using this parameter is that it captures large changes in ∆r(t) or ∆r′(t)

that indicate significant change to the nature of the relative motion or relative orbit. However,

substitution of the Clohessy-Wiltshire solutions into Eq. (3.59) provides another argument for

the rationale of its use. For unperturbed close-proximity formations, satisfaction of the no-drift

condition manifests in the solution to the linearized dynamics as periodicity of ∆h, with the quantity

predicted to be constant when the relative motion furthermore has no along-track angular offset,

parameterized only by nonzero δe and δi:

∆hHCW =

(
3x0 +

2

n
ẏ0

)
ż0êt −

2

n

(
21n2x0 + 24nx0ẏ0 + 7ẏ2

0

)
ên (3.61)

Any violation of the no-drift condition likewise results in ∆h no longer being periodic or conserved.

Thus, the CW solution establishes a link between this physical quantity and the linearized approxi-

mation of the no-drift constraint. Changes in the value of ∆h(t) or its norm ∆h using the perturbed

linear models will be useful for predicting the degree, timescale, and manner of formation deviation

from classical unperturbed non-drifting geometry. It is important to note that under the true dy-

namics, ∆h is not truly constant for unperturbed chief-centered non-drifting relative motion, but

instead fluctuates periodically on a small scale. The scale of these unperturbed fluctuations is a

small fraction (∼ 0.1%) of the mean value for formations on any scale that permit linearization.

However, the effects of perturbations may result in fluctuations on the same order as the mean.

3.2.4 Numerical Simulations

Simulation of linearized relative motion with the model equations allows for efficient explo-

ration of relative motion in a parameter space of various chief orbits. Here, the strengths and

limitations of the analytic approximate model are shown by direct comparison with results from

nonlinear dynamic simulations. Note that this same model will be revisited for modal analysis of

spacecraft relative motion in chapter 7.
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3.2.4.1 Simulation Setup

For the results that follow, close-proximity formation dynamics about a rotating asteroid are

considered, with important physical parameters given in Table 3.4.

Table 3.4: Simulation Parameters for Asteroid Relative Motion Model

Parameters Values

Asteroid Physical Parameters M = 4.9× 1014 kg, R = 6 km, Ellipsoidal semi-axes: 6, 3, 2.5 km
Gravity Parameters µ = 3.271× 10−5 km3/s2, C20 = −0.0903, C22 = 0.0375
Asteroid Orbit Radius RO = 3.5904× 108 km (2.4 AU)
Configuration Parameters κ = 15◦, ϕ0 = 90◦, Tr = 18.0 hr, ψ0 = 0

Spacecraft Optical Constants A
m = 0.3 m2/kg, B = 0.6, s = 0.25, ρ = 0.3

The parameter R is the Brillouin sphere radius, the maximum extent of the body material

from its center of mass. The linearized relative motion model in Eq. (3.48) is used to explore the

parameter space for prograde and retrograde near-circular chief orbits. Namely, the inclination of

prograde orbits in the terminator plane is iT = 75.0◦, and the set of inclinations tested is between

70◦ and 105◦ in one degree increments. The range of Γ tested is from Γ = 3/4 to Γ = 4, with 25

evenly spaced values. The semimajor axis is related to Γ through the following equation, where

c = 2π/Tr:

a =

(
µ

Γ2

c2

)1/3

(3.62)

For simplicity, the initial non-critical chief orbit elements e0, ω0,Ω0, f0 are all assumed to be zero.

Thus θ0 = 0 and additionally, the chief orbit is initially circular. Small initial nonzero values of

chief eccentricity (e.g. O(10−3)) do not significantly affect the results. The osculating chief orbit

eccentricity is generally of this scale anyway, and can reach higher values in strongly perturbed

cases.

While third body effects are ignored in this study, the radius of the asteroid sphere of influence

is estimated assuming m�M [8]:

rSOI = RO

(m
M

)2/5
≈ 205 km (3.63)

where M is the mass of the sun. Note that at a = 38.2 km (the maximum orbit size tested), the
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sun’s gravity would be a little less than 3% the strength of the asteroid gravity, so the third-body

disturbance should be included in the approximate model for higher fidelity in actual applications.

In the studies that follow, for each point in the parameter space, the state transition matrix

is computed using the linearized dynamics for one period of the [A(t)] matrix. This enables any

type of close-proximity relative motion to be studied without re-integrating each initial condition

of interest.

3.2.4.2 Results

First, the magnitude of the maximum deviation (over one orbit) of the AMROS parameter

is computed with results from both the linearized model and the truth model. This involves

determining the time t at which ‖∆h(t) − ∆h(0)‖ is maximum, and returning that maximum

value. For these results, the relative motion of a single deputy around the chief is considered, with

the only nonzero differential elements being δe = 0.003 and δi = 0.1◦. In the unperturbed case, this

would result in periodic bounded planar relative motion with an average separation on the order

of 100 meters, with the linear model predicting conservation of ∆h and the truth model showing

small fluctuations.
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Figure 3.5: Maximum Deviation of AMROS in One Orbit
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The results for the highly perturbed asteroid environment are given in Figure 3.5 for one

orbit, which is about three days. The results show strong agreement between the linearized model

(left) and truth model (right). The results also establish that within one orbit, the orbits for Γ < 2

are much more significantly perturbed than higher altitude orbits of Γ > 2.

Since this figure is used to explore and compare behavior throughout the parameter space,

the relative values are more important to study than the absolute values. Both plots show two

bands of highly perturbed relative motion behavior around Γ = 1.25 and Γ = 1.75, with retrograde

orbits (i > 90◦) showing less deviation than prograde orbits, despite their large angular separation

from the terminator plane at i = 75◦. Overall, the deviations in the AMROS parameter are clearly

strongly dependent on the value of the angular rate ratio Γ, with larger deviation for small values

of Γ. This shows that the largest deviations from classical relative motion are at low altitude.

Two individual cases from the parameter space serve to illustrate the severity of the pertur-

bations. Recall that the initial relative motion conditions parameterized only by small δe and δi

would classically result in bounded relative motion in the absence of these perturbations [3]. First,

consider the case from Γ = 1.25 and i = 75◦. The relative motion is plotted for 4 orbit periods

in Figure 3.6. The results show strong agreement for the first orbit, with divergence between the

linear and truth model afterwards.
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Figure 3.6: Perturbed Relative Motion with Γ = 1.25, i = 75◦
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The linear model successfully predicts the degree and manner of the deviation for the first

orbit. The truth model shows that over the course of the next several orbits, the deputy continues

to rapidly drift further away. This long-term behavior is not well captured by the linear model

– at least not without periodically updating the chief orbit elements and re-initializing. Such an

update and re-initialization procedure would be reasonable in any on-board guidance implementa-

tion procedure, but these results evaluate the efficacy of the unaided model. The eventual failure

of the model is an unsurprising phenomenon, given the rapid change in geometry and scale of the

true motion. What is most surprising is the rapid timescale and manner in which a close-proximity

two spacecraft formation is ripped apart by the dynamics of the orbital environment. This is not

an isolated case: sampling other bright regions in Figure 3.5 often results in finding similar highly

destabilized behavior.

To investigate a region in the parameter space where the maximum deviation of the AMROS

parameter is comparatively rather low, the case of Γ = 2 and i = 95◦ is chosen. The relative

orbital motion is plotted in Figure 3.7. The resulting relative motion is indeed more stable for

short time spans, and the behavior is well-approximated (without any re-initialization and chief

orbit parameter updates) for 4 orbits. Since the orbit period in this case is 36 hours, this stable

behavior persists and is well-approximated for 6 days. The long-term relative motion is however

still highly unstable, as can be seen from the truth model results propagated over 10 orbits.

The individual case results in Figures 3.6 and 3.7 reflect general observations that the max-

imum deviation of the AMROS parameter is a good tool for studying short-term behavior. Ad-

ditionally, recall that these results were generated via propagation of the analytic approximation

linear model without any updating of the chief elements or restarting of the model. As a result,

the behavior of these models is similar to what would be expected if a relative motion STM were

to be generated from the model.

These results show that the behavior of the linearized dynamics can be used to describe

perturbation and destabilization of close-proximity relative motion in the short term, but the long-

term behavior is also of interest. The case used to produce Figure 3.7 shows that short-term stable



72

x (m)

�400 �200 0 200 400 y (m)
0

600
1200

1800
2400

z
(m

)

�100

�50

0

50

100

Linear Model (t  4 orbits)

Linear Model (t > 4 orbits)

Truth Model

Figure 3.7: Perturbed Relative Motion with Γ = 2.0, i = 95◦

behavior can still become destabilized in the long-term. In light of these results, it is natural to ask

if the approximate dynamics can be used to easily identify cases where relative motion will be stable

for much longer time spans. It turns out that this is also possible. However, such discussion goes

beyond the scope of this chapter, and is delayed until the analytic model for oblateness, ellipticity,

and SRP is revisited for modal analysis of spacecraft relative motion in chapter 7.

3.3 Additional Work in Relative Motion Modeling

This chapter applies a strategy of developing approximate linearized models of relative motion

in local Cartesian coordinates, which will be shown in this dissertation to have extensive application

in spacecraft formation flying and relative motion control applications. When an analytic linear

model is obtained, it is possible to solve it for a relative motion state transition matrix, which can

be applied in the same manner as the classical CW STM. As was demonstrated with the derivation

of the J2 models, the accuracy of the approximation of the chief orbit behavior has a strong effect on

the accuracy of the predicted spacecraft relative motion. For situations with many perturbations, it

becomes increasingly difficult to approximate the behavior of the perturbed chief orbit. This section

discusses recent work in describing the orbital behavior in the J2 perturbed environment and in
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orbits perturbed by primary body oblateness and ellipticity. It also surveys some recent works

related to the models obtained here, and discusses alternate approaches to perturbed spacecraft

relative motion modeling.

3.3.1 The J2 Perturbed Orbit Revisited

A new analysis is performed yielding an analytic approximation of the behavior of the J2-

perturbed orbit radius for all inclinations, with the goal of replacing the earlier semi-analytic

expression. First, the important radial equation is restated:

r̈ − ω2
nr = − µ

r2
+RC20 (3.64)

where C20 = −J2 and RC20 is given below:

RC20 =
3µC20R

2

2r4

(
1− 3 sin2 i sin2 θ

)
(3.65)

Eq. (3.64) is quite important for the J2-perturbed relative motion modeling problem, because it

isolates the coupled behavior of two unknowns: r(t) and ωn(t). In particular, all occurrences of i

and θ are second-order in C20, so an analysis that is accurate to first-order in C20 permits the use

of the unperturbed values for these quantities. The result is an equation in two unknowns, and the

degeneracy can be broken by use of an integral of motion. In particular, using the orbit energy and

the substitutions r(t) ≈ r0(1 + ξ(t)) where ξ ∼ O(1/r0) and ṙ ≈ r0ξ̇, it is possible to approximate

the behavior of the radius given by Eq. (3.64) with a simpler differential equation. Below, the total

orbit energy is given, where U(r) is the gravitational potential:

E =
1

2
v2 − U(r) (3.66)

U(r) =
µ

r
+
µ

r3

[
C20R

2

(
3

4
sin2 i (1− cos 2θ)− 1

2

)]
(3.67)

The orbit energy is written in terms of ωn:

E =
1

2

(
r2ω2

n + ṙ2
)
− U(r) (3.68)
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Because it is conserved, E = E0 ∀t and the following may be written:

ω2
n =

2 (E0 + U(r))− ṙ2

r2
(3.69)

Using the substitution r(t) = r0(1 + ξ(t)), and substituting ω2
n using Eqs. (3.67) - (3.69),

Eq. (3.64) is expanded about ξ = 0, retaining terms linear in ξ:

ξ̈ +

(
2

(
µ

r3
0

+
E0

r2
0

)
− 4

µ

r3
0

f

)
ξ −

(
µ

r3
0

+ 2
E0

r2
0

− µ

r3
0

f

)
= 0 (3.70)

where f is a function associated with the C20 component of the gravitational potential:

f(t) = C20
R2

r2
0

(
3

4
sin2 i0 (1− cos 2θ)− 1

2

)
(3.71)

Thus, the problem has been transformed to a study of (assumed small) variations about the initial

value r(0) = r0, an approximation which significantly simplifies the problem. The following change

of time variables enables the subsequent non-dimensionalization of Eq. (3.70):

τ =

(
µ

r3
0

)1/2

t,
d

dt
=

(
µ

r3
0

)1/2 d

dτ
(3.72)

ξ′′+
(

2

(
1 +

E0r0

µ

)
− 4f

)
ξ −

((
1 + 2

E0r0

µ

)
− f

)
= 0 (3.73)

Note that here we redefine ( )′ = d/dτ ( ). The change of time variables renders ξ(τ), ξ′(τ),

and ξ′′(τ) to all be of the same order. In this derivation, it is assumed that ξ and f are both

similarly small (e.g. 10−2), denoted O(ε). This derivation could be modified to accommodate

different relative scales. The smallness of ξ depends on the orbit not deviating drastically from the

unperturbed geometry, and the scale of f depends on the altitude and the size of C20.

This system can be initiated (without loss of generality) with θ0 = 0, then substitution of

θ ≈ n0t, n0 =
√
µ/a3

0, renders the function f as an explicit function of time t. Note that non-

circular orbit angular frequency variations would appear pre-multiplied by other small terms (i.e.

terms involving C20), and are thus neglected. Finally, the substitution t =
(
µ/r3

0

)−1/2
τ renders

everything a function of the dimensionless time: θ =
(
r3

0/a
3
0

)1/2
τ .
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Identifying the small parameters ξ and f as O(ε), the O(ε) part of Eq. (3.73) is given below:

ξ′′ + 2

(
1 +

E0r0

µ

)
ξ =

(
1 + 2

E0r0

µ

)
− f (3.74)

To first order, ξ obeys simple sinusoidal dynamics with an oscillatory forcing term due to the

negative of the C20 component of the potential. This first-order equation can be solved using the

method of undetermined coefficients, noting that the harmonic forcing term has different frequencies

from the homogeneous solution. The solution of Eq. (3.74) is the sum of the homogeneous and

particular solutions given below:

ξh(τ) = D cos
(√

2η1τ
)

+ E sin
(√

2η1τ
)

(3.75)

ξp(τ) = A cos (ωpτ) +B sin (ωpτ) + C (3.76)

where the quantities η1 and ωp are given:

η1 = 1 +
E0r0

µ
, ωp = 2n0

(
µ

r3
0

)−1/2

(3.77)

Substituting the particular solution into Eq. (3.74), the following equations are obtained in terms

of the undetermined coefficients A, B, and C:

A
(
2η1 − ω2

p

)
=

3

4
C20

R2

r2
0

sin2 i

B = 0

2η1C = 1 + 2
E0r0

µ
+

1

2
C20

R2

r2
0

(
1− 3

2
sin2 i

) (3.78)

Letting α = C20(R/r0)2 ∼ O(ε), the following values are obtained:

A =
3

4
α

(
sin2 i

2η1 − ω2
p

)
, B = 0, C =

1

4
α

(
1− 3

2 sin2 i

η1

)
+

1

2η1

(
1 + 2

E0r0

µ

)
(3.79)

The first initial condition is r(0) = r0 (1 + ξ(0)) = r0. The next initial condition on ξ is given from

the following expression:

r′(0) =

(
µ

r3
0

)−1/2

ṙ(0) =

(
µ

r3
0

)−1/2

r0ξ̇(0) = r0ξ
′(0) (3.80)
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ξ′(0) =

(
µ

r3
0

)−1/2 ṙ0

r0
= E

√
2η1 (3.81)

Thus, D and E are obtained from the initial conditions:

D = −A− C, E =

(
µ

r3
0

)−1/2 ṙ0

r0

(
1√
2η1

)
(3.82)

The approximate solution for ξ(τ) is given by the sum of Eqs. (3.75) and (3.76) with the coefficients

given in Eqs. (3.79) and (3.82), thus approximating r(τ) = r0 (1 + ξ(τ)) to first order:

ξ(τ) = A cos (ωpτ) + C +D cos
(√

2η1τ
)

+ E sin
(√

2η1τ
)

(3.83)

This simple approximation is accurate for sufficiently small initial eccentricity (e0 ∼ 10−3) and for

all inclinations. Accuracy is less dependent on the osculating eccentricity, which can generally grow

to larger values (10−2) at some points in the orbit. The accuracy for small eccentricity is captured

in the terms C, D, and E. For example, setting ω = f0 = 0, the equation for ξ reduces to:

ξ(τ) = C
(

1− cos
(√

2η1τ
))

(3.84)

Then, r(τ) = a(1− e) (1 + ξ(τ)). Making the necessary substitutions, then expanding to first-order

in eccentricity, the classical first-order expansion [8] is recovered:

r(t) ≈ a (1− e cos (n0t)) (3.85)

Thus, a radial correction is obtained which rigorously accounts for both J2 and small eccentricity

effects. Additionally, because Eq. (3.64) holds for high eccentricities, it is possible to use this

equation to approach the same problem for higher eccentricities. However, due to the mixed

appearance of time derivatives and the variable θ, it is not analytically straightforward to solve

this equation for general inclinations. For problems like this, it is generally known that time is a

suitable independent variable for perturbed near-circular orbit approximation, and true anomaly is

generally poor, especially for perturbed low-eccentricity orbits [64]. The argument of latitude is a

useful independent variable due to its ease of geometric interpretation, but it introduces additional

perturbative terms into the transformed form of the previously simple Eq. (3.64). A good discussion
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of these types of difficulties can be found in Reference 128. Reference 128 also solves for the radial

behavior for the eccentric J2-perturbed problem with zero inclination, which is a step towards the

goal of developing a J2-perturbed relative motion model for eccentric chief orbits. Developing a

concise but accurate local coordinate STM for the J2-perturbed problem in eccentric orbits is still

an unsolved problem, and there are several authors working on it.

3.3.2 Modeling the Orbital Effects of Oblateness and Ellipticity

While the earlier relative motion model for C20, C22, and SRP made the simplifying assump-

tion r = a0, it is possible to develop an accurate expression for the behavior of the chief orbit radius

r(t), as well as for the other elements, for the orbit problem perturbed by oblateness and ellipticity.

This is done in a similar manner to the previously discussed derivation of near-circular radial motion

for J2: a conserved quantity (in this case, the Jacobi integral) is used to make the radial equation

solvable, and the radial variations are assumed to be small deviations, r = r0(1 + ξ(t)). A linear

approximate differential equation for the deviation parameter ξ(t) is derived and then solved. Once

the orbit radius r(t) is obtained, it is possible to find the coupled normal component of angular

velocity, ωn(t). Then, other elements can be obtained by subsequent analysis or direct integration

of their Gauss planetary equations, accurate to first order in C20 and C22. This is explored more

in Reference 25, but the results are only briefly discussed here, and are not repeated for the sake

of brevity.

In Reference 25, the choice of coordinates to describe the perturbed orbital state is to use

the classical elements Ω and i to describe the orientation of the perturbed orbit plane, and polar

coordinates (r, θ, ṙ, ωn) to parameterize the remaining state elements. This treatment avoids any

direct use of the eccentricity, argument of periapsis, or true anomaly, and any associated difficulties

of using elements explicitly derived from these. The results are time-explicit expressions for each

of these coordinates. Note that the model given in Eq. (3.48) could be updated and re-derived

with these improved approximations of the perturbed chief orbit (neglecting the SRP effect on the

orbit radius again) and a more accurate STM could be obtained. However, it is observed that the
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number of terms in the relative motion STM grows quickly with the number of terms in the linear

model. As a result, the approach of generating an approximate STM model of relative motion in the

manner explored in this chapter could have practical limitations for systems with many dominant

perturbations.

3.4 Conclusions

This chapter introduces and applies a fundamental method of modeling spacecraft relative

motion under the influence of perturbations in an accurate, useful, and computationally efficient

manner. Linearized models of spacecraft relative motion allow for efficient analysis and various

applications such as local relative motion control. The resulting linear time-varying differential

equations can be solved to obtain a state transition matrix of relative motion. This is done us-

ing an unperturbed solution as the generating solution and solving for the corrective terms for

the non-Keplerian effects using a perturbation technique such as the straightforward perturbation

expansion [96]. The chapter begins with an in-depth derivation the commonly studied J2 perturba-

tion, dominant in Low Earth Orbit. The resulting STM is computed then validated and compared

with various other solutions from literature. Then, a linear model accounting for solar radiation

pressure and primary body oblateness and ellipticity is introduced, having been derived by similar

means. This model is then tested to study spacecraft relative motion in the vicinity of near-circular

orbits about a large asteroid. Finally, there is some additional discussion in high-fidelity orbit

approximation in perturbed problems.

The applications of the developments in this chapter are numerous. The J2-perturbed STM

provides much higher accuracy than the popular Clohessy-Wiltshire STM, and can be used for the

same applications such as rendezvous and relative motion maneuver planning. The methodology in

this chapter is used in chapter 4 for modeling spacecraft relative motion perturbed by solar radiation

pressure (SRP), and facilitates the creation of an accurate control model for using differential SRP

as a relative motion control parameter. In general, the linearized models enable powerful and

robust control using a Linear Quadratic Regulator and Linear Quadratic Tracking control. This



79

is explored further in chapter 5, along with a related linear control strategy known as desensitized

control. Lastly, the asteroid relative motion linear model also finds use in chapter 7 in a modal

analysis of perturbed spacecraft relative motion.



Chapter 4

Relative Motion Control with Differential Solar Radiation Pressure

This chapter applies the principles of relative motion dynamic approximation discussed in

chapter 3 to the case of spacecraft relative motion perturbed by solar radiation pressure (SRP).

This enables the use of the attitude-dependent differential solar radiation pressure acceleration as a

control parameter for relative motion control, in a highly realistic framework that accounts for the

SRP effects on the motion of both the deputy and the chief spacecraft. This concept is similar to

the use of differential drag for formation flying control, which is already done for satellite formations

in low-Earth orbit. Differential drag control only allows for in-plane control, but differential SRP

allows for full controllability of the relative motion. It is important to account for the effects of SRP

on the chief orbit, because these effects alter the relative motion kinematics from the unperturbed

case. This chapter concludes with simulated relative motion control results with SRP for spacecraft

in geostationary Earth orbit (GEO) and in orbits about a small body. This chapter is based on

work also appearing in References 19 and 23.

4.1 Solar Radiation Pressure as a Control Parameter

Solar radiation pressure (SRP) is the driving force for solar sails, but it is typically viewed as

a disturbance force and not a control parameter for typical modern spacecraft. However, in envi-

ronments where differential solar radiation pressure is sufficiently strong on the scale of the relative

motion dynamics, small sustained variations in attitude can be used to harness this perturbation

for control – even for spacecraft with realistic optical parameters. While not particularly suitable
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in low-Earth orbits, the efficacy of this control method becomes much greater for multi-spacecraft

formations sufficiently far from the planet. The geostationary (GEO) region is one example. In

this region, the spacecraft are not subject to strong disturbances from higher-order gravitational

effects or drag due to the rarefied atmosphere. SRP-based control also becomes a feasible option

for formations in orbit around small bodies such as asteroids, comets, and moons.

The possibility of using small attitude changes for formation-keeping is appealing because

of the potential for saved thruster fuel. It is also valuable because the differential SRP force

between identical spacecraft can achieve the incredibly small values necessary for real-time and high-

precision formation-keeping around small asteroids and comets. Even the smallest commercially

available ion thrusters are often too powerful for continuous use in station-keeping or high precision

formation control in these environments, requiring them to be used in a pulsed control strategy

almost like chemical thrusters. This contradicts the nature of their design for very long-duration

burns, reducing efficiency and accelerating wear. Other design solutions are available to partially

mitigate this issue, such as pulsed plasma thrusters (PPTs), but these are not as efficient as other

forms of electric propulsion. In this context, SRP-based control would be preferred over any type

of electric propulsion, and can be implemented on spacecraft with traditional geometry and surface

materials.

The topic of natural SRP-perturbed orbital dynamics has been frequently studied, especially

in the vicinity of small bodies [114]. Many works use a cannonball SRP model, and focus on finding

stable orbits while assuming the force variation with attitude is not significant [41, 32]. Some works

also discuss orbit-attitude coupling in the uncontrolled dynamics, or the coupled effects of multiple

perturbations [77, 82, 94]. Recent work by Kenshiro Oguri and Jay McMahon focuses on SRP-based

orbit control around asteroids [99]. The optical force SRP model used in their work is essentially

equivalent to the one used here, but their approach is otherwise quite different. Their work studies

orbit control via a chosen subset of the orbit elements, namely semimajor axis and inclination. The

optimal attitude for control is parameterized by two angles, whose values are obtained numerically

based on the current system state. The chapter makes multiple novel analytical arguments that
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provide insight about the controlled orbital dynamics – including attitude constraints to prevent

orbital escape, and even an analytic upper bound for the time of flight for landing on an asteroid

using SRP-based control.

It is worth noting that SRP-based control has also been extensively studied for solar sails,

but this work usually makes restrictive assumptions about the spacecraft optical properties. While

interesting work has been done to study the natural and controlled orbital dynamics using the SRP

force, this chapter is focused on the topic of orbital formation control, for which spacecraft with

unremarkable geometry can still produce sufficient differences in SRP force to use it as a relative

position and velocity control parameter.

In contrast to the previously mentioned works on the topic of SRP-based control, a desirable

approach would be to use a relative motion model that requires only occasional updates of the for-

mation state differences and the spacecraft orbital elements of one or more of the spacecraft. These

state differences could be provided directly from measurements in local-vertical local-horizontal

(LVLH) components. Ideally, a model accounting for the evolution of the perturbed orbit and the

linearized SRP-perturbed differential dynamics will naturally enable sufficiently reliable situational

awareness even with low navigation update frequency. Lastly, a linearized approach leverages the

smallness of the formation geometry on the scale of the spacecraft orbits. It is also amenable to a

linearly optimal LQR control approach – in which the optimal gain schedule can be computed in

advance of the maneuver, or in a receding-horizon manner. Developing such a model is the primary

focus of this chapter.

This chapter derives an accurate linearized time-varying (LTV) model of formation dynamics

subject to attitude-dependent SRP forces. The problem geometry for a single illuminated spacecraft

facet is given in Figure 4.1 for a spacecraft that seeks to rendezvous with a nearby chief spacecraft

using only the attitude-controlled SRP forces
∑

i FSi for control. The relative state is resolved in

local radial, transverse, and normal directions, which use the chief position vector r and angular

momentum vector h as êr = r/r, êt = −êr × êh, and êh = h/h. The vector û points towards the

sun and Ĥ is normal to the planet orbit plane. The model uses the chief-deputy notation commonly
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used in spacecraft formation flying, in which the motion of one spacecraft (the deputy) is described

with respect to another (the chief), in a local chief-centered frame. The model may be updated with

chief orbit elements with any desired frequency. The analytical approach in this chapter naturally

allows for the evolution of the spacecraft orbit elements to be approximated for relatively long

timespans. This model can easily be combined with components of other models to account for

additional system perturbations [17]. While it is assumed that updated relative heading, range, and

range-rate data is periodically available for the spacecraft in the formation, the relative position

and velocity can be efficiently integrated between measurements using the linearized model. By

incorporating accurate and computationally efficient approximation of system evolution into the

model, significant decoupling of the tasks of control and navigation is achievable. Overall, the

developments in this chapter are a step towards enabling a highly flexible, simple formation control

strategy suitable for closed-loop SRP-based spacecraft formation control.

After the linearized model is developed, a linearly optimal control strategy is designed for

small attitude departures from a reference orientation. For simplicity in developing the proof-of-

concept simulations, the model is implemented with a single facet only, but the approach can be

easily generalized to a multi-facet spacecraft model. The model developed in this chapter could

be adapted and extended to find use in future multi-spacecraft missions to asteroids and comets,

and will also be useful for formation control or orbit maintenance in high-altitude orbits about the

Earth, such as the GEO belt.

Lastly, it is important to note that the use of SRP for spacecraft control has already been

demonstrated in flight. The K2 mission was able to make use of SRP effects to extend the life of

the Kepler space telescope mission, which was suffering from attitude control under-actuation due

to reaction wheel failure. This was done by achieving and maintaining an orientation to passively

minimize the SRP disturbance along the roll axis [62]. The Messenger mission to Mercury used

SRP for precision orbit control, which is particularly notable and relevant to this work. In that

mission, pre-planned attitude and solar array articulations were used to improve the accuracy of

Mercury flybys [100]. This was done in an open-loop fashion, but closed-loop control would be
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highly desirable. Closed-loop control should be readily achievable using SRP models with varying

levels of fidelity, and the work in this chapter enables further steps towards that goal.

Figure 4.1: Problem Geometry for SRP-based Control, with Attitude-Dependent Resultant Force

4.2 Spacecraft Relative Motion Dynamics with Solar Radiation Pressure

The force due to solar radiation pressure on a general body surface element Ai is given below

[112]:

FSi = −P (R)Hi(û)Ai

[(
ρisi

(
2n̂n̂> − [I3×3]

)
+ [I3×3]

)
û (û · n̂i) + a2in̂i (n̂i · û)

]
(4.1)

with

P (R) ≈ G1

R2
(4.2)

a2i = B(1− si)ρi + (1− ρi)B (4.3)

The function P (R) is the solar radiation pressure at distance R, and G1 is the solar radiation

force constant at 1 AU. The specular and diffuse reflectivity coefficients are si and ρi, and B is

the Lambertian scattering coefficient, û is the unit vector to the sun, n̂i is the normal vector of

the surface element, and H(û) is a visibility delta function, equal to 1 or 0, depending on whether

or not the face is directly illuminated by sunlight. Figure 4.1 highlights the important aspects of

the problem geometry. For simplicity and generality, this analysis neglects the effects of secondary
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reflections from other surfaces. However, a realistic treatment of the body optical properties (B,

si, ρi) is important.

The SRP force can be modeled by considering the sum of the forces on all illuminated facets.

The results in this chapter use a single-facet model of a spacecraft for generality and to validate the

derivation. However, it is emphasized that this method can be directly generalized to a spacecraft

with fixed geometry and multiple illuminated facets. Summing over the contributions of all body

area elements, an approximate model of the net SRP force vector on the spacecraft is obtained:

FS = −P (R)A
((
a2 cosβ + 2ρs cos2 β

)
n̂+ (1− ρs) cosβû

)
(4.4)

where cosβ = û · n̂, A is a projected area term, and n̂ is the corresponding equivalent normal

unit vector. This implementation neglects the eclipse dynamics, but the effect could easily be re-

introduced for a higher fidelity control implementation. The terms a2, ρ, and s are illuminated

body-averaged optical parameters. This replaces the multi-facet SRP force model with a single-

plate SRP force model at some reference orientation.

It is always possible to obtain an equivalent single-plate model representation of the resultant

SRP force acting on a spacecraft, for which the sum of the n̂i components of the resultant SRP force

acts along n̂, and the total û component is also reproduced. However, the extent to which attitude-

dependent SRP force variations of the single plate correctly model the true spacecraft SRP force

variations is situation dependent. Accuracy would be highly dependent on spacecraft geometry and

the optical properties of the surface facets. For example, for the case of small attitude deviations

from a reference orientation that is at or near the transition to shadowing of one or more large

facets, the nonlinear effect of facet shadowing could present challenges for applying the linearized

control formulation. Other approaches of modeling SRP acceleration variation for small angles are

possible, such as a local linearization of the spherical harmonic series representation [47].
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4.2.1 Problem Geometry and Coordinate Frames

Before continuing with the derivation of the linearized dynamics and control model, the

primary coordinate frames must be defined. First, the rotating frame moving with the primary

body is called the planet frame P, and is defined by orthonormal vectors
{
û, Ĥ × û/‖Ĥ × û‖, Ĥ

}
,

where û points from the planet toward the sun and Ĥ = hp/hp is defined by the planet’s orbit

angular momentum vector hp, normal to its orbit plane.

One can describe the rotation from the planet frame to the primary-centered inertial (N )

frame through two angles:

[NP] = [R1(κ)] [R3(ϕ+ π)]> =


− cosϕ sinϕ 0

− sinϕ cosκ − cosϕ cosκ sinκ

sinϕ sinκ cosϕ sinκ cosκ

 (4.5)

where [R1(θ)] denotes the rotation matrix for a 1-axis rotation by angle θ, and [R3(θ)] is the rotation

matrix for a 3-axis rotation by angle θ [111]. The angle κ is the obliquity of the ecliptic plane and

ϕ is the argument of latitude, or the rotation angle (in the orbit plane) from the Vernal Equinox to

the radial vector from the sun to the planet. For Earth, κ ≈ 23.5◦, and the N frame is the typical

Earth-centered inertial (ECI) frame.

Because this chapter is focused on using SRP force for rendezvous and formation control,

the controlled relative motion of two or more spacecraft is considered. The motions of one or

more deputies relative to the chief are used to describe formation or rendezvous geometry with-

out explicitly considering all individual spacecraft orbits. Recall that one may arbitrarily decide

which spacecraft is designated as the chief and which is the deputy. In this chapter, the chosen

representation for the relative state is to resolve the relative position

∆r = (x, y, z)> (4.6)

and velocity

∆r′ = (ẋ, ẏ, ż)> (4.7)
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in the chief-centered rotating local-vertical, local-horizontal (LVLH) frame. Here, ( )′ denotes the

derivative of a state quantity as seen in the LVLH frame. This frame rotates with the spacecraft

orbit and is defined by orthonormal radial, along-track, and orbit-normal vectors v: êr = r/r and

ên = r × v/‖r × v‖.

Now a final rotation from the inertial frame to an orbiting spacecraft-centered local-vertical

local-horizontal (LVLH frame) may be defined. The rotation [HN ] is given below in terms of the

chief spacecraft orbit radial and angular momentum vectors r and h, and equivalently in a 3–1–3

sequence in terms of the spacecraft orbit elements Ω, i, and θ [111]:

[HN ] =


r̂>

1
rh

(
r2v − (v · r) r

)>
ĥ>

 (4.8)

[HN ] =


cos Ω cos θ − sin Ω sin θ cos i sin Ω cos θ + cos Ω sin θ cos i sin θ sin i

− cos Ω sin θ − sin Ω cos θ cos i − sin Ω sin θ + cos Ω cos θ cos i cos θ sin i

sin Ω sin i − cos Ω sin i cos i

 (4.9)

Thus, the rotation from P to H is:

[HP] = [HN ] [NP] (4.10)

With the system geometry and coordinate descriptions now defined, a control matrix [B]

can now be obtained, which maps deputy spacecraft attitude to accelerations in the LVLH frame.

The uncontrolled dynamics of an SRP-perturbed multi-spacecraft formation are also considered to

obtain the system matrix [A]. This complex derivation follows the control matrix derivation.

4.2.2 Linearized Attitude-based SRP Control

Modified Rodrigues Parameters (MRPs) are used to describe the spacecraft attitude, or the

attitude of a single-plate model in this chapter. This attitude description is expressed in terms of

the principal rotation elements (angle α and axis ê) [111]:

σ = tan
α

4
ê (4.11)
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The MRP attitude representation has the benefit of linearizing as σ ≈ (α/4) ê, providing a larger

usable range for linear control than an angular representation [111].

The mapping to and from a general rotation matrix [C] is given below:

[C] = [I3×3] +
8[σ̃]2 − 4(1− σ2)[σ̃]

(1 + σ2)2
(4.12)

σ =


σ1

σ2

σ3

 =
1

ζ (ζ + 2)


C23 − C32

C31 − C13

C12 − C21

 (4.13)

where ζ =
√
C11 + C22 + C33 − 1, σ2n =

(
σ>σ

)n
, and [σ̃] is the MRP skew-symmetric matrix.

To use the MRP formulation, the rotation of a vector in P components into the spacecraft

body frame (B) components is defined in terms of two successive rotations. The first is a rotation

[C1(σr)] to the “reference” attitude, and the second is a rotation [C2(σc)] to the current orientation,

which is a controlled deviation from this reference attitude:

Br = [C2(σc)][C1(σr)]
Pr (4.14)

The attitude deviation σc is the control parameter for attitude-based position control using SRP.

This work assumes that the spacecraft attitude control system is fully capable of enforcing the

needed attitude behavior.

