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Asteroids undergo processes that change their orbit, spin state, and structure, and the re-

lationship between these properties. This evolution usually occurs slowly, changing the asteroid’s

behavior over millennia, reaching an equilibrium between rotational state and shape. But no equi-

libria lasts forever, and asteroids’ states change and are redefined by the relationship between orbit,

spin, and structure, sometimes in cascading series of events in short time frames. The work pre-

sented in this dissertation derives a model which links asteroid rotation with small scale structural

changes on asteroid surfaces. The model allows for boulders placed on asteroid surfaces to move

on and off these surfaces in accordance with the geopotential environment and surface material

properties. In turn, boulder motion and other surface phenomena affect asteroid rotational states,

at times further perturbing the asteroid system. Results are presented for fast rotating asteroids,

showing the tendency of boulders to move towards the equator and in doing so reduce asteroid spin

rates. However, boulder launches to orbit and variables in surface conditions add chaos to these

systems, leading to random walk behavior which affects the system and its relationship with the so-

lar system itself. Small particle events can also affect asteroid states, but in an extent smaller than

is detectable with state-of-the-art spacecraft and observation capabilities. Examinations of human

induced activity with the model show the extent that human activity such as momentum transfer

deflection or material launch to space can have on asteroid rotational states and, in turn, how

the shape-spin relationship affects the success of human activity. Mainly, the results demonstrate

the importance of understanding an asteroid’s shape and rotation prior to planning a deflection

mission. Additionally, the dynamics of mass driver deflection derived show that optimized material

launch schemes can be found which reduce the side effects on asteroid rotation. Mass launches can

be used for deflection in several year time scales through a variety of operational schemes.
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Chapter 1

Background and motivation

1.1 Rubble pile asteroids

Asteroids are relics from the formation of the solar system. Seemingly having no active geo-

logical processes occurring on them, their compositions are thought to be mostly static since their

formation. However, research and observations have shown evidence of dynamical processes that

asteroids undergo, constantly reshaping them over long time spans. Two missions have been operat-

ing in the vicinity of asteroids in recent years: NASA’s Origins, Spectral Interpretation, Resource

Identification, Security, Regolith Explorer (OSIRIS-REx) mission has orbited its target asteroid

101955 Bennu [1] for long periods in 2019 and JAXA’s Hayabusa-2 mission has been operating

on and near its target, asteroid 162173 Ryugu [2], since mid 2018. Figures 1.1a and 1.1b present

images taken by both missions of their prospective targets. Figure 1.1c shows an image of the

asteroid 25143 Itokawa which was visited by the JAXA’s Hayabusa mission in 2005. All asteroids

are small in size: about 0.5 km in mean diameter for Bennu, 1 km mean diameter for Ryugu [3],

and 0.3 km for Itokawa [4], and are considered “rubble-pile” asteroids. The asteroid surfaces are

inhomogeneous, presenting distinguishable areas rich and poor of large boulders, rough gravel, fine

regolith as well as topographical features such as craters, ridges, and ponds. These are evidence

of the slew of surface processes that asteroids experience in their lifetimes. The asteroids’ shapes

themselves can also tell stories about the processes these small bodies have been through in their

history, whether is be the spinning-top shape of Bennu and Ryugu, or the bi-lobe shape of Itokawa.

The asteroid “rubble-pile” model was first suggested by Chapman [8] after comparing the esti-
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(a) Asteroid Bennu [5] (b) Asteroid Ryugu [6] (c) Asteroid Itokawa [7]

Figure 1.1: Images of asteroids Bennu, Ryugu and, Itokawa as captured by the OSIRIS-REx,
Hayabusa-2, and Hayabusa missions, respectively

mated rate of asteroid collisions to the lifetime of the Solar System. This comparison led to the

conclusion that large asteroids have gone through several cycles of breakup events and gravita-

tional re-aggregation. Thus, rendering their structures aggregates of smaller boulders, gravel, and

regolith, rather than single monolithic bodies. The “rubble-pile” model is supported by observa-

tions of asteroid sizes, shapes and spin states, which show a balance between the gravitational

force that holds the aggregate together and the inertia of the rotating components pushing them

outwards [9, 10]. These asteroids were more recently referred to as gravitational aggregates [9], or

granular asteroids [11], in an attempt to better describe the range of internal structures they have.

Gravitational aggregates range in diameter between 0.2 and 100 km and in spin periods between

2.2 and 12 hours [12]. Most objects rotating faster than the 2.2 hour lower limit are thought to be

small (<0.2 km) monolithic bodies that have not been broken apart by collision events and are held

together by the structural tensile forces in the single rock. This, in contrast to the gravitational

force that holds larger bodies together. Slower rotating asteroids do exist, but they are a smaller

share of the population. Bodies larger than 100 km are also present in the asteroid population, and

are also held together by gravity. However, the magnitude of their gravity means that some of the

forces and phenomena smaller asteroids are subject to are negligible for them.

Gravitational aggregates’ shapes are governed by the balance between their own gravity and rota-

tion rate, the gravitational force pulling the asteroid material inward while the inertial centrifugal
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force pushes it outwards. Recent research has found that cohesion also plays a substantial role in

keeping an asteroid’s subcomponents together, at times presenting stabilizing forces that are or-

ders of magnitude larger than the overall gravitational force [13, 14, 15, 16]. The balance between

these forces can be quite delicate, as seen with asteroid Bennu [17], which presents significantly

lower inward acceleration magnitudes on the equatorial ridge compared to the poles, demonstrating

how the shape of the asteroid itself is in some type of equilibrium between gravity, rotation, and

cohesion. When the balance between the forces is broken the total acceleration that a boulder or

regolith deposit experiences can change enough in magnitude or direction to move it towards a

new, lower, geopotential state. This new acceleration vector can point “downwards” to the lower

geopotential or, if the rotational acceleration is larger in magnitude than the gravitational one,

it can point “upwards” causing the boulder or material to be held to the surface by cohesion. If

the cohesion forces are not sufficiently strong the boulder or material can launch into orbit or a

hyperbolic trajectory. This process, in which mass is shed from the surface, is defined as rotational

fission and it can happen to an asteroid in either local or global scales [7, 18, 19].

An asteroid is denoted as a Principal-Axis Rotator (PAR) when its angular velocity vector is aligned

with one of its principal inertia axes, most commonly the maximum moment of inertia axis at the

minimum energy state. The PAR characteristic leads to a time-constant angular velocity vector,

which is fixed both in inertial space and in the rotating asteroid frame. This leads the surface

geopotential to be constant as well. Observational data [20] has shown that a majority of asteroids

are PARs. A small subset of non-PAR asteroids has been reported as well [21, 22], the gravitational

aggregates among them appear to tumble slowly, providing a steady environment which is far from

structural instabilities [23].

1.2 Driving forces of asteroid evolution

Although usually very slow changing, asteroid rotation rates do not remain constant through-

out their life spans. Different types of processes and events can accelerate, decelerate or even reverse
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asteroid spins. These could also shift the angular velocity vector to different directions, with respect

to the asteroid body itself and or inertial space, potentially leading to changes in the geopotential.

The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) [24] effect was first coined by Rubincam [25]

in 2000 as a rotational complementary to the orbital Yarkovsky effect. In these phenomena sunlight

scattering and thermal re-radiation from an asteroid surface slowly torque and thrust an asteroid.

These effects are small in magnitude, but their secular contribution accumulates and changes the

asteroid’s dynamical state over many years. The Yarkovsky and YORP effects have been pointed

out as leading contributors in asteroid orbital and spin state evolution, especially for the Near-Earth

Asteroid (NEA) population. Depending on an asteroid’s shape, obliquity, and spin rate the YORP

effect can accelerate or decelerate the angular velocity of an asteroid [26, 27], leading to changes

in the balance between its gravity and rotation. In the case of an accelerating angular velocity a

breach in the balance can lead to change in local accelerations that will cause boulder movement,

landslides or even fission events. A decelerating asteroid can reach low rotation rates that are more

susceptible to tumbling torques. YORP itself can induce non-PAR movement for a highly irregular

shaped asteroid. However, a tumbling asteroid is less susceptible to YORP because of the complex

motion of the torque’s direction. YORP also leads asteroids to align their spin axes with their

orbit plane, reaching obliquities of 0 or 180 degrees [28]. Being a radiative effect fueled by the Sun,

YORP is more substantial for asteroids with smaller Semi-Major Axes (SMA), such as NEAs. It

is also more effective on asteroids with oblate and elongated shapes due to the large lever arms it

can apply.

Other, faster, mechanisms of changing an asteroid’s angular velocity are collisions and planetary

flybys. Collision [29] occurrence for a specific asteroid is in the realm of statistical probability over

a given time span and is more likely for larger asteroids and bodies in the main asteroid belt. In

addition to the possibility of such an event changing an asteroid’s rotational and orbital state it can

also directly disrupt the asteroid’s surface or completely disaggregate it. Such disruptions, even

local in nature, could cause movement of ejecta near the crash site or could cause global vibrations

[30, 31] (seismic activity) that can induce motion of material anywhere on or in the asteroid. Some
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of the ejecta created by collisions has been shown to drain angular momentum from an asteroid in

a mechanism that cumulatively reduces an asteroid’s spin rate [32].

Flyby events [33, 34], especially near planets, are easier to foresee, and their effect is also simpler to

model. Most flybys do not directly affect the asteroid structure but can change its rotational and

orbital states and lead to real time disruption [35] or set an asteroid in such a state that would lead

to some event in the future. Asteroid 99942 Apophis is expected to change its orbit and rotation

after its flyby of Earth in 2029 [36, 37], no immediate changes to its structure are expected.

The external mechanisms that affect an asteroid’s rotation are counteracted by internal dissipation.

Burns [38] has explained the small subset of that non-PAR asteroids by showing that asteroids dis-

sipate any off-axis rotation during their lifetime. Thus, even if an event or a secular effect cause

an asteroid to tumble, as observed for several asteroids [21], the PAR characteristic will return due

to internal energy dissipation in the asteroid. The dissipation rate is proportional to r−2, thus,

expected to be slower for smaller asteroids.

Active asteroids [39] are a newly distinguished group of small bodies discussed by the scientific

community. They present characteristics that place them on the spectrum between asteroids and

comets. Mainly a combination of mass loss similar to comets and the orbital parameters of aster-

oids. As portrayed by their name active asteroids have, by nature, more activity on their surface.

Water sublimation is suggested as the main mechanism of mass loss in these bodies, but several

other phenomena, such as surface motion [40], have been proposed to explain some of the observed

activities by these bodies. Surface motion has also been pointed out as a source of mass loss

in tumbling asteroids [41], where ejections can be instigated by the irregular acceleration cycles

that material on the surface might experience. Asteroid 311P/(2013 P5) PANSTARRS [42, 43] is

thought to be a binary active asteroid and has been observed to have several discrete ejection events

in 2013. These could be explained by motion of material on and off the surface of the primary.

These events might have occurred as a result of the initial breakup of the asteroid which left the

primary (and secondary) in some rotational instability or have left debris around the primary in

orbital instability that led to crash events. Thermal fatigue [44] could cause fractures in surface
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boulders, allowing boulder fragments to be freed to move on the surface, such as thought to have

happened on asteroid (3200) Phaethon [40]. In 2013 asteroid P/2013 R3 [45] was observed to frag-

ment into several components, possibly due to rotational fission. For several months the continued

break-up of the asteroid was observed, with an initial component seen far away from the major

cluster at the first observation. This object might have been the first to eject from the asteroid

causing a cascade effect that lead to the asteroid break-up. During its short time at its target,

the OSIRIS-REx mission has observed several particle ejection events of asteroid Bennu [1]. The

source of these events have yet to be identified, but thermal fracturing or meteoroid impacts have

been pointed out as possible causes. The observed particles are cm in size and a singular event

seems to have little to no affect on the asteroid itself. However, their accumulative effect could be

part of the observed trends in asteroid state evolution.

Evidence of the phenomena that change asteroid states and the surface motion they induce has

been observed on various seemingly dormant asteroids [46]. Examples of the relationship between

asteroid rotation and shape were observed for asteroids Ryugu and Bennu [47, 17]. Evidence of

surface movement of boulders was seen on asteroid 433 Eros [48, 49, 50]. These surface movement

events seem to include boulder surface bounces and subsequent rolling/sliding motion, seen by

displaced regolith in the boulder paths. Boulders on Eros have also been pointed out as possible

precursors for ponds observed on the surface [51]. Cases of regolith, gravel, and boulder migration

were seen on asteroids Bennu, Ryugu, and Itokawa [52, 53, 4]. Additionally, evidence of small scale

collision events and their affects on Itokawa’s surface have been observed [54]. More generally,

the size distribution of boulders observed on asteroid Itokawa was linked to its surface geopotential

[55]. Boulder distribution seen near an impact crater on asteroid 21 Lutetia was linked to the crater

formation and is thought to be ejecta from the impact that created it [56]. Lastly, the mechanism

for regolith migration observed on Mars’ satellite Phobos has been suggested to stem from the

dynamic geopotential surface environment caused by Mars’ tidal forces [57].
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1.3 Artificial manipulation of asteroids

The concept of asteroid manipulation is almost as old as the first discoveries of asteroids;

From the 1898 ”War of the Worlds” spin-off ”Edison’s Conquest of Mars” [58] which describes

Martians mining gold from an asteroid to NASA’s Asteroid Redirect Mission [59] that was planned

to collect a boulder from the surface of an asteroid and retrieve it in to an orbit around the moon.

There are many reasons to manipulate an asteroid’s state. These include deflection of an asteroid

that poses a threat to Earth, removal of materials off an asteroid for mining purposes, or rearrange-

ment of surface areas for In-Situ Resource Utilization (ISRU) and research.

The discussion on the threat of a catastrophic asteroid collision with Earth is a question of when,

not if, such an event will occur. Governments, space agencies, and the scientific community have

been addressing this threat on several avenues: Potentially Hazardous Object (PHO) detection,

global readiness for a possible collision, and research and development of collision prevention meth-

ods. Collision prevention by complete removal of a PHO is highly unlikely due to the size and

momentum of such objects. Thus, the swath of solutions discussed to date refers to collision pre-

vention by deflection. In PHO deflection an object’s orbit is slightly perturbed in such a way that

enlarges the body’s Earth flyby Minimum Orbit Intersection Distance (MOID), leading it to miss

our planet by a safe margin.

The population of PHOs includes both asteroids and comets. Although comets are at times larger

than asteroids and have more eccentric orbits with potentially higher relative velocities, the Earth

orbit crossing comet population is substantially smaller than that of asteroids [60]. In particular

the NEA population, which crosses the Earth’s orbit regularly, has been of interest when discussing

PHOs to be addressed by deflection. Many methods of asteroid deflection have been and continue

to be researched, some of which are applicable to asteroids and comets alike. All deflection methods

require some kind of momentum transfer mechanism from the deflecting measure to the asteroid

being deflected [61]. The predominant methods discussed include: nuclear detonation, kinetic in-

terception, gravity tractor, the ion shepherd, high energy beams, and asteroid thrusting. Deflection
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by nuclear detonation requires use of a nuclear device on or near the surface of a PHO while focus-

ing the detonation radiation to the body’s surface [62]. In the stand-off variation of this method

the focused radiation leads to high surface temperatures causing ablation and, in turn, material

ejection. If enough material is ejected at high velocities it will carry with it some of the PHO’s

orbital momentum, leading to the desired deflection. A kinetic interceptor brings the deflection

momentum with it when it directly impacts the PHO. The momentum transfer reached due to a

high relative velocity between intercepting spacecraft and target PHO [63, 64]. In addition to the

spacecraft-PHO momentum exchange, this method is also expected to lead to some debris ejection,

enhancing the deflection effort by hundreds of percents. Gravity tractor deflection is done by flying

a heavy spacecraft near an asteroid in a defined orbital direction, gravitationally perturbing the

asteroid’s orbit over a long period [65]. The momentum transfer in this method is less obvious,

originating from the spacecraft’s propulsion system as it keeps its relative position with respect

to the asteroid. Similarly to the gravity tractor method, the ion-beam shepherd concept would

perturb an asteroid’s orbit from a nearby spacecraft by bombarding the PHO with high velocity

ions which will gently push it [66]. This method reduces the mass needed for a gravity tractor, but

in turn requires a thruster to counter the ion cannon. Applying high energy beams on the surface

of a PHO, usually from a nearby spacecraft, is meant to reach a similar effect as a nuclear device,

causing surface ablation and momentum transfer through ejecta [67]. Unlike the nuclear device,

this method applies the radiation over a long period of time, requiring less energy at any given time

and enabling course corrections. Asteroid thrusting with a landed device essentially turns an as-

teroid into a spacecraft, applying continuous or impulsive thrust on the asteroid [68, 69]. Similarly

to the tractor concepts, this method transfers momentum from some propulsion system, whether

it be chemical, electric, kinetic, or solar radiation pressure based.

Asteroid orbit manipulation does not necessarily have to be applied for PHO deflection purposes.

Advanced research studies [70, 71, 72] have described concepts which could enable asteroid maneu-

vering in the distant future. Some of these concepts even require manipulation of the asteroid’s

rotation as part of their operational scheme.
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Similarly to the variety of deflection methods, several asteroid mining and ISRU concepts are be-

ing discussed and researched [73]. Amongst them are complete boulder removal, water extraction

and regolith collection. These methods do not necessarily call for transferring momentum to or

from the asteroid, but the movement of material on or off an asteroid surface will change the mass

distribution of the asteroid and in turn affect its rotational state.

1.4 State-of-the-art of Rubble-pile modeling

Since the first asteroid missions were proposed and executed many models of the processes

and mechanisms that occur on asteroids have been developed and described. These models ex-

amine the balance between gravitational aggregates’ gravity, rotation, and cohesion forces inside

asteroid structures and in their environments. Usually these research efforts are based on one of

three gravity models used for astrodynamics research: the basic point mass, or masses, model, the

spherical harmonics expansion, or the polyhedral gravity model.

In the context of gravitational aggregate modeling the point mass model has two variations to it:

simple shape analyses of a limited number of bodies or complete N-body simulations which examine

hundreds or thousands of point masses. Past research using simplified shapes to represent gravita-

tional aggregates was conducted by Scheeres and Jacobson [7, 74, 75, 76, 77]. These research efforts

examine the relative motion between two spheres or ellipsoids under YORP induced torque to map

possible stability states, fission events, and the types of systems that result from these processes:

disaggregated asteroids, binary, and contact binary systems. Additional work on simplified shapes

examined the surface motion dynamics in geopotential environment of rotating ellipsoids [78] or

cubes [79]. This type of work allows for simple analytical understanding and a low computational

burden on the systems examined. However, this simplicity can lack in properly representing an

asteroid system: forcing symmetry where it does not exist and overlooking phenomena that appears

on complex shapes.

N-body simulation tools use multiple point masses or simplified shapes and examine their inter-
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action to model the behavior gravitational aggregates’ subcomponents with respect to each other.

The point masses’ interactions usually include gravitational attraction, pulling masses together, and

normal forces, modeling the volume of material and keeping the modeled body from collapsing to a

single point. Additional forces such as cohesion or friction can be applied to model Van der Waals

attraction between the subcomponents. These tools have been used to examine the formation pro-

cesses of asteroids [80, 81] and asteroid families [82, 83, 84]. More specifically N-body simulations

of rapidly rotating gravitational aggregates have been used by Richardson, Walsh, and Hirabayashi

to show the relationships between asteroid systems’ shapes and rotation states [85, 86, 87, 88], some

under the influence of cohesion forces [89, 90]. Research by Scheeres, Sanchez, and others using N-

body and granular simulations has also been done to understand the magnitude of internal stresses

and cohesion forces inside gravitational aggregates, on their surface, and between specific types of

subcomponents [13, 91, 92, 93, 94, 95]. This type of simulations has also been used to understand

the landing dynamics of small rovers in small body environments [96]. N-body simulation tools

provide significantly higher resolution of the granular nature of gravitational aggregates, but they

do that at the cost of computational complexity.

Spherical harmonics expansion is a common method used to efficiently and precisely model the

gravity around celestial bodies. It is commonly used to model the motion of spacecraft operating

near a small body, and it has been used to map the gravitational regime around small bodies [97].

However, it can fail to correctly model the gravity inside the Brillouin sphere, the sphere that

encompass the entire shape of a small body [98]. An adaptation to the spherical harmonics gravity

expansion for points inside the Brillouin sphere, the interior spherical harmonics gravity field, was

developed and proven [99]. This method can be used to examine the geopotential on small body

surfaces, but when discussing objects that can transition in and out of the Brillouin sphere a tran-

sition between the models is required as well, adding complexity to the modeling process.

The polyhedral gravity model was first presented by Werner and Scheeres [100]. It uses a polyhe-

dral shape represented by a list of vertices their correlation in the form a list of facets to provide

an exact solution for the gravity above, on, and below the surface of a uniform density polyhedron.
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Using the polyhedral gravity model allows the connection of the gravity field to other geometric

characteristics of a small body, such as surface normals and facet locations. This allows for a good

representation of the geopotential environment of asteroids [101, 17, 102, 103]. Past research done

by Tardivel and Van Wal [104, 105, 106] has used the polyhedral model together with other geo-

metric models to simulate the motion of small landers and rovers on and around asteroid surfaces.

However, due to the large mass ratio between asteroid and lander the effect the lander’s motion

might have had on the asteroid was not modeled. Tardivel has used the polyhedral and N-body

models to examine cavities observed on asteroids 2008 EV5 and 2000 DP107 and their possible ori-

gin from fission events [107]. This work linked the rotational state to be the cause of the cavities,

but it did not close the loop by examining the cavity formations’ affects on the asteroids rotation.

A well known downside for the polyhedral gravity model is its enforcement of a uniform density

distribution. This assumption is usually sufficient in examining asteroid environments, especially

far from the surface, but it can misrepresent gravitational aggregates’ internal structures. Taka-

hashi developed an expansion for the polyhedral gravity model that applies non-uniform densities

[108]. This model allows a better comparison between possible polyhedral gravity models and the

spherical harmonics observed by asteroid missions. However, it requires an a-priori internal mass

geometry to be defined and constrains the density distribution to that geometry.

A different approach to research of gravitational aggregates’ structures uses structural analysis of

the stresses and strains inside the bodies’ shapes that result from their own rotations. This research

has been done on simplified shapes [109, 110] and known small body shapes [111, 112]. It has also

been expanded to more complex numerical methods such as finite elements [113, 114] and a hybrid

finite elements N-body simulations [115]. Using finite elements allows the modeled small body to

deform and expanding the model with N-body simulation allows it to break apart, but it does it at

a computational burden cost.

Additional research that should be mentioned in the context of gravitational aggregates is experi-

mental studies into ejecta from an impact. These experiments, reported by Housen and Holsapple

[116, 117, 118] shot projectiles into asteroid simulant to study the process of crater formation, ex-
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amining the ejecta mass, velocity, and overall trajectories. The results were then scaled to asteroid

scales for insight into observed natural impact craters and implications for asteroid deflection.

The research in to the dynamics of gravitational aggregates is expansive both in methods and in

applications. This research has mostly focused on how changes in asteroid rotation might affect

asteroid structures and surface geopotential. Some research into the effect asteroid shapes have on

their rotation has been preformed, but it did so in a global context, studying asteroid shape analogs

in aggregation, disaggregation, or reaggregation processes. The following observation summarizing

the identified gap can thus be made:

There exists no model to examine small scale processes on small bodies in general, and

asteroids in particular, and their effect on, and relationship with, the bodies’ rotation

states.

Addressing the identified gap would provide the small body community with tools to examine

localized surface processes and their relationship with small body rotations.

1.5 Thesis statement

The work carried out in this thesis can be summarized under the following statement

Processes that occur on asteroid surfaces influence the dynamical state of asteroid

rotational and orbital motion, and vice versa. Quantifying how natural and artificial

surface processes affect asteroids is necessary to understanding how asteroids evolve

and is crucial for human activities on or near asteroids.

1.6 Thesis overview

1.6.1 Contributions

This dissertation

(1) Develops and describes a hybrid model for small scales activity and phenomena on asteroid

surfaces and their relationship with asteroid rotational and orbital states
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(2) Shows that material on asteroid surfaces under various motion and dynamical conditions

nominally trends towards the equator even in the presence of chaotic influences such as

variables in movement path and orbital motion in small body environments

(3) Demonstrates how surface motion leads to reduced rotation rates and introduction of pre-

cession of the angular velocity

(4) Introduces a mechanism for small scale random walk behavior of asteroid angular momen-

tum direction in inertial space

(5) Presents the effect of small scale particle events on asteroid surfaces and the, lower than

currently observable, magnitudes of changes expected from these events

(6) Develops a model for small body momentum transfer deflection which accounts for aster-

oid rotation and demonstrates the rotational outcomes of momentum transfer deflection:

near-spherical asteroids have negligible consequences due to impactor misalignments with

required deflection direction, but elongated asteroids or powerful nuclear detonation de-

flection efforts have the potential to disrupt asteroid rotation in a way which is potentially

catastrophic to the asteroid structure

(7) Derives a linearized model for small scale inertia tensor and angular velocity changes in

principal axis rotating bodies

(8) Examines the dynamics of mass driver deflection and develops guidance laws for material

launch from asteroid surfaces while minimizing effect on asteroid rotation, the biggest factor

in mass driver deflection design is the latitudinal surface position the mass driver deflection

is preformed from

(9) Analyses orbit dynamics variables in mass driver deflection and shows that an ’earlier is

better’ approach in mass driver deflection reduces the required deflection efforts
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1.6.2 Dissertation outline

This dissertation is organized as follows:

Chapter 2 presents the dynamical model used in this work together with the assumptions

it is based on. Additionally, Chapter 2 describes the numerical implementation of the model and

presents the logical flow in its core.

Chapter 3 implements the model presented in naturally induced dynamical behavior of aster-

oids. The chapter consists of two sections: Section 3.1 presents dynamical behavior of fast rotating

asteroids with multiple examples and analysis, and Section 3.2 presents an analysis of the effects

small particle events potentially have on small rubble-pile asteroids.

Chapter 4 implements the model on human induced activity on asteroids. First, Section 4.1,

utilizes the model to examine the effects of momentum transfer deflection on asteroid states, and

vice versa. Section 4.2 further expands the dynamics from Chapter 2 to develop the dynamics of

material removal from asteroid surfaces in the context of asteroid rotation. These dynamics are

then implemented on asteroid manipulation scenarios.

Lastly, Chapter 5 presents avenues for future development of the model presented and addi-

tional analysis that can be performed with it.

1.6.3 Publications

1.6.3.1 Journal papers

Accepted

• Brack, D.N., & McMahon, J.W. (2019). Active Mass Ejection for Asteroid Manipulation

and Deflection (accepted). Journal of Spacecraft and Rockets.

• Brack, D.N., & McMahon, J.W. (2019). Modeling the Coupled Dynamics of an Asteroid

with Surface Boulder Motion (In print). Icarus.

• Scheeres, D.J., McMahon, J.W., French, A.S., Brack, D.N., Chesley, S.R., Farnocchia,
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D., Takahashi, Y., Leonard, J.M., Geeraert, J., Page, B. & Antreasian, P. (2019). The

dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

(In print). Nature Astronomy.

• Venigalla, C., Baresi, N., Aziz, J.D., Bercovici, B., Brack, D.N., Dahir, A., De Smet, S.,

Fulton, J., Pellegrino, M.M. & Van wal, S. (2019). Near-Earth Asteroid Characterization

and Observation (NEACO) Mission to Asteroid (469219) 2016 HO3 (In print). Journal of

Spacecraft and Rockets.

Submitted

• Brack, D.N., & McMahon, J.W. Effects of Momentum Transfer Deflection Efforts on Small

Body Rotational State. Journal of Guidance, Control and Dynamics.

• Scheeres, D.J., McMahon, J.W., Brack, D.N., French, A.S., Chesley, S.R., Farnocchia,

D., Vokrounhlicky, D., Ballouz, R.L., Emery, J.P., Rozitis, B., Nolan, M.C., Hergenrother,

C.W., Lauretta, D.S. Particle ejection contributions to the rotational acceleration and orbit

evolution of Asteroid (101955) Bennu. Journal of Geophysical Research.

1.6.3.2 Conference proceedings

• Brack, D.N., & McMahon, J.W. (2019). Effects of Momentum Transfer Deflection Efforts

on Small Body Rotational State. 70th International Astronautical Congress (IAC).

• Brack, D.N., & McMahon, J.W. (2019). Asteroid Deflection With Active Boulder Removal.

2019 AAS/AIAA Astrodynamics Specialist Conference.

• Brack, D.N., & McMahon, J.W. (2019). The Dynamical Surface Environment of Tumbling
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Congress (IAC).
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Chapter 2

Dynamical model and numerical implementation

2.1 The Surface phenomena Effect on Asteroid Rotational And Translational

State model

To investigate the dynamics of small scale events on asteroid surfaces and their relationship

with rotational states the Surface phenomena Effect on Asteroid Rotational And Translational

State (SEA RATS) model uses rigid body dynamics to model an asteroid and boulders on its

surface. This hybrid model combines the relatively simple polyhedral gravity model with multi-

body dynamic interaction model to examine the processes that lead to small perturbations on an

asteroid’s state. Specifically, the model examines the balance between gravitational pull, rotational

acceleration, and cohesion forces on asteroid surfaces. The boulder motion scheme presented in the

following sections is integrated into the SEA RATS model to determine when and how boulders

should move on the surface. The model also allows for fission to occur by launching boulders or

parts of the monolithic asteroid itself off the surface. Launched material is then propagated in orbit

with the ability to crash back to the surface or escape the asteroid system completely.

