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Gerhardt, David T. (Ph.D., Aerospace Engineering Sciences)

Small Satellite Passive Magnetic Attitude Control

Thesis directed by Professor Scott Palo

Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees

of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simu-

lation attempts to date have not been able to predict the attitude dynamics at a level sufficient for

mission design. Also, some satellites have suffered from degraded performance due to an incomplete

understanding of PMAC system design. This dissertation alleviates these issues by discussing the

design, inputs, and validation of PMAC systems for small satellites.

Design rules for a PMAC system are defined using the Colorado Student Space Weather

Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF)

is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit

calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite

magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees

or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design

requirement.

A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hys-

teresis rods both individually and in the flight configuration. Fitted parameters which govern the

magnetic material behavior are used as input to a PMAC dynamics simulation. All components of

this simulation are described and defined. Simulation-based dynamics analysis shows that certain

initial conditions result in abnormally decreased settling times; these cases may be identified by

their dynamic response. The simulation output is compared to the MEKF output; the true dy-

namics are well modeled and the predicted settling time is found to possess a 20 percent error, a

significant improvement over prior simulation.
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Chapter 1

Introduction

Imagine lacking the ability to control your direction; it would be difficult to accomplish

much of anything. The first US satellite, Explorer 1, suffered from this problem: due to flexible

antenna on the craft, it began rotating orthogonal to its designed spin. The orientation, or attitude,

control of a satellite can be difficult. However, satellite attitude control is crucial for satellite use

in general; measurement, communication, propulsion, and much more are directly related to the

satellite attitude. For these reasons, as satellites progressed beyond Explorer 1, so did attitude

control methods. Early methods were passive: spin stabilization (spin about one axis fast enough

so minor torques are negligible, much like a top), gravity gradient (aligns with the earth nadir

direction due to differential gravity acting on the body), or passive magnetic attitude control, the

subject of this dissertation.

Passive magnetic attitude control (PMAC) has been in use since the early 1960’s. However,

this does not mean it has outlived its usefulness. Far from it; PMAC remains a useful tool available

to the spacecraft designer. As spacecraft decrease in size so does available power from the solar

cells; the attitude control design space shrinks. Thus, many nanosatellite developers choose PMAC

systems for the following reasons: the simplicity of installation (no processor running control laws

is needed), low mass (often less than 5% of the satellite mass), zero power use, and alignment with

the local magnetic field. However, PMAC is often little understood by many developers, especially

student teams. This lack of understanding has led to poor design and inadequate performance

prediction. This research grew from the desire to understand this control method to avoid design
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pitfalls and allow for improved performance estimation.

Passive magnetic attitude control is the use of a magnet to torque the spacecraft towards

earth’s local magnetic field in conjunction with a dampening method. The dampening method most

often used are hysteresis rods: soft magnetic material which is easily magnetized by the earth’s

local field. Because of satellite rotation, the direction of the local magnetic field relative to the

hysteresis rod changes over time. This change in the direction of the local magnetic field changes

the magnetization the rod, which decelerates the satellite angular velocity as rotational energy is

converted to heat between the magnetic domains of the rod.

Research of the mechanics and simulation of Passive Magnetic Attitude Control is presented.

A simulation of the rotational response of a satellite using a PMAC system is developed. This

simulation is intended to predict the response of a PMAC system and thus is useful in design of

future missions. Good PMAC system design can avoid negative consequences such as pointing

offset error (a constant angular offset from the local magnetic field) or increased settling time (the

time duration from initial orbit insertion to closely tracking the local magnetic field). The settling

time is an important factor for small satellites which typically have a total mission lifetime of a few

months; the success of such missions will be greatly hampered if they need to wait months or even

years for attitude alignment.

Because an understanding of rotational motion and magnetic theory is crucial to an under-

standing of PMAC, these concepts are presented in Chapter 2. The difference between magnetizing

field H and magnetic flux density B is described and applied to hysteresis rods to determine the

relation between the hysteresis loop and the rod-based magnetic moment mhyst, which is crucial

for the determination of hysteresis rod magnetic torque vs. the applied field. Although most small

satellite developers to date have used material reference hysteresis loops, a vastly more realistic

loop is based on empirical measurement of the flight hysteresis rods; this argument is developed

throughout this research.

Chapter 3 presents an overview of PMAC history. A timeline of select missions is presented

in an effort to understand which mission types are best for a PMAC system. The analytical models
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which have been developed for some of these missions are shown, along with any assumptions which

the models have used. The same treatment is given to the numerical models which have been used

in the past. Finally, an overview of previous hysteresis rod measurement is presented.

Chapter 4 describes the Colorado Student Space Weather Experiment (CSSWE), a 3kg

nanosatellite funded by the National Science Foundation (NSF) for space weather investigation.

This CubeSat used a PMAC system for attitude control and serves as a concrete satellite example

throughout this dissertation.

Chapter 5 presents the design of a PMAC system for the CSSWE CubeSat. The sizing and

distribution of the bar magnet and hysteresis rods are discussed. Although applied to a CubeSat,

design rules from this chapter are useful for any small satellite using a PMAC system.

Chapter 6 discusses a Multiplicative Extended Kalman Filter (MEKF) developed for attitude

determination of a PMAC satellite. After the filter is defined, both simulation- and empirical-based

tuning is performed using the CSSWE CubeSat. The on-orbit attitude performance of the CSSWE

CubeSat is shown. The MEKF output is then verified by independently-measured telemetry.

Chapter 7 outlines the design of a Helmholtz cage and describes a variety of magnetic mea-

surements applicable to a PMAC system. The cage is built such that a 3U CubeSat will experience

a 99% uniform field across its length. After manufacturing, the Helmholtz cage setup is used to

measure the magnetic moment of the CSSWE flight bar magnet. The Helmholtz cage setup is then

used to measure CSSWE hysteresis rods. The hysteresis loops fitted to these empirical data are

used as inputs to the dynamics simulation.

Chapter 8 presents a simulation developed to predict the attitude response of a satellite

using a PMAC system. The components of the simulation are presented in detail such that mission

teams may recreate the full simulation. This chapter also covers attitude dynamics which apply to

a PMAC satellite; understanding these effects are helpful in interpreting the simulation output. A

simplified simulation is developed to investigate the limitations and expected performance of the

full simulation. The simplified simulation is also useful in selecting a numeric integrator and time

step which achieve acceptable accuracy at a realistic computational cost. The results of the full
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simulation are shown and compared to simulation output generated using a higher-order integrator.

The full simulation results are also compared to the on-orbit attitude data filter output.



Chapter 2

Basic Theory

Understanding Passive Magnetic Attitude Control (PMAC) begins with an overview of the

underlying equations. This chapter serves as a review of the physics governing the components of

a PMAC system. First, the basic equation for all rotational motion problems is defined. Next,

ferromagnetic theory is reviewed; this is the foundation necessary for the design and study of PMAC

systems. This dissertation uses the notation defined in Appedix A.

2.1 Euler’s Rotational Equation of Motion

Regardless of attitude parameters used to describe rotational motion, the response of a satel-

lite (or any rigid body) is given by Euler’s rotational equations of motion [65]:

[I]ω̇ = −[ω×][I]ω + L (2.1)

where [I] is the 3× 3 inertia matrix of the rigid body about its center of mass, ω is the 3× 1 body

angular velocity vector, ω̇ is the 3× 1 derivative of the body angular velocity vector, L is the 3× 1

external torque vector, and [.×] is the skew-symmetric matrix operator, defined as follows [65]:

[x×] =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (2.2)

Choosing a body-fixed coordinate system which aligns with the principal body axes results
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in a diagonal inertia matrix, which simplifies Equation 2.1 as follows [65]:

Ixxω̇x = −(Izz − Iyy)ωyωz + Lx

Iyyω̇y = −(Ixx − Izz)ωzωx + Ly (2.3)

Izzω̇z = −(Iyy − Ixx)ωxωy + Lz

where the subscript represents the component aligning with a specific principal body axis. Note

that Equation 2.3 shows that there will be angular velocity coupling for any non-symmetric rigid

body. Equations 2.1and 2.3 are the basis for all of the analytical models and simulations to follow.

The difficulty in modeling is in correctly representing the external torque L applied to the system.

2.2 Magnetic Theory

2.2.1 Magnetizing Field H vs. Magnetic Flux Density B

There exist two separate but closely related fields which both, at times, go by the name

“magnetic field”: the magnetizing field H and the magnetic flux density B. In the SI system of

units, H is in units of A/m while B is in units of Tesla (T). The relative permeability is defined as

µr = B
µ0H

where the permeability of free space µ0 = 4π ·10−7 T·m/A. For most materials, µr is very

close to unity, meaning the material does not increase B appreciably in response to H. However,

within ferromagnetic material the situation is much different. The following definition relates B

and H: [17]

B ≡ µ0(H + M) (2.4)

where M is the magnetization of the material within which the fields are present. Magnetization is

defined as M = m/V where m is the magnetic moment and V is the magnetized volume; thus the

magnetization M is the magnetic moment m density. For materials with µr close to unity (such as

air), M is very close to zero, and Equation 2.4 reduces to B = µ0H.

However, a ferromagnetic material has a non-zero magnetization which changes in response

to an applied field. This change in M is due to microscopic changes within the material. Figure 2.1
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Figure 2.1: Example magnetic domains are shown. With zero applied field (left), the domain
orientation of the magnetic material is such that the sum magnetization of the material is small.
However, when a magnetizing field is applied to the material (right), the domains oriented parallel
to that field grow as the out-of-alignment domains shrink.
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is an example of multiple microscopic magnetic domains within a material. Each magnetic domain

is composed of a group of atoms with parallel magnetic moments. When zero magnetizing field is

present, the sum magnetization of the material is small because the magnetic moments of multiple

domains are mostly canceled. However, when a magnetizing field is applied, a domain with a

magnetic moment parallel to the field will grow as the magnetic moments of atoms close to its

boundaries align to the applied field. This change in total magnetization M is non-linear with

changes in H, and is responsible for the familiar hysteresis loop [8].

2.2.2 Hysteresis Loops

When a ferromagnetic material is subjected to a changing magnetizing field H and the

magnetic flux density B is measured, plotting B vs. H will result in a hysteresis loop such as the

one shown in Figure 2.2. A major hysteresis loop may be defined by three parameters: the coercivity

Hc, the remanence Br, and the saturation Bs. The coercivity is the applied field necessary to bring

the B field to zero, or the x-axis intercept. The remanence Br is the remaining B within the material

when H has been decreased to zero, or the y-axis intercept. There exists a maximum value of M

for a given material. If the applied field H is subtracted from B, the curve B/µ0 −H vs. H will

asymptotically approach this maximum magnetization, known as saturation [10]. At saturation

(and only at saturation), the magnetization M within a bar or cylinder sample is constant and

uniform. This is because all of the individual magnetic domains within the material have aligned

in the same direction. The material cannot supply any more magnetization because there are no

more domains to align. Thus, after saturation, the increase in B-field is solely due to the increase in

magnetizing field, and thus has a slope of µ0. The point on the hysteresis curve at which Bs starts

to increase with slope µ0 is the saturation flux density. The area enclosed within the hysteresis

loop is an important feature; it represents the energy absorbed by the magnetic material per unit

volume as it completes one magnetization cycle.

A hysteresis loop may be split into a lower and upper curve which are generated by the

increasing and decreasing sections of magnetizing field cycling, respectively. The hysteresis fitting
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Figure 2.2: An example magnetic flux density B vs. magnetizing field H hysteresis loop. The
coercivity Hc, remanence Br, and saturation Bs are shown. The area encircled by the hysteresis
loop is the energy loss per cycle per unit volume. After saturation Bs, the slope of the hysteresis
loop is simply µ0.
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described in Section 7.3 relies upon this bifurcation. The upper and lower curves of the hysteresis

loop will be odd-symmetric if the cycle amplitude remains constant and there is no DC offset in

the magnetizing field. This property will also be used in the hysteresis fitting.

2.2.3 Magnetic Property Dependencies

The shape of a magnetic hysteresis loop depends on many things, but some of the more

important factors include: material composition, degree of heat treatment, applied H-field extrema,

applied field offsets, frequency of H-field cycling, and sample dimensions. The material itself

governs the saturation magnetization amplitude (the applied field at which saturation occurs and

the shape of the curve from 0 A/m to saturation are not determined solely by the material as they

are structure-specific); the inherent crystal structure of the material composition defines “easy”

directions of magnetization [17]. Note that most nickel-iron alloys (such as HyMu-80) have low

magnetocrystalline anisotropy after heat treatment, meaning the ease of magnetization is about

the same regardless of direction [5].

Heat treatment can restore the crystalline structure of a material that is damaged during cold

work, such as extruding, rolling or bending. Heat treatment also serves to break down the walls

between magnetic domains, increasing the mean domain size and allowing the magnetic material to

be magnetized to higher levels at lower magnetizing fields. Hysteresis loops before and after heat

treatment will likely be very different.

The magnitude of the applied field cycle will change the resultant hysteresis loop [17]; this

effect is included within the Flatley hysteresis model (described in Section 8.1.6.5). Figure 2.3

shows the output of the Flatley hysteresis model for cycle amplitudes of ±2 A/m, ±3 A/m, and

±8 A/m. Note that the loop area decreases substantially as the applied field decreases. A constant

offset in the applied field can also distort the hysteresis loop. In the case of a satellite PMAC

system, such a constant offset may be provided by proximity to current loops or a bar magnet. As

shown in Figure 2.4, an H-field offset pushes the hysteresis loop away from the origin. If the cycle

amplitude approaches the material saturation, this magnetizing field offset can result in a smaller
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loop area, and thus, decreased dampening.

The frequency of applied field cycling can effect the hysteresis loop measured. Figure 2.5

shows how an increase in cycle frequency tends to increase the coercivity Hc. More energy is used

to switch the magnetic domains at higher cycle frequencies. However, a DC hysteresis curve (usually

defined as an applied field cycle frequency of 10 Hz or less) is minimally affected by frequency. All

hysteresis loops measured in Section 7.3 are produced by applying a field with a cycle frequency of

less than 1 Hz. The hysteresis loop is also affected by the demagnetizing field of the test sample,

which is further examined in the following section.

2.2.4 Demagnetizing Fields

Anyone who has handled magnets is familiar with the idea of a magnetic pole. Consider a

bar magnet that has been magnetized by a magnetizing field H in the left to right axial direction.

After H has been removed, there exist two magnetic poles, the south pole on the left and north pole

on the right. Figure 2.6 shows the H and B fields resultant of the poles. As shown, there exists an

H field outside and inside the magnet. Outside the magnet, the simple relation B = µ0H holds.

However, inside the magnet, an H field opposes the B field and is termed the demagnetization

field Hd. Equation 2.4 becomes B = µ0(−Hd + M). If an external applied field Ha is present,

Equation 2.4 becomes:

B = µ0(Ha −Hd +M). (2.5)

Demagnetizing fields are difficult to calculate, but are directly proportional to the magnetiza-

tion of the bar magnet: Hd = NdM where Nd is the demagnetization factor. The demagnetization

factor varies mainly as a function of the length to diameter ratio L/D of the sample, but also varies

as a function of magnetization: different Nd values are used at values close or far from saturation.

These limitations make it especially complicated to calculate the hysteresis loop of a material;

empirical determination is much more accurate.

One way to measure the hysteresis loop of a material without having to account for demagne-

tizing fields is to use a toroid-shaped sample. Lines of magnetic flux density B, which follow closed
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Figure 2.3: Example B vs. H hysteresis loops for various applied field cycle magnitudes. Figure was
generated using the Flatley hysteresis model and the HyMu-80 closed magnetic circuit hysteresis
parameters (see Table 7.2).
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Figure 2.4: Example B vs. H hysteresis loops for various applied field DC offsets. Figure was
generated using the Flatley hysteresis model and the HyMu-80 closed magnetic circuit hysteresis
parameters (see Table 7.2). All three datasets are generated using an AC magnetizing field cycle
amplitude of ±2 A/m.
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Figure 2.5: The effect of applied field cycle frequency on the hysteresis loop. The coercivity Hc and
the loop area increase as the hysteresis loop is cycled at increasing frequency. Image used from [8].
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Figure 2.6: (a) H-Field and (b) B-Field of a bar magnet when there is zero applied field. Note that
M > 0 only within the magnet, and that outside the magnet, B = µ0H. Figure adapted from [17].
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loops, lie entirely within such a sample. This type of sample is known as a closed magnetic circuit.

This means that, even when magnetized, no poles are present in such a sample, and thus no de-

magnetizing field Hd is present in the sample. The hysteresis loop measured from a toroidal sample

would be B vs. Htrue. The true magnetic field within the material is a combination of the applied

magnetizing field field and the demagnetizing field generated by the material: Htrue = Ha − Hd.

Of course, if Hd = 0 (as in a toroidal sample), then Htrue = Ha. However, this is not the case for

open magnetic circuit samples. Because the closed magnetic circuit hysteresis loop B vs. Htrue is

invariant with respect to the dimensions of the material, this hysteresis loop is generally what is

quoted on many material data sheets.

However, the closed magnetic circuit hysteresis loop is not a good representation of the true

open magnetic circuit hysteresis loop for the rods or strips typically used in a PMAC system. Testing

to date has shown that the loop areas loops differ by one to two orders of magnitude [63]. As the loop

area is directly related to the dampening provided by each hysteresis rod, this has vast implications

for a numerical simulation of the attitude dynamics. Section 7.3 presents measurements of the true

open magnetic circuit loops for hysteresis rods which are typically used in PMAC systems.

2.2.5 Magnetic Torques

All magnetic torques obey the following formula:

L = m×B (2.6)

where m is the magnetic moment vector and B is the local magnetic flux density vector. In most

situations, B is due to earth’s local magnetic field alone. Thus, the torque is based on the value of

m for various magnetic materials. The high coercivity of a permanent magnet prevents the earth

field from changing its magnetization, thus for a bar magnet, m is constant and may be measured

(see Section 7.2). However, determining the magnetic moment of a hysteresis rod is more difficult.
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2.2.6 Hysteresis Rods

A PMAC system necessarily uses bar- or cylinder-shaped hysteresis material. This is required

because such samples are magnetized mainly in the axial direction, which produces a torque as de-

fined by Equation 2.6. For these open magnetic samples the demagnetizing field Hd is unavoidable,

and the L/D ratio is limited by the dimensions of the spacecraft and the necessary volume of hys-

teresis material. This means that B measured for an open magnetic circuit (with demagnetization)

will be significantly less than B measured for a closed magnetic circuit.

As shown in Equation 2.6, the component of B parallel to the magnetic moment m does

not produce a torque. Assuming the majority of uniform magnetization is parallel to each rod’s

axis, the rod produces a negligible B-field perpendicular to its axial direction. Thus, sets of rods

which are co-planar but have some separation should have minimal interaction. The general rule

of thumb for hysteresis rod placement is that the perpendicular distance between two rods should

be greater than 30-40% of their length [57]. Given this separation, the assumption is made that

the interaction of multiple hysteresis rods may be ignored in analysis. Thus, the magnetic flux

density B on the right side of Equation 2.6 is generated solely by the local earth B-field. This

means that the magnetic moment m is the only characteristic of the rod which contributes to the

torque produced by the rod.

Therefore, in order to model the torque due to the hysteresis rods, the magnetic moment m

of the rod must be defined. First, it is assumed that the magnetic moment is entirely parallel to

the rod. Using m = M/V , Hd = −NdM and Equation 2.5, the magnetic moment parallel to the

rod for an open magnetic circuit may be defined as [17]:

m = V

(
B/µ0 −Ha

1−Nd

)
(2.7)

where B is the average parallel magnetic flux density within the rod and Ha is the applied field

parallel to the rod. Many groups ([47],[61],[58],[63],[26]) simplify Equation 2.7 to m = V B/µ0. It

is feasible to ignore Nd in the denominator for rods with L/D > 30 [17], as the error is < 2% (the

demagnetizing field has not been ignored, it is taken into account by emperically measuring B).
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However, the hysteresis curve must be measured to ensure Ha is negligible with respect to B/µ0.

None of the groups reviewed in Section 3.3 state their assumptions in using the simplified formula.

Some make the grave mistake of assumming B within Equation 2.7 is given by a material data sheet

(usually B vs. Htrue). This assumption saves one from having to measure the hysteresis loop, but

also introduces serious errors because it ignores the effect of the demagnetizing field. The B used

within Equation 2.7 is the average interior magnetic flux density (across the length of the sample),

and must be measured for the open magnetic circuit to produce an accurate magnetic moment m.

The B vs. Ha hysteresis loop is used in the PMAC dynamics simulation (see Section 8) because it

directly relates B to the earth H-field encountered by the spacecraft, which is Ha.



Chapter 3

Background

Although difficult to model due to the nonlinear behavior of hysteresis, Passive Magnetic

Attitude Control (PMAC) is simple to realize on a spacecraft: it only requires the installation of

a bar magnet and a few hysteresis rods. Thus, early satellites made considerable use of PMAC.

Small satellites echo this trend today as electronic components shrink faster than attitude control

actuators. The previous PMAC analysis is traced through the mission history of PMAC satellites as

well as the analytic and numeric models which have been developed in parallel with these missions.

A review of PMAC hysteresis rod measurement to date is presented at the end of the chapter.

We find no previous work which verifies the performance of a PMAC attitude dynamics

simulation through comparison to on-orbit attitude data from a PMAC satellite. Neither do we

find previous work which measures hysteresis rod performance as affected by the system-level PMAC

component magnetization. There is much to be learned in investigating these avenues.

3.1 Mission History

It is not surprising that small satellites today echo the development of large satellites in the

early space race. Although satellite electronics shrink very quickly, it is hard for precision actuation

devices to keep pace. PMAC is in use today just as it was when it was designed in the 1960’s.

Studying the missions which have used PMAC sheds light on the type of missions for which it is

best suited, and tells the story of its development over time.
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3.1.1 Early History of Passive Magnetic Attitude Control

Passive attitude control systems were used in early spacecraft because software and actuation

hardware were not yet developed. As spacecraft developed, simple attitude control systems such as

spin-stabilization gave way to more complicated (yet still passive) methods, such as gravity-gradient

and passive magnetic attitude control.

Passive Magnetic Attitude Control (PMAC) was first used in space in April of 1960 [20].

Researchers at Johns Hopkins Applied Physics Laboratory came up with the method for the Navy’s

Transit experimental satellite program. The first satellite to use a passive magnetic attitude control

system was Transit 1B (Transit 1A did not achieve orbit due to a launch failure); it used PMAC to

point the spacecraft toward ground stations in the northern hemisphere. Transit 1B was a spherical

satellite with a 10 A·m2 bar magnet and two sets of permeable rods, both arranged arranged in a

crosshatch pattern. Both sets of permeable rods had 4 rods each, with the second set rotated 45◦

from the first set, yet still within a plane perpendicular to the bar magnet. The satellite had an

initial spin of 17.5 rad/s, which was reduced to 16.3 rad/s after 7 days (this decrease is likely due

to the PMAC system). A mechanical de-spin via release of weights from the spin axis reduced the

spin rate to 0.5 rad/s. The satellite spin rate decreased to 0.03 rad/s (1.8 deg/s) after another 7

days. The Transit 1B PMAC system was successful enough for Transit 2A to be launched without

the mechanical de-spin included; it relied solely on the PMAC system. Transit 2A decreased from

5.0 rad/s to 0.13 rad/s (7.2 deg/s) within 24 days [25]. The analytical model used to analyze the

PMAC performance of both Transit satellites is presented in Section 3.2.1.

Due to the success of the Transit 1B and 2A, PMAC was used for Injun 1, the first satellite

built entirely by a university [27]. Launched in 1961, Injun 1 failed to separate from GREB, another

satellite that was on the same launch [9]. A later satellite from the University of Iowa under the

supervision of Dr. Van Allen, Injun 3, was launched in 1963 into a 237 × 2785 km, 70.4◦ inclination

orbit. Its PMAC system aligned to an average deviation of less than 10◦ from the magnetic field

line after a period of 2 weeks [29].
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Figure 3.1: The Transit 1B Satellite, the first satellite to use Passive Magnetic Attitude Stabiliza-
tion. [1]
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Figure 3.2: The Injun 3 Satellite, an early university satellite which successful aligned to the
magnetic field using PMAC. [56]

The first German satellite Azur was launched in 1969 and carried a 97 A·m2 bar magnet.

Azur damped from an initial spin rate of 1.25 rad/s down to 0.01 rad/s (0.6 deg/s) and a magnetic

field offset of less than 15◦ within 2.25 days [53].

This section is not an exhaustive list. Other early satellites using PMAC include Transit

2A (1960), ESRO 1A (1968), ESRO 1B (1969), Exos (1978) and Magion (1978) [57]. By the mid

1970’s, analysis of PMAC was mostly comprised of analytical models. The use of PMAC begins to

wane at this point, as active control systems enable specialized pointing methods. The difficulty of

accurately predicting PMAC performance was likely a driver of its decreased use.

3.1.2 Modern Use of Passive Magnetic Attitude Control

As computers and actuators decrease in size, the satellite community has grown increasingly

interested in small satellites due to their low launch costs and simplicity. While technology is in

development to control these satellites using small actuators, the small satellite community has

witnessed a return to passive methods. These methods are especially popular among student

missions or technology demonstrations where component price and complexity join size as major
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Figure 3.3: Azur, the first German satellite, used passive magnetic attitude control [53].
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design factors. PMAC is also popular among science missions which benefit from alignment with

the local magnetic field.

The 6kg Swedish Munin satellite contained a PMAC system. During design, the satellite

used the following requirement: align to within 15◦ of the earth’s magnetic field lines within three

weeks. Ovchinnikov developed a numerical attitude simulation and predicted that in order to meet

the setting time requirement, the initial angular velocity had to remain less than 10.5 deg/s on

each axis [57]. The satellite launched in November 2000 but contact was lost in February 2001.

Johnsson indicates that results from the attitude determination analysis are questionable [38].

Attitude determination analysis from Munin has not been released to date. Thus, the Ovchinnikov

attitude simulation has not been validated; details of the simulation are described in Section 3.3.2.

