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Missions to small bodies in the Solar System face a number of challenges as early as their

inception begins, due to the lack of information that usually characterizes asteroids and comets

that have never been the target of an in-situ mission or been observed from Earth in a favorable

geometry. Robust mission design to these targets can only be achieved if uncertainties affecting

the a-priori knowledge - or lack thereof - in the small body shapes and dynamical environments

are correctly handled. Small body shape models, customarily represented as a collection of trian-

gular facets or generalized through higher-order elements are a function of a mesh of control points

effectively defining the shape. Describing this ensemble of control points as a multidimensional

random variable, obeying a Gaussian distribution of known mean and covariance, enables perform-

ing linearized uncertainty quantification in the small body’s inertia parameters and gravitational

field, allowing valuable insight into the small body dynamical environment to be gained, at a lesser

computational cost than a traditional Monte-Carlo sampling of the shape, to the benefit of mission

designers and planetary scientists alike. Moving closer to the shape, the capability to autonomously

survey a small body by means of Lidar observations given little to no a-priori information is demon-

strated, in addition to the capacity to deliver a consistent shape estimate accounting for underlying

errors in the reconstructed shape. This consistent pair of a shape estimate augmented with its un-

certainty metric allows model-based navigation to take place in a robust manner, through the use of

an Iterated Extended Kalman Filter taking in position and attitude measurements from a Consider

Batch Filter augmenting the measurement covariance with a commensurate consider contribution

coming from the shape uncertainty model. A sensitivity analysis covering a subset of the parameter

space has validated the proposed framework’s robustness, paving the way for autonomous mapping

and navigation of small bodies in the presence of uncertainty.
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Chapter 1

Background and Motivation

1.1 Small bodies in the Solar system

The interest for small bodies in the solar system has been a recurring theme in space science.

The first discovery of an asteroid (1 Ceres) was made by Giuseppe Piazzi in 1801 after he real-

ized that the evanescent speck of light he noticed in his telescope was moving against the starry

background. Unfortunately for Piazzi, the unfavorable observation geometry prevented him from

holding Ceres in sight as it vanished shortly after. Carl-Friedrich Gauss heard of his demise and

devised a technique akin to least-squares to fit Piazzi’s observations, and successfully predicted the

reappearance of Ceres nearly a year after its initial discovery.

Figure 1.1: Giuseppe Piazzi (left) first observed Ceres in early 1801. The observations he collected

spanned slightly over one month. After Ceres was lost, Carl Friedrich Gauss (right) developped an

initial orbit determination technique that led to the re-discovery of Ceres a year later
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Since then, thousands of small bodies have been discovered by means of optical or radar

observation within the Solar system, and the catalog of detected objects keeps growing. Figure

1.2 shows the staggering increase in the number of known Near-Earth Objects (NEO) since the

introduction of a number of dedicated automatic sky surveying programs.

Figure 1.2: Chart of detected NEO’s from 1995 to 2018 (courtesy of Alan B. Chamberlin at JPL’s

CNEOS)

The reasons explaining the considerable attention directed at small bodies are three-fold.

First, asteroid and comets are known to be remnants of the solar system formation [6] [7].

The asteroid main-belt, which can be found between 2.1 and 3.5 Astronomical Units from the Sun,

is the most blatant artifact of early-solar system planet embryos collisions and subsequent debris

scattering [8][9]. Because small bodies are less likely to be depleted of their volatile compounds as
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they move away from the Sun, the surface composition of main-belt asteroids could have virtually

remained untouched since the creation of these bodies. Earth-based observational evidence suggests

the presence of hydrated components at the surface of Ceres as well as water vapor [10] [11],

but observations acquired by the Dawn spacecraft after its arrival at Ceres showed no water-ice

absorption bands [12]. This apparent discrepancy (that could be explained by cryo-volcanism in

the case of Ceres) could be lifted by means of more in-situ missions. Specifically, the gap between

remote and in-situ small body observations can be filled by means of autonomous sample return

missions, like NASA’s OSIRIS-Rex [13] or JAXA’s Hayabusa 2 [14], that will enable access to

pristine surface or sub-surface material, and provide a unique porthole into this side of the history

of the Solar System.

The second reason supporting small bodies investigation is Planetary Defense. The threat

posed by small bodies to Earth dates as far back as the formation of the Solar system. The

Cretacean extinction event, responsible for no less than the disappearance of the dinosaurs 66

millions years ago is strongly believed to be no else than the aftermath of an asteroid impact [15].

In more recent times, the 1908 Tunguska explosion of a 10-m large asteroid released approximately

10 to 20 megatons of explosive equivalent above the inhabited lands of Central Siberia [16]. Even

more recently, the 2014 Chelyabinsk incident was a dramatic reminder that a relatively small object

can have catastrophic consequences should it re-enter above a populated area [17]. Early warning

and the capability of deflecting inbound objects are thus the two pillars of planetary defense [18].

But because small bodies are strongly affected by non-gravitational forces and torques, such as the

Yarkovski and YORP effects [19], which are a function of the object’s surface properties and mass,

remote observations of asteroids do not always suffice to propagate trajectories forward in time.

This uncertainty in the small body dynamics plagues long-term orbit determination, which is of

utmost importance to determine whether the object actually poses a threat. Planetary Defense

could therefore be benefit from in-situ missions sent out to investigate potentially hazardous objects.

Finally, in-situ resource utilization (ISRU) has recently received unprecedented attention,

with the development of private ventures aiming to characterize and mine Near-Earth Asteroids of



4

interest. Among these, M-class asteroids are estimated to be worth billions of dollars in ore (cobalt,

platinum,...) [20]. Water ice is also regarded as a resource of prime interest, as it holds oxygen and

hydrogen, themselves precursors to rocket fuel or life-support systems. Obviously, dedicated in-situ

operations is required for these resources to become available. Unfortunately, the recent demise of

Planetary Resources has left ISRU in its infancy, with a number of outstanding economical and

technological challenges that still need to be addressed.

1.2 Spacecraft navigation

The enhancement of proximity spacecraft operations about small bodies necessary to en-

able the three major goals listed in section 1.1 relates to the ever-continuing push towards more

spacecraft autonomy. The current state-of-the-art of spacecraft navigation is building upon major

the breakthroughs made 60 years ago, under a fortunate set of circumstances that will remind

the reader of the dramatic contribution of Gauss to Piazzi’s hunt for Ceres: the seminal work of

Kalman in his 1960 paper [21] provided a novel discrete-time alternative to existing frequency-based,

continuous-time uncertainty propagation techniques. At the time, NASA Ames was in need for a

robust and tractable scheme capable of computing circumlunar navigation solutions. The iterated

linear weighted least-squares then in use at JPL [22] was too much of a numerical burden for the

computer resources available at Ames (see Figure 1.3). The fortunate conjunction of the Apollo’s

program interest and Kalman’s breakthrough which allowed the embedding of the dynamics within

the sequential estimation scheme paved the way to the exponential development of dynamical state

estimation. This field of research has since expanded way beyond the aerospace world. Spacecraft

attitude estimation followed shortly after, once the modeling of rigid-body rotational dynamics

had improved [23]. It must be noted that these early efforts were concerned with the estimation

of the position and attitude state of a known spacecraft. In particular, this setup assumed that

measurements akin to angles and angle-rate of change could be provided by start trackers or speed

gyros directly mounted on the vehicle.

Advances made during the Apollo program would soon benefit to unmanned missions into the
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Solar system. Mariner 9 was the first spacecraft to ever orbit another planet when it reached Mars

in November 1971 [24]. The interplanetary navigation was conducted by means of radiometric

data from the spacecraft retrieved by the Deep Space Network (DSN) stations. This mission

also marked the first in-flight validation of OPtical NAVigation (OPNAV) techniques as a potential

complement to radiometric measurements. This was in part motivated by the fact that a navigation

solution solely obtained from radiometric measurements is affected by uncertainties in the solar

system bodies ephemerids, whereas OPNAV provides a more direct measurement of the relative

spacecraft-to-planet state. OPNAV proceeds by first obtaining images of dim stars and planets as

seen from a typically narrow-angle. This image is then correlated with astrometric data obtained

from a catalog of known stellar and planetary objects. The geometric transform obtained from

the correlation encompasses the desired relative state. Although the OPNAV demonstration was

found successful, it would take a few more years until it started to be used in conjunction with

radiometric data: the orbit determination of Voyager 2 heavily relied on optical observations of

Neptune and its satellites while the spacecraft was flying by the planetary system in 1987 [25]. It

is noteworthy that man-in-the-loop data pre-processing is sometimes still required, as exemplified

by the difficulty to achieve correct limb alignment when the imaged body features an atmosphere

[26]. OPNAV is now the workhorse of interplanetary navigation and has been utilized in a number

of missions like Cassini [26], Rosetta [27] and Galileo [28].

1.3 Small body navigation

The Near Earth Asteroid Rendezvous Shoemaker (NEAR Shoemaker) marked the first suc-

cessful orbiting and landing onto an asteroid [29]. The spacecraft’s mission came to an end in

January 2001 when it gently touched down on the surface of asteroid 433 Eros. The technological

enabler to this unique mission profile was optical landmark tracking: about 1590 surface landmarks

were identified at the surface of Eros and tracked in successive images. Computer-aided crater-

centerfinding over the images transmitted back to Earth allowed for the determination of Eros’

rotation state along with the spacecraft’s trajectory [30].
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This extension of OPNAV to proximity operation has since been refined and successfully

applied to all subsequent small-body bound missions in their relative navigation pipeline [31] [32].

Craters are no longer systematically tracked, as they may very well not exist at the surface of

the orbited body. This evidence justified the development of the Stereo-Photo-Clinometry (SPC)

approach, that relies on hybrid landmarks or L-maps formed by the combination of slope and albedo

data [33]. In addition to not relying on physical features like craters, SPC is also robust to varying

lighting conditions that occur naturally as the phase angle between the imaging spacecraft, the

imaged small body and the Sun evolves. Finally, the L-maps extraction process is well automated,

thus requiring a lesser manpower, although the Rosetta OPNAV team found that L-map generation

can be failure-prone in some cases [32].

SPC forms the state-of-the-art of today’s relative navigation techniques, and will be at the

core of the incoming Osiris-Rex proximity operation phase [34]. Despite these successes, the appli-

cability of OPNAV for proximity operations is bounded by a number of constraints:

• Operationally, successful OPNAV is tied to lighting conditions and sun phasing. Although

SPC is robust to large lighting variations, unfavorable pole orientation may very well pre-

vent large portions of the surface area to receive sunlight for months. Optical navigation

could thus only take place over the sunlit side of the object. For instance, this issue could

arise if the rotation pole of the object lies within the orbit plane.

• The reconstruction of L-maps leverages varying lighting conditions, which may or may not

be naturally occurring. In addition, this procedure is subject to convergence issues as said

earlier, which require significant man-hours dedicated to the monitoring of the SPC fit.

• Because SPC boils down to assembling and solving a large linear system by a batch-like

procedure, the reconstruction of the L-maps implies a significant computational burden

that cannot feasibly be handled on-board. For this reason, images collected by navigation

cameras are typically transmitted back to Earth after possible pre-processing to diminish

the overall data size.
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• The relatively large size of the transmitted data (about 1.5 Megabyte per black-and-white

1024 x 1024 12-bit-per-pixel uncompressed image) implies the use of a dedicated set of large

receiving stations like the DSN to retrieve the images as fast as possible [34].

In truth, these constraints can be alleviated thanks to two ingredients, which are mission

time and money. Even if historical space-faring actors like NASA, JAXA, ESA and Roskosmos can

afford these missions, it places an increasing stress on mission-critical resources like the DSN or its

counterparts [35]. This makes a strong case in favor of more spacecraft autonomy, so as to relax

the ground link requirements by letting a robotic spacecraft rely less on ground-based operations

for navigation.

1.4 Sensors and methods for autonomous spacecraft operation

Spacecraft autonomy has been the object on an increased attention over 15 years. The

Deep Impact mission that led to the successful intercept of comet Tempel-1 by a kinetic impactor

simultaneously imaged by a flying-by spacecraft was the first realization of autonomous navigation.

This incredible success relied on optical sensors on board of both spacecraft and the AutoNav

software that computed the navigation solution using center-finding techniques [36]. The success

of more advanced robotic missions such as satellite servicing or proximity operations about small

bodies was unsurprisingly found to be heavily dependent on the capacity of spacecraft to operate

autonomously as they carry out their mission [37]. Achieving science or engineering goals without

reducing the mission envelope thus requires spacecraft to perform data processing and decision

making without external input. This is a textbook example of where advanced state and parameter

estimation techniques are needed. For instance, orbital debris mitigation can only be addressed by

means of autonomous robotic servicing spacecraft if one were able to remotely determine the state,

inertia, or any other relevant parameter of a non-cooperative target for which little if no apriori

information is available [38]. Pioneering rendez-vous, remote inspection and stand-off of a servicer

and a non-cooperative target was demonstrated in 2012 in the frame of the PRISMA experiment [1],
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using angle-only measurements provided by an optical camera and ground-in-the-loop processing.

The final relative separation between the two spacecraft was close to 3 kilometers in average, which

is too far to allow resolved observations of the target.