2.2 Assumptions and definitions

2.2.1 The modeled system

The system is modeled as the combination of one large monolithic polyhedral body with N

smaller polyhedrons in its vicinity, either resting on its surface or in orbit around it. The large

monolithic polyhedron is defined as the parent body and denoted with the letter P . The small
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polyhedrons are defined as boulders and denoted with the letter B. All bodies are assumed to be

rigid bodies with constant density distributions (which may vary from body to body). Although the

parent body is of uniform density, it is assumed to have harder core, so that the modeled asteroid

structural failure is on its surface, leading to surface boulder motion or surface fission, rather than

the structural failure happening underneath the surface, as proposed in [88]. The asteroid model is

defined as the combination of the parent body and all boulders on its surface at any given time, it

is denoted with the letter A. Boulders that are not on the surface but have negative orbital energy

with respect to the asteroid model are considered orbiting boulders. Boulders with positive orbital

energy with respect to the asteroid model are considered escaped boulders. Escaped boulders are

no longer considered part of the asteroid system. Additionally, the model can allow sections of

the parent body polyhedron to be sliced out of the original geometry to create two polyhedra at

each slicing event. This, while preserving the overall shape and volume of the original parent body.

This application of the model simulates a fission event in which material is ejected from the parent

body. The larger of the newly created polyhedral shapes is defined as the parent body, while the

smaller shape is denoted as fissioned material and treated dynamically like a boulder. The overall

number of boulders gravitationally bound to the asteroid system is N , the subsets of boulders on

the surface and in orbit are denoted as NS and NO, respectively. The number of escaped boulders

is denoted as NE , the number of fissioned aggregates (that have not escaped) is NF , and the initial

number of boulders in the system is NI . The total number of boulders in the system at any given

time is

N = NS +NO = NI −NE +NF (2.1)

Including the parent body a model begins with NI + 1 bodies in the system (assuming fission has

not occurred at t ≤ 0). The asteroid model mass is the sum of the parent body mass and all the

masses of boulders on it’s surface at any given time. The overall system mass is the sum of the
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Figure 2.1: Bennu ∼6000 facet polyhedral shape model with 50 boulders distributed on its surface

parent body mass and the masses of all boulders captured in the system’s gravity well

MA = MP + ΣNS
j=1MB,j (2.2)

M = MP + ΣNS
j=1MB,j + ΣNO

j=1MB,j = MA + ΣNO
j=1MB,j (2.3)

Each boulder mass is assumed to be much smaller than the parent body (MB,j << MP ).

An example of a SEA RATS initial model asteroid setup can be seen in Figure 2.1 which shows two

views of a ∼6000 facet polyhedron representing the asteroid Bennu with 50 boulders distributed

on its surface. In this case the boulders are identical in shape and size, and are distributed evenly

for the analysis presented in Figures 2.8 and 2.10.

Two types of reference frames are defined for the system, a single inertial frame, I, and multiple

body frames, B, that correspond with each polyhedron. The inertial frame’s directions are fixed

and it’s origin is set to the Center of Mass (CM) of the system as it orbits the Sun. Due to the

mass ratio between parent body and boulders the changes in the asteroid model’s CM position due

to boulder motion are assumed negligible. For example, moving a 500 ton boulder from Bennu’s

pole to its equator would move the asteroid CM by ∼2.5 mm. When examining this change in the

context of Bennu’s ∼30 km·s−1 orbital velocity around the Sun six orders of magnitude difference

is seen. Thus, the CM of the asteroid model is set to coincide with the parent body’s CM and the

inertial frame origin, rA = rP = 0, ṙA = ṙP = 0. In addition, the asteroid model body frame and
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the parent body frame are set to coincide, BA = BP . A boulder’s CM position and velocity with

respect to the origin in a general frame G are denoted as rGB,j and ṙGB,j , respectively. In the inertial

frame they are denoted using upper case letters, RB,j and ṘB,j , respectively.

The inertia tensor of the asteroid model is the sum of the inertia tensor of the parent body and all

boulder’s on its surface

[IA]BA = [IP ]BA + ΣNS
j=1

(
[T ]BABB,j

[IB,j ]
BB,j +MB,j [r̃B,j ]

BA [r̃B,j ]
BAT

)
(2.4)

Here the [T ]BABB,j
term is the rotation matrix between the jth boulder body frame and the asteroid

model body frame and is a function of the boulder’s attitude, [T ] = [T ](σ). TheMB,j [r̃B,j ]
BA [r̃B,j ]

BAT

element is the parallel axis contribution of each boulder’s position on the surface where the cross-

product operator is denoted as [ã] = a×.

The system’s angular momentum is the sum of the asteroid model’s and orbiting boulders’ angular

momenta with respect to the origin

HI = HI
A+ΣNO

j=1H
I
B,j = [T ]IBA [IA]BAωBA

A +ΣNO
j=1

(
[T ]IBB,j [IB,j ]

BB,jω
BB,j
B,j +MB,j [r̃B,j ]

IṙIB,j
)

(2.5)

Here the angular momentum is presented in the inertial frame because in this frame, nominally, no

external torques are applied and thus the system’s angular momentum is constant. When there are

no orbiting or ejected boulders the angular momentum of the system is the asteroid model angular

momentum HI = HI
A.

2.2.2 Rotational dynamics

The asteroid model and orbiting boulders are modeled as rotating rigid bodies where the

angular velocity dynamics without torques are governed by Euler’s equation for rigid body dynamics

[I]ω̇ = −[ω̃][I]ω (2.6)

In case of a PAR body this differential equation is degraded to ω̇ = 0 and the time constant nature

of the system is seen mathematically. However, the dynamics of non-PARs are more complex
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and lead to a time varying system that requires mathematical manipulations to solve analytically.

An example for a solution of torque free rotation in the context of small bodies was presented

by Samarasinha and A’Hearn [119]. As part of the solution several definitions are made: first, a

distinction between two modes of non-PAR behavior is provided - Short-Axis Mode (SAM) and

Long-Axis Mode (LAM), then the evolving Euler angles between the body’s principal axes and

angular momentum are defined, and lastly the cycle periods (or averaged periods) of these angles

are derived. SAM and LAM are non-PAR regimes near the two extreme principal axes, in SAM the

angular momentum vector in the body frame rotates about the maximum inertia axis (the shortest

of the three principal axes) and in LAM the angular momentum vector rotates about the minimum

inertia axis (the longest of the principal axes). Perfect alignment of the angular momentum with

one of these axes is PAR. Alignment with the median inertia axis is the boundary between SAM

and LAM and is an unstable state. The majority of asteroids are PAR around the maximum inertia

axis, the minimum energy state [38], or in SAM near it. When analytically solving Euler’s equation

an understating of the rotation mode is required in order to apply the solution correctly. The model

presented in this work solves Euler’s equation using numerical integration and thus it does not need

to account for the rotation mode in the solution process. However, the motion simulated in this

work is initiated at or near maximum inertia axis PAR, and thus unless mentioned otherwise the

motion is assumed to be SAM and treated accordingly.

In SAM the angle between the body frame angular velocity vector and the maximum inertia axis

can be described by [119]

ψ = tan−1
(
Ipa,yωpa,y
Ipa,zωpa,z

)
(2.7)

where Ipa,y and ωpa,y are the median principal axis moment of inertia and angular velocity com-

ponents, respectively, and Ipa,z and ωpa,z are their maximum principal axis equivalents. For the

purpose of this work this angle will is defined as the angle of precession. In SAM rotation this angle

is always acute (ψ ≤ π/2). The angle’s cycle period is

Pψ = 4

√
Ipa,xIpa,yIpa,z

2E(Ipa,z − Ipa,y)(M2/(2E)− Ipa,x)
K(k2) (2.8)
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where Ipa,x and ωpa,x are the minimum principal axis moment of inertia and angular velocity

components, respectively, E = 1/2(Ipa,xω
2
pa,x+Ipa,yω

2
pa,y+Ipa,zω

2
pa,z), M

2 = (I2pa,xω
2
pa,x+I2pa,yω

2
pa,y+

I2pa,zω
2
pa,z), k

2 = ((Ipa,y − Ipa,x)(Ipa,z −M2/(2E)))/((Ipa,z − Ipa,y)(M2/(2E)− Ipa,x)), and K(k2) is

the complete elliptic integral of the first kind. This period represents an oscillatory roll around the

body’s long axis as it rotates with respect to the angular momentum. The maximum value of this

angle can also be found analytically

ψmax = tan−1

(√
Ipa,y(Ipa,z −M2/(2E))

Ipa,z(M2/(2E)− Ipa,y)

)
(2.9)

For the purpose of this work an additional angle is defined:

ψ̃ =
∣∣cos−1 (ω̂ · ẑ)

∣∣ (2.10)

This angle is the magnitude angle between the evolving angular velocity and initial maximum

inertia axis (which for the modeled asteroid coincides with the z-axis). This angle encompasses in

it the precession angle in addition to other manipulations that are inflicted on the angular velocity.

It can be defined either in the asteroid body frame of in the inertial frame, depicting changes in

the rotational state depending on the observer.

The attitude dynamics are described using the Modified Rodrigues Parameters (MRP), denoted as

σ. The MRP’s relation to the angular velocity is

σ̇ =
1

4
[(1− σTσ)[I3×3] + 2[σ̃] + 2σσT ]ω (2.11)

Each boulder is modeled as a rigid body itself; however, while resting on the parent body surface

the boulders’ motion is linked to the parent body’s. Their angular velocities are matched to the

parent body’s and their attitudes are propagated accordingly.

2.2.3 Modeled events

Several types of surface phenomena are defined for the model -
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(1) Boulder movement on the surface. Referred to as “boulder surface movement”.

(2) Boulder separation from the surface. Referred to as “boulder launch”.

(3) Boulder return to the surface. Referred to as “boulder crash”.

(4) Boulder launch or transition to a hyperbolic trajectory. Referred to as “boulder escape”.

(5) Polyhedral slice from the parent body. Referred to as “fission event”.

2.3 Surface phenomena effect on model asteroid rotation

The model allows for boulder motion on and off the surface of the asteroid model to be

simulated. The mechanism of boulder motion is described in Sections 2.4-2.5, as a local process

that has to do with a single boulder or material deposit at a time. When discussing the global

effects of a moving boulder two contributions to the overall system dynamics can be described: the

direct transfer of momentum and the change in overall mass properties.

2.3.1 Boulder surface movement

In the case of boulder surface movement the jth surface boulder (j ⊂ NS) moves on the

parent body, either on a single facet or between two facets, with a change in its attitude with

respect to the parent body. This means there is some rearrangement of the asteroid model mass

distribution while the overall asteroid model mass remains constant (MA = M+
A = M−A ) 1 . The

change in inertia tensor reflects the movement and reorientation of the boulder

[I+A ]BA = [I−A ]BA +
(
[T+]BABB,j

− [T−]BABB,j

)
[IB,j ]

BB,j +MB,j

(
[r̃+B,j ]

BA [r̃+B,j ]
BAT − [r̃−B,j ]

BA [r̃−B,j ]
BAT

)
(2.12)

Assuming that the angular momentum of the asteroid model remains constant (HA = H+
A = H−A )

the angular velocity changes proportionally to the change in inertia tensor

ω+,BA
A = [I+A ]BA

−1(
[T ]BAI HI

A

)
= [I+A ]BA

−1(
[I−A ]BAω−,BAA

)
(2.13)

1 The (·)+ and (·)− indices indicate the variable state before and after an event, respectively.
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For continuity reasons the surface movement event does not change the asteroid attitude

σA = σ−A = σ+
A (2.14)

2.3.2 Boulder launch

The boulder launch case models some type of separation of the jth boulder (j ⊂ NS) from the

surface. After separation the boulder’s orbital state and attitude are evaluated separately from the

asteroid model. The boulder CM orbital position is propagated around the asteroid model using the

polyhedral gravity model described in [100]. The parent body shape is used in the model to compute

the gravity around the asteroid. Other orbital perturbations such as the Solar Radiation Pressure

(SRP) can be added to the orbit propagation. The asteroid model mass is assumed to be too small

to substantially torque the boulder’s rotation and thus the boulder’s attitude is propagated using

the Euler equation for a rigid body with no external torques (Eq. 2.6). For continuity reasons,

the asteroid model and boulder attitudes and the boulder’s inertial position do not change at the

moment of separation

σA = σ−A = σ+
A (2.15)

σB,j = σ−B,j = σ+
B,j (2.16)

RB,j = r−,IB,j = r+,IB,j = [T ]IBAr
BA
B,j (2.17)

The asteroid model mass and inertia tensor after launch are

M+
A = M−A −MB,j (2.18)

[I+A ]BA = [I−A ]BA − [T ]BABB,j
[IB,j ]

BB,j −MB,j [r̃
−
B,j ]

BA [r̃−B,j ]
BAT (2.19)

The boulder’s orbital velocity after separation is

Ṙ+
B,j = [T ]IBA

(
ω−,BAA × rBAB,j + ṙBAB,j

)
(2.20)

This velocity is the combination of the linear velocity of the boulder’s surface position as the

asteroid model rotates (right before separation) and any additional velocity it may have relative to
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the parent body’s surface. An added velocity that can be a result of boulder movement or some

type of event such as an artificial removal or outgassing.

Assuming that the boulder’s angular velocity at the moment of separation is equal to the asteroid

model’s angular velocity before separation, ω+
B,j = ω−A , the angular momentum of the boulder

about its CM is

H
+,BB,j
B,j = [IB,j ]

BB,jω
−,BB,j
A (2.21)

and its angular momentum about the system origin after separation is

H+,I
B,j = [T ]IBB,j [IB,j ]

BB,jω
−,BB,j
A +MB,jRB,j × Ṙ+

B,j (2.22)

Given that the system’s angular momentum is constant at all times the asteroid model’s angular

momentum after separation is

H+,I
A = H−,IA −H+,I

B,j (2.23)

Assuming the change in angular momentum of a boulder after separation is negligible, the boulder’s

angular momentum after separation is recorded in case it returns to the asteroid

HI
B,j(t > t+j separation) = H+,I

B,j (2.24)

This leads to an overall angular momentum of the system always being the sum of the asteroid

model’s angular momentum and all of the orbiting boulders’ angular momenta at the moments of

separation

HI = HI
A + ΣNO

j=1H
I
B,j (2.25)

which means that the system’s angular momentum HI remains constant and only changes in case

of a boulder escape from the system.

The asteroid model’s angular velocity after separation is then

ω+,BA
A = [I+A ]BA

−1(
[T ]BAI H+,I

A

)
= [I+A ]BA

−1
[T ]BAI

(
H−,IA −[T ]IBB,j [IB,j ]

BB,jω
−,BB,j
A −MB,jRB,j×Ṙ+

B,j

)
(2.26)
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Although fission events are initiated differently than boulder launches the dynamics of their depar-

ture form the parent body is the same. Once the fissioned polyhedron is created it is added to the

roster of boulders and then treated like a launched boulder.

2.3.3 Boulder crash

In the boulder crash case, a return of the separated jth boulder (j ⊂ NO) to the surface is

modeled. When an orbiting boulder CM enters the parent body a crash event is initiated 2 . The

boulder’s position on the parent body is decided by placing the boulder on the closest facet to it

at the moment of the crash. Thus, there is some added δr to the boulder’s position on the surface

r+,BAB,j = [T ]BAI R−B,j + δrBA (2.27)

This added δr ensures the boulder CM is placed on the surface of the parent body, and not deep

inside it. The added facet placement element can also be randomized to simulate different local

conditions, such as other boulders present, that would perturb the final reseting place. The asteroid

model mass and inertia tensor after the crash are

M+
A = M−A +MB,j (2.28)

[I+A ]BA = [I−A ]BA + [T ]BABB,j
[IB,j ]

BB,j +MB,j [r̃
+
B,j ]

BA [r̃+B,j ]
BAT (2.29)

Because the boulder angular momentum at separation is logged, when the boulder returns to the

surface (as described in Eq. 2.24), the value at separation is added to the asteroid model’s angular

momentum after the crash

H+,I
A = H−,IA +HI

B,j (2.30)

The asteroid model’s angular velocity is then

ω+,BA
A = [I+A ]BA

−1(
[T ]BAI H+,I

A

)
= [I+A ]BA

−1
[T ]BAI

(
H−,IA +HI

B,j

)
(2.31)

2 Conditions for deciding when a CM enters the parent body are presented in a later section.



27

The boulder’s surface velocity is the difference between its orbital velocity and the linear velocity

of the boulder crash location on the surface

ṙ+,BAB,j = [T ]BAI Ṙ−B,j − ω
+,BA
A × r+,BAB,j (2.32)

2.3.4 Boulder escape

As described, in the boulder escape event a boulder’s orbital energy (ξ = Ṙ2
B,j/2−U) reaches

positive values with respect to the asteroid system. This means the boulder has enough energy to

escape the system’s gravitational pull and is on a hyperbolic trajectory with respect to the asteroid

system. In this case the boulder’s mass is redacted from the system

M+ = M− −MB,j (2.33)

Assuming Keplerian dynamics for the hyperbolic escape and that the change in velocity the system

is subject to is proportional to the boulder’s velocity after leaving the system the change in the

system’s velocity is

∆V = −
MB,j

M+

√
|ṘB,j |2 −

2GM+

|RB,j |
ˆ̇RB,j,∞ (2.34)

where GM+ is the model asteroid gravitational parameter after separation. The escape direction,

ˆ̇RB,j,∞, is found using classical orbital elements by setting the true anomaly far away from the

system’s origin, at the edge of its Hill sphere, and computing the corresponding inertial Cartesian

position and velocity. The escape ∆V s are logged to examine their possible contribution in the

system’s orbital dynamics around the Sun.

2.4 Boulder motion

2.4.1 Surface geophysical environment

The geopotential on the surface of a rotating asteroid is governed by the balance between

two forces: the gravitational pull of the body and the accelerations experienced in a rotating frame.

A common method to describe the gravity on or near the surface of small bodies is by using the
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constant-density polyhedral gravity model. This model uses a triangular-faced polyhedron with a

constant density to provide the gravitational potential U(r), gravitational attraction ∇U(r), and

gravity gradient ∇∇U(r) at any position r 3 below, on, or above the surface of a body. The

geopotential of any point on the surface in the rotating frame is [120]

V (r) =
1

2
(r × ω) · (ω × r) + U(r) (2.35)

The combined acceleration a particle in the rotating frame experiences is then

r̈ = −ω × (ω × r)− ω̇ × r − 2ω × ṙ +∇U(r) (2.36)

When discussing the surface environment itself without of a specific particle the ṙ element can be

nullified. In this case Eq. 2.36 describes the surface acceleration [101] in position r on the surface. It

is common to use facet centers as indicator points for the surface acceleration. Surface accelerations

and their magnitudes are used as indicators of the likelihood of a stationary particle in point r or

on facet f on the surface to remain at that point. However, surface accelerations disregard the

local topography in the point’s or facet’s vicinity and thus cannot indicate the particles tendency to

move on the surface without examining nearby points and their geopotential. Surface slope angles,

on the other hand, combine the local acceleration vector with local facet normal n̂f to give an

indicator of the degree a particle is pulled to lower geopotential regions. Surface slope angles are

defined as the supplement angles between the acceleration vectors and surface normals at point r

αs = π − cos−1

(
r̈T n̂f
|r̈|

)
(2.37)

The plots in Figure 2.2 present Mollweide projections of the surface geopotential, surface accel-

erations, and surface slope angles of the asteroid Bennu as a PAR with a rotation period of 4.29

hours and density of 1190 kg·m−3. These values, presented in [17], are initial values determined

from the OSIRIS-REx spacecraft measurements at the asteroid. The asteroid’s shape model is a

degraded ∼6,000 facet version of the ∼200,000 facet shape model4 constructed from OSIRIS-REx

3 In this section all vectors are in the rotating asteroid model frame, a = aBA .
4 The shape model was degraded to reach ∼10 meter long facets that are comparable with the boulder sizes in

the simulations presented in later sections.
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measurements and available in [121]. Due to the asteroid’s constant angular velocity the surface

geopotential presented in the figure remains constant as well.

As can be seen in Eq. 2.36, a steady geopotential environment is not the case for a non-PAR. For

example, Figure 2.3 presents the surface slope angles for an asteroid with Bennu’s shape and density

with the presented nominal angular velocity vector initially skewed at the [14 ,
1
4 ,
√

7
8 ] direction (an

initial angle of ∼34 degrees between the axis of maximum inertia and angular velocity) in the body

frame. The figure shows the slopes at a time t0 and half a precession cycle period later, as well

as the difference in slope angles between the two phases. It is noticeable that although the change

in the maximum slope angle is around 2 degrees between the phases, some areas are subject to

slope angle changes that reach up to 35 degrees in magnitude. For example the equatorial region

near coordinates [-90,0] degrees shows an increase from a near zero degree slope to a 20 degree

slope angle. These changes are linked to the degree of precession an asteroid experiences, leading

to bigger slope angle shifts for asteroids with larger magnitudes of off-principal-axis motion.

The acceleration vector at each point can be divided to its facet tangential and facet normal

components. The facet tangential component is defined as the slope acceleration, denoted as r̈s.

The facet normal component is defined as the normal acceleration, denoted r̈n. These components’

values are:

r̈n =
(
r̈T n̂f

)
n̂f (2.38)

r̈s = r̈ − r̈n (2.39)

The slope vectors are the slope acceleration unit vectors

ŝ =
r̈s
|r̈s|

(2.40)

Figure 2.4 presents a map Bennu’s surface slope vector directions, a clear tendency towards the

equator can be seen for all longitudes and latitudes.
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Figure 2.2: Bennu geopotential parameter maps
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Figure 2.3: Bennu-shaped tumbling asteroid surface slope evolution map
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Figure 2.4: Bennu surface slope magnitudes and directions

An additional surface dynamical parameter that is used in this work is the surface escape

velocity. This parameter is the velocity a particle on the surface needs to have (with respect to the

rotating frame) in order of having sufficient energy to escape the asteroid system [122]. The escape

velocity is:

vesc = −n̂f · (ω × r) +

√
(n̂f · (ω × r))2 + 2Umax(r)− (ω × r)T (ω × r) (2.41)

where Umax(r) = max(U(r), GM/|r|). Figure 2.5 presents a map of of Bennu’s surface escape

velocities. The values in the map range from just under 0.15 to 0.25 m·s−1 providing a scale of

velocity magnitude expected to exist around such a body. The low escape velocity regions are

highly correlated with the low geopotential areas, as expected from Eq. 2.41.
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Figure 2.5: Bennu surface escape velocities

2.4.2 Cohesion forces

In addition to the geopotential environment, the bodies and material that comprise an as-

teroid experience cohesion forces. For kilometer size asteroids these forces can be significant in

governing material motion, or lack thereof [16, 13]. An analytical expression for the cohesion force

of a boulder under a constant upwards acceleration is developed by Kulchitsky [92]. Its formula is

Fc = 0.62pcS (2.42)

where pc is the cohesion strength and S is the boulder surface area in contact with regolith. In [13]

an order of magnitude for pc on asteroid surface is concluded to be around 25 Pascal. The surface

area in contact with regolith is a function of the degree a boulder is buried in the regolith. Figure

2.6a presents the cohesion induced accelerations (Fc/MB) for rectangular boulders with long axes

of 5, 10, and 15 meters, axes aspect ratios of b-a-a, and different regolith horizontal burial levels,

from zero (only bottom facet on surface) to 60% of boulder sides in regolith5 . The surface strength

used is 25 Pascal and the boulder density is set to 2000 kg·m−3. This density value is in the range of

densities presented for the asteroid Bennu in [52]. Figure 2.7 presents a comparison of the cohesion

5 The use of rectangular boulders for this examination is based on images of Bennu [52] and Itokawa [4], which
present meter-size boulders with wide planer faces and distinguishable angles between them.
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Figure 2.6: Cohesion induced acceleration magnitudes for boulders of varying sizes, aspect ratio,
and buried portion. Surface strength is 25 Pascal and boulder density is 2000 kg·m−3.

induced acceleration a 5×5 meter boulder experiences in different burial levels and the geopotential

acceleration it would experience on the equator of the asteroid Bennu. The geopotential presented

shows the gravitational acceleration, the rotational acceleration, and a combination of both. The

figure indicates downwards (of stationary) accelerations with down-pointing triangles, and upwards

accelerations with up-pointing triangles. In addition to the nominal geopotential state of Bennu

(indicated by solid lines) an accelerated Bennu is presented (indicated by dashed lines), the gravity

is identical for both cases. The figure shows that in the accelerated case the overall geopotential

acceleration experienced by the boulder on the equator is upwards pointing, meaning that it should

be ejected to space. However, this upwards acceleration is more than two orders of magnitude

smaller than the cohesion induced acceleration for the boulder. For that reason it is important to

account for cohesion when examining surface motion in sub-kilometer and kilometer size asteroids.

Figure 2.6b presents the percentage of contact surface area for the different horizontal burial levels,

in a scenario where all buried surface area is in contact with regolith. Based on the results presented

in this figure area percentages for cohesion are decided for the later simulations.

The behavior of cohesion forces on gravitational aggregates’ surfaces has many unknowns. An

in-situ examination of the forces has yet to be preformed and the results seen in [92, 13] are based

on theoretical models that are not yet fully validated. The extent of regolith-boulder surface area
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Figure 2.7: Cohesion induced acceleration compared to geopotential accelerations (gravity, rotation,
and combination) for nominally rotating Bennu and a fast spinning Bennu
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contact is unknown as well. For this work the model takes a conservative approach, assuming

maximum regolith contact. An argument for lower contact area percentages in porous asteroid

structures can be made. However, in the cases presented here, the cohesion induced acceleration

is two orders of magnitude larger than the rotating asteroid geopotential. Changing the balance

between cohesion and outwards acceleration would require a reduction in contact area in the same

order of magnitude.

The relationship between cohesion forces and the geopotential comes into play when looking at

surface slopes. Research into critical slopes on asteroids has shown that there is a maximum angle

in which cohesion forces hold material together [10, 114]. Above such and angle motion is induced.

The range for these critical slope angles has been found to be between 35 to 45 degrees.

2.4.3 Boulder motion mechanics

The dynamical mechanism of boulder motion has many factors that influence it. These

include the regolith grain size and composition, the existence of other rocks or boulders in the

movement path, the cohesive forces between boulder and regolith, and the shape of the moving

boulder. The extent of influence of these factors, and how they correlate with each-other, is not

fully solved for asteroid surface environments. For that reason the SEA RATS model does not

seek to fully model the boulder motion dynamics, but rather enable motion in the direction and

conditions governed by the geopotential. This, while giving a generalized consideration to cohesion

forces. In the model, boulders on the surface of the parent body are set to remain fixed to the body

as it rotates. At every time step, the boulders’ CMs on-surface accelerations (as described by the

full Eq. 2.36) and slopes are examined for motion conditions.

A distinction between surface and on-surface properties should be made. Where surface properties

refer to accelerations and slope angles of facets’ center positions and on-surface properties refer to

accelerations and slope angles experienced by boulder centers of mass. The difference between a

facet center and a boulder CM comes from the boulder being placed on the facet, with its periphery
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in contact with the facet. Figure 2.8 presents a comparison of fifty identical ∼8 meter boulders

placed on the surface of the Bennu shape model6 , dividing the on-surface boulder property (notated

as ab and sb for acceleration and slope, respectively) by the corresponding facet surface property

(similarly notated as af and sf ). The sb/sf ratio shows substantial differences between on-surface

and surface slope angles presenting, for the most part, higher ratios experienced by the boulder CMs.

The ab/af ratios show slightly lower accelerations experienced by the boulders. This corresponds

with their CMs being farther away from the asteroid center, and thus less gravitationally bound

to the asteroid. Thus, due to the variance between the two types of properties the on-surface

accelerations and slope angles are used to determine boulder motion thresholds.

The boulder motion scheme begins with computing the gravity and rotational components of the

1 10 20 30 40 50
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Figure 2.8: Ratio between on-surface and surface acceleration and slope for identical boulders
placed on Bennu’s surface

on-surface acceleration (including boulder surface velocity, as described in the full Eq. 2.36), as

well as the boulder’s on-surface slope. If the outwards rotational acceleration magnitude is greater

than the inwards gravitational acceleration, or the slope angle is greater than the defined launch

angle7 the cohesion force acting on the boulder is examined (as described in the previous section).

If the overall acceleration magnitude is larger than the cohesion hold on the boulder (|R̈| > Fc
MB

) a

6 The boulder placement can be seen in Figures 2.1 and 2.10.
7 Usually defined as 90 degrees [101].
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launch scenario is initiated. If these conditions are not met and the boulder is already in motion, a

third launch condition is examined: if the facet normal component of a boulder’s surface movement

velocity points upwards and is greater than the downward (facet normal) acceleration integrated

over a characteristic time period (ṙBAn ↑ and |ṙBAn | > |
´
r̈BAn dτB|), boulder launch is initiated. This

condition links the surface topography and the surface movement velocity in order of modeling a

scenario in which a boulder flies off a geopotential “cliff”. The characteristic time period is defined

as the time the boulder CM travels half of its long axis at its current velocity (dτB = LB
2|ṙn|).