UNISAT-3 was designed and built by students at the University of Rome. It was launched

into a 710km x 790km, 98◦ inclination orbit on June 29, 2005, and used a PMAC system. The

PMAC system used a permanent magnetic with magnetic moment 1 A·m2 and one hysteresis rod

per axis with dimensions 15cm×0.1cm. The only dedicated attitude measurement device was a

3-axis magnetometer. The magnetometer and solar panel currents were used to piece together

its three-axis attitude. The Z-axis of the magnetometer did not function on-orbit, so the total

magnetic field was estimated using the spacecraft position and the IGRF magnetic field model [62].

UNISAT-3 oscillated about the earth magnetic field at an amplitude of about 30◦. The team

believed this response was due to under performing hysteresis rods [63].

UNISAT-4 was next in the series of educational satellites. Researchers at the University of

Rome determined that the magnetic properties of the hysteresis rods must be measured, as specific

dimensions and orientations of the rods could change their performance. They developed a rig to

measure the hysteresis parameters of the rods. After careful design, they used a bar magnet of 1

A·m2 and eight hysteresis rods on both orthogonal axes to the bar magnet. The hysteresis rods had

a square cross-section with dimensions 150mm × 1mm × 1mm and were composed of permalloy.

After the rods were heat treated, measurements showed that their hysteresis parameters were well

below the quoted hysteresis parameters for the material [63]. Unfortunately, due to the 2006 Dnepr
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Figure 3.4: Artists conception of Munin, a Swedish small satellite which used PMAC [55].

Figure 3.5: The UNISAT-4 satellite, a student satellite built by the University of Rome [63].
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launch failure, UNISAT-4 did not achieve orbit [32].

The next satellite from the University of Rome, EduSat, continued their work on PMAC

development. Working with the University of Keldysh Institute of Applied Mathematics (KIAM),

a new hysteresis parameter experimental set-up was developed. This set-up allows the hysteresis

parameters to be measured along the length of the hysteresis rod. Researchers found that the

maximum magnetic flux density was highest at the center of the hysteresis rod and decreased

towards the ends [4]. The hysteresis rod measurements described in Section 7.3 use a sense coil

with a length equivalent to the hysteresis rod length; this ensures that the average interior magnetic

flux density of the rod is measured.

In 2001, the 23 kg Sapphire microsatellite was launched. Designed by Stanford university, it

used a PMAC system to de-spin the satellite and ensure that an imaging sensor was pointed toward

earth in the northern hemisphere. The communication antennas were also painted to impart a

small radiation pressure torque which ensured a roll to prevent one side from always facing the sun

(this attitude control is known as the ”controlled tumble” and has been used for many AMSAT

spacecraft). Sapphire was ejected from the launch vehicle with a tumble of multiple degrees per

minute. This spin was reduced to 1.2 rpm about the major inertia axis with a few days due to the

PMAC system. Radiation pressure caused the satellite to settle to 0.1 rpm [74].

3.1.3 CubeSats using Passive Magnetic Attitude Control

In summer of 2000, Bob Twiggs and researchers at Stanford university envisioned a new

nanosatellite standard they called CubeSat [76]. This standard was soon accepted by universities

across the country; PMAC was used as the stabilization method for many of these satellites. One of

these early CubeSats that used PMAC was QuakeSat, built by Stanford university [52]. Launched in

June 2003, QuakeSat relied upon solar panel currents and a single IR sensor to determine attitude.

Unfortunately, the loss of a multiplexer early in the mission meant that the solar array currents

were not available. QuakeSat used a 2.933 A·m2 bar magnet in combination with two 0.6cm ×

1.2cm × 31cm rods of permalloy 49NM along the length of the satellite [69]. Using their single IR
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sensor, the QuakeSat team estimated that their satellite was generally nadir pointing, with a roll

rate of once every 15 - 20 min [7].

Figure 3.6: Artist’s conception of the QuakeSat CubeSat. Built by Standford University, QuakeSat
used a PMAC system [52].

The Radio Aurora Explorer (RAX) was the first CubeSat funded by the National Science

Foundation to study space weather [18]. Built by the University of Michigan, the RAX mission

is actually composed of two satellites, RAX-1 and RAX-2; RAX-2 was launched to continue the

science mission after the RAX-1 solar panels were found to be faulty [19].

The RAX team attempted to calculate the performance of its PMAC system using a dynamic

model. Students at the University of Michigan developed the Lie Group Variational Integrator

(LGVI). The LGVI is designed to model the rotation of a rigid body while conserving the constraints

of the rotation matrix as well as the system energy [58]. More detail on this integrator is found in

Section 8.1.7.2.

The RAX team used the LGVI to developed a simulation to predict the response of their

CubeSat. However, they ignored the possibility of the satellite bar magnet saturating the hysteresis

rods. To simplify integration, the team designed the PMAC system such that the bar magnet and

hysteresis rods are on the same 10cm×10cm board which fits the form factor of other electronics
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Figure 3.7: The RAX-1 3U CubeSat. Built by the University of Michigan, RAX-1 and RAX-2 used
identical PMAC systems [19].
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boards; this is not an optimal design as will be explained in Chapter 5. The team also used

the closed-magnetic circuit hysteresis parameters as input to their numeric model; this results in a

gross overestimate of the hysteresis dampening performance (see Section 7.3). These issues seriously

degrade the predictive capability of the simulation.

The settling time of RAX-1 is not known as attitude data was only collected for three single-

orbit periods, each 15 days apart [71]. However, RAX-2 attitude data shows that the satellite

converges to within 20◦ of the local magnetic field two months after launch [73]. The predicted

settling time of the RAX mission has not been published but personal communication with a

member of the RAX team indicates the satellite was expected to align within days. This large

discrepancy indicates that accurate PMAC dynamics simulation is both difficult and highly useful.

Also, the RAX-2 satellite uses a bar magnet magnetic moment of 3.2 A·m2 [73]; this powerful

magnet (relative to a CubeSat inertia matrix) may have introduced the high initial rotation rates

experienced by RAX-2 (see Section 5.2).

3.2 Analytical Models

An analytical model of PMAC is complicated by the use of hysteresis rods, whose torque

depends on both the current orientation and the previous magnetism induced within the rods.

Further complication is introduced when considering a real earth field, which is difficult to model.

To combat this, the analytical models derived below simplify the hysteresis effect by assuming some

average damping, usually in the form of an angular velocity coefficient. The earth’s magnetic field

is simplified with either the dipole assumption or an average magnetic field strength.

3.2.1 Fischell Analytical Model (1961)

Robert Fischell derived the first analytical model of PMAC for the Transit satellite pro-

gram [25]. He starts with the assumption of a completely symmetric satellite (I = Ixx = Iyy = Izz)

and the magnitude of magnetic torque τ = Mµ0H0 sin θ where M is the magnetic moment of the

bar magnet, µ0 is the permeability of free space, H0 is the earth’s local magnetizing field, and θ
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is the angle between the bar magnet and the earth field direction. Fischell chooses to ignore the

hysteresis torque at first in order to form Euler’s rotational equations of motion for an undamped

satellite axis:

I
d2θ

dt2
+Mµ0H0 sin θ = 0. (3.1)

Then, after making the small angle assumption for θ, the undamped angle relative to the magnetic

field is given as θN = θ0 cos(2πft) where the natural frequency f is:

f =
1

2π

√
Mµ0H0

I
. (3.2)

Fischell, ignoring other disturbance torques, then defines the energy loss per time due to hysteresis

cycling as:

dE

dt
= −NV

8π2

√
Mµ0H0

I

∮
HdB (3.3)

where V is the volume of the hysteresis material, N is the number of rods, and
∮
HdB is the area

of the hysteresis loop. Fischell obtained the hysteresis loop of the chosen rods experimentally and

determined that the hysteresis loop area may be approximated as
∮
HdB = αH3

m where Hm is the

peak magnetizing field of the hysteresis loop and α is an empirically-derived constant. The peak

magnetizing field for a rod perpendicular to the local earth field is given as Hm = H0 sin θm where

θm is the max angular displacement between the bar magnet and the earth field.

dE

dt
= −αNV

8π2

√
Mµ0

I
H

7/2
0 sin3 θm. (3.4)

Here Fischell chooses to define a constant k = αNV
8π2

√
Mµ0
I H

7/2
0 . Now, the potential energy of the

bar magnet can be defined by integration of the magnitude of magnetic torque from equilibrium to

the max displacement:

E(θ) =

∫ θm

0
Mµ0H0 sin θdθ = Mµ0H0 (1− cos θm) . (3.5)

Now, taking the derivative of Equation 3.5 with respect to time, combining with Equation 3.4, and

separating variables yields:

− dθm

sin2 θm
=

kdt

Mµ0H0
(3.6)
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which becomes the following after integration:

cot θm =
k

Mµ0H0
t+ C. (3.7)

The constant can be solved for by defining an angle θ0 to which the satellite is displaced at time

t = 0. Thus, C = cot θ0, and the following is the expression for the maximum angular displacement

over time:

θm(t) = arccos

(
k

Mµ0H0
t+ cot(θ0)

)
. (3.8)

Finally, Fischell combines the undamped angle with the maximum damped angle to yield the angle

of displacement from the magnetic field with respect to time:

θ(t) = arccos

(
k

Mµ0H0
t+ cot(θ0)

)
cos 2πft. (3.9)

The settling time is easily found by modifying Equation 3.8:

tsettle =
Mµ0H0

k
(cot θf − cot θ0) (3.10)

where θf is the final angular displacement. To recap, Fischell has defined an analytical solution

with the following assumptions:

• Entirely symmetric satellite

• Small angle between B-field & bar magnet axis

• Orbit-average magnetic field strength used instead of position-dependent vector

• No other (non-magnetic) disturbance torques

• Cubic approximation of hysteresis area

The above assumptions are quite limiting. Even with a symmetric satellite, this analytical model

is ineffective for the beginning of dampening, where high angular velocities are typical.
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3.2.2 Mesch et al. Analytical Model (1966)

Mesch et al. developed a more comprehensive analytical model [22]. They start with Equa-

tion 2.3, then define the angular velocities in terms of Euler angle rates. However, here they make

the assumption that the Euler angles are always a small angle for a satellite with attitude control.

A unique aspect of this model is the development of the equations of motion in terms of the orbit

true anomaly instead of time, allowing a dipole magnetic field to be included within the model.

However, there are many assumptions made:

• Angle between B-field & bar magnet is a small angle

• Polar orbit (inclination = 90◦)

• Dipole magnetic field

• Dampening torque is in constant proportion to angular velocity

Due to these assumptions, this model was generally used to determine the periodic motion

of a satellite after it had settled to oscillating about the magnetic field.

3.2.3 Kammüller Analytical Model (1971)

Kammüller takes a different approach [39], [40]. Rather than starting from Euler’s rotational

equations of motion (Equation 2.3), the Lagrangian is calculated assuming a 3-1-3 Euler angle set.

By using the Lagrangian equations of motion, Kammüller is able to account for the gyroscopic

torques of the spacecraft without solving six coupled equations of motion. For the Lagrangian,

the potential energy is defined as Equation 3.5, but with a transformation used to convert θm to a

function of Euler angles and the magnetic declination. A series expansion accounts for the magnetic

field strength and the magnetic declination as a function of the orbital frequency and time. Here

Kammüller introduces a “slow” time variable τ = ωet where ωe is the earth’s rotation rate. This

assumption, based on the significant difference between the earth’s rotation rate and the orbital
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frequency, allows Kammüller to treat some timescales as constant with respect to the “fast” time

variable t.

Kammüller shows that, for near-polar orbits (i≈ 90◦), there exists a roll resonance for specific

values of ∆ = (Ixx−Iyy)/Izz, where Ixx is the maximum moment of inertia, and Izz is the minimum.

He points out that there are three possible solutions to the roll equation (after transients have been

damped): a) nonresonant rest-position, b) resonant oscillation, and c) resonant rotational solutions.

The roll resonance is due to coupling between pitch and roll motions of the spacecraft, and thus

changes depending on the spacecraft ∆. By changing the spacecraft ∆, the desired stability (a, b,

or c) may be set.

Kammüller makes the following assumptions in his analysis:

• Circular polar orbit

• Dipole Earth field

• Pure pitch (major inertia axis) motion while following magnetic field lines

• “Slow” time used to consider diurnal rotation negligible with respect to orbital motion

• Hysteresis dampening described by matrix of dampening coefficients multiplied by Euler

angles and Euler angle rates

Other analytical PMAC models could not be found in the literature. To date, none of the

analytical models have solved for the settling time of a non-symmetric satellite.

3.3 Numerical Simulations

Numerical models have the advantage of not making the simplifying assumptions of the

analytic models. As a result, numerical models have the potential to accurately predict the full

dynamics of the system. However, numerical models have their own disadvantages; a balance must

be sought between simulation accuracy and computational cost. Also, the model itself can introduce
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errors if not properly defined. Numerical models which have been used in the past are presented

below.

3.3.1 Chen (1965)

Chen [15] uses a 3-1-3 Euler angle set to describe the rotation of the body frame with respect

to the inertial frame. An inclined dipole is used to model the earth field. An interesting note

is the inclusion of another dampening torque. This “shorted coil” dampening torque is due to

closed windings about each hysteresis rod which have current induced within them due to the earth

field. This current, in turn, torques the satellite according to Equation 2.6. The hysteresis loop is

modeled as a parallelogram, which does not account for minor hysteresis loops which occur as the

satellite starts to track the earth field. After the torques are defined, Equation 2.3 is used to define

the equations of motion. In order to avoid the singularity associated with Euler angles, quaternions

are used to model the attitude during integration.

Chen uses the following assumptions:

• Dipole Earth field

• “Shorted Coil” dampening in addition to hysteresis rod dampening

• Parallelogram hysteresis loop

3.3.2 Ovchinnikov & Penkov (2002) - Munin

Ovchinnikov & Penkov investigate the motion of a 6 kg axisymmetric satellite with a bar

magnet and hysteresis dampening [57]. First, a magnetic frame is defined by the direction of the

local earth field and the orbit plane of the satellite. The earth field is modeled as a dipole, and a

parallelogram model is used for the hysteresis loop. Equation 2.1 serves as the equation of motion.

A 2-1-3 Euler angle is used as attitude parameters. The equations of motion are then written

in dimensionless form and a few key assumptions are made: a strong bar magnet dominates the

external torques and the initial angular velocity of the satellite about the symmetry axis is roughly
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equivalent to the mean motion of the satellite. These assumptions allow the average equations of

motion to be developed. These average equations of motion are investigated with numeric analysis.

Ovchinnikov & Penkov use the following assumptions:

• Strong bar magnet

• “Improved” Parallelogram model (able to generate minor loops near origin only)

• Averaged equations of motion

3.3.3 CUBESIM (2004) and SNAP (2009)

Both CUBESIM and the Smart Nano-satellite Attitude Propagator (SNAP) are PMAC at-

titude simulations developed by students (Levesque [47] and Rawashdeh [61], respectively) in an

attempt to simulate the response of a PMAC system for satellites they were working on at the time.

Both models use the Matlab Simulink environment along with the Dormand-Prince 45 variational

numeric integrator (generally known as the DOPRI method, known in MATLAB as ode45), and

both models use the parallelogram model to determine the hysteresis torque given the magnetic

field input. Both models include the effect of gravity gradient torque, but ignore the other envi-

ronmental torques (drag, solar pressure, magnetic residual, eddy current). Finally, both models

use the closed magnetic circuit hysteresis parameters to form their parallelogram models. In both

models, these assumptions and incorrect inputs add up to a simulation that converges very quickly

(when CSSWE initial conditions are input, CUBESIM converges to the local magnetic field within

a few orbits). Also, the CUBESIM output was not found to converge as lower time steps were used.

Frustrations with CUBESIM inconsistencies was one of the motivations for work on a new PMAC

simulation.

CUBESIM and SNAP use the following assumptions:

• Parallelogram hysteresis loop (no minor loops)

• Runge-Kutta45 numeric integrator
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• No environmental torques included except gravity gradient

• Closed magnetic circuit hysteresis parameters

3.3.4 Park et al. (2010) & Lee et al. (2011) - RAX

The RAX CubeSat team recognized the faults with previous PMAC simulation tools [47].

They developed their own numeric integration model based on Equation 2.3. The RAX model

includes magnetic and hysteresis torques, and rotation matrices are the chosen attitude coordinates.

The RAX team uses the Lie Group Variational Integrator (LGVI) developed by Lee [45] at the

University of Michigan. This energy-conserving numeric integrator is used in an attempt to limit

system energy change due to the numeric integrator itself; the LGVI is described in Section 8.1.7

and tested versus other integrators in Section 8.3.

The RAX simulation uses the Flatley empirically-derived hysteresis loop model (described

in Section 8.1.6.5). Unfortunately, the RAX simulation incorrectly uses closed magnetic circuit

hysteresis parameters. Although students at the University of Michigan developed this PMAC

simulator, only preliminary applications have been performed [58]. To date, the RAX team has

not validated the performance of their simulation.

3.4 Hysteresis Measurement to Date

Only one other small satellite research group has made a priority of hysteresis measure-

ment. Most teams incorrectly assume that the closed magnetic circuit hysteresis parameters of

the hysteresis rod material may be used for simulation purposes, ([47],[61],[58]) but as is shown in

Section 7.3, this is not the case. The very first PMAC mission, Transit 1B, measured the area of

its hysteresis loops and used it as an input to its analytical model [25]. Of the modern missions,

only the University of Rome (UNISAT-4, EduSat) have measured their rod hysteresis loops.

The UNISAT-4 team measured the hysteresis rod by placing a magnetometer close to one

end of the rod and measuring the B-field resultant of magnetization changes within the rod [63].
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However, their sense coil was not surrounding the hysteresis rod, they required the use of a scaling

factor to translate from measured data away from the rod to some internal average B-field within

the rod. Also, their measurement technique lacks the ability to perform system measurements.

However, they did achieve measured hysteresis loops within an order of magnitude of those presented

in Section 7.3.

Recently, the University of Rome built a new measurement system which uses a forcing coil

and sense coil to determine the hysteresis parameters as a function of rod length (because the

sense coil is much shorter than the hysteresis rod). The results from this measurement system

yield hysteresis parameters (Hc = 1.135 A/m, Br = 0.0073 Tesla, Bs = 0.1315 Tesla, Area=0.4263

J·m−3 for a 200 mm × 1 mm × 1 mm HyMu-80 rod [5]) which are vastly different from the

closed magnetic circuit material hysteresis parameters (see Table 7.2). Other work measuring

PMAC hysteresis rods is an analysis of various magnetic materials which could be used to fabricate

hysteresis rods [24].



Chapter 4

The Colorado Student Space Weather Experiment

The Colorado Student Space Weather Experiment (CSSWE) is a 3U CubeSat [75] built at the

University of Colorado Boulder as a joint project between the department of Aerospace Engineering

Sciences (AES) and the Laboratory for Atmospheric and Space Physics (LASP). Involvement with

CSSWE served as the motivation for this dissertation topic. CSSWE uses Passive Magnetic Attitude

Control (PMAC) and we have full access to the satellite data. Thus, this CubeSat is an important

feature of this dissertation.

CSSWE was selected for funding from the National Science Foundation in spring of 2010.

Following a two year period of design, build, and test, CSSWE was delivered for PPOD integration

in January 2012. Figure 4.1 shows an image of CSSWE and the Poly-Picosat Orbital Deployer

(P-POD) launch device as captured during delivery. On September 13, 2012, CSSWE was in-

serted into a 478km × 786km, 64.7◦ inclination orbit as part of the NASA Educational Launch of

Nanosatellites (ELaNa) VI launch [68]. CSSWE launched as a secondary payload aboard an Atlas

V rocket operated by the United Launch Alliance (ULA) with a primary payload from the National

Reconnaissance Office (NRO).

4.1 Science Mission Success

The science objectives of CSSWE are to investigate the relationship of the location, magni-

tude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic

particles reaching Earth and to determine the precipitation loss and the evolution of the energy spec-
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Figure 4.1: The Colorado Student Space Weather Experiment (CSSWE, bottom left) CubeSat and
its launch device, the Poly-Picosat Orbital Deployer (P-POD, upper right)
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trum of radiation belt electrons [50]. To accomplish these objectives, CSSWE carries a miniaturized

version of the Relativistic Electron and Proton Telescope (REPT), developed by LASP engineers

for Van Allen Probes mission. CSSWE’s lone science instrument, the Relativistic Electron and

Proton Telescope integrated l ittle experiment (REPTile, shown in Figure 4.2), uses 350V-biased

silicon detectors to measure the directional differential flux of electrons from 0.5 to >3 MeV and

protons from 10 to 40 MeV within a 52◦ field of view [66]. The data product of the mission is count

rates for each particle within four energy bins, generated every six seconds.

The REPTile instrument measures charged particles which revolve around magnetic field

lines as they travel. Thus, passive magnetic attitude control is beneficial because it results in

higher particle count rates because the instrument field of view is oriented perpendicular to the

local magnetic field direction. Also, the non-isotropic CSSWE antenna pattern favors alignment

with the local magnetic field, which ensures an RF link can be established the majority of the time

CSSWE is visible to the ground station in Boulder, CO.

The CSSWE mission has proven highly successful [49]. CSSWE proposed a mission lifetime

of four months: one month of spacecraft checkout with full mission success defined by three months

of science operations. As of Christmas Eve 2013, the satellite remains operational 466 days after

launch with the science mission extended to over three times the 90 day full mission success duration.

CSSWE is the quintessential proof that high-impact, journal-quality science can be accomplished

with a low-cost CubeSat [48].

4.2 Coordinate System

CSSWE uses the body-fixed coordinate system shown in Figure 4.3. With the origin at the

center of mass, the CSSWE X-, Y-, and Z-axes are aligned with the satellite major, intermediate,

and minor inertia axes, respectively. The CSSWE principle inertia matrix about the center of mass

is shown below; note that the satellite is close to symmetric about the X- and Y-axes.
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Figure 4.2: The REPTile instrument collects particles in its 52◦ field of view through the collimator
(C). Off-axis electrons are reflected by the collimator teeth away from the aperture. A beryllium
window (F) absorbs electrons < 500 keV and protons < 10 MeV, preventing detector saturation.
Particles travel through the detector stack (E), depositing energy on each detector as they travel.
Binning logic allows the calculation of particle energy based on detector stack penetration. Alu-
minum (A) and Tungsten (B) shielding enclosing the detector stack limits noise due to particles
not in the REPTile field of view. Three Tantalum alignment pins (D) provide rotational stability
for the detector stack while providing the necessary shielding.
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Figure 4.3: The CSSWE coordinate frame is shown with the definitions for α and β error angles.
The body X-axis BX is aligned with the REPTile aperture, the body Z-axis BZ is aligned with the
deployed antenna, and the body Y-axis BY is defined by the right-hand rule. The angle β exists
between the body frame +BZ axis and magnetic flux density vector B. The β angle is referenced
throughout this document.
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[I] =


0.0222 0 0

0 0.0218 0

0 0 0.0050

 kg ·m2.

4.3 Sensors and Telemetry

The satellite sensors are split into two types: housekeeping and attitude. The housekeeping

sensors measuring temperature, current, and voltage throughout the spacecraft. The attitude

sensors are used to measure the 3-axis local magnetic field vector and the partial sun position

vector.

4.3.1 Housekeeping

CSSWE contains 38 housekeeping sensors spread throughout the satellite; Table 4.1 shows

each sensor and its associated Analog to Digital Converter (ADC). Each ADC digitizes the analog

readings with an 8-bit resolution. CSSWE queried each of these sensors once per minute and

used these readings to compile ten-minute mean, maximum, and minimum values for each sensor.

The sensors are detailed because some are used for magnetometer calibration (Section 4.3.2) while

others are helpful for validating the attitude filter output (Section 6.3.2).

4.3.2 Attitude

The raw attitude measurements are not used by the satellite on-orbit; instead, they are

transmitted to the ground for post-processing. Chapter 6 describes the ground-based satellite

attitude determination using sensor output. This section focuses solely on the CSSWE attitude

sensor hardware, output, and calibration.

CSSWE uses a three-axis magnetometer (Honeywell HMC5883L) and four photodiodes (Vishay

TEMD6010FX01) to determine the full local magnetic flux density vector and the partial sun vec-

tor, respectively. The magnetometer is digitized with a 12-bit ADC, while the photodiodes share
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Table 4.1: The 38 CSSWE housekeeping sensors are detailed below. Each sensor output is quantized
by an 8-bit analog to digital converter before recording to memory. Attitude sensors are not included
in this table, but ADC1 also digitizes the four photodiodes.

Analog to Digital Sensor Quantity
Converter

ADC1 Solar Panel Temperature 4

ADC2 Solar Panel Voltage 4
Solar Panel Current 4

ADC3 Battery Voltage 1
Battery Temperature 1
Battery Charge Current 1
Battery Discharge Current 1
5V Buck Voltage 1
5V Buck Current 1
3.3V Buck Voltage 1
3.3V Buck Current 1

ADC4 REPTile Detector Voltage 4
REPTile Detector Current 4

ADC5 REPTile Detector 1 Temperature 1
REPTile Board Temperature 1
REPTile Reference Voltage 3
3.3V Buck Voltage at REPTile 1

Radio Microcontroller Temperature 1
Power Amp Temperature 1
RSSI 1

C&DH Microcontroller Temperature 1
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the 8-bit ADC1 used by the solar panel temperature sensors (see Table 4.1). The instantaneous

attitude sensors output values are recorded once every six seconds.

4.3.2.1 Magnetometer

The magnetometer was calibrated before flight using a time-invariant, attitude-independent

method [31] which accounts for the offset, scale factor, and non-orthogonality biases. To account

for temperature, current, and science instrument biases, a time-varying, attitude-independent cal-

ibration method was applied [72]. This calibration uses the first three days on-orbit (while the

satellite is still covering the majority of the attitude sphere) to fit static calibration parameters

based on time-varying telemetry. The Command and Data Handling (C&DH) board temperature

telemetry is used as a proxy for the magnetometer temperature. Although a ten-minute average

is the highest temporal resolution available for housekeeping data, it is found to be sufficient to

correct for scale and offset magnetometer temperature errors. Post-launch analysis shows that the

magnetometer temperature is the most significant source of time-varying error. The 10 minute

average battery voltage telemetry is used as a proxy for system currents near the magnetometer

which generate offset errors. The final magnetometer offset correction is based on the activation

status of the REPTile instrument. The magnetometer is sensitive to REPTile currents because it is

located on the REPTile electronics board, as shown in Figure 4.4. Also shown is the magnetometer

proximity to the steel-tape communications antenna which deploys two hours after PPOD ejection.