From Eq. (4.4), substituting n̂ · û for all cosβ terms, the force due to SRP is rewritten below

in its P components using Pn̂ = [C1(σr)]
>[C2(σc)]

>Bn̂ and defining Bn̂ = ê1 and P û = ê1, where

ê1 = [1, 0, 0]>:

FS = −P (R)A
((
a2 (n̂ · û) + 2ρs (n̂ · û)2

)
[C1(σr)]

>[C2(σc)]
> + (1− ρs) (n̂ · û) [I3×3]

)
ê1 (4.15)

To obtain the [B] matrix, this equation must be linearized with respect to the control term u = σc.

First, all control-associated parts are replaced with their expansions up to O(σc):

[C2(σc)] ≈ [I3×3]− 4[σ̃c] (4.16)

n̂ · û = ê>1 [C2(σc)][C1(σr)]ê1 ≈ ê>1 ([C1(σr)]− 4[σ̃c][C1(σr)]ê1) (4.17)



89

(n̂ · û)2 ≈
(
ê>1 [C1(σr)]

>ê1

)
ê>1 ([C1(σr)]− 8[σ̃c][C1(σr)]ê1) (4.18)

Substituting Eqs. (4.16) – (4.18) into Eq. (4.15), expanding, and retaining only terms up to O(σc),

the linearization of FS is obtained:

FS ≈− P (R)A

{(
a2 + 2ρsê>1 [C1(σr)]ê1

)(
ê>1 [C1(σr)]ê1

(
[C1(σr)]

> ([I3×3 + 4[σ̃c])
))

− 4
(
a2 + 4ρsê>1 [C1(σr)]ê1

)
ê>1 [σ̃c][C1(σr)]ê1[C1(σr)]

>

+ (1− ρs) ê>1 ([I3×3]− 4[σ̃c]) ê1[I3×3]

}
ê1

(4.19)

This equation is linear in σc, and is rearranged below so that the control vector σc is explicitly

isolated:

FS =− P (R)A

{(
a2 + 2ρsC1(1,1)

) (
C1(1,1)[C1(σr)]

>
)
ê1

− 4
(
a2 + 2ρsC1(1,1)

) (
C1(1,1)[C1(σr)]

>[ẽ1]
)
σc

− 4
(
a2 + 4ρsC1(1,1)

) (
[C1(σr)]

>[ê1ê
>
1 ][C1(σr)]

>[ẽ1]
)
σc

+ (1− ρs)ê1 + 4(1− ρs)[ê1ê
>
1 ][ẽ1]σc

}
(4.20)

where the shorthand notation C1(1,1) = ê>1 [C1(σr)]ê1 is used. If the reference orientation is sun-

facing, then [C1(σr)] = [I3×3] and a simpler form is obtained:

FS = −P (R)A {(1 + ρs+ a2)ê1 − 4(a2 + 2ρs)[ẽ1]σc} (4.21)

From this result, the [B] matrix can be isolated for the system resolved in P :

[B] = 4
P (R)A

m


04×3

0 0 −a2 − 2ρs

0 a2 + 2ρs 0

 (4.22)

The [B] matrix for a more general reference orientation can be readily obtained by isolating the

control-associated terms in Eq. (4.20). This can also be easily resolved in any desired frame by

using the appropriate rotation matrices. Note that in the case of linearization about a sun-facing

reference, the [B] matrix for the system resolved in P predicts zero acceleration will be produced

along the û direction due to small controlled attitude variations. In reality, a small acceleration
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will be produced, but this is not captured by the linearization. This suggests that motion along

the û direction is instantaneously uncontrollable with linear control. However, investigations later

in the chapter show that the system is still fully controllable.

4.2.3 Linearized Relative Motion Dynamics under SRP

The SRP-perturbed uncontrolled relative orbital motion behavior of the spacecraft is now

derived. Because the SRP-based control is enabled by deviations from a reference attitude that is

assumed to be fixed in the P frame, this analysis assumes that the SRP-based differential accelera-

tion between the deputy and chief spacecraft is negligible. This implicitly assumes that the deputy

and chief geometry and optical characteristics are similar. In this case, with both spacecraft at

the same reference orientation, the only manifestation of the SRP acceleration is on the kinematics

of the chief LVLH frame. Note that depending on the dynamic environment, this effect may be

overshadowed by other disturbance accelerations.

The angular velocity of the perturbed LVLH frame with respect to the inertial frame may be

described in terms of the perturbed orbit element rates [35]:

ωH =
dΩ

dt
â3 +

di

dt

â3 × ên
‖â3 × ên‖

+
dθ

dt
ên (4.23)

where â3 is the vector pointing along the planet polar axis, the third orthogonal unit vector used

for the ECI frame. The angle Ω is the right ascension of the ascending node, i is the inclination, and

θ = ω + f is the argument of latitude. The orbit element rates are obtained using the variational

equations in their Gaussian form to yield the osculating rates due to the SRP perturbation, resolved

in local radial, along-track, and cross-track components:

aSRP = RSRPêr + TSRPêt +NSRPên (4.24)

dΩ

dt
=
r sin θ

h sin i
NSRP (4.25a)

di

dt
=
rcosθ

h
NSRP (4.25b)
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dθ

dt
=

dω

dt
+

df

dt
=

h

r2
− r sin θ cos i

h sin i
NSRP (4.25c)

The argument of latitude is used to avoid the possibility of small denominators in the variational

equations for near-circular orbits. The argument of latitude rate has two components: the “unper-

turbed” argument of latitude rate θ̇u = h/r2, and a component due to the regression of the node

from which θ is measured [104]. The expression for NSRP may be obtained using the rotation from

P to H, and the SRP disturbance force resolved in P components, Eq. (4.20), with σc = 0 because

the chief attitude is the reference orientation. In this analysis, it is assumed that the chief attitude

is fixed in the P frame.

NSRP =
1

m
ê>3 [HN ] [NP]FS (4.26)

NSRP =− P (R)
A

m

(
(1− ρs)
C1(1,1)

+ a2 + 2ρsC1(1,1)

)
C1(1,1)

(
ê>3 [HN ] [NP ] [C1(σr)]

>ê1

)
(4.27)

NSRP =− P (R)
A

m

(
(1− ρs)
C1(1,1)

+ a2 + 2ρsC1(1,1)

)
C1(1,1)

(
ê>ξ [C1(σr)]

>ê1

)
(4.28)

where the unit vector êξ is not a function of θ due to the problem geometry:

êξ =


sinκ sinϕ cos i− sin Ω cosϕ sin i+ cos Ω cosκ sinϕ sin i

sinκ cosϕ cos i+ sin Ω sinϕ sin i+ cos Ω cosκ cosϕ sin i

cosκ cos i− cos Ω sinκ sin i

 (4.29)

Assuming the primary body orbit radius R is nearly constant and that the reference orientation is

stationary as seen in the P frame, the only time-varying term in Eq. (4.28) is the primary body’s

argument of latitude, ϕ. Generally, this time scale will be much slower than the spacecraft orbit

period about the primary body, and may be slow enough to ignore for sufficiently short-duration

rendezvous.

By applying the transport theorem twice with angular velocity given by Eq. (4.23), the kine-

matics of the perturbed LVLH frame are given in radial, along-track, and cross-track components:

∆r̈ =
(
ẍ− ω̇ny − 2ωnẏ − ω2

nx+ ωnωrz
)
êr

+
(
ÿ + ω̇nx+ 2ωnẋ−

(
ω2
n + ω2

r

)
y − ω̇rz − 2ωrż

)
êt

+
(
z̈ + ωnωrx+ ω̇ry + 2ωrẏ − ω2

rz
)
ên

(4.30)
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where the angular velocity has also been resolved into its LVLH components:

ωr = Ω̇
sin i

sin θ
(4.31a)

ωt = 0 (4.31b)

ωn = θ̇u = h/r2 (4.31c)

The term ∆r̈ represents the differential perturbing accelerations. If only the SRP differential

acceleration is considered, then, in the case of the earlier listed assumptions, this term is due only

to the differential gravity, which is assumed to be a two-body potential for now:

∆r̈J0 =
µ

r3


2x

−y

−z

 (4.32)

The choice of local Cartesian/curvilinear coordinates for treatment of the perturbed relative

motion problem has led to one important limitation: large chief orbit eccentricities introduce sig-

nificant analytical difficulties to the derivation, for multiple reasons. While such problems are still

analytically tractable, this derivation is restricted to cases of e ≈ 0 (near-circular orbits) and ȧ ≈ 0

(negligible changes to orbit specific energy). This dynamical model can theoretically be adapted for

perturbed eccentric orbits, assuming ė ≈ 0 still holds, and that all ρ terms are updated to account

for the variations in the chief radius. Note that writing ė ≈ 0 only implies the assumption that the

effects from ė are small compared to the first-order effects of the solar radiation pressure. However,

this will not always be the case. Both the long and short-term effects of solar radiation pressure

on eccentricity are discussed extensively by [114]. Relaxing of the aforementioned assumptions and

further potential developments of the model are left to future work.

To first order in the SRP terms, assuming ȧ ≈ 0 and ė ≈ 0, it can be shown that the only

nonzero angular acceleration term is ω̇r, given below with the nonzero angular velocity squared

terms:

ω̇r = n
sin i

sin θ

(
d

dθ

(
Ω̇
)
− Ω̇

cos θ

sin θ

)
+ ϕ̇

sin i

sin θ

d

dϕ

(
Ω̇
)

(4.33)
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ωnωr = nρ−3/2Ω̇
sin i

sin θ
(4.34)

ω2
n =

h2

r4
(4.35)

where ρ = r/a and n is the orbital mean motion. From the near-circular orbit assumption and

the assumption ȧ ≈ 0, it is implied that r(t) ≈ a, thus θ̇p ≈ n and ρ ≈ 1. These assumptions will

not be valid for long time spans if the SRP disturbance acceleration is large enough to significantly

change the chief orbit. Evaluating Eqs. (4.33) – (4.35), all nonzero kinematic terms are presented

below, explicitly in terms of NSRP:

ωr =
r

h
NSRP, ωn =

h

r2
(4.36)

ω̇r = ϕ̇
r

h

d

dϕ
(NSRP) (4.37)

ωnωr = nρ−3/2 r

h
NSRP, ω

2
n =

h2

r4
(4.38)

The final linearized relative motion equations are obtained and presented below in matrix-

vector form, resolved in the chief-centered LVLH frame, H.
ẍ

ÿ

z̈

 =


h2/r4 + 2 µ

r3
0 −nρ−3/2 r

hNSRP

0 h2/r4 − µ
r3

ϕ̇ r
h

d
dϕ (NSRP)

−nρ−3/2 r
hNSRP −ϕ̇ r

h
d

dϕ (NSRP) − µ
r3




x

y

z



+


0 2 h

r2
0

−2 h
r2

0 2 rhNSRP

0 −2 rhNSRP 0




ẋ

ẏ

ż

 (4.39)

If small variations in the chief orbit radius are known, and any resulting terms are of the same

order as linear SRP-associated terms, then the substitution of these variations may be desirable.

Otherwise, if r ≈ a ∀t, and e is small, the expression may be simplified further:
ẍ

ÿ

z̈

 =


3n2 0 −n ahNSRP

0 0 ϕ̇ ah
d

dϕ (NSRP)

−n ahNSRP −ϕ̇ ah d
dϕ (NSRP) −n2




x

y

z


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+


0 2n 0

−2n 0 2 ahNSRP

0 −2 ahNSRP 0




ẋ

ẏ

ż

 (4.40)

The position and velocity-associated matrices in Eq. (4.40) are denoted as [Ap] and [Av], respec-

tively. Reusing the state representation x = [x, y, z, ẋ, ẏ, ż]>, for which one may write ẋ = [A(t)]x,

the time-varying [A] matrix is:

[A] =

03×3 I3×3

Ap Av

 (4.41)

with all components of the linear model defined, the linearized relative orbital motion dynamics

can now be expressed in their usual form:

ẋ = [A(t)]x+ [B(t)]u (4.42)

The [A] matrix terms are given in Eqs. (4.40) – (4.41). The control-associated [B] matrix is given

in Eq. (4.22), with the lower 3× 3 sub-matrix now pre-multiplied by [HP] to resolve the resultant

control accelerations in the LVLH frame components.

4.3 Spacecraft Relative Motion Control

This section discusses and demonstrates the implementation of the new SRP-perturbed rel-

ative orbital motion model for control.

4.3.1 Linear SRP-Based Formation and Rendezvous Control

Control in this chapter is performed using the Linear Quadratic Regulator (LQR), which is

for the design of a control input u that minimizes the finite-time cost function shown below, under

the action of the linearized dynamics ẋ = [A]x+ [B]u [124].

J =
1

2

∫ tf

t0

(
x>[Q]x+ u>[R]u

)
dt+

1

2
x>f [Sf ]xf (4.43)

where [Q] and [R] are the state and control-associated weight matrices, and [Sf ] is the matrix

associated with the quadratic final state cost. The solution is given below:

u = −[Kx]x (4.44)
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The time-varying gain matrix [Kx] is given in terms of [S], obtained by solving the Riccati differ-

ential equation with final condition [S(tf )] = [Sf ]:

[Kx] = [R]−1[B]>[S] (4.45)

˙[S] + [S][A] + [A]>[S]− [S][B][R]−1[B]>[S] + [Q] = [0] (4.46)

4.3.2 Controllability Analysis

Before the SRP-based control is simulated, controllability analysis provides some insight into

the problem. For completeness, the time-varying effects of the SRP perturbation are included in

the [A] matrix for the relative motion dynamics.

For an LTV system with n states, if the following is satisfied, the system is controllable [124]:

rank
(

[B0(t), B1(t), . . . , Bn−1(t)]
)

= n (4.47)

where [B0] = [B] and all other elements are given by the following:

[Bi+1(t)] = [A(t)][Bi(t)]−
d

dt
[Bi(t)] (4.48)

The rank of the controllability matrix, if less than n, determines the dimension of the con-

trollable subspace.

To facilitate this discussion for SRP-based control, the [B] matrix is now resolved into H:

[B] =

 03×3

[HN ][NP][BC ]

 (4.49)

where [BC ] is the constant part of the [B] matrix:

[BC ] = 4P (R)
A

m

((
a2 + 2ρsC1(1,1)

)
C1(1,1)[C1(σr)]

>[ẽ1]− (1− ρs)[ê1ê
>
1 ][ẽ1]

+
(
a2 + 4ρsC1(1,1)

)
[C1(σr)]

>[ê1ê
>
1 ][C1(σr)]

>[ẽ1]

) (4.50)

If the reference orientation is sun-facing, then [C1(σr)] = [I3×3] and a much simpler form is obtained

for [BC ]:

[BC ] = 4P (R)
A

m
(a2 + 2ρs) [ẽ1] (4.51)
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For this controllability analysis, it is assumed that the reference orientation is sun-facing. The

rotation from P to H is time-varying, and thus the [B] matrix will be time-varying as well. Fur-

thermore, the [A] matrix is time-varying. The time-varying terms in the [A] matrix obtained from

Eq. (4.40) can be expected to evolve slowly compared to the time scale of the relative orbital motion

dynamics.

Using the SRP-perturbed system [A] matrix, the controllability matrix is obtained in terms

of the [Bi(t)] sub-matrices:

[Bi(t)] = [B′i(t)][BC ] =

[B′i(u)(t)]

[B′i(l)(t)]

 [BC ] (4.52)

where the time-varying portion [B′i(t)] can be shown to obey the following recursive relationship

and initial values:

[B′i+1(t)] =

 [B′i(l)(t)]− d
dt

(
[B′i(u)(t)]

)
[Ap][B

′
i(u)(t)] + [Av][B

′
i(l)(t)]− d

dt

(
[B′i(l)(t)]

)
 (4.53)

[B′0(u)(t)] = [03×3], [B′0(l)(t)] = [HP] (4.54)

Using Eq. (4.53), and recalling [B0(t)] = [B(t)], the next two sub-matrices are shown analytically:

[B1(t)] =

 [HP]

[Av][HP]− [HP][ω̃H,P ]

 [BC ] (4.55)

[B2(t)] =

 [Av][HP]− 2[HP][ω̃H,P ]

[Ap][HP] + [Av]2[HP]− 2[Av][HP][ω̃H,P ] + [HP][ω̃H,P ]2 − [Ȧv][HP]

 [BC ] (4.56)

where [ω̃H,P ] is an angular velocity term associated with the rotating frames:

d

dt
([HP]) = [HP][ω̃H,P ] (4.57)

The matrix [ω̃H,P ] is skew-symmetric, with the components of the angular velocity of frame P

relative to H, expressed in P components. Note that it is assumed that angular acceleration

terms are zero because the effect of rotating frame angular acceleration terms is quite small for

near-circular planetary and spacecraft orbits. Thus, [ ˙̃ωH,P ] ≈ [03×3].



97

The symbolic expressions for each sub-matrix were obtained via MATLAB and saved as

functions. To enforce the zero angular acceleration condition, the time-varying angular terms were

truncated to their linear approximations, θ ≈ θ0 + nt and ϕ ≈ ϕ0 + ϕ̇t. The final expression for

the controllability matrix is far too long and complex to include here.

Table 4.1 gives hypothetical parameters for evaluating the controllability matrix, and for the

first set of simulation results to follow this controllability analysis. The optical parameters for this

first result are values corresponding to a completely reflective surface [89], but adding absorption

doesn’t affect the conclusion of the controllability analysis. This hypothetical simulation data is

representative of some high-altitude orbit over a large asteroid. Only two-body gravity and SRP

perturbations are implemented in the truth model, since this chapter is primarily concerned with

the solar radiation pressure perturbation, which would be a dominant disturbance at this altitude.

Table 4.1: SRP Control Simulation 1 Physical Parameters

Parameter Value

oe0 = (a, e, i,Ω, θ) 200, 0.0, 86.0◦, 0.0◦, 0.0◦

δoe0 = (δa, δe, δi, δΩ, δθ) 0.0, 0.00125, 0.05◦, 0.0◦, 0.0◦

Optical constants A
m = 0.5m2/kg, B = 0.8, s = 0.7, ρ = 0.3

Primary Body Orbit Radius R = 3.5904× 108km (2.4AU)
Primary Body Orbit Angles κ = 4◦, ϕ0 = 90◦

Primary Body Physical Parameters d = 40km, ρ = 2.119g/cm3,m = 7.1× 1016kg

Using the parameters in Table 4.1, the rank of the controllability matrix may be obtained

for various times in the simulation. Numerical results show that the rank of the controllability

matrix is consistently 6, using the default tolerance in MATLAB. Lowering the tolerance (e.g. to

1 × 10−10), the rank of the controllability matrix reduces to 4. These numerical results suggest

that the system is fully controllable, with kinematic coupling enabling weak controllability of the

spacecraft motion along û.

4.3.3 Testing the SRP-Perturbed Relative Motion Model

First, results are presented to demonstrate that the dynamical model obtained in this chapter

works as expected. Namely, the model given in Eq. (4.40) was simulated for the data given in Table
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4.1, along with a nonlinear truth model. The results are given in Figure 4.2. Note that there is close

agreement between the SRP model and the nonlinear truth model for the 6 orbits simulated. This

shows that the linearized SRP model is properly accounting for the SRP disturbance acceleration’s

effects.

4.3.4 Simulation Results

With the efficacy of the linearized dynamical model demonstrated, finite-time LQR control

is now implemented to obtain the optimal control signals u(t) = σc(t). Of particular interest

is the full controllability of the system implied by the analysis in the preceding section. It was

hypothesized that controllability is weakest in the projection of the motion along û. Setting the

relative motion to take place near the terminator plane allows the motion along û to be easily

investigated. Without treating the out-of-plane associated elements of the [Q] matrix differently

from the in-plane associated elements, simulation results show that the motion in the z direction

fails to settle. However, by over-weighing the cost of z and ż in the dynamics, the controller takes

a strategy that seeks to minimize the motion in this mode, by delaying the settling of the x and y

motion.

The first simulation demonstrates relative motion regulation control to a chief in a terminator

orbit. The non-optical physical constants and initial conditions are unchanged from the uncontrolled

simulation - thus are given in Table 4.1. The control parameters and the new optical parameters

for this simulation are given in Table 5.2.

Table 4.2: Control and Optical Parameters for SRP Control Simulation 1

Parameter Value

Q Q = I6×6, except Q(3, 3) = Q(6, 6) = 60
R 100I3×3

Sf I6×6

t0,∆t, tf t0 = 0,∆t = 10, tf = 2581510 (29.88 days)

Optical constants A
m = 0.5m2/kg, B = 0.6, s = 0.25, ρ = 0.3

The position deviations and control signals are given in Figures 4.4 and 4.5. The results
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Figure 4.2: SRP-Perturbed Relative Motion

Figure 4.3: SRP-Based Control of Relative Motion, Case 1

show that for this case, the controller functions as intended – successfully controlling the deputy

spacecraft to very near the origin of the LVLH frame, over the course of one month. This is done

with < 10◦ attitude deviations from the sun-pointing direction. This is important in the context

of this work, because the attitude variations must remain small in order for the single-plate SRP
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model to be accurate.

Figure 4.4: Position, SRP Control Case 1

Figure 4.5: Control Signals, SRP Control Case 1

Figure 4.6: SRP-Based Control of Relative Motion, Case 2

The second simulation demonstrates control to change a GEO orbit longitude by 0.544◦, or
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Figure 4.7: Controlled Position, SRP Control Case 2

Figure 4.8: Control Signals, SRP Control Case 2

20 km in the along-track direction, over the course of 30 days. The optical parameters are the

same as in the first simulation, but the other physical parameters and the new control parameters

are different. These are given in Tables 4.3 and 4.4 respectively. This simulation neglects the

perturbative effects of lunar and solar gravity, which manifest via a long term (53 year) precession

and nutation of the orbit [4]. In this particular case, a scale analysis of the lunar gravity perturbation

will show that there would be sufficient control authority to cancel such perturbations in addition

to controlling the spacecraft to the desired location.

The motion in LVLH x and y components is given in Figure 4.6. The z motion is quite

insignificant in this case, so it is not shown. Note that the scale of the x motion is magnified in the

figure to show the bowed nature of the trajectory followed, and to clearly show the oscillations in
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the radial direction. Also note the overshoot in the y direction followed by the slow settling behavior

around the origin. There are two time scales of the settling behavior. Much of the separation is

settled in the along-track direction within 15 orbits, but the control action in the remaining orbits

slowly dampens out the oscillations mainly in the x and y components. The large final cost on the

relative state ensures that in the final 3-4 orbits, the relative motion is further settled.

Table 4.3: SRP Control Simulation 2 Physical Parameters

Parameter Value

oe0 = (a, e, i,Ω, θ) 42157, 0.0, 0.0◦, 0.0◦, 0.0◦

δoe0 = (δa, δe, δi, δΩ, δθ) 0.0, 0.0, 0.0◦, 0.0◦, 0.544◦

Primary Body Orbit Radius R = 1.496× 108km (1.0AU)
Primary Body Orbit Angles κ = 23.5◦, ϕ0 = 90◦

Primary Body Physical Parameters r = 6371 km, µ = 398600 km3/s2

Table 4.4: Control and Optical Parameters for SRP Control Simulation 2

Parameter Value

Q 0.5I6×6

R 105I3×3

Sf Sf = 108I6×6, except Sf (1, 1) = 1010 & Sf (4, 4) = 1011

t0,∆t, tf t0 = 0,∆t = 80, tf = 2584240 (30 days)

Optical constants A
m = 0.5m2/kg, B = 0.6, s = 0.25, ρ = 0.3

These results suggest that relatively large maneuvers in the GEO belt are possible with SRP-

based linear control, assuming sufficient time is available for such maneuvers. Faster settling results

would likely be possible through iteration on the current selection of control parameters, but these

results are an adequate demonstration of capability. The results from cases 1 and 2 show that both

closed-loop rendezvous control and larger changes to a GEO orbit using a virtual chief are possible

using small sustained attitude variations to change the resultant SRP disturbance force. This

is simulated for spacecraft with relatively realistic area-to-mass ratios and unremarkable (neither

highly reflective or absorptive) optical properties. Simulations with smaller area-to-mass ratios still

display the same characteristic behavior, but with longer time spans needed to achieve the same

control objectives.



103

4.4 Conclusions

This chapter derives a new relative motion model accounting for the effects of the solar ra-

diation pressure (SRP) disturbance acceleration on spacecraft relative motion. The kinematics of

the SRP-perturbed chief orbit are absorbed into the linearized system [A(t)] matrix to accommo-

date infrequent updates of the chief orbit parameters. The model demonstrates the feasibility of

SRP-based control in multiple environments of interest for spacecraft with unremarkable geometry

and surface optical properties. The model is derived from an existing multi-facet model of SRP

force, obtaining an illuminated body averaged single-plate model that should be valid for small

angular attitude deviations, especially for spacecraft with large solar arrays, or otherwise relatively

flat spacecraft. Numerical simulations of SRP-based control for spacecraft with unremarkable ge-

ometric and optical properties establish the feasibility of the use of attitude-dependent SRP force

for formation and rendezvous control.

Future work could explore refinements to the methods used in this work, and will detail the

limitations of the model and control strategy used in this work. Future work could also include

higher-fidelity multi-facet spacecraft SRP modeling that is valid for larger attitude variations, and

explorations of how to account for independent articulation of solar arrays in a box-wing spacecraft

model. A multi-fidelity modeling approach could enable a low-level control strategy (linear or

otherwise) to be corrected for high precision SRP-based control. Look-up tables generated in

advance (or series fits of such data) could take place of the linearized approximation of the attitude-

dependent variations in the magnitude and direction of the resultant SRP acceleration. This

work is thus the first step towards a goal of accurate high-fidelity SRP-based formation and orbit

control.



Chapter 5

Spacecraft Relative Motion Sensitivities

This chapter explores the use of the linear sensitivities in spacecraft relative motion modeling

and control. The sensitivity is the derivative of the spacecraft relative state with respect to an

uncertain or mis-modeled parameter in the dynamics:

s =
dx

dα

∣∣∣∣
∗

(5.1)

where the “∗” subscript denotes evaluation on a nominal trajectory, and for the nominal case,

α = α∗. The sensitivity vector also has its own dynamics, obtained by direct differentiation of

Eq. (5.1) [72]:

ṡ =
d

dt

(
dx

dα

∣∣∣∣
∗

)
=

d

dα

(
dx

dt

∣∣∣∣
∗

)
=

d

dα∗
([A(α∗)])x+ [A(α∗)]s+

d

dα∗
([B(α∗)])u

(5.2)

The true behavior of x can then be linearly approximated as the sum of the nominal behavior

and the product of the sensitivity and the difference between the true and nominal value of the

uncertain parameter:

x(t) = x∗(t) + (α− α∗) s(t) (5.3)

Note lastly that all of the equations above generalize naturally for a system with N independent

uncertain parameters, e.g.:

x(t) = x∗(t) +
N∑
i=1

(αi − α∗i ) si(t) (5.4)

Eqs. (5.2) and (5.3) are of critical importance to this chapter. The true behavior of a system

with an uncertain parameter is governed by the sensitivities, these sensitivities have their own
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simple dynamics, and in some circumstances can be influenced by control. This prompts two

explorations: First, the concept of “desensitized control” is explored for the spacecraft relative

motion problem, in which control of x is augmented with control of the sensitivities of the relative

motion to poorly modeled parameters. Second, the dynamics of uncertainty propagation of the

spacecraft relative motion problem are examined through the perspective of the sensitivities for the

case that a spacecraft moves and maneuvers in the vicinity of a target object with an uncertain

orbit. Much of the work in this chapter can be found in References 21 and 27, and 55 is also

relevant.

The sensitivity dynamics and control concepts explored in this chapter have some strong

connections to other recent concepts in the literature. Reference 56 poses the aerocapture problem

as a robust optimization problem. This work explores multi-objective control simultaneously min-

imizing mean drift from a desired terminal state x∗ along with variation of x about its mean. In

the case that the mean objective is exactly satisfied, the problem reduces to minimizing a weighted

trace of the final covariance. This approach shares some similarities with desensitized control,

because it can be shown from consider-covariance analysis [125] that the linear sensitivities map

between parameter covariance and state covariance, so any control to achieve certain goals with the

final state covariance matrix will accomplish this via influence on the final sensitivity states.

5.1 Desensitized Optimal Spacecraft Rendezvous Control

5.1.1 Dynamical Uncertainty in the Spacecraft Relative Motion Problem

Uncertainty is a major obstacle to robust spacecraft control. In particular, while the physics

of the space environment are often reasonably well understood, the true values of perturbative pa-

rameters are frequently poorly known. This is especially true in missions to previously unexplored

or dynamically complex bodies. This can also still pose a challenge for more familiar environments

with unpredictable variations, such as the constantly changing conditions of the rarefied atmosphere

in low-Earth orbits. Controllers that are not designed to account for or be robust to uncertainty
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are fundamentally ill-suited for use in such space missions. An active area of research is design

of controllers that are naturally robust to poorly-known dynamical parameters. Such controllers

still typically use some nominal or expected values for these parameters, but are designed to be

operationally desensitized to reasonable deviations from the expected values. Desensitized linear

optimal control is one appealing option, due to its relative ease of design, analysis, and implemen-

tation. This method was first developed by Kahne [72] in the 1960s, and fundamentally similar

methods have been applied in trajectory design [117] and optimal landing guidance [118]. Similar

work has also been done in desensitized optimal filtering, in which the estimator is designed to be

tolerant of poorly known dynamical parameters [74]. It is possible to develop desensitized control

for the spacecraft relative motion problem, which enables more robust control design for rendezvous

guidance and formation maintenance.

This section implements a new approach to spacecraft relative motion Linear Quadratic

Regulator (LQR) control in a highly uncertain environment, with a modification to design a lin-

early optimal controller that is minimally sensitive to chosen system perturbations, but otherwise

inherits the traditional features of LQR control. This is done by extending the work originally

presented by Kahne [72] to enable control design that is desensitized to variations in an arbitrary

number of poorly known system dynamical parameters, and applying the method to spacecraft

formation/rendezvous control.

As an example application, this section is focused on control design in the highly perturbed

environment around small asteroids, in which the gravitational harmonics C20 and C22 and solar

radiation pressure (SRP) constitute the dominant perturbations for a range of orbits potentially

desirable for future missions. The decision to truncate the gravitational effects at the second degree

and order implicitly assumes that the spacecraft are in high orbits, where individual surface features

and higher order gravity field components are dominated by the C20 and C22 perturbation. Third-

body effects may also be important enough to warrant inclusion in the control design, in sufficiently

high orbits. This work could be extended to apply in such an environment if the effects of the

additional perturbation is accounted for, and the modification is conceptually straightforward.
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The control design assumes that the gravitational harmonics are not well-known (such as if

they are estimated from light curve data [71]). Uncertainty in the magnitude of the SRP force is

also considered. The control model is first derived using the linearized dynamics containing linear

perturbation terms due to gravity coefficients C20 and C22, and the SRP force, and the controller

is then applied in a nonlinear dynamic truth model with differing values of the chosen dynamical

parameters to test the performance of the controller. This section investigates the effect of these mis-

modeled parameters on the control performance for both standard LQR and desensitized optimal

control.

The work presented in this section is directly relevant for mission design to small-body en-

vironments, in which after orbital insertion, it is desired to correct to a nominal orbit, maintain a

nominal orbit under the presence of perturbations, or even facilitate spacecraft rendezvous in this

uncertain environment. However, the given implementation can be easily adapted for robust ren-

dezvous control in Earth orbits as well, and the procedure introduced in this section can be readily

adapted to minimize uncertainty to essentially any other poorly known dynamical parameters.

5.1.2 Dynamic Model

This section makes use of the combined C20, C22, and SRP model first presented in chapter 3,

without further modification. See Eqs. (3.48) - (3.51) and the associated discussion.

5.1.3 Low-Sensitivity Optimal Control Design

A method of optimal control design is introduced, which minimizes the effect of mis-modeled

parameters by augmenting in the sensitivities to these parameters to the cost function:

J =
1

2
x>(tf )[S]x(tf ) +

1

2

∫ tf

0

(
x>(t)[Q(t)]x(t) + u>(t)[R(t)]u(t) + s>(t)[E(t)]s(t)

)
dt (5.5)

where [E] is the weight matrix associated with the sensitivity cost and s(t) is the sensitivity vector:

s(t) =
dx(t)

dα

∣∣∣∣
αnom

(5.6)
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and it can be shown to obey

ṡ(t) = [A(t)]s(t) + [C(t)]x(t) (5.7)

where [C(t)]ij =
d[A]ij
dα

∣∣∣
αnom

. This elegant modification of the LQR optimal control problem was

first performed by Kahne [72]. In order to use this technique to apply to a control problem with

three poorly-known parameters, two additional sensitivity vector terms must be added to the cost

function, and the same procedure will be followed to derive the modified equations for optimal

control that minimizes the controlled trajectory sensitivity to three parameters.

Now, Kahne’s procedure is extended to optimal linear control with an arbitrary number of

sensitivity vectors augmented into the cost function:

J =
1

2
x>(tf )[S]x(tf ) +

1

2

∫ tf

0

(
x>(t)[Q(t)]x(t) + u>(t)[R(t)]u(t) +

p∑
i=1

s>i (t)[Ei(t)]si(t)
)
dt (5.8)

where si(t) is the ith sensitivity vector:

si(t) =
dx(t)

dαi

∣∣∣∣
αi,nom

(5.9)

ṡi(t) = [A(t)]si(t) + [Ci(t)]x(t) (5.10)

[Ci(jk)(t)] =
∂[Ajk(t)]

∂αi

∣∣∣∣
αi,nom

(5.11)

The Hamiltonian is given below:

H =
1

2

(
x>[Q]x+ u>[R]u+

∑
i

s>i [Ei]si

)
+ λ> ([A]x+ [B]u) +

∑
i

q>i ([A]si + [Ci]x) (5.12)

The necessary conditions for optimality yield the following:

ẋ =
∂H

∂λ
= [A]x+ [B]u (5.13)

λ̇ = −∂H
∂x

= −[Q]x− [A]>λ−
∑
i

[Ci]
>qi (5.14)

ṡi =
∂H

∂qi
= [A]si + [Ci]x (5.15)

q̇i = −∂H
∂si

= −[Ei]si − [A]>qi (5.16)

∂H

∂u
= [R]u+ [B]>λ = 0 → u(t) = −[R]−1[B]>λ(t) (5.17)
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The split final and initial conditions are x(0) = x0, λ(tf ) = [S]x(tf ), si(0) = 0, qi(tf ) = 0.

To adapt the matrix/vector notation to an arbitrary number (p) of sensitivities, the aug-

mented vector notation sp×1 = (s>1 , s
>
2 , . . . , s

>
p ) is defined, along with necessary augmented matrix

notation given below:

[C6p×6] =



[C1]

[C2]

...

[Cp]


, [C6p×6]> =

[
[C1]> [C2]> . . . [Cp]

>
]

(5.18)

[A6p×6p] =


[A] [06×6] . . .

[06×6]
. . .