If the launch conditions described are not met the slope is examined for surface motion conditions:

a slope angle condition for surface movement from a surface-stationary state (static condition), and

a lower threshold slope angle condition for surface movement continuation (kinetic condition). If

the slope is greater than the static condition angle surface movement is initiated. If the slope angle

is greater than the kinetic condition and the boulder is already in motion on the surface (|ṙBA | > 0)

the movement continues. If none of the launch or surface movement conditions are met the boulder

will remain fixed at its position. In case the kinetic movement condition is not met but the boulder

has been previously in motion the surface velocity is nullified (ṙBA = 0). If a boulder in surface

motion is launched its orbital launch velocity is the sum of its surface movement velocity, ṙBAB,j , and

facet linear velocity, as described in Eq. 2.20. The surface movement velocity component can also

be used to “artificially” instigate surface movement or a launch at a defined time or asteroid state

by inputting

ṙBAB,j = ∆vBAB,j (2.43)

Research into the specific mechanics of asteroid surface motion has been conducted in [104, 98, 123].

This research has focused on small lander activity on asteroids and distinguished between sliding

and rolling motion. The SEA RATS model does not seek to reach such granular accuracy, but rather

enable boulder motion as governed by the geopotential and cohesion forces. For that reason, surface

movement is defined as some linear combination of rolling and sliding. Whenever a boulder surface

movement occurs the slope acceleration and previous movement velocity are used to determine the
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movement direction and magnitude. Using equations of motion from classical mechanics, while

factoring for friction, a boulder’s nominal position and velocity after surface movement are defined

as

r+,BA =
(
r̈BAs − µk|r̈BAn |ŝBA

)
δt2

2 + ṙ−,BAδt+ r−,BA (2.44)

ṙ+,BA =
(
r̈BAs − µk|r̈BAn |ŝBA

)
δt+ ṙ−,BA (2.45)

where µk is the combined roll and slide kinetic friction coefficient and δt is some incremental time

element in which the motion on the surface is assumed linear. The kinetic friction coefficient is

modeled to be the linear combination of both slide and roll friction with some ratio factor κ

µk = κµs + (1− κ)µr (2.46)

This ratio factor can be kept fixed throughout the asteroid model surface and the propagation

time, or be made adjustable according to location on the surface, simulation run time, or boulder

surface velocity. For example, if some area on the asteroid surface presents fine regolith the sliding

friction might be more dominant and if another area is more rocky the rolling friction might be

more dominant.

Because the motion dynamics presented in Eq. 2.44 are simplified and do not consider changing

surface conditioning along the boulder path, an additional randomized positioning and velocity

vectors can be added

r+,BA = r+,BAnominal + δrBA (2.47)

ṙ+,BA = ṙ+,BAnominal + δṙBA (2.48)

this δr is proportional to the distance traveled and not necessarily in the nominal direction traveled,

allowing for some random motion related to interference along the path of the boulder:

δrBA = 0.1a0|r+,BAnominal − r
−,BA | n̂f×((1−a1)(1−a2)v1,f+(1−a1)a2v2,f+a1v3,f)

|n̂f×((1−a1)(1−a2)v1,f+(1−a1)a2v2,f+a1v3,f)|
(2.49)

δṙBA = 0.1a3|ṙ+,BAnominal|
δrBA

|δrBA | (2.50)
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where a0, a3 ∼ U(−1, 1) and a1, a2 ∼ N(0, 0.5) are random variables, and v1,f ,v2,f ,v3,f are the

three vertices of the facet the boulder is placed on. In the case a boulder moves from facet to facet

the added δr also assures the boulder is secured to the new facet. Similarly to its new location,

the boulder’s attitude is randomly perturbed from the previous attitude. Once the boulder’s new

surface state is determined its CM position, relative velocity, and attitude are propagated fixed to

the parent body. The asteroid model rotation is then propagated with the new mass properties.

When a boulder is launched to orbit its orbital energy with respect to the asteroid model is exam-

ined. If its value is negative the boulder is added to the orbital propagation roster. If the energy is

positive the boulder is considered to have escaped the system, it is removed from the system total

boulder roster, and the asteroid model’s orbital velocity change is logged.

For the case of an orbiting boulder, three types of orbital states are defined: near-surface or-

bit, mid-altitude orbit, and high-altitude orbit. The border separating between near-surface and

mid-altitude orbits being the Brillouin sphere. And the border separating between mid- and high-

altitude orbits being the asteroid model’s Hill sphere radius. A boulder orbiting in the near-surface

region is checked at every time step for a possible transition to mid-altitude orbit, or for a possible

crash on the surface. The orbit region transition check is simply done by examining the boulder’s

orbital radius. A boulder crash is defined as the movement of the boulder CM into the parent body

shape. This is checked by computing the boulder’s CM position’s (r) Laplacian of the polyhedron’s

potential, ∇2U(r). If the Laplacian value is zero the point r is outside the polyhedron, and if it

is 4π/Gρ 8 the point is inside the polyhedron [100], and thus, the boulder crashed on the surface.

In a crash case, the facet closest to the crashed boulder CM position is defined as the boulder’s

new surface facet. To promise boulder CM placement on the surface (and not below it), and to

account for local deviations during the crash, the boulder is randomly placed on the facet, adding

some δr to the boulder’s position. The boulder’s angular velocity is fixed to the asteroid model’s

and its attitude is perturbed from its attitude at the moment of the crash. As described in Eq.

2.32, a surface movement velocity is added to the boulder to be propagated after the crash. In the

8 Here G is the universal gravitational constant and ρ is the polyhedron’s density.
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case of a boulder orbiting in the mid-altitude region the boulder is checked for region transition

at every time step before its orbit is propagated to the next time step. A boulder orbiting in the

high-altitude region is checked for region transition and also for a possible escape scenario. This

could occur as the result of non-Keplerian forces, such as SRP, that can introduce energy to the

boulder’s orbit, turning a high-altitude orbit into a hyperbolic trajectory. Similarly to a surface

launch escape, the boulder’s orbital energy sign is examined to determine such an event. This

type of orbital escape is also recorded in the boulder roster with the orbital velocity change for the

asteroid model logged as well.

Figure 2.9 summarizes the boulder motion scenarios presented in this section.

2.4.4 Threshold angular velocities

The analysis of surface and on-surface properties can be reversed to find threshold angular

velocities that will lead to boulder motion. By defining desired acceleration magnitudes and slope

angles Eqs. 2.36 and 2.37 can be used to find corresponding angular velocities that will initiate a

boulder’s (cohesionless) launch or surface movement. In order to reach definitive ω values for fission

(launch) the asteroid is assumed to be principal-axis rotating (ω̇ = 0) and the surface movement

velocity is set to be zero (ṙBA = 0). The total acceleration at the point r is nullified and the

angular velocity is then computed from Eq. 2.36. For the slope surface movement angle correlating

angular velocity an assumption that the rotation axis is aligned with the ẑ axis is added to simplify

computation. Eq. 2.37 is then used to find ω that leads to a certain slope angle. Threshold angular

velocities can be found for the asteroid surface and used to map areas that are more susceptible to

be active in different rotation regimes. Similarly, surface boulders that are at higher risk of moving

can be pointed out. The values found in such an analysis will differ from actual values in the case

of a precessing asteroid or a boulder moving on the surface, but they provide an additional input

to the fission characteristics discussed in past research. Figure 2.10 presents the angular velocity

values required for fission (Figure 2.10a) or surface motion at a 40 degree slope (Figure 2.10b9 ) on

9 The heatmap in Figure 2.10b is limited in range as to show the relevant values in a differentiable manner.
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Figure 2.9: SEA RATS boulder state flow chart



43

the asteroid Bennu10 . The figures also show ranges of motion angular velocity magnitudes for the

50 boulders presented in Figure 2.8. These are marked as colored diamonds on the maps, each color

corresponding to a range of angular velocity magnitudes that would cause those boulders to launch

or move. The ranges presented are relative to the nominal Bennu angular velocity. Figure 2.10a

shows an outwards boulder CM acceleration at angular velocity rates of 1.1ωnom, and higher and

Figure 2.10b shows the 40 degree slopes at angular velocity rates of 1.2ωnom and higher. In general

low to mid latitudes show the lowest angular velocity rates needed for motion conditions, while

high latitudes and some equatorial regions show higher angular velocity rates needed for motion

conditions.

When comparing the values presented in the figure to Bennu’s actual angular velocity at a value

of 4.06e−4 s−1 [17] it is noticeable that there is a very fine balance between Bennu’s shape and

its rotation rate. Faster rotation or bigger equator radius (assuming same overall mass) would

probably lead to areas in which the total accelerations point outwards, or areas where slopes reach

critical values. When comparing the fission thresholds in Figure 2.10a to the fission condition

presented in the literature [7] (ω >
√

4πGρ/3), which for Bennu is at a value of 5.76e−4 s−1, it is

noted that extensive areas of the asteroid surface require lower angular velocity to lead to boulder

motion than in the simpler model.

2.5 Fission event

The mechanics of initiating a fission event in the SEA RATS model are different than those of

a boulder launch. Mostly because boulder geometry is predefined in the model setup process and the

geometry of fission slicing are defined while the event is processed. The fission event model allows

more drastic changes to the asteroid shape than boulder motion and for other types of gravitational

aggregates components to be removed from the model asteroid’s surface. Currently the model code

only allows for a fission event to be initiated “artificially” to model a detonation or impact event

on an asteroid surface. The model can allow for “inspection points” to be defined inside the parent

10 Using the shape model and parameters presented in Section 2.4.1.
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surface.



45

body and observed throughout a simulation run to initiate a fission event according to predefined

geopotential conditions.

In the fission event model the polyhedral shape which represents the ejected mass is found in an

iterative process which begins with a single surface interface location on the polyhedral asteroid

surface. For simplicity this location is selected as a facet center, but other facet locations, vertices,

or even points above or below the surface can be used as surface interface locations. The fission

polyhedron generation process includes a top iterative loop which matches the new polyhedral mass

with the required fissioned mass for a given density (nominally the asteroid bulk density) and three

inner algorithms which find the vertices and facets to be altered, reshape the polyhedral asteroid,

and create a new polyhedral body which simulates the fissioned mass. The fission polyhedron can

be created in two ways: a vertex shifting option, which carves a crater in the surface, simulating

an impact or surface detonation, and a vertex scaling option, which carves a shell off the surface,

simulating some surface ablation event. The shifting option receives a crater radius to depth ratio

as an input, and the scaling option receives an affected area radius as an input.

The polyhedron shape modification algorithm has three stages in it, nested in a iterative loop which

seeks to match the removed polyhedron mass to a required mass. Once in the loop, the algorithm

recognizes the vertices that need to be adjusted and lists the correlating facets. The algorithm then

reshapes the original body according to specified geometry. This geometry can either be scaling of

a vertex radius, while maintaining the original direction, or shifting the vertex location by a defined

vector. It should be mentioned, that in vertex shift, intersection of facet edges could occur, and

thus the defined shift should account for neighboring vertices and their shift. Lastly, the algorithm

creates a new body from the removed material. The overall shape at the moment of separation

(both bodies attached together) is equal to the original shape.

• Iterate to required mass - iterate()

(1) receive deflection interface location p

(2) initiate input radius
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if shift: guess initial crater radius r based on average facet length

else if scale: receive affected area radius r

(3) while
∣∣∣1− Me,calc

Me,req

∣∣∣ > ε:

(a) vertex change list, facet change list = list(p, r)

(b) modified body geometry = reshape(reshape type, vertex change list, facet change

list)

(c) new body geometry = new(vertex change list, facet change list, density)

(d) Me,calc = new body mass

• List vertices and facets - list()

(1) receive deflection interface location p radius r

(2) for v in vertex list:

if |v− p| ≤ r:

add v to vertex change list

for f in facet list:

if v in f:

add f to facet change list

• Body reshape - reshape()

(1) receive reshape type, vertex change list, facet change list

(2) clone vertex change list

(3) for v in cloned vertex change list:

if scale:

v = sacle× v
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if shift:

v = shift+ v

• New body - new()

(1) clone facet change list

(2) for f in cloned facet change list:

for v in cloned vertex change list:

if original v in original f:

assign v to f

(3) merge(original facet list,cloned facet list)

(4) merge(original vertex list,cloned vertex list)

2.6 Code structure

The SEA RATS model utilizes a Python based code for simulation and analysis. Python’s

class and object oriented environment provides the ability to fully define and propagate the state

of each modeled object, from the parent body, to the boulders and fissioned masses.

The code includes a Body class with which each body is initiated. This class lists provided

features such as polyhedral geometry and bulk density and their derived characteristics: volume,

mass, gravitational parameter, polyhedral gravity model constants, inertia tensor, Brillouin and

Hill sphere radii. In addition, the Body class logs the dynamical state and event flags. For all

bodies dynamical state is defined as

X = [ωT ,σT , ṘT ,RT ]T (2.51)

where all state elements are in the inertial frame. The events flagged include any type of boulder

surface moment, the boulder dynamical environment (surface, orbit, or escape), the boulder place-

ment facet, on-surface slope, and surface velocity. It is important to note that some properties are

irrelevant for the parent body (CM position and velocity, surface motion parameters) and other are
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irrelevant for boulder (gravity constants and parameters) but the Body class still includes them

for all bodies, either nullifying or not including an entry for them (using nan, not a number). This

setup simplifies the objects’ propagation by using a single function thread for all types of bodies.

The simulation runs for a predefined time vector which can have varying time step sizes but cannot

be altered once it has begun. The length of the time vector is used to create state vector elements

which are then populated as the simulation is propagated.

A second class used in the code is Delta, which allows for the boulder motion characteristics to

be defined. Whether those be natural characteristics: launch threshold, static and kinetic surface

movement thresholds, friction coefficients, and cohesion factors, or artificial ones: boulder launch

and fission event timing, launch direction and magnitude, selected boulder, region, or fission event

geometry.

The code runs several preprocessing functions which upload the asteroid geometry from a wavefront

file (.obj), this geometry, together with the other characteristics and an initial dynamical state are

then used to populate the parent body Body class as j = 0, boulders j = 1, 2, 3, ... are then added

and placed on the surface according to predefined parameters (number of boulders, characteris-

tic size, placement location/area, boulder density). The Delta class is populated with boulder

movement conditions and/or artificial launch criteria. Once all bodies and predefined events are

populated a propagation function initiates the simulation. This function calls an integrator loop

which iterates over the time vector elements and an internal loop iterates over all bodies. For

time t and body j a classical Runge-Kutta method [124] step is run with an internal dynamics

function. This internal function selects between parent body propagation (full rigid body dynamics

and nullified CM linear dynamics), orbiting/escaping boulder propagation (full rigid body dynam-

ics and CM orbit propagation based on polyhedral gravity model and added perturbations), or

boulder surface placement (rigid body linked to parent body and CM propagation as the asteroid

rotates). It is important to note that the surface motion dynamics is not propagated at this step

but rather performed at a later step once surface motion thresholds have been examined. In case

of an escaped boulder an option for simplified CM linear dynamics with no acceleration source can
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be implemented to reduce computational burden. Once the dynamics for body j at time t have

been propagated a condition function is run to examined if any threshold is met. This function

examines the time t with the predefined Delta class movements to initiate any artificial events

(boulder launch or fission). If none are initiated and the body is a boulder the event thresholds

are examined, depending on the boulder environment, surface or orbit, different parameters are

checked, on-surface geopotential and cohesion factors for a surface boulder, or Laplacian for an

orbiting boulder. Escaped boulders are not examined as their environment is defined as outside

the asteroid system. For a surface boulder the threshold hierarchy presented in Figure 2.9 is used:

launch acceleration and slope are examined, followed by cohesion check, if those are not met, the

static surface movement is checked, if that is not met and the boulder is moving the kinetic slope is

checked, if none of these conditions are met the boulder is left in its propagated location. If any of

these conditions are met the boulder and asteroid propagations are updated according to the type

of event that has occurred. Similarly an orbiting boulder that meets the crash or escape conditions

leads to an update in the boulder and asteroids states.

The code is able to run several case propagations sequentially or in parallel, thus allowing to run a

control case with the same initial conditions but different event thresholds, or allowing for a Monte

Carlo analysis of multiple cases that differ by the random factors in the boulder surface motion.

Following each simulation completion overall system properties such as mass and angular momen-

tum a computed for every time step and packaged together with the Body class objects in a single

run Python list.

The following list describes the code in algorithmic form:

(1) load(asteroid.obj)

(2) initiate Body(asteroid, j = 0)

(3) for j in 1,...,NI :

initiate Body(boulder, j = j)

(4) initiate Delta



50

(5) for run in 0,1,...,Nruns:

for ti in t :

for j in 0,1,...,NBody:

Xj,i+1 = RK4(Dynamics(Xj,i))

if conditions(Xj,i+1,Body,Delta) == True:

Xj,i+1,Body(j = j) = events(Xj,i+1,Body,Delta)

update X0,i+1, Body(j = 0)

(6) pack(Xj=0,1,...,NBody
,Body(j = 0, 1, ..., NBody))

2.7 SEA RATS applications

The following chapters present results from the SEA RATS model and code in a verity of

scenarios, both naturally caused and human induced. These results provide insights into how

small movements on and off of small body surfaces affect rotation in an efficient manner which

accounts for small body overall shapes as well as small scale geometry. The application of the SEA

RATS model lays between simple analytical examinations and complex numerical investigations.

It can present motion trends related to events occurring on a local scale of an asteroid while still

accounting for global reproductions.



Chapter 3

Modeled natural behavior

This chapter explores the dynamical changes asteroid undergo when material motion is in-

duced naturally, either in fast rotating body environments, or in small scale particle events.

3.1 Fast rotating bodies

The following sections present results for simulations of fast rotating model asteroids. These

simulated bodies are based on known asteroid shapes and bulk densities with adjusted angular

velocity vectors selected to induce motion. The new a-priori angular velocity magnitudes are larger

than the known nominal values for these asteroids to an extent higher than expected to be induced

by the YORP effect in short time scales. Thus, the harder core assumption presented in Section 2.2

is important to “maintain” the modeled asteroid in its shape until reaching the simulation initial

conditions. Alternatively, the increased angular velocity magnitudes presented could be caused by

a faster torque inducing effect such as a planetary flyby or a small impact.

The simulation results presented in this section are based on asteroids Bennu and Itokawa as two

examples of shapes for small rubble pile asteroids. First, a Bennu model single boulder example is

described and presented. This case serves as a benchmark to other simulations and, unless men-

tioned otherwise, the following cases use the same parameters. The single boulder example is also

used to present a time step analysis for the simulations as well as a comparison of different modeled

surface conditions. The cases that follow present multiple boulder simulations for both the Bennu

and Itokawa shapes at varies angular velocity states.
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3.1.1 Single boulder motion on a asteroid Bennu model

This section demonstrates the changes that occur in a fast rotating asteroid state due a the

motion of a single boulder. Additionally, the boulder motion model is analyzed through modeling

variable comparisons.

3.1.1.1 Simulation setup

The following section presents the motion results from a SEA RATS simulation of a single

boulder on the surface of a Bennu-like asteroid model. The simulation is propagated for a period of

48 hours at a fixed time step of 50 seconds, Section 3.1.1.3 presents an analysis of time step sizes.

The asteroid model parameters are presented in Table 3.1. The asteroid model is set as a PAR

with a rotation rate 30% faster than that of asteroid Bennu, a value selected to induce boulder

motion according to the thresholds seen in Figure 2.10b. The asteroid model and boulder density

values are based on [17, 52]. The parent body shape model is the one presented in Figure 2.1. No

external perturbations are applied to the simulation. The modeled boulder, seen in Figure 3.1, is

a perturbed 84 facet box with meter scale principal axes. The boulder size is selected to represent

the boulder population described in [52]. The boulder is placed on a mid latitude in the northern

hemisphere. The slopes conditions are selected based on [10, 101]. The cohesion strength is as

described in [13], and boulder-regolith contact area is selected for a boulder at 15-20% burial, as

seen in Figure 2.6b. The surface motion friction coefficients are based on experiments presented in

[125, 126]. Due to lack of information of slide to roll ratio a fixed 1-1 ratio between the movements

is selected. This leads to an overall constant friction factor of 0.625. The simulation is preformed

with the randomness capabilities enabled (δrBA , δṙBA 6= 0).

In addition to the simulation of the modeled asteroid, a control case is run using the same asteroid

parameters (parent body and boulder), but with motion conditions disabled. Throughout this

chapter the control case is used to compare the results from the simulated asteroid state to those
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Figure 3.1: Boulder polyhedron in single boulder simulation

in which surface activity does not occur.

3.1.1.2 Results

Figure 3.2 presents the boulder motion in the first ∼3 hours of the simulation as observed

in the asteroid body frame. The boulder can be seen moving towards the asteroid’s equator and

slightly to the east (Figures 3.2a-3.2c), in the time between Figures 3.2c and 3.2d the boulder is

launched to an equatorial orbit, which can be seen to continue in Figures 3.2e and 3.2f. Figure

3.3 presents the complete boulder trajectory during the simulation run projected on the model

asteroid surface (in the asteroid body frame). The figure shows a global view (3.3), a local view

presenting the first ∼3 hour time frame (3.3b), and a close-up view of the surface motion of the

boulder (3.3c). The figure presents all types of boulder motion: surface movement (notated as roll),

launch events, crash events, and orbital motion. The boulder can be seen bouncing (crashing and

launching immediately) several times in its path to the equator. Once it reaches near the equator

(latitude ∼12 degrees) it is launched to orbit for several revolutions. At around hour 10 of the

simulation the boulder crashes and is immediately launched to orbit as seen in the near longitude

-180 degrees in Figure 3.3a. Figure 3.4 presents the boulder’s surface motion characteristics, its
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Parameter Values

Rotation period 3.3 [h]
Parent body density 1190 [kg·m−3]

Boulder density 2000 [kg·m−3]
Parent body principal radii 261, 254, 221 [m]

Boulder principal radii 5.25, 3.38, 2.95 [m]
Boulder mass 410 [ton]

Boulder location [lon,lat] -16.6, 30.3 [deg]
Launch slope condition 90 [deg]
Static slope condition 40 [deg]

Kinetic slope condition 35 [deg]
Cohesion strength (pc) 25 [Pa]

Boulder-regolith contact area (S) 30 [% of boulder surface area]
Sliding friction (µs) 0.5
Rolling friction (µr) 0.75

Friction ratio (κ) 0.5
Total kinetic friction (µk) 0.625

Table 3.1: Bennu asteroid model parameters
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latitude, on-surface slope, and surface velocity magnitude. The boulder’s time in orbit is indicated

by a gray background in the plot. A correlation between all three characteristics can be seen

as the boulder travels towards the equator and accelerates its surface velocity, increasing its on-

surface slopes. The boulder’s orbital trajectory can be seen in Figure 3.5, the orbit presents chaotic

behavior (as described in [23]), with an evolving semi-major axis, eccentricity, and argument of

periapsis. Behavior that is caused by the close proximity to the irregularly shaped model asteroid.

The model asteroid’s global characteristics of mass distribution and angular velocity best represent

the change in asteroid state due to boulder activity. The model asteroid mass is seen in Figure

3.6 with four mass calculations presented in the figure: the overall system mass (M), the mass of

the parent body, the simulated asteroid mass (MA), and the control case asteroid mass. The mass

evolution is shown both in an absolute kg value and as a fraction of the asteroid system mass.

The results show the overall system mass remaining constant as the boulder is kept bound to the

asteroid system. The modeled asteroid mass is seen to switch between the initial value and that of

the parent body as the boulder moves from surface to orbit and vice versa. Figure 3.7 presents the

asteroid’s inertia tensor evolution for the simulated case compared to the parent body and control

case. The control case (and simulation initial values) are aligned with the asteroid’s principal axes

of inertia (cross axis elements are zero). The simulated case inertia tensor values (in the original

body frame) veers away from these initial values, reaching none zero cross axis inertia elements. A

result that means the modeled asteroid’s principal axis have shifted. Figure 3.8 presents a relative

comparison between the modeled asteroid’s principal axes throughout the simulation, the presented

values are of the maximum inertia z-axis divided by the minimum and median inertia axes, x and

y, respectively. This type of variable presentation allows for some analysis of the evolving model

asteroid shape. The figure presents the values for the simulated case, the control case, and the

parent body. Figure 3.8a presents the entire simulation run time, which shows, similarly to the

mass, the inertia values (relative and absolute in Figure 3.7) alternating between the initial values

and those of the parent body. The ratio between these two values are governed by the initial

boulder placement and a-priori parent body shape. Figure 3.8b presents principal axis changes
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(a) t = 0 [s] (b) t = 3000 [s]

(c) t = 5000 [s] (d) t = 7500 [s]

(e) t = 9000 [s] (f) t = 10000 [s]

Figure 3.2: Boulder initial motion on Bennu model in single boulder simulation
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(c) Surface view

Figure 3.3: Boulder motion surface projection in single boulder simulation. The heatmaps indi-
cate surface slopes, boulder initial position indicated by white dot, surface motion indicated by
white line, boulder launch and crash events indicated by triangles, and orbit projection on surface
indicated by dashed yellow line
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Figure 3.6: Modeled asteroid mass in single boulder simulation. The parameters presented include
system mass, parent body mass, asteroid mass, and control case mass.

in the initial 2 hours of the simulation run, when the boulder is moving on the model asteroid’s

surface. The figure shows an increase in the maximum inertia axis with respect to the other two

axes, indicating a tendency of material to move towards the equator.

The modeled asteroid angular velocity vector evolution is presented in Figure 3.9. The figure

shows both the simulated and control case values. A decrease of the angular velocity can be seen

in the figure, this change in angular velocity amounts to an increase of 0.12 seconds in the model

asteroid instantaneous (at the end of simulation) rotation period. The majority of angular velocity

reduction can be seen in the first two hour of the simulation, when the boulder travels on the

asteroid surface towards the equator. Additionally, an introduction of out-of-axis motion can be

seen for the simulated case, this result, together with the change in inertia tensor elements leads to

the loss of the PAR characteristic and the introduction of precession. For that reason the rotation

period mentioned is an instantaneous one that is computed using one value of the changing angular

velocity magnitude. The precession reached can also be seen in Figures 3.10-3.12 which show how

the direction of the angular velocity vector evolves. Figure 3.10 presents the projection of the body

frame angular velocity direction vector (normalized to magnitude) on the model asteroid equatorial

plane (the body frame x-y plane). The out-of-axis motion is clearly seen in the figure, with the

angular velocity circling around a point other than the original maximum inertia axis direction.
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Figure 3.8: Modeled asteroid principal maximum moment of inertia ratio with median and minimum
principal moments of inertia in single boulder simulation. The parameters presented include parent
body inertia ratio, asteroid inertia ratio, and control case inertia ratio.
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Figure 3.11 presents the angle created between the original maximum inertia axis (seen by the

control case) and the evolving angular velocity vector, as defined in Eq. 2.10. The angle includes

both the shift in angular velocity direction due to boulder activity (predominantly seen as the shift

in the initial hour of simulation as well the jump in hour 10) and the precession motion caused by

the newly created misalignment between angular velocity and maximum inertia axis. Overall this

angle reaches a magnitude of almost 0.005 degrees for a single boulder motion sequence. Figure

3.12 presents the angular velocity vector projection on the x-y plane in inertial frame as well as the

angle between initial and evolving angular velocity directions in the inertial frame. These values

show that for an external observer the angular velocity precesses in a smaller magnitude (∼1 order

of magnitude less), and in a higher frequency due to the model asteroid’s rotation itself. The center

of the angular velocity precession is shifted from the original direction due to the initial angular

velocity changes, which means that the averaged angular velocity direction has changed as well.



63

0

2

4

x
[1

/s
]

×10 8

2

0

2
y

[1
/s

]
×10 8

sim
ctrl

0 10 20 30 40 50
t [h]

5.28884

5.28886

z
[1

/s
]

×10 4

Figure 3.9: Modeled asteroid and control case angular velocity evolution in single boulder simulation
(asteroid body frame)

0.0 0.2 0.4 0.6 0.8
x ×10 4

6

4

2

0

2

y

×10 5

Figure 3.10: Modeled asteroid angular velocity vector projection on the equatorial plane in single
boulder simulation (asteroid body frame)



64

0 10 20 30 40 50
t [h]

0.000

0.001

0.002

0.003

0.004
[d

eg
]

sim
ctrl

Figure 3.11: Modeled asteroid and control case angle between angular velocity vector and initial
axis of maximum inertia in single boulder simulation (asteroid body frame)

0.8 0.6 0.4 0.2 0.0 0.2 0.4
x ×10 5

6

4

2

0

2

4

6

y

×10 6

0 10 20 30 40 50
t [h]

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

[d
eg

]

I
sim

Figure 3.12: Modeled asteroid angular velocity vector projection on inertial x-y plane and angle
between angular velocity vector and initial axis of maximum inertia in single boulder simulation
(inertial frame)



65

3.1.1.3 Time step analysis

The following section presents an analysis of the simulation time step size preformed to de-

termine which time step is adequate for use in the simulations presented in this work. Figures

3.13-3.18 present results from seven simulations which differ only in the time step size. All the

initial conditions are identically set to those presented in the previous section (Table 3.1) and the

simulation randomness capabilities are disabled (δrBA , δṙBA = 0). The step sizes examined are

5, 10, 25, 50, 100, 200, and 400 seconds. These step sizes are 2 to 4 orders of magnitude smaller

than the orbit period of a low altitude orbit around asteroid Bennu (which is ∼12 hours for a

600 meter semi-major axis orbit) and are 1 to 3 orders of magnitude smaller than the modeled

asteroid rotation period. Previous research has shown that this dynamic period to time step ratio

is sufficient for orbit propagation [127]. Thus the analysis here seeks to examine the surface motion

behavior for different time steps.