The antenna deployment changes the magnetic moment of the spacecraft (see Section 6.3.2.1) and

has a significant effect on the magnetometer calibration.

Figure 4.5 shows the magnetometer B-field magnitude error over the first thirty days of on-

orbit operations with various calibrations applied. The error is calculated as the difference between

the measured B-field magnitude and the International Geomagnetic Reference Field (IGRF) mag-

netic model output magnitude (see Section 8.1.5.1). Relative to the daily average magnitude of

the IGRF, the raw data has a daily average error of well over 400% and is thus unusable. The

ground-based calibration reduces the daily average error to about 15%, or about 9◦ of attitude er-



46

Figure 4.4: Solid model of the magnetometer (green) position relative to the bar magnet (red)
and the deployed antenna (copper). The magnetometer is sensitive to REPTile currents due to its
placement on the REPTile electronics board.
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ror. The on-orbit, time-varying calibration is the only dataset with a mean error below its standard

deviation. The maximum net effect of the measurement error average and standard deviation is

about a 2% error relative to the daily average IGRF magnitude, or about a 1.1◦ attitude error.

4.3.2.2 Photodiodes

CSSWE has photodiodes on each of its 3U faces (+BX, −BX, +BY , −BY ); these allow for

a partial sun vector measurement. Each photodiodes measures the sun direction by assuming 1)

an output when the sun is perpendicular and 2) that the output decreases as a cosine with the

sun direction. However, the second assumption is usually invalid at high incidence angles due to

physical limitations (refraction, manufacturing imperfections, etc.) and secondary light sources.

As a result, CSSWE does not use photodiode measurements beyond a 70◦ field of view. Figure 4.6

shows the relationship between the number of illuminated photodiodes and the sun direction vector

in the body frame; this figure has slight inaccuracies due to the size of each grid element (which

are large for clarity purposes).

The photodiodes were calibrated using an attitude-dependent, batch-based approach using

on-orbit data which takes into account the effects of albedo. This calibration is largely based on

the work of Springmann [70]. However, partial sun vector measurement based on the four CSSWE

photodiodes is not sufficient to estimate the photodiode calibration parameters when directly in-

cluded as filter states. Instead, a novel batch-based filtering approach is used to calibrate each

photodiode (for more information, see Section 6.2.2). This calibration corrects for the scale factor

and misalignment angles of each photodiode. The misalignment angles account for manufacturing

and mounting defects; these parameters do not change with time.

The scale factor is defined as the output from a photodiode when it is perpendicular to the

sun alone (no albedo); this parameter changes over time. Figure 4.7 shows that the photodiodes

experience significant degradation over the first month on orbit; this degradation is believed to be

due to UV light darkening the plastic covering of each photodiode. The figure also shows that

the scale factor of each photodiode is recalculated every six hours to account for degradation as
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Figure 4.5: The difference in magnetic flux density magnitude as measured by the CSSWE magne-
tometer vs. predicted by the International Geomagnetic Reference Field (IGRF, see Section 8.1.5.1)
model. Both the daily mean error (filled squares) and the daily standard deviation of the error
(open circles) are shown. The black lines are the maximum and minimum modeled B-field magni-
tude at the CSSWE orbit each day. Red is the error of the raw data from the magnetometer, blue
is the error after the ground-based (static calibration parameters) calibration is applied, and green
is the error after the on-orbit (dynamic calibration parameters) calibration is applied.
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Figure 4.6: The number of illuminated photodiodes given a sun direction vector for the CSSWE
CubeSat. This distribution assumes photodiodes with a 70◦ field of view aligned with the +X, −X,
+Y, and −Y axes.
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it occurs. After calibration, the photodiodes have a nominal 1-sigma standard deviation of 1.6µA

due primarily to the uncertainty of the albedo model. In the early mission, the maximum sun-only

current is about 45µA (equivalent to about 2.0◦ of attitude error) but by late mission this maximum

sun-only current decreases to about 32µA (equivalent to about 2.8◦ of attitude error).

4.3.2.3 Inertial Models and Uncertainties

The measurements cannot be used to determine spacecraft attitude without some estimate

of their inertial values. CSSWE uses a Two Line Element (TLE) set with the SPG4 propagator for

position information (see Section 8.1.4). The satellite position is used to generate both the inertial

sun vector (accurate to 0.01◦) and the inertial magnetic field vector (accurate to about 1◦ as shown

below); both models are explained in more detail in Section 8.1.5.

Figure 4.8 shows the results of an investigation of the Two Line Element (TLE) set uncertainty

over the first 30 days on orbit. The TLE is propagated to determine the satellite position and

velocity at a given time (see Section 8.1.4); thus an inaccurate TLE will lead to an inaccurate

position estimate. This investigation was performed by simulating CSSWE dawn crossings and

comparing each crossing with on-orbit photodiode data. Red lines have been added to the figure at

±6 seconds to show the expected variation in dawn crossings as CSSWE records photodiode data

once every six seconds. The figure shows that the CSSWE TLE-based position degrades over the

first month on orbit. During this time period, CSSWE drifts apart from the other 10 CubeSats

from the same launch; this may have caused issues for the tracking agency which supplies the

TLEs. Regardless, the data shows that the simulated dawn crossings have errors as high as 18s

compared to the measurements. Simulations of the first month’s orbit show that an 18s in-track

position error results in IGRF model errors with a 1σ standard deviation of 284nT. However, this

is a worst case that is seldom experienced; a more reasonable assumption is a 10s in-track position

error, resulting in IGRF model errors of 158nT. The IGRF model can also differ from truth in

the presence of geomagnetic storms. Moderate storms can cause variations up to 100nT at low

latitudes [51]. Recent analysis has shown high latitudes can experience variations of up to 1000nT
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Figure 4.7: The maximum recorded output current for each photodiode is shown with the open
circles. The filled squares show the scale factor for each photodiode, which was fit to the on-orbit
data every six hours. The photodiode scale factor is the current that would be registered by the
photodiode if it were perpendicular to the sun alone (no albedo).
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during moderate storms [42]. Because the attitude determination is performed via post-processing,

the storm-based magnetic field variation can be avoided by selectively processing datasets during

which geomagnetic activity is low. For comparison, the lowest magnetic flux density magnitude

experienced within the CSSWE orbit is about 18µT, so 180nT is equivalent to 1% error or about

0.57◦ angular error.

4.4 Latch-up Anomaly

Although CSSWE met all of its goals for full mission success, it did have setbacks. The

most severe anomaly (with implications for attitude determination) began on October 14, 2012, at

23:28:45 UTC. Based on received telemetry, it is believed that ADC4 (see Table 4.1) experienced a

latch-up anomaly, likely due to a high-energy particle impact. The latch-up caused an undesired low

impedance path to ground through ADC4. This short circuit eventually brought the battery voltage

below a battery protection circuitry threshold, triggering a system reset which cleared the latch-up

two hours after the anomaly began. As a result of the anomaly, ADC4 was destroyed and both

ADC1 and ADC2 were damaged. Unfortunately, ADC1 digitizes the photodiode output, which was

degraded by the anomaly. Figure 4.9 shows the raw bit-level output from ADC1 before and after

the latch-up anomaly occurs in mid October. The +X, -X, and +Y photodiodes lose certain bits

after the anomaly. As a result, there is increased quantization of the photodiode output, greatly

reducing its usefulness in attitude estimation. For an 8-bit ADC (maximum output 255), losing

bit 5 (+X, -X) or 7 (+Y) results in percent errors of 12.5% or 50.1%, respectively. Because the

attitude determination relies upon accurate photodiode output, the CSSWE three-axis attitude is

limited to the first month of on-orbit operations.
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Figure 4.8: The difference between the dawn crossing predicted by the current Two Line Element
(TLE) set and the photodiode-based dawn crossing observation. The green dots are the closest
dawn crossing to an updated TLE; the blue dots are propagated forward or backward in time using
data from the most recent TLE. Dotted red lines are visible at ±6 sec to indicate the photodiode
measurement period; differences beyond these boundaries are likely due to errors in TLE-based
position. The increasing error is thought to be due to the ten CubeSats launched with CSSWE
dispersing over time.
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Figure 4.9: The output of ADC1 before and after the latch-up anomaly. Select bits are no longer
active after the anomaly, causing increased quantization of the output data. The +X and -X
photodiodes lose bit 5 while the +Y photodiode bit 7 becomes intermittent.



Chapter 5

Control System Design

We anticipate that satellite developers will refer to this dissertation when designing future

PMAC systems. One example of good PMAC system design is the Colorado Student Space Weather

Experiment (CSSWE) CubeSat (discussed in Chapter 4). This chapter details PMAC system design

practices using CSSWE as a specific example.

The attitude control system of CSSWE has two performance requirements:

(1) The attitude control system shall have a settling time of less than 7 days.

(2) Once settled, the attitude shall stay aligned within 15◦ of the local magnetic field.

5.1 Maximum Expected Environmental Torques

A successful attitude system design begins with an analysis of maximum expected space-

craft environmental torques. Table 5.1 shows the expected environmental torques in the CSSWE

environment. Methods to calculate these torques are explained in Section 8.1.6. The maximum

expected non-magnetic torque total is used to determine the minimum acceptable bar magnet

magnetic moment.
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Table 5.1: Worst-case environmental torque magnitudes for the CSSWE 3U CubeSat. This analysis
assumes a 3U CubeSat in a 480km×790km, 65◦ orbit and moderate solar input.

Torque Maximum Value
[N·m]

Magnetic Residual ||LR|| 4.3E − 7
Aerodynamic ||LD|| 1.8E − 8
Gravity Gradient ||LG|| 3.2E − 8
Solar Pressure ||LSP|| 2.5E − 9

Sum ||L||sum (excluding ||LR||) 5.3E − 8

5.2 Bar Magnet Design

In the CSSWE orbit, ||B|| varies from 18 to 52 µTesla. We present a modified version of

Santoni and Zelli’s [63] minimum recommended bar magnet strength:

mmin = 15

(
||Lsum||

||B||min · sin(βmax)

)
(5.1)

where ||L||sum is the sum of the independent, non-magnetic environmental torque magnitudes,

||B||min is the minimum magnetic flux density magnitude experienced by the satellite, and βmax

is the desired pointing accuracy. Although the required alignment with the magnetic field is 15◦,

the system is designed using βmax =10◦ to ensure there is adequate margin in the PMAC system

design. Santoni and Zelli’s [63] version of Equation 5.1 defines ||L||sum as the sum of all independent

environmental torques. However, ||L||sum is better defined as the sum of the non-magnetic torques.

Instead of heavily weighting Equation 5.1 due to the maximum magnetic residual torque vs. the

minimum bar magnet torque, the respective magnetic moments may be compared directly. Because

any magnetic torque is given by Equation 2.6, as long as mbar ≥ 15mres, the magnet will easily

overpower the magnetic residual. This revised definition of ||L||sum produces a less extreme bar

magnet moment, thereby reducing the necessary hysteresis damping material within the volume-

limited CubeSat and lessening the initial magnetic potential energy of the satellite.

The bar magnet moment is also directly related to the initial energy which may be introduced

to the system when a small satellite is released from its launcher. The rotational energy of a PMAC
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satellite may be split into the kinetic and potential energy as shown below:

TK =
1

2
ωT [I]ω (5.2)

TP = −m ·B (5.3)

where m is the total satellite magnetic moment, ω is the angular velocity vector, and [I] is the

satellite moment of inertia matrix. Usually, small satellites are secondary payloads and thus cannot

control the initial angle versus the magnetic field β0 at satellite deployment. Consider a satellite

which initially posseses zero kinetic energy and starts with β0 = 180◦. In this case, the initial

rotational energy is directly related to the magnetic moment magnitude ||m||. Thus, the bar magnet

moment must balance between dominating the disturbance torques and limiting the possible system

energy which could be introduced at deployment.

For the considered conditions, Equation 5.1 yields an ideal bar magnet strength mmin = 0.25

A·m2, which is 25× the expected residual magnetic moment. A bar magnet was ordered to meet

this level, but when the bar magnet was measured (see Section 7.2), it was found to be mbar =

0.80 ± 0.017 A·m2. Due to limited time time before CubeSat delivery and because the measured

mbar > mmin > 15mres, the bar magnet magnetic moment was deemed acceptable and is used in

the CSSWE PMAC system.

5.3 Hysteresis Rod Design

Once a bar magnet dipole moment has been chosen, the hysteresis rod dimensions and quan-

tity should be determined. Usually in a PMAC system, hysteresis rods are mounted in pairs

orthogonal to the bar magnet to reduce the offset of the applied field due to the bar magnet (see

Section 2.2.3). Thus, the CSSWE bar magnet is aligned with the minor inertia axis (BZ) of the

CubeSat and the hysteresis rods are mounted on orthogonal axes (BX and BY , see Figure 4.3).

The design below assumes that perpendicular rods never interact and that rod sets do not interact
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when separated by more than 30% of their length [57].

As explained in Section 2.2.6, the length to diameter ratio of a hysteresis rod has a large

effect on its performance. Higher length to diameter ratios result in higher permeability hysteresis

rods. The maximum length of the hysteresis rod is limited by the dimensions of the spacecraft. For

CSSWE, the interior spacecraft dimensions perpendicular to the bar magnet limit the rods to 9.5

cm in length. Typical values of the length to diameter ratios for hysteresis rods are on the order of

100 [57]. Thus, CSSWE used hysteresis rods of length 95 mm and diameter 1 mm.

Next comes the question of how many pairs of hysteresis rods to include in the system.

First, there is a volume limitation; the planes of orthogonal rod sets must be separated by at least

30% of the length of one rod in order to ensure that the magnetization of one hysteresis rod set

does not affect the other [57]. Also, it may be advantageous to separate the hysteresis rods from

any spacecraft magnetometers. It is possible to calibrate a magnetometer to remove hysteresis

effects, but most calibration methods assume a linear hysteresis curve [28] [72]; the magnetometer

performance may degrade if the hysteresis rods are too close.

Regardless of the physical limitations of including hysteresis in the system, the optimal

amount of hysteresis material is a question. If not enough hysteresis material is included, the

system will take too long to converge, and PMAC design rule #1 will be violated. As dampening

material is increased, the offset from the local magnetic field increases as well, because the total

magnetic moment vector is what will align with the local magnetic field. Figure 5.1 defines the error

angle γ between the total magnetic moment vector and the magnetic moment vector of the bar

magnet. If the sum of the maximum hysteresis magnetization and the magnetic residual moment

represent a significant fraction of the total magnetic moment vector, the error angle γ may cause

the system to violate PMAC design rule #2.

Of course, the available locations within the satellite to affix hysteresis rods also determines

the allowable number of rods. Figure 5.2 shows a solid model of the final design of the CSSWE

PMAC system (the bar magnet and hysteresis rods are highlighted in red). CSSWE uses three

hysteresis rods on each of the BX and BY -axes. The rods are separated by a perpendicular distance
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Figure 5.1: There exists an error angle γ due to magnetization on the satellite not parallel to the
bar magnet.

of at least 3.25cm (34% of their length) and the bar magnet to ensure the hysteresis rods have

minimal magnetic offset. The magnetometer (not shown) is located on an electronics board near

the bottom of the satellite. The magnetometer was chosen to be separated from the hysteresis

rods rather than the bar magnet because a constant offset from the bar magnet can be negated

via calibration, but the non-linear variation of magnetic fields due to the hysteresis rods are more

difficult to remove.

Accurate magnetic moment and hysteresis parameters input to a realistic PMAC simulation

can be used to determine the volume of spacecraft hysteresis material needed to meet specific mission

requirements. With the necessary hysteresis volume defined, multiple rods may be installed using

the design rules outlined above. Thus, an accurate attitude dynamics simulation is a key part of

PMAC system design. Chapter 7 ensures accurate input to this simulation through hysteresis rod

measurement; it also tests the hysteresis design rules outlined above. Chapter 8 defines and tests a

PMAC attitude dynamics simulation. This simulation is verified for future design use by comparing

its output with the on-orbit attitude data from the CSSWE CubeSat. As such, Chapter 6 develops

a filter for attitude determination of a PMAC satellite and applies it to the empirical CSSWE

data.
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Figure 5.2: A solid model highlighting the position of PMAC components. The hysteresis rods (top)
have a large separation from the bar magnet (bottom left) in order to prevent magnetic offsets to
the rod hysteresis loops. Each hysteresis rod position is labeled; the rod sets are separated by a
minimum perpendicular distance of 3.25 cm.



Chapter 6

Attitude Determination

When developing a simulation, empirical data from the modeled system is useful for com-

parison. However, in the case of an attitude simulation, the raw observations from the satellite

must be converted to an estimate of the satellite attitude before any simulation-to-empirical-data

comparisons may be performed. This chapter develops an attitude determination filter which may

be applied to any PMAC satellite. After the filter is defined, it is applied to on-orbit measure-

ments to determine the attitude of a PMAC satellite. This provides the empirical data needed for

comparison with the attitude simulation (developed in Chapter 8).

The filter is tuned using input from the CSSWE CubeSat (see Chapter 4) but is applicable

to any satellite with a PMAC system when rate gyro data are not available. CSSWE is designed

to perform attitude determination via post-processing using raw measurements transmitted to its

ground station. However, given proper ground-based measurements before launch, the attitude

determination developed in this chapter could occur in real-time on orbit.

6.1 Filter Design

The Extended Kalman Filter (EKF) is an established method of attitude determination [46] [16].

In general, an EKF is useful for estimating the state and covariance of a non-linear, discrete-time

process. What follows is an overview of the general EKF. First, assume the state propagation for

a given process is governed by the non-linear stochastic difference equation



62

xk = f(xk−1,uk−1,wk−1) (6.1)

with measurements

yk = h(xk,vk) (6.2)

where x is the true state vector, u is the true control input, w is the true process noise, v is the true

measurement noise, and k is the step number. Note that each measurement is an inseparable com-

bination of the current state and the measurement noise. The true process noise and measurement

noise cannot be observed directly for each time step; instead the Kalman filter assumes all noise is

Gaussian, independent, and zero-mean. Because Equation 6.1 represents a non-linear process it is

difficult to propagate directly. The EKF state propagation procedure is shown below. Note that

for the EKF matrices, the normal convention within this dissertation of matrices being bracketed

is ignored.

x̂−k = f(x̂+
k−1,uk−1, 0) (6.3)

P−k = FkP
+
k−1F

T
k +GkQk−1G

T
k (6.4)

Kk = P−k H
T
k

(
HkP

−
k Hk + JkRkJ

T
k

)−1
(6.5)

x̂+
k = x̂−k +Kk

(
yk − h(x̂−k , 0)

)
(6.6)

P+
k = (I −KkHk)P

−
k (6.7)

where a hatted variable (̂.) represents an estimate, a superscript minus (−) or plus (+) represents the

a priori or a posteriori estimate before or after the measurement update, P is the state covariance
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matrix, Q is the process noise covariance matrix, R is the measurement covariance matrix (not to

be confused with the rotation matrix [R]), F is the state transition matrix, G is the process noise

gain matrix, H is the measurement sensitivity matrix, and J is the measurement noise gain matrix.

The Jacobian matrices are defined as follows:

Fk ≡
∂f

∂x

(
x̂+
k−1,uk−1, 0

)
(6.8)

Gk ≡
∂f

∂w

(
x̂+
k−1,uk−1, 0

)
(6.9)

Hk ≡
∂h

∂x

(
x̂−k , 0

)
(6.10)

Jk ≡
∂h

∂v

(
x̂−k , 0

)
(6.11)

The EKF linearizes around the previous state estimate x̂+
k−1 to generate an a priori estimate

of the state vector x̂−k and covariance matrix P−k . This a priori covariance matrix P−k is used to

determine the gain Kk. Applying this gain results in the best fit state estimate x̂+
k for the current

time step. The gain is also used to calculate the current best estimate of the a posteriori covariance

matrix P+
k .

In most attitude-determination applications, the states modeled by the EKF are the attitude

parameters and angular rates. However, the attitude parameterization choice is not trivial. All

attitude parameterizations of three dimensions contain a singularity in their kinematic differential

equation, while three-dimensional attitude coordinates expressed in four or more dimensions have

dependent parameters, which can result in a singular covariance matrix after an EKF update

because numerical errors can cause one or more of the parameter constraints to be violated. The

Multiplicative Extended Kalman Filter (MEKF) resolves this issue by using a combination of

quaternions and a three-dimensional attitude parameterization; the former is used as a non-singular

reference and the latter is used to tabulate the attitude error at each time step. The MEKF was
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originally developed assuming the use of a rate gyro [54]. Alternatively, the rate gyro can be

omitted by modeling the dynamics of the spacecraft. For the purposes of the MEKF, the PMAC

attitude dynamics can be modeled by including only the bar magnet torque (which dominates all

other external torques) and treating all other external torques as Gaussian process noise [11]. A

disadvantage of this method is the inclusion of the mass moment of inertia matrix and the bar

magnet strength in the dynamics model; these must be accurately measured before launch or fitted

to on-orbit data to achieve satisfactory results.

We use the scaled Gibbs vector as the attitude error parameterization and follow the conven-

tion of Markley [54] to define the scaled Gibbs vector:

ag ≡ 2
q

q0
(6.12)

where q is the vector part of the quaternion and q0 is the scalar part. The factor of two is included

because it makes ag approximately equal to the yaw, pitch, and roll Euler angles for any rotation

set, given that ag represents a small rotation. Thus, when the scaled Gibbs vector is used as the

attitude error parameterization, the uncertainty estimate from the MEKF is directly applicable to

satellite attitude uncertainty in yaw, pitch, and roll. Thus, the six-dimensional state vector for the

PMAC MEKF is x = [ag ω]T . Although the reference quaternion is not technically a state, it is

updated at the end of each filtering step as follows:

q̂+
k = δq(ag,k)⊗ q̂−k (6.13)

where δq(ag) is the error quaternion given by

δq(ag) ≈

 ag/2

1− a2
g/8

 (6.14)

where the scalar-last quaternion convention is used. In practice, the a posteriori quaternion should

be renormalized after each use of Equation 6.13 to combat numerical error buildup. Combining

Equation 6.14 with the definition of a rotation matrix in terms of quaternions and assuming ag is a
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small angle and ignoring higher-order terms yields the error rotation matrix. This rotation matrix

definition is useful in determining the MEKF Jacobian matrices.

[R(δq(ag))] ≈ [I3×3]− [a×]− 1

2
(a2

g[I3×3]− aga
T
g ) (6.15)

In order to determine the Jacobian matrices that define the behavior of the MEKF, the

state dynamics must be determined. By combining Equation 6.13 with the kinematic differential

equation for quaternions and the time-derivative of Equation 6.12, the time-derivative of the scaled

error Gibbs vector can be obtained as shown below. The time-derivative of the angular velocity

vector is given by Equation 2.1 as torqued by the bar magnet alone (Equation 2.6). The dynamics

model used by the PMAC MEKF is thus:

ẋ =

ȧg

ω̇

 =

 ([I3×3] + 1
4aga

T
g )(ω − ω̂)− 1

2(ω + ω̂)× ag

[I]−1
(
m× ([R(δq(ag))][R(qref)]

IB + η2)− ω × [I]ω + η1

)
 (6.16)

where ω̂ is the expected value of the angular velocity (as differentiated from the true angular

velocity ω); these are analogous to the difference between q̂−k and q̂+
k , respectively. Note that we

follow the method of Burton [11] and define the process noise vectors η1 and η2 as the inertial

magnetic model error (including errors due to satellite position) and unmodeled external torques,

respectively. With the state dynamics fully defined, the first two MEKF Jacobian matrices may be

evaluated as follows:

Fk ≡
∂f

∂x

(
x̂+
k−1,uk−1, 0

)
=

 −[ωk−1×] [I3×3]

[I]−1[m×][R(q̂+
k−1)]IBk−1 [I]−1(−[ωk−1×][I] + [Iωk−1×])

 (6.17)

Gk ≡
∂f

∂w

(
x̂+
k−1,uk−1, 0

)
=

[03×3] [03×3]

[I]−1 [I]−1[m×]

 (6.18)

Before evaluating Equations 6.10 and 6.11, first note that a body frame observation vector can be

expressed using inertial data as h(xk,vk) = [R(δq(ag))][R(q̂−k )]Ibk+vk where Ibk is the observation
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vector in the inertial frame at this step. With this full measurement vector model in hand, the

final two Jacobians are evaluated as:

Hk ≡
∂h

∂x

(
x̂−k , 0

)
=

[
[R(q̂−k )Ibk×] [03×n]

]
(6.19)

Jk ≡
∂h

∂v

(
x̂−k , 0

)
= [I6×n] (6.20)

where Equation 6.15 has been substituted prior to integration. The number of measurements at a

given step determines the size of the Jacobians Hk and Jk, as well as the size of the measurement

covariance matrix R. When using the filter, the observation vector is approximated assuming zero

noise and using the expected value of the state to rotate an inertial, model-based observation at

each step:

h(x̂k, 0) = [R(q̂−k )]Ibk (6.21)

To be clear, the a priori values q̂−k and ω̂−k are obtained by numerically integrating the state

dynamics given the a posteriori values from the previous step:

 q̂−k
ω̂−k

 =

 q̂+
k−1

ω̂+
k−1

+

∫ tk

tk−1

 q̇
ω̇

 dt. (6.22)

Note that the scaled error Gibbs vector ag is not iterated; ag is defined as the error between the

a priori and a posteriori estimates. The expected value of the scaled error Gibbs vector expected

value is always zero, but it does have a non-zero a posteriori estimate set by Equation 6.6. This is

why the quaternion a posteriori update (Equation 6.13) is always the final action of each filtering

time step.

The PMAC MEKF derivation assumes that the error Gibbs vector represents a small angle

rotation (usually defined as <5◦). As a result, trust in the MEKF-output states and uncertainties

should be tentative if components of the error Gibbs vector are consistently >5◦. The PMAC
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MEKF filter is now fully defined. However, the filter must be tuned before its outputs may be

trusted.