Relative pose information can also be provided by Lidar sensors, as a replacement or com-

plement to optical cameras. This active sensor type can be broken down into single-beam range

finders, scanning Lidars and flash Lidars. First flown on Apollo 15, single-beam range finders have

since been operated about Mars [39], asteroids (433) Eros [30], (25143) Itokawa [40] and (162137)

Ryugu [41]. Scanning Lidars feature a rotating mirror allowing for an effective scanning of the

targeted object, with Osiris-Rex’s OLA being the first scanning Lidar to be flown on a extraterres-

trial body-bound mission [42]. They have also been used within the GNC suite of the ATV/HTV

GNC instrument suite [43]. Finally, flash Lidars feature a laser source associated to a focal plane

of photo-receptors, effectively producing a point cloud from the collection of the laser light re-

flected by the targeted object. The successful STORMM flight experiment that took place in 2011

marked the first demonstration of Flash Lidar as a relative navigation sensor [2]. Flash Lidar differ

from optical camera in many ways: from a navigation standpoint, they provide bearing angles as

well a direct measure of the range to the targeted object, whereas monocular optical sensors only

provide angles if the relative dynamics cannot be leveraged to infer the range. Flash Lidar tech-

nology was thus chosen as the proximity navigation sensor-of-choice for the future Orion vehicle

[44]. The maturity of Flash Lidar technology will also improve from the experience gained with

NASA’S OSIRIS-Rex, as the probe carries one of Advanced Scientific Concepts’ GoldenEye Flash

Lidar technology demonstrator [45], in addition to the OLA scanning Lidar [42] also carried by the

spacecraft.

This decision is supported by ground-based hardware-in-the-loops simulations that have

demonstrated cooperative relative navigation using Lidar as the only navigation sensor [46]. This

referenced work featured a known CAD model of the target satellite being orbited about. This

way, point clouds collected by the Lidar instrument could be registered to the known shape model

so as to infer the relative state between a chaser and the targeted spacecraft. This approach will
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typically be used in the incoming Restore-L mission, where a servicer spacecraft will rendezvous

and dock with the Earth-observing Landsat 6 spacecraft, of known condition and shape model, so

as to refuel and relocate it to a different orbit [47]. Going back to the Orion vehicle, the assumption

that a CAD model of the target is available still makes perfect sense, since the ISS or another space

vehicle visited by Orion would certainly be known in advance. Obviously, the fact that the shape

model of the visited object is not always known poses a significant challenge. An interesting con-

tribution relying on a probabilistic Bayesian framework was provided by Lichter and al., in which

they performed shape, inertia and attitude parameter estimation of an unknown spacecraft. The

shape was parametrized implicitly using voxels [48]. However, it must be noted that the observation

model retained in this study was fairly optimistic, as it was assuming that a fully-registered point

cloud was readily available from a formation of spacecraft carrying Lidar instruments.

Dealing with an unknown environment as a navigation proxy while estimating a dynamical

state is the foundation of SLAM techniques. Simultaneous Localization and Mapping (SLAM)

pertains to the problem of charting the map of an unknown environment while finding the location

of the mapping sensor at the same time. This problem was initially formulated in 1991 with the

goal of providing an alternative to stochastic maps that would store exhaustive spatial relationships

between measurements and state estimates [49]. This notion of stochastic maps has evolved into

factors graphs, that keep track of states and landmarks positions in a probabilistic graph, where

the edges denote the joint density distribution of connected nodes [50]. As opposed to a filtering

scheme like the different flavors of the Kalman filter, the graph variables representing the previous

state estimates and observations are not marginalized at every timestep. This bookkeeping effort

allows for later bundle adjustment and loop closure, enabling future observations to correct past

state estimates.

The work of Tweddle, Saenz-Otero, Leonard and Miller is one of the most advanced research

efforts on the topic of tumbling rigid-body state estimation using factor graphs [3]. The position,

orientation, linear velocity, angular velocity, center of mass, principal axes and ratios of inertia

of a tumbling target were estimated. This hardware-in-the-loop simulation took place on board
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the International Space Station in 2015, using the Synchronize Position Hold Engage Reorient Ex-

perimental Satellites (SPHERES) platform using body-mounted stereo cameras. Three SPHERES

platform are shown on Figure 1.7. A collection of Speeded Up Robust Features (SURF) features

was constructed and tracked so as to measure the position and attitude of the SPHERES platform.

A dense surface map provided by all the computed SURF features was obtained towards the end of

the estimation pass, yielding a good approximation of a SPHERES’ shape. The listed parameters

were all successfully estimated, but it was noted that this whole procedure was not suitable for

real-time implementation due to the growth in the graph size. This degeneracy in the graph’s

size is a well-identified problem in the SLAM community. Recent developments have thus been

focusing on diminishing the burden caused by the growth in the factor graphs. Marginalization

and conditioning of the graph nodes are two possible approaches to tackle this issue. They both

strive to make graph inference possible by removing nodes from the graph. Both techniques will

result in an information loss that is compensated by the retained tractability of the inference [51]

[52].

In any case, it must be noted that enforcing sparsity in the SURF features collection intro-

duces holes and gaps in the shape model reconstruction, since this collection of features is not a

closed-form shape model but merely a point-wise tiling of the surface.

At this point, the following key observations can be made:

A: Flight-proven OPNAV techniques have a somewhat limited applicability due to lighting

constraints, downlink, numerical stability and computational costs. In addition, monocu-

lar optical sensors provide no along-line-of-sight information unless relative dynamics are

incorporated in the estimation workflow.

B: SLAM-based techniques feature good estimation performance when combined with optical

sensors, but are subject to limitations inherent to the tractability of the problem at hand.

In addition, optical sensor-based SLAM is subject to the same operational constraints as

traditional OPNAV due to their sensitivity to lighting conditions.
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C: A dense collection of landmarks can be representative of the body of interest’s shape, but is

not a closed-form representation of the said shape, since there is no geometrical tie between

the different features.

A first attempt to overcome the difficulties inherent to A was addressed by an alternative

approach of relative navigation about a small body by Dietrich and McMahon [53]. They designed

a novel, model-based relative navigation framework relying on Lidar data and the knowledge of the

physical parameters of a small body of interest. Namely, the shape, center of mass and attitude

state of the orbited small body were the only prerequisites for an OD solution to be produced,

independently from lighting conditions or ground communication.

Solely relying on SLAM navigation presents a number of challenges, as reminded in B. Cotlin

et al. motivate their choice to prefer a filtering-based approach over smoothing-based SLAM in

the SPHERES follow-up GNC by the following: While approaches for simultaneous localization and

mapping (SLAM) such as LSD-SLAM are increasingly capable, they are not as reliable as techniques

which rely on a fixed, pre-computed map. Astrobee is confined to a fixed area so the flexibility that

SLAM provides is unnecessary [54]. This observation can be translated to the small-body attitude

and shape estimation problem: the small-body of interest has a finite extent in space, hence making

the environment map charted by the surveying spacecraft also finite. This contrasts the typical

SLAM setup where a robot travels in an environment possibly subjected to no scale or topology

constraint.

Finally, the literature provides no sequential, closed-form shape estimation procedure address-

ing the shortcomings of SURF-based shape reconstruction stressed in C and tailored to small-body

missions. Shape reconstruction from point clouds is a well-established research area as many pow-

erful approaches like the Poisson Surface Reconstruction exist [4]. PSR’s principle of operation is

summarized on Figure 4.4. Recently, the KinectFusion algorithm leveraging Microsoft’s Kinect hy-

brid camera system has demonstrated on-line scene reconstruction and object tracking [55], relying

on a Signed Distance Field evaluated over a 3D voxel grid to capture the imaged scene. Besides
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the GPU processing requirements for the KinectFusion algorithm to function on-line, it must be

noted that the geometry-extraction capabilities of KinectFusion are made possible by the use of

an implicit shape parametrization, the signed-distance field. Relying on a general, explicit shape

model parametrization achievable on-board is preferable, due to the availability of analytical ex-

pressions providing direct insight into the inertia tensor, center of mass and gravity field directly

arising from an explicit, topologically closed shape model.

1.5 Small body dynamical environment and shape uncertainty

The knowledge of the shape of a small body provides considerable insight into the inertia

properties of the targeted object, from its volume to a description of the neighboring gravity field.

This is why reconstruction of small body shapes by means of remote observations is required for

the characterization of asteroids and comets before in-situ observations can take place [56].

However, it can be noted in the literature that the uncertainty in the shapes reconstructed by

such is not often described in a systematic way. In particular, an analytical connection between the

suspected error in the shape and that of its inertia characteristics (volume, center of mass, inertia

tensor) is seldom made. For instance, in their assessment of the binary system KW4, Scheeres et

al. provide uncertainties in the primary’s volume and other inertia properties but leave aside the

details in their computation [57]. Similarly, the shape model of Bennu which was reconstructed by

means of radar observations was provided along with uncertainties in its inertia parameters deemed

as ‘subjective’ by its authors [58]. These uncertainties are fundamental to subsequent science and

engineering applications as Scheeres et al. acknowledge in their 2016 discussion of the dynamical

environment of Bennu. They recognize that variations as slight as 10 % in the polar dimensions of

the object ‘could substantially change important elements of the asteroids geometric and geophysical

properties’ [59]. Busch et al. make the same assessment in their modeling of Asteroid 10115 [60],

underlining the effect of shaded areas on the determination of the asteroid’s shape model and the

subsequent effect of the shape uncertainties on the asteroid’s dynamical environment. Further, the

characterization of many small body shape models obtained by means of lightcurves, like these
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computed by Torppa et al., is incomplete, as it leaves the determination of the uncertainty in their

rotational parameters and shape models to a ‘rule of thumb’ [61]. Similarly, the reconstruction of

the shape of 433 Eros by Miller et al. provided inertia characteristics of the shape but without

quantification of their uncertainties [62]. Muinonen has proposed the so called Gaussian shape

hypothesis, which consisted in decomposing a shape of interest as a spherical expansion of random

Gaussian variables [63] so as to extract its inertia moment statistics. Yet, this approach cannot

handle arbitrary body shapes, as well as being well not directly related to polyhedron shape models,

the workhorse of today’s shape models parametrization in the small body astronomy field [64].

There is thus a gap in the literature when it comes to thoroughly characterize shape uncertainty

and its relationship with the shape’s inertial parameters.

The same remark extends to the lack of formal expressions for the uncertainties in the poly-

hedral or spherical harmonics gravity fields emanating from an uncertain shape. If mass concentra-

tions have been used in the past to describe the uncertainty in the gravity field in proximity to a

small body [65], as well as dedicated Monte-Carlo analyses to investigate the effect of uncertainty

spherical harmonics coefficients on spacecraft trajectories [66], the literature shows no record of

an analytical approach tailored to quantifying the formal uncertainty in these gravity fields. The

following observation summarizing the identified gap can thus be made:

D : There exists no analytical means to capture the uncertainty in the inertia properties and

gravity fields associated with a small body whose shape is only known in a probabilistic

sense.

Addressing D would provide scientists and missions designers with valuable insight into the

structure of the dynamical environment of an unknown small body, enabling more robust mission

design in the presence of uncertainty as well as a deeper understanding of the natural dynamics

taking place around or at the surface of the considered object.
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1.6 Thesis statement

The work carried out in this thesis can be summarized under the following statement

The rigorous treatment of small body shape and state uncertainties in the context of

remote and proximity operations is beneficial to the understanding of the dynamical

environment and the robustness of science and engineering proximity operations

1.7 Thesis overview

1.7.1 Contributions

This dissertation

(1) Demonstrates the superior performance of the Iterative Closest Point algorithm parametrized

in terms of Modified Rodrigues Parameters over classical Euler angles parametrizations

(2) Proposes a Simultaneous Localization and Mapping framework tailored to small body op-

erations featuring a Lidar-equipped Spacecraft

(3) Generalizes existing Lidar Model-Based Navigation algorithms to handle higher-order Bezier

shape models featuring uncertainty in their spin rate and control mesh

(4) Develops a linearized uncertainty model providing an approximation of the ray tracing

statistical range error arising from a stochastic Bezier shape model of arbitrary order

(5) Designs a maximum-likelihood procedure enabling the determination of the uncertainty in

surface elements from point-cloud-to-shape fitting residuals

(6) Derives a linearized uncertainty model enabling first-order uncertainty quantification in the

volume, center-of-mass, inertia tensor of a stochastic small body shape
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(7) Produces the expressions of the partial derivative in the constant-density Polyhedron Grav-

ity Model relative to the shape control points, allowing linearized uncertainty quantification

in the potential and acceleration of gravity about a small body to take place

1.7.2 Dissertation Outline

This dissertation is organized like so:

Chapter 2 goes over the notations pertaining to reference frames and rotations, which are

paramount to the derivations in this thesis, in addition to defining the force and torque models

considered herein.

Chapter 3 describes the instrument model and point-cloud processing methods used through-

out this thesis. This chapter defines the idealized Flash-Lidar sensor model around which the

methods developed in this thesis are built, and goes over the implementations of the Iterative-

Closest-Point and Bundle adjustment algorithms that were tailored to the problem at hand.

Chapter 4 details the reconstruction and fitting of a small body shape by means of range

images, and details a robust two-step shape reconstruction framework featuring Poisson Surface

Reconstruction and linear fitting of Bezier triangles of arbitrary degree.

Chapter 5 develops a linearized range uncertainty model able to capture the ray-traced range

uncertainty in reconstructed shapes for on-board use. This chapter proposes tuning techniques

fitting the model parameters to the uncertainty indeed present in the reconstructed shape, allowing

the model to be evaluated to produce a range uncertainty estimate at any location on the shape.

Chapter 6 delves into the definition of a linearized uncertainty model arising from a stochastic

shape model and its application to inertia parameters statistics computation. The methods devel-

oped in this chapter ultimately permit to gain insight into the stochastics of inertia parameters

(volume, center of mass and inertia tensor) arising from surface uncertainty.

Chapter 7 details the derivation of a linearized polyhedron gravity model about a shape of

reference, which leads to the expressions of the analytical gravity potential variance and acceleration

covariance arising from an uncertain shape. The proposed method allows for the determination of
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predicted gravity uncertainties around and at the surface of a small body, for a lesser computational

cost that Monte-Carlo simulations.

Chapter 8 presents the generalization of Dietrich’s filter to relative navigation, in addition to

the estimation of the small body’s attitude state and standard gravitational parameter, leveraging

the shape reconstruction pipeline and the shape uncertainty model previously derived.