... [A]

 (5.19)

The augmented system dynamics are given below:

ẋ

ṡ6p×1

λ̇

q̇6p×1


=



[A] [06×6p] −[B][R]−1[B]> [06×6p]

[C6p×6] [A6p×6p] [06p×6] [06p×6p]

−[Q] [06×6p] −[A]> −[C6p×6]>

[06p×6] −[E6p×6p] [06p×6] −[A6p×6p]
>





x

s6p×1

λ

q6p×1


(5.20)

Let z =

(
x>, s>6p×1

)
, ψ =

(
λ>, q>6p×1

)
, thus:

 ż

ψ̇

 = [Γ(t)]

 z

ψ

 (5.21)

where [Γ(t)] is the system matrix in Eq. (5.20). The solution to this system is given in terms of its

STM:  z(t)

ψ(t)

 = [Φ(t, t0)]

 z(t0)

ψ(t0)

 (5.22)

z(tf ) = [φ11(tf , t0)]z(t0) + [φ12(tf , t0)]ψ(t0) (5.23)

ψ(tf ) = [φ21(tf , t0)]z(t0) + [φ22(tf , t0)]ψ(t0) = [S]x(tf ) = [G]z(tf ) (5.24)
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where [G] is of dimension 6(p + 1) × 6(p + 1), with all entries zero except the 6 × 6 upper left

sub-matrix, [S]. Thus:

ψ(tf ) = G ([φ11(tf , t)]z(t) + [φ12(tf , t)]ψ(t)) (5.25)

ψ(t) = ([φ22(tf , t)]− [G][φ12(tf , t)])
−1 ([G][φ11(tf , t)]− [φ21(tf , t)]) z(t) ≡ [K(t)]z(t) (5.26)

Applying the final conditions, it can be shown that [K(tf )] = [G]. Partitioning [K] into appropri-

ately dimensioned sub-matrices, the top 6 rows of Eq. (5.26) are isolated:

λ(t) = [K11(t)]x(t) + [K12(t)]s6p×1(t) (5.27)

The control signal is given in terms of the usual state feedback term, and a new feedback term for

the augmented sensitivities:

u(t) = −[R]−1[B]>[K11(t)]x(t)− [R]−1[B]>[K12(t)]s6p×1(t) (5.28)

Thus, [K12(t)] is a 6× 6p matrix that maps the augmented sensitivity vectors, and the differential

equation for the full [K] matrix will now be derived. First, differentiating Eq. (5.26), and isolating

then rewriting the differential equations from the augmented dynamics:

ψ̇ = [K̇(t)]z(t) + [K(t)]ż(t) (5.29)

ż(t) = [L(t)]z(t)− [M(t)]ψ(t) (5.30)

ψ̇(t) = −[N(t)]z(t)− [P (t)]ψ(t) (5.31)

The new matrices in Eqs. (5.30) and (5.31) are directly obtained from the partitioned sub-matrices

in Eq. (5.20) using the following definition:

[Γ(t)] =

 [L(t)] −[M(t)]

−[N(t)] −[P (t)]

 (5.32)

Using Eq. (5.26) in Eq. (5.30):

ż(t) = ([L(t)]− [M(t)][K(t)]) z(t) (5.33)
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Eq. (5.33) is substituted into Eq. (5.29):

ψ̇ =
(

[K̇(t)] + [K(t)][L(t)]− [K(t)][M(t)][K(t)]
)
z(t) (5.34)

Then, substituting Eq. (5.26) in Eq. (5.31), equating with (5.34) and rearranging:(
[K̇(t)] + [K(t)][L(t)] + [P (t)][K(t)]− [K(t)][M(t)][K(t)] + [N(t)]

)
z(t) = 0 (5.35)

The ODE for [K(t)] is given below, for which the final condition is [K(tf )] = [G], or equivalently

[K11(tf )] = [S], [K12(tf )] = [06×6p], [K21(tf )] = [06p×6], [K22(tf )] = [06p×6p].

[K̇(t)] + [K(t)][L(t)] + [P (t)][K(t)]− [K(t)][M(t)][K(t)] + [N(t)] = 0 (5.36)

Since [K(t)] is symmetric, it is clear that not all elements of the matrix need to be numerically

integrated. Eq. (5.36) is expanded and symmetry is used to obtain a smaller set of equations to be

integrated, which will result in greater computational efficiency:

[K̇11] + [K11][A] + [K12][C6p×6] + [A]>[K11] + [C6p×6]>[K12]> − [K11][B][R]−1[B]>[K11]

+ [Q] = [06×6]

[K̇12] + [K12][A6p×6p] + [A]>[K12] + [C6p×6]>[K22]− [K11][B][R]−1[B]>[K12] = [06×6p]

[K̇22] + [K22][A6p×6p] + [A6p×6p]
>[K22]− [K12]>[B][R]−1[B]>[K12] + [E6p×6p] = [06p×6p]

(5.37)

If the symmetry of [K] is used, then one must solve 18p2 + 39p+ 21 coupled scalar ODE equations

to model the behavior of [K]. If the symmetry is not exploited, the number of equations to be

solved is 36p2 + 72p + 36. This becomes more costly as more sensitivity vectors are added to the

cost function, but this problem is still tractable for two uncertain parameters.

To implement this controller, Eq. (5.37) should be solved backwards in time from the given

final conditions, to obtain a pre-saved gain schedule. Then, the control should be applied as shown

in Eq. (5.28), where the signals s6p×1 are obtained by integrating ṡi(t) = [A(t)]si(t) + [Ci(t)]x(t)

as the system evolves. Lastly, remaining error due to nonlinearity or neglected dynamics can be

greatly reduced by feeding back an error integral term. Note that if one sets [E6p×6p] = [06p×6p],

the effects of system sensitivity are ignored, and the problem reduces to standard LQR with a final

cost.
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5.1.4 Notes on System Nonlinearity and Orbit Control

Before simulating LQR control and low-sensitivity control in the highly perturbed asteroid

orbit environment, this section discusses several necessary topics, which provide justification for

the methods, analysis, and results that will follow.

5.1.4.1 Quantifying Nonlinearity

In general, successful application of the linear control law to the nonlinear system is limited

to a finite region of space around the virtual chief, and to a finite span of time for which the

assumptions of the linearized model hold. This region of space and span of time will be referred to

as the linear regime. The amount of acceptable nonlinearity will differ depending on the application,

and thus so will this definition. In this section, the scale of system nonlinearity is quantified with

a dimensionless index that represents the average spatial deviation between the linearized and

nonlinear propagated dynamics:

νs(t, t0) =
1

t− t0

∫ t

t0

‖∆rnl(τ)−∆rl(τ)‖
‖∆rl(τ)‖ dτ (5.38)

where ∆r = (x, y, z)> and the velocity differentials do not need to be directly included in this

index. This can be applied to results from both the uncontrolled dynamics and controlled dynamics,

however the scale of this parameter can be expected to differ with these two implementations. This

parameter may be a misleading representation if ∆rl ≈ 0 for much of the time range. This should

be addressed by de-weighting or excluding such instances from the calculation of this quantity.

Alternative nonlinearity measures may also be considered, such as the average spatial distance

between the two trajectories:

es(t, t0) =
1

t− t0

∫ t

t0

‖∆rnl(τ)−∆rl(τ)‖dτ (5.39)



113

5.1.5 Orbit Control around Asteroids

Orbiting around asteroids is not always possible, because these bodies are small enough that

solar radiation pressure can easily dominate the gravitational force. Furthermore, the gravitational

perturbations due to non-sphericity are often quite large. It is important to bear in mind that orbital

motion around asteroids is highly non-Keplerian – complex and chaotic. Despite the complexity,

several assumptions about the asteroid and spacecraft are used in this section to enable a study of

near-optimal guidance in this environment.

The simulations in this section use a hypothetical asteroid given in Table 5.1. The hypotheti-

cal asteroid is rather large. At the operating altitude, it is assumed that the dominant non-spherical

gravity perturbations are due to C20 and C22 [17].

The SRP disturbance on the spacecraft is assumed to be well-modeled by a simple flat-plate

model. In this section, it is also assumed to be sun-facing. Since most spacecraft are solar powered,

and these panels constitute the majority of the projected surface area, this will often be a reasonable

assumption.

The simulations assume that the orientation of the asteroid spin axis, its rotation period, and

its gravitational parameter µ are well-known. The first two parameters could be well-estimated by

camera data before rendezvous, while the third would be estimated from telemetry data from the

initial encounter and orbit insertion. It is possible to extend the methods in this section to account

for uncertainty in these parameters as well.

The desired “chief” orbit to rendezvous with is initially a near-circular orbit in the terminator

plane. The nominal initial target orbit for the survey phase of the OSIRIS-REx mission is one such

orbit. These orbits are naturally quasi-stable, and are an attractive target for initial orbit-targeting

maneuvers [57]. However, the highly perturbed and uncertain environment can and will introduce

error. The scenario studied in this section is analogous to correcting post-maneuver orbit error

with LQR control, using very low thrust.

Lastly, the formation flying rendezvous control problem presumes that the relative position
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and velocity of the spacecraft are sufficiently well-known, otherwise the rendezvous would not be

attempted. The accuracy of knowledge of the chief orbit is less important. In fact, the desensitized

control strategy could be implemented with the initial chief orbit elements chosen as the uncertain

parameters. This would enable rendezvous control for a formation whose absolute position is

somewhat uncertain, but for which the formation geometry is known from sensors on the individual

spacecraft.

5.1.6 Low-Thrust Control Simulations

To test the various optimal control strategies, consider the case of the hypothetical asteroid in

Table 5.1 and the initial conditions given in Table 5.3. First, LQR control is tested – in which it is

assumed that the SRP and second-order gravitational parameters are accurately known. Then, low-

sensitivity optimal control is implemented, and the results from these two strategies are compared.

The repeated control parameters (used in both cases) are given in Table 5.2. The initial conditions

are given in Table 5.3.

Table 5.1: Asteroid Physical Parameters for Desensitized Control Simulations

Parameters Values

Asteroid semi-axes, C20 & C22 A = 6, B = 3, C = 2.5, C20 = −0.093, C22 = 0.0375
Density, gravitational parameter ρ = 2.6 g/cm3, µ = 3.271× 104 m3/s2

Asteroid spin axis, orientation Tr = 38.5 hours, ψ0 = π/8, κ = 15◦

Asteroid orbit e = 0, R = 2.4 AU, θ0 = ω + f0 = π/2

Spacecraft optical properties A
m = 0.3, B = 0.6, s = 0.25, ρ = 0.3

Table 5.2: Recurring Control Parameters for LQR and Low-Sensitivity Cases

Parameter Value

[Q] [Q] = 06×6

[R] (1× 1012)I3×3

[Sf ] Sf (1 : 3, 1 : 3) = I3×3, Sf (4 : 6, 4 : 6) = (1× 109)I3×3

[B] B(1 : 3, 1 : 3) = 03×3, B(4 : 6, 1 : 3) = I3×3

[E] [E1] = [E2] = 0.1I6×6, [E3] = 0.01I6×6

t0,∆t, tf t0 = 0,∆t = 200, tf = 555800 (2 orbits, 6.43 days)
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Table 5.3: Desensitized Control Simulation Initial Conditions

Parameters Values

Chief Orbit Elements oec = [a, e, i, ω,Ω, f0] = [40 km, 5× 10−4, 75◦, 0◦, 0◦, 0◦]
Deputy Orbit Element Differences ∆oe = oed−oec = [0 km, 0.07, 2.0◦, 0◦, 0◦, 0◦]
Initial Conditions (LVLH) ∆r = −2800êx m, ∆v = 0.1285êy + 0.0339êz m/s

5.1.6.1 LQR Control

In this case, [Q] = [06×6] and it is the final state cost that drives the system to the origin. In

Figure 5.1, it is clear that there is significant deviation between the control applied to the linear

and nonlinear dynamics. Figure 5.2 shows the relative position vs. time from the control applied

to the nonlinear dynamics. Since the LQR control is implemented by solving the matrix Riccati

equation for [K(t)] and feeding back u(t) = −[R]−1[B]>[K(t)]x(t), the deviations do not result

in significant final miss distance. This closed-loop control implementation method seems naturally

robust, at least in achieving the desired final condition. However, the significant deviation between

the designed and actual controlled trajectories indicates that the effect of nonlinearities is non-

negligible. This is also clear from the deviation between the designed (L) and actual (NL) control

signals in Figure 5.3.

The positional sensitivity associated with C20, C22, and SRP force uncertainty are given

in Figures 5.4 - 5.6. These results were propagated using Eq. (5.10) evaluated along the linear

and nonlinear trajectories. These results indicate that while the SRP perturbation is largest, it

is uncertainty in C22 that would result in the greatest deviation from the planned relative motion

trajectory. This emphasizes the dynamic importance of C22 on relative motion dynamics in the

asteroid orbit.

5.1.6.2 Low-Sensitivity Control

For the low-sensitivity control design, the control parameters given in Table 5.2 are un-

changed. The sensitivity-associated weight matrices are for C20, C22, and SRP, respectively

E1 = E2 = 0.1I6×6, and E3 = 0.01I6×6. The control applied to the nonlinear dynamics is very
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Figure 5.1: Controlled Relative Motion (LQR)

Figure 5.2: Relative Position vs. Time (LQR)

Figure 5.3: Control Signals (LQR)
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Figure 5.4: C20 Relative Position Sensitivity (LQR)

Figure 5.5: C22 Relative Position Sensitivity (LQR)

Figure 5.6: SRP Relative Position Sensitivity (LQR)
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close to the control applied to the linear dynamics. This is evident by comparing the linear and

nonlinear results in Figures 5.7 and 5.9. The controller comes quite close to achieving the desired

final condition. In addition, it is clear that the sensitivities to the three parameters are greatly

reduced from the standard LQR results, which can be seen by comparing Figures 5.10 - 5.12 with

Figures 5.4 - 5.6. Note that the y axis limits are greatly reduced for Figures 5.10 - 5.12.

It is worth noting that using poor values for the gravitational coefficients and SRP magnitude

will not cause significant change to the trajectory design or control signals, which makes some

intuitive sense. To minimize sensitivity to the poorly modeled parameters, the controller sends the

deputy spacecraft on a trajectory whose design is minimally sensitive to errors in these parameters.

Interestingly, this seems to result in a more close agreement between the control applied to the

linear and nonlinear dynamics – suggesting that this control method should effectively expand

the size of the linear regime. The effect of mis-modeled and unmodeled parameters on standard

LQR control and low-sensitivity control is explored more fully by Monte Carlo analysis in the next

section.

In general, this study illustrates that the shape of these low-sensitivity controlled trajectories

are quite unintuitive and interesting. It also seems that they generally require more control than

the traditional LQR design, compare Figures 5.9 and 5.3, but the required control is quite small

(at or below the thrust level of small ion thrusters) in either case for station-keeping or formation

control around this asteroid.

5.1.7 Monte Carlo Simulations Using Low-Thrust

In this section, Monte Carlo simulations of 50 runs were performed for both the standard

LQR and the low-sensitivity control design from the previous section. All simulation parameters

are reused, except the simulations now assume mis-modeled C20 and C22 with a 30% standard

deviation about the nominal computed values, along with mis-modeled SRP force with a 20%

standard deviation in magnitude from the expected value.

Figure 5.13 shows the controlled trajectories using standard LQR, and Figure 5.14 shows the
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Figure 5.7: Controlled Relative Motion (Low-Sensitivity Control)

Figure 5.8: Relative Position vs. Time (Low-Sensitivity Control)

Figure 5.9: Control Signals (Low-Sensitivity Control)
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Figure 5.10: C20 Relative Position Sensitivity (Low-Sensitivity Control)

Figure 5.11: C22 Relative Position Sensitivity (Low-Sensitivity Control)

Figure 5.12: SRP Relative Position Sensitivity (Low-Sensitivity Control)
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controlled trajectories using low-sensitivity control. It is clear that both controllers successfully

reach the origin of the LVLH frame. However, the LQR controller consistently deviates greatly

from the trajectory predicted from the controlled linear dynamics given by the black line, while

the low-sensitivity controller does not deviate much from the behavior predicted by the linearized

model. Furthermore, the true low-sensitivity trajectories are spatially closer together than the true

LQR trajectories, as would be expected.

Figure 5.13: Controlled Relative Motion, Monte Carlo Results (LQR)

Figure 5.14: Controlled Relative Motion, Monte Carlo Results (Low-Sensitivity Control)

Figures 5.15 and 5.16 show the distributions of total ∆v used by both controllers. The cost

is higher for the low-sensitivity control, indicating that the low-sensitivity trajectories are generally
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more expensive to follow, at least in this current implementation.

Figure 5.15: Total ∆v (LQR)

Figure 5.16: Total ∆v (Low-Sensitivity Control)

Figure 5.17 shows the nonlinearity index vs. time for both controllers. Since this index is

meaninglessly inflated as ∆rl → 0, the nonlinearity index is only shown while ‖∆rl‖ > 0.15 km.

The difference between the two families of curves emphasizes that the low-sensitivity controller

follows the expected linear dynamics much more closely, with its nonlinearity index being an order

of magnitude lower than for the standard LQR control. The low-sensitivity controller also reduces

the scale of the relative motion much more quickly than the standard LQR controller, a feature

that cannot be discerned from looking at the trajectories alone.
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Figure 5.17: Nonlinearity Index vs. Time, Monte Carlo Results

5.1.8 Discussion

In this section, desensitized control is implemented to solve the formation flying rendezvous

problem for spacecraft in orbits about asteroids with uncertain parameters. The method first

introduced by Kahne [72] is applied and extended to desensitized control with any number of

unknown system parameters. For the example application in this section, those parameters are

C20, C22 and the solar radiation pressure (SRP) disturbance magnitude.

Numerical simulations compare the performance and characteristics of the Linear Quadratic

Regulator (LQR) control with desensitized control. The desensitized control enables rendezvous

along a trajectory that is much closer to the design trajectory predicted by the linearized dynamics.

This is an interesting and useful feature for desensitized control, and a surprising result to obtain

from a linear control design. The comparative closeness of the design and actual trajectories would

be particularly useful for more complex formation control problems, in which operational and

geometric constraints would demand that the design trajectory be followed as closely as possible.
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5.2 Satellite Relative Motion in the Vicinity of a Poorly Tracked Target

Object

5.2.1 Relative State Uncertainty

A major topic in formation flying and satellite proximity operations is collision avoidance with

other space objects. There have been many important works studying the effects of uncertainties in

the satellite relative motion problem. Reference 84 derives analytic uncertainty propagation for the

relative motion problem in elliptic orbits. Under the assumption of a Gaussian white noise process,

they explore the computation of the evolving mean and covariance matrix of the relative states using

Tschauner-Hempel equations [126]. Some work has focused on designing guidance and control to

mitigate collision risks in the presence of uncertainties, both with active and passive methods. A

classic passive means of minimizing impact risk in formation flying is through the safe ellipse, which

ensures that in the presence of along-track drift in the relative motion, the spacecraft will not collide

[83]. In Reference 13, Breger and How investigate tradeoffs between active and passive approaches

to safety. They also develop a strategy for generating safe, fuel-optimized rendezvous trajectories

that guarantee collision avoidance for a large class of anomalous behaviors. Reference 59 develops a

Receding Horizon Control (RHC) approach that enforces passive safety in the presence of common

navigation or propulsive system failures. They identify that adding cross-track relative motion also

greatly reduces collision probability.

There are several works which explore the problem of rendezvous and proximity operations

when the target orbit is uncertain, which leads to uncertainty in the linearized model. In these

works, the spacecraft relative state is assumed to be directly and accurately measured, but the

effects of dynamic uncertainty need to be mitigated. Reference 85 studies reliable impulsive state-

feedback control for autonomous spacecraft rendezvous under target orbital uncertainty with the

possibility of thruster faults. This is accomplished using Lyapunov theory and genetic algorithms.

Reference 130 addresses robust H∞ control for spacecraft rendezvous with a noncooperative target,

specifically for the case of CW dynamics, in which the target semimajor axis is uncertain. The
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control design enables rendezvous in the presence of this dynamical uncertainty, while also allowing

for control input saturation. In both References 85 and 130, the uncertainty in the target orbit

manifests only as dynamic uncertainty in the linearized models. The relative position and velocity

are assumed to be observable.

Typically, the safe use of translational control in close proximity requires that the relative

position and velocity be directly and accurately observed, otherwise there is a fundamental risk

of collision or other undesired outcomes. However, sometimes a spacecraft must maneuver in the

vicinity of another space object whose position and velocity is not known to a desirable degree of

accuracy, due to poor observability conditions or any other factors leading to an inability to make

the necessary measurements. In such circumstances, the initial estimates of the relative state are

going to have some degree of error, and the resulting relative motion over time will be generally

uncertain as well. This is depicted in Figure 5.18, where the nominal relative position ρ∗ obtained

from the best guess of the target orbit differs from the true relative state ρ. In addition to dynamic

error due to incorrect linearization, the uncertainty directly affects the relative range and range

rate, as well as the orientation of the target-centered LVLH frame. This section studies this problem

of relative motion in the vicinity of a poorly tracked target object, from the perspective of the linear

sensitivities of the relative state. The sensitivities studied are the derivative of the relative state

vector with respect to the individual uncertain orbit elements of the target spacecraft, and they

have their own linear forced dynamics if the two spacecraft are in close proximity in similar orbits.

Through the sensitivities, an uncertainty distribution in the initial target orbit elements can

be directly mapped to an evolving uncertainty distribution in the relative state. Assuming small

target orbit element errors, the problem can be approached by linearization, and the sensitivities

progress with their own dynamics influenced only by the nominal relative state and by the control.

The action of an estimator has no effect on the sensitivity propagation, and instead changes the

uncertainty distribution of the initial target orbit elements. In this manner, the sensitivities act as

a scaffolding for the relative state uncertainty distribution, and only need to be propagated once in
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Figure 5.18: Relative Position from Estimated and True Target Spacecraft Locations

parallel with the nominal relative motion dynamics. This framework could allow for uncertainty-

conscious linear control to be designed for the relative motion problem that actively reduces the

risk of satellite impact due to errors in the target orbit estimate.

5.2.2 Sensitivity Dynamics

5.2.2.1 Fundamentals of the Linear Sensitivities

The relative state of a satellite with respect to another orbiting space object is a function

of the orbit elements of the two. Let oes and oet denote the controlled spacecraft and the target

object’s orbit elements at some epoch time. For linearization about an incorrect orbit parameterized

by estimated target orbit elements oe∗t , the true relative state x can be expressed as a sum of the

nominal state x∗ and the deviations induced by the product of the sensitivities to the orbit elements

and their errors:

si =
dx

doet,i

∣∣∣∣
∗

(5.40)

ši =
dx

does,i

∣∣∣∣
∗

(5.41)

x ≈ x∗ +
dx

doet

∣∣∣∣
∗

(oet−oe∗t ) +
dx

does

∣∣∣∣
∗

(oes−oe∗s)

= x∗ +
6∑
i=1

(
oet,i− oe∗t,i

)
si +

6∑
i=1

(
oes,i− oe∗s,i

)
ši

(5.42)
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In this work, the orbit of the maneuvering spacecraft is assumed to be known to much higher

precision than the target orbit, so the influence of this uncertainty on the relative state is neglected:

x ≈ x∗ +
6∑
i=1

(
oet,i− oe∗t,i

)
si (5.43)

The “t” subscript is dropped, because this work only considers uncertainties in the orbit elements

of the unknown target object’s orbit. The associated sensitivity state vectors have their own linear

forced dynamics, obtained from the relative motion dynamics.

ṡi =
d

dt

(
dx

doei

)
=

d

doei

(
dx

dt

)
=

d

doei
(Ax)x+Axsi +

d

doei
(Bx)u (5.44)

Note that the concept of sensitivities having their own dynamics is not new, and is explored

extensively in Reference 72.

5.2.2.2 Dynamics in Local Cartesian Coordinates

If the relative state x is in Cartesian coordinates in the LVLH frame, the plant matrix Ax[111]

and control matrix Bx are given below for the Keplerian case.

Ax =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

θ̇2 + 2 µ
r3

θ̈ 0 0 2θ̇ 0

−θ̈ θ̇2 − µ
r3

0 −2θ̇ 0 0

0 0 − µ
r3

0 0 0


(5.45)

Bx =

 03×3

R3(θ)R1(i)R3(Ω)R∗NH

 (5.46)

In Eq. (5.46), the rotation matrix R∗NH maps from the known nominal LVLH frame to the inertial

frame, and the subsequent rotations map from the inertial frame to the true LVLH frame. For small

uncertainties in the target orbit, the lower 3 × 3 sub-matrix in Bx will thus be close to identity.

The sensitivity dynamics given by Eq. (5.44) are evaluated using a chosen nominal target orbit and
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nominal relative motion, and are not influenced by the uncertainty in the target orbit elements.

Note that the last term in Eq. (5.44) is nonzero only for the sensitivities to the orbit element angles

parameterizing the rotation RHN from the inertial frame N to the target-centered LVLH frame H.

The initial values of the sensitivities will typically be nonzero for this problem, and can be

directly computed. References 111 and 50 discuss the geometric method, mapping the relative state

in orbit element differences to the relative state in local Cartesian or curvilinear coordinates via

the linear mapping x = [G(θ)] δoe. Writing x∗0 = [G(θ0)] δoe∗0, where δoe∗0 = oes(0) − oe∗t (0), the

initial sensitivities are derived:

si(0) =
dx∗0

d oei(0)
=

d

d oei(0)
(G(θ0) δoe∗0) =

d

d oei(0)
(G(θ0)) δoe∗0 +G(θ0)

d δoe∗0
d oei(0)

(5.47)

G(θ) is reproduced below from Reference 111 for when x is in local Cartesian coordinates and δoe

is in quasi-nonsingular orbit element differences:

Gx =



r
a

vr
vt
r 0 − r

p (2aq1 + rcθ) − r
p (2aq2 + rsθ) 0

0 r 0 0 0 rci

0 0 rsθ 0 0 −rcθsi

− vr
2a

(
1
r − 1

p

)
h 0 1

p (vraq1 + hsθ) 1
p (vraq2 − hcθ) 0

− 3vt
2a −vr 0 1

p (3vtaq1 + 2hcθ) 1
p (3vtaq2 + 2hsθ) vrci

0 0 (vtcθ + vrsθ) 0 0 (vtsθ − vrcθ)si


(5.48)

where vr = ṙ, vt = rθ̇, and c and s denote the cos and sin functions respectively. Because of the

definition of δoe∗0, the final term in Eq. (5.47) can be rewritten as −G(θ0)êi, where êi is a unit

vector with six components, with the ith component one and all other components zero. Note from

Eq. (5.44) that the sensitivity state vectors behave as an augmented position and velocity vector.

In other words, for the elements sj of a given sensitivity vector, ṡj = sj+3 for j = 1, 2, 3.

Denoting ∆ oe = oe−oe∗, and writing each si in terms of its associated element oei, Eq. (5.42)

is rewritten in terms of the sensitivities to and differences in the initial target quasi-nonsingular

orbit elements oe0:

x = x∗ + sa∆a+ sθ0∆θ0 + si∆i+ sq1∆q1 + sq2∆q2 + sΩ∆Ω (5.49)
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Because the target spacecraft orbit is parameterized by epoch orbit elements, an initial statistical

distribution in these epoch elements can be directly mapped to a distribution of future relative

states via the sensitivities si.

In Eq. (5.49), the relative state is expressed as a time-varying vector sum of scalar random

variables. This is interesting because in principle, for the unforced problem, the time-varying vector

states can be computed analytically as functions of the nominal target argument of latitude θ for

the case of Keplerian orbits. This would enable highly efficient uncertainty propagation for the

problem of close-proximity spacecraft relative motion in the vicinity of an uncertain target – at

least for the timespan that the majority of the uncertainty distribution lies within the linear regime.

Interestingly, from Eq. (5.44) it can be shown that some of the sensitivity terms can be influenced

by control. As a result, the action of a controller has some influence on the distribution of possible

relative states.

Returning to Eq. (5.44), the relative state sensitivity dynamics to each orbit element are

derived:

ṡa =

(
Ax,a +Ax,θ

dθ

da

)
x∗ +Axsa +Bx,θ

dθ

da
u (5.50a)

ṡθ0 = Ax,θ
dθ

dθ0
x∗ +Axsθ0 +Bx,θ

dθ

dθ0
u (5.50b)

ṡi = Axsi +Bx,iu (5.50c)

ṡq1 =

(
Ax,q1 +Ax,θ

dθ

dq1

)
x∗ +Axsq1 +Bx,θ

dθ

dq1
u (5.50d)

ṡq2 =

(
Ax,q2 +Ax,θ

dθ

dq2

)
x∗ +Axsq2 +Bx,θ

dθ

dq2
u (5.50e)

ṡΩ = AxsΩ +Bx,Ωu (5.50f)

The unintuitive dθ/doei terms appear due to the influence of changes in the orbit elements a, θ0,

q1, and q2 on the subsequent evolution of θ(t).

All terms appearing in Eq. (5.50) are directly computed and provided below:

Ax,oei =
d

d oei
(Ax) =

03×3 03×3

KAx
oei ΩAx

oei

 (5.51)
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KAx
a =


− 3
a θ̇

2 − 6
a
µ
r3

− 3
a θ̈ 0

3
a θ̈ − 3

a θ̇
2 + 3

a
µ
r3

0

0 0 3
a
µ
r3

 (5.52a)

ΩAx
a =


0 − 3

a θ̇ 0

3
a θ̇ 0 0

0 0 0

 (5.52b)

KAx
θ =


4θ̇2 κ′

κ + 6 µ
r3
κ′
κ

2θ̇2

κ2

(
4κ′2 − κ+ η2

)
0

−2θ̇2

κ2

(
4κ′2 − κ+ η2

)
4θ̇2 κ′

κ − 3 µ
r3
κ′
κ 0

0 0 −3 µ
r3
κ′
κ

 (5.53a)

ΩAx
θ =


0 4θ̇ κ

′
κ 0

−4θ̇ κ
′
κ 0 0

0 0 0

 (5.53b)

KAx
q1 =


2θ̇2β1 + 6 µ

r4
γ1 4θ̇2β1

κ′
κ − 2θ̇2 q2+sin θ

κ2
0

−4θ̇2β1
κ′
κ + 2θ̇2 q2+sin θ

κ2
2θ̇2β1 − 3 µ

r4
γ1 0

0 0 −3 µ
r4
γ1

 (5.54a)

ΩAx
q1 =


0 6

η2
q1θ̇ + 4

κ θ̇ cos θ 0

− 6
η2
q1θ̇ − 4

κ θ̇ cos θ 0 0

0 0 0

 (5.54b)

KAx
q2 =


2θ̇2β2 + 6 µ

r4
γ2 4θ̇2β2

κ′
κ + 2θ̇2 q1+cos θ

κ2
0

−4θ̇2β2
κ′
κ − 2θ̇2 q1+cos θ

κ2
2θ̇2β2 − 3 µ

r4
γ2 0

0 0 −3 µ
r4
γ2

 (5.55a)
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ΩAx
q2 =


0 6

η2
q2θ̇ + 4

κ θ̇ sin θ 0

− 6
η2
q2θ̇ − 4

κ θ̇ sin θ 0 0

0 0 0

 (5.55b)

dθ

da
= −3aη

2r2
0

κ2

κ2
0

n(t− t0) (5.56a)

dθ

dθ0
=
κ2

κ2
0

(5.56b)

dθ

dq1
=

1

r2η2

(
r sin θ(r + a(1− q2

1))− r0 sin θ0(r0 + a(1− q2
1))

+ aq1q2(r cos θ − r0 cos θ0) + q2(r − r0)(a+ r + r0)
) (5.56c)

dθ

dq2
=

1

r2η2

(
− r cos θ(r + a(1− q2

2)) + r0 cos θ0(r0 + a(1− q2
2))

− aq1q2(r sin θ − r0 sin θ0)− q1(r − r0)(a+ r + r0)
) (5.56d)

κ = 1 + q1 cos θ + q2 sin θ (5.57)

κ0 = 1 + q1 cos θ0 + q2 sin θ0 (5.58)

κ′ = −q1 sin θ + q2 cos θ (5.59)

η =
√

1− q2
1 − q2

2 (5.60)

β1 =
3q1

η2
+ 2

cos θ

κ
(5.61)

β2 =
3q2

η2
+ 2

sin θ

κ
(5.62)

γ1 =
2aq1

κ
+
aη2

κ2
cos θ (5.63)

γ2 =
2aq2

κ
+
aη2

κ2
sin θ (5.64)

Bx,Ω =
dBx
dΩ

=

 03×3

−R3(θ)R1(i)˜̂e3R3(Ω)R∗NH

 (5.65a)

Bx,i =
dBx
di

=

 03×3

−R3(θ)˜̂e1R1(i)R3(Ω)R∗NH

 (5.65b)
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Bx,θ =
dBx
dθ

=

 03×3

−˜̂e3R3(θ)R1(i)R3(Ω)R∗NH

 (5.65c)

where ˜̂ei denotes the skew-symmetric tilde (cross) matrix for the ith basis vector.[111] Eqs. (5.51)

- (5.65) are all evaluated on the nominal target orbit, and enable the sensitivity dynamics given in

Eq. (5.44) to be computed.

Substituting R∗NH = R>3 (Ω∗)R>1 (i∗)R>3 (θ∗), the directions for the control components u1, u2,

u3 track the nominal LVLH frame basis vectors. Then, Eq. (5.65) can be simplified when evaluated

on the nominal target orbit:

Bx,Ω =

 03×3

−R3(θ)R1(i)˜̂e3R1(i)>R3(θ)>

 =



0 0 0

0 0 0

0 0 0

0 ci −cθsi

−ci 0 sisθ

cθsi −sisθ 0


(5.66a)

Bx,i =

 03×3

−R3(θ)˜̂e1R3(θ)>

 =



0 0 0

0 0 0

0 0 0

0 0 sθ

0 0 cθ

−sθ −cθ 0


(5.66b)

Bx,θ =

03×3

−˜̂e3

 =



0 0 0

0 0 0

0 0 0

0 −1 0

1 0 0

0 0 0


(5.66c)

Propagating both the nominal relative state x∗ and the sensitivities via Eq. (5.50) once,
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uncertainty distributions in the target orbit elements can be rapidly mapped to an evolving dis-

tribution in the relative state. This mapping is extremely accurate for close-proximity (km-scale)

satellite relative motion and for modest uncertainties in the target orbit.

5.2.3 The Clohessy-Wiltshire Case

The sensitivity dynamics discussed in Section 2 for the general Keplerian relative motion prob-

lem are inconvenient to explore analytically due to their complexity. To avoid such a prolonged

investigation, this section explores the sensitivity dynamics for the controlled relative motion prob-

lem when the target orbit is sufficiently near-circular to use the Clohessy-Wiltshire (CW) model

[36]. It is easier to analyze this system and then afterwards investigate if and how fundamental

conclusions change for the general-eccentricity case.

For the CW problem, the natural relative motion dynamics assume the following highly

simplified linear-time varying form that is a function of the target semimajor axis alone:

ẋ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


x (5.67)

where n =
√
µ/a3. Because the CW problem linearizes about a circular orbit, the orbit element

definition from Section 2 is modified. In particular, the target orbit is parameterized by a, θ, i, and

Ω. The quantity θ is measured from the ascending node, and eccentricity is assumed sufficiently

small that one may write θ ≈ θ0 + nt. The orbit element differences are δoe = (δa, δθ, δe, δi, δΩ)>.

For this study, the chaser periapsis is located at the chaser’s ascending node. Note that it is always

possible to define the inertial frame such that the periapsis is at zero latitude, so there is no loss of

generality with this approach.
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The initial sensitivities are computed in the same manner as before – using Eq. (5.47).

However, the mapping from element differences to local coordinates needs to be modified from Eq.

(6.53):

GCW =



1 0 −a cos θ 0 0

0 a 0 0 a cos i

0 0 0 a sin θ −a cos θ sin i

0 0 na sin θ 0 0

−3
2n 0 2na cos θ 0 0

0 0 0 na cos θ na sin θ sin i


(5.68)

The derivatives of Eq. (5.68) with respect to the target orbit elements are simple and thus are not

explicitly provided.

From Eqs. (5.47) and (5.67), only the sensitivity to the target semimajor axis is influenced

by the relative state. Its dynamics are given with the other sensitivities below:

ṡa = ACW,ax
∗ +ACWsa +Bx,θ

dθ

da
u (5.69a)

ṡθ0 = ACWsθ0 +Bx,θu (5.69b)

ṡi = ACWsi +Bx,iu (5.69c)

ṡΩ = ACWsΩ +Bx,Ωu (5.69d)

ACW,a =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− 9
an

2 0 0 0 − 3
an 0

0 0 0 3
an 0 0

0 0 3
an

2 0 0 0


(5.70)

dθ

da
= − 3

2a
nt (5.71)

Inspecting Eqs. (5.69) – (5.71), the influence of control and the motion of the nominal trajectory

are generally sub-dominant in the dynamics of sa. In other words, ṡa ≈ ACWsa, except for large
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magnitudes of the control signal u, or large values of the components of the nominal relative state

x∗.

Further interpretation of the sensitivity dynamics for the CW case is possible by investigating

the initial values of the sensitivities themselves using Eq. (5.47). Note that the uncontrolled

dynamics of sθ0 , si, and sΩ are all the same as the CW system. It can be shown that all three are

periodic. Consider sθ0(0):

sθ0(0) =



a sin θ0δe

−a

a cos θ0δi+ a sin θ0 sin iδΩ

na cos θ0δe

−2na sin θ0δe

−na sin θ0δi+ na cos θ0 sin iδΩ


(5.72)

The CW no-drift condition is ẏ0 +2nx0 = 0. From Eq. (5.72), the components sθ0,x(0) and sθ0,ẏ(0)

satisfy this constraint. Additionally, sθ0,y is much greater than all other components of sθ0 and is

nearly stationary in the absence of control. it A similar result can be shown for si and sΩ using

their initial components – both of these sensitivities are also periodic in the uncontrolled case. For

si, the dominant component is a large periodic oscillation in si,z, with the state components in the

x and y directions of a negligible scale by comparison. For sΩ, there is a large y component, and

the oscillatory z component is also large, whereas the x component is insignificant.