Figures 3.13-3.14 present the boulder position and velocity in the inertial frame for 6 hours. The

boulder can be seen moving on the surface and then launching to orbit after almost 1 simulation

hour (orbit indicated by the gray background). The overall motion behavior is the same with

slight phase differences in the orbital motion. Figures 3.15-3.18 present the difference between

all simulation results and the smallest time step results (eR,B,j = RB,j,δt −RB,j,δt=5s, eṘ,B,j =

ṘB,j,δt− ṘB,j,δt=5s). Here the difference between orbit phases can be seen reaching hundred meter

and cm·s−1 scale for the large time step simulations. However, a convergence in results can be seen

as the time steps decrease. When looking specifically at the surface motion significantly smaller

differences can be observed, with the largest differences between cases seen in the interface between

surface and orbit. The 50 second time step shows an position difference of less than a meter and

a velocity difference of less than 0.5 mm·s−1 at the end of the surface motion. These values are

smaller than other sources of disturbance in asteroid environments, such as obstacles in a boulder’s

path on an asteroid surface. Thus, a 50 second time step is used for the simulations presented in

this research.
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Figure 3.15: Boulder position difference from δt = 5 [s] for varying time step sizes
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3.1.1.4 Surface condition effects on boulder motion

A significant unknown in asteroid environments is the conditions and behavior of the surface

with respect to motion of objects and material. For that reason the SEA RATS model has the

capability to adjust key surface motion parameters. The following figures present results for three

12 hour simulations of the boulder presented previously differing only in the surface motion param-

eters, presented in Table 3.2. The parameters in the three cases are set to represent three levels

of cohesion strength. These are defined by the motion slope conditions and the friction coefficient

ratio. The static slope conditions are set by the range of values described in the literature [10].

And the kinetic slope condition is set to be 5 degrees lower than the static one. Higher static slope

conditions were examined as well, but they did not reach motion initiation, and thus resulted in

a static simulation. The friction ratio was used to determine the magnitude of friction coefficient

in order to minimize the number of variables checked. The nominal surface motion parameters

used throughout this research are those of case 2. For the purpose of comparison the simulation

randomness capabilities are disabled.

Parameter Case 1 Case 2 Case 3

Static slope condition 35 [deg] 40 [deg] 42 [deg]

Kinetic slope condition 30 [deg] 35 [deg] 37 [deg]

Friction ratio (κ) 1.0 0.5 0.0

Total kinetic friction (µk) 0.5 0.625 0.75

Table 3.2: Surface motion parameters

Figure 3.19 presents the boulder surface motion characteristics and trajectories for all three

cases. When comparing the initial surface motion, all three cases present a similar surface trajectory

but with different scales in time to launch, maximum velocity reached, lowest latitude reached, and
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on-surface slope at time of launch. These differences can all be explained by the different friction

coefficient used to model the motion, leading to a range of velocity loss magnitudes, which lead

to longer duration on the surface and more surface traveled. The orbital trajectories that follow

(also presented in Figure 3.20) are similarly of low altitude and chaotic, presenting a different ori-

entation due to the difference in location in inertial space at time of launch. However, these orbits

lead to the same eastern region for the boulder’s first crash. A crash that for cases 1 and 3 leads

to an immediate launch back into orbit. For case 2 the crash leads to surface motion towards the

equator, a short bounce, and then stopped motion on the equator. This difference in results serves

as evidence to the chaotic nature of orbits around small bodies and the resulting redistribution of

material.

The global model asteroid characteristics are presented in Figures 3.21 and 3.22 which compare the

simulations’ principal axis inertia tensor element ratio and angular velocity evolution. The inertia

tensor element ratio in Figure 3.21 shows, similarly to the previous section results, the maximum

principal axis inertia element growing with respect to the other two for the duration fo the boulder

movement towards the equator. The growth in the ratio differs in duration (later launch time for

more friction) and magnitude (lower latitude reached for more friction). The effect of the difference

in motion on the modeled asteroid seen in Figure 3.22 shows the same trend as the inertia element

ratio, larger difference in angular velocity for higher friction cases, especially for the duration of

the surface motion seen in Figure 3.22b. The figure also shows the change in angular velocity that

results from the boulder launch to correlate to the surface velocity at launch, largest change for

case 1, and lowest for case 3. However, the overall change to angular velocity (surface motion and

launch) is highest in case 3, presenting a higher contribution to the surface motion over the boulder

launch. The end results of the angular velocity magnitudes correlate to an instantaneous rotational

period increase of 0.09 seconds for case 1, 0.08 seconds for case 2, and 0.1 seconds for case 3. These

results do not adhere with the surface motion trend due to the chaotic nature of the orbital motion

and return of the boulder in case 2 to the surface.

In general, the results presented here show an overall consistent boulder behavior and motion trend
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(e) Case 3 boulder surface motion char-
acteristics
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Figure 3.19: Varying surface motion parameter simulation results. Left subfigures show surface
characteristics (latitude, surface slope, surface velocity) and right subfigures show boulder trajectory
projection on the surface
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(motion toward equator and launch once critical velocity is reached) within the range of surface

motion characteristics described in past research. When comparing the case 2 results to those of

the previous section, which differ only in the simulation randomness capability being disabled, the

trends are similar, but the added random factors (best seen in the on-surface slopes and surface

velocity in Figures 3.4 and 3.19c) leads to an earlier launch in the randomness enabled case which

“fails” to become orbital. That in turn leads to additional time on the surface for the boulder,

which results in lower latitude and higher on-surface slopes and surface velocity reached, providing

an overall larger change in the angular velocity vector magnitude.
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Figure 3.21: Modeled asteroid principal maximum moment of inertia ratio with median and mini-

mum principal moments of inertia in single boulder simulation for varying surface motion parame-

ters. The parameters presented include parent body inertia ratio, asteroid cases inertia ratio, and

control case inertia ratio.
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Figure 3.22: Modeled asteroid and control case angular velocity evolution in single boulder simu-

lation for varying surface motion parameters (asteroid body frame)
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3.1.2 Multiple boulder motion on an asteroid Bennu model

The following section presents simulation results of twenty five boulders randomly distributed

on the surface of the model asteroid Bennu.

3.1.2.1 Simulation setup

The simulation setups used are an accelerated PAR modeled Bennu identical to that presented

in Section 3.1.1 (30% faster than nominal rotation) and a tumbling modeled Bennu, accelerated

to the same angular velocity magnitude as in Section 3.1.1 but with the angular velocity vector

direction presented in Figure 2.3. Table 3.3 presents the simulation setup condition differences.

Parameter PAR modeled Bennu Tumbling modeled Bennu

Initial angular velocity magnitude 5.28887× 10−4 [s−1] 5.28887× 10−4 [s−1]

Initial angular velocity direction [0,0,1] [14 ,
1
4 ,
√

7
8 ]

Simulated period 48 hours 24 hours

Table 3.3: Multiple boulder simulation parameters

The twenty five boulders randomly placed on the parent body surface are presented in Figure

3.23a. The boulders are again perturbed 84 facet boxes differing in mean radii between 3 and

12 meters and overall axis ratio around 4-3-2. Each boulder is randomly perturbed such that

their shape and placement orientation differ. An example of the largest and smallest boulders

are presented in Figure 3.24. The boulder presented in Section 3.1.1 is included in the simulated

boulders in this section as boulder #11.

In addition to the single simulation results presented in Sections 3.1.2.2 and 3.1.2.4, Section 3.1.2.3

presents results from a Monte Carlo simulation of 250 runs of the PAR modeled Bennu. These

simulations are identical in all parameters and initial conditions and only differ by the boulder
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(b) Boulder placement map

Figure 3.23: Initial boulder placement for Bennu multiple boulder case

motion randomness (δrBA , δṙBA 6= 0).

3.1.2.2 Results for principal axis rotator

Figure 3.25 presents a summary of the boulder motion on and off the surface of the asteroid

model, projected on the its surface. Figure 3.25a shows boulders’ initial positions, final positions,

and surface motion trajectories. In Figure 3.25b the boulders’ orbits are added to present their

complete paths with respect to the surface. An overall trend towards the equator is observed, with

a slight tilt due west caused by the Coriolis Effect. Boulders do not seem to cross the equator,

but rather travel towards it, stop in mid latitudes, or reach near-equatorial regions and launch to

orbit. All launched boulders have some amount of surface motion before launching to orbit. This

result correlates with the magnitude of cohesion forces a static boulder on the surface experiences,

forces that are reduced once a boulder is in motion. All launches, but that of Boulder #11, occur

within latitude ±15 degrees and lead to low inclination orbits. The equatorial region presents sev-

eral crash-launch events in which a boulder touches down and immediately launches back to orbit.

The boulder initially located in coordinates [∼55,∼12] degrees travels to the equator, launches into



77

x [m]

15 10 5 0 5 10 15 20

y [
m]

10
5

0
5

10
15

20

z [
m

]

5

0

5

10

15

(a) Largest boulder (principal radii 16.5, 12.1, 8.0 [m])

x [m]

4
2

0
2

4
y [

m]

3
2

1
0

1
2

3
4

5

z [
m

]

2
1

0
1
2
3
4

(b) smallest boulder (principal radii 4.0, 2.8, 2.4 [m])

Figure 3.24: Examples of asteroid model surface boulders
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a ballistic trajectory, crashes, travels back to the equator and hops again before stopping on the

surface, all occurring in the same equatorial region around longitude 60 degrees.

The trajectories of Boulder #11 and an additional boulder, #22, are seen in Figure 3.26. Boul-

der #22 is a 1291 ton boulder (principal radii 8.8, 5.7, 3.3 meters) originally placed in longitude

and latitude [-4,-9] degrees. Boulder #11 is the most extreme latitude boulder to reach launch

conditions. It moves from latitude 33 degrees due south, launches around latitude 23 degrees,

orbits the asteroid model for two revolutions within 100 meters from the surface before crashing

on the surface at the highest latitude crash (∼20 degrees). Boulder #22 also travels towards the

equator, reaches it, lingers at the equator in a state of instability for more than 3 hours before

reaching a critical state and then launches into a ∼0 degree inclination orbit. The boulder orbits

the asteroid model for several revolutions before touching down on the surface and launching back

to orbit at longitude and latitude [160,0] degrees. Boulder #22 eventually crashes on the surface

near longitude and latitude [-160,0] degrees. As seen in Figure 3.25, other boulders also exhibit this

crash-launch behavior, some even more than once during the simulation run time. The maximum

surface speed reached are 0.039 and 0.023 m·s−1 for boulder #11 and boulder #22, respectively.

The highest surface speed reached is of boulder #12, initially located at latitude and longitude

[132,-45] degrees, making it the highest latitude boulder to move, which reaches a surface speed of

0.041 m·s−1. The speeds are a testament to the slow pace of dynamics in asteroid environments

and the low velocities required for launching material off of asteroids.

All boulders’ overall trajectories in inertial space can be seen in Figure 3.27. Again, the low

inclination of the orbits resulting from the equatorial launches can be seen. All the orbits also

present chaotic behavior due to the close proximity to the irregular shaped asteroid model. Most

boulders in orbit crash back into the asteroid model by the simulation cut-off and none of them

reach an escape trajectory sending them away from the asteroid system.

In the scenario presented here a total of 14 out of 25 boulders moved on the surface, out of which

7 boulders launched to orbit or a sub-orbital trajectory. Three boulders remained in orbit by the

end of the simulation. As seen before, this surface activity had an effect on the asteroid model
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(a) Surface motion
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(b) Surface and orbital motion

Figure 3.25: Boulder motion surface projection in Bennu multiple boulder simulation. The
heatmaps indicate surface slopes, boulder initial position indicated by white dot, surface motion
indicated by white line, boulder launch and crash events indicated by triangles, orbit projection on
surface indicated by dashed yellow line, and boulder final position indicated by blue star.
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(c) Boulder #22 initial surface motion
characteristics
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(d) Boulder #22 trajectory

Figure 3.26: Boulders #11 and #22 motion characteristics and trajectories. Left subfigures show
surface characteristics (latitude, surface slope, surface velocity) and right subfigures show boulder
trajectory projection on the surface.
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itself, leading to changes in the mass properties as well as system dynamics. Figure 3.28 presents

the evolution of the asteroid model and asteroid system masses. The figure shows a substantial

amount of activity in the beginning of the simulation. This can be explained by the introduction

of the new, higher, rotation rate compared to the asteroid Bennu who’s shape is used as the basis

of the asteroid model. The figure also shows that the maximum amount of lost mass is around

0.021% of the total mass (or ∼15240 tons), this is only about a third of the sum of the surface

boulder masses. The mass that remains in orbit by the simulation cut-off is about 0.018% of the

initial mass (∼13240 tons). The crash-launch events can be seen in the figure as spikes around

hours 17,40 and 45. The majority of mass loss is attributed to boulder #18, with a mass of 11640

tons, which launches from near its original location at [15,11] degrees and remains in orbit by the

end of the simulation. Figure 3.29 presents the inertia tensor evolution of the asteroid model, this

is a better indicator of the change in mass properties due to boulder surface motion (which will

not be shown in the system mass change). Again, most activity is seen in the initial hours of the

propagation. The deviation from the initial principal axis and introduction of non-zero off-diagonal

elements is seen in the figure. The continuous growth in maximum principal axis ratio with respect

to the median and minimum axis is seen during the first 0.75 hours in Figure 3.30. However,

once boulders launch off the surface the moments of inertia principal axes ratios break, leading the

maximum-minimum ratio at lower values and the maximum-median ratio at higher values.

The evolution of the angular velocity vector is seen in Figure 3.31. The loss of the PAR char-

acteristic is seen as well as an overall reduction in the angular velocity magnitude. This reduction

constitutes an added 2.52 seconds in asteroid model’s instantaneous rotation period (at the simula-

tion end). When comparing Figure 3.31 to Figures 3.28 and 3.29, it can be seen that the significant

changes in angular velocity correlate to the pure surface motion, rather than launch and crash

events. Meaning the changing inertia tensor has a more substantial effect on the asteroid model

angular velocity than the momentum transfer due to boulder launch.

Figure 3.32 presents the asteroid body frame angular velocity vector projection on the asteroid

equatorial plane as well as the angle between initial body frame maximum inertia axis and evolving
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angular velocity vector. Here the modeled asteroid precession is seen to reach a maximum angle of

almost 0.1 degrees. However, because of the gradual initial boulder motion the precessing angular

velocity returns close to its initial orientation once in a precession cycle. The precession as observed

in inertial space is seen in Figure 3.33, similarly to the previous results the magnitude of precession

is about 10 times smaller and at a higher frequency than the in the asteroid body frame. The

precession in inertial space also show a different center of rotation due to boulder motion, this new

center is likely to become the the new inertial direction of angular velocity as dissipation sets in

and the precession is damped back to a PAR.
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Figure 3.32: Modeled asteroid angular velocity vector projection on the equatorial plane and angle

between angular velocity vector and initial axis of maximum inertia in Bennu multiple boulder

simulation (asteroid body frame)
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simulation (inertial frame)

3.1.2.3 Principal axis rotator Monte Carlo results

As mentioned in Section 2.4, boulder placement during surface movement has both deter-

ministic and random elements to it. These leads to some random walk behavior in boulder motion,

as seen when comparing Section 3.1.1’s results to Boulder #11 in the previous section. This setup

means that a single case does not necessarily represent the definitive outcome of a given boulder

placement. For that reason multiple simulations are propagated differing only by the added δr and

δṙ perturbing vectors at each step of surface movement. By using a Monte Carlo (MC) simulation

setup trends in the asteroid model dynamics can be studied and overall behaviors can be examined.

The following figures present the end distributions of 250 cases, identical in initial state to the case

presented in Section 3.1.2.2. These cases are propagated for 24 hours. The histograms also present

the control case values, the end value means, and the end value 1σ standard deviation.

Figure 3.34 presents the distribution of final asteroid model masses. All but one of the cases show
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some mass loss, with one large distribution peak (∼ 65% of cases) around 0.02% mass loss. An-

other, smaller peak is noticed around 0.033% mass loss, and a third peak presents ∼0.003% mass

loss. This type of distribution is the result of the discrete nature of boulder masses as part of the

asteroid model, leading to similar changes as the same masses end up in orbit.

Figure 3.35 presents the ratio between the initial and final values of the inertia tensor elements.

The off-diagonal ratios in the figure are computed with respect to the initial minimum inertia x axis

because their initial, aligned with principal axes, values are zero. The figure shows that all cases

gain off-diagonal elements, showing that all cases lose the PAR characteristic of the asteroid model.

Most cases show the final diagonal elements smaller than the initial values with small off-diagonal

elements, evidence of the asteroid model mass loss. The maximum inertia z axis does present about

20% of results reaching higher values. Results that relate to mass migration to the equator, either

by pure surface movement or by launch and crash events. Figure 3.36 presents the principal-axis

moments of inertia ratios between the maximum axis and the median and minimum axes. The

results show three major clusters of new ratios between the asteroid model principal axes. The

largest cluster is similar to the results presented in Figure 3.30, with an increase (up to 0.031%)

in the z-y ratio, and a decrease (up to 0.035%) in the z-x ratio. The two other results either show

an increase, or a decrease in both ratios. Results that can be explained by boulder redistribution

from orbital motion.

The changes in asteroid model average rotation rates and periods are seen in Figure 3.37. Here

the rotation rate is averaged over the final hours of the simulation once the boulder motion’s effect

on rotation has stopped. All cases show a decrease in rotation rate, with the average instanta-

neous rotation period increasing around 3 seconds and a maximum instantaneous rotation period

increasing about 4.5 seconds. The end averaged rotation rate results present a close-to-Gaussian

distribution which correlates to the different paths the boulders have taken. Figure 3.38 presents

the distribution of rotation direction parameters in the inertial frame. The distribution map on the

left shows the center of the equatorial plane projection of the precession ellipse reached at the end

of each propagation. The histogram on the right shows the distribution of maximum cone angles
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created by the shift of the angular velocity and precession motion.

The MC path results for boulders #11 and #22, presented in Figure 3.26, are presented in Figures

3.39 and 3.40. Boulder #11 presents a wide variety of outcomes leading it to launch from different

latitudes between its initial location and the equator. This leads to different orbits, varying in incli-

nation. Three wide crash-launch sites can be seen, together they span about 60% of the equatorial

regions between latitudes ±20 degrees. By the end of the 24 hour simulation runs ∼80% of boulder

#11 cases have crashed back to the surface, while ∼20% remain in orbit (all cases presented some

orbital motion). Boulder #22 shows more consistent behavior, presenting mostly equatorial orbits

at inclinations of up to ±10 degrees. Boulder #22 also presents three crash-launch areas, but they

span ∼40% of the equatorial region between latitudes ±10 degrees. By the end of the simulation

∼60% of boulder #22 cases end in orbit, while ∼40% are on the surface (again, all cases reached

some orbital motion). Other boulders that reach orbit present behaviors between #11 and #22

showing some correlation between the span of orbits reached by a boulder and its initial latitude.

Overall, orbiting boulders show low inclination, low altitude, chaotic orbits. Figure 3.41 presents

the MC distributions of two orbit outcomes, the maximum distance reached by any orbiting boul-

der in a specific case (Figure 3.41a), and the percentage of crashed boulders by the end of each

simulation run (Figure 3.41b). Figure 3.41a shows an average maximum distance reached of 1.1

km and an extreme case of maximum distance at 2.76 km, which represents 10% of the Hill Sphere

radius of an asteroid at the asteroid model mass and semi major axis [128]. As seen in Figure

3.41b, an average of 40% of orbiting boulders return to the surface by the end of the simulation

run time, with several cases showing as much as 80% returned boulders, or as little as 0%. These

close maximum distances and high return rates are evidence of the low orbital energies orbiting

boulders reach.
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Figure 3.39: Boulders #11 motion characteristics and trajectories in Bennu multiple boulder Monte
Carlo simulation
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Figure 3.40: Boulders #22 motion characteristics and trajectories in Bennu multiple boulder Monte
Carlo simulation
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3.1.2.4 Results for a tumbling body

A fast rotation accelerating event such as an impact or flyby will probably torque the angular

velocity direction of an asteroid in addition to its magnitude. This section presents results for an

accelerated and directionally perturbed Bennu asteroid model in order of examining the motion of

boulders on its surface and the motion’s effects on asteroid rotation.

Figure 3.42 presents the model asteroid slope angles at four snapshots throughout a precession

cycle, beginning at the simulation initiation. In addition to the slope angle heatmaps each plot

indicates the projection of the angular velocity vector on the modeled asteroid surface as well as a

dashed line indicating areas with slopes higher than the motion inducing 40 degrees. Throughout

the precession cycle about 89% of the modeled asteroid surface reaches this slope magnitude leading

a volatile surface as seen in the following results.

The simulated boulders’ surface and orbit trajectory projection on the surface are presented in

Figure 3.43 and their surface motion characteristics are presented in Figure 3.44. Additionally,

Figure 3.44 specifically presents the surface motion characteristics prior to first launch of boulders

#11 and #22. Both boulders show a trend towards the equator with some period of time where

the slopes do not reach motion thresholds. For boulder #22 this period is between hour 0 and 0.75

of the simulation and then again a quick stop near hour 2. Boulder #11 stops and starts moving

five times prior to launching to orbit, with an extended stationary period between hour 2.5 and 11.

When comparing this motion behavior to the PAR cases the “temporariness” of a boulder’s resting

place in a tumbling system is seen. All boulders in the tumbling case experience some motion

with five boulders only moving on the surface during the simulation and the remaining twenty

reaching orbit. A motion rate of 100%, which when compared with the 56% seen in the PAR case

demonstrates the volatility of material placement in a fast tumbling system. By the simulation’s

end (24 hours) thirteen boulders remain orbiting the modeled asteroid. Figures 3.43 and 3.44 show

that all boulders’ motion trend toward the equator where they either launch to orbit or rest for the

reminder of the simulation.
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Figure 3.42: Bennu-shaped accelerated tumbling asteroid surface slope evolution. The heatmaps
indicate surface slopes, the red pentagon represents body frame projection of angular velocity
vector, the dashed white line represents bounds for slopes over 40 degrees.
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The modeled asteroid mass distribution characteristics are presented in Figures 3.45-3.47 which

show the higher percentage (2.5 times more) of mass lost in the tumbling case compared to the

PAR. The material trend towards the equator is seen in Figure 3.47 whenever material is moving

on the surface and not abruptly launching to orbit.

The modeled angular velocity evolution is seen in Figure 3.48, here the control case is seen

tumbling as well as the simulated case for comparison purposes. Figure 3.48a presents the absolute

angular velocity vector and Figure 3.48b presents the difference vector between the simulation and

control case. A divergence trend can be seen in all three tumbling elements, a result that is different

from the PAR case where the x and y elements only appear to be oscillating around the 0 values.

Additionally, the tumbling case shows a larger change in angular velocity magnitude, probably due

to the higher mass loss in the tumbling case. This result can also be seen in Figure 3.49 which

presents the growing angle between the simulation and control tumbling angular velocity vectors.
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Figure 3.43: Boulder motion surface projection in tumbling Bennu multiple boulder simulation.
The heatmaps indicate surface slopes at simulation start, boulder initial position indicated by
white dot, surface motion indicated by white line, boulder launch and crash events indicated by
triangles, orbit projection on surface indicated by dashed yellow line, and boulder final position
indicated by blue star.
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Figure 3.44: Boulder surface motion characteristics (latitude, surface slope, surface velocity) tum-
bling Bennu multiple boulder simulation
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3.1.3 Multiple boulder motion on an Itokawa-shaped asteroid model

The following section presents simulation results for an Itokawa-shaped asteroid model prop-

agated for a period of 24 hours.

3.1.3.1 Simulation setup

The asteroid model parameters are presented in Table 3.4 and the asteroid shape, together

with 50 boulders distributed on its surface is presented in Figure 3.50. The asteroid model is set

as a PAR with a rotation period 3.5 times faster than the asteroid Itokawa. This value is selected

to induce boulder motion according to the thresholds seen in Figure 3.51. Here the harder core

assumption is crucial for the feasibility of an elongated asteroid system reaching high rotation rates.

While this assumption is aggressive is it meant to provide an example of an elongated asteroid being

disturbed to the extent of structural failure on the surface. The asteroid model and boulder density

values are based on [129, 4]. The boulder setup is similar to that presented in Section 3.1.2, with

the exception in boulder placement, which for the case presented here was intended to be primarily

in the edges of the long axis of the model asteroid. No external perturbations are applied and the

simulation is preformed with the randomness capabilities enabled.
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Parameter Values

Rotation period 3.45 [h]

Parent body density 1900 [kg·m−3]

Boulder density 2000 [kg·m−3]

Parent body principal radii 267, 147, and 105 [m]

Launch slope condition 90 [deg]

Static slope condition 40 [deg]

Kinetic slope condition 35 [deg]

Cohesion strength (pc) 25 [Pa]

Boulder-regolith contact area (S) 30 [% of boulder surface area]

Sliding friction (µs) 0.5

Rolling friction (µr) 0.75

Friction ratio (κ) 0.5

Total kinetic friction (µk) 0.625

Table 3.4: Itokawa-shaped asteroid model parameters
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Figure 3.50: Itokawa ∼3000 facet polyhedron with 50 boulders distributed on its surface
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3.1.3.2 Results

An overview of the boulder motion in the simulation can be seen in Figures 3.52 and 3.53.

These figures show very little boulder surface motion which result in five boulders launching to

a hyperbolic escape from the modeled asteroid system. An additional four boulders move short

distances on the surface before stopping. All boulders that move are situated at the long axis edges,

with more motion observed on the edge of the smaller shape node.

The boulder escapes result in an orbital ∆V applied to the modeled asteroid according to Eq. 2.34.

Each escaped boulder contribution is presented in Table 3.5. These ∆V magnitudes sum is 0.0133

mm·s−1, however, once their directions are accounted for the overall ∆V experienced by the model

asteroid is only 64% of sum value at 0.00849 mm·s−1 at the inertial direction of [ 0.945 -0.006 -0.325].

Despite the boulder launch direction varying in the inertial x-y plane, their z-axis distribution is

close to the 0 value, keeping the ∆V contribution perpendicular to the angular velocity.

Boulder ∆V magnitude [mm·s−1] ∆V direction (inertial)

19 0.00398 [ 0.783, -0.618, 0.059]

21 0.00320 [ 0.855, -0.491, -0.162]

23 0.00109 [ 0.958, -0.125, -0.255]

47 0.00057 [ 0.908, 0.416, -0.020]

48 0.0049 [ 0.133, 0.863, -0.486]

Table 3.5: Itokawa-shaped asteroid model boulder escape ∆V s

Figures 3.54 and 3.55 present inertia tensor element and principal axis element ratio evolu-

tion. Figure 3.54 shows the system mass loss in the decrease of the primary inertia tensor elements.

The principal axis inertia element ratio shows a decrease in the z to x ratio, but an increase in the

z to y ratio. This result represents the loss of mass mainly from the long x-axis as seen in Figure
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Figure 3.52: Boulder motion surface projection in Itokawa-like multiple boulder simulation. The
heatmap indicates surface slopes, boulder initial position indicated by white dot, surface motion
indicated by white line, boulder escape indicated by yellow diamonds, and boulder final position
indicated by blue star.
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3.52.

The evolving angular velocity can be seen in Figures 3.56-3.58. Again, the loss of the PAR charac-

teristic is observed. A decrease in angular velocity magnitude in observed in Figure 3.56, which is

equivalent to 0.92 seconds added to the 3.45 hour rotation period. The small magnitude in angular

velocity decrease compared to the Bennu shaped asteroid model case can be explained by the lim-

ited surface motion that occurs in this simulation, showing again that angular velocity magnitude

change is caused by mass redistribution and not by boulder launch (without an external ∆V ).

The direction of the angular velocity vector with respect to the asteroid body and inertial frames,

respectively, in Figures 3.57 and 3.58 shows a complex pattern of motion due to the asymmetries

in Itokawa’s shape. Both figures also show the center of angular velocity shift due to the boulder

launches with no return. Specifically, the body frame angle between original maximum inertia axis

and evolving angular velocity shows the superposition of two events: the boulder launches seen by

the initial jump in the angle, and the boulder mass loss seen by the precession presented after the

first two hours.
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Figure 3.54: Modeled asteroid inertia tensor elements in Itokawa-like multiple boulder simulation.
The parameters presented include parent body inertia tensor, asteroid inertia tensor, and control
case inertia tensor.
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3.1.4 Trends in fast rotating small bodies

The simulation results presented in this section show several trends that appear to be con-

sistent through all the cases. First, boulder motion always leads to loss of the PAR characteristic

and introduction of precession. This precession can center around the original angular velocity

direction if material is returned to the surface, or around some other direction when the material

is lost to the asteroid or system. Behavior that is seen to exist both in the asteroid body frame as

well as in the inertial frame, while their magnitudes and frequencies differ. Dissipation is expected

to damp the precession [38] and converge the angular velocity vector around these centers. Which

in the cases of a removed center means new, slightly reoriented, inertial frame angular velocity. A

mechanism that should be accounted for when discussing angular velocity and momentum direction

evolution.