6.2 Filter Tuning

Although the measurement noise R can be usually be determined via sensor testing, the

process noise Q is more difficult to set. Tuning is the process of varying Q and R as needed until

the filter performance is acceptable. After tuning, the uncertainty given by the filter covariance

should match the error of the state estimates. There are two tuning methods: simulating noisy

input to the filter and empirical tuning using residuals; the CSSWE mission used both methods.

6.2.1 Simulation-based Filter Tuning

The simulation uses the SGP4 orbital propagator [79], the CSSWE TLE, an initial attitude,

satellite properties, and environmental torques models to numerically determine the “true” satellite

motion. The simulation shares many similarities with the one developed in Chapter 8. External

torques which the MEKF does not model (gravity-gradient, drag, and solar pressure) are used in

this “truth” simulation to determine if estimating these disturbance torques as Gaussian noise is

acceptable. Gaussian noise of 15nT is added to the IGRF model before calculating the magnetic

torque at each time step; this value models good orbital position knowledge with a quiet sun. Noise

is also added to simulated body-frame measurements; the 1σ standard deviation of the photodiodes

is set to 1.6µA which reflects the 50 W·m−2 uncertainty in the albedo model used to correct the

photodiode output. The 1σ magnetometer standard deviation is set to 400nT as it is based on the

encountered B-field magnitude error (see Figure 4.5). Noisy body-frame measurements generated

by the simulation are then filtered by the MEKF. This filtering is repeated with a sensible range

of Q (based on expected levels of the external torques which are not modeled and the input IGRF

noise) until the uncertainty bounds correctly represent the errors (difference between “truth” and

the MEKF-output) in filtered attitude and angular velocity.

Figures 6.1 and 6.2 show the properly-tuned MEKF output given simulated measurements
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Figure 6.1: Angular error as output by the MEKF after tuning using a simulation of the attitude
dynamics. The error is the difference between the simulated attitude and the MEKF fitted attitude
generated from measurements corrupted with Gaussian noise. The red line shows the 3σ angular
uncertainty, which should bound 99.73% of the angular error.
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Figure 6.2: Error in angular velocity as output by the MEKF after tuning using a simulation of
the attitude dynamics. The error is the difference between the simulated angular velocity and the
MEKF fitted angular velocity generated from measurements corrupted with Gaussian noise. The
red line shows the 3σ angular velocity uncertainty, which should bound 99.73% of the angular
velocity error.
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over a typical early-mission CSSWE orbit. Although each simulation is slightly different due to its

stochastic nature, the 3σ bounds reliably encase roughly 99% of the angular error. The short-term

spikes in uncertainty are when the satellite is aligned with the local magnetic field; this alignment

reduces the signal to noise ratio on the other axes of the magnetometer, resulting in a less certain

attitude estimate. These uncertainty spikes are especially pronounced from 30 to 60 minutes, when

the photodiode measurements are ignored during eclipse.

As described in Section 4.3.2, CSSWE uses a magnetometer and four photodiodes to observe

its attitude. Figures 6.3 and 6.4 show the measurement residuals for each magnetometer axis and

photodiode. The simulation shows that 99% of the measurement residuals are also within the

3σ uncertainty bounds, which are calculated using both the assumed standard deviations and the

MEKF state uncertainty output.

Figure 6.5 shows the components of the scaled error Gibbs vector for each step in the simu-

lated. As described above, the MEKF output may be trusted if these errors remain below 5◦. After

a settling time of about seven minutes, the error angles remain well below the 5◦ mark. However,

the error angles do approach 5◦ during the eclipse period (30 to 60 minutes). Thus, the filter may

be operating close to its performance limits during eclipse. On-orbit data was used for the next

stage in filter tuning.

6.2.2 Empirical Filter Tuning

When working with the on-orbit CSSWE attitude data, a timespan of interest was set from

the first on-orbit measurement (September 14, 2012, at 00:51:50 UTC) to midnight the day before

a latch-up resulted in degraded photodiode measurements (October 14, 2012 at 00:00:00 UTC).

This month of time has much variation, from initial tumbling to settling, from safe mode to science

mode, and from relatively quiet geomagnetic conditions to a significant storm.

The empirical tuning was complicated further by uncertainty in the physical properties of the

satellite. As explained in Section 6.1, the bar magnet moment m and the inertia matrix [I] are key

factors in the performance of the PMAC MEKF. The inertia matrix [I] was numerically calculated
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Figure 6.3: Magnetometer measurement residuals from the simulated-input PMAC MEKF output.
The residual is the difference between the measured value and the inertial model rotated into the
body frame. The red line shows the 3σ angular uncertainty, which should bound 99.73% of the
residuals.
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Figure 6.4: Photodiode measurement residuals from the simulated-input PMAC MEKF output.
The residual is the difference between the measured value and the inertial model rotated into the
body frame. The red line shows the 3σ angular uncertainty, which should bound 99.73% of the
residuals.
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Figure 6.5: The scaled error Gibbs vector values from the simulated-input PMAC MEKF. When
the error angle is <5◦, the MEKF output may be trusted.
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from the spacecraft solid model. The uncertainty of this estimate is based on the completeness of

the solid model; in the case of CSSWE, the [I] uncertainty is estimated to be roughly 5%. The

magnetic moment of the bar magnet was measured using the technique described in Section 7.2

which shows an uncertainty of 2%. The MEKF simulation (described in the previous section)

was used to test filter performance given incorrect values of [I] and m at the maximum expected

uncertainty; the results were not satisfactory.

However, both [I] and m should not change after all deployables are in their operational

configuration; this makes on-orbit calibration ideal for these values. Constrained nonlinear opti-

mization was used to determine the m which minimized the filter measurement residuals. The fit

was performed using early mission CSSWE data, while the spacecraft was still covering the major-

ity of the attitude sphere. The inertia matrix was not fitted because it was found that m and [I]

are not separable from the viewpoint of the CSSWE attitude response. Thus, the solid model [I]

and the fitted m are used.

However, because the fit m is based on minimizing the filter measurement residuals, the

empirical tuning occurred simultaneously to the fit. A five hour timespan in the early mission

is used to simultaneously fit m, the photodiode and magnetometer alignment angles, and the

photodiode scale factor. Longer fit times were attempted, but the results were degraded by the

photodiode scale factor changes over their duration. The MEKF assumes photodiode 1σ standard

deviations of 1.6 µA, as outlined in Section 6.2.1. Each magnetometer axis 1σ standard deviation is

set equal to the ||B|| error (measured vs. IGRF); this value varies over the timespan of interest as

shown in Figure 4.5. The magnetometer X-axis contains a systematic error which is believed to be

due to its proximity to a current-carrying wire within the satellite. Unfortunately, the time-varying

calibration using the 10 minute average system current housekeeping telemetry lacks the temporal

resolution necessary to adequately remove this error. This error is thus reflected in the tuned R

matrix.

Starting with the simulation-based value of Q and expected level of R, the empirical filter-

based fit is performed multiple times with various Q and R until the approximately 99% of the
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measurement residuals are within the 3σ measurement uncertainty bounds. Empirical tuning shows

that the best performance of the filter occurs when the magnetometer X-axis element of R is set to

twice the nominal value (measured vs. IGRF ||B||) throughout the timespan of interest. Figure 6.6

shows the magnetometer position and orientation on the REPTile board within the satellite. The

X-axis of the magnetometer is parallel to the currents that are generated by the REPTile ground

plane.

Figures 6.7 and 6.8 show the tuned magnetometer and photodiode measurement residuals,

respectively, for the approximately five hour early mission empirical fit timespan. As explained

above, the magnetometer X-axis shows a systematic error which has been accounted for by dou-

bling the standard deviation of that sensor. The photodiode residuals behave as expected. In

both sensors, approximately 99% of the measurement residuals reside within the 3σ error bounds,

proving that the empirical data has been properly fit. However, the decreased confidence in the

magnetometer X-axis exacerbates the problem of high error angles during eclipse times, as shown

in Figure 6.9. Although the figure shows about a dozen data points above the 5◦ threshold, the

filter remains below this cutoff for the vast majority of the time. We have confidence in the filtered

data during the timespan of interest because of the results of both tuning procedures.

6.3 CSSWE Attitude Determination

The tuned MEKF was applied to the first month of CSSWE on-orbit data, before the pho-

todiodes were compromised by an on-orbit anomaly, as described in Section 4.4. The filter output

is shown over this timespan, followed by a validation of the results.

6.3.1 Filter Output

The output from the MEKF using the on-orbit data is split into multiple sections. The first

section shows data over the entire timespan of interest. The next two sections show 100 minute

datasets representative of the PMAC performance before and after settling occurs.
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Figure 6.6: A picture of the interior of the CSSWE as captured during final integration. The
magnetometer is located on the corner of the REPTile electronics board (bottom left of the image);
the system axes are indicated. The X-axis is parallel to the currents generated by the REPTile
ground plane.
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Figure 6.7: Magnetometer measurement residuals from the early mission on-orbit PMAC MEKF
output. The residual is the difference between the measured value and the inertial model rotated
into the body frame. The red line shows the 3σ angular uncertainty, which should bound 99.73%
of the residuals. The systematic error in the X-axis magnetometer output is believed to be due to
system currents which cannot be removed using the available telemetry. The expected standard
deviation of the X-axis magnetometer data (within the R matrix) is increased to twice the nominal
level to account for this error.
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Figure 6.8: Photodiode measurement residuals from the early mission on-orbit PMAC MEKF
output. The residual is the difference between the measured value and the inertial model rotated
into the body frame. The red line shows the 3σ angular uncertainty, which should bound 99.73%
of the residuals.
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Figure 6.9: The scaled error Gibbs vector values from the early mission on-orbit PMAC MEKF.
When the error angle is <5◦, the MEKF output may be trusted.
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6.3.1.1 First 30 Days On-Orbit

Figure 6.10 shows the angular velocity components throughout the timespan of interest. The

3σ uncertainty bounds are included in the plot in red but there is no visible difference from the fitted

values at the zoom level shown. The spikes in the fitted angular velocity and uncertainty bounds

are due to gaps in the housekeeping data which is used to correct the magnetometer readings or

gaps in the attitude data itself. The BX and BY components of the angular velocity dampen within

the first week, and remain at low values throughout the month. The roll about the BZ axis varies

greatly within the first few days, then settles somewhat. The roll continues to evolve within a few

degrees per second with a zero crossing about 13 days after launch. The zero roll rate causes the

satellite exterior to experience a wider range of temperatures as detailed in Section 6.3.2.2.

Figure 6.11 shows the β angle (between BZ and the B-field) with the 3σ uncertainty bounds.

CSSWE settled to within 15◦ of the B-field within seven days of launch. The increased magnitude

of the 3σ uncertainty bound spikes in the middle of the dataset are likely related to a decreased roll

rate combined with increased eclipse periods. As shown in Figure 4.6, the number of photodiodes

visible to the sun (and thus the number of measurements available to the MEKF) is dependent

on the roll angle. When the roll rate is slowed, the satellite has a longer timespan in which

only one photodiode is viable for use. As the satellite eclipse period increases (see Figure 6.15),

the photodiodes are not used for a longer period and the uncertainty bounds grow to a higher

maximum as the MEKF is using less observations for a longer time.

The attitude estimate is further degraded due to the satellite orientation with respect to the

local magnetic field. After the attitude has settled, the two magnetometer axes perpendicular to

the B-field have a much lower signal-to-noise ratio and the MEKF performance degrades as a result.

This could be avoided by installing the magnetometer significantly off-axis from the satellite body

frame.

The system energy evolution is a good “sanity check” for any dynamics problem. The rota-

tional energy of a PMAC satellite may be split into the kinetic and potential energy. The rotational
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Figure 6.10: The body to inertial angular velocity vector components are shown over the first
month of CSSWE on-orbit operations. The 3σ uncertainty bounds are shown in red behind the fit
data; their inclusion makes a negligible difference at this zoom level.
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Figure 6.11: The angle β between the local magnetic field and the CSSWE +BZ axis is shown for
the first month on-orbit with 3σ uncertainty bounds included in red. The 15◦ beta angle threshold
indicating post-settling is denoted with a solid green line. The increased beta angles late in the
dataset may be erroneous output due to satellite position error as explained in Section 4.3.2.3. The
increased uncertainties in the middle of the dataset are likely due to decreased roll rates combined
with increased eclipse times.
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Figure 6.12: The rotational energy of the satellite over the first month on-orbit. The total energy
is shown in black at bottom, while the top shows the kinetic (red) and magnetic potential (blue)
energy components.
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Figure 6.13: The histogram of the angle between the local magnetic field and the CSSWE +BX
(REPTile aperture) axis. The histogram covers a ten day period starting ten days after launch
(after the β angle has settled as shown in Figure 6.11). The mean angle of 89.5◦ is shown in green
and a fitted normal distribution with a standard deviation of 1.87◦ is shown in red.
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kinetic and potential energy equations are repeated below.

TK =
1

2
ωT [I]ω (5.2)

TP = −m ·B (5.3)

The rotational potential energy is due to magnetic material within the satellite. Note that

Equation 5.3 defines zero potential energy as when the bar magnet is perpendicular to the B-field.

The satellite possesses negative potential energy when the magnetic moment vector is less than 90◦

away from the B-field. Note that the potential energy is directly related to the B-field magnitude,

which varies over the CSSWE orbit. Figure 6.12 shows the kinetic, potential, and total rotational

energy over the first month on-orbit. The hysteresis rods decrease the rotational kinetic energy to

nearly zero within the first week after launch. The potential energy decreases as the satellite aligns

but the settled behavior echoes the orbital variations in the B-field magnitude. The increased

jitter in the kinetic energy after day twenty is believed to be an effect of the increased error in

satellite position estimation (Figure 4.8) which similarly affects the beta angle and angular velocity

estimates.

After settling, the angle between the REPTile aperture (+BX) and the B-field should be

close to 90◦. Figure 6.13 is a histogram of this REPTile alignment angle from days 10 to 20 after

launch, after the attitude has settled and before the filter performance has degraded. As shown,

the REPTile alignment angle relative to the magnetic field follows a normal distribution with a

mean of 89.5◦ and a standard deviation of 1.87◦. As mentioned in Chapter 4, this is advantageous

as it provides a higher signal-to-noise ratio for the REPTile instrument.

Figure 6.14 shows MEKF scaled error Gibbs vector magnitude statistics over the first month

on-orbit. The daily mean, standard deviation, and percentage of magnitudes greater than 5◦

are shown; each is a relative measure of the MEKF performance. By each measure, the MEKF

performs best in the early mission once the initial angular velocity has settled somewhat. As noted
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in Section 4.3.2, both the magnetometer and photodiodes require on-orbit calibration to achieve

acceptable performance. The majority of the calibration parameters are set using early mission

data; this is why the MEKF performance degrades after the first few days on-orbit. The REPTile

instrument was activated for the first time on day twenty; this event sharply increases the error angle

magnitude because the magnetometer is located on the REPTile electronics board (see Figure 4.4).

From day 20 to 25, the REPTile detectors are being activated one by one. REPTile completes its

commissioning on day 25; after this point, the magnetometer calibration better compensates for

REPTile currents.

Figure 6.15 shows the daily maximum, mean, and minimum temperatures of the Command

and Data Handling (C&DH) board in the interior of CSSWE. The orbit percent illuminated by the

sun is also shown. It is easy to see that the interior temperature reflects the satellite insolation time.

As explained in Section 4.3.2.1, the C&DH temperature is used as a proxy for the magnetometer

temperature, which is responsible for the most significant time-varying magnetometer scaling and

offset errors. The temperature correction is essentially extrapolating based on the first three days

on-orbit; the magnetometer error can be expected to increase as the temperatures differ from the

first three days. The magnetometer temperature has a nonlinear relationship to the magnetometer

error which has consequences for the MEKF performance (Figure 6.14). Figure 6.15 shows a second

source of MEKF uncertainty: the orbit eclipse period reaches its maximum near day 13, when the

daily percent error angle magnitude is near its maximum; this is the effect of losing the photodiode

measurements for a longer period.

6.3.1.2 Early Mission On-orbit Performance

Figure 6.16 and 6.17 show the β angle and angular velocity components with their associated

3σ bounds for a 100 minute period four hours after orbit insertion. Both plots show a satellite that

has not yet settled to pointing parallel to the B-field. The β angle is still varying up to almost 180◦.

The roll rate is about 4◦/s and the pitch and yaw rates are exchanging at ±3◦/s due to gyroscopic

torques induced by the satellite inertia matrix asymmetry. The fit uncertainty does not extensively
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Figure 6.14: The daily mean and standard deviation of the scaled error Gibbs vector magnitude
||ag|| are shown in blue squares and green circles, respectively. The daily percent of error angle
magnitudes ||ag|| which are greater than 5◦ is shown using the red triangles. Each dataset is a
relative measure of the MEKF performance over the first thirty days on-orbit.
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Figure 6.15: The daily maximum, mean, and minimum temperatures of the Command and Data
Handling (C&DH) board (located within CSSWE) are represented by the red diamonds, green
squares, and blue circles, respectively. The percentage of time the satellite is in the sun each day
is represented by the brown dashed line.
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increase during the eclipse period. In short, the MEKF is performing well.

6.3.1.3 Post-settling On-orbit Performance

Figure 6.18 and 6.19 show the β angle and angular velocity components with their associated

3σ bounds for a 100 minute period about ten days after orbit insertion. The angular velocity of

the X and Y axes varies from ±0.2◦/s and the roll rate is about -0.3◦/s. The roll rate estimate

shows a minor discontinuity when the photodiodes enter use after the eclipse period. However,

the discontinuity amplitude is within the uncertainty bounds of the fit, indicating that the filter is

estimating uncertainty well.

CSSWE has now settled to within 5◦ of the B-field, though the 3σ uncertainty bounds of

β sometimes reach large values, especially during eclipse. Note that the angular uncertainty is

based on the assumption that the scaled error Gibbs vector uncertainty is a small angle and thus

approximates the pitch, roll, and yaw uncertainties. Thus, uncertainties much greater than 5◦

should not be trusted. The uncertainty peaks during insolation (both β and angular velocity) are

due to a temporary loss of the photodiodes due to the sun position in the body frame, as shown

in Figure 6.20. The figure also shows the magnitude of the filter error angle; the small angle

assumption is only broken once, during the transition from eclipse to insolation. Thus, even during

the periods when the filter output uncertainty is suspect, the fitted attitude remains trustworthy.

6.3.2 Attitude Determination Validation

The CSSWE attitude determination results may be validated using independently-measured

on-orbit data. Two events which validate the filtered attitude output are detailed below.

6.3.2.1 Antenna Deployment Event

Due to requirements set by the CubeSat Design Specification [13], the satellite was launched

with the antenna stowed within the CubeSat. CSSWE was programmed to automatically deploy

the antenna two hours after orbit insertion; the satellite event log vouches for the deployment. The
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Figure 6.16: The angle between the local magnetic field and the +BZ axis over a 100 minute period
five hours after orbit insertion. The 3σ uncertainty bounds are shown in red and the insolation
times are marked in blue.
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Figure 6.17: The satellite angular velocity components over a 100 minute period five hours after
orbit insertion. The 3σ uncertainty bounds are shown in red and the insolation times are marked
in blue.
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Figure 6.18: The angle between the local magnetic field and the +BZ axis over a 100 minute period
ten days after launch. The 3σ uncertainty bounds are shown in red and the insolation times are
marked in blue.
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Figure 6.19: The satellite angular velocity components over a 100 minute period ten days after
launch. The 3σ uncertainty bounds are shown in red and the insolation times are marked in blue.
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Figure 6.20: The top plot shows the angle between the sun vector and the CSSWE +BZ axis (blue)
and the high incidence angle cutoffs at 20◦ and 160◦ (dotted red lines). The uncertainty peaks
during insolated times occur when the sun vector is within 20◦ of ±BZ, suggesting that the loss of
the photodiodes causes the rapid increase in uncertainty. The bottom plot shows the magnitude
of the scaled error Gibbs vector over the first 100 minutes (black circles) with the 5◦ limit to the
small angle assumption denoted (red dotted line). Only the point directly following the transition
back to insolation has an angular magnitude greater than five degrees.
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spring-steel antenna deployment was expected to slightly change the magnetometer calibration

parameters because of its ferromagnetic makeup. Instead, analysis of the on-orbit data shows that

the deployment of the spring-steel antenna significantly changes both the magnetometer calibration

and the magnetic moment of the satellite. The satellite motion difference was such that two different

satellite magnetic moments were calculated during the fitting process described in Section 6.2.2:

0.84 A·m2 and 0.55 A·m2 before and after the antenna deployment, respectively. Figure 6.21 shows

the system energy before and after the deployment event (denoted with the green line at 2 hours

after orbit insertion); there is a significant decrease in the system rotational energy when the antenna

deploys. Both the potential and kinetic rotational energy dynamics change significantly after the

antenna deployment because the magnetic torque of the satellite dominates all other external

torques. The antenna deployment does not create a visible difference in the filtered attitude or

angular velocity estimates, indicating that the torque due to antenna deployment is insignificant.

6.3.2.2 Solar Panel Temperature Distribution

The satellite roll rate has many implications. Much like meat roasting on a spit, when

the roll rate approaches zero one side of the satellite can burn while the opposite size freezes.

Figure 6.22 shows that the solar panel temperatures can reach extreme values when the roll rate is

near zero. The effect is so pronounced that the panels can reach nearly 100◦C even during a period

of maximum eclipse time. The independently-measured solar panel temperature data are in good

agreement with the MEKF fit.
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Figure 6.21: Satellite rotational energy before and after the antenna deployment event (represented
by the green line). The top plot shows the kinetic (red) and potential (blue) rotational energy while
the bottom plot shows the total rotational energy.



97

Figure 6.22: The top plot shows the maximum (open diamond), mean (filled square), and minimum
(open circle) temperature of each of four solar panels; the orbit insolation percentage is overlaid
(brown dotted line). The bottom plot shows the absolute value of the roll rate as estimated by the
MEKF.



Chapter 7

Magnetic Measurement

As the old adage says, “garbage in equals garbage out”; inaccurate input translates to inaccu-

rate output. The key inputs to PMAC simulation are magnetic torques; thus the parameters which

govern these torques must be accurately measured to ensure that the simulation results are trust-

worthy. This chapter describes measurement techniques for both the static magnetic moment m

and the hysteresis rods. First, the design of a Helmholtz cage for accurate magnetic measurements

is described (Section 7.1). Next, the static magnet magnetic moment m is measured (Section 7.2).

A Helmholtz-cage-based hysteresis rod measurement method is described (Section 7.3); this method

is capable of measurement in the presence of other magnetic materials which could degrade the

dampening capabilities of a hysteresis rod.

7.1 Helmholtz Cage

A Helmholtz cage is a set of six wire coils (two per orthogonal axis) which can be used to

provide an arbitrary uniform field within the volume enclosed by the coils; the properties of the

uniform field depend upon the cage dimensions and available current. The cage operates on the

principle that a current-carrying wire will produce a magnetic field, and can be used to both cancel

the inherent magnetic field and supply an arbitrary magnetic field. The use of two coils per axis

allows for a uniform field to be generated between the coils. A Helmholtz cage was constructed to

perform multiple magnetic measurements relevant to a PMAC system. The theory of a Helmholtz

cage is presented, followed by the design of the cage and post-build test results.
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7.1.1 Theory

The Helmholtz cage theory is based on manipulation of the Biot-Savart law: [81]

B =
µ0nI

4π

∫
dl× r̂

r2
(7.1)

where B is the magnetic field vector, µ0 is the permeability of free space, I is the current of the

wire being analyzed, dl is an infinitesimal current-carrying wire element, r is the distance from

element dl to the point of B measurement, r̂ is a unit vector in the direction of r, and n is the

number of turns in the current-carrying wire. The Biot-Savart law is used to determine the axial

magnetic field due to two coils perpendicular to a single axis. First, the on-axis field due to a single

wire segment on one of the coils is determined. A single coil is shown in Figure 7.1a. Here a is

one-half of the side length A and the point of measurement P lies in the center of the coil. The

distance z is measured from the center of the two coils, thus the -Z coil lies at z = −h/2, where h

is the distance between the coils. Integration variables are shown as l and θ.

Figure 7.1b shows the relationships between the single wire segment and the field generated

at on-axis location P . Note that the total field B generated by the wire segment l is perpendicular

to plane shown in Figure 7.1b. The trigonometric relationships shown in Figures 7.1a and 7.1b

may be differentiated and combined with Equation 7.1 to arrive at Equation 7.2, which describes

the infinitesimal magnetic flux generated by an infinitesimal length wire:

dB =
µ0nI

4πρ
cos θdθB̂ (7.2)

where B̂ is the magnetic flux unit vector and ρ is the axial distance from the center of the wire

segment to the point P . Equation 7.2 may be integrated from θ1 = − sin−1

(
a√
a2+ρ2

)
to θ2 =

sin−1

(
a√
a2+ρ2

)
to yield Equation 7.3, the magnetic flux generated by a single length of wire of

length 2a as shown in Figure 7.1a. The direction of this field is perpendicular to the plane shown

in Figure 7.1b:

B = ||B|| = µ0nI

4πρ

(
2a√
a2 + ρ2

)
. (7.3)
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Figure 7.1: Helmholtz geometry. (a) The -Z current-carrying coil and the resultant field generated
at point P . (b) The generated field is perpendicular to the surface from the wire segment to point
P .
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When four wire segments of equal length are combined with the same current traveling in

a counterclockwise direction (as shown in Figure 7.1a), it is apparent that only the contribution

of the magnetic field perpendicular to the coil will remain. Thus, Equation 7.3 is multiplied by

sin(φ) = a
ρ and a factor of 4 to yield the total axial field due to the -Z square coil:

B−z = 4B sinφ =
µ0nI

4π

(
a

ρ

)(
2a√
a2 + ρ2

)
(7.4)

where the direction of generated magnetic flux is given by the right hand rule based on the current

flow. The field for the second coil can be calculated in much the same way, the only difference

being ρ−Z =
√
z − h/2 and ρ+Z =

√
z + h/2. Equation 7.5 gives the total field produced by both

square coils as a function of axial distance z from the center of the coils:

Bz =
µ0nI

π

(
2a2

(a2 + (z − h/2)2)
√

2a2 + (z − h/2)2
+

2a2

(a2 + (z + h/2)2)
√

2a2 + (z + h/2)2

)
.