Chapter 9 details the performance and robustness of the proposed small body survey, mapping

and navigation algorithm by combining the methods from Chapters 3, 4, 5 and 8.

Finally, Chapter 10 lists a selection of research leads that could be explored to generalize the

methods and results developed in this thesis.
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Figure 1.3: IBM 704 computer similar to NASA Ames’ at the time of Kalman’s historical paper
(courtesy of NASA)

Figure 1.4: One of the last OPNAV images collected by Cassini in September 2016. The yellow
overlay designates expected locations of known stars and Rhea’s limb. The mismatch between the
limb and the projected overlay can be tied to uncertainties in the spacecraft’s trajectory as well as
in the moon’s ephemerids (courtesy of NASA/JPL-Caltech/Space Science Institute)
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Figure 1.5: The PRISMA chaser/client spacecraft Mango and Tango [1]

Figure 1.6: Example Flash Lidar image of the ISS collected during the STORRM flight experiment
on STS-134 in May 2011 [2]
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Figure 1.7: SPHERES with Astronaut Kelly on board the ISS (courtesy of the MIT Space System
Laboratory)

Figure 1.8: Factor-graph from [3] after three time steps. The variables and edges respectively
denote random variables and the corresponding joint probability distributions



Chapter 2

Frames and dynamical models

2.1 Reference frames

Reference frames are fully defined by their origin - a position in space - and a set of three

orthonormal vectors defining a proper orthonormal basis. The following paragraphs define the

different reference frames used throughout this thesis. Reference frames are always written in a

calligraphic font (like N ) whenever they are used in the text.

2.1.1 International Celestial Reference Frame I

The International Celestial Reference Frame (ICRF) I is a quasi-inertial reference frame

originating from the Solar System barycenter [67]. It was constructed by leveraging the quasi-fixed

position of 212 distant extra-galactic radio sources, effectively defining a frame exhibiting virtually

no noticeable rotational motion.

2.1.2 Barycentered inertial frame N

The barycentered inertial frame N has its origin at the barycenter of the considered small

body of interest. Its axes are inertially fixed and collinear with that of I, such that the DCM [IN ]

is equal to the identity matrix.
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2.1.3 Barycentered body-fixed principal frame P

The principal body-fixed frame P has its origin at the barycenter of the considered small

body of interest. Its axes are aligned with the principal axes of the inertia tensor. That is, the

inertia tensor of the small body at the barycenter is diagonal when expressed in P. Because the

axes are fixed to the body, this this frame not inertially fixed.

2.1.4 Barycentered body-fixed frame B

The barycentered body-fixed frame B has its origin at the barycenter of the considered small

body of interest. Its axes are fixed with respect to the body topography, thus making this frame not

inertially fixed. The orientation of these axes is constant with respect to those of P, but arbitrary,

so B and P do not necessarily overlap.

2.1.5 RIC frame R

The Radial - In track - Crosstrack (RIC) frame R has its origin at the barycenter of the

considered small body of interest. Its axes are defined from the position r and inertial velocity v of

the spacecraft it is tracking. The first axis of the R frame is defined as the unit direction from the

barycenter to the spacecraft. Its third axis is directed along r× v, the orbit’s angular momentum.

Its second axis completes the triad in a counter-clockwise fashion.

2.1.6 Instrument frame L

The instrument frame L has its origin at the spacecraft’s barycenter. The first axis of this

frame defines the instrument’s bore sight. The other two axes completing the triad are unimportant

to the definition of this frame. A crucial assumption made throughout this thesis is that the attitude

of the spacecraft relative to the inertial frame of reference is always known. That is, the true DCMs

[LN ] and [LI] are assumed to be perfectly known at all times.
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2.2 Frame conversions

2.2.1 Direction cosine matrix

The relative orientation of the axes of two frames A and B can be related through a Direction

Cosine Matrix (DCM) noted [AB]. DCMs are 3-by-3 real, proper orthonormal matrices, thus

satisfying

[AB]−1 = [AB]T (2.1)

det ([AB]) = +1 (2.2)

Given a 3-by-1 vector x, the expression of this vector in a specific frame (for instance the B

frame) reads Bx, so as to inform the reader that the components are written in the B basis. The

expression of the same vector in the A frame is then simply given by

Ax = [AB]Bx (2.3)

The frame superscript is not used consistently throughout this thesis since it can be inferred from the

definition of the DCM itself. Assuming that the A and B orthonormal basis vectors are respectively

defined as âx, ây, âz and b̂x, b̂y, b̂z, [AB] can be constructed from

[AB] =




BâTx

BâTy

BâTz




=

[
Ab̂x Ab̂y Ab̂z

]
(2.4)

In addition, the following notation

[AB]−1 = [BA] (2.5)

holds true for all DCMs. Finally, it must be noted that a DCM describing the relative orientation

of two frames is actually the unique DCM representative of this specific relative orientation. [68]
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2.2.2 Rotation composition

Given three frames A, B and C, converting the A frame components of Ax to the C frame

can be directly achieved through Cx = [CA]Ax, or decomposed into a succession of two rotations

like so:

Cx = [CB][BA]Ax (2.6)

which naturally implies that [CA] = [CB][BA]. Conversely, the conversion of the C frame compo-

nents of Cx to the A frame is given by

Ax = ([CB][BA])TC x = [AB][BC]Cx (2.7)

2.3 Dynamical models

2.3.1 Spherical-harmonics gravity acceleration

The gravitational potential originating from an irregular, constant-density small body of

standard gravitational parameter µ can be written in terms of a spherical-harmonics expansion

U =
µ

r
+
µ

r

∞∑

l=2

l∑

m=0

(
R

r

)l
Pl,m (sin (φ)) [Cl,m cos (mλ) + Sl,m sin (mλ)] (2.8)

r denotes the magnitude of the radius vector between the origin of the considered shape and the

point at which the gravity potential must be evaluated, while Pl,m denotes the Legendre polynomial

of degree l and order m. λ and φ respectively denote the longitude and latitude of r expressed in

the small body-fixed frame B [69]. Equation 2.8 is only valid outside of the Brillouin sphere, the

sphere centered at the origin r ≡ 0 circumscribing the surface from which the spherical harmonics

expansion was computed. This is due to the powers of R
r that will make the expansion diverge

should this ratio become equal or greater than one.

The acceleration of gravity expressed in the N frame is thus given by

agravity = [BN ]T∇U = [BN ]T
∂U

∂Br
(2.9)
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where the gradient of the potential has been differentiated with respect to the spacecraft’s position

expressed in the B frame.

The implementation of the acceleration arising from a gravity field spherical harmonics ex-

pansion was provided by the Small Body Geophysical Analysis Tool (SBGAT) [70]. SBGAT is also

capable of evaluating the spherical harmonics coefficients over a constant-density polyhedral shape.

2.3.2 Third-body Sun gravity

The barycentered reference frame N in which the spacecraft is tracked is acted upon by the

Sun, that exerts a point-mass gravitational pull on both the small-body and the spacecraft. As a

result, the third-body gravity exerted by the Sun onto the spacecraft in the N frame reads

a3rd−body = µ�

(
R

|R|3 −
R + r

|R + r|3
)

(2.10)

where R and r respectively denote the small-body geocentric position and spacecraft position

relative to the small-body center, both expressed in the N frame, and µ� the Sun’s standard

gravitational parameter.

2.3.3 Solar radiation pressure

The expression of the acceleration caused by the Solar Radiation Pressure (SRP) interacting

with a sphere of uniform optical properties (referred to as the cannonball SRP model) is given by

[69]

aSRP =
Φ

c
Cr

A

m

R + r

‖R + r‖ (2.11)

Φ is equal to the Solar flux evaluated at the small body of interest while c represents the

speed of light in vacuum. The SRP cannonball coefficient Cr is valued over the [0, 2] interval, and

the area-to-mass ratio A
m is set to the fixed value of 0.01 m2/kg. R and r hold the same significance

as in the expression of the third-body gravity acceleration.
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The cannonball model was augmented by means of a simple eclipse-check: a ray is traced

from the spacecraft position r towards the Sun. The spacecraft is lit and affected by SRP if this

ray does not intersect with the shape. If the ray intersects, then the magnitude of the SRP force is

nullified as the spacecraft is considered in the shadow of the small body.

Torque-free small-body barycentric rotation The attitude of the small body tracked

through the DCM [BN ] is governed by the torque-free Euler equation [68]

[I]ω̇B/N = −ωB/N × [I]ωB/N (2.12)

where [I] denotes the inertia tensor evaluated at the small body barycenter and ωB/N the angular

velocity vector, both expressed in the in the B frame. The kinematics of the underlying MRP

parametrization of the DCM σB/N is given by [68]

σ̇B/N =
1

4

[(
1− ‖σB/N ‖2

)
I3 + 2[σ̃B/N ] + 2σB/Nσ

T
B/N

]
ωB/N (2.13)



Chapter 3

Data acquisition

3.1 Instrument model

Although the procedures developed in this thesis are suitable to any range sensor, including

scanning-Lidar and Flash-Lidar systems, Flash-Lidar instruments are the focus of this work. A

Flash-Lidar proceeds by acquiring a collection of 3D points, dubbed point cloud over the surface

of the target of interest. A 3D point measured over the target of interest P̃i is obtained by casting

a laser ray along a measurement direction ûi. The range ρi is measured between red the sensor

origin r and the impact point P̃i. The measurement is affected by an error along the line-of-sight

µi modeled as a Gaussian variable of zero-mean and standard deviation σ. This measurement

geometry is shown on Figure 3.1, along with the sensor’s field-of-view (fov) and focal length (f).

In so many words,

P̃i = (ρi + µi) ûi + r (3.1)

Operating the instrument and imaging the target at two neighboring times yield two overlap-

ping point clouds, that differ in content because of the motion of the targeted body relative to the

instrument. The point-clouds must be aligned with respect to each other before further processing

(such as shape fitting) can take place. This is done by means of an instance of the iterative closest

point (ICP) algorithm. The ray-tracing procedure can be considerably accelerated by means of

space-partitioning techniques, like the kd-tree shown on Figure 3.2. kd-trees are binary tree struc-

tures enclosing recursive rectangular boxes that capture subdomains of the enclosed shape. The

complexity of an intersection query between a ray and a shape comprised of N triangular planar



29

Figure 3.1: Flash Lidar instrument model

elements thus approaches logN on average for the kd-tree search as opposed to N in the brute-force

query case [71] .

3.2 ICP Registration

Point-cloud registration pertains to the computation of point pairs between a source and a

destination point cloud, followed by the calculation of the rigid transform minimizing a relative

distance between these point pairs [72]. The resulting point-clouds can then be combined in a

common frame, effectively ”stitching” them together. One can then obtain the shape model of

the target, compute an estimate of the rigid transform the target has undergone between the two

observations times or use the shape model in a relative navigation filter [73]. This registration

process is computationally demanding, and given limited on-board resources, could thus benefit

from alternative formulations improving its accuracy and its speed [74].

There exists an abundant body of literature covering several implementations of the Iterative

Closest Point (ICP) algorithm dealing with three-dimensional point clouds [72] [75] [74]. The

baseline method consists in parametrizing the rigid transform in terms of a translation vector and

a set of Euler angles, under the assumption of small misalignment. This process results in a linear

system that can be directly solved for the translation vector and the Euler angles sequence. The
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Figure 3.2: kd-tree leaf nodes around an asteroid shape model. In reality, the nodes would be
much tighter so as to only encompass a few dozen facets each.

algorithm is then iterated until a convergence criterion is satisfied, indicating that a local minimum

of the associated cost function has been found.

While Euler angles-based point cloud registration algorithms perform well when small rota-

tions are indeed present, they are not well suited to the estimation of large rotational transforms

as large linearization errors hinder fast convergence [76]. This could prevent autonomous on-board

operation, as unmanned vehicles are often limited in computational power and could be under-

going time-constrained tasks. Like any 3-parameter attitude sets, Euler angles will also become

singular for some critical orientations [77]. Techniques have been devised to appropriately switch

away from a singular Euler angle sequence to a better-behaved sequence, but implementation issues

make these unpractical [78]. One contribution of this thesis is to propose the use of an alternative,
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well-behaved attitude parametrization to represent the rotational component of the rigid transform:

Modified Rodrigues Parameters (MRP). Their rising popularity in the spacecraft attitude control

area is justified by their mathematical properties that allow tracking of large rotations as well as

the existence of asymptotic stability proofs associated with this class of attitude parameters [79].

These properties should help to improve convergence of the ICP algorithms at large rotations and

avoid singularity issues.

3.2.1 Summary of Modified Rodrigues Parameters

MRP are a relatively recent addition to the minimum attitude parameter set family [80].

Unlike higher-order attitude sets such as quaternions, they do not need to obey any additional

algebraic constraint to effectively represent rotations. This property facilitates optimal attitude

determination by means of MRP, as the underlying optimization problem is no longer constrained

[81]. In addition, the MRP singularity occurring for rotations reaching 360◦ of magnitude can

be avoided by switching to the so-called MRP shadow set before this singularity is reached [82].

The MRP and its shadow set effectively represent the ”short” and the ”long” rotation sequences

representative of the same attitude. This makes MRP ideally suited to large rotations.

The mathematical definition of a MRP set is as follows:

σ = tan

(
Φ

4

)
ê (3.2)

where Φ is the principal rotation angle and ê the unit vector directing the principal rotation axis

[83]. Another advantage of MRP sets over Euler angles in the parametrization of a rotation resides

in the very linear behavior of the application θ 7→ tan
(
θ
4

)
, enabling one to retain much more

information in the first order partial derivative of the Direction Cosine Matrix (DCM) with respect

to σ compared to its alternative formulation in terms of Euler angles. Figure 3.3 shows how

the norm of Euler angles and MRP compare to purely linear extrapolations with respect to the

principal rotation magnitude. For this example, the principal rotation axis direction was set to

ê = 1√
3
[1 1 1]T . It can be observed that a linear approximation of the norm of the 321 Euler angle
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set [θ1 θ2 θ3]T deviates by more than 5% from its true value at Φ = 43.6◦, whereas the norm of

the corresponding MRP σ = ‖σ‖ can be captured linearly within this tolerance up to Φ = 90.9◦.