Because the sensitivities directly map static uncertainty distributions in oe0 to evolving un-

certainty distributions in the relative state, it is of interest to see which sensitivities drive the

growth in the distribution in the absence of control. Because all other sensitivities are periodic,

is clear that growth in components of sa must be driving the secular growth in uncertainty for

uncontrolled relative motion. The unforced behavior of sa turns out to be extremely simple. To
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start out, the initial value of the sensitivity is given below:

sa(0) =



−1− cos θ0δe

δθ0 + cos iδΩ

sin θ0δi− cos θ0 sin iδΩ

−1
2n sin θ0δe

3
2n+ 9n

4a δa− n cos θ0δe

−n
2 cos θ0δi− n

2 sin θ0 sin iδΩ


(5.73)

Substituting the initial sensitivity state into the CW solution [111] and keeping only dominant

terms, the sensitivity to semimajor displays the following approximate behavior, neglecting small

oscillations:

sa(t) ≈
(
−1,

3

2
nt, 0, 0,

3

2
n, 0

)>
(5.74)

It is natural to ask what the influence of control on the sensitivities can have – because any

permitted purposeful control of the sensitivities enables a corresponding control of some aspect

of the evolving relative state uncertainty distribution. To answer this, first recall that the scale

of control needed to significantly influence sa is of a much larger scale than that needed for the

other sensitivities, due to the n/a multiplier on the control u. Thus, the controllability of the

other sensitivities sθ0 , si, and sΩ with lower thrust is considered. For control analyses of this type,

the resulting meager effect of control on sa is neglected. Furthermore, the z components of the

sensitivities are decoupled from the in-plane components and are also neutrally stable, so these will

be ignored as well.

Note that it can be determined from Eqs. (5.69) and (5.66) that the simultaneous control of

all components of x∗, sθ0 , si, and sΩ is impossible. However, control of a subset of these states is

possible. As a demonstration of control of a subset of the sensitivities, a simple strategy is explored

in this section that combines augmented control of the planar x∗ and sθ0 with stabilization of planar

sΩ. The out-of-plane components of the nominal relative state and the sensitivities are ignored.
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The augmented dynamics are given below:

ż =
d

dt

 x2D

sθ0,2D

 =

A2D 04×4

04×4 A2D

 z +Bzu (5.75)

where the control vector is composed of the in-plane accelerations u = (ax, ay)
>, and A2D and Bz

are given below:

A2D =



0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0


(5.76)

Bz =

0 0 1 0 0 0 0 1

0 0 0 1 0 0 −1 0


>

(5.77)

Stabilization of sΩ is achieved by enforcing the no-drift constraint xoff(sΩ) = 4sΩ,x + 2
nsΩ,ẏ ≈ 0 to

prevent secular growth in the sΩ dynamics. This is achieved by the following out-of-plane control

component:

u3 = az =
cos i

sin i sin θ
u1 (5.78)

where some maximum |u3| < δ is enforced as needed for when sin θ is small. Computing the

controllability matrix C = [B AB A2B . . . A7B] for the LTI system given by Eq. (5.75), the

rank is 8, thus the augmented planar state and θ0 sensitivity dynamics are determined to be

fully controllable. Most of the secondary effects of the control strategy are small changes in the

neutrally stable out-of-plane components of the sensitivities si and sΩ, and increases in the out-

of-plane motion of x∗. Additionally, this strategy does have a tendency to grow the small in-plane

components of si. Nonetheless, it is a simple demonstration of the possibility of designing control

to influence the sensitivities.
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5.2.4 Numerical Simulations

5.2.4.1 Efficient Relative State Uncertainty Propagation via the Sensitivities

To demonstrate the successful propagation of the sensitivity dynamics for the general Keple-

rian case, consider the example given by the information in Table 5.4. For this example, the initial

target orbit element error statistics correspond to uncertainty in its initial orbit position on the

order of 100 m, with cm/s error in velocity. The chaser spacecraft orbit position is assumed per-

fectly known, but the relative state is uncertain. The nominal relative state is linearly propagated

using the plant matrix given by Eq. (5.45) and the sensitivities are propagated from their initial

values – obtained using Eq. (5.47) – through use of Eq. (5.50). This first study is control-free,

investigating the behavior of the unforced sensitivities over the course of two nominal target orbit

periods. The dominant components of the sensitivities of relative position to each orbit element

Table 5.4: Eccentric Target Orbit, Unforced Relative Motion

Parameters Values

Nominal Target Orbit oe∗t,0 = (a, e, i, ω,Ω, f0) ≈ (12600 km, 0.3, 63.4◦, 27◦, 2◦, 10◦)
θ∗0 = 37◦, q∗1 = 0.2673, q∗2 = 0.1362

Target Orbit Uncertainty Normal dist., zero-mean, angle deviations ×10−5 degrees:
σa = 20 m, σe = 2× 10−6, σi = 4, σω = 4, σΩ = 1.9, σf0 = 8

Chaser Spacecraft Orbit δoe∗s,0 = oes,0−oe∗t,0 = (0.4 km, 8× 10−5, 0.01◦, 0.006◦, 0◦, 0◦)
Nominal Initial Relative State ρ0 = (−724.2, 926.9, 929.7) m, ρ′0 = (0.009, 1.202, 1.097) m/s

are given in Figures. 5.19 - 5.22. The sensitivities of velocity are not explicitly shown but their

behavior can be inferred from the position sensitivity curves, because the sensitivities behave like

augmented position and velocity state vectors. Inspecting the sensitivity figures, the out-of-plane

components of sensitivities to semimajor axis and θ0 are negligible, and so are the in-plane compo-

nents of sensitivity to inclination. Note that all sensitivities except sa are periodic, thus it is the

uncertainty in target semimajor axis that drives secular growth in relative state uncertainty. This

finding agrees with intuition, because only an error in the target semimajor axis would correspond

to a drift over time.

The effect of the scale of target eccentricity on the sensitivities is straightforward. For low
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eccentricity, the growth in sa,y becomes more linear in time, and the oscillations in sa,x are reduced.

As e → 0, sa,x → −1. Additionally, for low eccentricity, the sθ0,x curve is composed of small

oscillations about zero, and the sθ0,y curve is nearly constant, oscillating about −a∗. For larger

values of eccentricity, the oscillations in sθ0 become large, as demonstrated by the large oscillations

in the two quantities for e = 0.3 in Figure 5.20. The characteristic behavior of si, sq1 , and sq2 does

not change greatly with the eccentricity except for an increasing sharpness near target periapsis

for very high values of eccentricity. For sΩ, the oscillations in the y component flatten out as

eccentricity is decreased.

Note that the scale of components of sa is smaller than the components of sensitivities to the

target orbit element angles because small variations in angular separation scale with the semimajor

axis of the orbit, so even a small error in θ0 can have large consequences for the relative state in

Cartesian components. Rescaling sa = a∗sa might be a superior way of representing the scale of

the sensitivities to semimajor axis – mapping small deviations in (a− a∗)/a∗ to large variations in

the x and y coordinates of the relative state.
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Figure 5.19: Relative Position Sensitivities to Target Semimajor Axis

The real value of propagating the sensitivities is in their use for rapidly and accurately cap-

turing variations in the relative state arising from uncertainty in the target orbit. The sensitivities

are propagated once by evaluating their linear equations on a nominal target orbit, and the nomi-

nal relative state is also propagated once using the nominal target orbit. Then, dispersions in the

target orbit elements from its nominal values can be directly mapped to dispersions in the local
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Figure 5.20: Relative Position Sensitivities to Target Initial Argument of Latitude
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Figure 5.21: Relative Position Sensitivities to Target R.A.A.N and Inclination
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Figure 5.22: Relative Position Sensitivities to Target q1, q2

relative state using Eq. (5.49). To demonstrate the usefulness of this, the statistical variations in

the initial target orbit elements given in Table 5.4 are used to generate a 1000-point Monte Carlo

study of the evolution of the relative state. To investigate collision risk, the time of smallest relative

distance for the nominal relative trajectory is computed to be tcrit ≈ t0 + 1.328T ∗. All 1000 points
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are given in Figure 5.23 at times t0 (blue) and tcrit (red), along with a subset of their connecting

trajectories (gray) and the nominal trajectory (dashed line). This information is all obtained in a

matter of seconds, because the individual points do not need to be numerically propagated and are

instead mapped directly through the sensitivities. Repeating this study with 10,000 points thus

results in minimal increase in runtime. Comparing the sensitivity-mapped relative state solutions

to their true values obtained by numerical integration of the individual cases, the sensitivity study

is revealed to be highly accurate, with none of the position errors ever exceeding 0.2 cm in the

simulated timespan of 1.328 nominal target orbit periods.

−6−4−202

y (km)

−1.6

−0.8

0.0

0.8

1.6

x
(k

m
)

Figure 5.23: Sensitivity-Propagated Relative State Uncertainty Distribution

The relative states depicted in Figure 5.23 are each results for different target orbits – the

relative motion is shown in the nominal LVLH frame centered on the uncertain target at (0, 0).

The chaser spacecraft orbit is known, but the target-centered relative state is unknown due to

target orbit uncertainty. As expected, this relative state uncertainty grows over time, discernible

from the spread in the initial relative positions (blue) to the spread in final relative positions (red)

in Figure 5.23. This is an interesting result because a single linear simulation allows very large

samples of possible relative states to be propagated efficiently, despite the fact that each of these

points is for a different target orbit and would traditionally require its own linearization.

Overall, this method tends to work quite well for at least one target orbit period for un-



142

certainties in the target orbit corresponding to up to km-scale initial position error in low Earth

orbits. The sensitivities enable efficient characterization of the evolving uncertain relative state

for proximity operations in the vicinity of an uncertain target object. Additionally, they enable a

direct study of which target orbit element uncertainties are the largest contributors to the relative

state error at a future time of interest. Because it relies on linearized dynamics of the relative

state’s sensitivity to target orbit elements, it breaks down with both large separations in the nom-

inal relative state and with sufficiently large differences between the nominal target orbit and the

true orbit. As a result, the accuracy of the method will degrade for target orbit statistics with

large standard deviations in the initial orbit elements. The method is fairly sensitive to errors in

semimajor axis, which must be known to a certainty of kilometers or better. Nonetheless, it is quite

useful for situations with modest uncertainty in the target object orbit.

5.2.4.2 Näıve Relative State Control

To test the influence of control on the sensitivities, this section explores simple examples of

infinite-time LQR control with the CW dynamics. The following cost is minimized for symmetric

positive-definite Q and R:

J =

∫ ∞
t0

(
x>Qx+ u>Ru

)
dt (5.79)

The cost-minimizing feedback control is u = −R−1B>Px where P solves the algebraic Riccati

equation:

A>P + PA− PBR−1B>P +Q = 0 (5.80)

Note that typical control maneuvers conducted in close-proximity exert only a small influence

on the sensitivities. This is especially true if the control effort for the maneuvers is low. As an

example, consider the case given by the data in Table 5.5.

The optimal control signal solving the infinite-time LQR problem parameterized by Table

5.5 is not very aggressive, taking about 2 nominal target orbit periods to settle 95% of the initial

relative state error. The resulting nominal relative motion is given by the dotted line in Figure
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Table 5.5: Simulation Parameters, CW Control Example 1

Parameters Values

Nominal Target Orbit Elements a∗ = 8000 km, θ
∗
0 = 37◦, i∗ = 30◦, Ω∗ = 21◦

Target Orbit Uncertainty Normal dist., zero-mean, angle deviations ×10−5 degrees:
σa = 6.0 m, σi = 4.0, σΩ = 1.9, σθ0 = 8.0

Nominal Initial Relative State ρ0 = (−0.92,−2.92,−3.76) km, ρ′0 = (1.27, 2.06, −5.22) m/s
Target Relative Motion Bounded relative orbit, x(0) = 0.5 km, ẏ(0) = −2n∗x(0)
Control Parameters Qρρ = 2I3×3, Qρ′ρ′ = 100I3×3, R = 1013I3×3

Simulation Parameters tf = 2.25 T ∗

5.24. The achieved nominal relative orbit is approximately 2 km by 1 km. To simulate the effects

of uncertainty in the target orbit, a 1000-point Monte Carlo study is also propagated using the

sensitivities for the CW case, whose dynamics are given by Eq. (5.69). None of the sensitivity-

propagated controlled relative position errors exceed 5 cm from their true values in the 2.25 nominal

orbit periods simulated. This demonstrates that the sensitivities remain effective for efficiently

studying relative state outcomes for cases of controlled relative motion.
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Figure 5.24: Controlled Relative State, Näıve Control Example

The most significant relative state sensitivities are given in Figures 5.25 and 5.26. Note that

the sensitivities for relative state propagation without control are given as dotted black lines that

are very close to their counterparts from the controlled example (colored). This shows that the

control strategy explored for this example exerts only a small influence on the sensitivities. This

is because the relative state sensitivities are more costly to significantly influence than the relative

state. First, for the sensitivity to semimajor axis, Eqs. (5.69) and (5.71) show that the influence of
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Figure 5.25: Sensitivity to Semimajor Axis, Näıve Control Example
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Figure 5.26: Sensitivities to Target Orbit Element Angles, Näıve Control Example

control on the dynamics is pre-multiplied by n∗/a, a very small quantity. For the sensitivities to Ω,

i, and θ0, the reason for the weak influence of control is due to the sheer scale of those sensitivity

states, which are much larger than the relative state. Recall from Eq. (5.69) that these sensitivities

obey forced CW dynamics, just like the relative state. There are actually comparable effects of

control on the relative state and the sensitivities - the control exerts a km-scale influence on the

relative state, and a km/rad scale influence on the sensitivities. The sensitivities are simply quite

costly to influence significantly, at least in comparison to the cost of achieving desired regulation

and tracking control of the relative state. This is an important point that will be discussed further

in the next control example.

Note from Figures 5.25 and 5.26 that the simple predictions of Eqs. (5.72) - (5.74) and their

associated discussions in Section 3 are accurate. In particular, for si, the dominant component is a
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large periodic oscillation in si,z, with the state components in the x and y directions of a negligible

scale by comparison. For sΩ, there is a large y component, and the oscillatory z component is also

large, whereas the x component is insignificant (not shown). Additionally, by inspection of Figure

5.25, the simple secular behavior given by Eq. (5.74) for sa is also shown to be accurate.

Comparing the curves in Figures 5.25 and 5.26 with their counterparts in Figures 5.19 - 5.22

for an eccentric target orbit, the qualitative differences in the sensitivity between the circular target

and eccentric target orbit cases are fairly straightforward. First, the oscillations in sa,x and sa,y

become more pronounced, but the secular growth in sa,y is retained for both. Next, because the

target orbit is now circular, the in-plane sensitivities of the relative state to target elements Ω

and θ0 no longer vary considerably over time. Lastly, because the target orbit is assumed circular

and the dynamic effects of nonzero target orbit eccentricity are not at all considered by the CW

formulation, the sensitivities sq1 and sq2 are undefined here.

5.2.4.3 Augmented Relative State and Sensitivity Control

As an example of combined control of the relative state and a subset of the sensitivities,

the strategy discussed in Section 3 is implemented. This strategy maneuvers the spacecraft to

a desired final relative state, and in the process, reduces the planar relative state sensitivity to

θ0 while preserving the planar sensitivity to Ω. In general, this results in an exaggeration of the

neutrally stable out-of-plane motion, while also potentially generating insignificant increases in the

in-plane sensitivity of the relative state to the target inclination. For this example, the relevant

simulation parameters are provided in Table 5.6.

In general, it has been determined that controlling the sensitivities is more costly than control

of the relative state. As a simple demonstration of the possibility of controlling the relative state

along with a subset of the sensitivities, a stationary along-track offset of 4 km is targeted, in a control

maneuver that also yields a 10% reduction in the magnitude of sθ0,y, while keeping sθ0,x ≈ 0 and

preserving the values of the planar components of sΩ. Through this action, the contribution of

uncertainty in the target orbit element θ0 to uncertainty in the relative state is reduced. The purpose



146

Table 5.6: Simulation Parameters, CW Control Example 2

Parameters Values

Nominal Target Orbit Elements a∗ = 8000 km, θ
∗
0 = 37◦, i∗ = 30◦, Ω∗ = 21◦

Nominal Initial Relative State ρ0 = (−0.92,−2.92,−3.76) km, ρ′ = (1.27, 2.06, −5.22) m/s
Control Goals ρ2D = (0,−4) km, ρ′2D = (0, 0) m/s,

sθ0,x = 0 km/rad, sθ0,y = −7200 km/rad (10% reduction)

Preserve sΩ, ignore out-of-plane relative state and sensitivities
Control Parameters Q = diag(200, 200, 104, 104, 0.02, 0.02, 10, 10), R = 1011I2×2,

Out-of-plane control u3 = cos i
sin i sin θ

u1, |u3| < 1 m/s2

Simulation Parameters tf = 4.0 T ∗

of this control example is to demonstrate that the sensitivities can be meaningfully influenced by

control action.

Figure 5.27: Relative Motion Trajectory, Augmented Control Example

Using the augmented control design discussed in Section 3 and the control parameters in

Table 5.6, the control effect is simulated for 4 nominal target orbit periods. The resulting motion

of the nominal trajectory is given in Figure 5.27. The initial point is given by a blue x and the

final point is given by a red x, and the target is at the origin of the nominal LVLH frame, indicated

with a black x. Note from Figure 5.27 that the relative state trajectory follows a very indirect path

to the target relative position. This is because a lot of control effort has to be exerted to reduce

the planar components of sθ0 as specified. There is no way to exert this control effort without also

affecting the relative state in the process.



147

The time-varying behaviors of each component of the controlled nominal relative position are

given in Figure 5.28. Examining both Figures 5.27 and 5.28, the initial large change in the relative

position is clear. There is an almost 8 km shift in x and a ∼ 2 km shift in y. This maneuver seems

necessary to initialize reduction in sθ0,y. Using other control simulations, it is determined that the

size of this initial maneuver scales with the desired reduction in sθ0,y. Despite this large initial

deviation, the relative state does eventually settle to the desired value, as can be seen from Figure

5.28. The planar relative position settles to the desired values x = 0, y = −4. These desired values

are indicated by the two horizontal dashed lines.
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Figure 5.28: Relative Position, Augmented Control Example
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Figure 5.29: Controlled Sensitivity to θ0, Augmented Control Example

Note that as a consequence of the control compensation given by Eq. (5.78), the out-of-plane

motion is highly affected, as indicated by the gray curve in Figure 5.28. The out-of-plane nominal
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Figure 5.30: Stationary Sensitivity to Ω, Augmented Control Example

relative state oscillations would be limited to |z| < 2 km without this compensation strategy (purple

curve), but grow to oscillations of up to |z| < 9 km, especially in the first 1.5 orbits. Note that

the out-of-plane motion settles to smaller variations after 2.4 orbits. However, without the control

compensation strategy, there would be larger changes in sΩ. This is clear from examining Figure

5.30. Without the control compensation, u3 = 0, and sΩ,y is heavily affected. This is given by the

purple curve, while the properly stabilized behavior of sΩ,y is shown by the orange curve.

The position components of sθ0 are given in Figure 5.29. The 10% reduction in the absolute

value of sθ0,y is achieved. The uncontrolled sθ0,y is given by the dashed horizontal curve towards the

bottom of the plot, while the orange curve shows the effect of control on that component. Note the

large scale of sθ0,y necessitates that it be plotted with its own y axis, on the right side of the plot.

This enables small details in the other two components to be discernible. The small oscillations in

sθ0,z are essentially unaffected, and the component sθ0,x is successfully regulated.

Finally, the control components for this example are given in Figure 5.31. Note from Eq.

(5.78) that |u3| → ∞ as sin θ → 0, but this is avoided by enforcing |u3| < 1 m/s2. Nonetheless,

the control signal prescribed in Figure 5.31 might be a challenge to implement practically, due

to the combination of small and medium accelerations needed, and especially by the challenging

profile of u3(t). Additionally, a more ambitious control strategy than what is explored with this

second example is probably possible. These things are beyond the scope of this work, which only

introduces the sensitivity dynamics and does a preliminary investigation of whether or not they
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can be influenced by control. From this second control example, it is clear that the sensitivities can

be meaningfully influenced by control, but it is costly, and difficult to balance with relative state

control requirements. As discussed previously, because the components of the sensitivities are so

large, more control action must be exerted to significantly change these than to significantly change

the relative state.
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Figure 5.31: Control Accelerations, Augmented Control Example

This last point is an important insight of this work. It is an appealing concept to directly

control some aspects of the evolving relative state uncertainty distribution, but it doesn’t seem to

always be practical. The most practical way to ensure safe relative motion is to design relative

motion while being aware of the distribution of possible relative states for a chosen maneuver design.

It is much easier to move the entire relative state distribution than it is to significantly contract

it in particular directions. Inspecting Figure 5.24 for example, it is apparent that considering the

nominal relative state alone in relative motion control design can be dangerous, because there is a

risk for impact depending on how the uncertainty distribution evolves. Computing the sensitivities

along with the nominal relative state response to a control action enables safe relative motion

control in the presence of target orbit uncertainty to be executed very efficiently. Finally, note

that there are limits to what control can achieve when influencing the relative state uncertainty

distribution – changing the shape is possible, but greatly reducing the volume through the action

of control alone should be impossible. Only measurements can effectively curb uncertainty growth.
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5.2.5 Discussion

This section explores the sensitivities of the relative state to initial target orbit elements in the

satellite relative motion problem. The initial values and the dynamics of the sensitivities are derived

for the case of any target orbit eccentricity and for the special case that the target orbit is circular.

Simulations performed show that the sensitivities can be used to efficiently study how the uncertain

relative state distribution evolves with high accuracy. The sensitivities can be used to directly map

from uncertainty distributions in the initial target orbit elements to the consequential evolving

uncertainty distribution in the relative state. This enables rapid characterization of statistical risks

of impact for the case of maneuvering in the vicinity of an uncertain target object. This would be

especially useful in instances where the target object cannot be continuously tracked.

To explore the effects of relative state control on the sensitivities, infinite-time LQR control

is implemented with the CW system. The effects of control on the sensitivities are determined

to typically be fairly small, because the sensitivities to target elements tend to have much larger

state values than those of the relative state, and are thus more difficult to significantly alter. The

prospect of augmented control of a subset of the sensitivities with the nominal relative state is also

briefly explored in this section, testing a formulation that controls planar relative state and planar

sensitivity to the initial target of argument latitude while preserving sensitivity to target R.A.A.N.

This simple control design is implemented with infinite-time LQR and achieves the desired control

objectives. It is observed that inducing large changes in the sensitivities is fairly expensive, and in

practice it would often be easier to simply control the relative state directly while computing the

effects of such control actions on the uncertainty distribution via the sensitivities.

The concept of rendezvous and relative motion control in the vicinity of an uncertain orbit is

not new. However, the formulation discussed in this section offers new perspectives. The sensitivity

dynamics are shown to be rather simple, behaving like the relative motion dynamics but forced by

control and by the relative state in some cases. There are several ways this work can be expanded

on in the future. First, analytic solutions of the relative state sensitivities to the target orbit
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elements could be derived. Combined with a suitable analytic formulation for propagating the

relative state, such as by using the Tschauner-Hempel equations [126], this would remove the need

for any numerical integration when studying the problem of maneuvering in the vicinity of a poorly

tracked target object. Additionally, the full problem could be explored – including sensitivities of

the relative state to both the initial target and chaser orbit elements. While maneuvering space

objects are typically well-tracked, the small error in the chaser spacecraft’s orbital state can still

be important in the uncertain relative motion problem. Additionally, more exploration of the

limitations of the augmented control of the relative state and sensitivities would be useful. Lastly,

the sensitivity formulation can in principle be used to design control that reduces the statistical

risk of collision.

5.3 Conclusions

This chapter introduces the concept of the linear sensitivities for spacecraft formation flying

and relative motion control. These are the derivative of the relative state with respect to an

uncertain dynamically relevant parameter. It is shown that these vector quantities have their own

well-defined dynamics, which prompts control and modeling exploration. The joint consideration

of both the system state x and its sensitivities si allows for much more information about a

system than just the relative state to be considered. This is demonstrated in section 5.1 with

control that takes into account uncertainty in important dynamic parameters, and especially with

the computationally efficient sensitivity-based uncertainty propagation shown in section 5.2. The

sensitivities additionally encourage control explorations, but it is shown in section 5.1 that standard

LQR with a sufficiently accurate relative motion model is already capable of achieving satisfactory

regulation control. In section 5.2, the concept of controlling the sensitivities themselves is revisited

for a different type of problem – in a case with navigational uncertainty instead of mere dynamic

uncertainty. The relative state uncertainty distribution is shown to be partially controllable as

well. This is revealed to be costly in terms of propellant – more costly than shifting the entire

uncertainty distribution to minimize the statistical likelihood of an undesirable state value (such
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as collision). While the implications of control of the sensitivities are interesting, this dissertation

shows that their most promising application for the spacecraft relative motion problem seems to

be in modeling of the future behavior of the relative state, as well as the evolving relative state

uncertainty distribution. A desensitized control concept that was not explored is to design impulsive

maneuvers that avoid exacerbating key sensitivities in the relative motion problem that could drive

a need for large corrective maneuvers later in the future.



Chapter 6

Modal Decomposition of Spacecraft Relative Motion

To address the problem of efficiently studying the nature of relative motion in the vicinity of

general orbits, this chapter leverages the classical idea of the modal decomposition, used extensively

in the theory of vibrations [92]. All small deflections of a continuous and homogeneous body can

be expressed as a linear weighted sum of independent mode shapes, which each have their own

associated frequency. In the same manner for the satellite relative motion problem in the vicinity

of a closed orbit, all possible motions are the sum of 6 independent fundamental motions with their

own shapes and associated frequencies:

x(t) =

6∑
i=1

ciξi(t) (6.1)

where the ci are constants for the unperturbed problem for which the ξi are solutions. A prudent

choice of fundamental solutions enables the relative motion to be investigated and designed by

simply varying the weighing constants, with the fundamental solutions designed such that their

geometry is as simple as possible. In this manner, the constants perform a similar function to ROEs,

by directly providing geometric insight. Figure 6.1 illustrates this conceptually with a depiction

of relative motion decomposed into three simpler constituent modal motions. One benefit of the

modal decomposition approach is that oscillatory, unstable, and drift motions are naturally isolated

from one another. There are also many other benefits which will be discussed. Note that most of

the work in this chapter can be found in Reference 26.
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Figure 6.1: Example Satellite Relative Motion as a Sum of Individual Modes

6.1 Motivating Example

To motivate the arguments in this chapter, consider an introductory exercise using the simple

well-known relative motion problem defined by Clohessy and Wiltshire [36]. This problem, discussed

in chapter 2, studies the dynamics of the relative state of a deputy spacecraft with respect to a

chief, which is in a circular orbit. The relative state is augmented relative position and velocity

x =
(
ρ>, ρ′>

)>
resolved in the chief-centered local vertical-local horizontal (LVLH) frame. The

linearized unforced relative motion dynamics for the Clohessy Wiltshire (CW) problem are given

below:

ẍ− 2nẏ − 3n2x = 0 (6.2a)

ÿ + 2nẋ = 0 (6.2b)

z̈ + n2z = 0 (6.2c)

for LVLH frame-resolved relative position ρ = xêr + yêt + zên and velocity ρ = xêr + yêt + zên.

The constant n =
√
µ/a3 is the mean motion. Recall that the out-of-plane z motion is a simple

harmonic oscillator. The solutions to any linearized relative motion equations can generally given

in an STM format as x(t) = [Φ(t, t0)]x(t0). Ignoring the simple and decoupled z component of the

solution, the planar part of the STM is given below with epoch time t0 = 0:

[Φ(t)] =



(4− 3 cosnt) 0 sinnt
n

2
n(1− cosnt)

6(sinnt− nt) 1 − 2
n(1− cosnt) 4

n sinnt− 3t

3n sinnt 0 cosnt 2 sinnt

−6n(1− cosnt) 0 −2 sinnt 4 cosnt− 3


(6.3)
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To illuminate the nature and types of planar relative motion permitted by Eq. (6.3), there

are a few options. First, in the case of CW dynamics, the first two rows of the 4-state STM in Eq.

(6.3) can be factored into a simple and geometrically insightful pair of expressions:

x(t) = A0 cos (nt+ α) + xoff (6.4a)

y(t) = − 2A0 sin (nt+ α)− 3

2
ntxoff + yoff (6.4b)

where A0, α, xoff, and yoff are ROEs that are functions of the initial relative state conditions. These

are defined in Reference 111. Eq. (6.4) shows that the planar relative motion is in a 2:1 ellipse

when xoff = 0, and otherwise drifts in the along-track direction. This concise and highly specialized

expression stems from the simplicity of the CW dynamics. In relative motion cases where the STM

is more complicated than the form given in Eq. (6.3), an alternate and more general approach for

understanding the relative motion is needed.

One alternate approach is to consider an expression of the relative motion in terms of the

fundamental solutions ξi, as in Eq. (6.1). The most obvious fundamental solutions are the columns

of the STM, i.e. ξi = φi, for which c = x0. These are typically inconvenient for geometric

interpretation. For the case of the CW problem, two of the four columns of the planar STM given by

Eq. (6.3) have drifting components, whereas the drifting part of the solution is one-dimensional. A

superior parameterization would thus isolate the drifting motion to only one fundamental solution,

with the associated constant ci providing a no-drift constraint ci = 0. Such a set of solutions

is offered by the eigenvalue decomposition of the planar CW problem into independent modes.

More generally, the modal decomposition serves as an attractive parameterization of the relative

motion solution regardless of the dynamics and orbit geometry, for any periodic orbit. This will be

discussed later.
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For the planar CW problem, which has LTI dynamics, the decomposition is computed below:

[A2D] =



0 0 1 0

0 0 0 1

3n2 0 0 2n

0 0 −2n 0


= [V ][J ][V ]−1 (6.5)

[V ] =



0 − 2
3n − 1

2n − 1
2n

1 0 − i
n

i
n

0 0 − i
2

i
2

0 1 1 1


(6.6)

[J ] =



0 1 0 0

0 0 0 0

0 0 ni 0

0 0 0 −ni


(6.7)

Using the theory of superposition, the solution to the in-plane dynamics is given below:

x(t) = c1v1e
λ1,2t + c2 (v1t+ v2) eλ1,2t + c3v3e

λ3t + c4v4e
λ4t (6.8)

where vi is the ith column of [V ]. Evaluating this at t = 0, let the solution constants be defined as

c ≡ (c1, c2, c3, c4)> Solving c = [V ]−1x0 yields the following values for the constants ci:

c1 = y0 −
2

n
ẋ0

c2 = − 6nx0 − 3ẏ0

c3 = 3nx0 + iẋ0 + 2ẏ0

c4 = 3nx0 − iẋ0 + 2ẏ0

(6.9)

The solution given by Eq. (6.8) is written in a simpler form, noting λ1,2 = 0, and removing the

imaginary part of the constants via the factorization c3 = cR + icI, and v3 = vR + ivI:

x(t) = c1v1 + c2 (v1t+ v2) + 2cR
(
vR cosnt

− vI sinnt
)
− 2cI (vR sinnt+ vI cosnt)

(6.10)
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Thus, cR = 3nx0 + 2ẏ0, cI = ẋ0, and the fundamental modal solutions weighed by constants c1, c2,

cR, and cI are plotted in order in Figure 6.2. The initial positions of the oscillatory solutions are

marked with an x, and they are scaled such that they don’t overlap.

The third and fourth modal solutions are simply two different phases, forming a basis on the

2:1 ellipse, and the first modal solution is a constant offset in the along-track direction, whose scale

and direction is determined by the magnitude and sign of c1. Comparing this to Eq. (6.4), it is clear

that the insights of the ROE-based solution have been recovered. For bounded relative motion,

the relative orbit is a 2:1 ellipse which can be centered anywhere in the along-track direction.

Inspecting the drift solutions in Eq. (6.10) and in Figure 6.2, the magnitude of c2 determines the

rate of along-track drift, and its sign determines the direction.

As demonstrated by the simple CW example, the strength of a modal decomposition for

analysis is that it naturally separates out oscillatory, drifting, and stable/unstable components of

the relative motion. For the Keplerian problem, there will always be one relative motion drift mode

and no more that three in-plane oscillatory modes. For general periodic orbits, the nature of the

relative motion varies based on the dynamics, and concise analytic solutions become impossible. It

is in these settings where a modally decomposed solution resolved in favorable coordinates becomes

most valuable to the astrodynamicist. However, the application of the theory to the Keplerian case

connects strongly to other literature on the topic.

−1.0−0.50.00.51.0

y

−0.4

−0.2

0.0

0.2

0.4

x

1

2

3

4

Figure 6.2: Planar Relative Motion Modes for the Clohessy-Wiltshire Problem
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6.2 General Formulation

The modal decomposition concept in this chapter is enabled by Floquet theory, which is

reviewed extensively in chapter 2. The modal decomposition of solutions to a system of ODEs

is traditionally defined for autonomous equations, but essentially all non-averaged relative motion

except the CW problem is characterized by non-autonomous differential equations of the following

form:

ẋ = [A(t)]x (6.11)

The Lyapunov-Floquet transformation [97] can be used to equate a linear time-varying (LTV)

dynamic system with periodic plant matrix [A(t)] = [A(t + T )] to a linear time-invariant (LTI)

counterpart via a periodic coordinate transformation:

x = [P (t)]z = [P (t+ T )]z (6.12)

where z represents the coordinate set for the LTI equivalent of the system in x, with the following

simple LTI dynamics:

ż = [Λ]z (6.13)

The LF transformation and the LTI matrix are any pair of matrices [P (t)], [Λ] satisfying the

following matrix differential equation:

[P (t)]−1
(

[A(t)][P (t)]− [Ṗ (t)]
)

= [Λ] (6.14)

In analytically solving this equation, which can be challenging, one seeks periodic solutions for the

individual elements of [P (t)] while also requiring the elements of [Λ] to be constant. In practice,

the periodicity conditions for all non-trivial elements of [P (t)] constrain the admissible forms of

[Λ], but still allow for variations in the values of elements in [Λ] depending on the form of [P (t0)].

As a result, there can be more than a single pair of matrices satisfying Eq. (6.14).

A unique definition of the LF transformation is given below using the monodromy matrix.

This transformation conveniently equals identity at the epoch time:

[P (t)] = [Φ(t, t0)]e−[Λ](t−t0) (6.15)
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[P (t0)] = [P (t0 + kT )] = [I] (6.16)

[Λ] =
1

T
ln (Φ(t0 + T, t0)) (6.17)

The difficulty of computing the LF transformation varies depending on the coordinates chosen to

parameterize the problem. For example, for the Keplerian case, the LF transformation in orbit

element differences will be shown to be identity except for a single row, whereas the transformation

for local coordinates [120] is much more difficult to identify.

From the LF transformation above, the modal decomposition can be defined as a transfor-

mation from the LTI eigenvalue decomposition:

x(t) =
6∑
i=1

ci[Px(t)]vie
λi(t−t0) (6.18)

Because [Λ] is a real matrix, any complex eigenvector λ = σ+iω has a complex conjugate λ = σ−iω,

The eigenvectors are also complex conjugates. Thus, for an eigenvalue λ1 = σ+ iω with eigenvector

v1 = vR + ivI, one can find complex conjugates λ2 = σ − iω and v2 = vR − ivI. Then, to enforce

z ∈ R6, one writes c1 = cR + icI and c2 = cR− icI. The factorization z(t) = c1v1e
λ1t+c2v2e

λ2t+ . . .

is written in purely real form below:

z(t) = 2cR (vR cosωt− vI sinωt) eσt − 2cI (vR sinωt+ vI cosωt) eσt + . . . (6.19)

Note from this equation that by specifying the values of cR and cI, one is also choosing the initial

condition of the system and the resultant behavior. Any choice of cR and cI is valid and results in

a real solution z ∈ R6 for complex-conjugate pairs c1 = cR + icI and c2 = cR − icI.

One last note will illuminate how the constants ci relate to the initial conditions of the system.