Boulder mass redistribution always leads to a reduction of the angular velocity magnitude, an

expected result due to its lower energy state. This redistribution trends consistently towards the

modeled asteroid equator, even in complex tumbling motion. When comparing mass loss due to

launch and mass migration on the surface it appears that mass loss results in introduction of a

higher degree of precession and lower change in angular velocity magnitude, while mass surface

migration results a higher in a higher change to angular velocity magnitude and lower degree of

precession.
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3.2 Particle events and the YORP effect

Since its arrival at the asteroid Bennu in late 2018 NASA’s OSIRIS-REx mission has observed

several particle ejection events [130]. The evidence for these events is seen after-the-fact in opti-

cal imagery of the near surface environment which show illuminated pixels that are not stars and

appear to have trajectories around the asteroid. Trajectories that vary form sub-orbital to orbital

to hyperbolic escapes [131]. The dynamic paths of the particles observed originate from several

events that occurred on the asteroid surface. Events that seem to lack any preference to location

on the surface or geometry with respect to the asteroid orbit or Sun relative position. Currently,

two hypotheses have been suggested: thermal fracturing and meteoroid impacts. Both events that

introduce energy and angular momentum into the asteroid system, either from “storage” in the

surface material, or from external bodies impacting at high velocities. The particle observations

are prone to be biased towards slow moving particles due to the imagery cadence of the mission.

These particles move at sub m·s−1 velocities and most remain in the asteroid system. However,

if the meteoroid impact theory is correct, and these events are the main cause of the observed

particles, a 7000 J event should be expected on average every two weeks when Bennu is near its

periapsis.

The following sections present an analysis of three magnitudes of particle events occurring on

Bennu’s surface. The particle events are modeled as a single small boulder launching in defined

directions with a ∆V added to its orbital velocity at the moment of launch (the ṙBAB,j element in Eq.

2.20). The events modeled are: a 7000 J event demonstrating a high energy collision, a 0.5 J event

as an example of a low energy event that results in particle ejection from the asteroid system, and

a 0.0115 J event showing results for mass redistribution due to a slow particle ejection. Table 3.6

presents Bennu’s and the particles’ physical parameters used for the simulations in the following

sections.

The results show that the extent of change in asteroid rotation, both in magnitude and degree of

precession, is smaller than the uncertainty bounds of the estimated rotation state of Bennu [132],
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Parameter Values

Rotation period 4.29 [h]
Rotation period uncertainty 0.0072 [s]

Pole direction uncertainty [right ascension, declination] 0.12, 0.09 [deg]
Parent body density 1190 [kg·m−3]

YORP rotational acceleration rate 3.63× 10−6 [deg·day−2]
Boulder density 2000 [kg·m−3]

7000 J event boulder launch velocity 37.4 [m·s−1]
7000 J event boulder mass 10 [kg]

0.5 J event boulder launch velocity 1 [m·s−1]
0.5 J event boulder mass 1 [kg]

0.0115 J event boulder launch velocity 0.1 [m·s−1]
0.0115 J event boulder mass 2.3 [kg]

Boulder location [lon,lat] 4.3, 24.3 [deg]

Table 3.6: Bennu asteroid model parameters
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these values are also presented in Table 3.6. Despite the unobservabllity of a single event and

apparent stochastic distribution with respect to the asteroid structure and angular velocity these

events can have a non-zero contribution that should be taken in to account when discussing asteroid

shape and, more importantly, rotation evolution.

3.2.1 The effects of a fast particle events

The angular velocity change due to a high energy particle event is presented in Figures 3.59

and 3.60. In this event a 10 kg particle is launched at 37.4 m·s−1 (7000 J) in a direction normal to

the launch surface location in a lower-mid latitude. At this point the discrepancy between surface

normal and surface position direction is 23.4 degrees which means a lever arm of ∼100 meters is

applied with respect to the asteroid center of mass. This lever arm is the main cause of the shift in

angular velocity direction observed in Figure 3.60. The extent of change in angular velocity magni-

tude is equivalent to 2.8×10−5 seconds added to the instantaneous rotation period at the end of the

simulation (two orders of magnitude smaller than the rotation period uncertainty bounds). This

change in angular velocity is equivalent to ∼1 day of the YORP rotational acceleration magnitude.

However, the current YORP effect appears to accelerate Bennu, thus, the particle event decelera-

tion of the asteroid’s rotation presents a complex trend in the rotation evolution. The maximum

angle reached between the angular velocity vector and maximum inertia axis is ∼ 3× 10−6 degrees

(four orders of magnitude smaller than the estimation uncertainty). The magnitude of this angle

is similar in both the asteroid body and inertial frames (unlike in the previous section) because

the source of angular velocity shift is related to the external energy launching the particle and not

mass redistribution. The precession in the asteroid body frame remains centered near the original

angular velocity direction and will likely dissipate back to the original body frame angular velocity

direction. In the inertial frame, however, the center of precession is removed from the original direc-

tion of rotation, demonstrating how particle events can cause a small scale random walk migration

of an asteroid’s angular momentum direction.
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Figures 3.61 and 3.62 present the angular velocity evolution due to low energy 1 kg particle at a

1 m·s−1 launch normal to surface, this ejection constitutes a 0.5 J event. Overall the nature of the

event is similar to that of the 7000 J event with change magnitudes substantially lower due to the

lower energy. The ejection event leads to 7.3 × 10−8 seconds added to the instantaneous rotation

period at the end of the simulation, equivalent to ∼0.0026 days of the current YORP acceleration

rate, and a maximum ψ̃ angle of ∼ 9× 10−9 degrees. Both parameters are, again, well within the

estimation uncertainty bounds.

The directionality of a particle event with respect to the asteroid surface cannot be predicted

or explained until the cause of such events is found. Using the surface normal direction basically

provides a mean value of all possible launches in the hemisphere above a certain surface location.

In case the source of the events is external impactors the surface normal direction is a good ap-

proximate of the averaged contribution of all ejecta leaving the surface [133]1 . However, if the

source of the particles is different, or even in the event an impactor approaches the asteroid sur-

face tangentially some off-normal direction should be expected. Figures 3.63 and 3.64 present the

change in angular velocity for both particle event magnitudes if various directions from the lower-

mid latitude location presented in Table 3.6. The figures show heatmaps of the resulting changes

in a local azimuth local zenith coordinate system. Here the zero zenith angle degrees points at the

local normal indicating a particle launch normal to the surface, azimuth and zenith [0,90] degrees

point north tangentially to the surface, and azimuth and zenith [90,270] degrees point tangentially

east.

Figure 3.63 presents the changes to angular velocity due to a possible high energy 7000 J event.

Figure 3.63a presents the change in angular velocity magnitude compared to a nominal day of

YORP. Changes in magnitude that can reach over 60 days of the YORP rate when aligned perpen-

dicular to the asteroid’s angular velocity vector. This magnitude of change is equivalent to ∼0.0017

seconds reduced or added to the asteroid’s rotation period, still under the estimation uncertainty,

1 A discussion on surface ejecta due to external impacts is presented in further detail in Chapter 4.
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Figure 3.59: Modeled asteroid and control case angular velocity evolution due to 10 kg particle
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Figure 3.63: Change to angular velocity due to 10 kg particle launched at 37.4 m·s−1 from longitude
and latitude [4.3 24.3] degrees in various directions with respect to surface normal

but comparable in magnitude. Figure 3.63b presents the maximum precession angle that is reached

for the different particle event directions2 . Here the normal direction shows the same result as

presented before, some precession, but not a possible maximum. The maximum values appear to

result from a northern close to tangential event which maximizes the lever arm with respect to the

asteroid CM. The minimal, near-zero, values or precession angle appear in a direction opposite to

the launch location latitude, a direction that correlates with the launch location position vector di-

rection, minimizing the lever arm with respect to the CM. The results for different launch directions

in the 0.5 J case are presented in Figure 3.64 which show a similar trend for the angular velocity

magnitude change as the high energy case with a maximum change equivalent to ∼ 4.4 × 10−06

seconds reduced or added to the rotation period. The precession results appear to be inconsistent

due to their small numerical values with respect to the asteroid system calculations3 .

The results presented above span the possible outcomes for a possible particle event from

a single point on Bennu’s surface. These results are affected by that point’s latitude and angle

2 Here the precession angle is computed analytically according to Eq. 2.9.
3 The change to maximum moment of inertia is of magnitude 10−16.
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Figure 3.64: Change to angular velocity due to 1 kg particle launched at 1 m·s−1 from longitude
and latitude [4.3 24.3] degrees in various directions with respect to surface normal
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between normal and position direction vector, on a north-south axis as well as an east-west axis.

For that reason global maps have been produced to present the possible outcomes for any point

on the asteroid surface. Figures 3.65 and 3.66 present the change in angular velocity magnitude

(compared to a day of YORP) and maximum precession angle for particle ejections normal to the

surface of both the high and low energy ejections. The high energy case shows particle events

that can equal up to ∼30 day of YORP accelerations and the low energy case reach up to 0.08

of a YORP day, both 30 times larger than the single location results presented. The high change

areas correlate with either western (accelerate) or eastern (decelerate) slopes of the north-south

slopes of the asteroid. The precession results for the high energy case show low latitude areas

outside of the equator prone to higher maximum precession angles. The low energy case again

show small magnitudes of precession that reach the limit of numerical values with respect to the

asteroid system.
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Figure 3.65: Change in angular velocity due 10 kg particle launched at 37.4 m·s−1 from any point
on surface in normal direction
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Figure 3.66: Change in angular velocity due 1 kg particle launched at 1 m·s−1 from any point on
surface in normal direction
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3.2.2 Slow moving particles’ fate

Particle surface ejections do not necessarily mean system escapes. The results in this section

present a 2.3 kg particle launched from the lower-mid latitude location in a sub surface escape

velocity (as seen in Figure 2.5) of 0.1 m·s−1. These type of particles effect the asteroid by redis-

tributing mass on the surface in addition to the external source of energy and angular momentum

they provide.

The results of a low velocity particle event launched normal to the surface are presented in Figures

3.67-3.70. The particle is seen traveling in a short sub-orbital arc towards the equator, crashing on

the surface, traveling slightly below it, and bouncing once before stopping. The asteroid angular

velocity vector evolution seen in Figure 3.69 shows a slight reduction in angular velocity magnitude

due the launch and then an additional reduction due to the crash and surface movement. Overall

the change in angular velocity magnitude is equivalent to 3.6× 10−7 seconds added to the asteroid

rotation period. The body frame precession seen in Figure 3.70a shows the center of precession

removed from the initial body frame angular velocity direction. This precession is not sufficient

to affect the asteroid surface geopotential, but its dissipation will drain energy from the asteroid

system. The precession in the inertial frame (Figure 3.70b) shows the precession center move away

from the initial rotation direction with the particle launch and then return to be centered around

it with the particle crash, demonstrating the overall conservation of angular momentum in the

enclosed system.

The launch direction of a single slow particle is can be influenced by multiple variables such

as the ejection instigation mechanism, other particles, local slopes, or the particle shape. For that

reason a 500 case MC simulation was run to examine possible outcomes of variabilities in ejection

geometry. The launch magnitude in all cases is 0.1 m·s−1 and the launch direction is randomized

within a hemisphere centered at the local normal. In addition, the surface motion randomness

is enabled in the simulations. Figure 3.71 presents the trajectories of all simulated particles. All
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Figure 3.67: Boulder motion surface projection for a 2.3 kg particle launch at 0.1 m·s−1 launched
from longitude and latitude [4.3 24.3] degrees. The heatmap indicates surface slopes, particle
initial position indicated by white dot, surface motion indicated by white line, particle launch and
crash events indicated by triangles, orbit projection on surface indicated by dashed yellow line, and
particle final position indicated by blue star.
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particles are launched from the initial lower-mid latitude at the beginning of the simulations, 431

particles crash back to the surface, out of those 263 move on the surface and 217 launch again

into orbit. By the simulations’ ends 86 cases present a particle still in orbit and 7 cases present

an escaped particle. Figure 3.71c presents the surface distribution of the simulated particles. The

largest cluster of particles remain near the initial launch location. Some clustering can be seen on

the equator and some can be seen in a sub-equatorial mid latitude due west from the initial launch

location. Those particles appear to have traveled a short sub-orbital cross-equatorial arc prior to

falling back into the surface as the asteroid rotated underneath.

Figure 3.72 presents the simulations’ end angular velocity magnitude change compared to a day

of YORP (3.72a) and the center of precession at the end of the simulations in the inertial frame

(3.72b). Most cases present little to no change compared to the initial angular velocity values (the

majority of rotation centers in Figure 3.72b lay near the initial [0,0] value). Extreme cases do show

an increase or decrease in angular velocity magnitude of up to 5% of the daily YORP change. The

arc of rotation canters to the right of the initial value is caused by cases in which a particle launched

but did not crash by simulation’s end.

Similar MC simulations for other particle event latitudes were preformed, those are presented in

the following figures, which show the results of a mid latitude particle event (Figure 3.73) and an

equatorial particle event (Figure 3.74). Overall, the results are very similar regardless in latitude

with a distinction in magnitudes reached as the event occurs closer to the equator.
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(b) Surface motion

-150°-120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

-60°

-30°

0°

+30°

+60° start
end

0.1
4.9
9.6
14.4
19.1
23.9
28.6
33.4
38.1
42.9
47.6
52.4

s
[d

eg
]

(c) Initial and final surface positions

Figure 3.71: Boulder motion 500 case Monte Carlo surface projection for a 2.3 kg particle launch at
0.1 m·s−1 launched from longitude and latitude [4.3 24.3] degrees. The heatmaps indicate surface
slopes, particle initial position indicated by white dot, surface motion indicated by white lines,
particle launch and crash events indicated by triangles, orbit projection on surface indicated by
dashed yellow lines, particle final positions indicated by gray stars, and yellow diamond indicates
escaped particle.
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Figure 3.72: Modeled asteroid angular velocity change due to 2.3 kg particle launched at 0.1 m·s−1
from longitude and latitude [4.3 24.3] degrees. Histograms include distribution means and 1σ
bounds as well as control values.

0.08 0.06 0.04 0.02 0.00 0.02
/( Y x day)

0

10

20

30

40

50

60

70

ctrl
1

(a) Change to angular velocity magnitude compared
to nominal YORP acceleration

2 0 2 4 6
x ×10 11

6

4

2

0

2

4

y

×10 11

ctrl
1

(b) Center of angular velocity vector projection pro-
jection on inertial x-y plane (inertial frame)

Figure 3.73: Modeled asteroid angular velocity change due to 2.3 kg particle launched at 0.1 m·s−1
from longitude and latitude [-4.2 40.1] degrees. Histograms include distribution means and 1σ
bounds as well as control values.
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Figure 3.74: Modeled asteroid angular velocity change due to 2.3 kg particle launched at 0.1 m·s−1
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Chapter 4

Artificial manipulation of small bodies

This chapter discusses the relationship between asteroid rotation and human induced activ-

ity on asteroid surfaces, together with considerations of the surface activity on asteroid orbital

states.

4.1 Momentum transfer deflection relationship with small body rotation

The effect momentum transfer deflection has on asteroid rotation is presented and discussed in

this section. Additionally, the effect asteroid rotation has on deflection efficiency is presented.

4.1.1 Background

The direct momentum transfer methods of nuclear detonation and kinetic interception are

currently at the highest technology readiness levels and apply to both asteroids and comets [63].

The Deep Impact mission has shown the capability of accurately hitting a small body, comet Tem-

pel 1, at high relative velocities (10.3 km·s−1) in 2005 [134]. The Demonstration of Autonomous

Rendezvous Technology (DART) mission is planned to perform a kinetic interception demonstra-

tion of the secondary body in the (65803) Didymos binary asteroid system in 2022 [135].

The momentum transfer in these methods is intended to be linear, usually close to the direction of

orbital velocity of the PHO [136, 137], affecting the its orbital energy and momentum. However,

an almost inevitable byproduct is the introduction of angular momentum to the PHO’s rotational

state. This torquing side-effect is the result of a lever arm between the body’s center of mass and
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deflection interface location on the surface and direction with respect to the center of mass. Either

due to unintentional targeting discrepancies or due to operational requirements or limitations, such

as the required orbital direction of deflection, or the degree of surface illumination. The ejection of

material off the surface will also change the body’s mass distribution which would, in turn, affect

its rotational state.

For both the Deep Impact mission and the DART mission little a-priori knowledge about the shape

of the impacted body was, or is expected to be, available. This means that the impact location,

impact angle of incidence, and resulting lever arm was, and will be, in the realm of rough estimates.

For both missions the operational scheme includes a phase in which accurate imagery is taken and

the shape, spin state, and other dynamical and surface parameters estimated post impact. The in-

cidence angle with respect to the local horizon for Deep Impact was estimated at 34 degrees, which

was higher than initially planned for maximizing the ejecta plume (a different required operational

outcome than deflection) [134, 138, 139]. No change to the comet’s rotation or orbit was planned or

observed, mostly due to the impactor mass of ∼400 kg being substantially smaller than required to

deflect the ∼7.5×5 km body. For the DART mission, the impact geometry is planed to be slightly

skewed with respect to the secondary’s orbital velocity in the system, which could potentially lead

to a lever arm with respect to the secondary’s center of mass. The observations of the dynamical

state of the system post impact are planned to be performed real-time in-situ by the nano-satellite

Light Italian Cubesat for Imaging of Asteroid (LICIA) mission [140], as well as from Earth and by a

post impact in-situ mission, Hera [141]. These observations are expected to resolve the secondary’s

rotation state, currently assumed to be synchronized with the system’s rotation period, as part of

the entire binary system dynamical state. However, due to the complexity of the full two-body

dynamics in a binary system, separating the initial change in rotation due to impact and mass loss

from the complete system state would be difficult if not impossible, thus, not providing a complete

analog for the effects of momentum transfer deflection on single small body’s rotation.

Past research into momentum transfer deflection has mostly focused its discussion on efficiency

in the orbital sense of optimal trajectories, deflection timing, orbit phases, and relative velocity
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magnitudes and directions, or in analysis of the impact event, focusing on the expected momentum

transfer from different types of surfaces and their resulting ejecta. The majority of this research

assumes a spherical PHO or an impact normal to the surface with little to no consideration to the

realistic small body shapes. Several studies in the past have incorporated realistic asteroid shapes:

Asphaug et al. [142] used an N-body simulated shape of asteroid (4769) Castalia to examine the

possible fragmentation outcomes of the rubble-pile asteroid. Scheeres et al. [143] performed an

analysis of deflection efficiency variations for an impact on a polyhedral asteroid model along one

of its principal axes with some uncertainty. This analysis examined the magnitude of velocity

change to the asteroid as well as initial changes to angular velocity when the incoming impactor

direction is not aligned with the local normal direction. Following Scheeres et al., Feldhacker et

al. [133] further examined the efficiency of asteroid deflection for misaligned impactor-local nor-

mal instances with the development and validation of an analytical model. This model was then

implemented on entire asteroid surfaces, showing variations in impact efficiency for different areas

on different asteroids. Additionally, Delchambre et al. [144, 145], expanded the concept of the

momentum enhancement β factor by adding consideration for momentum lost to angular motion.

Lastly, McMahon and Scheeres [146] examined the efficiency reduction for beam ablation deflection

when asteroid shapes are taken into consideration. This section is a direct continuation of this

previous research in examining the effects of momentum transfer deflection on a small body’s rota-

tional state. In addition, the evaluations of deflection efficiency presented in [133] are expanded to

include consideration of asteroid rotation. This section also addresses, for the first time, the effects

that nuclear deflection detonation has on asteroid rotation as well as the effect that small body

shapes have on the efficiency of this method.

4.1.2 Dynamics of kinetic interception

The linear momentum change to an asteroid in a kinetic interception scenario is the sum of

the momentum introduced from the impactor and the momentum change due to ejecta leaving the
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asteroid system [118]

P = Pi + Pe (4.1)

The momentum introduced from the impactor is the multiplication of the impactor mass and its

velocity with respect to the asteroid

Pi = MiVi (4.2)

The momentum change due to ejecta is

Pe =
n√

2(n− 1)
(MeVe,min) (4.3)

where n represents the power-law slope of the experimentally derived particle ejection velocity vs

ejected mass graph [117], nominally n = 1.2 for porous materials and n = 1.65 for rocky material,

Me and Ve,min are the total mass ejected and the lowest velocity of that ejecta that eventually leaves

the asteroid system, respectively. The total ejected mass can be found using the experimentally or

numerically derived momentum multiplication factor β, nominally ranging between 1.5 and 3.5,

Me = Mi (β − 1)
Vi

Ve,min

√
2(n− 1)

n
(4.4)

For the purpose of this research the nominal impactor mass is set to Mi = 104 kg, which is the

upper limit of state-of-the-art launching capability. The nominal impactor relative velocity with

respect to the asteroid is Vi = 10 km·s−1. The nominal values of n, β, and Ve,min of the modeled

asteroid are set to 1.2, 2.0, and 0.2 m·s−1, respectively [133]. These are conservative values that

assume a porous asteroid with lower than expected ejecta. The selected value of Ve,min is in the

range of surface escape velocities for the asteroids evaluated in this paper.

The overall ∆V provided to the asteroid is [133]

∆VA =
Mi

MA
(Vi + (β − 1) (n̂ · Vi) n̂) (4.5)

where n̂ is the surface normal vector at impact location. It is important to note that it is assumed

that the ejecta is distributed symmetrically around the surface normal at the impact location, lead-

ing the mean ejecta direction to be in the normal direction. Here the asteroid system ∆V vector
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is notated as ∆VA to prevent confusion with other general ∆V mentions. The scenarios presented

in this section are those in which ejecta escapes in each launch, thus the asteroid system and the

asteroid (parent body and surface boulders) are the same. The notation in the work presented here

is in the inertial frame, which is assumed to coincide with the body frame at the moment of impact.

4.1.3 Impact effects on rotating ellipsoids

A rotating ellipsoid is used as a first analog for an asteroid. The ellipsoid has an overall mass

MA, principal semi-axes a, b, and c, and a point mass Me placed on its surface in location r. The

overall system inertia tensor before impact is

[I0] = [Iellipsoid] +Me[R̃][R̃]T (4.6)

Using the inertia matrix eigenvalues and eigenvectors the principal axes are found and the ellipsoid

asteroid analog is set to rotate as a PAR about the maximum moment of inertia with fixed angular

velocity ω0. The overall angular momentum at this time is

H0 = [I0]ω0 (4.7)

The impact and mass ejection are modeled as launching of the point mass at an equivalent velocity

Veq. The velocity’s magnitude being the overall linear momentum introduced in the event, P ,

divided by the ejected mass Me

Veq =
P

Me
(4.8)

For the impact parameters presented above, the impactor mass is four orders of magnitude smaller

than the ejecta mass and thus neglected from the moment of impact on. The equivalent velocity

direction is the weighted sum of the impactor direction and surface normal at point of impact

V̂eq =
−V̂i + (β − 1) n̂

| − V̂i + (β − 1) n̂|
(4.9)

In the case of an ellipsoid the surface normal at any point (in the ellipsoid frame) is n̂ = [ rx
a2
,
ry
b2
, rz
c2

].

Due to the ejecta launch the new inertia tensor of the system is only that of the ellipsoid [Iellipsoid].
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The angular velocity right after the ejecta launch based on Eq. 2.26 is

ω(t = 0+) = [Iellipsoid]
−1 (H0 −MeR× (R× ω0 + Veq)) (4.10)

The combination of the different inertia tensor and new angular velocity no longer guaranties

rotation around the maximum moment of inertia, leading to some tumbling/wobbling motion for

the ellipsoid. Figure 4.1 presents the maximum precession angle (found using the analytical Eq.

2.9) reached for an impactor at various locations on the eastern hemisphere of a ellipsoid with

the mass and mean dimensions of asteroid Bennu. The impact parameters are set to the values

presented in the previous section and Bennu’s parameters are set to the nominal ones presented in

Table 3.6. The impactor approach direction is V̂i = [0,−1, 0], providing all of its momentum in the

system (ellipsoid and point mass) frame1 negative y-axis direction, and rendering the longitude

and latitude [0,90] degree coordinate directly parallel to the impactor velocity (indicated in the

figure with a white dot). Here it is assumed that the required orbital direction for deflection is

the incoming impactor direction. The western hemisphere is not presented as it is obscured by the

ellipsoid itself for this impactor direction and thus not possible for collision. The figure shows a

maximum precession of 3.5 degrees for high latitude regions at the retreating edge of the hemisphere

facing the impactor (high longitudes)2 . This result is explained by the combination of the impactor

providing maximal torque at the hemisphere edges (maximum lever arm) and these areas having

the same local linear velocity direction as the incoming impactor. For that reason the approaching

edge of the hemisphere (lower longitudes) shows lower maximum precession reached. The equatorial

regions of the system show the least precession because of their symmetry with respect to the xy

plane, mostly torquing the existing rotation direction and providing less or no torque to the x and y

elements of the angular velocity. The expanded low precession area around longitude and latitude

[0,20] degrees can be explained by the offset between applied torque and removed mass, rendering

1 This is an ellipsoid fixed frame in which the x-axis is set to parallel the long axis, the y-axis is set to parallel the
median axis, and the z-axis completes a right-hand system and is parallel to the short axis. The ellipsoid is initiated
as a maximum inertia axis PAR, setting the angular velocity vector near the z-axis, but not at it, due to the added
point mass.

2 Here the terms retreating and approaching edges are with respect to the incoming impactor. The retreating
edge moves linearly in the same direction as the impactor, thus moving away from it. The approaching edge moves
linearly in the opposite direction from the impactor, towards it



139

the ellipsoid closer to a PAR. The polar regions show high but not maximal precession because of

their radial proximity to the existing axis of rotation.

Figure 4.2 shows the ratio between the angular velocity prior to impact and maximum angular

velocity reached after impact. It is important to note that once the ellipsoid is no longer a PAR

the angular velocity is not time-constant and thus its magnitude oscillates. The figure shows

that equatorial hemisphere edge impacts have the most dramatic change to the angular velocity

magnitude of up to ∼5%, or ∼800 second change in the case of Bennu’s rotation period. A dashed

line indicating 1-1 angular velocity ratios can also be observed in the figure, showing where impacts

on the surface will not change the Bennu-like ellipsoid’s rotation rate.

In Figure 4.3 the ∆V induced by the impact as calculated in Eq. 4.5 is presented. A maximum

value of 2.8 mm·s−1 can be seen for an impact that is parallel to the surface normal. The hemisphere

edge impacts provide a ∆V of 1.3 mm·s−1, showing the amount of momentum lost to torquing the

system instead of propelling it.

Figures 4.4-4.6 present the impact results for an impactor hitting the ellipsoid in longitude and

latitude [25,25] degrees. The figures show heatmaps of the resulting changes in a local azimuth

local zenith coordinate system, the same coordinates as presented in Figures 3.63 and 3.64. The

local surface normal is in the center of each plot, the white star in the plots indicates the direction

of the local position vector. The discrepancy between the two directions leads to the lever arm

that torques the ellipsoid. The lever arm will be discussed further in the next section. Figure 4.4

shows the correlation between local coordinates and the least tumbling impact direction. Due to

the offset between applied torque and removed mass the least precessing direction is not observed

for the local position vector direction, but for a direction skewed by ∼40 degrees from it. Figure 4.5

shows the torquing effect that impacts with low incidence angles would have, especially with large

lever arms with respect to the existing rotation axis. Here higher correlation between the local

position vector and zero change in angular velocity magnitude can be seen. However, the offset due

to mass loss can be seen as well in the misalignment of the position vector direction and the zero
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Figure 4.1: Precession reached for impacts on Bennu-like ellipsoid for V̂i = [0,−1, 0], the dot
indicates the impactor direction parallel to the surface normal
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Figure 4.2: Change in angular velocity magnitude reached for impacts on Bennu-like ellipsoid for
V̂i = [−1, 0, 0], the dot indicates the impactor direction parallel to the surface normal, the dashed
line indicates equal values between |ω|max and |ω0|
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Figure 4.3: ∆V reached for impacts on Bennu-like ellipsoid for V̂i = [0,−1, 0], the dot indicates
the impactor direction parallel to the surface normal



142

torque curve3 . Figure 4.6 demonstrates again the preference for aligning the surface normal and

impactor velocity vector for best deflection performance, assuming the required orbital deflection

direction is that of the incoming impactor.

The axis ratio of asteroid Bennu is close to spherical - around 1.1-1.05-1.0 - more elongated

asteroids would show a larger span of outcomes for different impact locations. Figures 4.7-4.8

present the precession reached and change in angular velocity magnitude due to impacts on an

elongated ellipsoid based on asteroid Itokawa, which has an axes ratio of 2.5-1.5-1.0. Itokawa’s

mass is about 44% of Bennu’s, leading to more substantial effects from the impactor presented

above. Similar to the previous figures, the impactor is approaching in the negative y-axis direction,

setting the ellipsoid’s long axis to be perpendicular to the incoming impactor. Interestingly, Figure

4.7 presents more symmetrical behavior for the elongated ellipsoid with respect the y-axis. The low

precession zone is slightly offset west of [0,90]. The maximum precession zone is in the approaching

hemisphere edge, different from the Bennu-like ellipsoid due to the different ratio between rotation

rate and incoming impactor velocity. Figure 4.8 shows similar behavior to the near-spherical case,

with some offset from extreme points due to the mass ejection.