This well-behaved, more linear behavior of MRP is fundamental in explaining the performance of

the MRP-based registration algorithm [84].

0 20 40 60 80 100 120 140 160 180

Φ (deg)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

 o
f 

p
a
ra

m
e
te

r 
se

t 
(r

a
d
)

MRP

Euler

321 Euler Norm

MRP Norm

321 Euler Norm Linear

MRP Norm Linear

 5% error at 43.6 deg

 5% error at 90.9 deg

Figure 3.3: Euler 321 and MRP sets norms against the principal rotation angle Φ

3.2.2 General formulation of the iterative alignment algorithm

3.2.2.1 Notations

A rigid transform is comprised of a rotational and a translational component. This transform

can be compactly expressed as (M,x), where M stands for the orthogonal Direction Cosine Matrix

(DCM) representing the transform rotation while x denotes the translational component. This

DCM maps the coordinates of a vector expressed in a departure frame (of source frame) to an
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arrival frame (or destination frame). The rigid transform can be parametrized as

(M,x) = (M(X ),x) (3.3)

where X is an attitude parametrization not yet defined. By consequent, the state of the rigid

transform is represented by the following vector X

X =



X

x


 (3.4)

3.2.2.2 Iterative Closest-Point-To-Plane cost function

A Lidar instrument returns a sequence of ranges associated with line-of-sight directions,

from which point coordinates can be extracted. Given two point clouds of size N , P = {Si}

and Q = {Di} (respectively denoted source and destination point-cloud), registration pertains to

computing the rigid transform (M,x) that best aligns P and Q. In the context of the Iterative

Closest Point-to-Plane (ICP2P) framework, the cost function to minimize is [85]

J2 =
N∑

i=1

(
n̂Ti (MSi + x−Di)

)2
(3.5)

where (Si,Di) ∈ R3 × R3 is the i-th pair of points to match, and n̂i the unit normal vector of

the destination point cloud computed at Di. This expression assumes that the pairs (Si,Di) have

already been formed so that there indeed exists a correspondence between the two points. ICP2P

has been shown to converge faster than the classical Iterative Closest Point-to-Point algorithm, in

addition to being better suited to matching a point cloud to an existing shape mode [86].

3.2.2.3 Batch formulation

An iterated batch filter framework can be used to compute the transform state minimizing

Equation (3.5). This filter can be used to estimate a state by comparing collected and generated

observations, mapped into the state estimate by means of the observation model first-order partial

derivatives with respect to the state. Utilizing this filter requires the following:
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• Formulating an estimated state vector X.

• Expressing the observation residuals as a cost function to be minimized.

• Deriving the observation model G relating the state X to collected observations, and its

associated partial derivatives.

• Deriving the dynamics of the estimated state (if any) and its associated partial derivatives.

• Choosing a reference a-priori state X∗ to start iterating over.

The estimated state X and the cost criterion J2 have already been defined in Equation (3.4)

and Equation (3.5). The observation model G and its partial derivatives are derived in the following

sections.

3.2.2.4 Observation model

An observation model can be extracted from the expression of the cost function. The i-th

collected observation and computed observation (respectively denoted Yi and Gi) are defined as

Yi = n̂Ti Di (3.6)

Gi(X ,x) = n̂Ti (M(X )Si + x) (3.7)

Equation (3.5) thus becomes

J2 =
N∑

i=1

(Yi −Gi(X ,x))2 (3.8)

Introducing a reference state X∗ =



X ∗

x∗


, linearizing the observation model about this reference

yields

Gi(X ,x) = Gi(X ∗,x∗) +

(
∂Gi
∂X

∂Gi
∂x

)

X=X∗
·



X −X ∗

x− x∗


+ H.O.T

= Gi(X ∗,x∗) +HiδX + H.O.T
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Retaining only the first-order partials thus provides

Gi(X ,x) = Gi(X ∗,x∗) +HiδX (3.9)

With

δX =



X −X ∗

x− x∗


 = X −X∗ state deviation vector (3.10)

Hi =

(
∂Gi
∂X

∂Gi
∂x

)

X=X∗
state− observation matrix (3.11)

By observation of Equation (3.7), it is clear that

∂Gi
∂x

∣∣∣∣
x=x∗

= n̂Ti (3.12)

The derivation of the other partial differential ∂Gi
∂X

∣∣∣
X=X ∗

is case specific and will be addressed in

the following sections. Now define the i-th prefit residuals yi and observation errors εi

yi = Yi −Gi(X ∗,x∗)

εi = yi −HiδX

3.2.3 Normal equations

With those quantities defined, Equation (3.5) can be rewritten as

J2 =
N∑

i=1

ε2i = εT ε (3.13)
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With

ε =




y1

y2

...

yi

...

yN




−




H1

H2

...

Hi

...

HN




δX

= y −HδX

Hence,

J2 = (y −HδX)T (y −HδX) (3.14)

The solution δX minimizing J2 has to be a stationary point of (3.14). Taking the first partial

derivative of Equation (3.14) with respect to δX and equating it to zero thus yields the so-called

normal equations

ΛδX = ν (3.15)

where the information matrix and normal matrix are respectively defined as

Λ = HTH =
N∑

i=1

HT
i Hi

ν = HTy =

N∑

i=1

HT
i yi

Under the condition of a fully observable system (i.e the information matrix is full rank), the

solution to the normal equations is given by

δX = Λ−1ν (3.16)

It is worth noting that alternative techniques yielding the solution to Equation (3.16) can be pre-

ferred to the explicit computation of the covariance matrix Λ−1. In particular, orthogonal methods

such as Householder transformations are better suited to large-dimensional and ill-conditioned
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problems[87]. The rigid transform state is then updated through

X = X∗ + δX (3.17)

The alignment algorithm can then be iterated by repeating this process until a stopping criterion

is satisfied.

3.2.4 Linearized multiplicative formulation

The work of Markley[88] has illustrated the benefits of using a multiplicative rotation parametriza-

tion instead of an additive one for the purpose of attitude estimation. Specifically, this formulation

respects the formalism of rotation composition which relies on multiplication of DCMs, rather than

on the addition of there respective parametrizations. This representation is achieved by rewriting

the DCM evaluated at the current attitude set X as

M(X ) = M(δX )M(X ∗) (3.18)

where δX and X ∗ are respectively the deviation parameter set and the a-priori parameter set. Note

that this expression does not suppose that δX is small. If one assumes that δX is indeed small,

one can linearize Equation (3.18) about δX = 0 to obtain a first-order attitude parametrization

of the DCM. This expression specializes into the following two, depending on whether 321 Euler

angles or MRP are used:

M(σ) ' (I3 − 4[δσ])M(σ∗)

M(Θ) ' (I3 − [TδΘ])M(Θ∗)

where

Θ =

(
θ1 θ2 θ3

)T
(3.19)

and

T =




0 0 1

0 1 0

1 0 0




(3.20)
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Substituting these expressions of the DCM into the observation model, the registration problem

reduces to the underdetermined equations

Gi(Θ,x) = n̂Ti M(Θ∗)Si + n̂Ti [M(Θ∗)Si]TδΘ

Gi(σ,x) = n̂Ti M(σ∗)Si − 4STi M
T (σ∗)[n̂i]δσ

The resulting equations are linear in the deviations δΘ and δσ and can thus be readily incorporated

within the same batch framework presented earlier. The contribution of all Gi to the determination

of δX results into a set of normal equations that can be solved for.

3.2.5 Point-pair matching

The complete ICP algorithm requires the computation of correspondence pairs between the

source and destination points. Among the many different point-pair matching schemes that have

been proposed, the closest point - compatible normal method described in Rusinkiewicz and al.

[85] was picked. This technique proceeds by associating each source point to the closest destination

point if the normals evaluated at these two points are within a tolerance angle. This metric is

consistent because it validates more point-pairs as the alignment between the two point clouds get

better aligned. This technique was chosen to simulate the full ICP algorithm using the different

formulations previously described. Two normals were considered as ”compatible” if they were

separated by less than 45◦.

3.2.6 Results and discussion

The performance of the two alignment algorithms were compared by means of a two-step

protocol. The sensitivity of both algorithms to the point cloud sizes and the magnitude of the

rigid transform to estimate was first tested by means of a Monte-Carlo simulation exploring the

rigid transform space. Their efficiency when dealing with structured, realistic point clouds affected

by noise was then compared. It was first assumed that a perfect pairing between the source and

destination point cloud was available, effectively treating the rest of the registration algorithm as
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a black box providing us with the correct point matching. The final step consisted in introducing

random pairing error to analyze the performance of both implementations when provided with an

imperfect pair-matching. Both algorithms were initialized with a trivial a-priori rigid transform

X = [0, 0, 0, 0, 0, 0]T .

3.2.6.1 Concept validation by Monte-Carlo simulation using perfect point pairs

The two algorithms were first compared by means of a Monte-Carlo simulation exploring the

rigid transform parameter space. This first comparison assumes that perfect pairing between the

source and destination point cloud is available. This assumption will not hold in the next section.

Destination point clouds of increasing sizeN were generated by collecting range-measurements

over a boulder-like shape and retaining a random selection of N of those measurements. Corre-

sponding source points clouds were obtained by cloning the destination point clouds and applying

them a random rigid transform, to be later estimated by the registration algorithm. These point

clouds of increasing resolution are shown on Figure 3.4 with the resolution increasing from left to

right, top to bottom.

The rigid transform applied to each point cloud was a combination of a rotational component

M and a translational component x. The translational component was randomly sampled from a

uniform distribution over [−0.1, 0.1] meters, which is of the same order of magnitude as the targeted

shape’s size. The rotational component was formulated in terms of a sequence of 321 Euler angles

uniformly sampled in [0, 2π]×
[
−π

2 ,
π
2

]
× [0, 2π] respectively. 10, 000 random rigid transforms were

generated this way and estimated by means of both algorithms. The point-pairs were assumed to be

readily available and no noise was introduced. The convergence threshold was set to Jc = 10−5 m.

Figure 3.7 shows the mean of the iterations difference between the two algorithms over all

realizations of the Monte-Carlo simulation. The negative difference indicates a faster performance

of the MRP independently from the point cloud size. Figure 3.7 denotes a faster convergence of the

MRP-based algorithm consistently over all the point cloud sizes by nearly 2 iterations in average.

Figure 3.6 provides the mean of residuals for the MRP-based algorithm when both algorithms
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converge in the same number of iterations. The MRP-based algorithm features smaller residuals in

average than the Euler angles-based method, with also a smaller spread about the mean.

Figure 3.5 presents the distribution of the iteration-to-convergence count for the multiplicative

ICPs. The filter appears to perform better when MRP are used to parametrize the rotational

component of the rigid transform. In addition, there appears to be no influence of the point cloud

size on the convergence rate once the data sets are large enough.

Additional insight can be obtained by looking at the performance of each method for a

specific point cloud size. The N = 5000 case was thus investigated. The distribution of the ’speed’

difference is clearly in favor of the MRP algorithm for this given point cloud as shown on Figure

3.7. The negative difference indicates a faster performance of the MRP algorithm by more than one

iteration in average in the multiplicative case.. For all cases where Euler angles converged faster

than MRPs (by no more than one iteration), the mean of the residuals of the MRP-based method

was two orders of magnitude smaller than that of the Euler angles-based method.

Furthermore, the evolution of the algorithms’ speed against the magnitude of the rigid trans-

form rotation to estimate is shown on Figure 3.8. It is evident that all methods require more

iterations to achieve convergence as the magnitude of the rotation becomes larger, since large rota-

tions violate the linearization assumption that both algorithms are based on. Nevertheless, MRP

perform better than Euler angles over the entire angle interval as they are systematically faster

than the baseline algorithm. Their performance is even more evident when the magnitude of the

rigid transform becomes large. Figure 3.9 provide a synthetic heat map showing the number of

iterations required by each method to converge and the resulting residuals. It can be seen that the

MRP-based algorithm spreads much less than the the Euler-angle based algorithm, as the latter is

much more subject to requiring a large number of iterations to converge. This trend is confirmed

by Figure 3.6, as it shows that residuals at convergence are lower in average when MRP are use

compared to Euler angles when both parametrizations converge in the same number of iterations.



41

Figure 3.4: Point clouds used in the first Monte-Carlo simulation (N = 100, N = 500, N = 1000,

N = 1750 and N = 5000)
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Figure 3.5: Iteration-to-convergence distribution against point cloud size for the linearized multi-

plicative ICPs, with one-standard deviation bounds.
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ICP converge in the same number of iterations, with one-standard deviation bounds.
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Figure 3.8: Mean iterations-to-convergence against rotational transform magnitude for the multi-

plicative ICP(N = 5000)
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Table 3.1: Iteration-to-convergence statistics for the linearized MRP multiplicative ICP

Point cloud size 100 500 1000 1750 2500 3250 5000

Mean (iteration) 4.68 4.45 4.42 4.42 4.42 4.41 4.41

Standard deviation (iteration) 0.65 0.76 0.76 0.78 0.78 0.79 0.78

Table 3.2: Iteration-to-convergence statistics for the linearized Euler-angles multiplicative ICP

Point cloud size 100 500 1000 1750 2500 3250 5000

Mean (iteration) 5.85 5.53 5.57 5.51 5.5 5.51 5.5

Standard deviation (iteration) 0.97 0.73 0.77 0.72 0.72 0.71 0.71

3.2.6.2 Realistic data sets with imperfect point-pair matching

Two cases illustrating realistic test scenarios for the ICP2P algorithm, featuring a deputy

satellite and a derelict first stage representative of space debris were also simulated, using the

realistic point-pair matching scheme described in this paper. The underlying topology of the point

clouds is paramount to the convergence properties of the ICP2P algorithm[85]. Indeed, the basin of

convergence of the full ICP algorithm using a point-pair matching scheme is more limited than that

of the idealized ICP using perfect point-pairs. It is thus expected that the distinctive symmetries

and surface features of both test cases will result in different convergence results.