Evaluating Eq. (6.18) at t = t0 and defining c ≡ (c1, c2, c3, c4, c5, c6)>, one obtains x0 = [V ]c.

Thus, the appropriate constants may be obtained for given initial conditions via c = [V ]−1x0.

As a result of the above discussion, the number of fundamental modes varies based on the

nature of [Λ]. The number of geometrically distinct modes M is given in terms of the number of

complex eigenvalue pairs pc:

M = 6− pc (6.20)
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Additionally, it is useful to replace any complex-conjugate pair of modal constants c1, c2 with the

associated components cR, cI in the modal constant vector c.

6.3 Analytic Results for the General Keplerian Relative Motion Problem

6.3.1 Relative Motion Dynamics

In a coordinate-based dynamics approach (as opposed to the coordinate-invariant approaches

of geometric and variational mechanics [81]), the choice of coordinates for a system determines the

form of the dynamics. For the relative motion problem, the two most common representations

are (1) local coordinates of relative position and velocity and (2) the coordinates of orbit element

differences. The first is easily physically interpreted, and the latter is often mathematically more

convenient. The general perturbed linearized dynamics for both representations are important for

this work and are both reviewed here.

Starting with local coordinates, consider the Cartesian relative state defined previously as x =(
ρ>, ρ′>

)>
. Dropping the c subscript for chief orbit parameters, the general linearized dynamics

in these coordinates are given below in terms of the chief radial vector r and angular velocity vector

ω and their derivatives [35]:

ẋ =

 03×3 I3×3

∂
∂ρ (r̈d − r̈)−

[
˜̇ω
]
− [ω̃] [ω̃] −2 [ω̃] + ∂

∂ρ̇ (r̈d − r̈)

x (6.21)

ω =
r

h
(r̈ · ên) êr +

1

r
(ṙ · êt) ên (6.22)

ω̇ =
r

h

(
ṙ

r
(r̈ · ên)− 2

r

h
(r̈ · êt) (r̈ · ên) + (

...
r · ên)

)
êr

+
1

r

(
(r̈ · êt)− 2

ṙ

r
(ṙ · êt)

)
ên

(6.23)

where the tilde on a symbol denotes the transformation of its vector into the cross-product matrix,

and all matrices appear in square brackets. The above expressions are general, and apply to

Keplerian and non-Keplerian dynamics. For the Keplerian case, they simplify significantly into

a more common form that can be found in Reference 111. An inconvenience of these equations
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is that they are time-varying if ω̇ 6= 0. Further, for the perturbed problem, they can assume a

very complicated form and the effects of perturbations are almost irrevocably mixed in with the

Keplerian contribution. Furthermore, computation of the plant matrix requires information about

the derivative of the force model, shown here explicitly as the jerk,
...
r .

An alternative parameterization in terms of orbit element differences δoe = oed−oec separates

out the effect of perturbations from the unperturbed linear dynamics, which are trivial except

in one element. This workwill use the differential quasi-nonsingular (QNS) elements given by

δoe = (δa, δθ, δi, δq1, δq2, δΩ)>. The Gauss planetary equations are provided below. Note

q1 = e cosω, q2 = e sinω, θ = ω+f is the argument of latitude, and the other elements are classical

semimajor axis a, inclination i, and right ascension of the ascending node Ω.

ȧ =
2a2

h

(
(q1 sin θ − q2 cos θ)ar +

p

r
at

)
(6.24a)

θ̇ =
h

r2
− r sin θ cos i

h sin i
an (6.24b)

i̇ =
r cos θ

h
an (6.24c)

q̇1 =
p sin θ

h
ar +

(p+ r) cos θ + rq1

h
at +

rq2 sin θ

h tan i
an (6.24d)

q̇2 = −p cos θ

h
ar +

(p+ r) sin θ + rq2

h
at −

rq1 sin θ

h tan i
an (6.24e)

Ω̇ =
r sin θ

h sin i
an (6.24f)

In the absence of perturbations, the only nonzero term in Eq. (6.24) is the true latitude rate

θ̇ = h/r2. Factoring the Keplerian component of the Jacobian of the right hand side of Eq. (6.24)

into the mostly zero matrix [Aδoe,0(t)], the complicated but typically sub-dominant perturbation-

induced component of the Jacobian is written as [δAδoe(t)] and the linearized differential QNS

dynamics are written concisely below:

δȯe =
(

[Aδoe,0(t)] + [δAδoe(t)]
)
δoe (6.25)

The benefit of Eq. (6.25) over Eq. (6.21) is that the jerk no longer needs to be computed, the

effects of perturbations are neatly separated out in the dynamics, and the remaining Keplerian
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component is fairly simple. A disadvantage is that the differential QNS elements are not as well-

suited for geometric interpretation.

References 50 and 111 discuss the geometric method, which relates the relative state in local

coordinates to the relative state in differential QNS elements:

x(t) =
(

[G0(t)] + [δG(t)]
)
δoe(t) = [G(t)] δoe(t) (6.26)

where [G0(t)] captures the Keplerian component of the mapping. The [δG(t)] matrix captures

the perturbation-induced component of the mapping and is typically sub-dominant to [G0(t)].

Reference 50 demonstrates the derivation of [δG(t)] for the J2 perturbation.

6.3.2 The Lyapunov-Floquet Transformation in any Coordinates

Motivated by the multitude of possible coordinates to parameterize the relative motion prob-

lem and the inconvenience of computing the LF transformation from scratch in a given coordinate

set, a means to obtain the LF transformation in one set of relative motion coordinates from the

transformation in any other set is derived here. For notational convenience, this is explored through

the relationship between differential quasi-nonsingular (QNS) elements and local coordinates, but

the same concept applies for any pair of coordinates.

Let x denote the relative state in the desired local coordinates and δoe denote the relative

state in the orbit element differences. As already shown with Eq. (6.26), these two representations

are approximately related by an orbit-periodic linear mapping:

x = [G(t)] δoe (6.27)

The following linear mapping between the STMs is obtained using Eq. (6.27):

[Φx(t, t0)] = [G(t)][Φδoe(t, t0)][G(t0)]−1 (6.28)

The following mapping between the plant matrices can also be shown:

[Ax(t)] = [G(t)][Aδoe][G(t)]−1 + [Ġ(t)][G(t)]−1 (6.29)
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Let [Px(t)] and [Pδoe(t)] denote the LF transformations, transforming the two coordinate sets to

their corresponding LTI coordinates:

δoe = [Pδoe(t)]zδoe (6.30)

x = [Px(t)]zx (6.31)

These transformations are used to relate the plant matrices for the LTI forms of both coordinates,

choosing [Px(t0)] = [Pδoe(t0)] = [I6×6]:

[Λx] =
1

T
ln ([Φx(t0 + T, t0)])

=
1

T
ln
(
[G(t0 + T )][Φδoe(t0 + T, t0)][G(t0)]−1

) (6.32)

Noting [G(t0 + T )] = [G(t0)], the matrix logarithm is factored as follows:

[Λx] = [G(t0)] · 1

T
ln ([Φδoe(t0 + T, t0)]) · [G(t0)]−1

= [G(t0)][Λδoe][G(t0)]−1

(6.33)

The LTI matrix for the local coordinate relative motion representation is simply a change-of-basis

of the LTI matrix for the quasi-nonsingular element differences.

Using Eqs. (6.33) and (6.14), the following is obtained:

[Px]−1
(

[Ax][Px]− [Ṗx]
)

=

[G(t0)][Pδoe]−1
(

[Aδoe][Pδoe]− [Ṗδoe]
)

[G(t0)]−1

(6.34)

Substituting Eq. (6.29) and expanding yields

[Px]−1[G][Aδoe][G]−1[Px] + [Px]−1[Ġ][G]−1[Px]− [Px]−1[Ṗx]

= [G(t0)][Pδoe]−1[Aδoe][Pδoe][G(t0)]−1 − [G(t0)][Pδoe]−1[Ṗδoe][G(t0)]−1

(6.35)

This equation is used to show the following relationship between the LF transformations for the

two coordinates, assuming a periodic geometric relationship [G(t)] = [G(t+ T )]:

[Px(t)] = [G(t)][Pδoe(t)][G(t0)]−1 (6.36)

The LF transformation and LTI form in any set of coordinates can thus be obtained using the

corresponding information in another set of coordinates along with the transformation between
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coordinates via Eqs. (6.33) and (6.36). These relationships hold for linearization about any closed

orbit, regardless of whether or not the dynamics are Keplerian.

Through the modal decomposition using the mapped LF transformation, the astrodynamicist

is freed to explore the choice of coordinates that is most desirable for a given application without

having to do a prohibitive amount of work when switching coordinates. The only recurring analytic

burden is in deriving the necessary linear mapping [G(t)] for any new coordinate representation of

interest.

The LF transformation is now obtained for Keplerian dynamics of any eccentricity in QNS

element differences, and this is analytically transformed to LF transformations in Cartesian and

spherical coordinates. It is shown that the modal solutions in Cartesian and spherical coordinates

are different. This is an interesting result that illustrates how the choice of working coordinates

can affect the complexity of the modal solutions.

6.3.3 Orbit Element Differences

For two-body dynamics, the relative motion dynamics in QNS elements can be shown to take

the following simplified form by transforming the independent variable from t to θ:

δoe′ =



0 0 0 0 0 0

− 3
2a

2(q2cθ−q1sθ)
κ 0 3q1

η2
+ 2cθ

κ
3q2
η2

+ 2sθ
κ 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


δoe (6.37)

where s = sin ( ), c = cos ( ) and the shorthand quantities η, κ and κ0 are defined below.

η =
√

1− q2
1 − q2

2 (6.38)

κ = 1 + q1 cos θ + q2 sin θ (6.39)

κ0 = 1 + q1 cos θ0 + q2 sin θ0 (6.40)
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The dynamics are δoe′ =
d

dθ
(δoe) =

1

θ̇
δȯe, so the plant matrix in Eq. (6.37) is [Ã(θ)] = 1

θ̇
[A(θ)].

Note that there exists a relative motion state transition matrix (STM) that is obtained by integrat-

ing the differential equations in Eq. (6.37). This STM is given in Eq. (14.133) in Reference 111.

A Lyapunov-Floquet transformation of Eq. (6.37) is sought, because [Ã(θ)] = [Ã(θ + 2π)].

To differentiate the LTI system for this new choice of independent variable, let the LTI coordinates

χ be used instead of z when θ is the independent variable, with associated LTI plant matrix [R]

instead of [Λ], and LF transformation [P (θ)]:

δoe = [P (θ)]χ (6.41)

χ′ = [R]χ (6.42)

The LF transformation [P (θ)] solves an equivalent of Eq. (6.14):

[P (θ)]−1
(

[Ã(θ)][P (θ)]− [P ′(θ)]
)

= [R] (6.43)

The LF transformation sought is determined to have the following simple form:

[P (θ)] =



1 0 0 0 0 0

P21(θ) P22(θ) 0 P24(θ) P25(θ) 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(6.44)

This reduces the number of scalar differential equations in Eq. (6.43) to four:

Ã21 + Ã22(θ)P21 − P ′21 = R21P22(θ) (6.45a)

Ã22(θ)P22 − P ′22 = R22P22(θ) (6.45b)

Ã24(θ) + Ã22(θ)P24 − P ′24 = R24P22(θ) (6.45c)

Ã25(θ) + Ã22(θ)P25 − P ′25 = R25P22(θ) (6.45d)
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These equations are solved, starting with P22(θ), and enforcing a periodicity condition for each

solution. This is demonstrated only for P22(θ), whose general solution is given below:

P22(θ) = c1 (1 + q1 cos θ + q2 sin θ)2 e−R22θ (6.46)

where c1 is an integration constant. The periodicity condition P22(θ) = P22(θ+ 2π) yields R22 = 0,

and the resulting form for P22(θ) is substituted into the other differential equations, which are

solved for their own periodic solutions. An additional constraint is that [P (θ0)] = [I] to obtain the

desired LF transformation discussed in Section 2.3. The finalized nonzero components of the LF

transformation are given below, along with the LTI matrix:

P21(θ) =
κ2

2a
(F21(θ0)− F21(θ)) (6.47a)

F21(θ) =
6

η3

(
tan−1

(
q2 + (1− q1) tan

(
θ
2

)√
1− q2

1 − q2
2

)
− θ

2

)

+
3
(
q2 + (q2

1 + q2
2) sin θ

)
q1(q2

1 + q2
2 − 1)κ

(6.47b)

P22(θ) =
κ2

κ2
0

(6.47c)

P24(θ) =
κ2

4
(
q2

1 + q2
2 − 1

) (F24(θ0)− F24(θ)) (6.47d)

F24(θ) =
4(q2 + sin θ)

κ2
+

4 sin θ

κ
(6.47e)

P25(θ) =
κ2

4
(
q2

1 + q2
2 − 1

) (F25(θ0)− F25(θ)) (6.47f)

F25(θ) =
4(1− q2

1 + q2 sin θ)

q1κ2
+

4q2 sin θ

q1κ
(6.47g)

[R] =



0 0 0 0 0 0

−3aη
2r20

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(6.48)

Note that there is a singularity in Eq. (6.47) for P25 for the case of q1 = 0.
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The Lyapunov-Floquet transformation and LTI form for the case that t is the independent

variable instead of θ is now discussed. Due to the explicit appearance of the intermediate variable

θ, this alternate form offers no computational advantages. It is however slightly simpler. First, the

nonzero element of the new LTI matrix [Λδoe] is nR21:

Λ21 = −3aη

2r2
0

n (6.49)

where n =
√
µ/a3 is the mean motion. In this case, the Lyapunov-Floquet transformation takes on a

slightly simpler form, with the P21(θ) term in Eq. (6.44) reducing to zero, and all other components

unaffected. With this modified transformation, the equation for δθ reduces to a familiar form:

δθ = P22(θ)R21n(t− t0)δa+ P22(θ)δθ0 + P24(θ)δq1 + P25(θ)δq2 (6.50)

This expression is analytically equivalent to its counterpart in Eq. (14.129) of Reference 111, though

derived by quite a different process. Exploiting the equivalence of Eq. (6.50) to Eq. (14.129) in

Reference 111, alternate expressions can be obtained for P24(θ) and P25(θ) from Eq. (14.130). The

alternate expression for P25(θ) is notably nonsingular for q1 = 0.

The mapping of LF transformations is to be applied for two alternate sets of relative motion

coordinates. For this, Eqs. (6.33) and (6.36) are repeated with θ instead of t:

[Rx] = [G(θ0)][Rδoe][G(θ0)]−1 (6.51)

[Px(θ)] = [G(θ)][Pδoe(θ)][G(θ0)]−1 (6.52)

where [Rδoe] is given by Eq. (6.48) and [Pδoe(θ)] is given by Eqs. (6.44) and (6.47).

6.3.4 Cartesian Coordinates

Let xc = (x, y, z, ẋ, ẏ, ż)> denote the state in local Cartesian coordinates. For these

coordinates, the linearized coordinate transformation [G(θ)] from QNS orbit element differences is

reproduced below [111]:
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[Gxc ] =



r
a

vr
vt
r 0

0 r 0

0 0 rsθ

− vr
2a

(
1
r − 1

p

)
h 0

− 3vt
2a −vr 0

0 0 (vtcθ + vrsθ)

− r
p (2aq1 + rcθ) − r

p (2aq2 + rsθ) 0

0 0 rci

0 0 −rcθsi
1
p (vraq1 + hsθ) 1

p (vraq2 − hcθ) 0

1
p (3vtaq1 + 2hcθ) 1

p (3vtaq2 + 2hsθ) vrci

0 0 (vtsθ − vrcθ)si


(6.53)

where vr = ṙ and vt = rθ̇, and the shorthand s and c are sine and cosine. For the inverse of Eq.

(6.53), see Reference 111.

Solving Eq. (6.51), the Cartesian LTI matrix [Rxc ] is obtained, which can be expressed in a

highly compact form:

[Rxc ] =
2R21a

γ



A(B + 2) A2 0 A2C −A(B + 1)C 0

−(B + 1)(B + 2) −A(B + 1) 0 −A(B + 1)C (B + 1)2C 0

0 0 0 0 0 0

B(B + 2)/C AB/C 0 AB −B(B + 1) 0

A(B + 2)/C A2/C 0 A2 −A(B + 1) 0

0 0 0 0 0 0


(6.54)

where R21 is the nonzero (2, 1) element of [Rδoe] in Eq. (6.48) and the shorthand quantities γ, A,

B, C are defined below:

γ = q2
1 + q2

2 − 1 = A2 +B2 − 1 (6.55)

A = − vr,0p
vt,0r0

= q2 cos θ0 − q1 sin θ0 (6.56)

B =
p

r0
− 1 = q1 cos θ0 + q2 sin θ0 (6.57)

C =
hr2

0

aµγ
(6.58)

The true and generalized eigenvectors of [Rxc ] are given as the columns of [VRxc
] below. The matrix
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[Rxc ] has six zero eigenvalues, with geometric multiplicity 5.

[VRxc
] =



0 0 0 0 −2R21a
γ A(B + 1)C 0

1 0 0 0 2R21a
γ (B + 1)2C 0

0 1 0 0 0 0

− 1
C 0 1 0 −2R21a

γ B(B + 1) 0

0 0 A
B+1 0 −2R21a

γ A(B + 1) 1

0 0 0 1 0 0


(6.59)

Note that both C and the scaling term on the fifth column of [VRx ] can be expressed in terms

of A and B:

C = −(1−A2 −B2)3/2

(B + 1)2n
(6.60)

2R21a

γ
=

3(B + 1)2

(1−A2 −B2)5/2
(6.61)

Because typically |C| � 1, the scaling of the fifth column of [VRx ] can be much larger than the

others.

The general solution of the LTI form for the Cartesian coordinates is given below in terms of

the columns of [VRxc
] and the solution constants, to be defined shortly:

χxc(θ) =
5∑
i=1

civi + c6 (v5(θ − θ0) + v6) (6.62)

The LF transformation for Cartesian coordinates maps the solution given by Eq. (6.62) back

to Cartesian coordinates via xc = [Pxc ]χxc . It is computed using the mapping from Eq. (6.47)

given by Eq. (6.52), making use of Eq. (6.53). This is significantly easier than solving differential

equations for its elements. The resulting LF transformation is a product of analytic matrices, and

can be evaluated efficiently.

Using the inverse of Eq. (6.59), the constant vector c = (c1, c2, c3, c4, c5, c6)> is given by

c = [VRxc
]−1χxc(θ0):

c1 = − vt,0
vr,0

x0 + y0 (6.63a)
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c2 = z0 (6.63b)

c3 =
1

C

(
−vt,0r0

vr,0p
x0 + y0 + Cẋ0

)
(6.63c)

c4 = ż0 (6.63d)

c5 = − (1− e2)vt,0
3vr,0

n

(
r0

p

)2

x0 (6.63e)

c6 =

(
p
r0

+ 1
)

p
r0
n

(1− e2)3/2
x0 +

1

C

vr,0
vt,0

y0 +
vr,0
vt,0

ẋ0 + ẏ0 (6.63f)

The expression for c6 reduces to the Clohessy-Wiltshire no-drift constraint c6 = 2nx0 + ẏ0 when

e = 0, so c6 captures the degree of drift. It is better understood as a linearized measure of δa. In

particular, if δa = 0, this quantity should be zero as well. The terms c1, c3, and c5 are affiliated

with the in-plane modes, and c2 and c4 are associated with the two out-of-plane oscillatory modes.

The analytic perspective offered by Eq. (6.63) is very useful. First, the out-of-plane motion

is decoupled from the in-plane motion. Additionally, none of the in-plane constants except c6 are

functions of ẏ0. In the case that the degree of drift is specified via a fixed value of c6, a select initial

in-plane component of the position (x0, y0) forms a point of intersection of all possible in-plane

relative motions in a one-parameter variation, based on the value of ẋ0. The constants c1 and c5

are fixed by the choice of initial position, and only the value of c3 varies as the value of ẋ0 is varied.

Additionally, only two of the in-plane mode constants, c3 and c6, can be changed with a single

impulsive maneuver. The constants c1 and c5 can only be changed with a two-burn sequence.

On the topic of maneuvers and the drift constant, an additional result can be determined

from the constant c6. For single-maneuver changes to bounded relative motion, for which c6 = 0,

the in-plane component of the thruster direction is constrained to a line:

∆vy = −vr,0
vt,0

∆vx (6.64)

Any maneuver not satisfying this constraint will introduce drift to the relative motion. For two-

burn maneuvers, the orbit must be parameterized in terms of two sets of constants c and c′ at the

two distinct maneuver points in the orbit. Note that the following equation can be used to map
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constants c for a choice of epoch anomaly θ0 to a new epoch angle θ′0:

c(θ′0) = [V (θ′0)]−1[Φxc(θ
′
0, θ0)][V (θ0)]c(θ0) (6.65)

The inverse of Eq. (6.59) becomes singular when A = 0. This is equivalent to whenever

e sin f0 = 0, or whenever e and/or f0 is equal to zero. However, the issue can be remedied by

evaluating the expression with the offending terms set to a small number ε instead of exactly zero.

For orbits of nonzero eccentricity, the singularity issue can also always be avoided by selecting

f0 6= kπ for integers k.

For Keplerian orbits, the general linear relative motion problem in Cartesian coordinates are

studied in terms of individual modes via the following:

xc(θ) =
5∑
i=1

ci[Pxc(θ)]vi + c6[Pxc(θ)] (v5(θ − θ0) + v6) (6.66)

where the transformation [Pxc ] given by Eqs. (6.52) and (6.53) is required to evaluate this expression

and the vi are the columns of Eq. (6.59). Compare Eq. (6.66) to Eqs. (6.1) and (6.18). The

individual modal solutions for the Cartesian modal decomposition are plotted and studied in Section

3.4.

6.3.5 Spherical Coordinates

The local spherical coordinate representation is given by xs =
(
δr, θr, φr, δṙ, θ̇r, φ̇r

)>
.

It has the advantage over the local Cartesian coordinate representation of better capturing the

curvature characteristic of large along-track separations and large out-of-plane motion. This makes

it a more accurate representation for relative motion problems with large along-track separations.

The relative state in local spherical coordinates is obtained from local Cartesian coordinates

as below:

δr =
√

(rc + x)2 + y2 + z2 − rc (6.67a)

θr = tan−1

(
y

rc + x

)
(6.67b)
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φr = sin−1

(
z√

(rc + x)2 + y2 + z2

)
(6.67c)

δṙ =
(rc + x)(ṙc + ẋ) + yẏ + zż√

(rc + x)2 + y2 + z2
− ṙc (6.67d)

θ̇r =
(rc + x)ẏ − y(ṙc + ẋ)

(rc + x)2 + y2
(6.67e)

φ̇r =
(rc + δr)ż − (ṙc + δṙ)z

(rc + δr)2
√

1− z2

(rc+δr)2

(6.67f)

The position components of the inverse transformation are given below, for which the corre-

sponding velocities can be obtained by differentiation:

x = (rc + δr) cos θr cosφr − rc (6.68a)

y = (rc + δr) sin θr cosφr (6.68b)

z = (rc + δr) sinφr (6.68c)

The linearized transformation between the local spherical and Cartesian coordinate representations

is given below:

δr ≈ x (6.69a)

θr ≈ y/rc (6.69b)

φr ≈ z/rc (6.69c)

δṙ ≈ ẋ (6.69d)

θ̇r ≈ ẏ/rc − (ṙc/r
2
c )y (6.69e)

φ̇r ≈ ż/rc − (ṙc/r
2
c )z (6.69f)

The nonlinear transformation from orbit element differences to local spherical coordinates is dis-

cussed in Reference 54. For this work, the linearized transformation is derived for small angles θr



173

and φr. The result is given below:

[Gxs ] =



r
a

vr
vt
r 0

0 1 0

0 0 sθ

− vr
2a

(
1
r − 1

p

)
h 0

− 3θ̇
2a −2vrr 0

0 0 θ̇cθ

− r
p(2aq1 + rcθ) − r

p(2aq2 + rsθ) 0

0 0 ci

0 0 −cθsi

1
p(vraq1 + hsθ) 1

p(vraq2 − hcθ) 0

θ̇
p(3aq1 + 2rcθ) θ̇

p(3aq2 + 2rsθ) 0

0 0 θ̇sθsi


(6.70)

Note the similarity of Eqs. (6.53) and (6.70). The first and fourth rows are identical.

Solving Eq. (6.51), the spherical coordinate LTI matrix [Rxs ] is obtained, expressed below

in a form similar to Eq. (6.54):

[Rxs ] =
2R21a

γ



A(B + 2) 0 0

(B+1)2(B+2)
γa 0 0

0 0 0

B(B+2)
C 0 0

−2A(B+1)(B+2)
γaC 0 0

0 0 0

A2C γaAC 0

AC(B+1)2

γa (B + 1)2C 0

0 0 0

AB γaB 0

−2A2(B+1)
γa −2A(B + 1) 0

0 0 0


(6.71)

The true and generalized eigenvectors of [Rxs ] are given as the columns of [VRxs
] below. Like the

LTI matrix for QNS element differences and Cartesian coordinates, the matrix [Rxs ] has six zero

eigenvalues, with geometric multiplicity 5.

[VRxs
] =



0 0 0 0 2R21a
γ ACγa 0

1 0 0 0 2R21a
γ (B + 1)2C 0

0 1 0 0 0 0

0 0 1 0 2R21a
γ Bγa 0

0 0 − A
γa 0 −4R21a

γ A(B + 1) 1

0 0 0 1 0 0


(6.72)

Analogously as for Cartesian coordinates, the general solution of the LTI form for the spher-

ical coordinates is given below in terms of the columns of [VRxs
]. The constant vector c =
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(c1, c2, c3, c4, c5, c6)> is given by c = [VRxs
]−1χxs(θ0):

c1 = − vt,0
vr,0r

δr0 + θr,0 (6.73a)

c2 = φr,0 (6.73b)

c3 =
1

C


(

1− r0
p

)
vt,0

vr,0
δr0 + Cδṙ0

 (6.73c)

c4 = φ̇r,0 (6.73d)

c5 = − vt,0
3vr,0a

n

(
r0

p

)
δr0 (6.73e)

c6 =
µ

hr2
0

(
1 +

p

r0

)
δr0 +

vr,0
vt,0r0

δṙ0 + θ̇r,0 (6.73f)

Note that the equation for c6 in Eq. (6.73) is zero when δa = 0. It represents a more concise local

coordinate no-drift condition than its counterpart in Eq. (6.63).

For Keplerian orbits, the general linear relative motion problem in spherical coordinates are

studied in terms of individual modes via the following:

xs(θ) =
5∑
i=1

ci[Pxs(θ)]vi + c6[Pxs(θ)] (v5(θ − θ0) + v6) (6.74)

where the transformation [Pxs ] given by Eq. (6.52) is required to evaluate this expression and the

vi are the columns of Eq. (6.72). Note that the singularity properties of the Cartesian and spherical

coordinate representations are the same.

To project the spherical coordinate results into Cartesian coordinates, there are two options.

The nonlinear transformation given by Eq. (6.68) and its first derivative can be used, or the inverse

of the linearized transformation given by Eq. (6.69) can be used. The former is a more accurate

transformation that will capture the curvature of the relative motion missed by the Cartesian

representation, while the latter transformation has the benefit of being linear, but lacks the addi-

tional accuracy offered by the nonlinear transformation. The results of the linearized Cartesian and

spherical coordinate representations can be made completely equivalent via the linearized transfor-

mation Eq. (6.69) and its inverse. This coordinate equivalence has been discussed in past works

[121, 31, 18]. As a result of the linear equivalence, the relative motion problem can be explored
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from the linearized Cartesian perspective, if desired, then a linearized transformation to spherical

coordinates followed by a nonlinear transformation back to Cartesian coordinates will reproduce

the curvature correction offered by the spherical coordinate representation. However, the different

modal representation in local spherical coordinates might offer benefits in some applications over

the Cartesian representation. This is one of the topics explored in the numerical analysis in Section

3.4.

One interesting result from the preceding analysis is that the LTI form for spherical coordi-

nates has a comprehensible physical interpretation with very simple dynamics. The LTI form for

spherical coordinates is reproduced below, where χxs = [Pxs(θ)]
−1xs is the transformed state.

χ′xs = [Rxs ]χxs (6.75)

Examining the plant matrix, which is given by Eq. (6.71), a simple interpretation of the dynamics

in the spherical LTI coordinates is possible, because the three nonzero columns of [Rxs ] are linearly

dependent. Factoring out α = 2R21a/γ, the following common column vector is defined:

Rf = α



AC

C(B+1)2

γa

0

B

−2A(B+1)
γa

0


(6.76)

The common column vector is related to all nonzero columns of [Rxs ] as below:

R1 =
B + 2

C
Rf , R4 = ARf , R5 = γaRf (6.77)

The relative motion state is resolved in the spherical LTI coordinates as the 6 component state

vector χxs . The coordinates χ3 and χ6 are stationary – see the zero 3rd and 6th rows of the

plant matrix in Eq. (6.71). Defining ρ = (χ1, χ4, χ5)>, the nonzero natural dynamics of the LTI

coordinates are given below:

ρ′ = α (ρ · n) ζ (6.78)
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χ′2 = α
C(B + 1)2

γA
(ρ · n) (6.79)

n =


B+2
C

A

γa

 (6.80)

ζ =


AC

B

−2A(B+1)
γa

 (6.81)

where ζ · n = 0 and d
dθ (ρ · n) = 0. From Eqs. (6.78) and (6.79), it is clear that the dynamics of

χ2 are influenced by ρ, but the coordinate χ2 does not influence ρ. The 3D space in which ρ is

embedded is by far the most important space for the transformed relative motion problem. When

ρ · n = 0, the dynamics are stationary. This is an equation of a plane passing through ρ = 0.

This plane is called the stationary plane. The vector field of the dynamics of ρ is parallel to the

stationary plane, pointing along ζ above the plane and along −ζ below it. The magnitude of the

vector field at any point is proportional to the distance off the plane, ρ · n.

The coordinates χ3 and χ6 are related to the out-of-plane motion, and they are decoupled from

the in-plane motion and stationary. Any periodic in-plane motion of interest can be parameterized

by a unique choice of four constant state values χ1, χ2, χ4, χ5, where ρ = (χ1, χ4, χ5)> is

constrained to the stationary plane to prevent movement of the χ2 coordinate. The dynamics of ρ

and χ2 are easily described and visualized, as discussed above. By the LF transformation to the

spherical LTI coordinates, the dimensionality of the Keplerian satellite relative motion problem is

reduced to 3 active coordinates with very simple dynamics. The other coordinates are a steered

coordinate χ2 and the stationary out-of-plane coordinates.

Given the simplicity of the dynamics in the spherical LTI coordinates, a natural question is

to explore control design in the context of this formulation. For example, low-thrust strategies for

relative orbit reconfiguration will naturally maintain close proximity to the stationary plane, to

minimize the degree to which the natural dynamics need to be countered by control. By contrast,
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impulsive maneuver-based strategies will push ρ further from the stationary plane and will make

greater use of the natural dynamics to achieve control objectives. Examining existing control

strategies from the perspective of this special coordinate representation might provide new insights.

6.3.6 Numerical Simulations for the Keplerian Problem

In this section, the developments in this chapter are tested on unperturbed Earth orbits with

a = 26600 km, Ω = 0◦, i = 63.4◦, and ω = 270◦, and the eccentricity is varied. In the case that

e ∼ 0.74, the resulting orbit is of the same type as the Molniya orbits used by the Soviets.

6.3.6.1 Modal Decomposition in Local Cartesian Coordinates

The modal decomposition concept discussed in this chapter enables any close-proximity rel-

ative motion to be expressed as the unique weighted combination of 6 or fewer modal motions.

To introduce this concept, the 6 relative motion modes are computed for the Molniya orbit with

e = 0.74. There are four in-plane modes (modes 1, 3, 5, 6), and two purely out-of-plane modes (2

and 4). These are normalized and plotted for three chief orbits in Figures 6.3 and 6.4, where the

mode numbers correspond with the numbering of the constants in Eq. (6.63).

Figure 6.3: In-plane Normalized Relative Motion Modes, e = 0.74, f0 = 90◦

The modes are numerically validated by comparing to propagation of their initial conditions
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Figure 6.4: Out-of-plane Normalized Relative Motion Modes, e = 0.74, f0 = 90◦
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Figure 6.5: Example Relative Orbit, e = 0.74, f0 = 90◦, δe = 0.002, δi = 0.2◦, δf0 = 0◦

with the Tschauner-Hempel equations and ensuring a match [126]. All modes are periodic except

the drift mode, mode 6. This mode is a composition of the motion of mode 5, but grows and

drifts over time in the along-track direction. The 5th mode is an offset circle that is similar to a

combination of fundamental solutions to the Tschauner-Hempel equations discussed in Reference

123.

To demonstrate how these relative motion modes combine to construct any close-proximity

relative motion, consider an example of bounded relative motion with δa = 0, δe = 0.002, and

δi = 0.2◦. The resulting relative motion is depicted in Figure 6.5. This is distorted from the

traditional 2:1 relative orbit ellipse of the Clohessy-Wiltshire solution, due to the very high chief

eccentricity. Because the motion starts out in the x-y plane, the out-of-plane motion is constructed

entirely of mode 4. The in-plane motion is composed of three of the in-plane modes. Figure 6.6

shows the three modes that combine to construct the planar component of the relative motion,
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which is given in black. The modes are scaled such that their linear combination produces the

relative orbit, and this result is numerically confirmed. Note the absence of any contribution of

the drift mode, as expected. The initial position is marked with an x, and the point after a true

anomaly change of ∆f = π is marked with a filled circle. Using these points, it is possible for the

reader to graphically verify that the sum of the individual modes reproduces the indicated motion.

Note from Figure 6.6 that c3 < 0, because mode 3 is flipped in comparison to its normalized form

in Figure 6.3.
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Figure 6.6: Example Modal Decomposition (Planar), e = 0.74, f0 = 90◦, δe = 0.002, δi = 0.2◦
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Figure 6.7: Bounded Planar Motion with (x0, y0) specified, e = 0.74, f0 = 90◦

The analysis in this work enables analytic modal decomposition using Eqs. (6.52), (6.59),

and (6.63). Furthermore, only Eq. (6.63) needs to be re-evaluated for each possible relative motion

case – the eigenvectors of the LTI plant matrix and the periodic transformation only change with

the chief orbit. In addition, Eq. (6.63) is simple enough to facilitate some interesting analysis that

leverages the computational efficiency of this formulation. For example, recall that if the degree of
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drift is specified via a fixed value of c6, a select initial in-plane component of the position (x0, y0)

forms a point of intersection of all possible in-plane relative motions in a one-parameter variation,

based on the value of ẋ0. To demonstrate this for the Molniya orbit, consider an initial planar

relative position of (x0, y0) = (0.08, 0.09) km, and the drift constant is set to c6 = 0 to explore

only bounded relative motion solutions. The variation of ẋ0 yields the family of possible planar

motions originating at the specified point (x0, y0). The modes only need to be computed once using

Eqs. (6.52) and (6.59), while repeated evaluation of expressions derived from Eq. (6.63) facilitates

the computation of the families of relative orbits intersecting the point of interest. A subset of the

possible relative orbits is computed and given in Figure 6.7, with the initial point indicated by an

x.

(a) e = 0.01 (b) e = 0.1

(c) e = 0.5 (d) e = 0.74

Figure 6.8: Normalized Relative Motion Modes vs. Eccentricity, Cartesian Coordinates

In Figure 6.8, the eccentricity is varied to show the evolution of the relative motion modes.

The drift modes are plotted for three chief orbit periods. Because the model is linear, the scale

of the modes is unimportant. All modes have been normalized in the figures so the maximum



181

relative distance is unit magnitude. Starting with e = 0.01, the four planar modes are two relative

motion ellipses, a drift mode, and a small circular motion in the along-track direction. While the

formulation explored in this chapter becomes singular for e = 0, it is still well-defined for small but

nonzero values of eccentricity. The 2:1 centered relative motion ellipse from the classical relative

motion problem with near-circular orbits would be constructed from modes 1, 3, and 5. Increasing

the eccentricity to 0.1, the circular mode becomes larger, and as a result, the loops in the drift

mode also grow more noticeably over time. Increasing the eccentricity to e = 0.5, the first and third

modes have become distorted. The nature of this distortion varies with the choice of epoch true

anomaly f0. For e = 0.5, mode 5 falls in the range 1/3 ≤ x ≤ 1, with the center at x = 2/3. It is

determined that mode 5 is a circle centered in the along-track direction, for which the eccentricity

determines the ratio of the circle radius to the distance of its center from the origin. When the

eccentricity is increased to that of the Molniya orbits, modes 1 and 3 become distorted significantly

at their greatest along-track extent.