3 Marked as the 1-1 ratio dashed line.
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Figure 4.4: Precession reached for impacts located at [25,25] degrees on a Bennu-like ellipsoid, the
star indicates the impactor direction parallel to the surface position
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Figure 4.5: Change in angular velocity magnitude reached for impacts located at [25,25] degrees
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Figure 4.6: ∆V reached for impacts located at [25,25] degrees on a Bennu-like ellipsoid, the star
indicates the impactor direction parallel to the surface position
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Figure 4.7: Precession reached for impacts on Itokawa-like ellipsoid for V̂i = [0,−1, 0],the dot
indicates the impactor direction parallel to the surface normal
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4.1.4 Considerations of asteroid shape

The results presented in the previous section use a simple analytical analysis to demonstrate

the importance of aligning the incoming impactor velocity with the impact location surface normal.

However, as seen in Figures 4.4-4.6, these results are for simple ellipsoids in which there is a high

correlation between position vector and surface normal: for the Bennu-like ellipsoid the maximal

angle between surface position and surface normal is 7 degrees and for the Itokawa-like ellipsoid

it is somewhat higher at 48 degrees. The correlating lever arm to with respect to the center of

mass is defined as lM = |r|sin(n̂ · r̂). Figures 4.9-4.10 present the lever arm magnitudes reached

for the Bennu-like and Itokawa-like ellipsoids. These levers would apply torque on the asteroid,

wasting linear momentum towards changing the asteroid’s rotation (spin up/down of existing di-

rection and/or introducing precession) rather than applying it to the deflection effort. For the most

part, the equatorial and polar regions in the figures present the lowest overall lever arm, showing

a preference for them as impact location.

When comparing the ellipsoid geometry with the polyhedral geometry of Bennu and Itokawa shown

in Figures 4.11-4.12 for the entire asteroid surface (Figures 4.9-4.10 only show one hemisphere) cor-

relation in trends can be found. However, the maximal magnitudes for lever arm are ∼2 (Itokawa)

to ∼5 (Bennu) times higher for the polyhedrons, and the maximal lever arm area distributions are

slightly different: for Bennu these areas are closer to the equator due to the spinning-top shape and

for Itokawa these areas are mostly concentrated in the node edge corners due to the asteroid being

more rod-like than ellipsoidal, especially near the asteroid’s small node. Furthermore, small shape

irregularities show higher than nominal lever arm regions, these should be examined further in

the future. The following sections implement the impact dynamics on detailed polyhedral shapes,

adding the required level of complexity to the deflection success analysis.
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Figure 4.9: Lever arm due to angle between surface position and surface normal for a Bennu-like
ellipsoid
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Figure 4.10: Lever arm due to angle between surface position and surface normal for a Itokawa-like
ellipsoid
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Figure 4.11: Lever arm due to angle between facet position and facet normal for Bennu polyhedral
shape
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Figure 4.12: Lever arm due to angle between facet position and facet normal for Itokawa polyhedral
shape
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4.1.5 Nuclear detonation deflection

The dynamics of nuclear detonation deflection entail a more complex and specified view than

those of kinetic interception. There are different considerations for a subsurface, surface, or above-

surface explosions [62, 147]. For the purpose of this research approximated ejecta mass and ejecta

velocities will be derived from Figure 4.13, which is taken from Sanchez et al. [148] and presents

the ejecta masses and average velocities due to different radiation types emitted as part of an

above-surface deflection effort of a 1.5 kT detonation.

For the purpose of this research the ejected mass will be that created by neutron and x-ray

radiation at the maximum performance altitude presented for the detonation. The overall neutron

radiation ejecta mass used will be Me,ntrn = 3 × 106 kg, ejected at a velocity of Veq,ntrn = 4

km·s−1. The x-ray radiation ejecta mass used will be Me,xray = 3 × 103 kg, ejected at a velocity

of Veq,xray = 50 km·s−1. The total ejecta mass is then Me = 3.003 × 106 kg and the equivalent

velocity is

Veq =
Me,ntrnVeq,ntrn +Me,xrayVeq,xray

Me,ntrn +Me,xray
= 4.45 km · s−1 (4.11)

This mass estimate is based on a spherical model of asteroid (99942) Apophis and thus is conserva-

tive for an asteroid such as Bennu which has seven times more surface area, and will likely produce

more ejecta. However, use of these parameters still present a good contrast for comparing ejecta

velocities between the kinetic interceptor and nuclear detonation scenarios. Additionally, a nuclear

detonation deflection does not require high approach velocities with respect to the asteroid, thus

allowing the deflecting spacecraft to optimally align itself and the detonation energy with respect

to the asteroid center of mass and required orbital direction.

4.1.6 Deflection effect on rotational dynamics using polyhedrons

As seen in Section 4.1.4, complex asteroid shapes have the potential to further complicate

the rotational effect deflection efforts might have on asteroids. In the following sections the fission

option of the SEA-RATS model is utilized to simulate deflection ejecta and the rotational dynamics
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Figure 4.13: Ejecta mass and velocity due to above surface nuclear detonation deflection from
Sanchez et al. 2009
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that follow. In the simulated breakup process the ejecta mass is defined as fissioned material and

then launched at Veq as defined in Eqs. 4.8, 4.9, and 4.11. The polyhedral shape which represents

the ejected mass is found in the iterative process presented in Section 2.5 around the deflection

interface location on the polyhedral asteroid surface. The ejected/fissioned material is then treated

as a boulder by the SEA RATS model and code.

Figure 4.14 presents the Bennu and Itokawa polyhedrons, with the impact ejecta masses indicated

on the shapes. For asteroid Bennu a single location is seen in an equatorial region, for asteroid

Itokawa two equatorial locations are seen, one on along the asteroid’s long x-axis, and another along

the asteroid’s median y-axis. Section 4.1.6.2 presents the rotational state after kinetic impactor

deflection on the presented locations as well as a nuclear detonation deflection on the location

presented on asteroid Bennu.

4.1.6.1 Asteroid state effect on asteroid velocity change

Section 2.3.4 presents the the asteroid velocity change due to boulder escape. The direction

of the velocity change is opposite to that of the boulder as it escapes the system. In this section

an assumption is made that for sufficiently high ejection velocities the initial velocity direction at

launch is the parallel to the ejection velocity direction when the ejecta leaves the asteroid system Hill

sphere, ˆ̇R∞ ‖ ˆ̇Rt0 . Validation for this assumption on small bodies can be seen in Figure 4.15, which

presents the comparison of ejecta velocity direction at launch and its velocity direction at the Hill

radius for various scenarios on asteroids Bennu and (66391) 1999 KW4 Alpha [149]. The velocity

directions are compared using the angle between the two vectors. The launch scenarios include

3 launch sites (equatorial, mid-latitude, and polar) and 12 launch directions. The launch sites

longitudes and latitudes are presented in each subplot title. The launch direction right ascension

and declination values are presented in the plots’ legends. Figure 4.15a shows that, for Bennu, all

ejecta launch velocity magnitudes, |∆Ve|, over 1 m·s−1 reach a direction error of less than 2 degrees.

Asteroid 1999 KW4 Alpha, which is ∼30 times more massive than Bennu, shows the smaller than 2
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(a) Bennu

(b) Itokawa

Figure 4.14: Asteroid polyhedra, impact locations, and ejecta mass
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degree error at launch velocity magnitudes over 3 m·s−1. A 2 degree deviation leads to ∼0.06% loss

in velocity magnitude in the desired direction. The effect of this deviation on the orbital dynamics

of the deflection efforts will be further discussed in a later section.

In addition to deflection momentum lost in torquing an asteroid, some momentum can be added

or subtracted from the deflection effort because of the ejecta mass pre-deflection linear velocity due

to rotation. Using Eq. 2.20 in terms of the equivalent velocity

Ṙ0 = ω ×R0 + Veq (4.12)

where Veq is the ṙBAB,j element in Eq. 2.20, and inputting it into Eq. 2.34 together with the

ˆ̇RB,∞ ‖ ˆ̇RB,t0 assumption leads to the asteroid velocity change as a function of the material

ejection

∆VA = −Me

MA

√
|ω ×R0 + Veq|2 − 2

GM

|R0|
ω ×R0 + Veq
|ω ×R0 + Veq|

(4.13)

which accounts for the ejecta velocity due to asteroid’s rotation. Here, the reduction in ejecta ve-

locity at the Hill radius is accounted for. And, more importantly as Section 4.1.6.3 demonstrates,

accounts for the influence of the asteroid’s rotation on the deflection direction and effective magni-

tude.

In deflection scenarios the inertial direction of asteroid velocity change is of importance to the

change in orbital elements required for deflection, mainly the velocity change direction should align

closely with the asteroid’s orbital velocity [136]. For that reason the deflection applicable velocity

change is the projection of the velocity change on a required inertial direction ∆V̂ ∗. For the pur-

pose of this section ∆V̂ ∗ will be defined as the direction of the incoming deflection spacecraft Vi.

Thus, the deflection applicable velocity change is

∆V ∗A =
(

∆VA · V̂i
)
V̂i (4.14)

The effective deflection magnitude is then

|∆V ∗A | = ∆VA · V̂i (4.15)
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Figure 4.15: Deviation angle between launch velocity and velocity at Hill radius
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4.1.6.2 Rotational state after deflection

Figures 4.16 and 4.17 present the rotation state evolution after a kinetic impactor deflection

off the location presented in Figure 4.14a, centered at longitude and latitude [-84.4, 5.9] degrees.

The angle between facet normal and facet position in this case is 4.93 degrees, which correlates

to a 0.022 km lever arm on the asteroid center of mass. Figure 4.16 shows the asteroids angular

velocity vector4 between 10 hours prior to impact and 90 hours after it, a time span that allows

for several cycles of the angular velocity vector in the body frame. The most important result

seen in the figure is loss of the PAR characteristic and introduction of precession to the asteroid

system. The increase in the angular velocity magnitude is mostly seen in the z-axis of the angular

velocity, this change translates to a decrease of 25.2 seconds in the instantaneous rotation period

in the moments after the impact. Despite the angular velocity acceleration, the overall angular

momentum decreases from |H0| = 7.88× 106 kg·km2·s−1 to |H+| = 7.86× 106 kg·km2·s−1 (about

0.21%), a result that can be explained by more angular momentum being carried away by the

ejecta than that introduced by the deflection. Figure 4.17 presents the precession introduced to

the system due to the deflection event. Similarly to the results in Section 3.2, but in much larger

scale, two phenomena can be observed in ψ̃: first the initial shift in angular velocity as a result

of the introduction of momentum to the system, and second the existence of precession due to

the misalignment between the new angular velocity and new principal inertia axes. The motion

observed in the figures speaks to the evolving geopotential of the asteroid surface environment.

Figure 4.18 presents Bennu’s surface slopes prior to impact. In the Bennu kinetic impact case

presented, the magnitude of rotation change and precession created are not sufficient to alter the

geopotential environment, keeping the asteroid surface stable after deflection, and presenting the

same surface slopes shown in Figure 4.18.

The required velocity change direction in this case is the incoming impactor direction, set to be

parallel to the facet position (local interface location) at the moment of impact. The velocity change

to the asteroid in required direction is ∆VA = 2.674 mm·s−1, which is 99.6% of the overall velocity

4 In the asteroid body frame.



156

change applied on the asteroid.

The impact scenario off Itokawa’s long axis is presented in Figures 4.19-4.20, it again shows the

loss of the PAR characteristic. The impact interface location, centered at [1.0,-0.9] degrees has a

facet position to facet normal angle of 12.6 degrees and a lever arm of 0.063 km. These figures

show a substantially higher change in angular velocity and precession reached than the Bennu

case and an increase in angular velocity, which is equivalent to 22.05 minutes (1322.7 seconds)

reduced from the asteroid’s instantaneous rotation period. Due to Itokawa’s slow rotation period

the substantial increase in angular velocity and introduction of precession are not sufficient to

disturb the surface environment and change the surface accelerations or slopes. The overall change

to angular momentum shows an increase from |H0| = 1.068×106 kg·km2·s−1 to |H+| = 1.086×106

kg·km2·s−1 (about 1.67%). The magnitude of velocity change in the required direction to the

asteroid in this case is ∆VA = 5.851 mm·s−1, which is 97.6% efficiency.

The impact off Itokawa’s median axis is presented in Figures 4.21-4.22. The impact interface

location in this case is centered at [82.4,-11.32] degrees with a facet position to facet normal angle

of 9.92 degrees and a lever arm of 0.018 km. The increase in angular velocity in this case leads to

a instantaneous rotation period decrease of 18.3 minutes (1097.1 seconds), smaller than the long

axis case due to the reduced lever arm of the impact point. The initial angle change to the angular

velocity vector is lower than the previous case (∼4 vs. ∼7 degrees), but similar in amplitude of

precession. Similarly to the previous case the change in rotation regime is not sufficient to affect

the surface accelerations and slopes. In this case the overall change to angular momentum shows

an increase from the value as the previous case to |H+| = 1.092 × 106 kg·km2·s−1 which is about

2.32%. This increase is a slightly higher change than in the prior case despite a smaller increase in

angular velocity, explained, similarly to the Bennu case, by angular momentum being taken away by

the ejecta. The magnitude of velocity change in the required direction in this case is ∆VA = 5.537

mm·s−1, which is 98.6% of the overall velocity change applied. This velocity change is also only

94.6% of that presented for the long axis case. That due to the added linear velocity of the debris

from the asteroid rotation and its contribution to deflection.
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Figure 4.16: Bennu angular velocity vector after kinetic interceptor impact
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Figure 4.17: Bennu angle between angular velocity after kinetic interceptor impact and angular
velocity prior to impact
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Figure 4.18: Surface slopes on Bennu prior to deflection effort
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Figure 4.19: Itokawa angular velocity vector after kinetic interceptor impact along x-axis
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Figure 4.20: Itokawa angle between angular velocity after kinetic interceptor impact along x-axis
and angular velocity prior to impact
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The case presented in Figures 4.23-4.25 shows the rotational and surface state of the asteroid

Bennu after nuclear detonation deflection. A substantial increase in angular velocity is observed in

Figure 4.23, together with a large shift in angular velocity direction, and some introduced precession.

The shift in angular velocity is equivalent to a reduction of 50.2 minutes (3010.0 seconds) from the

instantaneous rotation period, or a speed up of 19.5% of Bennu’s nominal rotation rate. This

increase, together with the shift in angular velocity direction and introduction of precession lead

to an excited surface dynamical environment. Figure 4.25 presents the surface slopes on Bennu

through four phases of the precession cycle (notated as Pψ), showing the evolution of surface slopes

after the deflection effort. The pentagon seen in each heatmap indicates the projection of the

body frame angular velocity vector on the surface. The dashed lines encompass surface areas with

slopes higher than 35 degrees, the lowest threshold above which material motion is thought to

be induced [10, 114]. The figure shows extensive areas on the surface reaching this threshold at

some time in the rotation cycle, the overall surface percentage reaching these slopes in a cycle is

81.2%. This means that, at a minimum, material is expected to move on and off the surface as a

result of the deflection. Furthermore, with this extent of extreme surface slopes it is expected that

subsurface accelerations would also lead to a motion of material, motion that would probably lead

to a reconfiguration of the asteroid structure or a complete disaggregation of it. The increase in

angular momentum is equivalent to 22.47% of the nominal value presented for Bennu in the first

case. The required direction velocity change to the asteroid system as a whole is ∆VA = 189.7

mm·s−1, which is 99.6% of the overall velocity change.
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Figure 4.21: Itokawa angular velocity vector after kinetic interceptor impact along y-axis
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Figure 4.22: Itokawa angle between angular velocity after kinetic interceptor impact along y-axis
and angular velocity prior to impact
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Figure 4.23: Bennu angular velocity vector after nuclear detonation
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Figure 4.24: Bennu angle between angular velocity after nuclear detonation and angular velocity
prior to impact
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(b) T = 0.25Pψ
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(c) T = 0.51Pψ
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Figure 4.25: Surface slopes on Bennu in a precession cycle after nuclear detonation
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4.1.6.3 Considerations of deflection direction for complex shapes

The incoming deflection direction is examined in the following section, in which, similarly to

Figures 4.4-4.6, the deflection outcomes are shown for all possible incoming directions (local zenith

and azimuth) for specific locations on the polyhedral model asteroid.

Figures 4.26-4.28 present the deflection results for a kinetic impact on a polyhedral Bennu at lon-

gitude and latitude [-84.4, 5.9] degrees, the same location shown in Figure 4.14a. The precession

resulting for all deflection directions in Figure 4.26 shows a minimal precession impact direction

similar to the facet location direction with a slight offset caused by the lost mass. When the preces-

sion map is compared with the angular velocity magnitude change map in Figure 4.27 the direction

in which the resulting disturbance to asteroid rotation rate is minimal can be found. Alternatively,

a direction that minimizes precession and reduces the asteroid rotation can also be seen. This

type of deflection would change the asteroid rotation regime, but do so in such a way that reduces

the possibility of rotational instability that could cause fission. Overall, the changes to rotation

inflicted by deflection in all directions in the polyhedral Bennu case are minor and will not lead

to instability of the asteroid structure or surface. However, when comparing the minimal rotation

disturbance directions with the deflection efficiency, defined in Eqs. 4.14-4.15, the directions close

to the facet location direction appear to best for maximizing the deflection. The maximum mag-

nitude of efficient deflection is 2.690 mm·s−1, in zenith and azimuth [20,270] degrees with respect

to facet normal, or, due east. The magnitude of effective deflection in the facet normal direction is

2.679 mm·s−1, and in the facet position direction is 2.674 mm·s−1, within 0.5% of the maximum.

The skewed direction of maximum efficacy is explained by the addition of linear velocity due to

rotation, as discussed in Section 4.1.6.1, which for Bennu can add up to 0.1 m·s−1 to its ∼1.65

m·s−1 maximum equivalent launch velocity magnitude for this case. This result is not represented

in the model presented in Eq. 4.5 and thus cannot be observed in Figure 4.6.

By examining the three deflection efficiency parameters presented in Figures 4.26-4.28 together a

weighted optimal incoming deflection direction to be defined and further researched.
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The results shown in this section for polyhedral shapes are similar in nature to those seen for

the ellipsoids in Section 4.1.3 in change of asteroid spin and introduction of precession, however,

discrepancies in the outcomes of specific deflection directions can be seen. Figure 4.29 presents

the precession reached for kinetic impactor deflection interfaced at longitude and latitude [25,25]

degrees, these results for a polyhedron mirror those for an ellipsoid presented in Figure 4.4. When

comparing the two heat maps, the direction of minimal precession shifts from an zenith and az-

imuth [40,260] degrees for the ellipsoid to that of [55,240] in the polyhedral model. The maximum

precession reached is also different: 2.9 degrees for an ellipsoid and 3.5 degrees for a polyhedral.

These outcomes demonstrate the importance of shape representation of an asteroid when planing

a deflection mission.

Figures 4.30-4.31 present the changes to asteroid rotation that result from the different deflection

directions on the impact location along the long axis of Itokawa. The trends seen in the figures are

similar to the Bennu results presented. However, the magnitudes of change are substantially higher

with maximum precession reached at 30 degrees and changes in angular velocity magnitudes of up

to 45% of the original value. Some of these changes can be attributed to the lower mass and smaller

rotation rate of Itokawa compared to Bennu. But a major contributor to this outcome is Itokawa’s

elongated shape, which leads to a larger lever arm and applies more torque on the asteroid. Thus

when planning deflection efforts of an elongated asteroid, the shorter side should be targeted for

impact. The deflection efficiency results are similar in nature to those shown for Bennu, presenting

a western skew due to the rotation.

The results of a nuclear detonation deflection off Bennu in the location presented in Figure 4.14a

are seen in Figures 4.32-4.27. The precession heatmap in Figure 4.32 reaches values beyond 90

degrees (the nullified areas in the heatmap), meaning the asteroid transitioned from SAM to LAM

rotation setting it in a tumble state which would lead to surface and structural instability. The

change to angular velocity magnitude is presented in Figure 4.33, here a small region of directions

which will keep the angular velocity magnitude at nominal values or lower is observed. However,

impact in close to half of the directions in this region would lead to LAM rotation. Similarly to
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Figure 4.26: Precession reached for impacts located at [-84.4, 5.9] degrees on a polyhedral Bennu,
the star indicates the impactor direction parallel to the surface position
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Figure 4.27: Change in angular velocity magnitude reached for impacts located at [-84.4, 5.9]
degrees on a polyhedral Bennu, the star indicates the impactor direction parallel to the surface
position, the dashed line indicates equal values between |ω|max and |ω0|
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Figure 4.28: ∆v reached for impacts located at [-84.4, 5.9] degrees on a polyhedral Bennu, the star
indicates the impactor direction parallel to the surface position
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Figure 4.29: Precession reached for impacts located at [25.0,25.0] degrees on a polyhedral Bennu,
the star indicates the impactor direction parallel to the surface position
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Figure 4.30: Precession reached for impacts located at [1.0,-0.9] degrees on a polyhedral Itokawa,
the star indicates the impactor direction parallel to the surface position
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Figure 4.31: Change in angular velocity magnitude reached for impacts located at [1.0,-0.9] degrees
on a polyhedral Itokawa, the star indicates the impactor direction parallel to the surface position,
the dashed line indicates equal values between |ω|max and |ω0|
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the previous cases, a direction in which the effects on rotation are minimized can be seen near

the interface location position direction. Although, the minimized effect is an order of magnitude

larger than in the kinetic impact case. The overall deflection efficiency is presented in Figure 4.34,

it shows high correlation with the local normal (no eastern skew) because of the equivalent launch

velocity is five orders of magnitude higher than the ejecta linear velocity induced from rotation.
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Figure 4.32: Precession reached for nuclear detonations located above [-84.4, 5.9] degrees on a

polyhedral Bennu, the star indicates the impactor direction parallel to the surface position, the

white areas indicate directions in which the rotation has reached LAM and thus ψ cycles through

[0,360] degrees
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Figure 4.33: Change in angular velocity magnitude reached for nuclear detonations located above
[-84.4, 5.9] degrees on a polyhedral Bennu, the star indicates the impactor direction parallel to the
surface position, the dashed line indicates equal values between |ω|max and |ω0|
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Figure 4.34: ∆v reached for nuclear detonations located above [-84.4, 5.9] degrees on a polyhedral
Bennu, the star indicates the impactor direction parallel to the surface position
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4.1.6.4 Deflection results for entire asteroid surface

The following section presents the deflection results for every facet on the asteroid polyhedral

shape models. The deflection interface direction used for each facet is the facet center position

vector. This direction is also defined as the required deflection direction, ∆V̂ ∗. Figures 4.35-4.37

present these results for the polyhedral Bennu kinetic impactor case. The precession reached for

every facet is seen in Figure 4.35. The lowest precession reached occurs for equatorial regions,

specifically areas that appear to be large craters on the asteroid’s equatorial ridge [132]. Polar

region impacts also result in low precession angles. The change in angular velocity magnitude is

presented in Figure 4.36. The heatmap shows a correlation between north to south ridge slopes and

the magnitude of change to asteroid rotation. Impacts on east facing slopes reduce the asteroid’s

angular velocity magnitude and on west facing slopes increase it. All results for Bennu’s surface

(when impacts are in direction of local facet position) appear to be below the threshold to change

the surface geopotential or risk the asteroid’s structure. Figure 4.37 presents the efficiency of

deflection for an impact on each facet of Bennu, here the efficiency is defined as |∆V ∗A |/|∆VA|,

which compares the facet specific asteroid velocity change reached with its required direction. The

majority of facets present an efficiency of 99.5% or higher, but those that correlate to the maximum

precession reached can get as low as 95% efficiency. Overall, the results show that multiple areas

can be found on Bennu’s surface that would minimize effect on rotation and lead to full deflection

efficiency, this due to Bennu’s near spherical shape.

The deflection results for every facet on the polyhedral Itokawa are presented in Figures 4.38-4.40.

The results in Figure 4.38 show regions on both nodes which lead to precession of 30 degrees or

higher, these areas face diagonally with respect to the equatorial plane of the asteroid, applying

their lever arm to change the angular velocity vector direction. Similarly to Bennu, areas directly

on the equator and near the poles can be found that lead to little precession. Figure 4.39 presents

the change in angular velocity magnitude caused by the deflection effort. The figure shows a

maximum change in asteroid rotation magnitude (over 20%) for impacting the side of node ends.
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Figure 4.35: Precession reached for impacts in direction of facet position on all surface locations
on a polyhedral Bennu
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Figure 4.36: Change in angular velocity magnitude reached for impacts in direction of facet position
on all surface locations on a polyhedral Bennu
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Figure 4.37: ∆v efficiency reached for impacts in direction of facet position on all surface locations
on a polyhedral Bennu
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Figure 4.38: Precession reached for impacts in direction of facet position on all surface locations
on a polyhedral Itokawa

Here a difference between impacting an east facing, rotation decelerating, node and impacting a

west facing, rotation accelerating, node is seen. Figure 4.39 presents the impact deflection efficiency

which reaches lower than 90% for node eastern or western impacts. When comparing the effect on

rotation and impact efficiency it appears that the best location for deflection is in the middle of

the asteroid long axis, in an equatorial or polar region.

Figures 4.41-4.42 present the deflection results for a nuclear detonation near the surface of

polyhedral Bennu. Overall, the trends are similar to those seen for the Bennu kinetic impactor

case, maximum precession values for impacts near the equator, and maximum spin up/down for

west/east facing slopes. However, the change magnitudes are significantly higher, showing some

regions that even reach LAM rotation for a detonation pointed in the interface facet position vector

direction. The magnitude of change to the asteroid rotation can reach an increase of over 200%,

a change that could cause complete rotational breakup of the asteroid [114]. Similarly to the

previous cases, locations that provide minimum disturbance to rotation and maximum efficiency

to deflection can be found. However, these areas can be near highly perturbing regions and require

good accuracy in detonation direction.
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Figure 4.39: Change in angular velocity magnitude reached for impacts in direction of facet position
on all surface locations on a polyhedral Itokawa

Figure 4.40: ∆v efficiency reached for impacts in direction of facet position on all surface locations
on a polyhedral Itokawa
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Figure 4.41: Precession reached for nuclear detonations in direction of facet position on all surface
locations on a polyhedral Bennu
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Figure 4.42: Change in angular velocity magnitude reached for nuclear detonations in direction of
facet position on all surface locations on a polyhedral Bennu
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4.1.7 Implications of the rotation - surface activity relationship on momentum

transfer deflection

The work presented here demonstrates the effect deflection efforts would have on PHO ro-

tation. It shows negligible effects in rotation and high efficiency of kinetic impact deflection on

near-spherical asteroid shapes, such as Bennu. For elongated asteroids the effects on rotation are

non-negligible and has the potential to disturb the asteroid rotation and structure. Additionally,

a reduced efficiency is observed for some locations on the surface of the elongated asteroid. This

reduced efficiency can be mitigated with proper planned margins or with advanced guidance which

is capable of selecting the impact location during the approach phase. The effects on rotation of

a nuclear detonation deflection on a near-spherical asteroid have been shown to be dramatic even

when the deflection pointing is close to optimal. These effects on rotation have the potential to

completely restructure or disaggregate the deflected asteroid and should be taken into considera-

tion when planning such an operation. On the other hand, the deflection efficiency of this type of

deflection scheme (nuclear on near-spherical) is high and provides the magnitude of ∆V required

for short warning time deflection.
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4.2 Mass driver deflection and additional applications

The dynamics of mass launch from PAR asteroid surfaces are derived in this section. These

dynamics are then used to examine considerations in mass driver deflection. The section also

presents and analyzes an operational orbital scheme for mass driver deflection.

4.2.1 Background

The previous section presented some risks related with single-shot deflection methods, kinetic

interception and nuclear detonation, and implied the greatest risk related with these type of meth-

ods - an “all the eggs in one basket” approach. These methods provide the maximum deflection as

early as possible: maximizing the deflection efficiency with respect to the asteroid time to MOID,

but also posing only a single opportunity for deflection. If the deflection fails, an entirely new

deflection mission needs to be conducted. Failure of such a mission could come from providing

too little momentum, leading to an insufficient ∆V for the asteroid, from providing too much mo-

mentum, leading to asteroid fragmentation [150], or, as seen in the previous section, applying the

momentum in such a way that provides rotational torque at cost to the asteroid ∆V and at risk of

causing wide-scale fission of asteroid fragments. These fragments that could still be on a collision

course with Earth, either as multiple threats to the planet, or as a reaggregated asteroid with little

change in collision path [115].

The other deflection methods discussed in the introduction take longer to implement, but have

the ability for course correction and pose little threat to the asteroid structural stability. In addi-

tion to the long implementation times, these spacecraft missions would usually require substantial

amounts of fuel to be used in the deflection effort. For example Scheeres and Schwickart [68]

proposed concept would use a continues low thrust system (force lower than 1 Newton) that can

deflect an asteroid given reasonable detection time frames (several years). This concept, however,

would require de-spinning the asteroid or reorienting its spin in order to align the thrust vector

in a specific inertial direction. Furthermore, Izzo [137] showed that by simply using the mass of
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a lander-thruster required for deflection as a kinetic impactor counter mass, the deflection success

chances are higher, making the added complexity of operating the lander unnecessary. Successive

“single event” deflection methods that could bridge the intensity of a nuclear detonation or kinetic

interception with the controllability of slower methods have been proposed as well [151].