(7.5)

7.1.2 Design

The Helmholtz cage was designed for the testing of CubeSat spacecraft. The following re-

quirements governed the design of the Helmholtz cage:

(1) The Helmholtz cage test volume shall have dimensions of 30cm×30cm×30cm.

(2) The Helmholtz cage test volume shall provide 1% theoretical field uniformity along each

axis.

(3) The Helmholtz cage shall provide a magnetic field strength range of ±50 A/m on each axis.

The largest standard CubeSat is a 3U size, with dimensions 10cm×10cm×34cm [13]. Thus,

requirement 1 ensures that the test volume is sufficient to measure any standard CubeSat (a 3U

CubeSat easily fits when diagonally placed). Requirement 2 defines the expected uniformity of

each axis of the Helmholtz cage. It is given in terms of theory because the empirical uniformity of

each axis which may be measured by a magnetometer is dependent on the component of the earth
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field along that axis. If the Helmholtz cage were placed in a magnetically noisy or non-uniform

environment, the output field of the cage would be similarly noisy. However, a benefit of the small

test volume is portability. If an environment is particularly noisy or non-uniform, the cage may be

moved to a location that possesses a more stable field. Requirement 3 defines the configurable field

within the Helmholtz cage after nullifying the earth-based local magnetic field.

In order to ensure these requirements were met, Equation 7.5 is used with various spacing

between coils to determine the configuration that meets requirement 2. Figure 7.2 shows the results

of this analysis. Spacing h is defined as the axial distance between the two coils of a single axis.

The spacing h is given in terms of one half of the side length (a). Thus, the analysis shown in

Figure 7.2 is independent of cage size. The analysis shows that the best combination of uniform

field and uniform distance is given by h = 1.2a which is the chosen spacing for the Helmholtz cage.

Next, the side length of the Helmholtz cage is driven by requirement 1 above. In order to provide

a 1% variation in field over a 30cm distance, the Helmholtz cage side length 2a is set to 62.25cm

and the coil spacing is set to h = 1.2a = 37.24cm. Figure 7.3 shows the normalized field resultant

from these settings. The figure shows that along the axis from -15cm to 15cm, the theoretical flux

density stays within 1% of the maximum value of the field, satisfying requirement 2.

There is a trade-off between the number of wire turns on each coil and the ability of the power

supply to provide current to the coils. Each power supply has a maximum voltage and current it

can deliver. The B&K Precision 9130 was chosen for use with the built Helmholtz cage, it has

Vmax = 30V and Imax = 3A. However, the relays which switch the polarity of the power supply

output each have a current limit of Imax = 2A. As shown in Equation 7.5, the current through

the coils I is directly proportional to the magnetizing field H within the Helmholtz cage. As the

number of turns per coil increases, so does the resistance of each axis. Ohm’s law shows that as the

resistance R increases, eventually the power supply current will be limited by maximum voltage

output Vmax. For the B&K Precision 9130 power supply, the total resistance per axis must be

less than 15Ω to allow the power supply to provide Imax = 2A. CSSWE’s Helmholtz cage uses 30

turns of 22AWG magnet wire per coil, providing a total resistance of 8.5Ω per axis. Thus, the
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Figure 7.2: The axial fields resultant of various coil spacings are shown. Here h is the axial distance
between coils and 2a is the side length of each square coil.
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Table 7.1: All purchases needed to complete the Helmholtz cage are shown.

Part Quantity Cost
(USD)

Acrylic walls 4 207
(24in×24in×0.5in)
500ft. 22AWG magnet wire 3 73
B&K Precision 9130 1 895
computer-controlled
3-axis power supply
Micromag3 magnetometer 1 60
PIC18F452 QwikFlash 1 132
microcontroller
BNC connectors 3 22
DPDT relays 3 15

Total 1,404

power supply can easily provide 2A of current to each axis. Using Equation 7.5 with I = 2A yields

Bz > 125µTesla (Hz > 100 A/m) for -15cm < z < 15cm. The maximum earth-based magnetic

field magnitude at the University of Colorado (40◦N, 105◦W, 1655m elevation) is < 40 A/m. Thus,

even with the worst-case alignment the Helmholtz cage is able to provide a magnetic field strength

of at least 60 A/m per axis, satisfying requirement 3.

7.1.3 Assembly

Table 7.1 shows the parts needed to complete the Helmholtz cage setup; the total hardware

cost is about $1400 with the vast majority of that cost being the computer-controlled power supply.

The Helmholtz cage construction began by assembling the 0.5 in. thick acrylic walls. The top and

bottom of the cage were left open to allow access to the interior volume. Next, plastic guide rails

and wooden spacers were added to ensure all coils are tight and square. Magnet wire was then

wrapped around each axis one coil at a time, with care to ensure that both coils were wrapped in the

same direction. Wooden legs were added to keep the cage weight off the magnet wire coils. Finally,

BNC connectors were added to each axis for ease of connection to the power supply. Figure 7.4

shows the finished Helmholtz cage.
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Figure 7.3: The theoretical axial magnetic field of the as-built Helmholtz cage with a spacing of
h = 1.2a = 37.24cm. The magnetic flux density B is normalized by the maximum flux density.
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Figure 7.4: The finished Helmholtz cage with side length 2a=62.23cm and h=1.2a=37.24cm. The
PNI Micromag 3-axis magnetometer and analysis grid are also shown.
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Much of the difficulty involved in the use of a Helmholtz cage is controlling the current

output to each coil. Figure 7.5 shows all support hardware and connections necessary for operation

of the Helmholtz cage. A PIC18F452 microcontroller is programmed to listen for queries from

the serial port and relay the PNI MicroMag 3-axis magnetometer readings when requested. The

microcontroller is also responsible for controlling the relay state when commanded via the serial

port. Because the programmable power supply is only capable of positive currents, three socket-

mounted double pull double throw (DPDT) relays are used to invert the current on each axis as

necessary.

A LabView software interface was coded to allow a user to avoid low-level tasks by simply

setting a desired constant arbitrary field within the Helmholtz cage. When the software is initial-

izing, it empirically determines the alignment and sensitivity of the magnetometer relative to the

Helmholtz cage (described below). After initialization, the software waits for the user to input

the desired magnetic field value on each axis. Once the input is collected, the software varies the

magnitude and polarity of the current on each axis until the user settings have been achieved.

All magnetic testing described below assumes a constant proportion between current to each

coil and the H-field produced perpendicular to that coil. The “Helmholtz constant” has units of

m−1, as it represents the magnetizing field (A/m) per current (A) through the Helmholtz coils.

The Helmholtz constant theory is based on Equation 7.5; if µ0 and I are moved to the left side

of the equation, the right side is the theoretical Helmholtz constant HCtheory. In the center of

the Helmholtz cage as built, the theoretical Helmholtz constant HCtheory is 58.8±0.78 m−1. This

theory-based constant is equivalent on each axis. However, the Helmholtz constant may also be

empirically derived through initial calibration. When the LabView software initializes with no

hysteresis material present, each axis of the cage is calibrated separately by measuring the magnetic

field at two different current values. The empirical calibration constant is then calculated for each

axis as follows:
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HCempirical =
B2 −B1

µ0(I2 − I1)
(7.6)

where B1 is the magnetometer measurement when the coils have current I1 and B2 is the magne-

tometer measurement when the coils current I2. The constant µ0 is needed because the magnetome-

ter measures the B-field (not H-field) within the cage. Testing shows that the empirical Helmholtz

constant can change from test to test depending on the alignment of the magnetometer relative

to the coils. However, for a properly-aligned, calibrated magnetometer, the empirical Helmholtz

constant HCempirical is 58.8±0.043 m−1, which is within the uncertainty bounds of HCtheory.

7.1.4 Characterization

Much of the usefulness of the Helmholtz cage depends upon the uniformity of the post-

nullification magnetic field within the cage. Thus, the planar field of the Helmholtz cage was

mapped using a magnetometer. The magnetometer is used to map a 5cm resolution grid by

measuring the total magnetic flux density at each point. This mapping was performed twice:

once with no current through the Helmholtz coils and once with the Helmholtz cage set to nullify

the local field. Note that the magnetometer is placed in the center of the Helmholtz cage during the

nullification process and moved afterward to make the measurements. Figures 7.6a and 7.6b show

the magnetic flux density magnitude as a function of planar position. At the time and location of

the test, the earth field varied by 5µTesla over the test area. This caused some variation in the

zeroed magnetic field, as shown in Figure 7.6b. As shown, when the Helmholtz cage is zeroed, the

test area magnetic field takes the shape of a bowl with a square base: the ±10cm central area has

a measured uniformity of 2 µTesla, but the field near the edges of the test area reaches 10 µTesla.

The measured field strength variation after field nullification is 5%; this is roughly equivalent to the

local field variation before nullification. Repeating the test in a more uniform local field may yield

better results. However, a 20cm×20cm×20cm test volume maintained at 0-2µTesla is sufficient for

the magnetic testing described later in this chapter. This uniformity was measured for a nullified

field but is expected that a Helmholtz-cage-produced arbitrary field of up to 100 µTesla per axis
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Figure 7.5: Helmholtz hardware chain showing signals from the lab computer converted to the
appropriate current through the Helmholtz coils.
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will possess equivalent uniformity.

7.2 Bar Magnet Measurement

The Helmholtz cage was used to measure the magnetic moment of the bar magnet chosen for

use in CSSWE. The steps for the bar magnet measurement are given below:

(1) Ensure bar magnet is far from Helmholtz cage.

(2) Take measurement of local magnetic field while magnetometer is at the center of the

Helmholtz cage.

(3) Supply current to the Helmholtz coils to nullify the magnetic field on all three axes. Record

the power supply current provided to each axis.

(4) Using the analysis grid (shown in Figure 7.4), move the PNI MicroMag 3-axis magnetome-

ter, measuring the B-field magnitude in the 30 cm×30 cm area defined by the grid in steps

of 5 cm.

(5) Place the bar magnet in the center of the analysis grid.

(6) Again using the analysis grid, record the B-field magnitude at the same positions as in step

(4). Ignore grid positions less than 8cm from the bar magnet position as this may saturate

the magnetometer and the dipole model is more accurate with greater distance from the

dipole.

Once the two datasets are recorded and corrected for magnetometer calibration error, the B-

field magnitude at each grid position due to the bar magnet alone may be calculated by subtracting

the no-bar-magnet data from the bar-magnet data. The measured magnetic flux density magnitude

||B||measured data are fit to the magnetic dipole magnitude formula using a non-linear least squares

fit. The fitted magnetic dipole magnitude equation is [60]:

||B||measured =
(µ0 mfit

4πr3

)√
1 + 3 cos2 ν (7.7)
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Figure 7.6: The magnetic flux density magnitude of the Helmholtz cage 30cm×30cm test area is
shown with 5cm resolution. The upper plot (a) shows the distribution within the cage when there
is no current in the coils; the lower plot (b) shows the distribution when the cage is set to nullify
the magnetic field. Note the change in B-field scaling between a and b.
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where mfit is the fitted magnetic moment, r is the distance from the magnet to the measurement

location, and ν is the magnetic co-latitude of the measurement location (90◦ represents a magne-

tometer position co-planar with the bar magnet position). Three independent measurements were

performed, yielding a bar magnet magnetic moment ||m|| = 0.80±0.017 A·m2 after a small sample

size correction to the standard error of the mean has been applied [33]. Figure 7.7 shows the mag-

nitude of the magnetic flux density and the magnetic dipole fit for the bar magnet measurement

data for one of these measurements.

7.3 Hysteresis Measurement

The crux of a PMAC system is the hysteresis dampening. It is the most difficult torque

to predict and can greatly effect the system settling time. The goal of hysteresis rod magnetic

measurement is to determine the relationship between the earth-based H-field and the magnetic

torque due to the hysteresis rods. As explained in Section 2.2.6, a relation from Ha to m is

sufficient to determine the torque versus the earth’s local magnetic field. Equation 2.7 translates

the measurement of m to a measurement of the average magnetic flux density within the rod.

The use of a sense coil within a Helmholtz cage is a novel method of hysteresis rod measure-

ment. The measurement method presented in this section is able to supply a magnetizing field in a

large volume and in any direction. This allows multiple samples to be magnetized simultaneously

to test their coupled magnetic performance.

7.3.1 Theory

A sense coil connected to an integrator is capable of directly measuring the average interior

magnetic flux density of a sample. The Helmholtz cage enables the user to apply a varying mag-

netizing field over a large test volume. The addition of a sense coil to the Helmholtz cage results

in a unique setup which is capable of system-level measurements at a nanosatellite scale.

The theory begins with Faraday’s law, which states that a wire coil shall have a voltage

generated within it proportional to the rate of change of magnetic flux through the coil [17]:
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Figure 7.7: A single bar magnet measurement dataset with the fitted 0.80 A·m2 magnetic dipole
overlaid. The B-field data as recorded by the PNI MicroMag 3-axis magnetometer are shown in
black. The magnetic dipole field is shown using the colored surface plot. The dipole field within
8cm of the origin is omitted for clarity.
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E = −N dφ

dt
(7.8)

where E is the voltage induced in the coil, N is the number of turns of the search coil, φ is the

magnetic flux in SI units of weber (1 Wb = 1 Tesla·m2), and t is time. Note that voltage is

only induced by a changing magnetic flux through the coil. Equation 7.8 may be rearranged and

integrated: ∫ t

0
Edt = −N

∫ φ2

φ1

dφ = −N∆φ (7.9)

where ∆φ represents the change in φ. Because the magnetic flux is directly related to the magnetic

flux density by the area of the search coil A, Equation 7.9 can be written in terms of magnetic flux

density: ∫ t

0
E dt = −NA∆B. (7.10)

The integration in Equation 7.10 may be carried out one of two ways: through hardware or

software. The hardware method uses an integrator circuit as shown in Figure 7.8. Commercial

versions of this circuit (sometimes called a “fluxmeter”) are available for purchase but they were

found to be prohibitively expensive. The hardware integrator circuit behaves as follows [17]:

Eout = (RC)−1

∫ t

0
Ein dt (7.11)

where R is the resistor value and C is the capacitor value. Thus, for a sense coil in series with the

integrator:

Eout = −
(
NA

RC

)
∆B. (7.12)

The values of the resistor and capacitor may be calculated based on the materials to be

measured. However, after building a hardware-based integrator, we found that temperature- and

offset-voltage-based drift made measurements with the hardware integrator difficult. This drift

caused the measured hysteresis loops to be significantly distorted and unsuitable for fitting with a

hysteresis model. The hardware could be calibrated for one measurement at a time, but the system

would drift too much over the course of multiple measurements to be useful for fitting purposes.
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Figure 7.8: Hardware integrator circuit for magnetic measurement. Image from Cullity & Gra-
ham [17].

A commercial fluxmeter is expensive partially because it is built to correct for these drifts. The

implemented low-cost solution is to perform the integration digitally.

7.3.2 Setup

Figure 7.9 is a block diagram of the hardware setup for hysteresis measurement using the

Helmholtz cage and a sense coil. Each element of the hardware setup is detailed below.

7.3.2.1 Sense Coil

The magnet wire cannot be wrapped around the hysteresis rod itself due to the minimum

bend radius of the magnet wire and the risk of bending the hysteresis rod (thus damaging its

magnetic properties). Instead, a sense coil is built such that magnetic samples can be slid within

the coil when desired. In order to measure the average B-field of the magnetic sample, the sense coil

length should extend the length of the sample. In this case, the sample is the hysteresis rod with

a length of 97.17±0.03mm and cross-sectional area Am = 0.805 ± 0.00064 mm3. The sense coil is

built by tightly winding 36 AWG magnet wire (manufacturer-listed diameter of 0.1400mm±0.0013)

around a nonmagnetic aluminum tube with an inner/outer diameter of 5.00/5.30±0.03mm which

yields a cross-sectional sensing area As = 21± 1.8mm2. The as-built sense coil (shown within the
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Figure 7.9: The hysteresis rod measurement hardware setup block diagram. The labeled voltages
and currents are for H-field cycling at±100 A/m amplitude; the amplitude (and subsequent voltages
and currents) may be decreased as desired.
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Helmholtz cage in Figure 7.10) has a wire-wrapped length of 96.48±0.03mm; the number of turns

is calculated to be N = 691± 6.

Because the sense coil is wrapped around a hollow tube, the magnetic flux picked up by the

sense coil is due to both the magnetic flux through the magnetic material and the magnetic flux

through the air surrounding it (yet still within the coil). Thus, the magnetic flux density of each

measurement is corrected as follows: [17]

Btrue = Bapparent − µ0Ha

(
As −Am
Am

)
(7.13)

where Bapparent is the magnetic flux density as measured via Equation 7.10, Ha is the applied field,

As is the cross-sectional area of the sense coil, and Am is the cross-sectional area of the magnetic

material.

7.3.2.2 Helmholtz Cage

The Helmholtz cage is used to provide the changing magnetizing field strength which causes

the magnetic flux density within a magnetic sample to vary. The power supply / relay combination

which drives each Helmholtz coil set is capable providing ±2A current with a resolution of 10±1

mA. Using the Helmholtz constant developed in Section 7.1.3, this translates to an ability to control

the static magnetizing field (including field nullification) in steps of 0.59±0.059 A/m.

The Helmholtz cage is small enough to allow for orientation changes which can result in

improved performance. Before hysteresis rod testing begins, the Helmholtz cage is oriented such

that the X-axis is perpendicular to the magnetic field. This allows for testing over the full ±100

A/m magnetizing field range which the Helmholtz cage can produce.

7.3.2.3 Other Hardware

The Agilent 33220A function generator is used to generate a 1 Hz sine wave with an amplitude

of up to ±1.5V for a desired H-field of ±100 A/m. This low-current signal is fed to an Apex PA16

power operational amplifier, which multiplies the voltage by a factor of ten while acting as a current
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Figure 7.10: The finished hysteresis measurement sense coil (A.) with approximately 691 turns of
36 AWG wire. A pen is shown next to the sense coil for length scale reference; the MicroMag3
3-axis magnetometer (B.) is also visible.
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source for a single coil set of the Helmholtz cage. The maximum output current of ±1.8A supplies

an H-field of about ±100 A/m to the center of the Helmholtz cage. The supplied H-field is recorded

by measuring the voltage generated across a 50±0.05 mΩ sense resistor. A general-purpose LM741

operation amplifier multiplies the sense resistor output by a factor of ten. Output from the op-amp

is digitized by the Picoscope 2205A 8-bit ADC which is set to record a measurement once every

655.36 µs. In many applications, the ADC cannot communicate with the computer fast enough

to enable real-time measurements. Instead, the Picoscope has onboard memory with a maximum

capacity of 8000 measurements. This means that the Picoscope can measure about 5.25 cycles at 1

Hz before stopping to send the dataset to the computer. The Picoscope has two inputs which it can

measure nearly simultaneously and has a triggering feature which ensures that all measurements

begin at the same phase of the H-field cycle.

The sense coil output is multiplied by a dual INA2126 low-noise operational amplifier. The

first amplification is a factor of 100, the second is a factor of two. After this amplification, the

typical signal from the tested hysteresis rod given ±100 A/m is about ±200mV. This output is fed

to the Picoscope ADC which digitizes the data for the computer.

7.3.3 Method

The hysteresis rod measurement method as performed by the user is outlined below.

(1) Orient Helmholtz cage such that one axis is perpendicular to the local magnetic field.

(2) Ensure no magnetic material is present in the Helmholtz cage test volume.

(3) Place magnetometer in center of Helmholtz cage and align to Helmholtz cage axes (the

magnetometer may be used to determine if the cage is properly aligned relative to the

magnetic field).

(4) Ensure that all axes of the Helmholtz cage are connected to the computer-controlled power

supply outputs. The function generator / power amp output should not be connected yet.
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(5) Initialize the LabVIEW-based Helmholtz cage software. The software will now calculate

the Helmholtz constant HCempirical.

(6) Set the software to nullify the magnetic field on all three axes. If the Helmholtz cage is

properly aligned, zero current should be needed to nullify the field on one of the axes.

(7) Detach the power supply output from the coil set which is perpendicular to the B-field.

Attach this coil set to the function generator / power amp output.

(8) Enable the function generator at 1 Hz and enable the power amp. The magnetometer

output should show varying magnetic field along a single axis.

(9) Remove the magnetometer from the Helmholtz cage. Place the sense coil perpendicular to

the zero-current coil set.

(10) Set the function generator to the desired output voltage, being careful not to exceed 1.5V.

(11) Collect one 8000-point dataset.

(12) Place the magnetic sample within the sense coil being careful not to disturb the orientation

of the coil.

(13) Collect one 8000-point dataset.

(14) Repeat steps 10-13 until all samples have been measured at all desired H-field amplitudes.

The list above simply describes the physical process of collecting a hysteresis measurement;

analysis occurs thereafter. Figure 7.11 shows a block diagram of the analysis process after collecting

the digital dataset. The H-field is processed by removing the 10x amplification, converting to

current, and multiplying by HCempirical. The B-field measurement is more complicated. After

removing the gain of the signal, the signal due to the changing flux of the local environment is

removed by subtracting the measurement without the sample from the measurement with the

sample. After background subtraction, the data is numerically integrated using the trapezoidal
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method. The integrated voltage is converted to the B-field by application of Faraday’s Law. The

constant offset after numeric integration is determined by assuming that the hysteresis loop is

symmetric; the constant offset of a linear fit to the hysteresis loop is removed from all B-field

values.

The data is bifurcated into two distinct groups: data from the top/bottom hysteresis curves.

The data grouping is based on whether the B-field is rising or falling (the sine wave behavior makes

this easy to characterize). Further processing is possible due to the length of the each dataset (over

five H-field cycles) and the digitization of the H-field measurements. The H-field resolution of the

8-bit ADC varies from 0.105 A/m (±10 A/m) to 1.04 A/m (±100 A/m). Thus, the measurements

are further grouped into various B-field values at each unique H-field value and curve. The B-field

average and standard deviation are calculated for the unique H-field values of each curve. This

provides an estimate of the B-field uncertainty and is useful for further data processing.

7.3.4 Results

Two types of hysteresis measurements are performed: isolation and system testing. Isolation

testing measures hysteresis rod performance with no other magnetic materials nearby. System

testing measures the hysteresis rod performance with a bar magnet and other hysteresis materials

distributed identically to the flight satellite. In each measurement type, a nonlinear weighted least-

squares fit is used to determine the hysteresis parameters (Hc, Br, and Bs) which best match the

data. The data are weighted by the inverse of their uncertainty and the Flatley [26] hysteresis

model (described in Section 8.1.6.5) is used for the fit. Figure 7.12 shows one such ±100A/m cycle

amplitude dataset with its parameter-based fitted hysteresis loop.

Each experimental dataset was independently measured two times and independently fit to

the Flatley model to develop an uncertainty estimate of the mean fit parameters. A small sample

size correction to the standard error of the mean is applied to each of the uncertainty estimates [33].

Five CSSWE flight spare hysteresis rods were available for measurement. The measurement is

performed after the launch of CSSWE and uses hysteresis rods from the same raw material order



122

Figure 7.11: Hysteresis measurement analysis block diagram. The top (A.) and bottom (B.) rect-
angles highlight the analysis procedure for the H-field and B-field, respectively. Multiplication is
denoted by a triangle, subtraction is denoted by a rounded rectangle, and integration is denoted
by a diamond.
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Figure 7.12: The ±100A/m cycle amplitude measurement dataset of rod B with its fitted hysteresis
loop. Error bars are included for each averaged flux density measurement.
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and heat treatment set as the flight rods used on orbit.

7.3.4.1 Isolated Measurement

Each isolated rod measurement was fitted separately at each H-field cycle amplitude. The

area of each simulated fit loop for each measurement is shown in Figure 7.13. The area of each

simulated fit loop is calculated using an H-field cycle amplitude of ±20 A/m. Note that the

product of the hysteresis loop area and the hysteresis rod volume is the energy loss per H-field

cycle. Thus, the dampening ability of each rod varies significantly. Surprisingly, the simulated ±20

A/m loop area of each fit also varies significantly depending on the H-field cycle amplitude during

the empirical measurement.

If the hysteresis model behaved perfectly, fit parameters based on a variety of empirical H-

field cycle amplitudes would yield identical simulated cycle loop areas at the same simulated cycle

amplitude. Figures 7.15 and 7.16 compare the hysteresis loops generated from a variety of simulated

cycle amplitudes given hysteresis parameters fit data measured from ±100 and ±10 A/m empirical

cycle amplitudes, respectively. The simulated loop areas for each fit at identical simulated cycle

amplitudes are quite different. The fitted parameters best represent the true hysteresis loop when

the measurement magnetizing field cycle amplitude is close to the simulated cycle amplitude. Thus,

to achieve accurate simulation results, the measurement cycle amplitude should equal the range

of magnetizing field which the true hysteresis rod is expected to experience the most frequently

during dampening.

The extremes of the magnetization cycle amplitude are bounded by the magnitude of the on-

orbit H-field but the extremes of the H-field component parallel to each rod will vary as the satellite

attitude settles. Figure 7.14 shows the magnetizing field parallel to the hysteresis rods mounted

along the BX and BY axes. As shown, CSSWE experienced magnetizing field cycle amplitudes

from ±40A/m to less than ±5 A/m within the first seven days after launch. Note that smaller

cycles due non-flat-spin motion occur but are difficult to see in this plot. For this reason, the fitted

hysteresis parameters used by the simulation are based on measurement cycle amplitudes of ±20
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Figure 7.13: The simulated ±20 A/m hysteresis loop area for hysteresis parameters fitted to a
variety of H-field cycle amplitude datasets gathered for each of five measurement hysteresis rods.
Each measurement was recorded with no other magnetic materials nearby.
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and ±10 A/m; these values are chosen in an attempt to use the most frequent cycle amplitudes

experienced by each hysteresis rod during the settling period.

Figures 7.15 and 7.16 also show that the ±100 A/m model degrades at especially small cycle

amplitudes: each cycle is no longer a closed loop. This behavior is unrealistic and undesired. The

parameters from the ±10 A/m cycle perform much better at these low magnetizing field levels.