3.2.6.3 Case 1: Satellite servicing scenario

A noise-free structured point cloud representing a 3D range image was generated by applying

a Lidar ray-casting algorithm to a simple spacecraft shape model shown on Figure 3.10. This

corresponds to a satellite servicing mission where a deputy satellite is approached by a servicer

equipped with a Lidar instrument. The relative orientation between the imaged spacecraft and the

Lidar yielded a destination point cloud comprised of 1573 points shown on Figure 3.11. Gaussian

noise of zero mean and standard deviation σ = 5 cm was added to each range measurement.
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Figure 3.10: Rendered image of the spacecraft shape model

Figure 3.11: Generated noisy destination point cloud

3.2.6.4 Case 2: Orbital debris retrieval

This scenario illustrate an orbital debris-retrieval mission featuring a derelict first stage. A

rendered image of the first stage is provided on Figure 3.12. The noise-free destination point cloud

shown on Figure 3.13 was comprised of 2206 points. Note that the point cloud was only representing

a portion of the rocket stage. Gaussian noise of zero mean and standard deviation σ = 5 cm was

also added to each range measurement.
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Figure 3.12: Rendered image of the shape model of the derelict rocket first stage

Figure 3.13: Generated noisy destination point cloud

3.2.6.5 Performance

Both tests cases were fed to a Monte-Carlo simulation running 1000 times. This time, the

rotational component was formulated in terms of a sequence of 321 Euler angles uniformly sampled

in
[
0, 2

4π
]
×
[
−π

8 ,
π
8

]
×
[
0, 2

4π
]

radians respectively, which is a fourth of the nominal angle intervals

over which 321 Euler angles are defined. The translational component of the rigid transform was
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still sampled from [−0.1, 0.1] meters. The justification for the smaller rotation interval is motivated

by the limited radius of convergence of the pair-matching procedure. Letting the angles vary over

their full domain would cause all methods to fail most of the time, because the corresponding rigid

transform is outside of the basin of convergence of the pair-matching algorithm. Restricting the

angles to smaller values thus ensures that the convergence basin of the pair-matching method is

sufficiently populated. 1000 random rigid transforms were generated this way and estimated by

means of both algorithms. Zero-mean Gaussian noise was added along the line-of-sight direction of

each pixel. The convergence threshold was set to Jc = 2.5 cm and Jc = 7 cm for Case 1 (satellite)

and Case 2 (rocket body) respectively. These values of Jc correspond to typical residuals when the

correct rigid transform is achieved, and are depending upon the dimensions of the point clouds.

Convergence was achieved when the RMS residuals J were less than Jc after 40 iterations. The

source and the destination point cloud were always comprised of the same size. Their point content

was representative of the same area of the targeted object, but the point clouds were not exactly

overlapping due to the presence of noise.

The statistics summarizing the performance of all methods are presented in Table 3.3 and

Table 3.4. It can be seen in both cases that a majority of the 1000 Monte Carlo outcomes did

not converge. This was expected since the convergence basin of the closest-compatible normal pair

matching algorithm puts a higher bound on the rigid transform rotation amplitude that can be

captured.

Case 1 denotes a slightly better performance for the MRP parametrization. The results

of Table 3.3 are tied to the topology of the point cloud, that is mostly comprised of flat areas of

nearly uniform normal directions with the exception of the parabola. This geometry leads to a great

number of incorrect pair-matching that cause the ICP to not converge, in addition to a number

of local minima of the ICP2P cost function that cause the algorithm to get stuck. Figure 3.14

show that MRP remain faster than Euler angles, but their advantage is much less than what was

obtained with the perfect point-pairing. This is another consequence of the point cloud geometry

and the small radius of convergence of the point-pair matching scheme. The restricted angular
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span over which ICP can converge and thus prevents MRP from outperforming Euler angles when

dealing with large rigid transforms.

On the other hand, Case 2 has a higher convergence count for all parametrization/formulation

combinations, as seen on Table 3.4. The topology of the point cloud thus played a major role in the

convergence properties, as announced. In addition, MRP did converge a minimum of 17 outcomes

more than Euler angles. The basin of convergence of the pair-matching algorithm is larger in this

case, which enables the MRP ICP to differentiate itself from the Euler angles-based one due to its

better performance when large rotations are involved. Figure 3.15 denote a more significant speed

improvement using MRP compared in Case 1, which makes perfect sense given the more-favorable

point cloud geometry. The more varied distribution of surface normals across the point clouds help

constraining the parameter space, granting the ICP2P with realistic point-pair matching a better

performance.

Table 3.3: Number of converged outcomes for multiplicative ICP formulations, Case 1

Euler MRP

287 293

Table 3.4: Number of converged outcomes for multiplicative ICP formulations, Case 2

Euler MRP

513 530
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Figure 3.14: Iteration-to-convergence difference distribution for the multiplicative ICP (Case 1)
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Figure 3.15: Iteration-to-convergence difference distribution for the multiplicative ICP (Case 2)

The results of the Monte-Carlo simulation using perfect point-pairs establish the faster per-

formance of MRP compared to Euler angles. For the N = 5000 point cloud, the Monte-Carlo results

suggest a gain of at least one or two iteration for the MRP-based algorithm compared to Euler

angles. The mean iteration-to-convergence count was 5.5 for the multiplicative Euler-angle based

ICP. On the other hand, the mean iteration-to-convergence count was 4.41 for the multiplicative

MRP-based ICP. The performance of both methods becomes geometry-dependent when a realistic
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point-pair matching is used. Nevertheless, it appears that MRP do better than Euler angles, in a

degree that varies with the topology of the point cloud being processed.

Table 3.5: Angular error for converged MC outcomes, multiplicative ICP (Case 1)

Minimum error (◦) Maximum error (◦)

MRP 0.14 3.29 (without outlier) / 163.23 (with outlier)

Euler angles 0.16 3.2

Table 3.6: Angular error for converged MC outcomes, multiplicative ICP (Case 2)

Minimum error (◦) Maximum error (◦)

MRP 0.018 1.01 (without outlier) / 99 (with outlier)

Euler angles 0.016 1.17

One can ensure that convergence of the ICP2P in the residuals sense implies that the rigid

transform has been properly resolved. Table 3.5 and 3.6 provides the minimum and maximum

value of the principal rotation angle measuring the error between the prescribed rotation and its

estimate in both test cases, for converged MC outcomes. The multiplicative ICP results feature an

abnormal higher-bound on the principal angle error for MRP. It appeared that the multiplicative

MRP-based ICP converged only once to a spurious orientation despite satisfying residuals. This can

be explained by the rejection of too many point pairs that left the ICP2P with an insufficient number

of observations to process. This way, the residuals were computed over a number of observations

that was too small to actually constrain the attitude state. These spurious convergent cases were

obtained for relatively large rigid transform, for which the Euler angles-based ICP actually did not

converge. Not accounting for this outlier in the error bounds brings the maximum error angle to a

few degrees at most, confirming that the ICP2P had converged to the global minimum in the rest

of the converged outcomes.

As demonstrated, the convergence of ICP2P is only guaranteed in the vicinity of a local
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minimum. If this local minimum happens to be the global minimum of the cost function, then the

algorithm will have converged to the correct rigid transform. If not, the rigid transform that is

returned by the algorithm does not properly align the point clouds. The latter may happen in the

presence of symmetries and large rotations between the two point clouds to register.

This issue manifests itself for both the MRP and the Euler-angles based methods when the

realistic point-pair matching scheme is used. That is, the incorrect matching of points between the

source and the destination point cloud drives a number of MC outcomes to a local minimum of

the ICP2P cost function, or deteriorates the convergence speed so that the global maximum is not

reached within the imparted 40 iterations. This is major drawback of ICP2P compared to other

registration frameworks [89].

In conclusion, the proposed MRP-based ICP alignment algorithm was proven to outperform

the legacy Euler-angles based method when applied to structured points clouds. Perfect point-pair

matching scenarios were explored and confirmed the better performance of the MRP algorithm

in terms of convergence speed and accuracy. More generally, the MRP-based ICP was shown to

converge faster than its counterpart especially as the magnitude of the rotational transform to

estimate was large. MRP retain their advantage over Euler angles when coupled with a realistic

point-pair matching algorithm, although the convergence basin of the ICP algorithm is then tied

to the point cloud geometry.

3.3 Bundle adjustment

Successive registration of 3D points acquired by a Lidar system can lead to an erroneous

structure in the reconstructed scene. If successive point-clouds are registered in a fixed stitching

frame, the successive registration error will grow at least linearly with the number of point-clouds.

Bundle adjustment is a powerful corrective measure that leverages overlap of non-successive data to

remove such creeping misalignment errors [90]. Originating from optical camera image processing,

this method roughly consists in solving for camera intrinsic parameters and relative motion mini-

mizing an overall cost function accounting for reprojection errors. In our case where observations
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are 3D point-clouds, the bundle-adjustment function takes the form

J2 =
M∑

k=1

Nk∑

i=1

[
n̂Ti M

T
Dk

(MSkSi,k + xSk −MDkDi,Dk − xDk)
]2

(3.21)

where the rigid transforms (MSk ,xSk) and (MDk ,xDk) define the registration of point clouds Sk

and Dk relative to a reference point cloud.

3.3.1 Rigid-transforms estimation

For the problem to be well-posed, one must define a point cloud that serves as an absolute

reference. That is, if a total of Q point-clouds are considered, there will be only Q− 1 rigid trans-

forms to determine. This becomes obvious if only two point-clouds are present: bundle adjustment

then reduces to a standard ICP problem, where only one rigid transform needs to be determined.

Introducing εk,i

εk,i = n̂Ti M
T
Dk

(MSkSi,Sk + xSk −MDkDi,Dk − xDk) (3.22)

one must linearize the quantities MSk , xSk , MDk and xDk because of the coupling between rotation

and translation. Defining

• L0 : the stitching frame defined by the reference point cloud

• SSk : the frame in which the coordinates of the Sk-th point-cloud are defined post-correction

• S̄Sk : the frame in which the coordinates of the Sk-th point-cloud are defined before the

bundle-adjustment correction is applied

• DDk : the frame in which the coordinates of the Dk-th point-cloud are defined post-

correction

• D̄Dk : the frame in which the coordinates of the Dk-th point-cloud are defined before the

bundle-adjustment correction is applied
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The DCMs can be rewritten

MSk = [L0SSk ] (3.23)

MDk = [L0DDk ] (3.24)

εk,i can be rewritten as

εk,i = n̂Ti [DDkL0] ([L0SSk ]Si,Sk + xSk − [L0DDk ]Di,Dk − xDk) (3.25)

= n̂Ti [DDkD̄Dk ][D̄DkL0]
(
[L0S̄Sk ][S̄SSk ]Si,Sk + xSk − [L0D̄Dk ][D̄DDk ]Di,Dk − xDk

)
(3.26)

Under the assumption that the corrective rigid transform is small, this becomes

[SSk S̄Sk ] ' I3 − 4[σ̃Sk ] (3.27)

[DDkD̄Dk ] ' I3 − 4[σ̃Dk ] (3.28)

xSk = x̄Sk + δxSk (3.29)

xDk = x̄Dk + δxDk (3.30)

so

εk,i ' n̂Ti (I3 − 4[σ̃Dk ]) [D̄DkL0]
(
[L0S̄Sk ] (I3 + 4[σ̃Sk ]) Si,Sk + xSk − [L0D̄Dk ] (I3 + 4[σ̃Dk ]) Di,Dk − xDk

)

(3.31)

Expanding,

εk,i ' n̂Ti [D̄DkL0]
(
[L0S̄Sk ]Si,Sk + x̄Sk − [L0D̄Dk ]Di,Dk − x̄Dk

)

+ n̂Ti [D̄DkL0]
(

4
[
[L0D̄Dk ][D̃i,Dk ]σDk − [L0S̄Sk ][S̃i,Sk ]σSk

]
+ δxSk − δxDk

)

− 4n̂Ti [σ̃Dk ][D̄DkL0]
(
[L0S̄Sk ]Si,Sk + x̄Sk − [L0D̄Dk ]Di,Dk − x̄Dk

)
(3.32)

Defining a substate vector specific to {Sk} and {Dk}

δXSkDk =




δxSk

σSk

δxDk

σDk




(3.33)
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Such that εk,i becomes

εk,i = yk,i −Hk,iδXSkDk (3.34)

with

yk,i = n̂Ti [D̄DkL0]
(
[L0S̄Sk ]Si,Sk + x̄Sk − [L0D̄Dk ]Di,Dk − x̄Dk

)
(3.35)

Hk,i = −




(
n̂Ti [D̄DkL0]

)T
(
−4n̂Ti [D̄Dk S̄Sk ][S̃i,Sk ]

)T

(
−n̂Ti [D̄DkL0]

)T
(

4n̂Ti [D̃i,Dk ]− 4
(
[L0S̄Sk ]Si,Sk + x̄Sk − [L0D̄Dk ]Di,Dk − x̄Dk

)T
[L0D̄Dk ][˜̂ni]

)T




T

(3.36)

The full state deviation over which the bundle-adjuster operates is comprised of Q− 1 rigid

transforms indexed from 1 to Q − 1, where the rigid transform indexed at 0 is the reference one

characterized by σ0 = 0 and x0 = 0 and thus left out of the bundle-adjuster.