A different approach to the lander-thruster concept has been suggested. This approach, dubbed as

Mass Driver (MD) deflection, proposed by Olds et al. in their NASA Innovative Advanced Con-

cepts (NIAC) report [69], suggests using material from the asteroid itself as kinetic propellant for

deflection. This idea, which has been proposed by other advanced concept research studies as well

[152, 71], only requires the thrusting mechanism to reach the asteroid surface. Thus, substantially

reducing the launched mass of the deflection system and therefore expanding launch opportunities

and trajectory design options. In addition, the proposed concepts rely on radioisotopic thermoelec-

tric generators as a power source for in-situ operations, further reducing mass requirements and

making these systems robust and flexible to a wide range of environments. Furthermore, the pro-

posed concepts are inherently multi-agent based, providing redundancy to the system and allowing

it to keep deflection efforts operational even if segments of the system have failed. Moreover, the

discrete nature of MD thrusting detaches the asteroid’s rotation from the deflection problem by

timing the mass ejections with the proper asteroid phase in its rotation. Specifically, the new type

of robotic lander-rover presented by McMahon [152], the Area-of-Effect Soft (AoES) Robots, is a

great example of a surface operations concept for MD deflection. These robots would be adapted

for operations on asteroid surfaces, able to maneuver and manipulate objects in the unique micro-

gravity environment. The AoES could potentially roam the surface of the deflected asteroid, pick

up boulders of varied sizes, or volumes of regolith from various locations and launch them into

defined hyperbolic trajectories, providing small ∆V increments to the deflection. These ∆V incre-

ments will allow for assessment and correction of the deflection effort.
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4.2.2 Small deviations near principal axis rotation

This section will develop the linear approximated solution for torque free rotational motion

around a general PAR body. The dynamic manipulations applied to the body in this section and

those that follow are assumed to be instantaneous with respect to the body’s rotation rate. This

assumption is based on rotation periods several hours long and manipulations that are on the scale

of several seconds for small bodies or several minute rotation periods and sub-second timeframes

manipulations for spacecraft.

The system presented in this section can change its inertia tensor, its angular velocity, or both with

small deviations around the nominal PAR state defined as ωN and [IN ]

ω = ωN + δω (4.16)

[I] = [IN ] + [δI] (4.17)

Here, the nominal angular velocity only has a z-axis element, ω(t) = [0, 0, ωz]
T , and the nominal

inertia tensor is diagonal, [IN ] = diag(Ix, Iy, Iz). It is important to note that while the angular

velocity becomes time dependent in this case (δω = δω(t)), the inertia tensor remains constant

between [δI] shifts.

Inputting Eqs. 4.16 and 4.17 to Euler’s equation (Eq. 2.6)

([IN ] + [δI])(ω̇N + δω̇) + (ωN + δω)× ([IN ] + [δI])(ωN + δω) = 0 (4.18)

For simplicity of presentation the N notation is removed

([I] + [δI])(ω̇ + δω̇) + (ω + δω)× ([I] + [δI])(ω + δω) = 0 (4.19)

The Euler equation shows that ω̇ = 0, leading to

([I] + [δI])δω̇ + (ω + δω)× ([I] + [δI])(ω + δω) = 0 (4.20)

which can be rewritten as

[I]δω̇ + [δI]δω̇ + ω × [I]ω + δω × [I]ω + ω × [δI]ω + δω × [δI]ω+

ω × [I]δω + δω × [I]δω + ω × [δI]δω + δω × [δI]δω = 0 (4.21)
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Under the small perturbations assumption all higher order δ elements are assumed zero

[I]δω̇ + ω × [I]ω + δω × [I]ω + ω × [δI]ω + ω × [I]δω = 0 (4.22)

Because of the PAR property the ω × [I]ω element is nullified and the equation can be rewritten

as

−[I]δω̇ = δω × [I]ω + ω × [δI]ω + ω × [I]δω (4.23)

This dynamical equation can be used to propagate a rotating body’s precession motion. Inputting

the PAR nominal angular velocity leads to a system of linearized differential equations

δω̇x = ωz
Ix

[(Iy − Iz)δωy + δIyzωz] (4.24)

δω̇y = ωz
Iy

[(Iz − Ix)δωx − δIxzωz] (4.25)

δω̇z = 0 (4.26)

For which the solution is

δωx =

(
δωx,0 −

δIxzωz
Iz − Ix

)
cos (φ(t− t0))−√

Iy(Iz − Iy)
Ix(Iz − Ix)

(
δωy,0 −

δIyzωz
Iz − Iy

)
sin (φ(t− t0)) +

δIxzωz
Iz − Ix

(4.27)

δωy =

(
δωy,0 −

δIyzωz
Iz − Iy

)
cos (φ(t− t0)) +√

Ix(Iz − Ix)

Iy(Iz − Iy)

(
δωx,0 −

δIxzωz
Iz − Ix

)
sin (φ(t− t0)) +

δIyzωz
Iz − Iy

(4.28)

δωz = δωz,0 (4.29)

where

φ = −

√
ω2
z

IxIy
(Iz − Ix)(Iz − Iy) (4.30)

is the angular velocity oscillation frequency and [δωx,0, δωy,0, δωz,0] are initial deviations to the

angular velocity at time t0.
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Figure 4.43a compares the true deviation to the linearized differential equations (Eqs. 4.24-4.26) and

the linearized solution (Eqs. 4.27-4.29) for 100 cycles. The state is propagated with a fixed (unitless)

nominal angular velocity ωN = [0, 0, 1.0]T , a nominal ellipsoidal 5-3-2 ratio mass distribution, and

a total (unitless) mass of M = 10000. The initial angular velocity deviation is [0.001√
3
, 0.001√

3
, 0.001√

3
]T

and the inertia tensor deviation is of a point mass located at [1.5, 1.2, 1.0]T and a value of dM =

0.0002M . Figure 4.43b presents the error between the true deviation and the linearized solution

defined as

eδω =
δωTrue − δω
|δω0|

(4.31)

The figures show a good correlation between the true and linearized solutions, with an error magni-

tude that remains less than 3% of the initial deviation after 100 cycles. The deviation oscillation in

the z-axis is not modeled in the linearized propagation and solution. However, this z-axis deviation

is 3 orders of magnitude smaller than the initial deviation.

A more generalized view of the deviation error can be seen in Figure 4.44, which presents maps of

the maximum errors reached after 100 cycles. In addition to the ellipsoid presented in Figure 4.44a

a near-spherical 1.1-1.05-1.0 ratio body is examined in Figure 4.44b. Both bodies are subject to an

initial angular velocity deviation in the [ 1√
3
, 1√

3
, 1√

3
]T direction with magnitudes varying from |ωN |

to 10−8 × |ωN |. The point mass located at [1.5, 1.2, 1.0]T varies in value between 10−6.5 ×M and

0.32M . The map and all axes in it are presented in a logarithmic scale. The bottom horizontal

axis in the figure shows the determinant ratio between the nominal inertia tensor and the devia-

tion tensor. The top horizontal axis correlates to the deviation inertia tensor and shows the ratio

between the point mass and nominal shape mass. The vertical axis shows the ratio between the

initial deviation magnitude and the nominal angular velocity magnitude. The figures show a region

in which the deviation and nominal state ratios lead to small errors between the true and linearized

deviations. The largest error regions are seen at small angular velocity deviation but large inertia

tensor deviation, an outcome which is explained by the error magnitude reflecting the change from

initial deviation. The small error region (less than 5% of initial value) for the near-spherical body
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reaches higher angular velocities than the near spherical error region. However, the ellipsoid reaches

smaller errors for smaller initial angular velocity deviations.

When examining the linearized solutions in Eqs. 4.27-4.29 further, the first order precession

frequency can be seen to only depend on the nominal principal inertia axes and nominal angular

velocity. As seen in Figure 4.43a Eq. 4.29 shows the linearized solution in the z-axis as constant at

the initial deviation value. The solutions also show that the first order precession can be nullified

with proper adjustment of the off-axis xz and yz inertia tensor deviations.

4.2.2.1 Spacecraft small precession mitigation using inertia tensor adjustment

Using the solution in Eqs. 4.27-4.29 a body’s inertia tensor can be adjusted in order of

reducing small precession motion. For a spacecraft this mechanism would be similar to the damping

mechanism used on spin-stabilized spacecraft [153], but without the energy loss associated with such

a mechanism. Such a device could be as simple as a small mass placed on a platform outside of the

xy plane with the ability to relocate itself on the x and y axes. A similar concept has been proposed

for solar-sail attitude control using two masses moving along rails between the sail segments [154].

For any precession cancellation system the sinusoidal coefficients in Eqs. 4.27-4.29 would need to

be nullified

δωx(t = t[δI])− δIxzωz
Iz−Ix = 0 (4.32)

δωy(t = t[δI])−
δIyzωz
Iz−Iy = 0 (4.33)

where the δω values would be at the time of the inertia deviation adjustment. Which values would

be

δIxz = δωx(t[δI])
Iz−Ix
ωz

(4.34)

δIyz = δωy(t[δI])
Iz−Iy
ωz

(4.35)
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Using a point mass with a fixed, non-zero, zdM value the location change would be

δxdM = −δωx(t[δI])
Iz−Ix
ωz

1
zdMdM

(4.36)

δydM = −δωy(t[δI])
Iz−Iy
ωz

1
zdMdM

(4.37)

Using a small point mass the ellipsoid presented in the previous section is adjusted to cancel the

precession motion. Figure 4.45 presents the precessing ellipsoid with an initial angular velocity

deviation of [0.01√
3
, 0.01√

3
, 0.01√

3
]T and a point mass of 0.01M initially located at [0, 0, 1.0]T . At time

30 cycles the point mass is moved according to Eqs. 4.36 - 4.37 to location [0.718, 0.066, 1.0]T .

The resulting change in out-of-nominal motion leads to a deviation ∼95% smaller seen in Figure

4.45b. Figure 4.45a also shows that despite the z-axis not being properly modeled in the linearized

solution it too is adjusted to reduce fluctuations by 85%.

4.2.3 Asteroid rotation manipulation

The small deviation solutions derived in the previous section can be applied to scenarios of

PAR asteroids and boulders on their surfaces. For example a 5.2 meter mean diameter boulder

(122 tons) placed on Bennu’s equator has a mass ratio in order of magnitude of 10−6 and an inertia

tensor determinant ratio in order of magnitude of 10−21. Launching such a boulder off the surface

of the asteroid at 1 m·s−1 would cause a deviation in angular velocity in order of magnitude of 10−6

of the original angular velocity magnitude. The following section expands the linearized solution

in Eqs. 4.27-4.28 to reflect deviations in angular velocity and inertia tensor in scenarios of boulder

launches off asteroids.

Section 2.3.2 shows the state of asteroid model angular velocity at the moment of a boulder launch

off the surface. This angular velocity value is reached through the angular momentum equilibrium

in Eq. 2.23. Rewriting the angular momentum equilibrium in terms of inertia tensors and body

angular velocities in the inertial frame (while minimizing the notation for simplicity) leads to

[I+]ω+ = [I−]ω− − [IB]ω− −MBRB × Ṙ+
B (4.38)
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The boulder center of mass velocity can be presented as in Eq. 4.12

Ṙ+
B = ω− ×RB + ∆VB (4.39)

where ∆VB is the launch velocity added to the boulder’s rotating frame velocity.

Using the notation convention presented in Eqs. 4.16-4.17, defining ω+ = ω and [I+] = [I], adding

a 0 notation to the angular velocity deviation element to account for the equilibrium only existing

at the moment of launch, removing the N notation for simplicity, and inputting Eqs. 4.16,4.17, and

4.39 as well as the relationship between [δI], [IB] and RB as [δI] = −[IB] + MB[R̃B][R̃B]T into

Eq. 4.38, and removing elements which cancel each other leads to

[I]δω0 − [IB]δω0 +MB[R̃B][R̃B]T δω0 = −MBRB ×∆VB (4.40)

Using the set of PAR small perturbation assumptions the [IB]δω0 and MB[R̃B][R̃B]T δω0 elements

are nullified and Eq. 4.40 becomes

[I]δω0 = −MBRB ×∆VB (4.41)

Eq. 4.41 can be expanded to a set of equations in the principal-axis body frame

δωx,0 = MB
Ix

[
−rBy∆vBz + rBz∆vBy

]
(4.42)

δωy,0 = MB
Iy

[−rBz∆vBx + rBx∆vBz ] (4.43)

δωz,0 = MB
Iz

[
−rBx∆vBy + rBy∆vBx

]
(4.44)

Here, and throughout the rest of Section 4.2, lower-case vectors represent the principal-axis body

frame and upper-case vectors represent the inertial frame. Inputing the inertia tensor deviation

[δI] = −[IB] +MBrB × rB× into the linearized solution in Eqs. 4.27-4.29 leads to

δωx =

(
δωx,0 +

(IB,xz −MBrB,xrB,z)ωz
Iz − Ix

)
cos (φ(t− t0))−√

Iy(Iz − Iy)
Ix(Iz − Ix)

(
δωy,0 +

(IB,yz −MBrB,yrB,z)ωz
Iz − Iy

)
sin (φ(t− t0))−

(IB,xz −MBrB,xrB,z)ωz
Iz − Ix

(4.45)
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δωy =

(
δωy,0 +

(IB,yz −MBrB,yrB,z)ωz
Iz − Iy

)
cos (φ(t− t0)) +√

Ix(Iz − Ix)

Iy(Iz − Iy)

(
δωx,0 +

(IB,xz −MBrB,xrB,z)ωz
Iz − Ix

)
sin (φ(t− t0))−

(IB,yz −MBrB,yrB,z)ωz
Iz − Iy

(4.46)

δωz = δωz,0 (4.47)

Combining Eqs. 4.42-4.44 and 4.45-4.47 can lead to a variety of boulder launch outcomes. As

presented in the following sections.

4.2.4 Boulder removal without precession

A boulder launch scenario can be designed such that the angular velocity is slightly shifted

from the original direction, but the PAR characteristic is kept. Such a scenario could be important

in close proximity asteroid mining operations, where boulders are lifted to orbit using spacecraft,

or in an MD scenario in which boulders are launched to hyperbolic trajectories, while seeking to

minimize disturbances to the asteroid’s rotation. In a recursive removal process keeping the PAR

characteristic could mean the difference between a safe, successful mission and mission failure due

to the introduction of complex dynamics in the asteroid’s rotation.

Examining the sinusoidal element coefficients in Eqs. 4.45-4.46 together with the relationships in

Eqs. 4.42-4.43 leads to the conclusion that the non-precessing solution can be reached by nullifying

the coefficients using the following launch directions

∆vB,x = βy + αx∆vB,z (4.48)

∆vB,y = −βx + αy∆vB,z (4.49)
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where the α coefficients are the launch direction ratios and the β coefficients are the launch direction

offset

αx =
rB,x
rB,z

(4.50)

αy =
rB,y
rB,z

(4.51)

βx =
ωzIx(IB,xz−MBrB,xrB,z)

MBrB,z(Iz−Ix) (4.52)

βy =
ωzIy(IB,yz−MBrB,yrB,z)

MBrB,z(Iz−Iy) (4.53)

Here the ∆vB,z element is a degree of freedom that can be defined according to additional opera-

tional requirements. Figure 4.46 presents a launch scenario of a single boulder from the surface of

Bennu (rotating at its nominal 4.3 hour period). The ∆vB,z component is set to zero, for exam-

ple in a scenario which seeks not to disturb the asteroid’s out-of-equatorial plane orbital motion.

Figure 4.46b presents a field of fifty-six identical 5.2 meter average diameter boulders, with a mass

of 122 tons each, evenly distributed on the surface. The boulder which provides the largest δω0 is

selected for launch. Its location is on the equator at the largest surface radius available (longitude

∼130 degrees). The boulder’s launch velocity is |∆vB| = 0.797 m·s−1 and the overall change in

angular velocity magnitude is δω0 = 1.416 × 10−8 s−1 which amounts to 0.53 seconds added to

the rotation period. This change to angular velocity magnitude is equivalent to 52.9 years of the

YORP effect rate presented in Table 3.6. Figure 4.46a shows the asteroid angular velocity in both

the body and inertial frames. The shift from one fixed position of the vector to another is seen in

the figure in both frames, showing that the asteroid remains a PAR after the boulder is removed

and launched. The boulder launch velocity magnitude is high enough to launch it in a hyperbolic

trajectory, causing it to leave the asteroid’s gravity well.

The launch magnitude in the Figure 4.46 case is derived from the zero ∆vB,z and Eqs. 4.48-4.49

constraints. A scenario in which a boulder’s launch velocity could exceed the technical feasibility

of the hardware removing the boulder. For that reason a launch velocity constraint can be imposed

on the launch scenario. Assuming a set ∆vB magnitude for a given boulder

|∆vB|2 = ∆v2B,x + ∆v2B,y + ∆v2B,z (4.54)
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and inputing Eqs. 4.48-4.49 into the equation leads to

|∆vB|2 = (βy + αx∆vB,z)
2 + (−βx + αy∆vB,z)

2 + ∆v2B,z (4.55)

The equation’s solution for ∆vB,z is

∆vB,z =
αyβx − αxβy ±

√
− (αxβx + αyβy)

2 + |∆vB|2
(
1 + α2

x + α2
y

)
− β2x − β2y

α2
x + α2

y + 1
(4.56)

This solution leads to two boulder launch directions, one of which can be set into the asteroid itself.

By imposing that ∆vB · rB > 0 the outward launch direction can be selected. The square-root

phrase in Eq. 4.56 shows that in order of reaching a physical solution for ∆vB,z there is minimum

required boulder launch magnitude. This ∆v is also the minimum value needed to keep the asteroid

as a PAR

|∆vmin| =
√[

(αxβx + αyβy)
2 + β2x + β2y

] [
1 + α2

x + α2
y

]−1
(4.57)

Table 4.1 presents the minimum launch velocities required to keep the asteroid as a PAR for several

of the identical boulders seen in Figure 4.46b. The table also shows the change in asteroid angular

velocity for each boulder launch at the minimum value. The boulder launched in Figure 4.46 is

numbered 4 in the table, with a minimum launch velocity magnitude being 99.3% of the value

reached in the ∆VB,z = 0 scenario. Interestingly, the reached change in angular velocity is 0.06%

higher when ∆VB,z is given the freedom to be defined by minimum launch velocity. As expected, a

high correlation is seen between the launch velocity and the change in angular velocity. The table

also shows that a boulder’s latitude is the best indicator of the launch velocity needed to keep

the PAR characteristic. In the comparison of boulders 4 and 6, both on the equator, the small

difference in launch velocities stems from the added 25 meters in altitude boulder 4 has.

Using the indicators presented in Table 4.1 and expanding on them can produce preference tables

to rank boulder launches according to desired outcomes. Such outcomes as maximum tilt of the

angular velocity vector in a certain direction, maximum change to the z component of the angular

velocity, or lowest ∆V required to launch a boulder while keeping the asteroid as a PAR. In a real

operational scenario, where boulders are not identical, a boulder’s mass and the ability to launch it
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Boulder Longitude [deg] Latitude [deg] Radius [km] ∆Vmin [m·s−1] δω0 [s−1] YORP years

1 132.6 80.1 0.246 0.118 -0.21×10−8 7.9
2 130.7 55.5 0.239 0.379 -0.63×10−8 23.6
3 128.7 28.9 0.238 0.588 -0.92×10−8 34.2
4 130.0 1.4 0.283 0.792 -1.417×10−8 52.95
5 -20.2 -55.3 0.231 0.326 -0.53×10−8 19.8
6 -21.9 -0.5 0.258 0.64 -1.05×10−8 39.0

Table 4.1: Minimum launch velocities for boulders in different locations

will also need to be considered in the ranking. For a given boulder the launch velocity magnitude is

a function of the boulder mass, the launch thrust T and the thrusting time tb (assuming constant

and infinitesimally short thrust)

|∆vB| =
Ttb
MB

(4.58)

For a defined thrust boulders can also be ranked by the ∆V their masses allow to reach. For

example, for a 100 kN engine thrusting for 10 second would lead to a ∆VB = 8.2 m·s−1 for the

boulder presented in Figure 4.46.

When observing the relationship between Eqs. 4.48-4.49, 4.50-4.53, and 4.56 together with results

of boulders seen in Table 4.1 and Figure 4.46b the overall change observed in angular velocity is

always negative. This means that a boulder launch while keeping the PAR characteristic for a given

launch capability has a decelerating effect on an asteroid’s angular velocity.

A scenario in which boulders are launched to maximize angular velocity deceleration is presented in

Figure 4.47. This scenario could be useful for in-situ operations when seeking to reduce the rotation

rate, increase the surface geopotential, and prevent particles or equipment from launching to orbit.

Thirty boulders, with mean diameters ranging from 2.2 to 9.5 meters (5.3 to 467 tons) are randomly

placed on the surface of Bennu. The boulders are ranked by their contribution to the total δω with

a thrusting magnitude of 100 kN for 10 seconds. The highest ranking ten boulders are launched at

10000 second intervals sequentially. This scenario is not probable in near future asteroid operations,

but it demonstrates the achievable changes of advanced operations of asteroid surfaces. The overall

change in angular velocity magnitude is δω = 16.5 × 10−8 1·s−1 which amounts to 6.16 seconds
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added to the rotation period. A change in angular velocity magnitude that is equivalent to 605

years of the YORP effect on Bennu. Figure 4.47a shows the body frame angular velocity evolution,

the change in the x and y elements is erratic, but the change in the z direction is consistent in its

decelerating trend. Figure 4.47b presents all 30 boulders on the surface, with relative magnitudes

and contribution to angular velocity magnitude change. The figure shows some preference for

boulder size over boulder location. However, given similar boulder sizes, generally boulders closer

to the equator contribute more to the angular velocity change.

4.2.4.1 Tumbling an asteroid with boulder removal

An operational scenario can exist which requires disruption of an asteroid’s rotation; for

example in order of destabilizing the surface environment of the asteroid as part of an asteroid

deflection or mining efforts. Two changes to the angular velocity can assist in reaching disruption:

precession and acceleration. As described in Section 2.4.1 precession would lead to a time varying

surface environment, that would include a varying acceleration regime on surface material, possibly

to the extent of loosening it so it independently launches to space. Accelerating an asteroid’s

rotation would lead some areas to have an outward pointing surface acceleration, causing material

from that region to launch off of the surface. Examining Eqs. 4.42-4.47 again shows that in

order of reaching maximum acceleration the x and y components of the launch vector need to be

perpendicular to the boulder’s xy plane position vector. Assuming the entire launch vector is in

the xy plane with a given magnitude of |∆vB| the launch velocity vector is

∆vB,x =
rB,y√

r2B,x+r
2
B,y

|∆vB| (4.59)

∆vB,y = − rB,x√
r2B,x+r

2
B,y

|∆vB| (4.60)
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A z-axis launch velocity element can be introduced by adding some factor κ for the x and y elements

∆vB,x = κ
rB,y√

r2B,x+r
2
B,y

|∆vB| (4.61)

∆vB,y = −κ rB,x√
r2B,x+r

2
B,y

|∆vB| (4.62)

∆vB,z = ±
√

1− κ2|∆vB| (4.63)

where the z-axis launch velocity sign is set outwards, in the direction of the boulder’s z-axis po-

sition. Figure 4.48 presents the changes in δω values as a function of the κ ratio in a tumbling

scenario for a boulder from the field presented in Figure 4.46. This boulder is ranked highest in

the overall δω it provides to the asteroid. Figure 4.48a shows the δω0 values, with a linear increase

in δω0,z, a non-linear increase in δω0,x and a near-linear decrease in the δω0,y as κ approaches 1.

Recalling that the actual δω solution is a function of the boulder geometry as well, the amplitudes

of the cosine coefficients in Eqs. 4.45 and 4.46 are plotted in Figure 4.48b, together with the time

constant value of δω0,z and the sum of all three elements. A maximum point can be seen at κ = 0.95

with an amplitude sum of ΣAδω = 20.4× 10−8 s−1.

Figure 4.49 presents the results of the boulder launch at maximum disturbance |∆vB|. The an-

gular velocity deviation magnitude at the end of the simulation δω = 12.2 × 10−8 s−1, which is

equivalent to 2.6 seconds reduced from the instantaneous rotation period (at simulation end), or

∼220 years of YORP. Figure 4.49a shows the angular velocity precessing both in the body and

inertial frames. The boulder launch southward direction seen in Figure 4.49b demonstrates the

substantial z-axis element for the tumbling case. It is interesting to point out that the boulder is

located in the lowest radial position in found in the field, placing it closest to the asteroid’s center

of mass.

It is impotent to note that in a tumbling scenario the linearized PAR dynamics will quickly break

down and the launch directions derived from these dynamics will not necessarily be optimal for

tumbling. Further investigation into how best to tumble an asteroid should be conducted to expand

all possibilities of this application.
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4.2.5 Boulder launch to affect asteroid orbits

Using Eq. 4.39 together with the ˆ̇RB,∞ ‖ ˆ̇RB,t0 assumption in Eq. 4.13 leads to the asteroid

velocity change as a function of the launch ∆VB

∆VA = −MB

M+

√
|ω ×RB + ∆VB|2 − 2

GM+

|RB|
ω ×RB + ∆VB
|ω ×RB + ∆VB|

(4.64)

Similarly to the previous section, asteroid system ∆V vector is notated as ∆VA to prevent confusion

with other general ∆V mentions, and because the scenarios presented are those in which boulders

escape in each launch, thus the asteroid system and the asteroid (parent body and surface boulders)

are the same. It is important to note that Eq. 4.64 is presented in the inertial frame, meaning the

boulder inertial position vector is constantly changing and the required launch direction changes in

the body frame. Keeping with the PAR asteroid assumption, the inertial and body z axes are set

to be aligned. This arrangement sets the angular velocity vector as constant in both frames. The

boulder velocity can be presented using an Euler rotation matrix around the z

ṘB = [Rz(θ(t))](ω × rB + ∆vB) =


Cθ −Sθ 0

Sθ Cθ 0

0 0 1




−ωzrB,y + ∆vB,x

ωzrB,x + ∆vB,y

∆vB,z

 =


Cθ(−ωzrB,y + ∆vB,x)− Sθ(ωzrB,x + ∆vB,y)

Sθ(−ωzrB,y + ∆vB,x) + Cθ(ωzrB,x + ∆vB,y)

∆vB,z

 (4.65)

where θ(t) = ωzt+ θ0. It should be noted that the z-axis element is fixed for all θ angles.

For the goal of asteroid deflection a desired asteroid velocity change direction ∆V̂ ∗ is defined based

on the orbital requirements that will be described in a later section. The next subsection will

present optimized planning schemes for boulder launch. First by optimizing the launch timing

in the asteroid’s rotation for a boulder when the ∆VB values are fixed in the body frame. And

then by examining a change in ∆VB values together with the launch phase in the asteroid’s rotation.
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4.2.5.1 Optimized boulder launch

The requirement in an optimized boulder launch is to maximize the alignment of ∆VA with

∆V̂ ∗. This alignment can be represented as the projection of ∆VA on ∆V̂ ∗

∆VA,p∗ = (∆VA ·∆V̂ ∗)∆V̂ ∗ (4.66)

The fixed values of ∆vB in the body frame mean that the magnitude elements of ∆VA are fixed

for any launch direction. Thus, in order of maximizing ∆VA with respect to ∆V̂ ∗ the dot product

∆V̂A ·∆V̂ ∗ needs to be maximized. The z element in Eq. 4.65 is fixed and thus the projection can

only be maximized in the xy plane. A cost function is defined as the xy plane dot product of the

boulder inertial velocity and the required asteroid velocity change direction

J = Sθ

(
(−ωzrB,x −∆vB,y)∆V

∗
x + (−ωzrB,y + ∆vB,x)∆V ∗y

)
+

Cθ

(
(−ωzrB,y + ∆vB,x)∆V ∗x + (ωzrB,x + ∆vB,y)∆V

∗
y

)
(4.67)

Here Sθ = sin(θ(t)) and Cθ = cos(θ(t)) are the rotation matrix elements.

Finding the extrema of this cost function would provide the boulder escape direction that is aligned

most with the required asteroid velocity change. The minimum solution would launch the boulder

in the direction of desired asteroid velocity change, propelling it opposite to the desired direction.

The maximum solution would maximize the thrust provided to the asteroid’s deflection measure.

Differentiating the cost function by the angle θ and setting to zero (∂J∂θ = 0) leads to

θ∗ = π + arctan

(
(−ωzrB,x −∆vB,y)∆V

∗
x + (−ωzrB,y + ∆vB,x)∆V ∗y

(−ωzrB,y + ∆vB,x)∆V ∗x + (ωzrB,x + ∆vB,y)∆V ∗y

)
(4.68)

Thus, the optimized time in the asteroid’s rotation for boulder launch is

t∗ =
1

ωz
(θ∗ + θ0 + 2nπ) (4.69)

where n is an integer.