Correctly representing these small cycle amplitudes is important because these loops are regularly

encountered due to non-flat-spin motion throughout dampening. This is another reason to use a

low cycle amplitude during measurement.

7.3.4.2 System-based Relative Position Measurement

The layout of PMAC components within a satellite may impact the dampening ability of

each hysteresis rod. The net effect of the layout may be measured by placing magnetic components

in their relative satellite positions and measuring individual hysteresis rod performance. Rods C,

D, E, and F were placed at the X2, X3, Y2, and Y3 hysteresis rod positions within a CSSWE flight

structure mock-up (see Figure 5.2). A flight spare bar magnet was also added to the mock-up in

the flight position. The sense coil was then used to measure the performance of rod A at each of

the hysteresis rod positions; the native rod at each position was removed during the measurement.

Figure 7.17 shows the full setup for this measurement while Figure 7.18 shows the simulated area

of the fitted hysteresis parameters.

There is some variation but the difference is only significant for the ±100 A/m cycle ampli-

tudes case. The hysteresis rod positions closest to the bar magnet (X3 and Y3) could be expected

to possess decreased dampening abilities due to their increased H-field offset. The data shows that,

for the CSSWE layout, interactions between rods are more important than the offset due to the

bar magnet. Figure 7.19 shows the calculated H-field parallel to each rod position due to an 0.80

A·m2 dipole aligned with +BZ at the bar magnet location. Although the rods each experience a

magnetizing field variation of up to 4.5 A/m along their length, the average H-field offset is 1-2

A/m.
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Figure 7.14: The magnetizing field experienced by each of the body-frame axes with parallel hys-
teresis rods (BX and BY ) over the first week on-orbit. Each hysteresis rod experiences a wide
variety of H-field cycle amplitudes.
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Figure 7.15: A variety of simulated hysteresis loops generated using parameters fitted to measured
output from an empirical cycle amplitude of ±100 A/m. Each H-field amplitude is used to simulate
10 cycles of data. The top plot shows the simulated performance at bounds of ±10 A/m; the bottom
plot zooms to show the same data at a range of ±2 A/m.
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Figure 7.16: A variety of simulated hysteresis loops generated using parameters fitted to measured
output from an empirical cycle amplitude of ±10 A/m. Each H-field amplitude is used to simulate
10 cycles of data. The top plot shows the simulated performance at bounds of ±10 A/m; the
bottom plot zooms to show the same data at a range of ±2 A/m.
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Figure 7.17: The CSSWE flight structure mock-up with hysteresis rods and bar magnet attached
is used to measure the effect of other magnetic sources on a single hysteresis rod. The sense coil is
in the X3 position (as defined by Figure 5.2).
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Figure 7.18: The simulated hysteresis loop area using hysteresis parameters fitted to Rod A mea-
surements performed at a variety of cycle amplitudes. The measurements are collected at each of
the X2, X3, Y2, and Y3 hysteresis positions labeled in Figure 5.2. The Rod A Isolated Testing
results are repeated here for comparison.
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Figure 7.19: The magnetizing field offset parallel to each hysteresis rod position due to an 0.80
A·m2 dipole aligned with +BZ at the bar magnet location. The value of the mean H-field parallel
to each rod is shown using open circles.
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Table 7.2: HyMu-80 Hysteresis Parameters. The area was calculated using the Flatley hysteresis
model [26] with a cycle amplitude of ±20 A/m.

Hysteresis Parameter Closed Magnetic Open Magnetic
Circuit Value Circuit Value
(Material Datasheet) (Fitted to Measurement)

Hc (A/m) 1.59 0.3381
Br (Tesla) 0.35 6.0618×10−4

Bs (Tesla) 0.73 0.3000
Loop Area (J·m−3) 4.312 0.0448

7.3.4.3 Best-Fit Hysteresis Parameters

The individual testing shows that the hysteresis rod dampening ability varies significantly for

each rod. However, the system testing shows that the position of a given rod within the CSSWE

layout does not have a significant effect on the dampening ability of the rod at cycle amplitudes

less than ±50 A/m. Also, the hysteresis model has been found to work best when simulating data

closest to its measurement cycle amplitude. To simplify the simulation, one set of parameters is

used to model all six hysteresis rods within CSSWE. With all of the above considerations in mind,

the best-fit parameters are found by fitting the individual measurement data from all five hysteresis

rods over both tests at magnetizing field cycle amplitudes of both ±10 and ±20 A/m.

The fitted hysteresis loop parameters are collected in Table 7.2 and compared to the closed

magnetic circuit values listed for the rod material. Note that the datasheet-based hysteresis param-

eters yield a loop area nearly 100 times greater than the measurement-based values. This difference

in hysteresis dampening ability will have the profound effect of changing the simulated settling time

by the same factor.



Chapter 8

Simulation

Inaccurate prediction of Passive Magnetic Attitude Control (PMAC) performance has hin-

dered the use of such systems for some satellite missions. The purpose of the software work is to

develop a numerical simulation which accurately describes the response of a satellite using a PMAC

system. Such a simulation could be used to predict the settling time of a satellite using a PMAC

system. The settling time is considered the most important system characteristic as it allows for

mission planning using predictive simulation. To this end, a simulation is developed and defined

below in terms of its major components; this will allow future mission teams to use it for predictive

mission requirements verification.

The simulation is built within the MATLAB R© environment, which is used to numerically

integrate the equations of motion. Models are defined for each environmental torque at low earth

orbit. An orbit propagation method is defined because many environmental torques are dependent

on satellite position. With the simulation components fully defined, analysis is performed to answer

basic questions about the expectations of the simulation. Finally, the simulation output is shown

given nominal input; the output is compared to the on-orbit data analyzed in Chapter 6.

We seek to understand the PMAC system behavior where possible, but here we do not aim

to fully describe the underlying dynamics. Instead, the PMAC simulation development and testing

given select initial inputs are described. Whenever possible, simulation results which shed light

on the underlying dynamics are discussed. However, the scope of this research is limited to the

simulation development and validation. Further testing given a wider variety of initial input may
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be helpful in a deeper understanding of the general dynamics of a PMAC satellite.

8.1 Components

The attitude simulation is built from many components. Each component is defined in the

subsections below. The reader should be able to recreate the simulation using the information

described in this section.

8.1.1 Frames

There are three frames, or coordinate systems, used in the PMAC simulation. The first of

these is the Earth Centered Inertial (ECI) frame. The ECI frame I{X Y Z} has its origin at the

center of earth, with direction vectors defined as follows: IX lies in earth’s equatorial plane and

is parallel to the vernal equinox direction, IZ is parallel to the rotation axis of earth, and IY is

defined by the right-hand rule.

The second frame used in the PMAC simulation is the body frame B{X Y Z} of the spacecraft.

The body frame is chosen to align with the principle inertia axes of the spacecraft. The body frame

has its origin at the satellite center of mass with BX parallel to the REPTile collimator, BZ parallel

to the satellite antenna, and BY defined by the right-hand rule; Figure 4.3 shows the spacecraft

body frame. The 3× 3 matrix [R] is defined to rotate an arbitrary vector v from the inertial frame

to the body frame:

Bv = [R] Iv. (8.1)

This rotation matrix will change at each step of the simulation as rotational dynamics change the

attitude of the spacecraft relative to the inertial frame. More detail on the inertial to body frame

rotation matrix is given in Section 8.1.2.

The final frame is the Earth Centered Earth Fixed (ECEF) frame which rotates with Earth.

The ECEF frame E{X Y Z} has its origin at the center of earth with direction vectors defined as

follows: EX lies in earth’s equatorial plane and is parallel to the prime meridian (0◦N, 0◦E), EZ is
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parallel to the rotation axis of earth (90◦N), and EY is defined by the right hand rule (0◦N, 90◦E).

The conversion between the ECI and ECEF coordinate frames is not dependent on the satellite

attitude; it is defined by the following rotation matrix:


X

Y

Z


E

=


cos (λ0 + ωEt) sin (λ0 + ωEt) 0

− sin (λ0 + ωEt) cos (λ0 + ωEt) 0

0 0 1




X

Y

Z


I

(8.2)

where λ0 is the Greenwich Mean Sidereal Time (GMST) when the simulation starts, ωE is the

sidereal rotation rate of earth (rotation rate relative to fixed stars) and t is the time since simulation

start. Figure 8.1 shows both the ECI and ECEF coordinate frames. The ECEF frame is useful

because many inertial models are given in this frame.

8.1.2 Attitude Parameters

The rotation matrix is useful for converting vectors from one frame to another. Also, it is

simple to work with; the reverse rotation matrix (body to inertial) is found by simply transposing the

original rotation matrix: [R] = [R]BI = [R]TIB. However, the rotation matrix is a nine-dimensional

representation of a three-dimensional rotation; six elements are redundant [65]. These redundant

elements can lead to inaccurate modeling as rounding errors soften the constraints.

Three dimensional attitude parameters (such as Euler Angles) always contain a singularity

in their kinematic differential equation at some specific attitude, making them undesirable for

numerical integration purposes. A good compromise is the quaternion, a four-dimensional attitude

parameterization with a single redundant parameter. The relation between the quaternion and the

rotation matrix is given by [65]:

[R]BI =


q2

0 + q2
1 + q2

2 + q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (8.3)
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Figure 8.1: The ECEF and ECI coordinate frames are shown.
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where q0 is the scalar part of the quaternion and [q1 q2 q3]T is the vector part. The quaternion has

a single constraint: q2
0 + q2

1 + q2
2 + q2

3 = 1. This constraint is easily satisfied by normalization at a

certain interval. The simulation developed in this chapter re-normalizes the quaternion every 100

integration steps; this frequency is chosen as a balance between computational performance and

error tolerance.

8.1.3 Equations of Motion

The core of the simulation is Euler’s rotational equation of motion (Equation 2.1). However,

this equation cannot be integrated alone; it must be combined with a kinematic differential equation

which defines the relationship between the angular velocity and the rate of change of the attitude

parameters. As such, the kinematic differential equation is dependent on the parameter set used

to represent the attitude. The kinematic differential equation for quaternions is given as [65]:



q̇0

q̇1

q̇2

q̇3


=



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0





0

ω1

ω2

ω3


(8.4)

where the scalar-first quaternion convention is used.

8.1.4 Orbit Propagation

The PMAC simulation assumes that the satellite rotation and translation are not coupled;

thus the attitude has no effect on the orbit of the spacecraft. This assumption results in inertial

satellite position and velocity vectors which are directly related to the orbit elements at some epoch

and time relative to this epoch. These inertial position and velocity vectors are used as inputs for

the inertial models described in Section 8.1.5.

The CSSWE orbit mean elements at a given epoch are provided by a Two-Line Element

(TLE) set. This TLE is provided by the Joint Space Operations Center (JSpOC) for use with
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the CSSWE mission. The orbit elements contained within the TLE make specific assumptions

about the orbit and are designed to be propagated using only select orbit propagation schemes [35].

The PMAC simulation uses an updated version of the SGP4 propagator [79] designed for TLE

propagation; the same method is used to calculate the CSSWE position for real-time on-orbit

operations.

The first usable TLE has an epoch over ten days after launch, as shown in Figure 4.8. The

datasets shown later in this chapter simulate the first ten days on orbit and thus use one TLE over

this time period. Although the TLE is most accurate close to the epoch, no other position estimate

is available for the early mission and on-orbit telemetry has shown the TLE-based position to be

accurate to at least ±6 seconds (Figure 4.8). Using one TLE throughout the simulation has the

advantage of avoiding discontinuities in satellite position and velocity which would be generated

during the switch from one TLE to the next.

8.1.5 Inertial Vector Models

The simulation uses two models to generate the inertial vectors for both magnetic field and

sun position. The magnetic field model is solely dependent on satellite position in the ECEF frame,

while the sun position model is solely dependent on date. Both are defined below.

8.1.5.1 International Geomagnetic Reference Field Model

The PMAC simulation uses the eleventh generation International Geomagnetic Reference

Field (IGRF-11) model [23] to generate the inertial magnetic field vector. The IGRF is based on

empirical measurements and is widely used as a magnetic field model for many applications. The

IGRF represents the magnetic flux density as the negative gradient of a scalar potential function

(B = −5 V ) which is defined by a spherical harmonics series which is set by a maximum of 195

coefficients (order 13). These coefficients are updated every five years; the latest epoch is 2010.

The model also predicts some coefficients for the next five years after the latest epoch at one year

intervals; 80 coefficients are predicted (order 8). The model sets coefficients for times between the
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prediction year epochs using linear interpolation.

The IGRF is designed to provide an estimate of the magnetic field at the earth surface and

above due to magnetic materials below the surface; it does not take into account variation due to

space-based activity such as solar rotation, ionospheric currents, and geomagnetic storms. However,

it does account for internal variations in the magnetic flux density which take place over a timespan

of months to decades; this “secular variation” accounts for a global surface-level root mean squared

magnitude change of about 80nT per year [6]. The IGRF-11 model predictions (for years after

the 2010 epoch) of the core-based magnetic field are estimated to possess errors of up to 20nT per

year [23]. Using the IGRF to model the inertial magnetic field experienced by a satellite can lead

to higher errors, as discussed in Section 4.3.2.3.

Figure 8.2 shows the global magnetic flux density magnitude at altitudes of 450km and 770km

(the extremes of the CSSWE orbit) as generated using the IGRF model with the 2012 predictive

coefficients. This figure shows the range of magnetic flux densities which are used in the attitude

simulation at various positions on-orbit. The CSSWE orbit experiences magnetic flux density

magnitudes ranging from 17.6µT to 52.3µT.

8.1.5.2 Inertial Sun Vector Model

The inertial sun position model is calculated using the method defined by Vallado [77]. A

simplified version of the method which calculates the ECI frame unit vector from the center of

earth to the sun I ŝ is shown below:
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Figure 8.2: Earth global magnetic flux density magnitude at altitudes of 450km (top) and 770km
(bottom) as calculated using the eleventh-generation International Geomagnetic Reference Field
(IGRF-11) model with the 2012 predictive coefficients.



142

TUT1 =
JDUT1 − 2, 451, 545.0

36, 525
(8.5)

λMsun = 280.4606184 + 36, 000.77005361TUT1 (8.6)

Msun = 357.5277233 + 35, 999.05034TUT1 (8.7)

λecliptic = λMsun + 1.914666471 sin (Msun) + 0.918994643 sin (2Msun) (8.8)

ε = 23.439291− 0.0130042TUT1 (8.9)

I ŝ =


cosλecliptic

cos ε sinλecliptic

sin ε sinλecliptic

 (8.10)

where JDUTI is the Julian Date, TUT1 is the number of centuries since the epoch, λMsun is the mean

longitude of the Sun, Msun is the mean anomaly of the Sun, λecliptic is the ecliptic longitude of the

Sun, and ε is the obliquity of the ecliptic. All angles (λMsun , Msun, λecliptic, and ε) are in units of

degrees. This method is valid from 1950 to 2050 and is accurate to 0.01◦ [77]. It is not necessary

to convert the unit vector from earth to the sun I ŝ to the unit vector from the satellite to the sun;

for a satellite at 1000km altitude, the angular difference between the center of the earth and the

satellite position when perpendicular to the earth-sun vector (maximum error) is 0.0024◦ which is

less than the 0.01◦ accuracy of the model.

It is useful to denote times at which the satellite is in eclipse. The simulation uses the method

described by Kelso [41], outlined below. First, define the angular radii of the earth and sun as seen

by the satellite:

θE = sin−1

(
RE

ρE

)
(8.11)

θS = sin−1

(
RS

ρS

)
where RE and RS are the true radii of the earth and sun, respectively and ρE and ρS are the

distances from the satellite to the earth and sun, respectively. Next, the angle from the center of
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the earth and the center of the sun (as seen by the satellite) is calculated as:

θES = cos−1
(Bρ̂E · Bρ̂S

)
(8.12)

where Bρ̂E is the body-frame unit vector from the satellite to earth and Bρ̂S is the body-frame unit

vector from the satellite to the sun. The earth-sun angle is used to determine when the sun is fully

or partially eclipsed by the earth as shown below. Note that these equalities are only true when

the earth appears larger than the sun (true for all satellite orbits within the moon’s orbit):

full eclipse (umbral): θES < θE − θS (8.13)

partial eclipse (penumbral): |θE − θS| < θES < θE + θS.

8.1.6 External Torque Estimation

A PMAC system relies upon two external torques for control: bar magnet and hysteresis

torque. Other external torques are present due to the interaction of the spacecraft and the local

environment: gravity gradient, aerodynamic (drag), solar pressure, magnetic residual, and eddy

current. Each of these torques is described and modeled in the body frame for inclusion in Equa-

tion 2.1. The total external torque is simply:

L = LB + LH + LG + LD + LSP + LR + LEC (8.14)

8.1.6.1 Bar Magnet Torque

The bar magnet torque vector is given by Equation 2.6, repeated below.

LB = mbar ×B (2.6)

Note that there may be a large difference in the manufacturer-quoted value of bar magnet

magnetic moment versus the true magnetic moment of the bar magnet mbar (see Section 7.2). The
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local magnetic flux density B is given by the IGRF model (see Section 8.1.5.1).

8.1.6.2 Hysteresis Torque

The hysteresis torque is the most difficult torque to model in the PMAC simulation due

to the non-linear relationship between the local magnetizing field due to earth and the induced

magnetization within the rod. Many models exist to attempt to predict this relationship; three

such models are investigated in this research. As with the bar magnet torque, the IGRF model

is used to calculate the local magnetic flux density vector B. The component of the magnetizing

field H = B/µ0 parallel to each hysteresis rod at the current time step is used as the applied field

input to the hysteresis model. The component of the vector derivative of the magnetizing field as

seen in the body frame
Bd
dtH is used as an input for each of the investigated hysteresis models. The

component is calculated as
Bd
dtH=

(
Bd
dt H

)
·n̂rod where n̂rod is a unit vector describing the orientation

of the hysteresis rod.

Each model seeks to represent the average induced magnetic flux density parallel to the

rod. Equation 2.7 converts the average parallel magnetizing field within the rod into the magnetic

moment parallel to the hysteresis rod mhyst at the current time step. The vector magnetic moment

is calculated using mhyst = mhystn̂rod. The torque provided by the hysteresis rods is then given by

the magnetic torque equation:

LH = mhyst ×B (8.15)

8.1.6.3 Parallelogram Model

The parallelogram hysteresis model is the simplest and easiest model to implement [47] [61].

It is defined by a parallelogram that: intersects the y-axis at ±Br, intersects the x-axis at ±Hc,

and has a maximum absolute B-field output of Bs. The top curve is used when the magnetizing

field derivative
Bd
dtH < 0, while the bottom curve is used when

Bd
dtH ≥ 0. Thus, the output B is

dependent only on H,
Bd
dtH, Hc, Br, and Bs and does not depend on cycle magnitude or frequency
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or the previous magnetic flux density within the rod. The parallelogram model output is shown in

blue in Figure 8.3.

8.1.6.4 Inverse Tangent Model

The inverse tangent hysteresis model [26] approximates the bounds of a typical hysteresis

curve using the inverse tangent function. The model is defined as:

k =
1

Hc
tan

(
πBr
2Bs

)
if
Bd

dt
H ≥ 0 :

B =

(
2Bs
π

)
tan−1 (k(H −Hc)) (8.16)

if
Bd

dt
H < 0 :

B =

(
2Bs
π

)
tan−1 (k(H +Hc)) .

Again, the output B is dependent only on H,
Bd
dtH, Hc, Br, and Bs and does not depend on

the magnetization cycle magnitude or frequency or the previous magnetic flux density within the

rod. The inverse tangent model output is shown in green in Figure 8.3.

8.1.6.5 Flatley Model

The Flatley hysteresis model [26] is substantially different than the previous models, as it

is defined in terms of a differential equation. While this adds complexity, the resultant loop is

much more realistic as it can model minor hysteresis loops within the full loop as the hysteresis

experiences lower cycle amplitudes. The Flatley model is defined as:
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k =
1

Hc
tan

(
πBr
2Bs

)
if
Bd

dt
H ≥ 0 :

Ḃ =

(
q0 + (1− q0)

[
1

2Hc

(
H − 1

k
tan

(
πB

2Bs

)
+Hc

)]p) (2kBs
π

)
cos2

(
πB

2Bs

)(Bd

dt
H

)
(8.17)

if
Bd

dt
H < 0 :

Ḃ =

(
q0 + (1− q0)

[
1

2Hc

(
H − 1

k
tan

(
πB

2Bs

)
−Hc

)]p) (2kBs
π

)
cos2

(
πB

2Bs

)(Bd

dt
H

)
where q0 and p are selectable constants which are tailored to fit a given empirical dataset. The model

is found to perform best (most realistic over the wide range of magnetizing field cycle amplitudes)

when q0 = 0 and p = 2; these values have been used by other groups as well [58] [12]. The magnetic

flux density time derivative Ḃ is thus dependent on B, H, B d
dtH, Hc, Br, and Bs. In practice, the

Flatley model allows for the hysteresis rod magnetic flux densities to be integrated simultaneously

with the attitude parameters and the angular velocity of the satellite. This means that the flux

density is also dependent on the choice of numeric integrator, the simulation time step, and the

hysteresis rod flux density of the previous integration step. Figure 8.3 shows a comparison of the

output of the parallelogram, inverse tangent, and Flatley hysteresis models for two H-field cycles

with amplitudes of ±8 A/m and ±3 A/m. The parallelogram and inverse tangent models are

simply cutoff at lower cycle amplitudes, whereas the Flatley model actively adjusts to account for

the changes in magnetizing field cycle amplitude.

The Flatley hysteresis model is chosen for this research because it was developed for numeric

simulation of empirical datasets [26]. Also, the Flatley model has been used for a variety of past

hysteresis dampening simulation [58], [43]. However, attempts to fit hysteresis measurement data

using this model have shown its deficiencies (see Section 7.3).

The Flatley hysteresis model is numerically integrated and is not defined by two constant

curves as the parallelogram and inverse tangent models are; as a result of this, some unique errors
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Figure 8.3: Hysteresis loop output by three different hysteresis models with magnetizing field cycle
amplitudes of ±8 A/m (top) and ±3 A/m (bottom). The parallelogram model (blue), inverse
tangent (green), and Flatley (red) hysteresis models are shown. These loops were generated using
closed magnetic circuit hysteresis parameters (see Table 7.2), two 1 Hz H-cycles, and a time step
of 0.001s.
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can occur. The Flatley model is designed to be bounded by the inverse tangent hysteresis model.

Repeated simulation has shown that the Flatley-model-simulated hysteresis rod magnetic flux den-

sities can sometimes exceed the bounds of the inverse tangent model for a time. In some extreme

cases, the simulated rod magnetic flux density greatly exceeds the bounds of the inverse tangent

model, corrupting the results of the PMAC simulation. This problem is resolved by checking the

hysteresis rod magnetic flux density value after each simulation step. If the output exceeds the

inverse tangent model bounds, the output is set to the top or bottom curve of the inverse tangent

model, whichever is closer. This check prevents the erroneous behavior mentioned above.

8.1.6.6 Gravity Gradient Torque

The gravity gradient torque is given as follows [65]:

BLG =

(
3µe
R5
c

)
BRc × [I]BRc (8.18)

where µe is the earth gravitational parameter (3.986 · 105 km3s−2), BRc is the body-frame position

vector from the center of earth to the center of mass of the spacecraft, and [I] is, again, the

spacecraft mass moment of inertia matrix. As shown, the gravity gradient torque is highest at low

altitudes and is increased as the inertia matrix of the satellite becomes less symmetric. The torque

acts to align the minimum inertia axis of a satellite with the nadir direction.

8.1.6.7 Aerodynamic Torque

The aerodynamic torque is calculated as follows [61]:

BLD =
1

2
ρCd(

BS · BV )(BV × Brd) (8.19)

where ρ is the density of the medium in which the spacecraft is traveling, Cd is the spacecraft

coefficient of drag (assumed to be 2.4 for CSSWE), BS is a vector defining the surface area of each

of the body axes of the spacecraft ([0.03 0.03 0.01]T m2 for a 3U CubeSat), BV is the spacecraft
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velocity vector in the body frame, and Brd is the body-frame position vector from the satellite

center of mass to the geometric center (can be calculated using a solid model). The density ρ is the

most difficult to calculate, as it can vary greatly depending on solar input and spacecraft altitude.

The NRLMSISE-00 empirical model [59] is used by the simulation to estimate the atmospheric

density for the position of the satellite at each time step. Daily and 81-day average F10.7 indices,

as well as the average 3-hour ap index for the last 48 hours are all inputs to the NRLMSISE-00

model. The following assumed inputs are used: A daily F10.7 flux of 128.7·10−22J·s−1m−2Hz−1,

an 81-day average F10.7 flux of 168.5 ·10−22J·s−1m−2Hz−1, and an average 3-hour ap index of 48.

These inputs are defined in this way to simulate moderate solar activity.

8.1.6.8 Solar Pressure Torque

When the satellite is insolated (see Section 8.1.5.2), the force vector due to radiative pressure

may be defined in the body frame as [78]:

BFSP = −PS cR diag(BS)Bŝ (8.20)

where PS is the solar radiation pressure at earth (set to 4.5 · 10−6 Pa [36]), cR is the coefficient of

reflectivity of the satellite (assumed as 0.8), and Bŝ is the body-frame unit vector from the earth

to the sun. The torque vector due to solar pressure is thus:

BLSP = Brd × BFSP. (8.21)

8.1.6.9 Magnetic Residual Torque

The magnetic residual torque is due to undesired magnetism that may be present in the satel-

lite. These magnetic residuals may be due to current loops, hard magnetic material in the satellite,

or a misalignment of the PMAC bar magnet. The PMAC simulation models the residual magnetism

as a constant magnetic moment vector in the body frame mres (set to [-0.0059 -0.0083 0.0004]T

A·m2), and the torque vector due to magnetic residual is calculated as:
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BLR = mres × BB (8.22)

The chosen magnetic residual of CSSWE is based on a fit which minimizes the MEKF resid-

uals (see Section 6.2.2); the residual is simply the difference between the fit and the assumed

magnetic moment of the bar magnet mbar. However, future missions could determine the magnetic

residual before flight using a method similar to the bar magnet measurement (see Section 7.2) if

the satellite is measured in its flight configuration.