δX =




δx1

σ1

δx2

σ2

...

δxQ−1

σQ−1




(3.37)

Therefore, the final expression of εk,i is

εk,i = yk,i −Hk,iIkδX (3.38)

where Ik is a mapping matrix associating the global indices of the rigid transforms to the ones

showing in the k-th point cloud pair. If either Sk or Dk correspond to the index of the reference

point cloud, then the corresponding rigid transform is removed from δXSkDk so that it only features

the deviation in the rigid transform being solved for.
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Going back to the cost function,

J2 =
M∑

k=1

Nk∑

i=1

ε2i,k (3.39)

=

M∑

k=1

Nk∑

i=1

(yk,i −Hk,iIkδX)2 (3.40)

J2 is minimized by the least-squares deviation, solution to

∂J2

∂δX
= 0T (3.41)

which yields (
M∑

k=1

ITk ΛkIk
)
δX =

M∑

k=1

IkNk (3.42)

where

Λk =

Nk∑

i=1

HT
k,iHk,i (3.43)

Nk =

Nk∑

i=1

HT
k,iyk,i (3.44)

3.3.2 Loop closure

For the matrix on the left-hand side of Equation (3.42) to be invertible, each of the featured

point-clouds must be paired with or indirectly constrained by the reference point cloud. Figure 3.16

illustrates this minimum point-cloud pairing required. However, the power of bundle adjustment

best manifests itself when the reference point cloud is directly paired with a non-consecutive point-

cloud. When such a loop-closure is present, the point cloud sequence ranging from the reference to

the closure one is fully constrained in the reprojection error cost function, enabling one to remove

substantial misalignment errors that may have accumulated over time, as shown at the bottom of

Figure 3.16.

Loop closure can be detected by asserting the degree of geometric overlap between two point-

clouds. Overlap can be quantified by computing tentative ICP point-pairs amongst a source/destination
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point cloud pair, as the number of point pairs cannot be superior to the number of points in the

source point cloud [84]. Point-pairs are rejected if their intrisic ICP2P error n̂Ti (Si −Di) exceeds

a one-standard deviation variation from the mean of the intrisic error distribution across all pairs.

If more than 80% of the tentative point-pairs are retained, then the point-clouds are considered as

overlapping and paired in the bundle adjustment process. Note that there is no need to consider

the entirety of the point clouds to rule out overlaps, as comparing the instrument line-of-sight

directions in the estimated body frame is a quick and sound check to dismiss point clouds that

are too far apart to justify a more in-depth investigation of their possible overlaps. In addition,

only considering a random subset of the points in each point is usually sufficient to get an reliable

overlap estimate.

1 320 1 320

1 320

Figure 3.16: Connectivity graph of 4 points-clouds, with edges denoting considered point-cloud

pairs in the bundle adjustment. Left: the problem is ill-posed because 2 and 3 are not constrained

by 0. Right: the problem is well posed but will not significantly improve the ICP solution. Bottom:

(0, 3) provides loop closure and constrains all point-clouds, improving the registration solution

3.3.3 Clustering

Tracking point-clouds overlaps with the scheme described in the previous section unsurpris-

ingly leads to a quick growth of the overlap graph. This growth can be partially mitigated by the

addition of a clustering scheme to the bundle adjuster. The role of this clustering scheme is to

enable the bundle adjuster to identify ”clusters” of point-cloud pairs that bring redundant infor-

mation. Consider point-cloud i = 0 and the point-clouds that may be overlapping with it: i1, i2
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,..., iP . A cluster is a grouping of the point-clouds corresponding with i such that the indices in a

given cluster are within d of each other. For instance, from P = 10 points clouds matching with

i and indexed as i1 = 5, i2 = 8, i3 = 59, i4 = 61, i5 = 63, i6 = 64, i7 = 65, i8 = 66, i9 = 119,

i10 = 120, setting the cluster size to d = 4 leaves with 4 clusters:

• Cluster 1: 5,8

• Cluster 2: 59,61,63

• Cluster 3: 64,65,66

• Cluster 4: 119,120

Since point-clouds within the same cluster as essentially redundant, only one point-cloud per cluster

is retained and paired with the i-th point-cloud. For the example above, it means that only the 0 –

5, 0 – 59, 0 – 64 and 0 – 119 edges will be kept in the graph. The effect of this clustering scheme on

the overlap graph growth is shown on Figure 3.17, where a simple point-cloud acquisition scenario

was run without & with clustering. Setting d = 4 roughly divides the edge count by 4, for an

equivalent alignment quality in the registered point clouds.

3.3.4 Local structures

A well known issue in SLAM is the loss of tractability should too many observations and

states be considered altogether in the graph. In the case of point cloud registration, an individual

observation is no else but a point cloud comprised of tens of thousands of 3D points and associated

normals. When considering the overlap graph possibly keeping track of hundreds of worthy point-

cloud overlaps to leverage in the bundle adjustment, there is clearly a point where the data size

and computational demand will become too much of a burden for the framework to keep operating.

One possible way to alleviate this hurdle is to only perform bundle adjustment on a subset of

the full graph [91]. Another option more akin to filtering is to ”bake-in” bundle-adjusted rigid

transforms, effectively fusing together the considered point-clouds [92]. If one can guarantee good
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Figure 3.17: Effect of clustering on overlap graph growth

performance of the local bundle adjustment providing the rigid transforms used to align the to-be-

fused point clouds, the SLAM tractability can be retained. This can be achieved by a) detecting

loop closures over more than d point clouds (where d still refers to the cluster size defined in the

previous paragraph), b) identifying inlier and outliers in the overlap graph, c) bundle-adjusting the

point-clouds over the inlier overlaps and d) assessing when the bundle adjustment has converged.

a) has been described in 3.3.2, while c) is no else but the process highlighted in 3.3.1. b)

and d) require a robust numerical scheme enabling the detection and flagging of ”bad” edges, that

is to say edges (e.g point-cloud pairs) that were considered in the bundle-adjustment but have not

reached satisfying alignment. A robust, autonomous outlier detection scheme relying on Gaussian

Mixtures clustering of the point-cloud pairs residuals was found to be the quickest and reliable way
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to carry out this task. A Gaussian mixture probability density function comprised of Z mixands

describing a n-dimensional continuous variable xis defined as

p (x) ≡
Z∑

z=1

ωiN (x|mi, Pi) (3.45)

where N (x|mi, Pi) denotes the n-dimensional Gaussian distribution of mean mi and covariance Pi.

The weights {ω1, . . . , ωZ} must add up to one for p to be a valid probability density function. Gaus-

sian Mixtures are versatile in the sense that they can be used to fit virtually arbitrary populations

through maximum-likelihood approaches such as the Expectation Maximization (EM) algorithm

[93]. The heuristic the GMM clustering scheme is based on is two fold: first, it is assumed that the

point-cloud pairs (the edges) are in majority satisfactory (inliers are more prevalent than outliers

in the point-cloud-to-point-cloud BA residuals). Second, the probability density that is being fit

must have its support within R+, since the distance residuals are positive numbers.

The pseudo-code describing the functioning of the outlier rejection scheme along with the

bundle adjustment is detailed in Algorithm 1. Once the bundle adjustment has been run for a fixed

number of iterations NiterBA over the Qk point clouds {P k1 , . . . , P kQk} linked through the connectivity

graph {e1, . . . eNek}, a collection of point-cloud to point-cloud residuals {εk1, . . . , εkNek} becomes

available along with the updated point-clouds themselves. These residuals are then clustered by

means of an increasing number of Gaussian Mixtures, using Armadillo’s arma::gmm diag class [94].

If the mean of each cluster minus three standard deviations in greater than 0 (hence the Gaussian

Mixture PDF has its support within R+), then the current Gaussian Mixture comprised of m

mixands is a minimum, sufficient clustering of the point-cloud-to-point-cloud distance residuals. If

not, more mixtures are added until the above condition is satisfied. If greater than the user-provided

tolerance tol, the mean corresponding to the most-populated cluster is used to define a cutoff value

for the other mixand means. Setting tol to a reasonable value, such as the the standard deviation in

the range measurements prevents the outlier detection scheme from being overly pessimistic when

assessing the quality of the bundle-adjustment. The edges belonging to clusters whose means are

greater than the cutoff value are finally removed from the connectivity graph. Should the returned
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value of the boolean SpuriousEdgesFound evaluate to True, the bundling of the Qk point clouds

into a new local structure will be triggered if Qk is sufficiently large and the anchor point cloud

P k1 connected to the last point cloud in the sequence P kQk either directly or through a neighboring

point cloud less than d point clouds away from P k1 .
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Algorithm 1 Bundle-adjustment and Gaussian-Mixture based edge residuals clustering
1: procedure BundleAdjustementEdgeGMMClustering

2: Initialization:

3: Given: Qk point clouds {P k
1 , . . . , P

k
Qk
}, connectivity graph {e1, . . . eNek

}, NiterBA
, tol

4: SpuriousEdgesFound← False

5: Run Bundle Adjustment:

6: {P k
1 , . . . , P

k
Qk
}, {εk1 , . . . , εkNek

} ← BundleAdjust
(
{P k

1 , . . . , P
k
Qk
}, {e1, . . . eNek

}, NBA

)

7: Cluster Bundle Adjustment residuals :

8: for m in J1 . . . Qk − 1K do

9: ({µ1, σ1}, . . . , {µm, σm}) , {Ce1
, . . . , CeNek

} ← TrainGMMModel({εk1 , . . . , εkQk
})

10: Check whether more mixtures are necessary :

11: badClusters← {}

12: for c in J1 . . .mK do

13: if µi − 3σi < 0 then

14: badClusters← badClusters+ {i}

15: if Size (badClusters) == 0 or m == Qk − 1 then

16: break

17: Compute Cutoff :

18: biggestCluster ← max
(

HistogramBinPopulation
(
{Ce1 , . . . , CeNek

}
))

19: cutoff ← max (tol, µBiggestCluster)

20: Remove spurious edges from the graph:

21: for i in J1 . . . NekK do

22: if µCei
> cutoff then

23: Gk.Remove (ei)

24: SpuriousEdgesFound← True

25: return {P k
1 , . . . , P

k
Qk
}, {e1, . . . eN ′

ek
}, SpuriousEdgesFound
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The functioning of Algorithm 1 is illustrated on Figure 3.18. 100 simulated residuals were

drawn from an underlying Gaussian Mixture distribution of means (0.25, 0.5, 0.9), standard devi-

ations (0.1, 0.2, 0.2) and weights (0.28571429, 0.57142857, 0.14285714). The highest weight corre-

sponds to the inlier mixand of mean 0.5. The mixand of highest mean and lowest weight denotes

outliers. It can be seen that a single (Z = 1) Gaussian cannot be used to identify and reject the

outliers drawn from the last mixture, since the support of this mixture encroaches below 0. Satis-

fying clustering is detected from Z = 3 onwards, allowing the different clusters in the underlying

data to be identified.

Figure 3.19 shows the evolution in the number of the considered point clouds Q at every time

step against the total number of point-clouds effectively collected for a sample run around asteroid

Itokawa. It can be seen that the number of considered point clouds and graph connectivity always

remains tractable, with a local structure roughly created every d point clouds. This is not always

the case, since one local structure took up to 19 point clouds to close. The structure ultimately

closed when point cloud 183 was found to overlap with point cloud 169, the latter being within d

point clouds of point cloud 165, the anchor point cloud for this local structure. Because the bundle-

adjustment did not detect any spurious edge after 5 iterations, the local structure was flagged as

complete, causing a new local structure to be formed.
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Figure 3.18: Gaussian-Mixture clustering of the simulated connectivity graph residuals
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Chapter 4

Shape reconstruction

4.1 Bezier shapes

4.1.1 Definition

Bezier curves and surfaces were named after the automotive engineer Pierre Bezier, a pioneer

of computer-aided design at the time of his tenure at the French car manufacturing company

Renault [95]. A triangular Bezier patch is a three-dimensional surface element parametrized in

terms of barycentric coordinates χ = (u, v, w)T such that

u+ v + w ≡ 1 (4.1)

Given a net of control points Ci ∈ R3 labeled by a triplet of indices i = ijk such that

|i| = i+ j + k = n, any point on the patch S is given by

P (χ) =
∑

|i|=n
Bn

i (χ)Ci (4.2)

where the so-called Bernstein polynomials are defined as

Bn
i (χ) =

n!

i!j!k!
uivjwk (4.3)

The control mesh of a patch of degree n is thus comprised of Nc = (n+1)(n+2)
2 control points.

By consequent, a Bezier patch of degree n = 1 is nothing but a triangular, planar facet as Nc =

2·3
2 = 3 in this case. Hence, a shape model comprised solely of Bezier patches of degree one is

a polyhedron. When the patch degree is strictly greater than one and all control points are not
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Figure 4.1: Bezier patch of degree two with its control net

coplanar, the interpolated surface is curved. An illustration of a Bezier triangle of degree two is

given on Figure 4.1.

A collection of Bezier triangles can be used to represent any shape of interest, like the asteroid

shape model shown in Figure 4.2. Bezier triangles of order higher than 1 are able to capture

curvature within them, whereas triangles - effectively Bezier triangles of order 1 - are purely flat.

This can lead to an interesting trade-off where a surface can be captured at a given level of detail

by fewer high-order elements than flat triangles, as shown in Figure 4.2. In addition, higher-order

surface elements can be used to enforce slope continuity across element borders, a feat that flat

triangles could never provide. This property is especially interesting for motion planning where the

modeled terrain must be devoid of singularities [96].

4.1.2 Fitting

4.1.2.1 Squared-distance minimization

Assuming that a point cloud comprised of N elements P̃i=1,...,N , Liu et al. suggest fitting a

Bezier shape S to these measurements by minimizing the following functional [97] :

J2 =
N∑

i=1

[
n̂Ti

(
P̃i − P̄i

)]2
=

N∑

i=1

ε2i = εT ε (4.4)
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P̄i ∈ S is P̃i’s foot point, the closest point to P̃i belonging to S such that
(
P̃i − P̄i

)
× n̂i = 0 as

shown on Figure 4.3.