6.3.6.2 Analysis using Local Spherical Coordinates

Using the same Molniya orbit from the previous example, the epoch true anomaly is shifted

to f0 = 145◦. The normalized planar modes from decompositions in Cartesian and spherical

coordinates are provided in Figure 6.9. The Cartesian modes 1 and 3 are distorted differently from

the f0 = 90◦ case, but modes 5 and 6 are still similar to before. In spherical coordinates, plotting

δr/r enables a visualization of the relative motion with the non-dimensional θr coordinate. Because

r varies greatly over time for sufficiently eccentric orbits, the motion plotted in the figure is not

representative of the modal motion in Cartesian coordinates. For this reason, linearly mapping the

spherical coordinate modes to Cartesian coordinates may be preferable for visualization. However,

when plotted in these normalized spherical coordinates, the first mode becomes just a single point,

which could be a useful simplification.

A new relative motion example is parameterized by the initial orbit element differences δe =

0.002, δi = δf0 = 0.2◦. The planar component of the resulting relative orbit is expressed in terms
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(a) Cartesian Coordinates (b) Spherical Coordinates

Figure 6.9: Normalized Relative Motion Modes, e = 0.74, f0 = 145◦

of the Cartesian relative motion modes in Figure 6.10. The out-of-plane components of the motion

are omitted from this analysis because they are comparatively uninteresting. In the same manner

as the previous example, the initial point is marked with a x and the point after half an orbit at

∆f0 = 180◦ is marked with a solid circle. In Figure 6.11, the same motion is plotted as a sum of

the spherical coordinate modes expressed in Cartesian coordinates. As a result of this mapping,

the stationary mode 1 in Figure 6.9 becomes an oscillatory motion in the along-track direction.

By inspection of the linear transformation in Eq. (6.69), it is determined that the oscillatory

along-track motion is due to rescaling by the chief orbit radius.

Comparing Figures 6.10 and 6.11, the mapped spherical coordinate parameterization of the

relative motion offers some simplifications over the Cartesian coordinate parameterization. While

modes 3 and 5 are similar, mode 1 has been reduced to a simpler one-dimensional motion. With

this parameterization, the manner in which modes 1, 3, and 5 linearly combine to produce the

example relative motion is easier to visualize than using the Cartesian representation. There are

only two 2D motions, and mode 1 shifts their sum in the along-track direction.

Through the application of the modal decomposition technique and the convenient mapping

of the LF transform and LTI solutions across coordinates to the Keplerian relative motion problem,

a few things have been demonstrated. First, it is shown that the choice of coordinates influences

the geometric complexity of the modal solutions. From the technique of deriving new LF transfor-
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Figure 6.10: Example Modal Decomposition, Cartesian, e = 0.74, f0 = 145◦, δe = 0.002, δi =
δf0 = 0.2◦
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Figure 6.11: Example Modal Decomposition, Spherical, e = 0.74, f0 = 145◦, δe = 0.002, δi = δf0 =
0.2◦

mations from old, the exploration of relative motion modal decompositions derived from different

coordinate representations is highly feasible. Additionally, simple conclusions have been obtained

about the nature of relative motion in any bounded Keplerian orbit. Using the spherical coordi-

nate modal decomposition, it is determined that any close-proximity natural relative motion can

be expressed as the weighted sum of two purely out-of-plane modes, one in-plane drift mode, an

offset circle mode, a 1D along-track oscillatory mode, and a “teardrop” shaped mode. This sim-

ple basis of relative motion solutions facilitates straightforward design of close-proximity relative

motion in Keplerian orbits of any eccentricity. The six modal constants parameterize all possible

motions, similarly to how the six LROEs for the CW solutions [10] can be used to explore all

possible close-proximity relative motion for near-circular orbits.
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6.4 Weakly Perturbed Orbits

In the case that the orbital dynamics are not Keplerian, the modal decomposition theory can

still be applied using LF theory if the chief orbits are sufficiently close to periodic. This allows for

a conceptually unifying description of circular unperturbed, eccentric unperturbed, and perturbed

spacecraft relative motion using the modal method. This section briefly discusses the procedure

for analytic application for a chief orbit subject to a small perturbation.

In the case of a sub-dominant non-Keplerian perturbation (such as J2), the LTI matrix [Λ],

LF transformation [P ], and geometric transformation [G] are all perturbed from their Keplerian

forms [Λ0], [P0], and [G0]:

[Λ] = [Λ0] + [δΛ] (6.82a)

[P ] = [P0] + [δP ] (6.82b)

[G] = [G0] + [δG] (6.82c)

Solving for a first-order correction in the LF transformation [δP ] from the deviation in the plant

matrix [δA], the following differential equation for these quantities is obtained:

[δṖ ] = −[δP ][Λ0] + [A0][δP ]− [P0][δΛ] + [δA][P0] (6.83)

Eq. (6.83) is solved analytically using a specific [δA] for the desired perturbative effects, analogously

to how Eq. (6.14) is solved. For this, it is easiest to solve for the LF transformation in the space

of orbit element differences, because [δA] will be much simpler in this space than it is in local

coordinates. Additionally, as is done in Reference 78, it may be convenient to examine only the

secular variations induced by the perturbations, ignoring short-period effects. This will significantly

simplify [δA]. Lastly, the deviation [δG] in the geometric mapping from orbit element differences

to local coordinates must also be obtained. Reference 50 discusses how this is obtained for the J2

perturbation.

Once the above analysis has been performed, a modified modal decomposition will be ob-

tained, with a modified vector of modal constants c that is still a function of relative state initial
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conditions. The same modal analysis as performed in this chapter for the Keplerian problem can

then be explored for the perturbed problem of interest. The application of the modal decomposition

method to perturbed cases is generally reserved for the next chapter.

6.5 Conclusions

This chapter introduces the modal decomposition concept for efficient and convenient pa-

rameterization of the spacecraft relative motion problem in the vicinity of any closed orbit. This

approach is facilitated by Lyapunov-Floquet theory, enabling the LTV dynamics to be transformed

into an LTI system. This chapter additionally introduces a means for computing the LF transfor-

mation for the decomposition in any set of coordinates using the LF transformation from another

set of coordinates and the linearized mapping between coordinates. The procedure is applied to the

Keplerian relative motion problem to obtain modal decompositions in local Cartesian and spherical

coordinates using the LF transformation in orbit element differences, yielding novel analytic results.

The resulting decompositions are analyzed for relative motion near a Molniya orbit. Numerical ex-

amples in the next chapter will show that the modal concept extends beyond the Keplerian case.

This work connects strongly to concepts from literature. First, it demonstrates the connection

between the relative motion solution in orbit element differences explored by Reference 111 and

the concept of the LF transformation applied to those coordinates. Additionally, it makes use of

a similar geometric method concept to what was used to great effect in Reference 50. Finally,

some of the modal solutions obtained are equivalent to previously explored special combinations of

the Tschauner-Hempel fundamental solutions [123]. New results include the spherical coordinate

modal decomposition, the numerically efficient exploration of bounded relative motion using the

modal solutions, and the extension of the theory for perturbed settings.

The benefits of the modal relative motion perspective discussed by this chapter are numer-

ous. First, the modal solution constants c offer a simple state representation for relative motion

that has clear geometric meaning through the associated modes, and allows for computationally

efficient exploration of possible relative motion types. The dynamics of the modal solution con-
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stants are functions only of control and perturbations. In the case of nominal dynamics without

control, they are integral quantities, similar to the stationary ROE quantities explored elsewhere

in literature. However, unlike traditional ROEs, modal constants can be computed beyond the

Keplerian problem. For example, in periodic orbits in three-body environments, it would still be

possible to compute a modal decomposition with associated modal constants that are stationary

in the absence of additional perturbations or control. Thus, the modal decomposition perspective

is a unified view that extends from the simple Clohessy-Wiltshire case to periodic orbits in ex-

otic environments, with practical application extending even to the case of almost-periodic orbits

encountered in real-world scenarios. This is discussed more in the following chapter.



Chapter 7

Applications of the Relative Motion Modal Decomposition

This chapter explores application of the modal decomposition concept in a variety of circum-

stances. First, the Lyapunov-Floquet (LF) transformation is numerically computed for a low-fidelity

analytic linear model of perturbed spacecraft relative motion in the vicinity of an asteroid. Then,

the perturbative application of LF theory to the case of an almost-periodic chief orbit is discussed

(in other words, an orbit for which ∃ T | [A(t)] ≈ [A(t+T )]. This is satisfied, for example, for quasi-

periodic orbits with a dominant frequency in the frequency vector. It extends the applicability of

the LF transform-based modal decomposition to a wide variety of perturbed orbits. This facilitates

an interesting numerical example for spacecraft relative motion in the vicinity of perturbed termi-

nator orbits about the asteroid Ryugu. Lastly, this chapter discusses the use of the fundamental

solution constants c as a state description, which connects naturally to the modal decomposition

concept and also allows for elegant control approaches. Much of the work in this chapter can be

found in References 22, 23, 26, and 28.

7.1 Numerical Application to Analytic Model of Oblateness, Ellipticity, and

SRP Perturbations

For the first application of the modal decomposition perspective to relative motion analysis,

the analytic C20 + C22 + SRP model from chapter 3 is revisited. See Eqs. (3.48) - (3.51) and the

associated discussion. In particular, the analytically approximated plant matrix for the linearized

system is used to compute the monodromy matrix, which is then used to compute the LF transfor-
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mation and the LTI plant matrix. Due to the fact that the linear model is an explicit function of

time, the periodicity condition [A(t)] = [A(t+ T )] is easily satisfied. In reality, the linearized plant

matrix is only approximate, so the chosen chief orbits are not actually periodic. Nonetheless, the

effects of non-periodicity are secondary in the model plant matrix, and do not appear analytically.

After the monodromy matrix has been computed, the analysis in this section uses it to study the

stability of the LTI transformed system in z, along with the fundamental relative orbital motion

modes predicted by the linearized model. These provide a wealth of information about the system

behavior throughout the explored parameter space.

For the results that follow, close-proximity formation dynamics about a rotating asteroid are

considered, with important physical parameters given in Table 7.1. Note that this is the same

simulation setup that was used for originally testing the model in chapter 3. The parameter R

Table 7.1: Physical Parameters for Modal Parameter Study

Parameters Values

Asteroid Physical Parameters M = 4.9× 1014 kg, R = 6 km, Ellipsoidal semi-axes: 6, 3, 2.5 km
Gravity Parameters µ = 3.271× 10−5 km3/s2, C20 = −0.0903, C22 = 0.0375
Asteroid Orbit Radius RO = 3.5904× 108 km (2.4 AU)
Configuration Parameters κ = 15◦, ϕ0 = 90◦, Tr = 18.0 hr, ψ0 = 0

Spacecraft Optical Constants A
m = 0.3 m2/kg, B = 0.6, s = 0.25, ρ = 0.3

is the Brillouin sphere radius, the maximum extent of the body material from its center of mass.

The linearized relative motion model in Eq. (3.48) is used to explore the parameter space for

prograde and retrograde near-circular chief orbits. Namely, the inclination of prograde orbits in

the terminator plane is iT = 75.0◦, and the set of inclinations tested is between 70◦ and 105◦ in

one degree increments. The range of Γ tested is from Γ = 3/4 to Γ = 4, with 25 evenly spaced

values for non-modal analysis results. For the modal analysis, the range is the same but with even

increments of δΓ = 1/4. The semimajor axis is related to Γ through the following equation, where

c = 2π/Tr:

a =

(
µ

Γ2

c2

)1/3

(7.1)

For simplicity, the initial non-critical chief orbit elements e0, ω0,Ω0, f0 are all assumed to be zero.
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Thus θ0 = 0 and the chief orbit is initially circular. Small initial nonzero values of chief eccentricity

(e.g. O(10−3)) do not significantly affect the results. The osculating chief orbit eccentricity is

generally of this scale anyway, and can reach higher values in strongly perturbed cases.

While third body effects are ignored in this study, the radius of the asteroid sphere of influence

is estimated assuming m�M [8]:

rSOI = RO

(m
M

)2/5
≈ 205 km (7.2)

where M is the mass of the sun. Note that at a = 38.2 km (corresponding to Γ = 4), the sun’s

gravity would be a little less than 3% the strength of the asteroid gravity, so the third-body

disturbance should be included in the approximate model for higher fidelity in actual applications.

In the studies that follow, for each point in the parameter space, the state transition matrix

is computed using the linearized dynamics for one period of the [A(t)] matrix. This enables any

type of close-proximity relative motion to be studied without re-integrating each initial condition of

interest, and also efficiently provides the monodromy matrix useful for all subsequent computations.

Figure 7.1 shows the variation of the modulus of the largest Floquet multiplier in the pa-

rameter space. Recall that the Floquet multipliers are eigenvalues of the monodromy matrix. Any

Floquet multiplier with a modulus greater than 1 is an indicator of the potential for system insta-

bility. Stability can only be ensured only if |ρj | ≤ 1 ∀j. The data in Figure 7.1 does not provide

a complete parameterization of the degree of instability by itself. The figure does not show how

many unstable modes exist; it only shows the severity of the most unstable mode. However, the

figure still provides useful insights into the potential for instability depending on the value of Γ and

i.

For weakly unstable systems with all |ρ| ≈ 1, the destabilization that occurs by partial

projections of the initial condition into the unstable subspace is less rapid than for systems with

a multiplier |ρ| � 1. Furthermore, formation geometry selected to avoid exciting the unstable

modes will enable the motion to remain within specified bounds for longer without corrective

maneuvers. Thus, uncorrected formation stability will still be dependent on the initial conditions
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Figure 7.1: Modulus of Largest Floquet Multiplier

of relative states of the spacecraft. This would be very expensive to study with simulations using

the truth model alone. However, parameter studies with the linear system can efficiently provide

this insight, since the linear dynamics of the perturbed relative motion can be decomposed into

linearly independent modes in z space. Recall that since x = [P (t)]z and [P (t0)] = [I6×6], the

behavior of the fundamental modes can be represented in x coordinates as well.

The approximate model is first used to determine how the number of relative motion modes

varies in the parameter space. This data is presented in Figure 7.2(a).

It is also useful to consider how many of these modes are highly unstable. The approach in

this work is to determine if the real part of any of the eigenvalues of [Λ] exceeds a critical value λ∗,

defined below as the minimum value required for the real exponential term in the z(t) solution to

increase by a factor of e in N orbits:

λ∗ =
c

2πΓN
(7.3)

Setting N = 10, this is of O(10−6) for much of the parameter space surveyed.

The critical value λ∗ is used to create Figure 7.2(b). It is important to keep the limitations of

the model in mind when interpreting these modal results. The relative duration of model accuracy

is highly correlated with the relative magnitude of maximum deviation in the AMROS parameter.
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Figure 7.2: Relative Orbital Motion Modal Data
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Figure 7.3: Relative Motion Modes for Γ = 2

In the most highly perturbed regions of the parameter space (lower values of Γ), the linear model

only predicts initial behavior well without re-initialization and update of perturbed chief orbit

parameters. The stability predictions below Γ = 1.5 are not consistently trustworthy. Figure

7.2(b) predicts that generally for high-altitude orbits, there are no highly unstable modes, and this

property extends to progressively lower orbits as inclination is increased to polar and retrograde

orbits.
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Because all solutions of the linear model will be a superposition of the fundamental modes,

variations in the modal behavior at intermediate levels of Γ are complex and worth investigating.

At Γ = 2, the number of total modes and their stability properties vary with inclination. This is

illustrated by Figure 7.3. Note that scale is irrelevant for these linear results. For relative motion

centered in the orbit with i = 75◦, there are 6 unique modes, and all eigenvalues are real. These

are plotted for 5 orbits. Three modes are unstable, and two are highly unstable (modes 5 and

6). Mode 4 is slightly unstable (λ4 = 5.07 × 10−7) and mode 3 is stable (λ3 = −5.06 × 10−7).

Modes 1 and 2 are strongly stable. Modes 2 and 5 are distorted along-track motion. Such modes

appear throughout much of the parameter space, but their eigenvectors are poorly scaled, and do

not accurately represent the motion of the system for long time spans. However, modes such as

1, 3, 4, and 5 do reflect the actual formation dynamics. These modes (or mixtures of them) could

be periodically re-computed and targeted by a guidance system to enforce desired relative motion

behavior.

Figure 7.3(b) shows the modes for relative motion about a chief with i = 95◦, plotted for 15

chief orbits. These represent the fundamental modes of the same point in the parameter space used

to generate Figure 3.7 in chapter 3. The eigenvalues corresponding to each mode are all of scale

10−7, with multiplying factors λ1 = −9.1, λ2 = −6.6 ± 2.5i, λ3 = 6.6 ± 2.6i, λ4 = 9.2. From these

results, it is evident that the initial condition of the motion in Figure 3.7 has partially excited the

unstable third mode.

Long-term accurate prediction is possible without any model re-initialization for cases where

the relative motion is not too perturbed to compromise model accuracy. This is incredibly useful,

as it can be used to find relative motion conditions that would result in bounded formations with

linearly predictable behavior for very long time spans without correction. Figure 7.2 shows that

for values of Γ > 2.5, there are only 3 or 4 relative motion modes, and none are particularly

unstable. Selecting Γ = 4.0 and i = 75◦, the modal results indicate that there are two along-

track modes (one stable and one unstable) and two very similar modes with eigenvalues λ2,3 =

±9.7 × 10−9 ± 6.1 × 10−7i. This represents stable relative motion for long time spans, due to
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Figure 7.4: Long-Term Stable Relative Motion Mode

the very small real parts of the eigenvalues. Figure 7.4 is produced by initializing the mode with

the eigenvalue with the slightly negative real part. The initial condition is just the associated

eigenvector with a chosen scaling, given below in LVLH components in meters and meters/second:

x0 = cv =

(
12.5, 7.90, 0.8, 9.69× 10−4, 6.05× 10−4, 7.27× 10−5

)>
(7.4)

The first half-period of behavior is shown, amounting to approximately 10 chief orbit periods. There

is a positive rotation of the relative orbit about the êr vector and a shrinking of the relative position

bounds along êr. The approximate model agrees with the true behavior for 10 orbits (30 days),

with some growing distortion visible. The dynamics in this region of the parameter space are clearly

favorable for fuel-efficient close-proximity formation flying. Overall, the results of modal analysis

provide a wealth of insight into the behavior of uncontrolled close-proximity relative motion.

7.2 Implementation for General Almost-Periodic Orbits

This section explores the application of the modal decomposition via LF theory to the case

that the chief orbit is not exactly periodic. The method explored is to numerically compute a

periodic matrix that is similar to the almost-periodic plant matrix, then to use the modes for the

former system as an approximate basis for motions in the latter. In this case, conditions are provided
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that need to be satisfied for the computed modes to correspond to the actual relative motions of the

system. Additionally, there is some discussion of how the behavior of the true system will deviate

from what is predicted from the approximate modal basis. Finally, the technique is applied to the

problem of formation design in perturbed terminator orbits around the asteroid 162173 Ryugu.

The arguments in this section assume that the spacecraft are operating in sufficiently close

proximity that nonlinear relative motion effects are negligible. This would be highly applicable

to fractionated space systems, rendezvous and docking, and satellite servicing applications. For

close-proximity relative motion in local rectilinear coordinates or orbit element differences, the

linearized dynamics are of the form ẋ = [A(t)]x. It can be shown that [A(t)] ≈ [A(t + T )] if the

chief spacecraft orbit is slowly varying or quasi-periodic such that there exists a “quasi-period”

T for which the position and velocity are almost periodic, r(t) ≈ r(t + T ), v(t) ≈ v(t + T ),

and furthermore ∂r̈(t)
∂r ≈

∂r̈(t+T )
∂r . This regularity is a desirable characteristic for spacecraft orbits

in highly perturbed environments, and the resulting almost-periodicity of [A(t)] also enables the

analytic developments in this section. The analysis in this section notably applies broadly. First, it

applies to the case that the plant matrix is truly quasi-periodic [A(t)] = [A(ωt+φ)] with frequency

vector ω, assuming there exists a dominant frequency ωj ∈ ω that is much more important to the

behavior of [A(t)] than the other frequencies. In such a case, the “quasi-period” is given simply by

T = 2π
ωj

. The analysis also applies to [A(t)] when the components have slow secular drift.

Instead of parameterizing the relative motion in coordinates along the radial, normal, and

transverse directions êr = r/r, ên = h/h, êt = −êr × ên, orbit element differences are used. The

quasi-nonsingular (QNS) elements linearize better than local rectilinear coordinate descriptions,

without suffering the weakness for near-circular orbits inherent to the classical orbit elements.[111]

They are given by oe = (a, θ, i, q1, q2,Ω)> where a is the semimajor axis, θ = ω+ f is the argument

of latitude, i is inclination, q1 = e cosω and q2 = e sinω are defined in terms of the eccentricity e

and argument of periapsis ω, and Ω is the right ascension of the ascending node (R.A.A.N.). Their

differential equations are given below, where r = p/(1 + q1 cos θ + q2 sin θ), p = a(1− q2
1 − q2

2), and
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h =
√
µp, and the disturbance acceleration is resolved as aP = arêr + atêt + anên:

ȧ =
2a2

h

(
(q1 sin θ − q2 cos θ)ar +

p

r
at

)
(7.5a)

θ̇ =
h

r2
− r sin θ cos i

h sin i
an (7.5b)

i̇ =
r cos θ

h
an (7.5c)

q̇1 =
p sin θ

h
ar +

(p+ r) cos θ + rq1

h
at +

rq2 sin θ

h tan i
an (7.5d)

q̇2 = −p cos θ

h
ar +

(p+ r) sin θ + rq2

h
at −

rq1 sin θ

h tan i
an (7.5e)

Ω̇ =
r sin θ

h sin i
an (7.5f)

The differential equations for orbit element differences are obtained by linearizing Eq. (7.5) about

the chief orbit as δȯe = dȯe
doe

∣∣
c
δoe = [Aoe(t)] δoe, where δoe = (δa, δθ, δi, δq1, δq2, δΩ)>, and the first

row of [Aoe(t)] is given below:

A11 =
3a

h

(
at + (q1at − q2ar) cos θ + (q1ar + q2at) sin θ

)
+

2a2

h

(
(q1 sin θ − q2 cos θ)

dar
da

+
p

r

dat
da

) (7.6a)

A12 =
2a2

h

(
(q1ar + q2at) cos θ + (q2ar − q1at) sin θ

)
+

2a2

h

(
(q1 sin θ − q2 cos θ)

dar
dθ

+
p

r

dat
dθ

) (7.6b)

A13 =
2a2

h

(
(q1 sin θ − q2 cos θ)

dar
di

+
p

r

dat
di

)
(7.6c)

A14 =
2a3µ

h3

(
q1at + (at − q1q2ar − q2

2at) cos θ + (ar + q1q2at − q2
2ar) sin θ

)
+

2a2

h

(
(q1 sin θ − q2 cos θ)

dar
dq1

+
p

r

dat
dq1

) (7.6d)

A15 =
2a3µ

h3

(
q2at + ((q2

1 − 1)ar + q1q2at) cos θ + (at + q1q2ar − q2
1at) sin θ

)
+

2a2

h

(
(q1 sin θ − q2 cos θ)

dar
dq2

+
p

r

dat
dq2

) (7.6e)

A16 =
2a2

h

(
(q1 sin θ − q2 cos θ)

dar
dΩ

+
p

r

dat
dΩ

)
(7.6f)

There are too many terms to show all other components here, but they are straightforward to

obtain. These equations were adapted to write a generalized linearization toolbox valid for any

perturbed orbit problem, which was used to perform the necessary computations for this section.
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The nonlinear mapping between orbit element differences and the local vertical-local horizontal

(LVLH) frame relative state is achieved by adding the element differences to the chief elements

to obtain the deputy orbit elements, then the chief and deputy elements are mapped to inertial

coordinates, then the chief state is subtracted from the deputy and the state differences are resolved

in the LVLH frame. There also exists a linearized mapping between the local coordinate description

and the QNS element differences, reproduced here:[2]

x =
r

a
δa+

Vr
Vt
rδθ − r

p
(2aq1 + r cos θ)δq1 −

r

p
(2aq2 + r sin θ)δq2 (7.7a)

y = r(δθ + cos iδΩ) (7.7b)

z = r(sin θδi− cos θ sin iδΩ) (7.7c)

ẋ = − Vr
2a
δa+

(
1

r
− 1

p

)
hδθ + (Vraq1 + h sin θ)

δq1

p
+ (Vraq2 − h cos θ)

δq2

p
(7.7d)

ẏ = − 3Vt
2a

δa− Vrδθ + (3Vtaq1 + 2h cos θ)
δq1

p
+ (3Vtaq2 + 2h sin θ)

δq2

p
+ Vr cos iδΩ (7.7e)

ż = (Vt cos θ + Vr sin θ)δi+ (Vt sin θ − Vr cos θ) sin iδΩ (7.7f)

where Vr and Vt are given below. Note that the given mapping to velocity components does not

account for the effects of perturbations, but the position mapping is accurate because it is just

geometric [50].

Vr =
h

p
(q1 sin θ − q2 cos θ) (7.8a)

Vt =
h

p
(1 + q1 cos θ + q2 sin θ) (7.8b)

7.2.1 Almost-Periodic Linear Systems

Consider a linear time-varying system ẋ = [A(t)]x, for which [A(t)] ≈ [A(t + T )] but a

perturbing term [δA(t)] stops the plant matrix from being exactly periodic:

ẋ =
(
[A(t)] + [δA(t)]

)
x ≡ [A(t)]x (7.9)

where [A(t)] = [A(t+T )], which can be computed by a Fourier series fit of [A(t)] over an interval t0 <

t < t0 +T for some choice of T . A Fourier series naturally only captures the T -periodic component
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of [A(t)]. In this discussion, Eq. (7.9) represents the linearized dynamics of relative motion about an

orbiter in a perturbed environment, in either LVLH frame coordinates or differential QNS elements.

The term [δA(t)] represents the known non-periodic data in the plant matrix, but the influence

of dynamic uncertainty due to low-fidelity modeling or navigational errors in the chief orbit can

additionally be incorporated into this term for other analyses.

Let xu(t) be the solution to the following uncorrected dynamics for which the plant matrix

is exactly periodic:

ẋu = [A(t)]xu (7.10)

For this system, the constant matrix [Φ(t0 + T, t0)] is the monodromy matrix, with [Φ(t, t0)] being

the solution of the following differential equation for the state transition matrix (STM) of xu:

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)] (7.11)

with the initial condition [Φ(t0, t0)] = [I] Note the following transformation of the monodromy

matrix due to a shift of the epoch time from t0 to tc:

[Φ(tc + T, tc)] = [Φ(tc, t0)][Φ(t0 + T, t0)][Φ(tc, t0)]−1 (7.12)

Standard Floquet theory applies to the linear system with [A(t)] as its plant matrix. First,

there exists a T -periodic coordinate transformation xu = [P (t)]zu, with [P (t)] given below:

[P (t)] = [Φ(t, t0)]e−[Λ](t−t0) (7.13)

[P (t0)] = [P (t0 + T )] = [I] (7.14)

Furthermore, by differentiating xu = [P (t)]zu and substituting Eq. (7.10), it can be shown that

the dynamics of zu obey the following equation with a constant plant matrix [Λ]:

żu =
(

[P (t)]−1[A(t)][P (t)]− [P (t)]−1[Ṗ (t)]
)
zu = [Λ]zu (7.15)

Note in addition that [Λ] is computed directly from the monodromy matrix:

[Λ] =
1

T
ln
(
[Φ(t0 + T, t0)]

)
(7.16)
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For the perturbed system given by Eq. (7.9), let a new corresponding system z be constructed

as z = [P (t)]−1x using the same T -periodic transformation [P (t)] in Eq. (7.13). In other words,

this new system will be dynamically equivalent to the system in x, with the states mapped using

the same periodic transformation that maps between the uncorrected systems. This is illustrated

in Figure 7.5.

Figure 7.5: Transformation Between x and z Spaces

The dynamics of x differ from those of xu by the addition of the [δA(t)] term in the plant

matrix, and the dynamics in z will correspondingly differ from those of zu. The corresponding

deviation in z space dynamics must be characterized. Differentiating x = [P (t)]z and substituting

Eq. (7.9), the following equation is obtained for the dynamics in z:

ż =
(

[P ]−1[A][P ] + [P ]−1[δA][P ]− [P ]−1[Ṗ ]
)
z (7.17)

Here, the term [Λ] = [P ]−1[A][P ]− [P ]−1[Ṗ ] is recognized, and the dynamics of z are rewritten:

ż =
(
[Λ] + [δΛ(t)]

)
z ≡ [Λ(t)]z (7.18)

[δΛ(t)] = [P (t)]−1[δA(t)][P (t)] (7.19)

Thus, on the interval T = [t0, t0 + T ], the linear time-varying system in x with almost-periodic

plant matrix [A(t)] ≈ [A(t+ T )] has been transformed into a system in z with an almost constant

plant matrix [Λ(t)] subject to small oscillations [δΛ(t)] about a constant [Λ]. Eqs. (7.18) and (7.19)

are of fundamental importance in this discussion, as is the z space in which they operate.
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7.2.2 Persistence and Robustness of Modes

The properties of desirable modes are now outlined. To facilitate this discussion, introduce

the factorization z = zu + δz, for which zu obeys the following modal decomposition:

zu =
k∑
i=1

civie
λi(t−t0) (7.20)

Here vi is the ith eigenvector of [Λ]. It is also possible to modally decompose the motion in xu due

to the existence of the transformation xu(t) = [P (t)]zu(t). Let z be initialized in a single mode,

such that δz(t0) = 0, and then evolve subject to the full plant matrix via Eq. (7.18):

zl = zu,l + δz = clvle
λl(t−t0) + δz (7.21)

For simplicity, the mode is assumed to consist of a single unique eigenvalue, but this analysis could

be repeated with a complex-conjugate pair of eigenvalues. Substitute Eq. (7.21) into Eq. (7.18),

and consider a time range t0 ≤ t < t∗ such that δz is small enough to neglect in comparison to zu.

In this time range, the state evolves as:

żl = żu,l + δż ≈ [Λ]zu,l + [δΛ(t)]zu,l (7.22)

From Eq. (7.22), during the time t0 ≤ t < t∗, the condition that the initial modal motion be closely

followed by the perturbed system is that the flow of the uncorrected mode żu,l dominates that of

the deviation δż, where ‖ · ‖ is the operator norm or 2-norm:

‖[δΛ(t)]vl‖ � ‖λlvl‖ (7.23)

In other words, only the sub-eigenspace of [Λ] that is robust to the small perturbations due to

[δΛ(t)] will be closely reflected by the true dynamics for an appreciable period of time.

Consider two intervals Tk = [t0 + kT, t0 + (k+ 1)T ] and Tk+1 = [t0 + (k+ 1)T, t0 + (k+ 2)T ],

on which the matrices [Λk] and [Λk+1] are computed from the monodromy matrices associated with

the periodic parts of the plant matrix on the two intervals, themselves obtained via Eq. (7.11):

[Λk] =
1

T
ln ([Φ(t0 + (k + 1)T, t0 + kT, )]) (7.24)
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[Λk+1] =
1

T
ln ([Φ(t0 + (k + 2)T, t0 + (k + 1)T )]) (7.25)

Let [∆Λk+1] = [Λk+1]− [Λk]. It can be said that the ith mode is persistent in the transition from

interval Tk to Tk+1 so long as the changes in the eigenvalue are small, |∆λi| � |λi|, and the changes

in the eigenvector are small.

The desirable modes for spacecraft relative motion guidance are thus those which satisfy two

criteria: (1) robustness, meaning that any disturbances [δΛ(t)] have only secondary effects, and (2)

persistence, meaning that they change only slightly with each interval. Most importantly, these

two properties are expected to go hand-in-hand, because they both are indicators of the robustness

of a given eigenvalue and eigenvector to arbitrary small matrix perturbations. Thus, modes that

are persistent over multiple intervals should also generally be robust.

7.2.3 Dynamics of the Deviation

Factoring Eq. (7.18) into the uncorrected component and the deviation, the following is

obtained:

(żu + δż) = ([Λ] + [δΛ(t)])(zu + δz) (7.26)

It has already been established that for initialization in an appropriately chosen robust and per-

sistent mode (or similarly, a combination of such modes), z(t) ≈ zu(t) for some time range

t0 ≤ t < t∗. On this time range, an approximate expression for the deviation δz(t) is sought.

This can be obtained with a straightforward perturbation expansion, by introducing the scalings

[Λ(t)] = [Λ0] + ε[Λ1] and z = z0 + εz1, where the zeroth-order terms are [Λ0] = [Λ] and z0 = zu,

and the first-order terms are ε[Λ1] = [δΛ] and εz1 = δz. Substituting these expansions into Eq.

(7.26) and isolating the O(ε0) and O(ε1) components, the following two equations are obtained:

ż0 = [Λ0]z0 (7.27)

ż1 = [Λ0]z1 + [Λ1]z0 (7.28)

Multiplying Eq. (7.28) by ε, substituting in z0 = zu(t) and the other scaling definitions, and

allowing for a small nonzero initial condition on the deviation δz(t0) = ∆z, the solution to the
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approximate dynamics of the deviation are given below, where [Φz(t, τ)] = exp([Λ](t− τ)):

δz(t) ≈
∫ t

t0

[Φz(t, τ)][δΛ(τ)][Φz(τ, t0)]dτ · zu(t0) + [Φz(t, t0)]∆z (7.29)

This equation is valid so long as the deviation remains sufficiently small that the deriving as-

sumptions are not violated. The term ∆z represents a small targeting error, z(t0) − zu(t0). The

derivation of Eq. (7.29) concludes the analytic prerequisites for discussing the use of approximate

modes computed via the numerical application of LF theory.

7.2.4 Spacecraft Relative Motion Near Terminator Orbits

The numerical approximate modal decomposition is now applied to the problem of design and

control of close-proximity spacecraft relative motion around an asteroid. This is a useful problem

of study because of both the growing popularity of asteroid missions and the potential for future

spacecraft missions to trend more towards low-cost fractionated designs [5, 86]. In addition, there

is an availability of nearby asteroids which are good targets for scientific study, yet reachable by

small, low-cost spacecraft [45].

The application in this work is the study of relative motion modes in terminator orbits about

the asteroid 162173 Ryugu, a near-Earth asteroid which was the target of the recent Hayabusa2

mission. The rotating gravity field and the combined effects of solar gravity and radiation pres-

sure make this a dynamically complex target for formation design or any other multi-spacecraft

proximity operations, and the natural close-proximity spacecraft relative motion modes in this en-

vironment will be interesting to characterize. This example also helps to illustrate that the modal

decomposition tools and techniques introduced in this dissertation can be applied even to very

complex orbits.

For this work, periodic terminator orbits computed in the Augmented Normalized Hill Three-

Body Problem (ANH3BP) serve as the nominal orbit conditions for the chief orbit in the formation,

but the true orbit is perturbed by the rotating irregular gravity field of the asteroid. Thus, the

nominal orbit design is periodic, but the actual orbits will be generally quasi-periodic. Under the
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influence of perturbations, regular long-term stable motion can still be found in the vicinity of

nominal periodic terminator orbits [14].

Past studies have demonstrated that so long as the semimajor axis is above a 1.5 resonance

radii limit and below a corresponding upper limit characterized by the third-body and SRP per-

turbations, the orbit will be more likely to persist for long time spans [63, 113, 115]:

3

2

(
T 2
r µ

4π2

)1/3

< a <
1

4

√
µB

G1
d (7.30)

Here Tr is the rotation period of the asteroid, µ is its gravitational parameter, B is the spacecraft

mass-to-area ratio in kg/m2, G1 ≈ 108kg·km3/s2m2 is the solar constant, and d is the distance from

the asteroid to the sun in km. Note also that the semimajor axis can be expressed as a function

of the parameter Γ = c/n, where c is the rotation rate of the asteroid and n is the mean motion of

the spacecraft orbit:

a = Γ2/3

(
T 2
r µ

4π2

)1/3

(7.31)

thus the rotation rate ratio inequality to guard against the effects of the rotating gravity field

is Γ > (3/2)3/2 ≈ 1.8. With the nominal orbit designed as a periodic orbit with size satisfying

the constraints of Eq. (7.30), the effect of the perturbations can be minimized to some degree.