When not fixing the value of ∆vB,z a second degree of freedom becomes available. In this case the

boulder launch velocity in the body frame is as presented in Eqs. 4.48-4.49. And the absolute value
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of ∆vB,z is bound between its maximum value derived from the overall maximum launch velocity

magnitude |∆vB| as presented in Eq. 4.56 and the minimum launch velocity magnitude derived

from the surface escape velocity. Inserting ∆vB to the boulder inertial velocity term leads to

ṘB = [Rz(θ)](ω × rB + ∆vB) =
−Cθ(−ωzrB,y + βy)− Sθ(ωzrB,x − βx) + (Cθαx − Sθαy)∆vB,z

−Sθ(−ωzrB,y + βy) + Cθ(ωzrB,x − βx) + (Sθαx + Cθαy)∆vB,z

∆vB,z

 (4.70)

Observing Eq. 4.64 with 4.65 and 4.70

∆VA = −MB

M+

√
|ω × rB + ∆vB|2 − 2

GM+

|RB|
ṘB

|ω × rB + ∆vB|
=

− MB

M+

√
1− 2GM+

|RB|[(−ωzrB,y + βy + αx∆vB,z)2 + (ωzrB,x − βx + αy∆vB,z)2 + ∆v2B,z]
ṘB (4.71)

The cost function now takes the magnitude of ∆VA into account

J(∆vB,z, θ) = ∆VA(∆vB,z, θ) ·∆V̂ ∗ (4.72)

Due to the complexity of differentiating J with respect to ∆vB,z and the limited domain in which

the maximum value of J is bound in (for rotation angle θ and ∆vB,z with a given maximum thrust)

a solution for ∇J = 0 can be found numerically. Figure 4.50 presents the ∆VA performance of four

boulders identical to the those presented in Figure 4.46 placed on the surface of the asteroid Bennu.

The maximum value of boulder launch velocity provided to each boulder, ∆VB = 8.18 m·s−1, is

based on a launch thrusting scheme presented in the previous section. This maximum value is used

to determine the range of possible ∆vB,z values to be examined, a value range that changes with

the boulder’s location. The required inertial ∆V̂ ∗ direction in this scenario is [0.707, 0.683,−0.183]

which represents a cone (in the body frame) with a half-angle of 10.54 degrees due south. Each

sub-figure in Figure 4.50 shows a heatmap of the magnitude of ∆VA’s projection on ∆V̂ ∗ as a

function of the asteroid’s rotation angle θ and the z-axis boulder launch velocity ∆vB,z. Each sub-

figure also presents the magnitude of various asteroid velocity change components as a function
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of ∆vB,z. The maximum point in each heatmaps is marked by a white dot, and the analytical θ∗

solution is presented as a dashed line. The asteroid velocity change components’ plots show the

total velocity change magnitude (|∆VA|), the magnitude of velocity change projection on required

direction (∆VA ·∆V̂ ∗), the velocity change magnitude multiplied by the z-axis value of the required

direction (|∆VA|∆V̂ ∗z ), and the actual velocity change z-axis value (∆VA,z), all as a function of

∆vB,z for the selected maximum θ∗. The numerically found value of ∆vB,z is also marked on the

plots as a vertical dashed line. The physical interpretation of maximizing the cost function in Eq.

4.72 is to best align ∆VA with ∆V̂ ∗. The variation in performance in the plots in Figure 4.50 shows

how the alignment correlates with the magnitude of ∆VA ·∆V̂ ∗ reached. The heatmaps in Figures

4.50a-4.50c show the cost function maximized at the maximum magnitude of ∆vB,z (the sign varies

with location with respect to the equator). This means that despite the ’waste’ in ∆V due to the

misalignment between ∆VA and ∆V̂ ∗ the maximized magnitude of ∆VA has a more substantial

contribution to the deflection effort. The three cases in Figures 4.50a-4.50c represent the majority

of cases on the asteroid surface. The use of the maximum ∆vB,z also means the analytical θ∗

solution in Eq. 4.68 is valid for most cases. Figure 4.50d presents a maximized cost function at the

smallest possible ∆vB,z, which correlates with the surface escape velocity, for a boulder near the

south pole. This behavior is the result of the body frame geometry for launching such a boulder

with the requirement of keeping the asteroid a PAR. In this case the analytical solution for θ does

not maximize the cost function. The launch results seen in Figure 4.50b show the z-axis launch

direction matching the required direction, which leads to full efficiency in the boulder launch. It

should be remembered that the boulder launch direction is the opposite of the asteroid velocity

change, such that a boulder launched north leads to an velocity change south (as seen in the figure).

Figure 4.50a shows that despite the z-axis element being in the wrong direction the overall ∆VA

still provides about 90% efficiency in the launch.

The maximum results presented in Figure 4.50 are expanded to a global overview in Figure 4.51,

which presents the maximized ∆VA ·∆V̂ ∗ for 200 boulders placed on the surface of Bennu. The

boulder performance is presented in a scatter plot, overlaid on a heatmap of the surface escape
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Figure 4.50: Boulder launch performance for launch direction and ∆vB,z magnitude
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Figure 4.51: Boulder launch performance for the asteroid Bennu

velocity. The latitude of the required ∆V̂ ∗ z-axis direction is presented in the figure as a white

dashed line. The figure shows the best performance in equatorial and near-equatorial boulders

opposite to the required z direction. The poorest performance is seen for boulders in the south

pole. The deviation in surface escape velocity of the equatorial boulders shows little effect on the

desired asteroid velocity change, in part due to the overall ∆VB velocities which are two orders of

magnitude larger than the escape velocities. As seen in Figure 4.50b boulders slightly north of the

equator are perfectly situated to contribute all the ∆vB provided to them to the deflection effort.

When looking at the effect every boulder launch has on the asteroid rotation it is useful to look at

the change in angular velocity magnitude. Figure 4.52 shows the percent reduction each boulder

has on the asteroid angular velocity magnitude. Here, the equatorial boulders reduce the aster-

oid’s rotation rate at most with an addition of ∼0.5 seconds to the rotation period. The effect

on rotation rate does not appear to ’favor’ any side of the equator. It should be noted that while

these launches do not perturb the asteroid’s PAR characteristic, they do change the direction of

the angular momentum (and angular velocity) as seen in Figure 4.53, which presents the angles

between the original angular and new velocity vectors. The maximum change in angular velocity

direction is seen for mid-latitude boulders, and the minimum change in direction is seen for equa-

torial boulders, showing a preference for equatorial or near-equatorial boulders in addition to the
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Figure 4.52: Bennu change in rotation rate due to boulder launch

required launch direction performance.

The need for a designated PAR keeping launch is demonstrated in Figure 4.54 which shows the

maximum precession angle reached in case of a launch in the required direction without consid-

eration of the PAR characteristic. In this case ∆VA is always set to parallel ∆V̂ ∗ and there is

100% deflection efficiency in the launch. The figure shows a maximum precession angle of ∼0.02

degrees for polar launches. In a deflection scenario, which would require multiple boulder launches,

this precession can grow with every launch and lead to a perturbed asteroid rotation that could

affect the boulder launching scheme or the asteroid’s orbital behavior in unpredictable ways. As

expected, the boulders slightly north of the equator do not disturb the PAR characteristic because

of their location alignment with the optimized PAR launch direction.

The favored boulders to launch for a polar launch direction are seen in Figure 4.55, in which the

required ∆V̂ ∗ vector is [0.099, 0.257,−0.961]. The figure shows the northern most boulders pro-

viding the maximum ∆V to the asteroid in this scenario, expanding on the north-south behavior

difference seen in Figure 4.51.

Bennu, the example asteroid used in Figures 4.50-4.55, is a spinning-top shaped asteroid with a

close-to-axisymmetric geometry with respect to the maximum inertia axis (and the angular velocity

vector). This shape naturally leads to similar behavior for the boulders on the same latitudes. Fig-
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Figure 4.53: Bennu change in rotation rate due to boulder launch
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Figure 4.54: Bennu precession angle caused by directed boulder launch

-150° -120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

-60°

-30°

0°

+30°

+60°

0.139

0.149

0.159

0.169

0.179

0.189

0.200

0.210

0.220

0.230

0.240

0.250

Es
ca

pe
 v

el
oc

ity
 [m

/s
]

-4.78e-05
1.21e-03
2.46e-03
3.71e-03
4.97e-03
6.22e-03
7.47e-03
8.73e-03
9.98e-03
1.12e-02
1.25e-02
1.37e-02

V A
V

*
[m

m
/s

]

Figure 4.55: Boulder launch performance for the asteroid Bennu for polar launch
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Figure 4.56: Boulder launch performance for the asteroid Itokawa

ure 4.56 presents the launch performance of 200 boulders (identical in shape and mass to previous

analysis) launched off the surface of asteroid Itokawa. The figure shows that, similarly to asteroid

Bennu, the most relevant factor in boulder launch performance is its latitudinal placement. This,

despite the difference in radial distance from the z-axis which ranges from ∼150 to ∼250 meters

on the equator. This result indicates that the most substantial factor in boulder launch behavior

is its location on the z-axis, and not its z-axis radial distance.

The main conclusion from the results presented in Figures 4.51-4.56 is that for any launch scenario

a region can be found which optimizes the body frame launch direction while keeping the asteroid

a PAR. When looking at a specific region it important to understand if there are preferences to

specific types of boulders, mainly, specific size. Figure 4.57 presents the launch performance of

100 boulders places in a near equatorial region of Bennu’s surface. The boulders range in mean

diameter between ∼2 and ∼8 meters and in mass between ∼12 and ∼540 tons. The figure indicates

the boulder size by the size of the representing dot in the scatter plot. The results in the figure

show that there are little differences in performance between boulder sizes, as all boulder provide

96-100% efficiency in deflection effort. This result is explained by the fixed thrusting force and time

which provides the same momentum change to all boulders regardless of their size. This result also

provides flexibility in launch mechanism design and boulder selection, allowing use mechanisms
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that prefer one size of boulder over the other. In addition, this result means that errors in a-priori

estimate of a boulder’s mass will have small effects on the launch efficiency as the ∆vB is mostly

determined by a boulder’s location.
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Figure 4.57: Boulder launch performance on asteroid Bennu equatorial region

When looking at the effect launching boulders of different sizes have on the asteroid’s rotation

Figure 4.58 presents the percent decrease in rotation rate for boulders of different sizes. Here a

preference to smaller boulders can be seen, as they disrupt the asteroid’s rotation less, both in the

reduction of rotation rate, and in the change in angular velocity direction.
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Figure 4.58: Bennu change in rotation rate due to boulder launch from equatorial region
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4.2.6 Mass driver deflection launch campaign

In terms of boulder launch design in the inertial frame, a single boulder launch event can be

thought of as a miniature kinetic impactor interception. Several studies have examined maximizing

the deflection results of a kinetic interception by thrusting the asteroid in an optimized direction

[155, 137, 156, 61, 136, 157]. For the purpose of this section a collision scenario between Earth

and a Bennu-like asteroid has been designed. Figure 4.59 presents the distance between the Earth

and the asteroid from 10 years prior to MOID until 50 days after MOID. The bodies’ positions are

propagated using Keplerian dynamics. The Earth’s and asteroid’s orbital elements at MOID are

presented in Table 4.2. The minimum distance of both bodies’ CMs at MOID is ∆s ∼54 km, well

inside the Earth’s radius, which means a collision between the two objects.
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Figure 4.59: Earth-Asteroid distance in 10 years prior to MOID
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a [AU] e [] i [deg] Ω [deg] ω [deg] ν [deg]

Earth 1.0 0.0167 1.5786 174.9 102.19 195.0

Asteroid 1.1264 0.20375 6.035 125.5048 274.3911 72.1309

Table 4.2: MOID orbital states

The deflected distance presented by Vasile and Colombo [136] in the Satellite Radial (RSW)

[127] frame is

δsR = r
aδa+ ae sin(νM )√

(1−e2)
δM − a cos(νM )δe (4.73)

δsS = r

(1−e2)
3
2

(1 + e cos(νM ))2δM + rδω + r sin(νM )
1−e2 (2 + e cos(νM ))δe− r cos(i)δΩ (4.74)

δsW = r(sin(νM + ω)δi− cos(νM + ω) sin(i)δΩ) (4.75)

where the changes to orbital elements, computed through the Gauss planetary equations, are

δa = 2a2V
µ ∆VT (4.76)

δe = 1
V

[
− r

a sin(νd)∆VN + 2(e+ cos(νd))∆VT

]
(4.77)

δi = r cos(νd+ω)√
µa(1−e2)

∆VW (4.78)

δΩ = r sin(νd+ω)√
µa(1−e2) sin(i)

∆VW (4.79)

δω = 1
eV

[(
2e+ r cos(νd)

a

)
∆VN + 2 sin(νd)∆VT

]
− r sin(νd+ω)√

µa(1−e2)
cos(i)
sin(i)∆VW (4.80)

δM = δM0 + δn∆T =

−
√
1−e2
eV

[
r cos(νd)

a ∆VN + 2
(

1 + e2r
a(1−e2)

)
sin(νd)∆VT

]
+
(√

µ
a3
−
√

µ
(a+δa)3

)
∆T

(4.81)

where νM and νd are the true anomaly at MOID and time of deflection, respectively. The elements of

∆V = [∆VN ,∆VT ,∆VW ] are the in-plane normal to velocity, velocity, and out-of-plane directions.

The transformation matrix between the NTW frame and the inertialframe is [127]

[T ]
I
NTW =


CφCΩCu − SΩCiSu − SφCΩSu + SΩCiCu CφSΩCu + CΩCiSu − SφSΩSu − CΩCiCu CφSiSu + SφSiCu

−CφCΩSu + SΩCiCu − SφCΩCu − SΩCiSu −CφSΩSu − CΩCiCu − SφSΩCu + CΩCiSu CφSiCu − SφSiSu

SΩSi −CΩSi Ci

 (4.82)

where u = ν + ω, and φ is the flight path angle of the body.

It is important to note that the change to mean anomaly is the combination of the momentary
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change (δM0) and change to orbit frequency derived from change to semi-major axis (δn∆T ). The

optimized direction for deflection is found by solving the eigenvalues of T TT where T = AMGd is

the transition matrix between ∆V at time of deflection and δs at MOID. The components of the

T transition matrix are:

ATM =



rM
a −

3
2
e sin(νM )√

1−e2

√
µ

a
3
2

∆t −3
2

rM

(1−e2)
3
2

(1 + e cos(νM ))2
√
µ

a
5
2

∆t 0

−a cos(νM ) rM sin(νM )
1−e2 (2 + e cos(νM )) 0

0 0 rM sin(νM + ω)

0 rM cos(i) −rM cos(νM + ω) sin(i)

0 rM 0

ae sin(νM )√
1−e2

rM

(1−e2)
3
2

(1 + e cos(νM ))2 0


(4.83)

Gd =



2a2Vd
µ 0 0

2(e+sin(νd))
Vd

− rd
aVd

sin(νd) 0

0 0 rd cos(νd+ω)√
µa(1−e2)

0 0 rd sin(νd+ω)√
µa(1−e2) sin(i)

2 sin(νd)
eVd

2e+(rd/a) cos(νd)
eVd

− rd sin(νd+ω) cos(i)√
µa(1−e2) sin(i)

−2
√
1−e2
eV

(
1 + e2rd

a(1−e2)

)
sin(νd) −

√
1−e2
eV

rd
a cos(νd) 0



(4.84)

The eigenvector which corresponds to the largest eigenvalue of T TT is the optimized direction of

∆V for deflection. Applying the maximum possible ∆V in that direction provides the maximum

deflected distance at MOID, δs. Figure 4.60 presents the deflected distance reached for the scenario

presented in Table 4.2 with 10 years to MOID and a single 0.02 mm·s−1 ∆VA in the optimized

direction. The deflection results are presented both as a function of time (4.60a) and as a function

of true anomaly (4.60b). In addition to the computed δs the figures show the square-root of the

largest eigenvalue of T TT , some correlation can be seem between this value and the magnitude of

deflection. A local minimum can be seen around apoapsis passage, but the overall trend of reduced

deflection leads to this minimum value within less than half a revolution. The applied ∆VA is
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orders of magnitude smaller than the cm·s−1 magnitude ∆V required for full kinetic deflection in

a single event. As a result, the deflection reached is substantially smaller than the Earth’s radius.

However, by accumulating these incremental thrusts full deflection can be reached.

Figure 4.61 presents the deflection results for a 10 years to MOID deflection scenario. The boulders

are launched once a day in the maximum T TT eigenvalue direction. The one day interval simulates

the time period needed by the lander-thruster system or systems to prepare for boulder launch.

Deflection success is defined as

|δs| > γf∞RE , f∞ =
√

1 + 2µE/(REV 2
rel,M ) (4.85)

where RE is the Earth’s radius at 6378 km, f∞ is the gravitational focusing factor [68], γ = 1.25

is an additional safety factor, and Vrel,M is the magnitude of Earth-asteroid relative velocity at

MOID. The required deflection value in this case is 16058 km at the time of first deflection, this

value changes as semi-major axis and momentary mean anomaly change with every deflection effort.

In the case presented here, a ∆VA in direction of velocity reduces f∞ with every deflection effort

and a ∆VA in the direction opposite to the deflection direction increases it. However, for the case

presented in Figure 4.61 the relative velocity at MOID increases from 6.393 km·s−1 to 6.396 km·s−1,

leading to a decrease in f∞ from 2.014 to 2.013 and in the final required deflection distance to be

16053 km, a 5 km change, which is significantly smaller than the overall deflection needed. The

other cases presented in this paper show the same magnitude of changes for the required deflection

distance.

In single effort kinetic interception, both ∆VA in and opposite the asteroid’s velocity direction reach

the same deflection result. In a multiple deflection scheme there is importance in consistency of the

deflection result. The scheme presented here calculates both δs possibilities and selects the ∆VA

that continues the trend of overall ∆s. Thus, no deflection effort disrupts the deflection reached

thus far.

Row iii in Table 4.3 presents the overall results for the deflection seen in Figure 4.61. The time

to deflection represents the time from initial deflection to time of deflected distance reaching the
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required magnitude. This result includes the changes to f∞. In addition to the number of deflection

efforts applied, the table includes the overall deflection velocity change, Σ|∆VA|, which is the sum

all single deflection efforts, the equivalent single deflection reached, |δseq|, which represents the

deflection that would have been achieved if Σ|∆VA| was applied at the time of first deflection (time

to MOID), the total change to asteroid angular velocity, Σδω, based on a value of δω = 10−8 s−1 5 ,

and the total change to rotation period. For the case seen in Figure 4.61 and in Table 4.3 row iii 948

boulders were launched over the span of 2.6 years. Giving over 7 years for deflection corrections if

needed. Figure 4.62 presents the evolution of orbital elements throughout the deflection effort. The

semi-major axis and momentary mean anomaly are most affected by the deflection effort. The out-

of-orbital plane elements do not change at all, demonstrating that the ∆VA applied is completely

in the orbital plane.

Table 4.3 presents results for similar cases, identical in all parameter except time to MOID (rows

i-v). These results show an exponential increase in number of launches needed to reach deflection

within the given time frame. For the cases of 5 and 3 years to MOID the frequency of launches

had to be increased in order of reaching deflection before MOID.

Row vi in Table 4.3 presents the deflection results when ∆VA is applied opposite to the asteroid

velocity. The results are similar to the nominal case (iii), with slightly poorer performance, mostly

due the initial ∆s being in the opposite direction of deflection, and due to the increase, rather than

reduction, in f∞.

The performance of different launch intervals is presented in Figures 4.63-4.64 and in Table 4.3

rows vii-viii. As expected, more frequent launches reach deflection substantially faster and with

less overall launch intervals required. An interesting phenomena can be observed for the 2 day

launch interval case: a plateau can be observed around 5 years to MOID. This is the result of

the added δs efforts contributing less to the overall deflection until the direction of ∆VA flips with

respect to the asteroid’s velocity. This flip can be seen in the semi-major axis, eccentricity, and

5 The results in the previous section show a single 5.6 meter boulder launched from the surface of Bennu reduces
the rotation rate of the asteroid at about 0.5 × 10−8 to 1.5 × 10−8 s−1.
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Figure 4.61: Reached deflection in 10 year scenario
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argument of periapsis of the 2 day launch interval in Figure 4.64. This type of behavior is also

seen in the 5 and 3 years to MOID cases and in the lower ∆VA magnitude case in row x. The

deflection reached for different ∆VA magnitudes is presented in Figures 4.65-4.66 and in rows ix and

x. Due to the similar double and half ratios from nominal, the changed interval and changed ∆VA

results show the same ratios with the nominal case. Which demonstrates possible design trade-offs

between launch ability and number of launches or launchers needed for deflection.

The launch direction analysis in Figure 4.15 shows a possible ∆VA direction error of several

degrees compared to the required ∆V̂ ∗ direction. Figure 4.67 presents the deflection results for

the nominal 10 years to MOID case with a 5 degree error in the ∆VA direction. Two cases are

examined, an in-plane bias and an out-of-plane bias, both consistent between intervals with respect

to the calculated eigenvector direction. The correlating results also appear in Table 4.3 rows xi-xii.

The deflection results with errors show an additional ∼1% launches needed to reach deflection,

with the out-of-plane error performing slightly better than in-plane error. The launch error cases’

orbital element evolution seen in Figure 4.68 show similar results to the nominal case with negligible

out-of-plane changes in the out-of-plane case.

Figures 4.69-4.70 present the results of 10 years to MOID deflection of an eccentric orbit Bennu-

like asteroid. Its orbital elements at MOID presented in Table 4.4 (the Earth’s state remains the

same as in previous cases). The required deflection distance of 12006 km is reached in 260 launches

(∆VA=0.02 mm/s, launch once a day), or 0.715 years, demonstrating that deflection of an eccentric

orbit PHO requires less overall ∆V for success.

In Figure 4.60 local minima in deflection results can be observed ,these local minimum deflection

basins are presented in Figure 4.71. A maximum efficiency launch scheme is examined and presented

in Figures 4.72-4.73 and Table 4.3 row xiii. This launch scheme does not permit launching boulders

when the deflection reached is a local minima. The minimum one day interval between launches

is still implemented. The ’efficient launch’ results reach deflection with 71% more launches and

5 years after the nominal case. This result shows the importance of an early launch vs a locally

optimal launch, meaning that the lander-thruster system or systems should have the ability to
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Figure 4.63: Reached deflection in 10 year scenario with varying launch intervals
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Figure 4.64: Orbit element evolution in 10 year scenario with varying launch intervals
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Figure 4.65: Reached deflection in 10 year scenario with varying launch ∆V s
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Figure 4.66: Orbit element evolution in 10 year scenario with varying launch ∆V s



220

0246810
Time to MOID [year]

0

2000

4000

6000

8000

10000

12000

14000

16000
De

fle
ct

ed
 d

ist
an

ce
 [k

m
]

| s|nom

| s|out of plane error

| s|in plane error

RE

f RE

f RE

Figure 4.67: Reached deflection in 10 year scenario with 5 degree ∆V̂ bias
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Figure 4.69: Reached deflection in 10 year scenario of eccentric orbit
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Figure 4.70: Orbit element evolution in 10 year scenario of eccentric orbit
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a [AU] e [] i [deg] Ω [deg] ω [deg] ν [deg]

Asteroid 1.9 0.5 -5.0 95.8282 339.9212 36.4082

Table 4.4: MOID orbital state for eccentric asteroid

launch as soon as possible.

4.2.7 Mass driver deflection effects on Yarkovsky and YORP

A concern that might arise from the MD deflection efforts is a drastic change in the PHO’s

natural state evolution drivers, mainly the orbital Yarkovsky and YORP effects. When looking

at asteroids like Bennu, which spin axis is almost parallel to its orbit plane at an obliquity of 178

degrees [1] the diurnal effect contributes the majority of change to orbital semi-major axis. For

asteroid Bennu’s current state [158, 1] the diurnal Yarkovsky semi-major axis rate change (as pre-

sented by Vokrouhlicky [24]) is -0.4297 km·year−1. When looking at the nominal case presented

in Table 4.3 row iii the change to Yarkovsky rate after applying all deflection efforts is -0.4311

km·year−1, an added 1.30 m·year−1 to the semi-major axis change rate. For the most extreme case,

presented in Table 4.3 row v, the change to Yarkovsky rate is -0.4378 km·year−1, with an added

8.02 m·year−1 to the semi-major axis reduction rate. These Yarkovsky driven changes are 7 orders

of magnitude smaller than the overall deflection distance reached and 6 orders of magnitude smaller

than the change to semi-major axis observed. Thus, it is safe to assume that in the time scales

discussed in this paper the effect on the Yarkovsky effect for a typical PHO is negligible compared

to the deflection itself.

The observed YORP change rate for Bennu’s presented in Table 3.6 is equivalent to 7.3407×10−13

s−1 per day in the accelerating direction [1]. Thus, a single launch event, at δω = −10−8 s−1 is

equal to 37.3 years of YORP in the decelerating direction. The nominal case presented in Table 4.3

row iii is equivalent to 35381 years of decelerating YORP, and the 3 years to MOID case (row v) is

equivalent to 214826 years of decelerating YORP. It is important to note that the YORP change
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rate itself is a function of the rotation rate, and thus these calculations are only approximate.

These changes are not negligible and might cause unexpected changes to the asteroid’s structure.

However, given that the deflection effort rotation rate change is always decelerating the asteroid it

can be assumed that no catastrophic event, such as rotational fission would occur.

4.2.8 Insights into engineering mass driver deflection

The work presented here develops a linearized model for small deviations in angular velocity

and inertia tensor for a PAR. Which is then applied for boulder launches off asteroids for different

rotation manipulation purposes. Boulders can be launched in a variety of directions and thrust

magnitudes while keeping the asteroids PAR characteristic. A desired outcome in multiple launch

operational schemes in which any disturbance to the asteroid’s rotation could mean a failed mis-

sion or catastrophic change in the asteroid state. Launch events can also be designed to maximize

asteroid tumbling.

The linear model to boulder launching is then examined for asteroid deflection purposes with

criteria for boulder selection identified. The work shows that while launching boulders for MD

deflection it is preferable to maximize the launch velocity, even at the expense of optimizing launch

direction. However, surface areas that geometrically optimize launch direction and thus maximize

contribution of the launch to deflection can be identified. The optimized contribution to deflection

is geographical, and not by boulder type, thus allowing a wide variety of boulders to be used for

the deflection. The effect each launch has on the asteroid’s rotation rate is not negligible, but with

proper selection of boulder size, location and launch direction it can be minimized. The change in

rotation rate provided by the boulder launch is decelerating in nature, thus, reducing the risk of a

catastrophic structural change to the asteroid. A complete PHO MD deflection campaign presented

in this section seeks to optimize the MD deflection’s launches. It shows that, with current state of

the art detection and action time frames, deflection is possible using MD. The variety of launching

schemes examined show a flexibility in this method, allowing for course corrections and additional
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deflection efforts if needed. Small pointing errors in launches show to have little effect on the overall

deflection effort. The results also show that an ’early as possible’ and highest frequency approach

is best for MD deflection as it require less launch intervals for success. This indicates that while

using the MD deflection a degree of autonomy should be given to the launching system or systems

to launch boulders as soon as possible.



Chapter 5

Future work

This chapter presents possible expansion for the work presented in this dissertation.

5.1 The SEA RATS model

5.1.1 Modeling landslides and regolith motion

Currently, the manipulations that the SEA RATS model can perform in the asteroid model

polyhedral parent body only enable a fission event to occur. Enabling other manipulations of the

polyhedral shape such as local surface reshaping or small scale complete axis ratio change would

allow modeling events such as landslides or the slow creep of material due to seismic shaking.

This ability expansion requires monitoring the geopotential of test points inside the parent body

polyhedral shape for motion conditions. Additionally, a polyhedral reshaping algorithm is required

to adhere to conservation of mass, perhaps through conservation of volume.

5.1.2 Modeling long term processes

The events modeled in this dissertation are very fast in asteroid lifetime scales, hours and

days. Expanding the model to simulate processes the occur in many year time scales would allow

an examination of the shape’s interaction with the YORP and Yarkovsky effects.

In order of adding this ability some kind of averaged rotation dynamics would have to be in-

corporated into the model. These dynamics would connect well with the polyhedral reshaping



228

capabilities. Additionally, the evolving shape and rotation state should be connected to evolving

YORP coefficients, modeling the feedback loop between rotation and shape in long time scales.

5.1.3 Expanding analysis tools

The analysis parameters used in this dissertation rely mostly on the state of the asteroid

angular velocity vector, its mass distribution, and its surface slopes. These parameters do not

observe the change in dynamical environment above the asteroid surface. Adding an ability to plot

the orbital equilibrium points around the asteroid and asteroid Roche Lobe as they change with

the angular velocity evolution could provide insights into the fate of material that is ejected from

the surface.

5.2 Further investigations of momentum transfer deflection

The work presented in this dissertation only examined one set of kinetic impactor deflection

characteristics and one set of nuclear deflection characteristics. Many deflecting spacecraft vari-

ables, such as impactor size and relative velocity, or nuclear detonation magnitude, as well as PHO

variables such as specific interface location martial composition, density, and grain-size have not

been fully examined and require further research. Additional PHO shapes, sizes, shape model res-

olutions, internal structures, and momentum enhancement β factors should be examined to make

work presented here more complete. Specifically an analysis of existing craters should be preformed

as crater formation processes might provide the characteristics required for successful deflection.

The type of analysis presented should also be expanded to the orbital geometry of asteroid de-

flection, linking the incoming deflection spacecraft direction with the required ∆V direction, and

asteroid rotational state.

Additionally, once available, an investigation of the results of the DART mission into the initial

change in rotation should be attempted to further expand the discussion on the relationship be-



229

tween PHO deflection and PHO rotational state.

5.3 Expanding the orbital dynamics guidance of mass driver deflection

The guidance law used for finding launch directions in the MD deflection case was designed

to be optimal for one time kinetic interception deflection. An attempt to expand to optimization

for MD deflection based on local minima has proven unsuccessful in this dissertation. Further

investigations into MD deflection orbital dynamics should be performed in order of optimizing the

capability of deflecting an asteroid with small discrete thrusts.
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