Minimizing the cost-function presented in Equation (4.4) is thus equivalent to minimizing

the square of normal distances between the point cloud and the fitted surface. Relying to this

normal-distance criterion is an approximation to the actual surface-to-surface distance, but results

in a consistent scheme.

Let X be the set of all NC control points forming the control mesh of a Bezier shape. Let

Ck be one of such control points:

X =

(
. . . CT

k . . .

)T

3NC×1

(4.5)

Liu et al. computed the first-order partials of J2 with respect to Ck under the assumption

that the normal vector n̂i is invariant. This approximation is not made in this paper, as using the

exact first degree partials would improve convergence properties. The i-th fitting residual reads

εi = n̂Ti

(
P̃i − P̄i

)
(4.6)

Linearizing εi relative to the current control mesh X∗ and associated
(
n̂∗i , P̄

∗
i

)
, we obtain

n̂Ti

(
P̃i − P̄i

)
' n̂∗Ti

(
P̃i − P̄∗i

)
+ δn̂Ti

(
P̃i − P̄∗i

)
− n̂∗Ti δP̄i (4.7)

= Yi −HiδX (4.8)

where Yi = n̂∗Ti
(
P̃i − P̄∗i

)
and Hi is a row vector of size 3NC . The k-th contiguous 3-column block

of Hi corresponding to the k-th control point reads

Hki = n̂∗Ti
∂P̄i

∂Ck
−
(
P̃i − P̄∗i

)T ∂n̂i
∂Ck

(4.9)

Assuming that the global index k corresponds to the triplet k = ij(n− i− j),

∂P̄i

∂Ck
= Bn

kI3 (4.10)
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In addition, the normal at a Bezier triangle point is given by n̂∗i = P∗u×P∗v
‖P∗u×P∗v‖ with Pu = ∂P̄

∂u

and Pv = ∂P̄
∂v , hence

∂n̂i
∂Ck

=
1

‖Pu ×Pv‖

(
I3 −

[P̃u]Pv (Pu ×Pv)
T

‖Pu ×Pv‖2

)(
[P̃u]

∂Pv

∂Ck
− [P̃v]

∂Pu

∂Ck

)
(4.11)

Writing

Y =




Y1

...

YN




(4.12)

H =




H1

...

HN




(4.13)

The residuals become

ε = Y −HX (4.14)

The deviation in the control mesh δX minimizing J2 is the solution to

(
HTH

)
δX = HT δY (4.15)

where δY = ε. Unfortunately, HTH is systematically poorly conditioned. This stems from the fact

that a foot point measurement only carries information in the surface normal direction. As such,

tangential displacements of the control points are poorly constrained from the foot points alone.

There are several ways to mitigate this issue, among acquiring more measurements, re-

parametrizing the problem, or adding another component to the cost function. Although acquiring

more measurements is straightforward and could help in some specific geometry cases, it does not

address the fundamental observability deficiency previously discussed. Re-parametrizing the prob-

lem is a possibility, as one could for instance constrain δX to line up with observable directions,

such as the surface normals at the control points. A similar goal can be achieved by augmenting the

cost function J2 with another term. This approach is certainly the easiest from an implementation

standpoint, although the tuning flexibility it brings can become an issue itself.
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Let a new shape-fitting cost function J ′ be defined as

J ′2 = J2 + δXTQδX (4.16)

where J is the original cost function corresponding to Equation (4.15). The weighing matrix Q is

a tuning parameter for us to choose. Q = αI with α ∈ R+ is a classical pick, which effectively

penalizes the deviation directions isotropically. If simple, this approach is not well suited to the

present case for two reasons. First, the deviation of the control points along their normal is already

well captured in HTH. Second, robustly picking a proper value of α is not a straightforward task.

Looking back at the observability issue we are dealing with, it makes sense to only penalize

the tangential motion of the control points. That is, for every control point Ck, the norm of

(
I − n̂kn̂

T
k

)
δCk should be minimized. Noting that the matrix I − n̂kn̂

T
k is representative of an

orthogonal projection onto the orthogonal of n̂k, the simplification
(
I − n̂kn̂

T
k

)2
= I − n̂kn̂

T
k can

be applied.

Minimizing this unobservable component of the control points deviations can thus be achieved

if Q takes the form

Q = α




(
I − n̂1n̂

T
1

)
0

... 0

0
(
I − n̂2n̂

T
2

) ... 0

...
...

...
...

0 0 . . .
(
I − n̂NC n̂TNC

)




(4.17)

where

α ≡ N

NP
(4.18)

Accounting for this penalty on the tangential motion of each control point, the normal equations

becomes

(
HTH +Q

)
δX = HT δY (4.19)

Provided a sufficient number of foot points falling into each patch, the above equation has a

unique solution. Patches that are not seen in any measurements have their control points removed

from the fitting problem, so as to ensure a non-singular fitting at all times.



69

Information matrix sparsity

The information matrix HTH+Q is 3NC×3NC , with NC potentially in the thousands. The

assembly and solving of Equation 4.19 could lead to a potential bottleneck. However, the local

nature of the control points in the shape definition makes the information matrix extremely sparse:

each row of H matches a given measurement P̃i. The non-zero components on this row correspond

to the Nc control points of the patch where the measurement’s foot point P̄i falls into. In addition,

the information matrix is obviously symmetric. From an implementation standpoint, this makes

the information matrix ideally represented by a sparse matrix for which a Cholesky decomposition

can be computed, which drastically alleviates the computational burden.

4.1.2.2 Finding the foot points

The computation of each P̄i can be carried out like so: the normals n̂ over a Bezier batch

are spanned by

n̂ ∝ ∂P̄

∂u
× ∂P̄

∂v
(4.20)

Obviously, we have found the desired P̄i matching a measurement P̃i when the following is

satisfied

(
∂P̄

∂u

)T (
P̃i − P̄i

)
= 0 (4.21)

(
∂P̄

∂v

)T (
P̃i − P̄i

)
= 0 (4.22)

A first-order expansion of the above equations about the current barycentric coordinate estimate

χ∗ yields

(
∂P̄

∂u

)T (
P̃i − P̄i

) ∣∣∣∣
∗
− ∂Pi

∂u

∂P

∂χ
δχ+

(
P̃i − P̄i

)T ∂2P

∂χ∂u
δχ = 0 (4.23)

(
∂P̄

∂v

)T (
P̃i − P̄i

) ∣∣∣∣
∗
− ∂Pi

∂v

∂P

∂χ
δχ+

(
P̃i − P̄i

)T ∂2P

∂χ∂v
δχ = 0 (4.24)
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The deviation to the foot point barycentric coordinates δχ is the solution to


∂Pi
∂u

∂P
∂χ −

(
P̃i − P̄i

)T
∂2P
∂χ∂u

∂Pi
∂u

∂P
∂χ −

(
P̃i − P̄i

)T
∂2P
∂χ∂u


 δχ =




(
∂P̄
∂u

)T (
P̃i − P̄i

) ∣∣∣∣
∗

(
∂P̄
∂v

)T (
P̃i − P̄i

) ∣∣∣∣
∗


 (4.25)

The foot point computation is initialized by finding the control point that is the closest to

a given measurement P̃i. The patches owning this control point are tested for the existence of

the foot point P̄i, starting with the initial guess u∗ = v∗ = 1
3 .The above deviation is iteratively

computed and added to χ∗ for a fixed number of iterations, unless convergences occurs first. If

the above algorithm converges to barycentric coordinates that belong to the unit triangle, then

the foot point to the current measurement has been found. If the search over the patch subset is

inconclusive, the measurement is rejected.

4.1.2.3 A-priori generation

A key point in surface fitting is the utmost importance of the initial a-priori shape provided

to the shape fitter. Because the fitting process is essentially a linearization of the equations at

hand, large deviations between the desired shape and its first guess will lead to the divergence of

the shape fitter.

When a point cloud providing a sufficient broad coverage of the target is available, the

problem is well-posed. Powerful techniques such as Poisson surface reconstruction (PSR) [4] can be

used to reconstruct an underlying indicator function whose gradient corresponds to the point cloud

normals. Then, an algorithm akin to Marching Cubes [98] provides a tesselated surface (typically,

a polyhedron) from points that are sampled from the indicator function isosurface. However, these

techniques are better suited to offline processing than sequential shape fitting, in addition to being

quite burdensome computationally.

For the developed method to be applicable to arbitrary small body shapes, from nearly-

ellipsoidal bodies to convoluted topographies, the a-priori Bezier shape model is generated by

applying PSR to a bundle-adjusted, sparsified, globally covering point cloud obtained by succes-

sive ICP calls and bundle-adjustment of collected point clouds. Once this point cloud satisfies a



71

prescribed criterion, it is passed to a PSR pipeline that generates a polyhedron. This polyhedron

is then decimated until it is comprised of a prescribed number of edges. Finally, the decimated

polyhedron is converted into an equivalent Bezier shape model of degree one, and ultimately el-

evated to degree two by adding 3 control points to each triangular facet. The decimation of the

PSR output is made necessary by the subsequent training of the uncertainty model: given a fixed

number of training points, too many surface elements will yield a poor training performance as

too few points fall in each surface element. This whole process guarantees that the a-priori shape

model is well-behaved and within the basin of convergence of the iterative shape fitter.

4.2 Poisson Surface Reconstruction

Poisson Surface Reconstruction is a relatively recent technique developed by Kazhdan et

al. in 2006 to produce watertight surfaces from oriented point sets [4][99]. The present section

provides a quick overview of PSR, leaving out derivation and implementation details. Given a point

cloud augmented with oriented surface normals at each point, PSR proceeds by reconstructing an

underlying indicator function χ evaluating to 0 inside the shape and 1 outside of it. n̂ : R3 7→ R3

is the application yielding the outward-oriented surface normal at every sample point. The goal of

shape reconstruction is thus to find the scalar function χ such that its gradient equates the sampled

normals at the sampled points. Solving the weak formulation of this problem leads to the Poisson

equation

∆χ = ∇ · n̂ (4.26)

where ∆ is the Laplacian operator.

Once the indicator function has been computed, the surface of the shape model is effectively

extracted by finding the iso-value best representative of the shape. This process is highlighted

on Figure 4.4 This iso-value is found by averaging the indicator function at the provided sample

points. A polyhedron is then constructed from the sampled iso-surface.

A number of PSR implementations exist in computer graphics. The Computational Ge-
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ometry Algorithms Library (CGAL) is a software library of computational geometry algorithms

[100]. CGAL’s PSR implementation infers the polyhedron mesh resolution from the point cloud

density and a user-provided upper bound on the radius of surface Delaunay balls, defined as a

ball circumscribing a facet, centered on the surface and empty of vertices. Setting this criterion

to too small of a value return a very high resolution mesh, which would have to be decimated to

a lower resolution before being converted to a Bezier shape and fitted. On the contrary, setting

this criterion to too high of a value would yield a low resolution polyhedron, possibly too coarse to

serve as a good-enough a-priori for the Bezier shape fitter to converge. It thus appears there must

be a balance between these two extreme behaviors. A value of 5 for this criterion appeared as a

good compromise. In addition, ensuring that the input point clouds is relatively uniformly sampled

allows to provide only 1% of the input points to the PSR pipeline. This allows the PSR pipeline

to return a satisfying a-priori shape model from 1% · 2M ≡ 20000 input points in a few seconds.
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Figure 4.2: Left: Itokawa shape model comprised of 3072 Bezier 3-control point, order 1 triangles
(1538 control points total). Right: Itokawa shape model comprised of 85 6-control point, order-2
Bezier triangles, with one such Bezier triangle being highlighted along with its control mesh

P̄i

P̃i

C0

C1

C2

C3

S
n̂i

Figure 4.3: Illustration of the projection of P̃i onto its foot point P̄i and associated normal n̂i
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Figure 4.4: Illustration of the Poisson Surface Reconstruction (PSR) technique [4]. The inputs
consists in a set of fully registered 3D points along with a corresponding set of oriented normal
vectors n̂. The normal vectors themselves are taken as the gradient of the so-called indicator
function χ. The variational problem ∆χ = ∇ · n̂ is then assembled and solved. The surface itself
is finally extracted from an indicator function isosurface instantiated over the input points.



Chapter 5

Shape uncertainty model

5.1 Range uncertainty caused by a Gaussian control mesh

In what follows, the control mesh coordinates X of a given Bezier triangle as a Gaussian

vector of mean X̄ and covariance

PX = E
([

X− X̄
] [

X− X̄
]T)

(5.1)

=




. . . . . . . . . . . . . . .

. . . PCiCi
. . . PCiCj

. . .

. . . . . . . . . . . . . . .

. . . PCjCi
. . . PCjCj

. . .

. . . . . . . . . . . . . . .




3Nc×3Nc

(5.2)

with

PCiCj
= E

([
Ci − C̄i

] [
Cj − C̄j

]T)
(5.3)

A computed range measurement over the reconstructed shape model reads

ρ = ûT (P (χ)− S) (5.4)

Carrying out simple algebra, the expected value of the range measurement is

E (ρ) = ûT
(
P̄ (χ̄)− S

)
(5.5)

E
(

[ρ− ρ̄]2
)

= ûTPPû (5.6)
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C̄30

C̄21 C̄12

C̄03

C30

C21

C12

C03

û

P̄ (χ̄)

P (χ)

δP

Figure 5.1: Shift in location of impacted point P along the measurement direction û as the control

mesh X =
[
CT

0 ,C
T
1 ,C

T
2 ,C

T
2

]T
shifts away from its mean. The barycentric coordinates of P and P̄

are different

where

E (P (χ)) = P̄ (χ̄) =
∑

|i|=n
Bn

i (χ̄) C̄i (5.7)

The derivation of the covariance PP = E
([

P (χ)− P̄ (χ̄)
] [

P (χ)− P̄ (χ̄)
]T)

can be carried

out assuming that the change in the barycentric coordinates is small: ‖δχ‖ = ‖χ − χ̄‖ << 1.