Furthermore, a useful degree of regularity can be introduced to the orbit by choosing the value of

Γ to be rational and of the following form:

Γ∗(j, k, l) =
kl + j

k
(7.32)

where j, k, and l are integers chosen such that Γ is greater than the lower limit, j ≤ k. This choice

of Γ results in l + j/k rotations of the asteroid with after each spacecraft orbit period Ts. Thus,

the sun-orbiter-asteroid geometry for time t and time t+ Ts will be the same, except the longitude

of the asteroid will have advanced by 2πj/k. This regularity helps to ensure that the plant matrix

for relative motion will obey [A(t)] ≈ [A(t + T )] so that the relative motion modes can be easily

characterized, and in this case T = Tsk. It could also be potentially useful for scientific studies by

providing regularly reproducible and highly predictable lighting conditions.
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The ANH3BP describes motion in the vicinity of a sun-orbiting asteroid, and the dynamics

are given by the following dimensionless equations of motion for a circular asteroid heliocentric

orbit [15]:

r′′ + ẑ × r′ + (ẑ · r) ẑ =
∂U

∂r
(7.33)

U(r) =
1

‖r‖ + βd̂ · r +
3

2

(
d̂ · r

)2
(7.34)

where d̂ is the unit vector pointing from the sun to the asteroid and β is the non-dimensional SRP

acceleration in terms of the solar constant G1, mass-to-area ratio B, solar gravitational parameter

µs, and asteroid gravitational parameter µ:

β =
G1

Bµ
2/3
s µ1/3

(7.35)

Note that β is the only parameter of interest in the non-dimensional problem. The terms r and r′

are the dimensionless orbiter position and velocity about the asteroid in the rotating asteroid-fixed

Hill frame, related to the dimensionalized position R and velocity Ṙ in the rotating frame by the

expressions given below:

r =
1

εd
R (7.36)

r′ =
1

εdΩn
Ṙ (7.37)

where d is the sun-asteroid distance, ε = (µ/µs)
1/3, and Ωn =

√
µs/d3. These equations are

adapted from more general eccentric orbit equations, and Eqs. (7.33) and (7.37) change for the

general elliptic case [115]. Note that Eq. (7.33) admits a Jacobi integral, which is conserved for

any orbit, and given below in terms of the potential U(r) and v = ‖r′‖ and z = r · ẑ

CJ =
1

2

(
v2 + z2

)
− U(r) (7.38)

Periodic orbits are found using a multiple-shooting predictor-corrector algorithm, which

breaks the trajectory into q segments with initial states Xi for i = 1, ..., q, and these states are

combined with the segment time duration tseg = Ts/q into the state vector Z [15]:

Z =
[
X>1 ,X

>
2 , . . . ,X

>
q , tseg

]>
(7.39)
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By driving the following vector G(Z) to zero, the algorithm drives an initial guess of the orbit

towards a nearby periodic orbit, if it exists. The zero constraint on the three select components of

X1 and the Jacobi integral value constraint restrict the search space for the periodic orbit:

G(Z) =

[
X>2 − F>tseg(X1),X>3 − F>tseg(X2), . . . ,X>q − F>tseg(Xq−1),

X>1 − F>tseg(Xq), y1, ẋ1, ż1, C(X1)− C0

]>
= 0

(7.40)

The resulting correction to Z is of the form Zk+1 = Zk − δZ, with δZ given as:

δZ = γ
(

[H]>[H]
)−1

[H]>G(Z) (7.41)

where [H] = ∂G/∂Z|Zk and γ ≤ 1 is a variable step size for better convergence of the algorithm.

In order to determine the family of periodic terminator orbits applicable to this study, the

value of β for this problem must be determined, and the size of appropriate admissible dimensionless

orbits must also be obtained. The former problem is a straightforward computation given B,µ, µs,

and the latter can be solved by choosing orbits that ensure that the previously mentioned inequality

Γ > (3/2)3/2 is satisfied. It turns out that using z(0) = ã, ẏ(0) = 1/ã1/2 as an initial guess tends

to yield periodic terminator orbits with dimensionless periods very close to T̃ = 2πã3/2. It is thus

straightforward to find the conditions for a periodic orbit with an acceptable value of dimensionless

period T̃ = ΩTs = ΩΓTr, derived from a given asteroid rotation period Tr and an acceptable choice

of Γ. Re-dimensionalizing the computed initial conditions will result in a satisfactory terminator

orbit. Important information for this problem is summarized in Table 7.2, along with the semimajor

axis for select values of Γ.

In Table 7.2, note that d is the distance from the sun to the asteroid at the beginning

of the simulation, R denotes the maximum radius, and the Cij terms are the low degree and

order gravitational harmonics generated from the Ryugu shape model using a constant-density

assumption [44]. The rotation period of Ryugu is Tr = 7.6326 hrs, so admissible semimajor axes

fall in the range 1.246 < a < 3.691 km, and the given semimajor axis values all fall within this

range. In the provided orientation data, the terms λp and βp are the ecliptic longitude and latitude
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Table 7.2: Physical Parameters for Ryugu Simulation

Parameters Values

Geometric d = 1.1466 AU, B = 24.7 kg/m2

Nondimensional β = 50, Ωn = 1.62334× 10−7, ε = 6.0873× 10−5

Asteroid properties [46, 44] µ = 3× 10−8km3/s2, Tr = 7.6326 hrs, R = 0.4484 km
C20 = −0.0539, C22 = 0.0027, C30 = 0.00307, C40 = 0.04209

Asteroid orbit a = 1.1896 AU, e = 0.1902, Ω = 251.589◦, i = 5.884◦,
ω = 211.436◦, f0 = π/2

Asteroid orientation [46] λp = 179.3◦, βp = −87.44◦, φp = 153.9◦, υp = 171.64◦, ψp,0 = 0◦

Semimajor axis, a(Γ) a(2) = 1.319, a(5/2) = 1.531, a(3) = 1.728, a(7/2) = 1.916 km
a(4) = 2.094, a(6) = 2.744 km

y (km)
°3.0°1.50.01.53.0

z
(k

m
)

°3.0

°1.5

0.0

1.5

Figure 7.6: Nominal and Perturbed Terminator Orbits at Ryugu

to the spin axis. These yield an obliquity of the spin axis of 171.64◦, so Ryugu rotates retrograde

with respect to its orbit. The parameters φp, υp, ψp,0 are derived sequential Euler angles for the
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3-1-3 rotation from the asteroid orbit perifocal frame to the asteroid body frame parameterized by

the principal axes. Note ψp(t) = ψp,0 + ct for uniform rotation.

While the gravitational coefficients given in Table 7.2 are sufficient to capture the dominant

dynamics, the effects of higher-order gravitational perturbations are added in the simulations by

artificially generating higher order Clm coefficients for even l ≥ m from C20 and C22 using the

following generating function valid for constant-density ellipsoidal bodies [12, 17]:

Clm = 3χ (2− δ0m)
5
l
2

(
l
2

)
! (l −m)!

(l + 3)(l + 1)!

int( l−m4 )∑
i=0

C
l
2
−(m2 +2i)

20 C
m
2

+2i

22(
l
2 − m

2 − 2i
)
!
(
m
2 + i

)
!i!

(7.42)

where χ is a multiplier introduced because the value of C40 from Table 7.2 is greater than predicted

with this equation, thus χ = |C40,true/C40,comp|. In reality, Ryugu is not a constant-density ellipsoid,

so these generated coefficients won’t match the true values. In future work it would be possible to

obtain more accurate values for the higher-order coefficients using the Ryugu shape model data.

A subset of the family of periodic terminator orbits is computed for β = 50 and given in

Figure 7.6. The black curves are generated by scaling the ANH3BP-predicted periodic orbit initial

conditions and propagating with only the asteroid point-mass gravity, solar gravity, and cannonball

solar radiation pressure. The light blue curves are the perturbed terminator orbits, propagated

for 20 orbits from the same nominal periodic orbit initial condition, but subject to the additional

disturbances of a rotating 12th degree and order gravity field generated from the data in Table 7.2

and Eq. (7.42). From the figure, it is evident that the effects of the perturbations are larger for

orbits closer to Ryugu. Nonetheless, these orbits are still far more regular than orbits generated by

other means, such as propagation from a circular orbit initial condition in the terminator plane.

7.2.5 Mode-Computing Algorithm Validation

As a preliminary test of the code for computing the modal decomposition code in orbit

element differences, a 1.531 km orbit about Ryugu is tested with only the J2 perturbation. For the

J2-only problem, the code predicts a relative motion mode with a zero eigenvalue corresponding to

relative motion consisting only of the z6 coordinate, and the bottom row of [P (t)] is zero except for
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the last element, thus δΩ = z6. In other words, the numerical modal decomposition has successfully

identified that relative motion in orbit element space consisting only of a RAAN difference will not

drift or change at all over time due to the axial symmetry in the dynamics.

In addition, note that while the computed [P (t)] matrix has a highly complex form when x

is in local rectilinear coordinates, that is not the case when x is in QNS element differences. In this

case, numerical results show that the numerically computed LF transformation is a perturbed form

of the Keplerian case (Eq. (6.50)), with smaller additional time-varying oscillations about zero in

many components, represented by [Pε(t)]:

δa

δθ

δi

δq1

δq2

δΩ


≈



1 0 0 0 0 0

0 P2,2(t) 0 P2,4(t) P2,5(t) 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





z1

z2

z3

z4

z5

z6


+ [Pε(t)]z (7.43)

This result further agrees with Eq. (6.82) and the associated discussion in the end of chapter 6.

Because the plant matrix is not exactly periodic for the provided numerical examples, the computed

LF transformation and the resulting modal decomposition will form an approximate basis of possible

close-proximity relative motion, and not an exact one as in the Keplerian case. However, if the

discarded component [δA(t)] is sufficiently small, the errors will be quite small. In some cases, the

plant matrix [A(t)] will be quasi-periodic, and it could be worthwhile to explore computing the

quasi-periodic Lyapunov-Perron (LP) transformation [66] that reduces the linearized dynamics to

an LTI form. There are practical challenges to reducing the linearized dynamic equations with quasi-

periodic coefficients. The decomposition based on the LF transformation, however, is numerically

straightforward, analytically promising, and provides insights into the types of relative motion for

a large range of potential applications.
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7.2.6 Applying the Mode-Computing Algorithm to Ryugu Terminator Orbits

The modal decompositions obtained for the perturbed terminator orbit with Γ = 3 are

discussed next. The quasi-period for the perturbed orbit is determined as the time between chief

orbit crossings of the plane y = 0 in Figure 7.6. The result is approximately 1% greater than

the result predicted by the dimensionless system using T = T̃ /Ωn. The eigenvalues of [Λ] are

listed in Table 7.3 and plotted in Figure 7.7(a) for three successive intervals T1, T2, and T3. Also

included are the initial conditions for a slowly-changing mode on the three subsequent intervals, in

QNS orbit element differences δoe0 = z0 = [δa0, δθ0, δi0, δq1,0, δq2,0, δΩ0], with δa0 in km and all

angle differences in radians. It is worth noting that the pair of eigenvalues λ5,6 closest to zero for

interval T1 moved around significantly depending on the value of the quasi-period used to compute

[A(t)], whereas the other four eigenvalues are comparatively unaffected by small changes to the

quasi-period. The other four eigenvalues λ1,2 and λ3,4 also change very little between intervals, as

can be seen by examining the two complex-conjugate pairs farthest from the real line. Note that

the points for these four eigenvalues on intervals 1, 2, and 3 lie almost on top of one another in

Figure 7.7. The mode corresponding to the pair λ1,2 is selected, and the corresponding motion is

given in the LVLH frame for 12 orbits in Figure 7.7(b). Note that the original space of this mode

is in zu coordinates, computed using the methods introduced earlier in the chapter, and its motion

is mapped to LVLH coordinates by first using [P (t)] to map to QNS element differences, followed

by the approximate linear mapping to LVLH given by Eq. (7.7). The relative motion analysis was

performed in QNS element differences, and the plots in this section are given in LVLH coordinates

only as a visual aid to the reader.

Note that the differences between [A(t)] and [A(t)] are small for most components, and

furthermore the differences between [A(t)] for successive intervals are small. This is demonstrated

by Figure 7.8, in which a representative component of [A(t)] from interval T1 is overlaid on the

same component of [A(t)] for interval T2, and there is still close agreement.

In a control implementation, desired combinations of the persistent linearly predicted modes
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Table 7.3: Spacecraft Relative Motion Modal Data for Terminator Orbit, Γ = 3

Parameters Values

Interval T1 eigenvalues λ1,2 = 9.16× 10−8 ± 1.58× 10−6i,
λ3,4 = −9.21× 10−8 ± 1.58× 10−6i
λ5,6 = 0.27× 10−8 ± 2.02× 10−7i

Interval T1 mode initial conditions δoe0 = [−0.001, 0.039, 0.0007, 0.015, 0.016,−0.002]

Interval T2 eigenvalues λ1,2 = 8.21× 10−8 ± 1.57× 10−6i,
λ3,4 = −8.24× 10−8 ± 1.57× 10−6i
λ5,6 = 0.66× 10−8 ± 6.69× 10−7i

Interval T2 mode initial conditions δoe0 = [−0.001, 0.039,−0.0004, 0.014, 0.016,−0.003]

Interval T3 eigenvalues λ1,2 = 7.46× 10−8 ± 1.56× 10−6i,
λ3,4 = −7.46× 10−8 ± 1.56× 10−6i
λ5,6 = 0.99× 10−8 ± 8.18× 10−7i

Interval T3 mode initial conditions δoe0 = [−0.001, 0.037,−0.0017, 0.014, 0.018,−0.005]

(a) Eigenvalues for Three Intervals
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Figure 7.7: Modal Results for Formations in Γ = 3 Terminator Orbit

would serve as the guidance solution for the formation to follow. Multiple close-proximity spacecraft

could safely occupy modal structures similar to the type depicted in Figure 7.7(b), either through

a phasing difference or by targeting different scalings of the motion, since the structure is nearly

scale-invariant in the linear regime of orbit element differences. This would enable close-proximity

relative motion of many spacecraft despite the highly complex orbital dynamics. However, the

trajectories eventually come close to the chief, so before that time the other spacecraft would have

to reconfigure and target a new modal motion.
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Figure 7.8: Select Component of Plant Matrix, Γ = 3, [A(t)] Computed from Interval T1

7.3 Relative Motion Dynamics and Control Using the Fundamental Solution

Constants

This section explores the use of the fundamental solution constants as state variables for

satellite relative motion. The fundamental modes can be computed for a given Keplerian or non-

Keplerian problem, then the influence of perturbations and/or control will cause the relative motion

to deviate from a linear sum of constant scalings of the fundamental relative motion modes. Despite

this, the modes can still be used to describe the motion, and the modal constants will vary over

time in that case.

7.3.1 The Modal Constants as State Variables

The Keplerian case will be used to facilitate this discussion, but the findings of this section

apply for any modal decomposition. For the Keplerian problem, any uncontrolled close-proximity

relative motion x(t) can be expressed as a constant weighted sum of the fundamental Keplerian

modal motions. In the event that the orbital dynamics are perturbed, or control is active, the

general behavior can still be represented by a time-varying weighted sum of the modal motions:

ẋ = f(x,u, t) (7.44a)

x(t) = [Ψ(t)]c(t) (7.44b)
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where the first equation gives the general true nonlinear dynamics, and c(t) is made to vary such

that these dynamics are satisfied. The vector of constants is allowed to vary in time as c(t) such

that any motion x(t) can be represented. This is enabled by the following osculating condition:

ẋ(t) =
∂x

∂t
+
∂x

∂c
ċ = f(x,u, t) (7.45a)

∂x

∂t
= [A(oe∗, t)]x (7.45b)

where [A(oe∗, t)] is the plant matrix for the original linearized dynamics used to compute the

fundamental modal solutions [Ψ(t)]. The following dynamics satisfy the osculating condition:

ċ = [Ψ(t)]−1 (f(x,u, t)− [A(oe∗, t)]x) (7.46)

Assuming that x(t) remains in the linear regime, Eq. (7.47) reduces to linear dynamics in c:

ċ = [Ψ(t)]−1
(

[A(t)]− [A∗(t)]
)

[Ψ(t)]c+ [Ψ(t)]−1[Bx]u (7.47)

where [Bx] = [03×3 I3×3]> if x is in Cartesian coordinates, and [A(t)] is the plant matrix for

linearization about the true (deviated) chief orbit. Note in the case that the orbital dynamics are

unchanged, Eq. (7.47) obtains a form where c is only influenced by control:

ċ = [Ψ(t)]−1[Bx]u (7.48)

Because c has no linearized plant matrix, it is possible in this case to design control to track

a desired natural reference trajectory xr(t) using a regulation controller in c space, because the

dynamics of the error δc = c− cr are of the same form as Eq. (7.48).

In the case that the true orbit is weakly perturbed in comparison to the orbit used to develop

the modal decomposition, one may write the true plant matrix in terms of the nominal plus a small

deviation:

[A(t)] ≈ [A∗(t)] + ε[δÃ(t)] (7.49)

where |ε| � 1 is a small parameter. In this case, Eq. (7.47) is rewritten:

ċ = ε[Ψ(t)]−1[δÃ(t)][Ψ(t)]c+ [Ψ(t)]−1[Bx]u

≡ ε[Ω(t)]c+ [Bc(t)]u

(7.50)
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Eq. (7.50) is interesting because as the relative state is written as x(t) = [Ψ(t)]c(t), the perturbed

close-proximity dynamics of relative motion can be factored into a traditional slow-fast dynamical

system:

[Ψ̇] = [A∗(t)]Ψ (7.51a)

ċ = ε[Ω(t)]c+ [Bc(t)]u (7.51b)

where from Eq. (7.50), the matrices [Ω] and [Bc] are also functions of the modal solutions, and

the equations change from LTV to autonomous nonlinear equations if one adds t as a fast variable,

with dynamics ṫ = 1. The “slowness” of the dynamics in c implies that for weakly perturbed cases,

the state c(t) will change slowly from c(t0) in comparison to how the ψi(t) change from ψi(t0)

and how x(t) changes from x(t0). This allows interpretation of the evolving relative motion using

the osculating modal constants, similarly to how the osculating orbital elements are used to study

general perturbed satellite orbits.

7.3.2 Continuous Control Using the Fundamental Solution Constants

Consider the classical Linear Quadratic Tracking (LQT) problem in the dynamics of local

coordinates, such as the Cartesian representation. Both the close-proximity controlled relative state

x(t) and the reference state xr(t) are solutions of Eq. (7.52):

ẋ = [A(t)]x+ [Bx]u (7.52)

Consider the case that the dynamics are Keplerian and the desired trajectory xr(t) is a natural

trajectory, thus ur = 0. The cost function for LQT is given below, along with the optimal control

u(t) in terms of time-varying gain [K(t)] and co-state s(t):

J =
1

2
(x(tf )− xr(tf ))> [S] (x(tf )− xr(tf ))

+
1

2

∫ tf

t0

(
(x(t)− xr(t))> [Q] (x(t)− xr(t)) + u>[R]u

)
dt

(7.53)

u(t) = −[R]−1[B]>[K]x(t)− [R]−1[B]>s(t) (7.54)
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[K̇] = −[K][A] + [K][B][R]−1[B]>[K]− [Q]− [A]>[K], [K(tf )] = [S] (7.55)

ṡ = −
(

[A]> − [K][B][R]−1[B]>
)
s+ [Q]xr, s(tf ) = −[S]xr(tf ) (7.56)

Thus to execute the tracking control, the 6 × 6 matrix [K] must first be propagated backwards

via the Riccati equation, Eq. (7.55) (requiring simultaneous back-propagation of the chief orbit

and computation of the plant matrix [A]), and the 6-dimensional co-state s(t) must also be back-

propagated via Eq. (7.56).

Consider instead that the fundamental solution constants c are used as the state representa-

tion, and the desired trajectory to track is natural, thus ur = 0 and cr(t) = cr(t0). The state error

is δc = c− cr with the following simple dynamics, assuming that the chief orbit is unperturbed:

δċ = [Bc(t)]u (7.57)

Furthermore, the LQT problem in x space reduces to the Linear Quadratic Regulator (LQR)

problem in c space, with cost function, optimal control, and simplified Riccati equation below:

J̃ =
1

2
δc(tf )>[S]δc(tf ) +

1

2

∫ tf

t0

(
δc(t)>[Q]δc(t) + u>[R]u

)
dt (7.58)

u(t) = −[R]−1[Bc]
>[K]δc(t) (7.59)

[K̇] = [K][Bc(t)][R]−1[Bc(t)]
>[K]− [Q], [K(tf )] = [S] (7.60)

With this formulation, the controlled x(t) will track natural trajectory xr(t) through control in c

space – where there is no need to back-propagate any co-state dynamics, and the Riccati equation

is also greatly simplified by the absence of an [A] matrix. However, a complication is that the

choice of satisfactory gains is not as straightforward in c space as it is in x space.

7.3.3 Impulsive Control Using the Fundamental Solution Constants

Instead of continuous control strategies, the relative motion parameterization in terms of

fundamental solution constants is particularly well-suited for impulsive maneuver-based control
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strategies. Returning to Eq. (7.51), in the absence of disturbances, [Ω(t)] = [06×6], and the

solution for c can be expressed solely in terms of a series of impulsive maneuvers ∆vi = ∆v(ti):

c = c0 +

N∑
i=1

[Bc(ti)]∆vi (7.61)

Consider the optimal control problem of minimizing the total delta-V subject to the dynamics in

Eq. (7.68):

J =
N∑
i=1

∆vi (7.62)

where ∆vi = ‖∆v(ti)‖. Also, let ∆c = c−c0. Some useful results are borrowed from Reference 52.

First, consider the sets of control inputs u(t) ∈ U and the reachable variations ∆c ∈ C with cost

less than or equal to J :

U (J) =

{
u(t) : u(t) =

N∑
i=1

∆vi,
N∑
i=1

∆vi ≤ J
}

(7.63)

C (J) =

{
∆c : ∆c =

N∑
i=1

[Bc(ti)]∆vi,

N∑
i=1

∆vi ≤ J
}

(7.64)

As discussed in Reference 52, the set C is compact and convex, and scales linearly with J . Further-

more, for a minimum cost Jmin to achieve a desired variation, the desired difference in constants

∆c∗ = c∗ − c0 lies on the boundary of the set. The minimum delta-V to reach this goal in N

maneuvers can be obtained in terms of the unit vector η̂, which is normal to the boundary of C at

∆c∗:

Jmin =
η̂>∆c∗

maxti∈[t0,tf ]‖η̂>[Bc(ti)]‖
(7.65)

Reference 52 described a means of numerically obtaining η̂ using a convex solver, then linearly

solving for an optimal sequence of N ≤ n impulsive maneuvers for a dynamic system with n state

variables. In general, for the formation flying problem, a minimum of two maneuvers are required.

For the unperturbed problem, only control action induces movement in C – the flow of the integrable

dynamics has no effect. This property, combined with the compactness and convexity of C , allows

for powerful geometric interpretations for the fuel-optimal impulsive maneuver problem. However,

any significant perturbations will play a disruptive role, inducing drifts in ∆c that would need to

be accounted for.
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The algorithm for solving for an optimal maneuver sequence is given below for the unper-

turbed problem [52]:

(1) Solve the following second-order cone program for the optimal value η∗:

maximize J̃ = η>∆c∗

subject to ‖[Bc](t)>η‖ ≤ 1 for t ∈ [t0, . . . , tj , . . . , tf ]

(7.66)

where [t0, . . . , tj , . . . , tf ] ∈ Rk≥0 is a chosen discretization of the control interval.

(2) Determine all times ti ∈ [t0, . . . , tj , . . . , tf ] for which |‖[Bc(t)>η∗‖−1| < ε for some tolerance

ε� 1. This will yield an N -maneuver sequence, with N � k, for which the ith impulse is

directed along the unit vector:

ûi = [Bc](t)
>η∗ (7.67)

(3) The set of delta-V maneuvers {∆vi} needs to satisfy the linear system of equations:

N∑
i=1

[Bc(ti)]ûi ·∆vi = ∆c∗ (7.68)

A traditional relative motion control approach is to use a factorization of the STM to uniquely

solve for a 2-burn delta-V sequence given some specified initial and final times. This could also

be used, with the desired target relative orbit efficiently identified in c space. This c∗ would

then be mapped to x∗ via the fundamental solutions. To control to a future target condition

x = [∆r>,∆r′>]> at time t from a maneuver initial condition xm = [∆r>m,∆r
′>
m ]> at time tm, the

following factoring of the state transition matrix is used:

[Φ(t, tm)] =

Φrr(t, tm) Φrv(t, tm)

Φvr(t, tm) Φvv(t, tm)

 (7.69)

from which the final state may be expressed in terms of the state at the initial time:

∆r = [Φrr(t, tm)]∆rm + [Φrv(t, tm)]∆r′m (7.70)

∆v = [Φvr(t, tm)]∆rm + [Φvv(t, tm)]∆r′m (7.71)
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Using the desired position ∆r∗ and velocity ∆r′∗ in Eqs. (7.70) and (7.71), the two needed delta-Vs

δ1 and δ2 can be uniquely determined:

δ1 = [Φrv(t, tm)]−1 (∆r∗ − [Φrr(t, tm)]∆rm)−∆r′−m (7.72)

δ2 = ∆r′∗ −
(
[Φvr(t, tm)]∆rm + [Φvv(t, tm)]∆r′+m

)
(7.73)

where ∆r′−m is the velocity at time tm before the first delta-V, and ∆r′+m = ∆r′−m +δ1. By necessity,

a two-burn solution using either approach will obtain the same answer. Later in this section, the

optimal maneuver approach from Reference 52 is tested with the modal constant approach via

numerical simulation.

7.3.4 Using the Modal Constants to Explore Relative Orbits

Consider the example of a bounded relative orbit in the vicinity of an eccentric chief orbit,

given by the data listed in Table 7.4. Note that while δa = 0, the drift constant c6 does not exactly

equal zero. This is because δa = 0 is the nonlinear no-drift requirement, and it is not perfectly

captured by the linearized no-drift condition. This is a well-known property of linearized solutions

– consider for example that the linearized no-drift condition for the CW system is ẏ + 2nx = 0,

which only linearly approximates δa = 0. From the data in Table 7.4, the resulting Keplerian

relative orbit is depicted in 3D in Figure 7.9, and the planar projection appears as a black closed

curve in Figures 7.10 – 7.12.

Table 7.4: Simulation Parameters – Final Keplerian Modal Example

Parameter Value

Chief Orbit Elements oe = (a, e, i,Ω, ω, f0) = (8600 km, 0.2, 25◦, 0◦, 270.001◦, 90◦)
Deputy Relative Orbit δoe = oed−oec = (0.0, 0.0002, 0.02◦, 0◦, 0◦, 0.003◦)
Modal Constants c = (4.3, 0.0, 7.07, 3.60, 3.61,−0.014)

Figure 7.10 shows the modal decomposition of the in-plane component of the relative motion

using the modes developed in Cartesian coordinates. Figure 7.11 shows the modal decomposition

of the in-plane motion using the modes developed in spherical coordinates and linearly mapped to
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Figure 7.10: Cartesian Planar Modes

Cartesian coordinates. For both plots, the initial point of the orbiter and the initial point in each

mode are given by dots. Because the relative orbit is non-drifting, the drift mode contribution is

zero – thus the mode appears as a non-moving point at the origin. For both modal decompositions,

the modes shown sum linearly to reproduce the observed relative motion in black. In other words,

x2D(t) = c1ψ2D,1+c3ψ2D,3+c5ψ2D,5. Recall that the out-of-plane modes (2 and 4) have no in-plane

component – they exist only in z, and are completely decoupled from the in-plane modes.

Comparing Figures 7.10 and 7.11, the spherical coordinate-based modal decomposition re-

produces the true relative orbit in a much more straightforward and intuitive manner than the

Cartesian coordinate-based counterpart. The motion is represented as a sum of a rectilinear along-

track motion (mode 1), a distorted elliptical motion (mode 3), and the offset circular trajectory
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Figure 7.11: Spherical Planar Modes

(mode 5). This is the simplest geometric representation possible for general Keplerian relative

motion, with two of the three bounded in-plane motions given as basic shapes.
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Figure 7.12: Variations of the Planar Relative Motion with c1
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Figure 7.13: Variations of the Planar Relative Motion with c3 (Re-scaled)

Because the fundamental modal motions only need to be computed once, variations in the
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Figure 7.14: Variations of the Planar Relative Motion with c5 (Re-scaled)

relative motion due to changes in the modal constants can be explored with a minimal amount of

numerical computation. For example, exploring a range of variations in c1, Figure 7.12 is produced.

The initial (t = t0) and mid-orbit (t = t0 + T
2 ) points are denoted with a “•” and with an “x”,

respectively, and the original relative orbit is given in black. The effect of isolated changes in c1 is

to shift the motion further along in the along-track direction as c1 is increased, with the additional

effect of rotating and distorting the planar component of the relative orbit. Note that the x scale

of the relative orbit is not affected at all. Similar figures can be generated to isolate the effects of

changes in c3 and c5 on the relative orbit shape and location. However, changing the scales of c3

and c5 also change the size of the relative orbit. To display the characteristic changes in relative

orbits with these parameters clearly on individual plots, the relative orbits are computed across

desired ranges for these parameters, as was done for Figure 7.12, then the orbits are re-scaled such

that ‖cnew‖ = ‖cold‖ to preserve the original relative orbit scale. The resulting plots are given in

Figure 7.13 for variations in c3 and Figure 7.14 for variations in c5.

In Figure 7.13, as c3 is decreased from its original value of 7.07, the re-scaled relative orbit

shifts from the original relative orbit (given in black) to more centered and symmetric relative

motion in the middle of the range (near c3 = 0), to an essentially reversed version of the original

for c3 < 0. Note that there would also be accompanying relative orbit scale changes with changing

value of c3, but the re-scaled orbit plot sacrifices this information to better show the variations
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in the relative orbit geometry. Figure 7.14 shows the variations in re-scaled relative orbit due to

changes in c5, with an original value of c5 = 3.61. The negative value is essentially flipped about

the x-axis, and as the value is increased, the re-scaled relative orbits gradually circularize as the

contribution of the circular mode 5 is increased in relative scale.

Figures 7.12 – 7.14 show that the parameter space for the in-plane component of bounded

relative orbits is only three-dimensional. The two out-of-plane modes add an additional two di-

mensions – completely decoupled from the in-plane design. From the perspective of the modal

constants, it is conceptually easy and numerically efficient for the astrodynamicist to explore all

possible useful types of relative motion that can exist. In this manner, the vector of modal con-

stants c serves as the design space, and also uniquely determines the relative motion state when

combined with a given time since epoch t− t0. As discussed earlier, it is also possible to compute

how the constants vary under the influence of non-Keplerian dynamics. With such a study, the

influence of perturbations on relative motion can be viewed as an evolving alteration of the relative

scales of the constituent Keplerian relative motion modes that form the basis for the unperturbed

problem.

7.3.5 Effects of Perturbations – Modeling with J2

To demonstrate the behavior of the Keplerian modal constants under the influence of pertur-

bations, consider the ubiquitous example of J2-perturbed relative motion, which highly relevant for

Earth orbits. To compute the perturbed dynamics of the Keplerian modal constants, Eq. (7.47) is

used with Eqs. (6.21) – (6.23) providing the linearized perturbed relative motion dynamics, eval-

uated using the following equations for the acceleration, differential acceleration, and jerk induced

by the J2-perturbed Keplerian dynamics:

r̈ = − µ
r3
r − 3µJ2R

2

2r4

((
1− 5

(
r̂ · K̂

)2
)
r̂ + 2

(
r̂ · K̂

)
K̂

)
(7.74)

∇rr̈ =− 3µJ2R
2

2r5

[(
1− 5

(
K̂ · r̂

)2
)

I + 2K̂K̂> + 5

(
7
(
K̂ · r̂

)2
− 1

)
r̂r̂>

− 10
(
K̂ · r̂

)(
K̂r̂> + r̂K̂>

)] (7.75)
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...
r = (∇rr̈) ṙ (7.76)

where K̂ denotes the polar axis unit vector, R is the equatorial radius, I is the 3×3 identity matrix,

and r̂ = r/r. The dynamics given by Eq. (7.47) are integrated in parallel with the J2-perturbed

chief orbit.

The same initial chief orbit and deputy relative orbit conditions from Table 7.4 are selected,

but with Earth’s J2 perturbation active. As a result of this perturbation, variations are induced

in the Keplerian modal constants. Figure 7.15 shows the result of integrating the dynamics in c

for 3 unperturbed chief orbit periods. The effect of J2 is limited to small oscillations in the modal

constants, but these oscillations grow over time, which is an unfortunate but unavoidable property.

For the case of J2, it seems that the modified orbital frequency due to the perturbation requires

that the secular drift mode (mode 6) be used to fully describe the perturbed state. This is because

all other modes are periodic on the interval [0, T ], and variations in their sums would be unable to

describe a relative orbit on the shortened interval [0, T −∆TJ2 ]. Additionally, the J2 perturbation

induces slow long-term drift in the relative orbit. The drift mode is used to describe the perturbed

solution, and it grows and shifts over time, so variations in other modes (primarily mode 5) are

induced to compensate for these variations. This yields the opposing behaviors of c5 and c6 seen

in Figure 7.15. Despite these growing oscillations, the long-term drift in c5 and c6 and in the other

ci parameters is quite slow. This suggests that the averaged dynamics in c could be a useful lens

for studying relative motion in the perturbed problem, especially for even zonal harmonics like J2,

but such a study is not explored here. Lastly, the growing oscillations are not a major problem for

modeling, because the fundamental solutions can always be re-initialized as needed by re-defining

the epoch time, i.e. t0,new , t.

7.3.6 Impulsive Maneuver Control in the Keplerian Relative Motion Problem

To demonstrate unperturbed control using the Keplerian modal constants, consider the prob-

lem of changing from the initial relative motion dictated by the data in Table 7.4 to a new planar

non-drifting relative orbit parameterized by c5 = 3.61. In this test case, the contribution of all
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Figure 7.15: Variation of Modal Constants with J2

modes except mode 6 in the initial relative motion are removed. To implement this test, the previ-

ously discussed impulsive maneuver-based control solution strategy is implemented in Python using

cvxpy.

In the first example, a two-burn maneuver achieves the desired relative orbit, with the first

burn at t = t0 + 1590.6 s with maneuver magnitude ∆v = 2.3 m/s, and the second burn at t = t0 +

5567.1 s with ∆v = 4.7 m/s. To enforce that only two maneuvers are performed, the control interval

was discretized into just the initial and end times. As expected, both the convex optimization-based

approach and the STM-based approach yield the same maneuvers. The resulting change in modal

constant space and the relative position evolution are given in Figures 7.16 and 7.17, with vertical

dotted lines indicating each maneuver. Figure 7.17 shows the sizable discontinuities in the velocity,

particularly in the z component – indicating that the maneuver is not particularly efficient.

By contrast, allowing for more than two maneuvers and expanding the interval of control time,

the multi-maneuver impulsive control strategy can achieve the same relative motion objectives but

with a reduced delta-V. For a second example, time is discretized into 100 points on the interval

ti ∈ [t0 + 1590.6 s, t0 + 12724.7 s]. This increases the number of constraints given by Eq. (7.66)

from 2 for the previous example to 100, but does not noticeably increase solver time. The resulting

impulsive control solution consists of 5 maneuvers for a combined delta-V of only 2.7 m/s, compared

to 7.0 m/s for the previous example. The changes in c with each maneuver are plotted in Figure
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Figure 7.16: Two-Burn Maneuver, Modal Constants
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Figure 7.17: Two-Burn Maneuver, Local Cartesian Coordinates
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Figure 7.18: Five-Burn Maneuver, Modal Constants

7.18, with vertical dotted lines indicating each maneuver. The relative position components are

plotted in Figure 7.19. In comparison to Figure 7.17, 7.19 shows a more gradual change in the
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Figure 7.19: Five-Burn Maneuver, Local Cartesian Coordinates

Figure 7.20: Relative Orbit Transfer Using Modal Constants

relative state to achieve the desired relative motion. Note that the last ∼ 0.4 orbit periods of the

simulation show the same behavior in c and in x for both examples, because they both target the

same desired c∗.