8.1.6.10 Eddy Current Torque

Eddy currents are generated when a conductor experiences a changing magnetic field. These

circular currents induce their own magnetic field which can torque the satellite. The magnetic fields

generated by eddy currents within rotating satellites are usually negligible compared to the local

magnetic field; the simulation makes this assumption. Eddy currents can be generated in magnetic

or non-magnetic conducting material but torques generated by currents within magnetic material

are usually dwarfed by magnetization-based torques. The eddy current torque is partially based on

area available for loops to form. Thus, it is assumed that the eddy currents generated by CSSWE

are formed within the solid aluminum shell of the 3U CubeSat. The eddy current torque is given

by [64]:

LEC =

n∑
i=1

(ki · B̂)(ω ×B)×B (8.23)

where there are n surface elements which generate eddy currents and ki is a vector constant set by

a given surface element [30]:

ki =
π

4
σi r

3
i Ai n̂i (8.24)

where σi is the conductivity of the surface element, ri is the maximum circular loop radius that

can form within the surface element, Ai is the area of the surface element, and n̂i is the unit vector
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normal to the surface element. Note that currents will be generated in the same direction and add

together instead of nullify (consider opposite sides of the same CubeSat); the sign of n̂i should

reflect this behavior. The aluminum 3U solid shell of CSSWE was calculated to have k1 = [147.3

0 0]T , k2 = [0 147.3 0]T , and k3 = [0 0 49.3]T , all in units of A2·s3·m2·kg−1.

8.1.7 Numeric Integrators

The choice of numeric integrator can have a great effect on the results of the simulation. In

fact, much analysis is performed to select a numeric integrator and time step for the simulation (see

Section 8.3). This subsection defines the numeric integrators which are considered for simulation

use.

The most basic explicit numeric integrator is Euler’s method; it uses the value and derivative

at the current step to determine the value at the next step using a time step duration h:

yn+1 = yn + h f(tn, yn) (8.25)

tn+1 = tn + h

where f(t, y) is the rate of change of y at (t, y). Decreasing the time step will yield better results,

but Euler’s method is often not the best choice for numerical integration. It is only accurate to first

order. Also, it is possible that a higher-order integrator could yield more accurate results at a lower

time step, thus saving computing resources. There are many higher-order explicit integrators; this

research focuses on explicit Runge-Kutta integrators of order two through seven and the Lie Group

Variational Integrator.

8.1.7.1 Runge-Kutta Integrators

Explicit Runge-Kutta methods of order greater than one calculate the next value using the

current value, the current derivative, and the derivative at one or more points between each inte-

gration step. Explicit Runge-Kutta integration may be generalized as follows [34]:
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yn+1 = yn + h
s∑
i=1

bi ki (8.26)

where

k1 = f(tn, yn)

k2 = f(tn + c2h, yn + a21k1)

k3 = f(tn + c3h, yn + a31k1 + a32k2)

...

ks = f(tn + csh, yn + as1k1 + as2k2 + . . .+ as,s−1ks)

where the coefficients aij , bi, and ci are given by the Butcher tableau of the integrator in use.

Appendix B explains the Butcher tableau and defines coefficients for integrators from order two to

order seven.

This research investigates the performance of fixed time step integrators only; this limitation

allows for improved data processing. Data from each simulation is saved at a rate of 1 Hz regardless

of the integration time step; this reduces the size of save files and allows for direct comparison

between datasets generated over a range of time steps. Adaptive step size Runge-Kutta methods

do not possess these advantages.

8.1.7.2 Lie Group Variational Integrator

Researchers at the University of Michigan [44] have recently developed the Lie Group Vari-

ational Integrator (LGVI); it is designed to model long-term, low disturbance torques. LGVI is

based on a discrete variational approach, and thus preserves the momentum of the system between

time steps [45]. The Lie group integrator, created by Iserless et al. [37], is the basis of the LGVI.

The Lie group numeric integrator uses the following integration rule:

[R]n+1 = exp

(
−h

2
([ω×]n − [ω×]n+1)

)
[R]n. (8.27)
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where n is the current integration step, n + 1 is the next integration step, and h is the constant

integration time step duration. Equation 8.27 gives the updated rotation matrix but it requires

the new angular velocity ωn+1 as an input. The new angular velocity could be calculated using a

Runge-Kutta method to integrate Equation 2.1, but that could corrupt the momentum conservation

which Equation 8.27 was developed to avoid. Lee et al. obtained the discrete Lie group variational

numeric integrator rules by discretizing Hamilton’s principle [45]:

Πn+1 = [F ]TnΠn +
h

2
[F ]TnLn +

h

2
Ln+1 (8.28)

h[Π×] +
h2

2
[L×]n = [F ]n[Id]− [Id][F ]Tn (8.29)

[R]n+1 = [R]n[F ]n (8.30)

where Π = [I]ω is the angular momentum vector, [Id] is a non-standard inertia matrix defined by

[I] = tr([Id])[I3×3]− [Id], and [F ]n is the 3×3 rotation matrix defining the relative attitude between

tn and tn+1. Thus, given the angular velocity and external torque vectors for the present time

(ωn, Ln), [F ]n may be used to determine the state at the next step. However, in practice solving

Equation 8.29 is not a trivial task because [F ]n is a 3× 3 matrix.

In order to solve for [F ]n, Lee introduces the 3× 1 vector fn, defined by [45]:

[F ]n = exp [f×]n

= [I3×3] +
sin ||fn||
||fn||

[f×]n +
1− cos ||fn||
||fn||2

[f×]2n. (8.31)

When Equation 8.31 is substituted into Equation 8.29 and the definition of a skew-symmetric

matrix is used, it becomes:

hΠn +
h2

2
Ln =

sin ||fn||
||fn||

[I]fn +
1− cos ||fn||
||fn||2

fn × [I]fn. (8.32)

where Equation 8.32 is solved using Newton’s method. Thus, given initial inputs, the PMAC

simulation is time-marched continually using the following process [45]:

(1) Determine fn using Newton’s method to solve Equation 8.32 given ωn and Ln
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(2) Determine [F ]n using Equation 8.31 given fn

(3) Determine [R]n+1 using Equation 8.30 given [R]n and [F ]n

(4) Determine Ln+1 using the models developed in Section 8.1.6 given [R]n+1

(5) Determine ωn+1 using Equation 8.28 given ωn, Ln, Ln+1, and [F ]n.

However, there are several drawbacks to using LGVI to integrate a PMAC simulation. It

is difficult to include the hysteresis magnetizations as additional integration states. The LGVI

estimates the attitude and angular velocity states after each integration step; the hysteresis mag-

netization integration is thus limited to Euler’s method. It is possible to use a Runge-Kutta

integrator between each LGVI integration step to obtain a higher-order estimate of the hysteresis

magnetizations based on intermediate attitude estimates, but this has been found to greatly im-

pact the processing time of the simulation. Instead, the simulation uses Euler’s method to integrate

the hysteresis magnetization when using LGVI for attitude integration, as has been done in the

past [58] [44].

LGVI was developed to integrate rigid body dynamics when the external torque is dependent

on attitude alone; it is not designed for torques which are dependent on angular velocity. The

hysteresis torque is dependent on the body-frame time derivative of the magnetizing field (see

Section 8.1.6.2); this is calculated using the transport theorem below [65]:

Bd

dt
(H) =

Id

dt
(H)− ω ×H (8.33)

= [R]IḢ− ω × [R]IH

Thus, the hysteresis torque is dependent on the current rotation matrix and the current angular

velocity. Previous work using the LGVI [44] assumes ωn ≈ ωn+1 when calculating the hysteresis

magnetization derivative; this work uses this approach for simulations using the LGVI with hys-

teresis torque. The explicit Runge-Kutta integration methods described in Section 8.1.7.1 do not

possess the drawbacks listed above.
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8.2 Considerations

It is helpful to briefly consider concepts of attitude dynamics which apply to a PMAC satellite.

A basic grasp of these concepts will shed light on the simulation results presented later in this

chapter.

8.2.1 Torque-Free Rigid Body Motion

A rigid body without any external torques acting upon it will behave according to gyroscopic

motion alone (Equation 2.1 with L = 0). With this special condition, the angular momentum vector

Π = [I]ω is constant in the inertial frame and the magnitude of angular momentum is constant

in any frame. Also, the total system energy (due to kinetic energy alone) is conserved. Taken

together, this means the satellite motion is bounded by the intersection of the energy ellipsoid

T =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3. (8.34)

and the momentum ellipsoid

Π2 = ΠTΠ = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3. (8.35)

The above equations may be manipulated such that the angular momentum of each axis

Πi are the independent coordinates; this results in a momentum sphere intersected by an energy

ellipsoid. Figure 8.4 (modified from Fig. 4.6 of [65], used with permission) shows the momentum

sphere and the energy ellipse assuming I1 > I2 > I3 (the CSSWE inertia matrix follows this trend

as well). When the system energy is at maximum, only rotation about the minimum inertia axis

is possible (ω = ±ω3n̂3). However, if the system loses energy over time (due to structural flexing,

hysteresis, etc.), the energy ellipsoid will shrink until the system energy is equivalent to motion

about the intermediate axis. However, the motion is not necessarily about the intermediate axis

because of the sepratrix, the boundary between the high energy domain (wobble about ±n̂3) and the

low energy domain (wobble about ±n̂1). The motion of a rigid body at the sepratrix is inherently
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chaotic as the energy ellipsoid intersects the momentum sphere in many places. As more energy is

removed, the satellite will settle to a wobble about n̂1 or −n̂1; either is equally likely after motion

along the sepratrix. Continued damping will cause the motion to be solely about the major inertia

axis (ω = ±ω1n̂1) [65].

Torque-free motion has important implications for a PMAC satellite. This is motion which

every satellite experiences to some extent as it is present in the gyroscopic term of Equation 2.1.

The extent to which a given satellite will “feel” the gyroscopic motion (and thus behave in this

manner) may be examined by calculating the “gyroscopic torque” as follows:

LGY = −[ω×][I]ω. (8.36)

This “torque” (which a rigid body experiences even in the absence of external torque) is taken

directly from Euler’s rotational equation of motion. If the gyroscopic torque LGY is much greater

than the external torque L then the rigid body will experience mainly torque-free motion. If the

gyroscopic torque is much less than the external torque, torque free motion is not dominant. If

the gyroscopic torques is similar in magnitude to the external torque, some combination of torqued

and torque-free motion will result.

8.2.2 3D Pendulum Comparison

A satellite with a bar magnet in a constant magnetic field is dynamically equivalent to a

rigid pendulum tethered at a distance to a fixed, frictionless point and acted upon by a constant

gravitational acceleration. This special case is known as a 3D pendulum whose equations of motion

are as follows [67]:

[I]ω̇ = −[ω×][I]ω + ρ×mg (8.37)

where ρ is the distance vector from the pendulum center of mass to the pivot, m is the mass of the

pendulum, and g is the gravitational acceleration vector. Thus, the 3D pendulum ρ and mg are
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Figure 8.4: Interactions of the momentum sphere and energy ellipse at (a) minimum energy, (b)
intermediate energy, and (c) maximum energy conditions (modified from Fig. 4.6 of [65], used with
permission).
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analogous to the PMAC mbar and B, respectively.

Because the equations of motion are numerically identical, conclusions drawn from previous

studies of the 3D pendulum apply to the bar-magnet-only case of PMAC as well. What follows is

a list of properties of the 3D pendulum which also apply to a PMAC satellite in certain conditions.

(1) The 3D pendulum cannot be analytically solved [14]. If this is true of the PMAC bar-

magnet-only case, it is also true of all other PMAC cases.

(2) The 3D pendulum conserves the total energy of the system as well as the component of

angular momentum about the axis parallel to mg (PMAC B).

(3) The system dynamics are unchanged by rotation about the axis parallel to ρ [67] (PMAC

mbar).

(4) The hanging equilibrium (with ρ parallel to mg and with the pendulum center of mass

below the pivot) is Lyapunov stable [67]; initial states which are close to this point will

remain close to this point. This is equivalent to a bar magnet which is aligned with the

local magnetic field.

(5) The inverted equilibrium (with ρ parallel to mg and with the pendulum center of mass

above the pivot) is unstable [67]. This means that a small deviation from the equilibrium

point could cause large changes in the state of the system. This is equivalent to a bar

magnet anti-parallel to the local magnetic field.

(6) Control in the form of L = u×mg (where u is the control input) preserves the conservation

of angular momentum along the axis parallel to mg [67]. This is analogous to PMAC

hysteresis torque (Equation 8.15).

The instability described in point (5) means that the PMAC dynamics are sensitive when

β = 180◦; this should not be confused with chaotic motion due to the sepratrix. Point (6) is

important as it implies that different dynamics are in effect when non-magnetic environmental

torques are included in a simulation.



159

8.3 Simplified Simulation Analysis

This section seeks to answer two major questions:

(1) Can a simulation be used to represent PMAC dynamics? If so, to what extent?

(2) If a simulation can be used to represent PMAC dynamics, what integrator and time step

should be used to ensure accurate output?

A simplified simulation is developed to answer these questions at a reasonable computational

cost. Because this simplified simulation maintains the key properties of the full simulation, it

is assumed that the lessons learned can be applied to the full simulation. The assumptions and

conditions of the simplified simulation are discussed before using the simulation for a variety of

analysis. This study considers the LGVI and RK2-RK7 integrators as well as time step values of

1s, 0.1s, and 0.01s.

8.3.1 Description

A simplified simulation is developed in an attempt to understand the base properties of the

full simulation. This simplified simulation can run much faster than the full simulation yet retains

its key properties. The first simplification is an inertially-constant magnetizing field vector; this

simulates a circular equatorial orbit if the earth has a perfect dipole magnetic field aligned with its

poles with no offset. Second, when external torques are included in the model, only the gravitational

gradient and solar pressure torques are included. The gravitational gradient assumes a constant

inertial position of 450 km altitude above the surface of earth along +IY . The solar pressure torque

assumes a constant inertial unit vector from the earth to the sun I ŝ =[-1 0 0]T . Together, these

are the gravity gradient and solar pressure torques for a prograde orbit dawn crossing at autumnal

equinox; these constant inertial values are chosen for simple application and visualization. With

these assumptions, only the ECI and body frames are required.

Two sets of initial inputs are run; each set is run through a variety of analysis. Both sets

use a satellite magnetic moment m = [0 0 0.55]T A·m2 and the principal moment of inertia matrix
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Table 8.1: Nominal inputs for the simplified simulation sets are shown below. The derived values
of β angle and initial system energy are also shown.

Parameter Unit Set 1 Set 2

Constant magnetizing field vector IH A/m [0 0 20]T [25.18 2.76 -8.59]T

Initial 1-2-3 Euler angles EA123 deg [90 0 0]T [13.9 -71.6 104.1]T

Initial angular velocity vector ω0 deg/s [1 1 1]T [0.17 -0.97 2.93]T

(Derived Values)
Initial β angle deg 90 178.1
Initial system energy J 7.46·10−6 2.82·10−5

given in Section 4.2. Other parameters which define the hysteresis, gravity gradient, and solar

pressure torques are given in Table 8.2.

The input values for both initial condition sets are defined in Table 8.1. The first set uses a

20 A/m constant magnetizing field and starts with the satellite perpendicular to the magnetic field

and rotating at one degree per second in pitch, yaw, and roll. Initial input set two is defined by the

CSSWE attitude and angular velocity as calculated by MEKF for September 14, 2012 at 00:59:48

UTC; this is eight minutes after PPOD deployment and shortly after the MEKF converges to an

attitude solution (see Chapter 6).

8.3.2 Energy Conservation Analysis

The numeric integrator itself can cause the simulated system energy to drift over time. Al-

though this behavior is undesired, every combination of numeric integrator and time step will have

some energy drift; the key is to determine an acceptable level of this drift. Here the maximum

allowable energy drift is set as the energy dissipated by a single ±20 A/m cycle of one flight hys-

teresis rod over a 1000 hour simulation time; this duration (about 42 days) is considered the longest

timespan over which the simulation will be used to calculate a settling time. Using the fitted hys-

teresis loop area shown in Table 7.2 and the volume of a single flight hysteresis rod, this amounts

to a maximum allowable energy change of 3.3·10−9J over a 1000 hour simulation. It is assumed

that energy differences below this threshold will have a negligible effect on the dynamics because
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the rod-based energy loss will dominate the integrator-based energy drift.

The energy conservation of each integrator and time step is analyzed by running the simplified

simulation for 1000 hours with a bar magnet only; no hysteresis, gravity gradient, or solar pressure

torques are included. Ideally, a freely-floating bar magnet in a constant magnetic field will perfectly

conserve the initial system energy as there are no dampening torques included in the simulation.

Figure 8.5 shows the maximum energy drift of each integrator and time step combination over 1000

hours of simulation using input sets 1 and 2; an energy drift of zero is ideal. Input set 2 results

in energy drifts as high as 100 times the level of input set 1. This may be due to motion near the

instability point at β = 180◦, which is not seen by the dynamics when using input set 1. Also, set

2 has a higher initial energy than set 1. Due to computational cost, this analysis is not repeated

for all possible initial inputs; instead set 2 is assumed to be the worst-case initial input. Thus, the

integrator and time step combinations with output beyond the energy drift threshold are ruled out

for use in the full simulation.

Although the LGVI is the quickest-running integrator for a given time step duration, its

performance is often comparable to the RK4 at the same time step. Note that the higher-order

integrators, when compared to the LGVI at a decreased time step, regularly show decreased energy

drift at similar (or lower) computation times. This analysis is not in favor of using the LGVI for the

attitude simulation as it is more complicated and more difficult to understand than Runge-Kutta

methods while achieving similar performance.

8.3.3 Angular Error Analysis

The energy drift is not the only performance metric which can evaluate each integrator and

time step combination; the beta angle error and the settling time error may also be used. However,

the ideal beta angle and settling time are much more difficult to calculate than the bar-magnet-only

system energy, which will ideally remain equal to the initial system energy. This problem is further

complicated by the impossibility of an analytical solution for PMAC dynamics.

Here the approach is to compare each integrator and time step to the the highest-order,
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Figure 8.5: The maximum energy change for each integrator and time step combination. The
negligible energy change threshold of 3.3·10−9J is denoted by the red dotted line. The normalized
computation time of each simulation is also shown in green. The 0.01s time step is not shown due
to the unreasonable computation times required to simulate 1000 hours.
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lowest-time-step output, which is assumed to be “truth”. Figure 8.6 defines error relative to the

RK7/0.01s output and shows the maximum beta angle error for simulations over a 30 hour duration

using initial input sets 1 and 2. Three cases are run for each of the input sets: the bar-magnet-only

case, the bar-magnet-and-hysteresis-only case, and the all-torque case. The output based on set 1

is expected; the error follows a downward trend to the right as the integrator order increases and

the time step duration decreases. The inclusion of environmental torques results in slightly better

performance in most cases. Note that the LGVI output usually exhibits the worst performance at

each simulation time step. The LGVI performance is especially poor for the cases which include

hysteresis torque; this is likely because the LGVI integrates the hysteresis magnetization using

Euler’s method.

The output based on input set 2 is quite different; although the bar-magnet-only case performs

better, the cases including dampening torques are much worse as they show little, if any, decrease in

beta angle as the integrator order increases and the time step duration decreases. This behavior is

believed to be due to the chaotic nature of the sepratrix crossing which occurs for case 2 but not for

case 1. Figure 8.7 shows the simulation time at which a 1-2-3 Euler Angle error magnitude of one

degree is breached using input set 2. At a given time step, each integrator diverges from the “true”

attitude at about the same time. This implies that the simulation has entered a chaotic region

which causes this divergence. The chaotic behavior does not occur for the bar-magnet-only case

(Figure 8.6). This implies that the chaotic region is at some intermediate state such as dampening

through the sepratrix.

8.3.4 Settling Time Analysis

The presence of a chaotic region does not rule out the possibility of accurate simulation.

However, it does mean that the absolute attitude error is perhaps not the best metric for simulation

performance. It is possible for the simulated beta angle to accumulate a large phase error without

causing a significant change in the settling time. The settling time is chosen as the most important

feature of the attitude simulation due to its importance in predicting on-orbit mission duration.
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Figure 8.6: The maximum beta angle error for each combination of integrator and time step using
input set 1 (top) and input set 2 (bottom) over a 30 hour simulation duration. Each plot shows
the performance of the bar-magnet-only case (blue), the bar-magnet-and-hysteresis case (red), and
the all-torques case (purple). The beta angle error is defined by comparing the output with the
RK7/0.01s output of each case.
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Figure 8.7: The time at which the magnitude of the 1-2-3 Euler angle error exceeds one degree is
shown for each integrator and time step combination. These data are generated using initial input
set 2.
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The presence of a chaotic region calls for a different analysis procedure. Initial input set 2 is

used as the base input to the simplified simulation. The base input 1-2-3 Euler Angles and angular

velocity vector are perturbed by random Gaussian noise. The standard deviation of this noise is set

by the 1σ uncertainty of the MEKF fit which defines initial input set 2. The standard deviations

are σEA123 = [0.3625 0.6261 0.9539]T in units of degrees and σω0 = [1.4950 2.4140 1.0829]T · 10−2

in units of degrees per second. An array of random Gaussian noise values is generated once and

loaded before each simulation to ensure that a given run receives identical initial input over the full

range of integrator and time step combinations. The simulation is run thirty times and the settling

time for each run, integrator, and time step is calculated. Here the settling time is defined as the

time after which the beta angle remains within 5◦ of its final value.

Figure 8.8 shows the settling time distribution, mean, and standard deviation when each run

is normalized by its associated RK7/0.01s settling time. The normalized settling times converge as

the integrator order increases and the time step duration decreases. This gives confidence that the

simplified simulation is converging toward the true settling time for each initial input.

Figure 8.8 is also helpful when deciding upon an integrator and time step for the full simu-

lation. Without non-magnetic torques, RK7 at 1s represents the true system behavior quite well.

However, when non-magnetic environmental torques are included in the simulation, RK4 and above

at 0.1s or below is necessary to achieve realistic results.

The true settling time is quite sensitive to the initial conditions. Figures 8.9 and 8.10 show

initial system energy versus the settling times calculated using RK7/0.01s given normally-perturbed

inputs from initial input set 2 for both the bar-magnet-and-hysteresis case and the all-torques case.

As shown, the settling time can be quite sensitive to small changes in the initial inputs; the settling

times appear to be mostly well-grouped with a few outliers. In order to investigate this behavior

further, the sample median for each case is calculated, and bounds are defined for settling times

within ±3% of the median; the ±3% threshold is chosen because it is the tightest bound which

collects all of the grouped settling times for the bar-magnet-and-hysteresis case. The sample median

is used because it is less sensitive to outliers than the sample mean. Pearson’s product-moment
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Figure 8.8: The simplified simulation normalized settling time, mean, and standard deviation for
the bar-magnet-and-hysteresis case (top plots, red) and the all-torques case (bottom plots, purple)
using initial input set 2. The settling time for each randomly-perturbed dataset is normalized by
the RK7/0.01s settling time of that dataset. The individual settling times for each run are shown
on plots 1 and 3 while the mean and standard deviation of the runs for each integrator and time
step are shown on plots 2 and 4.
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correlation coefficient is calculated for the total and selective samples of each case; the p-value of

each correlation coefficient is also determined using a t-distribution with n− 2 degrees of freedom,

where n is the number of samples in the dataset [80]. The p-value is the probability that the sample

correlation could occur by random chance if there is truly no correlation; p-values lower than 0.05

typically represent a statistically significant correlation.

One would expect the initial energy of the system to be strongly correlated with the system

settling time. However, the data shows that a significant correlation is only found using settling

times within ±3% of the median. All of the calculated settling times appear to represent the true

dynamics because the other integrators and time step values converge to the same result, even for

the outlying runs (see Figure 8.8). There appears to be some true nonlinear behavior affecting the

settling times. However, for all of the RK7/0.01s runs, the settling time does not exceed 110%

of the sample median. Rather, the settling time is unexpectedly smaller than it should be. By

discretizing the settling times into those above and below 110% of the 30-sample median, a binomial

distribution fit finds that the probability of the population of all perturbed simplified simulation

runs remaining below 110% has an upper bound of 1 and a lower bound of 0.8843 (with 95%

confidence).

This implies that although the PMAC dynamics are very sensitive to initial conditions, the

settling time is bounded on the high side. Thus, the nonlinear behavior of the PMAC dynamics is

unlikely to cause the settling time to greatly increase. However, the PMAC dynamics may cause the

settling time to be significantly smaller than expected. This is good news as it means a simulation

can be used to determine the true worst-case settling time of a PMAC satellite.

However, if a simulation is to be used to determine the worst-case settling time, the abnor-

mally low settling times should be avoided. If the simulation is run once and it happens to align

with an abnormally-low settling time, a mission designer may incorrectly assume that the expected

settling time is lower than it truly is; this incorrect interpretation could impact mission operations.

Fortunately, the simplified simulation runs with abnormally low settling times possess a distinct

dynamic response. Figures 8.11 and 8.12 show the angular velocity components versus time for
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Figure 8.9: The RK7/0.01s settling times versus the initial energy for the simplified simulation
perturbation runs of the bar-magnet-and-hysteresis case using the set 2 initial inputs. The left
plot shows the settling times for all thirty cases run and uses the dotted black lines to bound
values within 3% of the sample median shown by a solid red line; values outside these bounds are
represented by empty circles while values within the bounds are represented by filled red circles.
The right plot shows only those settling times within 3% of the entire dataset median. Pearson’s
product-moment correlation coefficient and the associated p-value are shown for the data within
each plot.



170

Figure 8.10: The RK7/0.01s settling times versus the initial energy for the simplified simulation
perturbation runs of the all-torques case using the set 2 initial inputs. The left plot shows the
settling times for all thirty cases run and uses the dotted black lines to bound values within 3%
of the sample median shown by a solid purple line; values outside these bounds are represented by
empty circles while values within the bounds are represented by filled purple circles. The right plot
shows only those settling times within 3% of the entire dataset median. Pearson’s product-moment
correlation coefficient and the associated p-value are shown for the data within each plot.
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each of the 30 perturbed initial input set 2 simulations for the bar-magnet-and-hysteresis and the

all-torques cases; the runs which have a settling time below 95% of the sample median are shaded.

The figures show that the normal response of the satellite is to achieve a mostly flat spin

about the major inertia axis BX early in the simulation. The satellite remains in this configuration

until ωX has dampened to the level of ωY . At this point, the rotation is transferred solely to

BX and BZ in the form of roll- and yaw-wobble about the constant magnetizing field. Note that

the sign of the major inertia axis rotation ωX flips at random; this is anticipated when traveling

through the chaotic sepratrix. The angular velocity response of each simulation with low settling

time is quite different and easy to distinguish from the normal case. Thus, the angular velocity

response of the simplified simulation output can give clues to its reliability. The response of the

full simulation may be equally helpful in determining its validity.

8.3.5 Summary

An analysis of the energy conservation of each integrator showed that, for PMAC simulation,

higher order Runge-Kutta methods are comparable to LGVI in both energy conservation and com-

putation time. Energy conservation analysis shows that acceptable numeric integrator performance

is dependent on the time step. Generally, RK4 and above at a time step of 0.1s or smaller yields

acceptable energy conservation at the worst-case initial input considered.

Beta angle analysis shows that Runge-Kutta methods clearly outperform LGVI in limiting

absolute attitude error. However, this analysis also shows that the absolute attitude error is difficult

to minimize for a PMAC simulation with hysteresis in certain initial conditions. This is likely due

to the satellite traveling through the chaotic sepratrix with continued energy dissipation.

The settling time analysis shows that all integrators and time steps converge to one settling

time for each run of identical perturbed initial conditions. This behavior is interpreted as the

simulation converging to the true dynamics of the system. However, the true settling time is

very sensitive to the initial conditions. The perturbation analysis shows that small changes in the

initial state can lead to abnormally low settling times. For the simplified simulation, this abnormal
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Figure 8.11: The RK7/0.01s angular velocity components versus time for each of the simplified
simulation runs of the bar-magnet-and-hysteresis case using initial input perturbed from input set
2. The axis labels have been omitted from each plot for clarity. For each plot, the vertical axis
ranges from -4 to 4 degrees per second while the horizontal axis ranges from 0 to 30 hours. The
angular velocity components ωX , ωY , and ωZ are shown in blue, green, and red, respectively. The
runs which result in a settling time less than 95% of the sample median are shaded.
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Figure 8.12: The RK7/0.01s angular velocity components versus time for each of the simplified
simulation runs of the all-torques case using initial input perturbed from input set 2. The axis
labels have been omitted from each plot for clarity. For each plot, the vertical axis ranges from -4
to 4 degrees per second while the horizontal axis ranges from 0 to 30 hours. The angular velocity
components ωX , ωY , and ωZ are shown in blue, green, and red, respectively. The runs which result
in a settling time less than 95% of the sample median are shaded.
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behavior can be identified by the dynamic response of the simulation over time.

8.4 Results

Before the results are presented, the nominal simulation inputs are defined. Nominal case

outputs such as beta angle, angular velocity, and system energy are presented. This nominal output

is compared to on-orbit data and the magnetic-torque-only case.

8.4.1 Nominal Input

The full PMAC simulation nominal inputs are shown in Table 8.2. The RK4 integrator at

0.1s time step is chosen as the nominal case; simplified simulation showed this combination to have

low rates of settling time error (see Figure 8.8) at moderate computational cost. Also, RK4 leaves

higher orders of Runge-Kutta at the same time step for output comparison.

The hysteresis rod loop parameters are set by the best fit to the measured hysteresis rods

(see Section 7.3.4.3). The moments of inertia are based on the SolidWorks model of the CSSWE

spacecraft. The distance vector from the satellite CG to the geometric center rd is also given by

the SolidWorks model. The ap index and F10.7 flux values are given by data from the previous

solar cycle; the selected values overestimate the true solar activity which was actually experienced

over the first ten days on orbit (the true 10-day average values of ap index and F10.7 flux were 6.1

and 113.7·10−22 W·m−2Hz−1, respectively [2]). The early-mission CSSWE TLE is used as input to

the SGP4 orbit propagator.

The base initial angular velocity vector and initial 1-2-3 Euler angles are equivalent to the

simplified simulation initial input set 2, which is defined by early-mission CSSWE MEKF output.

As with the analysis presented in Section 8.3.4, the initial attitude and angular velocity vector are

perturbed by normal Gaussian noise with a standard deviation equivalent to the 1σ uncertainty of

the MEKF filter output. This process allows the simulation performance to be examined over a

number of perturbed initial inputs. However, the data from a single initial input set is used as the

nominal output and presented below.
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Table 8.2: Nominal inputs for the full simulation are shown below. Most inputs are based on
CSSWE values; all inputs are given in the body frame when applicable.

Parameter Value Unit

Numeric Integrator RK4
Time step duration h 0.1 s
Simulation Start Date/Time 2012.09.14 00:59:48 UTC
Base Initial 1-2-3 Euler Angle EA123 [13.9 -71.6 104.1] deg
Base Initial angular velocity vector ω0 [0.17 -0.97 2.93]T deg/s
Initial magnetic field offset β 178.1 deg
X-axis moment of inertia Ixx 2.22·10−2 kg·m2

Y-axis moment of inertia Iyy 2.18·10−2 kg·m2

Z-axis moment of inertia Izz 5.00·10−3 kg·m2

Bar magnet magnetic moment vector mbar [0 0 0.55]T A·m2

Number of hysteresis rods per body axis [3 3 0]T

Hysteresis rod length 95 mm
Hysteresis rod diameter 1 mm
Initial hysteresis rod magnetic flux density 0 Tesla
Hysteresis rod coercivity Hc 0.3381 A/m
Hysteresis rod remanence Br 6.0618·10−4 Tesla
Hysteresis rod saturation Bs 0.3000 Tesla
Residual magnetic moment vector Bmres [0.0059 0.0083 -0.0004]T A·m2

Satellite coefficient of drag Cd 2.4
Distance vector from satellite CG [2.601 -0.218 -8.086]T mm
to geometric center rd
Satellite surface area by body axis S [0.01 0.03 0.03]T m2

Satellite coefficient of reflectivity cR 0.8
3-hour ap index average for the last 57 hours 48
81-day average F10.7 flux 168.5·10−22 W·m−2Hz−1

Daily F10.7 flux for previous day 128.7·10−22 W·m−2Hz−1

Solar pressure at earth PS 4.5·10−6 N·m−2

TLE

1 90039U 0 12268.58971383 +.00002482 +00000-0 +23852-3 0 00208

2 90039 064.6731 007.9077 0219372 286.2692 203.1718 14.79135411001569
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8.4.2 Nominal Output

The nominal simulation output is shown using a variety of plots. Figure 8.13 shows the

components of angular velocity simulating the first ten days after orbit insertion. Angular velocity

is exchanged between satellite axes in accordance with the difference in mass moment of inertia of

the axis (as expected from Equation 2.3). The roll rate is observed to rapidly oscillate in the early

motion as the satellite is in a full tumble; no single axis dominates the angular velocity vector.

The tumble becomes more controlled approximately 2.5 days after orbit insertion when the motion

is mainly about the major inertia axis. However, the major inertia spin dampens to the level

of intermediate axis while the roll rate steadily climbs. The final settling to a non-zero roll rate

is intuitive; a PMAC satellite cannot rotate about any other axis while the bar magnet remains

parallel to the magnetic field.

Figure 8.14 shows the kinetic, potential, and total rotational energy of the simulated satellite.

A nearly linear decrease in energy is visible over the first four days. Immediately following day

six, the satellite kinetic energy remains at a constant nonzero value. Post-settling variations in the

potential energy are due to magnetic field amplitude changes throughout the satellite orbit.

Figure 8.15 shows the β angle between the BZ-axis and the local magnetic field vector. A

green line has been added to represent settling at β ≤ 10◦. Although the instantaneous beta changes

rapidly, the maximum beta angle decreases nearly linearly over time, reflecting the system energy

behavior. The simulation finds that the satellite settles to the magnetic field six days after PPOD

deployment. Following settling, the beta angle remains within five degrees of the local magnetic

field.

The next plots show the simulation output before and after settling occurs using 100-minute

(about one orbit) datasets. The pre- and post-settling datasets are the simulation output at orbit

15 and 105, approximately 1 and 7 days after PPOD deployment. Figure 8.16 shows the relative

magnitudes of the external torques acting on the satellite over both orbits.

The bar magnet dominates the other torques in the early mission; post-settling it is at the level
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Figure 8.13: The nominal simulation output body-frame angular velocity vector components are
shown. Yaw (blue) is about the BX (maximum inertia) axis, pitch (green) is about the BY (inter-
mediate inertia) axis, and roll (red) is about the BZ (minor inertia) axis.
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Figure 8.14: The kinetic, potential, and total satellite rotational energy values are shown. The
total energy settles to a constant offset from the potential energy due to a non-zero kinetic energy.
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Figure 8.15: The β angle between BZ-axis and the local magnetic field vector is shown. A green
line has been added at the value β = 10◦; this is used as the attitude settling threshold.
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of the magnetic residual torque and the gyroscopic torque. Even before settling, the gyroscopic

torque is within an order of magnitude of the bar magnet torque and at times is the dominant

torque. This means that torque-free motion must be considered as it likely has a substantial effect

on the system dynamics. The hysteresis rods lose an order of magnitude of torque from pre- to

post-settling; they are demagnetized by decreasing H-field amplitude cycles as the satellite aligns.

In the early mission, the hysteresis rods dominate the time-varying external torques but by late

mission, the hysteresis torque is at the level of the gravity gradient and drag torques. After settling,

the energy dissipation provided by hysteresis is in equilibrium with the energy input from the non-

magnetic environmental torques. As expected, the eddy current torque is higher during the early

mission which has higher rotation rates.

Figure 8.17 shows the hysteresis loops traced during the early- and late-mission orbits. The

rods experience a much larger range of magnetizing fields before settling occurs. The hysteresis

bounds remain the same throughout the simulation as they are directly set by the hysteresis pa-

rameters (Hc, Br, and Bs) which do not change. The loops are thin and hard to distinguish in the

early mission. After settling, the magnetization output is observed to produce small loops, always

within the bounds of the inverse tangent loop. These “minor loops” are expected for ferromag-

netic materials experiencing a magnetizing field insufficient to reach saturation [17]; the simulation

is correctly modeling the low cycle amplitude hysteresis response. As mentioned previously, the

traced hysteresis loop area is equivalent to the energy dissipated from the system. After settling,

the hysteresis dampening is in equilibrium with the energy input by non-magnetic external torques;

the constant magnetic external torques LB and LR cannot add or remove energy from the system.

Figure 8.17 shows a troubling characteristic of the Flatley model using the fitted hysteresis

parameters. In the early mission orbit, an average of 34% of the hysteresis magnetizations need

correction after each simulation time step. The late mission orbit does not require any corrections.

It is difficult to determine the effect of the correction frequency; removing the correction in the

early mission causes the simulated magnetization to exceed the inverse tangent bounds and become

unrealistic. This is a drawback of the Flatley model, but the effect does decrease slightly for higher-
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Figure 8.16: The magnitude of each external torque acting on the spacecraft is shown for the pre-
settling orbit 15 (top) and the post-settling orbit 105 (bottom). Note the change of scale for the
y-axis between the two plots. Here LGY is the gyroscopic motion torque ([ω×][I]ω), LB is the bar
magnet torque, LH is the hysteresis torque, LGG is the gravity gradient torque, LD is the drag
torque, LSP is the torque due to solar pressure, LR is the magnetic residual torque, and LEC is the
eddy current torque.
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Figure 8.17: The single-orbit X- and Y-axis hysteresis loops simulated before (top) and after
(bottom) the attitude settles. The inverse tangent bounds of the Flatley hysteresis model are
shown. The magnetizations which have been corrected to remain within the inverse tangent bounds
are shown in red; all other output is shown in blue.



183

order integrators at low simulation time step values.

8.4.3 High-Order Integrator Comparison

Although the simplified simulation showed the adequate performance of the RK4 at a 0.1s

time step, confidence can be gained by comparison with a higher-order integrator such as the RK7

at the same time step. This section collects the results of this comparison analysis. Figure 8.18

compares the angular velocity components of both integrators. Both integrators display early-

simulation rapid roll rate variation, mid-settling near-zero roll rate, and post-settling constant roll

rate. The amplitude of the roll rate is inverted for the RK7 case; this may be due to chaotic

dynamics during settling. Both datasets show most flat spin about the major inertia axis in the

middle of attitude settling.

Figure 8.19 compares the energy response of the RK4 and RK7 integrators. The responses

are quite similar, although the RK7 dampens the kinetic energy significantly quicker than the RK4

integrator. Note that the RK7 does not experience the jump in kinetic energy one day after PPOD

deployment. This may represent a sensitive dynamics region which happened to increase the energy

for RK4 but not for RK7, causing the RK4 simulation to have a longer settling time.

Figure 8.20 compares the beta angle as generated by the two integrators. The decreased

energy of the RK7 simulation causes the attitude to settle in five days instead of six. The structure

of the beta angle is similar for both cases; both show a linear decrease in the maximum beta angle

over time. Both begin to track the magnetic field at an offset before slowly removing the offset

over the course of about 36 hours. Further simulations are necessary to determine the cause of the

difference in settling times.

8.4.4 On-Orbit Data Comparison

The output from the simulation may be verified by comparison with data filtered from the

on-orbit attitude measurements of the CSSWE satellite. The initial conditions of the simulation

are set based on the filtered data of the satellite close to its deployment from the PPOD. If the
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Figure 8.18: Angular velocity components of the RK4 and RK7 integrators are shown. Yaw (blue)
is about the BX (maximum inertia) axis, pitch (green) is about the BY (intermediate inertia) axis,
and roll (red) is about the BZ (minor inertia) axis.



185

Figure 8.19: The kinetic (blue), potential (green), and total (red) rotational energy as calculated
by the RK4 (top) and RK7 (bottom) integrators.
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Figure 8.20: The β angle between the local magnetic field and the BZ axis as calculated by the
RK4 (top) and RK7 (bottom) integrators is shown. A green line at β = 10◦ has been added to
show the settling threshold.
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simulation is valid, it should roughly agree with the MEKF output.

The angular velocity is compared in Figure 8.21; similar behavior is observed. The roll rate

shows equivalent variation in the first few days after deployment. The filtered data shows that

the satellite maintains a near-zero roll rate for a short duration 2.5 days after PPOD deployment

before approaching a roll rate of -1◦/s until day six. The simulated data remains at a near-zero

roll rate longer before settling to 1◦/s shortly before settling. The CSSWE attitude response does

not experience a flat spin about any axis before settling. Instead, the angular velocity is equally

shared between the intermediate- and major-inertia axes over the entire timespan.

Figure 8.22 compares the simulated and measured system rotational energy. The simulation

does not model the antenna deployment event which occurs two hours after deployment and changes

the bar magnet moment from 0.84 A·m2 to 0.55 A·m2 (see Section 6.3.2.1). This event causes the

discontinuity seen in the filtered energy shortly after deployment. However, after the event, the

total energy is roughly equal to the simulated condition. The simulated energy loss is more linear

than the experimental data shows. This is likely because the Flatley hysteresis model accuracy

degrades as the simulated magnetizing field cycle amplitude diverges from the experimental cycle

amplitude used to generate the hysteresis fit parameters (see Section 7.3.4.1).

Because of the limitations of the model, the parameters were fitted to experimental data

collected at ±10 A/m and ±20 A/m. At cycle amplitudes larger than the fitted experimental

datasets (such as shortly after PPOD deploy), the Flatley model will underestimate the hysteresis

dampening. However, if the simulated cycle amplitude is much less than the fitted experimen-

tal datasets, the Flatley model may cease representing hysteresis as a closed loop (as shown Fig-

ures 7.15 and 7.16). The net effect of these errors is to linearize the simulated hysteresis dampening.

The experimental data also shows that the energy dissipation continues after settling, when the

majority of the rotation is about the roll axis; this simulation does not show this behavior.

Figure 8.23 compares the simulated and filtered β angle. CSSWE settles to the local magnetic

field 6.5 to 7.5 days after PPOD deploy; this is comparable to the simulated six day settling

time. The beta angle structure reflects the differences in energy dissipation shown previously; the
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Figure 8.21: The angular velocity vector components as simulated by the RK4 at 0.1s (top) and as
measured by the MEKF output of CSSWE data (bottom). Yaw (blue) is about the BX (maximum
inertia) axis, pitch (green) is about the BY (intermediate inertia) axis, and roll (red) is about the
BZ (minor inertia) axis.
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Figure 8.22: The satellite rotational kinetic (blue), potential (green), and total (black) rotational
energy as simulated by the RK4 at 0.1s (top) and as measured by the MEKF output of CSSWE
data (bottom).
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maximum beta angle decrease is mostly linear for the simulation but less so for the filtered data.

Overall, the filtered on-orbit attitude data is in good agreement with the simulation, which

is able to realistically represent the true dynamics of a PMAC system. The RK4 and RK7 settling

times are 6 and 5 days after PPOD deployment; these estimates are compared to the filtered data

7.5 day settling time and are found to possess errors of 20% and 33%, respectively. The simulation

performance may be compared with the RAX-2 CubeSat mission, which settled after two months

despite being predicted to settle within days (see Section 3.1.3).

Simulating PMAC dynamics is difficult but the research outlined in this dissertation rep-

resents a significant step forward. It is expected that simulation performance could be improved

by using a hysteresis model which is better able to represent the measured hysteresis loops over a

wider range of cycle amplitudes. Even at the current simulation performance levels, the settling

time estimate is quite useful for satellite mission planning purposes.
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Figure 8.23: The β angle between the local magnetic field and the BZ axis as simulated by the
RK4 at 0.1s (top) and as measured by the MEKF output of CSSWE data (bottom). A green line
is shown marking β = 10◦; when the angle remains below this threshold the system is considered
settled. The 3σ uncertainty bounds of the β angle are shown in red for the MEKF output dataset.



Chapter 9

Conclusion

This dissertation discusses the design, inputs, and validation of a Passive Magnetic Attitude

Control system for small satellites. Passive Magnetic Attitude Control (PMAC) is useful for a

variety of satellite missions as it is simple to install, low-cost, and does not require on-orbit com-

putation. Additionally, some science missions may be aided by alignment with the local magnetic

field.

However, the drawbacks of this attitude control method are twofold. First, a lack of un-

derstanding of the basic concepts behind PMAC has sometimes led to poor control system design

which negatively affects the attitude performance. Second, a lack of accurate simulation has artifi-

cially limited the satellite missions which may use PMAC. The ability to accurately predict settling

times is key for a satellite mission which relies upon a stable attitude, especially for small satellites

which typically have a short mission duration. This dissertation aims to counter the drawbacks

listed above.

9.1 Summary

Chapter 2 outlined the basic theory of PMAC, which is a marriage of rigid body dynamics

and ferromagnetism; an overview of both of these components is described. Chapter 3 outlined

the development history of PMAC. The mission history covers PMAC satellites from 1960 to 2012.

Previous attempts at analytical and numeric attitude models are reviewed.

Chapter 4 introduced the Colorado Student Space Weather Experiment (CSSWE), a 3U



193

CubeSat for space weather investigation which is an example of good PMAC design complement-

ing a science mission. We have access to the on-orbit data; this is useful because CSSWE used a

PMAC system. Chapter 5 discussed best practices for designing a small satellite PMAC system;

the CSSWE design is used as an example when applicable. Chapter 6 developed a Multiplicative

Extended Kalman Filter specially suited for attitude determination of PMAC systems. Simulation-

and empirical-based filter tuning is performed before the filter is applied to the CSSWE attitude

measurements. After on-orbit calibration and on-orbit magnetic moment fitting, the MEKF out-

put regularly achieved a 3σ uncertainty of 4◦ or less using magnetometer and partial sun vector

measurements at a six second period without a rate gyro. The filtered data validated the CSSWE

PMAC design, showing attitude settling within 15◦ of the local magnetic field after 7 days.

Chapter 7 outlined magnetic measurements which are key inputs to an accurate dynamics

simulation. A Helmholtz cage was designed and built for magnetic testing. The cage was used

in parallel with other hardware and control software to characterize the CSSWE bar magnet and

hysteresis rods. Testing showed that for the CSSWE magnetic material distribution, the system-

level hysteresis rod positioning effects are negligible compared to the variation in individual rod

dampening ability. Simulated hysteresis loop parameters were derived using a least-squares fit to

the experimentally-measured hysteresis loop data collected at magnetizing field cycle amplitudes

of ±10 and ±20 A/m. The best-fit hysteresis parameters defined a loop with a ±20 A/m energy

dissipation ability of 0.0448 J·m−3 per cycle, which is approximately 100 times less than the area

based upon the material datasheet closed magnetic circuit parameters.

Chapter 8 described a simulation capable of accurately modeling PMAC dynamics. Simula-

tion comparisons over a variety of time steps showed that a fourth-order fixed Runge-Kutta integra-

tor at 0.1s time step has adequate energy conservation performance. Further analysis showed that

for certain initial conditions, the absolute attitude cannot be modeled accurately at the considered

time steps due to chaotic motion encountered during the settling period. However, the settling

time was found to converge as simulation accuracy improved, though small variations in the initial

conditions caused the true settling time to be decrease substantially for approximately 20% of the
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considered sample size. However, the simulations with abnormally decreased settling times could

be identified by their dynamic settling response. In this way, the true worst-case settling time may

be predicted accurately by dynamic simulation. The full simulation was run given initial inputs

from the CSSWE satellite properties and the early-mission filtered attitude; the predicted settling

time was within 20% error of both the higher-order integrator simulation output and the filtered

on-orbit attitude data.

9.2 Recommendations

The most obvious recommendation is to improve the hysteresis model. An ideal hystere-

sis model would be able to model low and high cycle amplitudes equally well for the same loop

parameters. It may be that more hysteresis parameters are needed to characterize the empirical

data at various magnetization cycle amplitudes. If the mission cannot afford to overestimate the

predicted settling time by 20-30% to account for the simulation error, the hysteresis model is the

simulation component which should be improved first. Any discontinuties which occur during the

settling (such as mechanical deployment) should be investigated as another possiblility to improve

the simulation.

The satellite magnetic moment should be measured in the fully deployed configuration. This

is especially important if the satellite does not have a rate gyro and a dynamic model will be used

in the attitude determination. Measuring the hard magnet alone is not sufficient as there can

be significant sources of magnetic offset within the satellite. In some cases, as with the CSSWE

antenna, the magnetic moment of the spacecraft can change between the stowed and deployed

configurations.

The uncertainty of the hysteresis measurement could be decreased by building a sense coil

with more turns. We do not recommend using a wire gauge higher than 36 AWG; instead the wire

turns should be layered two or more times. This decreased uncertainty will allow the testing to be

performed at lower cycle amplitudes. Because of the limitations of the Flatley model, these low

cycle amplitudes are key to accurate simulation.
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If more computer processing power is available, further simulations are possible. A deeper

understanding of the underlying dynamics could be discovered by using the described simulation

to calculate the attitude performance when given initial conditions over the entire attitude sphere.

Also, the full simulation could undergo the same perturbation analysis that was performed on the

simplified simulation. Such studies would likely take computational years to run (the analysis of

Section 8.3.4 alone took 68 computational days to run), but given enough processors (or more time

for Moore’s law to take effect), further analysis is possible.
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Appendix A

Notation

• 3× 1 vectors are represented in bold. Example: ω

• The scalar component of a vector is not in bold and has a subscript. Example: ωx

• 3× 3 matrices are shown in [brackets]. Example: [R]

• The absolute value of a scalar is shown using one vertical bar on either side of the |variable|.

Example: |Bx|

• The magnitude of a vector is shown with two vertical bars on either side of the ||variable||.

Example: ||B||

• The 3× 3 identity matrix is represented by [I3×3].

• The transpose of a matrix is represented by a superscript T. Example: [R]T

• The trace matrix operation is represented by tr(). Example: tr([R])

• The reference frame of a vector is represented by superscript calligraphy letter before the

vector. Example: Ir

• The skew-symmetric matrix operator is represented by brackets around the variable and a

cross product within the brackets. Example: [ω×]

• The inertial time derivative
Id
dt of a variable is represented by a dot above the variable.

Example:
Id
dtω = ω̇



Appendix B

Explicit Runge-Kutta Integrator Definitions

The family of explicit Runge-Kutta numeric integrators is generalized as follows (repeated

from Section 8.1.7.1):

yn+1 = yn + h

s∑
i=1

bi ki (8.26)

where

k1 = f(tn, yn)

k2 = f(tn + c2h, yn + a21k1)

k3 = f(tn + c3h, yn + a31k1 + a32k2)

...

ks = f(tn + csh, yn + as1k1 + as2k2 + . . .+ as,s−1ks).

A specific Runge-Kutta integrator are is given by its Butcher tableau, which is a standard

form of presenting the coefficients used by Equation 8.26. The general form of a Butcher tableau

for an explicit Runge-Kutta integrator is shown in Table B.1. The Butcher tableau of each Runge-

Kutta integrator used within this dissertation is shown in Tables B.2 through B.7.
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Table B.1: The general form of the Butcher tableau for explicit Runge-Kutta Methods [34].

0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1

Table B.2: The Butcher tableau for explicit fixed RK2 (midpoint method) [34].

0
1/2 1/2

0 1

Table B.3: The Butcher tableau for explicit fixed RK3 (Kutta method) [21].

0
1/2 1/2
1 -1 2

1/6 2/3 1/6

Table B.4: The Butcher tableau for explicit fixed RK4 (Runge-Kutta method) [34].

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

Table B.5: The Butcher tableau for explicit fixed RK5 (fixed Dormand-Prince method) [34].

0
1/5 1/5
3/10 3/40 9/40
4/5 44/45 -56/15 32/9
8/9 19372/6561 -25360/2187 64448/6561 -212/729
1 9017/3168 -355/33 46732/5247 49/176 -5103/18656

35/384 0 500/1113 125/192 -2187/6784 11/84
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