For the second controlled example, the initial, transfer, and final relative motions are shown

in 3D in Figure 7.20. The initial relative orbit is the large blue closed curve, and the final relative

orbit is the small orange planar circular trajectory. The transfer trajectory is given by the dashed
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black line, and the maneuver points are indicated with red dots.

Control using the modal solution constants is highly convenient, due to both the straightfor-

ward geometric interpretation of the ci parameters and the efficient means by which multi-maneuver

impulsive control schedules can be obtained. This is demonstrated by the preceding simple exam-

ples with Keplerian dynamics. However, extending this control design to account for the effect of

perturbations on c is necessary for elegant flight implementation – particularly for long-duration

control maneuver sequences. This is not explored, but mitigating the effects of perturbations in

control design in c space should be straightforward, because even in the perturbed relative motion

case, the c parameters do not lose their geometric meaning. This is highly convenient, and generally

does not hold for most other perturbed integral representations. For example, for relative motion

parameterizations using orbit element differences δoe = oed−oec, the perturbations modify oec,

and as a result, the resulting exact local coordinate behavior mapped from a particular desired δoe

changes over time.

7.4 Modal Decomposition and Modal Control in the Earth-Moon Three-

Body Problem

7.4.1 The Circular Restricted Three Body Problem

7.4.1.1 Basics of the CR3BP

Here, the basics of the CR3BP are briefly reviewed. For a more in-depth review, see e.g.

Ref. 79. The circular restricted three-body problem (CR3BP) is a normalized three-body problem

using the following dimensionalization parameters m∗, l∗, t∗:

m∗ = M̃1 + M̃2 (7.77)

l∗ = R̃1 + R̃2 (7.78)

t∗ =

(
(l∗)3

G̃m∗

)1/2

(7.79)
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where M̃1 and M̃2 are the masses of bodies 1 and 2, R̃1 and R̃2 are their distances from the

origin. Via these parameters, one can convert the dimensional quantities into their nondimensional

counterparts:

X =
X̃

l∗
, Y =

Ỹ

l∗
, Z =

Z̃

l∗
(7.80)

τ =
t

t∗
(7.81)

G =
G̃m∗ (t∗)2

(l∗)3 = 1 (7.82)

where G̃ is the gravitational constant, t is the dimensional time, τ is the nondimensional time, and

all quantities with a tilde are dimensional.

The mass ratio µ is the only special value appearing in the non-dimensional equations of

motion:

µ =
M̃2

M̃1 + M̃2

(7.83)

Lastly, note that when l∗ = a where a is the semimajor axis of the orbit between the two large

bodies 1 and 2, the parameter t∗ reduces to the following:

t∗ =
T

2π
(7.84)

where T is the period of the orbit between the two primary bodies. For reference, the equations of

motion for the CR3BP and the Jacobi constant equation are provided below:

ẍ =2ẏ + x− (1− µ)(x+ µ)

r3
1

− µ(x− 1 + µ)

r3
2

(7.85a)

ÿ =− 2ẋ+ y − (1− µ)y

r3
1

− µy

r3
2

(7.85b)

z̈ =− (1− µ)z

r3
1

− µz

r3
2

(7.85c)

r1 =
√

(x+ µ)2 + y2 + z2 (7.86a)

r2 =
√

(x− 1 + µ)2 + y2 + z2 (7.86b)

C = 2U∗ − v2 = (x2 + y2) +
2(1− µ)

r1
+

2µ

r2
− ẋ2 − ẏ2 − ż2 (7.87)
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where ˙( ) = d
dτ ( ). The x, y, and z are the coordinates in a frame rotating with the two primary

bodies (in the case of this work, the Earth and the moon), z = 0 defines the plane in which the

primary bodies orbit, and x is the direction from the larger to smaller primary.

7.4.1.2 Periodic Orbits in the CR3BP

There are a variety of periodic orbits in the Earth-Moon CR3BP. These are generally found

via shooting methods or collocation schemes, and families of periodic orbits are readily computed

via continuation methods. These concepts are briefly reviewed here, and the orbits of interest for

this work are numerically obtained.

To compute a general three-dimensional periodic orbit in the CR3BP, a single-shooting

scheme will often suffice. An initial guess of the orbit is provided and iterated on. The imple-

mentation is built on the premise of generating a vector of free variables V to be altered iteratively

until a constraint vector function F (V ) = 0 is satisfied. For the general 3D single-shooting case,

the free variables are the initial condition for the trajectory x0 = (x, y, z, ẋ, ẏ, ż)> and the

period of the orbit T – the length of time for which the trajectory is integrated. The constraint

vector is that the final state and initial state match at time T (a periodicity condition). This is all

restated below:

V =

x0

T

 (7.88)

F (V ) = xf − x0 (7.89)

To solve these types of problems, assume that the initial guess is sufficiently close to a periodic

orbit that a first-order expansion of the constraint condition approximately satisfies the desired

value of the constraint vector Vd:

F (Vd) ≈ F (Vi) +
dF (V )

dV

∣∣∣∣
Vi

(Vd − Vi) ≡ F (Vi) + [G] (δVi) ≈ 0 (7.90)

Because this is only approximately true, successive iteration is needed in a Newton method ap-
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proach. Simplifying and dropping the approximation notation, we obtain the linear system below:

[G] (δVi) = −F (Vi) (7.91)

The dimensions of [G] matter greatly here. Let F (Vi) ∈ Rm and δVi ∈ Rn. For the general 3D

solver case, m = 6 and n = 7. Thus, [G] is an m × n matrix (in the general 3D case, 6 × 7). If

m < n (as in the general 3D case), the system is underdetermined and infinitely many solutions

for δVi exist. The desired solution is the minimum-norm, which minimizes ‖δVi‖2 subject to the

constraint that [G] (δVi) = −F (Vi). The solution is given by the right-inverse:

δVi = −[G]>
(

[G][G]>
)−1

F (Vi) (7.92)

If m = n, the direct solution is given by the direct inverse:

δVi = −[G]−1F (Vi) (7.93)

Lastly, if m > n, the system is overdetermined and no unique solution exists. Minimizing the norm

of the residual squared ‖[G] (δVi) + F (V )‖2 is obtained via the left-inverse:

δVi = −
(

[G]>[G]
)−1

[G]>F (Vi) (7.94)

In all cases, the update proceeds via the following equation:

Vi+1 = Vi + δVi (7.95)

By this method (using the underdetermined solution), the initial conditions for the periodic orbit

x0 and the period T itself are successively updated via this equation, the updated trajectory is

computed, the constraint vector is evaluated, and the Jacobian [G] of the constraint function is

evaluated, then a new update is done. This is done repeatedly until a norm constraint ‖F (Vi)‖ < ε

is satisfied, where ε should be sufficiently small that it corresponds to minimal discontinuity in

xf − x0 and minimal error in the computed period T .

For the general 3D single-shooter method, the matrix [G] = dF (V )
dV

∣∣∣
Vi

is given below using

Eqs. (7.88) and (7.89) along with the definition of the STM:

[G] =
dF (V )

dV

∣∣∣∣
Vi

=

[
d

dx0
(xf − x0)

dxf
dt

∣∣∣
t=T

]
=

[
Φ(t0 + T, t0)− I6×6 ẋf

]
(7.96)
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where ẋf is the augmented final velocity and acceleration at time t = T , because the derivative of

the state at T with respect to the trajectory duration T will simply be the state rate at time T .

Once a periodic orbit is found, the other periodic orbits in the same family can be obtained

by a continuation scheme. For this work, pseudo arc-length continuation is used to compute a

family of Earth-Moon L2 halo orbits. The pseudo-arc length method is based on the idea that if

the constraint Jacobian [G] has a one-dimensional null space, there is a direction in which changes

in the free variable vector V still satisfy F (V ) = 0, thus the distinct orbits defined by those other

choices of free variables are also periodic. In other words, dim(ker(G)) = 1 and there exists a unit

vector n̂∗ ∈ ker(G) which informs the direction in V space for the family:

V ≈ V ∗ + ∆sn̂∗ (7.97)

Because it is only a linearization, Eq. (7.97) is only approximately true, and only valid at all for

sufficiently small ∆s. Nonetheless, it informs an update equation yielding a good initial guess for

the next orbit after one periodic orbit is computed:

V0 = V ∗ + ∆sn̂∗ (7.98)

With this initial guess, a new pseudo arc-length constraint is given by (V − V ∗) · n̂∗ = ∆s. Thus,

a new constraint vector is constructed for iterating on the initial guess V0 in pseudo-arc length

continuation for the general 3D solver:

F̃ (Vi) =

 xf − x0

(Vi − V ∗)>n̂∗ −∆s

 (7.99)

The constraint Jacobian is given for the general 3D solver below:

[G̃] =
dF̃ (V )

dV

∣∣∣∣∣
Vi

=

Φ(t0 + T, t0)− I6×6 ẋf

n̂∗>

 (7.100)

This matrix is 7×7 so the update δVi on Vi should be obtained by direct inversion, Eq. (7.93). The

iteration is applied until the next orbit is found. At that point, the general 3D constraint Jacobian

[G] given by Eq. (7.96) is evaluated on the satisfactory solution, yielding a new null space vector

n̂∗ and re-initializing the iterative solver process just described.
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7.4.1.3 The L2 Halo Orbits

This work focuses on satellite relative motion in the vicinity of northern L2 halo orbits –

including computation of the relative motion modes, and use of the modes for control. The family

of northern halo orbits is computed, and the result is given in Figure 7.21.

(a) View 1 (b) View 2

Figure 7.21: L2 Northern Halo Orbits

Some of the halo orbits are stable, i.e. no small deviations from the periodic orbit result

in unbounded departures in the linearized dynamics. Stability of the orbits is is computed via

stability indices. Computing the relative motion modes would provide insight about the stability

and nature of local behavior. However, it would be tedious to perform modal analysis in the

vicinity of each orbit along a family, examining how the eigenvalues and eigenvectors change over

time. The classical stability indices s = λi + λj ease the analysis for examining a large number

of orbits. Because the reference orbit is periodic, the monodromy matrix has a “trivial” pair of

eigenvalues +1, +1, yielding a trivial stability index s0 = 2. It turns out that one can examine

the evolution of the two non-trivial stability indices stepping along a periodic orbit family, and the

value of these indices determines the dimensionality of the stable (|λ| < 1), unstable (|λ| > 1), and

center (|λ| = 1) subspaces. Note that the critical values s = ±2 have special importance, which is
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now briefly discussed.

For the monodromy matrix, the eigenvalues occur in reciprocal pairs because the matrix is

symplectic. For each λi, there exists λj = 1
λi

. The other eigenvalues provide insight in the stability

of the periodic orbit to small departures from the periodic reference motion. The stability index is

defined for a pair of eigenvalues λ and 1/λ as below:

s = λ1 + λ2 = λ+
1

λ
(7.101)

In all cases except |λ1| = |λ2| = 1, the stability of λ2 requires the instability of its reciprocal λ1.

An eigenvalue inside the unit circle implies that its reciprocal is outside, and vice-versa.

The stability index s1 is given as a function of orbit period in Figure 7.22, and s2 is in

Figure 7.23. Note again that the trivial index is s0 = 2, which is numerically confirmed to high

accuracy. Figure 7.23 provides the second stability index s2 for the halo orbit family. For the orbits

with longer periods (towards the planar orbit with the longest period), s2 achieves a very high

value, indicating the existence of unstable and stable eigenvalues on the order of 103 and 10−3,

respectively. For the orbits with shorter periods, there is −2 < s2 < 2, indicating stability of the

associated modes because the eigenvalues are constrained to the unit circle.

The stability characteristics of the halo orbit family are summarized over the range of orbit

periods in Table 7.5. Here summarized are the number of stable (|λ| < 1), unstable (|λ| > 1), and

“center” (|λ| = 1) modes. Note that there are always at least two eigenvalues with λ = +1 because

the problem is linearized about a periodic orbit. The table summarizes the non-trivial modes.

Table 7.5: Stability Properties of L2 Halo Orbits vs. Orbit Period

Orbit Period Mode Classification

12.0 < T < 14.83 days 1 unstable, 1 stable, 2 center, 2 trivial
11.96 < T < 12.0 days 2 unstable, 2 stable, 2 trivial
10.3 < T < 11.96 days 1 unstable, 1 stable, 2 center, 2 trivial
9.4 < T < 10.3 days 4 center, 2 trivial
5.97 < T < 9.4 days 1 unstable, 1 stable, 2 center, 2 trivial
T < 5.97 days 4 center, 2 trivial

Noting the presence of only stable modes in the vicinity of halo orbits with periods 9.4 <
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Figure 7.22: Stability Index s1, L2 Halo Orbit Family

Figure 7.23: Stability Index s2, L2 Halo Orbit Family

T < 10.3 days, these orbits could be convenient targets for spacecraft formation flying. This work

computes the modal decomposition for sample orbits from this stable range, then derives a control

methodology for changing the relative motion as desired. Note for this work that the relative

motion modes are not computed in an LVLH frame, but are instead computed in the rotating

CR3BP frame for convenience. Alternate parameterizations are possible, including LVLH frame

coordinates and moon-centered osculating orbit element differences. In fact, one or both of these

might yield a more geometrically insightful basis of modal motion than the CR3BP coordinates.

However, that is left for future work.
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7.4.2 Relative Motion Modes and Modal Control in the CR3BP

In this work, the relative motion modes in the vicinity of an L2 Northern Halo orbit are

computed using the same procedure used in chapters 6 and 7 of the dissertation. In particular, the

LF transformation of the relative motion and the plant matrix for the LTI system are computed in

terms of the monodromy matrix for a given periodic orbit:

[P (τ)] = [Φ(τ, τ0)]e−[Λ](τ−τ0) (7.102)

[P (τ0)] = [P (τ0 + kT )] = [I] (7.103)

[Λ] =
1

T
ln (Φ(τ0 + T, τ0)) (7.104)

The relative motion in the vicinity of the periodic orbit is studied in CR3BP rotating coordinates

and is given as δx = [P (τ)]z (where the delta differentiates this from the usual LVLH frame relative

state), and ż = [Λ]z.

Due to the Hamiltonian nature of the CR3BP, the monodromy matrix has a repeated eigen-

value of λm,1 = λm,2 = +1. Furthermore, it can be shown that the state rate ẋ(t0) = ẋ(t0 + T ) is

an eigenvector corresponding to the unity eigenvalue. There is not a second eigenvector – the unity

eigenvalue has algebraic multiplicity two and geometric multiplicity one. Solving for the generalized

eigenvector v2 is a straightforward linear algebra problem:

([Φ(t0 + T, t0)]− [I6×6])v2 = v1 (7.105)

Then, the resulting Jordan decomposition of the monodromy matrix is as below:

[Φ(t0 + T, t0)] = [Vm][Jm][Vm]−1 = [v1 v2 . . .v6]



1 1 0 . . .

0 1 0 . . .

0 0 λm,3

...
...

. . .


[v1 v2 . . .v6]−1 (7.106)
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The LTI matrix is given by [Λ] = 1
T ln(Φ(t0 + T, t0)):

[Λ] =
1

T
[Vm] ln(Jm)[Vm]−1 =

1

T
[v1 v2 . . .v6]



0 1 0 . . .

0 0 0 . . .

0 0 ln(λm,3)

...
...

. . .


[v1 v2 . . .v6]−1 (7.107)

The solution to linearized relative motion in the CR3BP has the following form, with a drift mode

as a result of the defectiveness:

x(t) = c1[P (t)]v1 + c2[P (t)] (v1t+ v2) + c3ψ3(t) + . . .+ c6ψ6(t) (7.108)

where the trivial mode is the first listed mode, being periodic in CR3BP coordinates, and the drift

mode is listed second. Then there are four other modes (stable, unstable, or center) starting with

ψ3.

The defectiveness of the LTI form, its double-zero eigenvalues, and the resulting secular drift

mode might remind the reader of the Keplerian relative motion modal decomposition. The drift

mode has a simple physical interpretation: bounded relative motion must satisfy a period-matching

condition, so motion on nearby orbits of different periods would violate this condition and result in

nonzero projection into a local drift mode in the linearized system. For the CR3BP, the relationship

between the trivial mode and the drift mode is geometrically illustrated by Figure 7.24, resolved

in the rotating frame of the standard CR3BP coordinates, but centered on the spacecraft in the

Halo orbit (given by the x). Examining Figure 7.24 and Eq. (7.108), the geometric relationship

between the bounded trivial mode and the drift mode is revealed. This relationship also appears

in the Keplerian relative motion problem: bounded purely along-track relative motion is possible

(representing points of a different phase along the orbit), and in the case that the no-drift condition

is violated, the drift occurs along this same along-track direction.

The above discussion of the defectiveness of the monodromy matrix (and the underlying LTI

form) and the resulting drift mode enables a fully analytic view of the relative motion modes. First,

consider the case of relative motion in the vicinity of a stable orbit, where all the relative motion
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Figure 7.24: Trivial Mode and Drift Mode in Vicinity of L2 Halo Orbit

modes are bounded (i.e. all eigenvalues of [Λ] have zero real part). In this case, there is one pair

of trivial eigenvalues and there are two non-trivial pairs of eigenvalues:

λ1,2 = 0 (7.109a)

λ3,4 = ± iω1 (7.109b)

λ5,6 = ± iω2 (7.109c)

Let the complex-conjugate eigenvector pairs associated with the frequencies ω1 and ω2 be written

as v3,4 = vR1± ivI1 and v5,6 = vR2± ivI2 , respectively. Re-factoring , the following form is obtained

for the modal decomposition of the relative motion:

δx(τ) =
6∑
i=1

ciψi(τ) (7.110a)

ψi = [P (τ)]ηi(τ) (7.110b)

η1(τ) = v1 (7.111a)

η2(τ) = v1t+ v2 (7.111b)

η3(τ) = 2 (vR1 cos (ω1τ)− vI1 sin (ω1τ)) (7.111c)

η4(τ) = − 2 (vR1 sin (ω1τ) + vI1 cos (ω1τ)) (7.111d)

η5(τ) = 2 (vR2 cos (ω2τ)− vI2 sin (ω2τ)) (7.111e)
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η6(τ) = − 2 (vR2 sin (ω2τ) + vI2 cos (ω2τ)) (7.111f)

where the c is given as a function of δx0:

c = [V ]−1δx0 (7.112)

[V ] = [v1, v2, 2vR1 , −2vI1 , 2vR2 , −2vI2 ] (7.113)

Because modes ψ3 - ψ6 are generally composed of multiple incommensurate frequencies, they

trace out complex and unintuitive shapes on long timespans. The trivial modes associated with the

double-zero eigenvalues of [Λ] are comparatively simple, because they are T -periodic. Together,

these modes form the basis of all close-proximity relative motion in the vicinity of the periodic

orbit.

Another example is the case of two trivial modes, two center modes, a stable mode, and an

unstable mode. The modal decomposition is given as below, where v3,4 = vR1 ± ivI1 :

δx(τ) ≈
6∑
i=1

ciψi(τ) (7.114a)

ψi = [P (τ)]ηi(τ) (7.114b)

η1(τ) = v1 (7.115a)

η2(τ) = v1t+ v2 (7.115b)

η3(τ) = 2 (vR1 cos (ω1τ)− vI1 sin (ω1τ)) (7.115c)

η4(τ) = − 2 (vR1 sin (ω1τ) + vI1 cos (ω1τ)) (7.115d)

η5(τ) = v5e
λ5τ (7.115e)

η6(τ) = v5e
λ6τ (7.115f)

[V ] = [v1, v2, 2vR1 , −2vI1 , v5, v6] (7.116)

In this case, the existence of an unstable mode generally results in relative motion being unstable

if there is any projection of δx into the unstable subspace.
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With the modal decomposition, it is possible to efficiently explore the types of relative motion

permitted and also to do relative motion control with impulsive maneuvers. For the linearized

system, the dynamics in c space are stationary except for the action of control. For the true

nonlinear dynamics, the state in c space is not constant, but is only very weakly perturbed if the

relative motion is in sufficiently close proximity. The action of the nonlinear dynamics can be

computed using Eq. (7.47).

7.4.3 Example Simulations

7.4.3.1 Control Near a Stable Orbit

Consider a stable northern L2 halo orbit with an orbit period of T = 9.504 days. This orbit

is given in Figure 7.25. For this orbit, there are 4 center modes and two trivial modes (ψ1 and ψ2)

in its vicinity. The center modes are composed of incommensurate frequencies, so they trace out

complex shapes over long timespans. This is demonstrated with plots of ψ3 and ψ5 propagated with

the linearized dynamics for 240 chief orbits. The scale shown corresponds to relative motion on the

km scale, but is plotted in the dimensionless CR3BP length scale. The dimensionless frequencies

are ω1 = 1.2511 and ω2 = 0.7604. Not shown is the trivial mode, which traces a closed curve with

each chief orbit.

As a demonstration of the impulsive control strategy discussed in section 7.3, consider the

control case summarized in Table 7.6. The initial motion is bounded but irregular, and the bounded

trivial mode is targeted. The resulting relative motion is plotted in Figure 7.27. The uncontrolled

trajectory is given in blue for two chief orbits, the target trajectory is in orange, and the controlled

trajectory is given by the dashed line, with impulsive maneuver points marked by red dots. The chief

is shown as a star. This figure is plotted in the rotating CR3BP coordinates, not the LVLH frame.

The figure shows that the impulsive maneuver-based control strategy is successful in achieving the

desired relative motion.
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Figure 7.25: Stable L2 Halo Orbit

(a) Mode 3 (b) Mode 5

Figure 7.26: Center Modes, Stable L2 Northern Halo Orbit

Table 7.6: Halo Orbit Control Simulation Parameters, Example 1

Parameter Value

Initial relative motion c0 = (0, 0, 0.2, 0.1, 0.08, 0)α, α = 5.2× 10−6

Initial state δx0 = (−0.01, 0.309,−0.005, 0.168,−0.002, 0.362)α
Desired relative motion c∗ = (0.2, 0, 0, 0, 0, 0)α
Maneuver interval τ ∈ [1.23, 3.29], Interval disc. 14 samples
Maneuver times τ1 = 1.37, τ2 = 2.876, τ3 = 3.013
Resulting maneuvers ∆v1 = (−0.281, 0.094, 0.161)α

∆v2 = (−0.131,−0.027, 0.085)α
∆v3 = (−0.221,−0.064, 0.121)α
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Figure 7.27: Halo Orbit Relative Motion with Impulsive Control, Example 1

7.4.3.2 Control Near an Unstable Orbit

Now, consider an unstable northern L2 halo orbit with a period of T = 14.676 days. This

orbit is given in Figure 7.28. For this orbit, there are the trivial bounded and drift modes ψ1 and

ψ2, two center modes ψ3 and ψ4, a stable mode ψ5, and an unstable mode ψ6. The center mode

ψ3 is propagated for many orbits and given also in Figure 7.28. Its dimensionless frequency is

ω1 = 0.1288.

For this orbit, two relative motion control examples are provided. First is control from the

chief point δx = 0 to target one of the center modes. The second is an example of regulation from

the trivial mode to the chief point. Tables 7.7 and 7.8 contain the data for these. Starting with the

example given by Table 7.7 and Figure 7.29, the initial point is at δx = 0 and the target motion

is in orange. The controlled trajectory is given by the dashed line, and the control maneuvers

are labeled on the plot with red points. The control successfully targets the quasi-periodic mode

ψ3, but small residual error projected into the unstable subspace results in a subsequent need for

correction, so the trajectory departs from the target mode. This is a fundamental property of

relative motion control in the vicinity of an unstable halo orbit: corrective maneuvers will always
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be necessary on some timescale, due to the combined effects of nonlinearity and instability.

x
1.04

1.12
y −0.08

0.00

0.08

z

−0.08

0.00

0.08

(a) Halo Orbit, Example 2(a) (b) Center Mode

Figure 7.28: Unstable L2 Northern Halo Orbit and a Center Mode

Table 7.7: Halo Orbit Control Simulation Parameters, Example 2(a)

Parameter Value

Initial relative motion c0 = (0, 0, 0, 0, 0, 0)
Initial state δx0 = (0, 0, 0, 0, 0, 0)
Desired relative motion c∗ = (0, 0, 0.3, 0, 0, 0)α, α = 5.2× 10−6

Maneuver interval τ ∈ [1.90, 5.08], Interval disc. 15 samples
Maneuver times τ1 = 1.903, τ2 = 2.538, τ3 = 3.595, τ4 = 3.807, τ5 = 4.864
Resulting maneuvers ∆v1 = (−0.035,−0.007, 0.052)α

∆v2 = (−0.148, 0.278, 0.052)α
∆v3 = (0.028, 0.002,−0.068)α
∆v4 = (0.028,−0.035,−0.101)α
∆v5 = (−0.001, 0, 0.0005)α

The second example is given by the data in Table 7.8 and the trajectory in Figure 7.30.

The initial trivial modal motion is given in blue, the controlled trajectory is given by the dashed

line, and the control maneuvers are labeled with red dots. This example demonstrates regulation

control in this environment, with the chief at δx = 0 successfully targeted to a high degree of

numerical precision. A similar strategy could be used for orbit regulation, keeping the spacecraft

on the unstable periodic orbit.

This example with the CR3BP demonstrates that the previously developed modal decompo-
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Table 7.8: Halo Orbit Control Simulation Parameters, Example 2(b)

Parameter Value

Initial relative motion c0 = (0.2, 0, 0, 0, 0, 0)α, α = 5.2× 10−6

Initial state δx0 = (0.,−0.127, 0,−0.117, 0,−0.1)α
Desired relative motion c∗ = (0, 0, 0, 0, 0, 0)
Maneuver interval τ ∈ [1.90, 5.08], Interval disc. 15 samples
Maneuver times τ1 = 1.903, τ2 = 2.538, τ3 = 2.749, τ4 = 4.018, τ5 = 4.230, τ6 = 4.864
Resulting maneuvers ∆v1 = (−0.008, 0.0005,−0.004)α

∆v2 = (−0.002,−0.003, 0.002)α
∆v3 = (−0.044, 0.084, 0.081)α
∆v4 = (−0.045,−0.086, 0.081)α
∆v5 = (−0.0007,−0.001, 0.0006)α
∆v6 = (−0.008,−0.0004,−0.004)α

Figure 7.29: Halo Orbit Relative Motion with Impulsive Control, Example 2(a)

sition concept and the highly efficient associated impulsive control strategies can be readily applied

beyond Keplerian relative motion with no modification of the concept. Using a control scheme

facilitated by the modal decomposition, necessary corrective maneuvers can be computed with any

desired frequency for stationkeeping, orbit regulation, and relative motion control. This work could

be extended with a search for superior coordinates for linearization or for visualization of the modal
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Figure 7.30: Halo Orbit Relative Motion with Impulsive Control, Example 2(b)

motion. Both the LVLH frame Cartesian/curvilinear coordinates could be explored, and so could

the moon-centered osculating orbit elements. Additionally, by applying the tools for the reducibil-

ity of more general quasi-periodic linear systems [65] (in the case that they are reducible), this

approach could theoretically be extended to control in the vicinity of quasi-periodic orbits in the

Earth-Moon three-body problem as well In such a case, the LF transformation would be replaced

with a more general quasi-periodic transformation, and an underlying LTI form can also be found.

7.5 Conclusions

This chapter explores various applications of the modal decomposition method for close-

proximity spacecraft relative motion. First, in section 7.1, the method is numerically applied to the

relative motion model developed in chapter 3. With this, the parameter space for relative motion

about a near-circular orbit at a of a variety of altitudes and inclinations is explored. It is revealed

that below Γ = c/n0 = 2, the relative motion is unstable, indicated by the high number of unstable

modes. At higher altitudes, the motion is more stable, and the predicted modes of the linear model

match the propagation of the true dynamics for long timespans. Then, in section 7.2, the numerical
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application of modal decomposition to almost-periodic orbits is explored, revealing conditions that

must be satisfied for the motion predicted by the approximate modal basis to be accurate. The

numerical methodology is applied to perturbed terminator orbits about the asteroid Ryugu in a

high-fidelity dynamic model. It is shown that some of the approximate modal basis is preserved

across multiple orbits, evolving only slowly.

In section 7.3, the modal constants c are treated as state variables for the case of additional

perturbations and control via the variation-of-parameters method, and this methodology allows for

a modal description to still remain valid beyond the dynamic case for which it is derived. This is

demonstrated by showing how the Keplerian modes combine in a time-varying sum to produce the

J2-perturbed relative motion. Additionally, this section shows how the modal constants can be used

with the modes to explore different relative motions efficiently. Lastly, the dynamics in the modal

constants facilitate an elegant relative motion control approach using the modal decomposition and

convex optimization to solve for a delta-V optimal impulsive maneuver sequence.

Lastly, section 7.4 applies the same concepts from section 7.3 and earlier to the Earth-

Moon circular restricted three-body problem (CR3BP). In particular, the section explores modal

decompositions and modal control in the vicinity of periodic L2 Halo orbits. The underlying modal

form in the vicinity of periodic 3-body orbits is shown to have a secular drift mode, highly analogous

to what is found in the Keplerian relative motion problem. Overall, this chapter shows that the

modal decomposition approach provides interesting and useful insights in a variety of circumstances,

and also utility for powerful relative motion control approaches.



Chapter 8

Conclusions and Future Work

8.1 Overview and Contributions of this Work

In future spaceflight applications, it will be a common requirement for spacecraft to operate in

close proximity to one another in a variety of dynamical environments, from low-Earth orbit (LEO)

to cislunar space and orbits in the vicinity of asteroids. This dissertation explores extensions of

traditional dynamics and control approaches for formation flying to more challenging dynamical

environments and applications. The overall goals of this work are:

(1) Develop approximations of perturbed relative orbital motion dynamics (Chapter 3)

(2) Derive, investigate, and demonstrate formation control using differential solar radiation

pressure (Chapter 4)

(3) Investigate robust formation flying/rendezvous control techniques subject to significant

disturbances (Chapter 5)

(4) Develop, test, and apply a methodology for modal decomposition approximations of space-

craft relative motion in a variety of orbital scenarios (Chapters 6, 7)

The novel contributions of this work begin with chapter 3, which focuses on deriving accurate

state transition matrix (STM) models of relative motion subject to various perturbations, partic-

ularly J2, with a focus on low-complexity high-accuracy models. The efficacy of these models is
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compared with others in literature for the J2 problem, and shows favorable performance – out-

performing the Schweighart-Sedwick model [116] and showing almost comparable accuracy to the

Gim-Alfriend state transition matrix [50], despite a favorable massive reduction in model complex-

ity. The same techniques are used to derive corrective terms for the J3 perturbation as well, which

are tested numerically. Additionally, chapter 3 derives and tests various tools and techniques that

can be used to further improve relative motion model accuracy. The chapter also derives a linear

model of relative motion subject to some of the dominant disturbances encountered in orbits about

large asteroids. The model enables efficient exploration of the parameter space of possible chief

orbits, and is revisited in chapter 7. Lastly, the chapter briefly explores the problem of approxi-

mating the J2-perturbed chief orbit in more general orbital settings, which is necessary for more

accurate and globally valid J2-perturbed relative motion models.

The same principles discussed in chapter 3 are further applied in chapter 4 to study the

SRP-perturbed satellite relative motion problem in detail. A simple analytic linear model of rel-

ative motion is obtained and tested numerically, demonstrating high accuracy. The chapter also

explores satellite relative motion control with differential SRP accelerations. The chapter includes

controllability analysis and insights for achieving full regulation control with the differential SRP in

a closed-loop fashion, which is demonstrated to be feasible for spacecraft with modest area-to-mass

ratio, given sufficient control time.

The dissertation pivots to the topic of relative motion sensitivities in chapter 5. This chapter

explores the dynamics of sensitivities of the relative state to error in dynamical parameters and in

the chief orbit. The main accomplishments of this chapter are spacecraft orbit control in asteroid

environments using the linear model developed in chapter 3, including both Linear Quadratic

Regulator (LQR) and a desensitized control approach, expected to be more robust to poorly known

dynamical parameters. It is shown that LQR control is already quite robust to uncertainties in

dynamical parameters. Also in this chapter is a study in efficient propagation of satellite relative

state uncertainty in the vicinity of a poorly tracked target object. It is shown that sensitivities of

the relative state to initial target orbit elements have their own simple linearized dynamics, and
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the relative state uncertainty distribution is a sum of the products of the initial distributions in

target orbit elements and their associated sensitivity vectors. Overall, this approach could have

applications to on-board uncertainty-aware control strategies.

Chapters 6 and 7 explore the modal decomposition of close-proximity spacecraft relative mo-

tion in a variety of applicable orbits. In chapter 6, the theory is introduced, and exact analytic

Lyapunov-Floquet (LF) transformations are computed for spacecraft relative motion in Cartesian

and curvilinear coordinates. The fundamental modal solutions produced by this derivation are

shown to be convenient for efficiently exploring the parameter space of possible relative motions.

Some of the fundamental modal solutions connect to earlier solutions of the Tschauner-Hempel

equations explored previously in literature. Chapter 6 also includes discussion of the analytic

extension to weakly-perturbed orbits such as orbits perturbed by J2. Chapter 7 explores other

applications of the modal decomposition, including satellite relative motion modes in an aster-

oid orbital environment, with some new contributions for how to apply the modal decomposition

procedure numerically in orbits that are not exactly periodic. It is shown that a subset of the nu-

merically computed approximate relative motion modes change slightly from orbit to orbit, while

some change more drastically. The oscillatory and weakly unstable modes form convenient targets

for long-term bounded relative motion. Additionally, the modal constants (affiliated with the fun-

damental modes) are used to design a highly computationally efficient impulsive maneuver-based

control strategy that switches between desired relative motion modes or combinations of modes.

This is demonstrated for both the Keplerian relative motion problem and for relative motion in the

Earth-Moon circular restricted three-body problem (CR3BP).

8.2 Recommendations for Future Work

In the course of this research, numerous opportunities were identified for future work. First,

further applications of and improvements to the J2 model developed in chapter 3 could be explored.

The application of the existing model to J2-perturbed rendezvous, circumnavigation, and proximity

operations is a logical extension. There are various authors at work on the general linearized
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J2-perturbed relative motion modeling problem, with recent work including Reference 128 and

references therein. Higher-fidelity differential SRP relative motion control is another possible area

of future work. There are additionally some possibilities for future work with desensitized control

– including developing the theory for desensitized control with impulsive maneuvers.

Much of the possibility for future work lies in the concept of the satellite relative motion

modal decomposition. First, an analytic J2-perturbed modal could be obtained by applying the

procedure discussed in the end of chapter 6. Numerical results with the J2 perturbation in chapter 7

suggest that this could be a tractable problem. The analysis would certainly be possible with an

averaging of the J2 perturbation, but a model that accounts for instantaneous effects is perhaps

more desirable. Additionally, the numerical modal decomposition of relative motion in the vicinity

of periodic terminator orbits (in the unperturbed augmented Hill three-body problem) could reveal

some new insights about the types of relative motion possible in that environment. There might

also be some opportunities for analytic work for that problem. For the problem of relative motion

in the vicinity of periodic terminator orbits, exact relative motion control between the modes could

be achieved by numerical application of the modal constant impulsive control strategy developed

in chapter 7. Similar applications and investigations are possible for the cislunar environment, and

some were demonstrated in the end of chapter 7.

The impulsive relative motion control procedure needs to be extended to correct for non-

periodicity of the plant matrix – right now it would only work accurately for relative motion

control in the vicinity of exactly periodic chief orbits. Additionally, an interesting idea would be

to convert the computed delta-V optimal impulsive maneuver solution into a corresponding low-

thrust solution. Relevant work for such a problem includes Reference 88 and references therein.

Because the dynamics in the space of the modal constants are only functions of control (for the

unperturbed case), and due to the compactness and convexity of the set of c states reachable by a

given total delta-V, there are strong applications for delta-V reachability analysis. References 49,

52, and especially 60 are relevant for this. Revisiting the modal decomposition concept but with

the computation of the more general Lyapunov-Perron transformation for the quasi-periodic plant
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matrix case could be interesting, but would likely be very challenging. Relevant discussions can

be found in Reference 65 and references therein. There might also be possibilities for application

of the modal decomposition concept to other challenging problems in celestial mechanics, such as

the development of algorithms for the efficient computation of invariant tori for spacecraft relative

motion [6].
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