Introduce the notation δCi = Ci − C̄i. The coordinates χ positioning a point on the disturbed

surface spanned by corrupted control points X are not the same as the χ̄ from the original surface.

Expanding the difference in the positions,

P (χ)− P̄ (χ̄) =
∑

|i|=n

(
Bn

i (χ) Ci −Bn
i (χ̄) C̄i

)
(5.8)

'
∑

|i|=n




Bn

i (χ̄) +
∂Bn

i

∂χ

∑

|k|=n

∂χ

∂Ck
δCk


 [C̄i + δCi

]
−Bn

i (χ̄) C̄i


 (5.9)

'
∑

|i|=n


Bn

i (χ̄) δCi + C̄i
∂Bn

i

∂χ

∑

|k|=n

∂χ

∂Ck
δCk


 (5.10)

The term

Z =
∑

|k|=n

∂χ

∂Ck
δCk (5.11)
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looks challenging at first, because the partial derivatives ∂χ
∂Ck

do not have an easy closed-form.

However, one can leverage the fact that the new point P (χ) must be found along the direction of

the measurement û, as shown on Figure 5.1. Thus

û×
(
P (χ)− P̄ (χ̄)

)
= 0 (5.12)

This implies

û×
∑

|i|=n

(
Bn

i (χ̄) δCi + C̄i
∂Bn

i

∂χ
Z

)
= 0 (5.13)

A linear system

AZ = B (5.14)

can be formed, where

A = [˜̂u]
∑

|i|=n
C̄j

∂Bn
j

∂χ
= [˜̂u]T (5.15)

B = −[˜̂u]
∑

|j|=n
Bn

j (χ̄) δCj (5.16)

A is a 3-by-2 matrix and thus have a rank that is at most 2. T is a 3 × 2 matrix whose columns

are tangent to the surface at the impact point χ̄. The rank of A thus becomes strictly less than

2 when û is within the plane spanned by the columns of T . This corresponds to a 90◦ incidence

between û and the surface normal, indicating a measurement acquired tangentially to the surface.

This uncertainty model hence naturally penalizes measurements acquired in such least-observable

directions. A least-squares solution to that system is thus

Z =
(
ATA

)−1
ATB (5.17)

If rank (A) is exactly equal to 2, then
(
ATA

)−1
exists. The difference in the positions becomes

P (χ)− P̄ (χ̄) =
∑

|i|=n

(
Bn

i (χ̄) δCi + C̄i
∂Bn

i

∂χ

(
ATA

)−1
ATB

)
(5.18)

Skipping a few unnecessary steps of algebra, the following compact expression can be obtained
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PP = E
([

P (χ)− P̄ (χ̄)
] [

P (χ)− P̄ (χ̄)
]T)

(5.19)

= W TPXW (5.20)

with

W =M (I3 +K) (5.21)

where M is a 3Nc × 3 matrix given by

M =

[
Bn

i1
(χ̄) I3 . . . Bn

ih
(χ̄) I3 . . . Bn

iNc
(χ̄) I3

]T
(5.22)

such that

MTPXM =
∑

|i|=n

∑

|k|=n
Bn

i (χ̄)Bn
k (χ̄)PCiCk

(5.23)

and K a 3× 3 matrix given by

K = [˜̂u]A
(
ATA

)−1 ∑

|k|=n

(
Ck

∂Bn
k

∂χ

)T
(5.24)

The variance of the range measurement along û solely due to an error in the control mesh X

modeled by PX is thus given by

σ2 = E
(

[ρ− ρ̄]2
)

= ûTPPû = ûTW TPXWû = vTPXv (5.25)

This effectively provides an uncertainty model that can be evaluated at any time to obtain a

predicted confidence in a given range measurement. For this prediction to be consistent and useful

to a navigation filter, the model must be tuned over the range data that was utilized in the shape

reconstruction phase.

5.2 Tuning of the uncertainty model

5.2.1 Log-likelihood maximization

In order to be used within the navigation filter, the uncertainty model described in the

previous section must be tuned so as to be representative of the shape uncertainties that are
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effectively present. In other words, PX must be determined from the range data. Assume that

N range residuals εi evaluated between 3D points P̃i and their projected foot point P̄i along the

surface normal n̂i are available. Let L be the log-likelihood function of all measurements, itself a

function of the hyper-parameter PX. L reads

L = log p (ε1, . . . , εN ;PX) (5.26)

where p (ε1, . . . , εN ;PX) is the joint distribution of all measurements. Arguing that the measure-

ments are actually independent, it becomes

L = log

N∏

i=1

p (εi;PX) =

N∑

i=1

log p (εi;PX) (5.27)

with

p (εi;PX) = Nεi
(
0, σ2

i

)
(5.28)

σ2
i = vTi PXvi (5.29)

vi = Wiûi (5.30)

Although the εi all depend upon PX, they are non-identically distributed since the σ2
i are

measurement-dependent, due to their relationship with the direction measurement ûi and impact

coordinates. Traditional log-likelihood maximization looks for the best estimate of an hyper pa-

rameter by finding its value canceling the gradient of the log-likelihood. In the present case, this

amounts to finding PX such that

∂L

∂PX
= 0 (5.31)

Since

Nεi
(
0, σ2

i

)
=

1√
2πσ2

i

e
− 1

2

(
εi
σi

)2

(5.32)

expanding the log-likelihood gives

N∑

i=1

log
(
Nεi

(
0, σ2

i

))
∝ −

N∑

i=1

(
log σ2

i +
ε2i
σ2
i

)
(5.33)
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So setting the Jacobian of L with respect of PX to 0 yields

N∑

i=1

(
1

σ2
i

− ε2i
σ4
i

)
∂σ2

i

∂PX
= 0 (5.34)

Since σ2
i = vTi PXvi, it is actually straightforward to show that the (k, l) component of the matrix

∂σ2
i

∂PX
is

[
∂σ2

i

∂PX

]

k,l

=
[
viv

T
i

]
k,l

= vi(k)vi(l) (5.35)

In other words,

∂σ2
i

∂PX
= viv

T
i (5.36)

So the sought-for covariance PX satisfies the following matrix equality

N∑

i=1

(
1

σ2
i

− ε2i
σ4
i

)
viv

T
i = 0 (5.37)

Unfortunately, Equation (5.37) cannot be solved by means of classical gradient-based methods

where one seeks an increment δPX to apply to PX. Indeed, while one would expect δPX to increase

L, it is clear from Equation (5.37) that the gradient of L cancels itself as ‖PX‖ → ∞. By consequent,

the applied δPX would make PX diverge to infinity. This would effectively cancel Equation (5.37),

but L would not be maximized. Alternative optimization techniques are thus necessary.

5.2.2 Particle-Swarm-Optimization

Because gradient-based descent is unusable, the tuning of PX relies on a population-based

stochastic method known as Particle-Swarm-Optimization [101]. Assuming the goal is to find the

global extremum of J : x ∈ Rp 7→ J(x) ∈ R over Rp, PSO proceeds by sampling a number of test

values in Rp, the particles. J is evaluated at each particle, before an information exchange phase

takes place. At the end of this phase, the particles’ position in state-space are updated based on:

the global best state found by the population, the local best state found by each particle, and an

inertia term accounting for the motion of the particles within the state-space. The benefit of this

information exchange is illustrated on Figure 5.2, where the optimizer is applied to the so-called

Ackley’s function [102], a highly non-convex bivariate function featuring a number of local minima.
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The example on Figure 5.2 had its arguments translated so that the global minimum lies at (1, 1).

The optimizer successfully finds the global minimum, despite the sparse population which was only

comprised of 100 particles. This way, the optimizer does not stall if local minima are encountered,

provided that the state space is sufficiently populated.

PSO requires the state-space to be bounded to a region of interest. In the present case,

the state to optimize is LPX
, a parametrization of PX, such that the observed residuals are best

explained from a maximum likelihood standpoint. The state space is thus bounded by

LPX,min ≤ LPX
≤ LPX,max (5.38)

where ≤ is a component-wise operator. Here, the function to maximize is no else but the log-

likelihood evaluated over all the measurements

L = −
N∑

i=1

(
log σ2

i +
ε2i
σ2
i

)
(5.39)

5.2.3 Search space initialization

The search space can be narrowed-down by finding a realistic initial guess for PX, or rather

its associated parametrization LPX
: a crude yet satisfying guess for PX is

PX = αINc (5.40)

which implies

σ2
i = αvTi vi (5.41)

Plugging this into Equation (5.37),

N∑

i=1

ε2i
viv

T
i

vTi vivTi vi
= α

N∑

i=1

viv
T
i

vTi vi
(5.42)

This matrix equation can be turned into a vector equality by flattening the matrices on the left-hand

and right-hand side. One can then extract a least-squares approximation of α.
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Figure 5.2: Illustration of the PSO optimizer seeking to minimize the translated two-dimensional
Ackley’s function with 100 particles at initialization (top) and after ten iterations (bottom)
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5.2.4 Covariance parametrization

The covariance in the p-th patch’s control mesh PXp reads in its most general form

PXp =




. . . . . . . . . . . . . . .

. . . PCiCi
. . . PCiCj

. . .

. . . . . . . . . . . . . . .

. . . PCjCi
. . . PCjCj

. . .

. . . . . . . . . . . . . . .




3Nc×3Nc

(5.43)

Obviously, the PSO optimizer used to train a patch covariance should not operate on 3Nc × 3Nc

states as this could result in evaluating the log-likelihood using non-positive, symmetric definite

covariance matrices. To ensure that each PXp is consistent, the following is enforced:

1. The control points within the same patch are uncorrelated, such that

PCiCj
= 0 if Ci 6= Cj (5.44)

2. Each non-zero partition PCiCj
is parametrized as

PCiCi
= eλiI3 (5.45)

This parametrization of PXp , LPXp
, that takes the form

LPXp
=

(
λ1 . . . λi . . . λNc

)T
(5.46)

will result in a positive symmetric definite PXp through Equation (5.45).

5.3 Uncertainty Model Validation

5.3.1 Validation of model evaluation

The uncertainty model derived in 5.1 can be validated in a simple case considering a single

quadratic patch of control mesh X̄ where the 6 control points are assigned prescribed covariances

grouped in a patch covariance PX. The mean control mesh coordinates are provided in Table
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Table 5.1: Mean control point coordinates and uncertainties

Control point Coordinates Standard deviation Units

C̄200

(
0 0 0

)T
0.0585 −

C̄110

(
1 0 0.5

)T
0.0337 −

C̄101

(
0 1 0.3

)T
0.0695 −

C̄020

(
2 0 0

)T
0.0717 −

C̄011

(
1.5 0.5 1

)T
0.0410 −

C̄002

(
0.5 2 0

)T
0.1046 −

5.1, along with the standard deviation corresponding to each point covariance. Perturbed control

meshes are drawn from the Gaussian distributionNX

(
X̄, PX

)
and ray traced from a fixed origin and

direction. The distribution of ranges should obey the Gaussian distribution of standard deviation

given by Equation (5.25). Figure 5.3 illustrates the nominal patch along with one possible outcome

from the mesh distribution. 50,000 perturbed patches were generated and ray-traced along the

same direction û and origin S. S was positioned at

(
2 0 5

)T
above the nominal patch. û was

set such that the ray was directed from S towards the center of the nominal patch. The kernel

density estimate of the range residuals is shown on Figure 5.4. The standard deviation in the range

residuals matches the predicted one within 0.014%. The difference that can be observed between

the residuals distribution and the Gaussian distribution it should conform with stems from the

linearization error inherent to the uncertainty model.

5.3.2 Validation of model tuning

The tuning of the uncertainty model is demonstrated over the same patch as in 5.3.1. To this

end, 50,000 range measurements are collected over the different outcomes of the quadratic patch

drawn in 5.3.1. These measurements {P̃i} are processed so as to extract the corresponding foot

points {P̄i}. The tuning point set can be seen on Figure 5.3. The point pairs are then passed to the

uncertainty model trainer described in 5.2 to reconstruct the patch covariance. The PSOPT trainer

is iterated 30 times with 500 particles. Table 5.2 summarizes the tuning performance. It can be seen

that most of the uncertainty is well captured by the model, with the exception of the covariance of
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Table 5.2: Comparison of tuned versus true control point standard deviations

Control point Trained standard deviation True standard deviation Error (%)

C̄200 0.0551 0.0585 −5.8377

C̄110 0.0452 0.0337 34.1458

C̄101 0.0701 0.0695 0.8

C̄020 0.0696 0.0717 −3.0139

C̄011 0.0393 0.0410 −4.1186

C̄002 0.1051 0.1046 0.5493

C̄110 which is overestimated. Note that C̄110 was the smallest error component effectively present,

and its overestimation is the direct consequence of the larger error sources present in the dataset

that are more easily observable.
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Figure 5.3: Top: tesselated nominal control mesh (green) and one outcome of the Gaussian mesh
used in the Monte-Carlo validation of the uncertainty model (orange). Bottom: tuning dataset
{Pi} overlaid over the true mesh
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Figure 5.4: Distribution of numerical range residuals versus their predicted distribution from the
analytical uncertainty model



Chapter 6

Uncertainty in Shape Inertias Arising From An Uncertain Shape

6.1 Methods

6.1.1 Inertia quantities

In what follows, ‘Bezier tetrahedron’ is used to described the closed volume subtended be-

tween a Bezier triangle τ and an arbitrary origin O. Such a Bezier tetrahedron is shown in Figure

6.1.

6.1.1.1 Volume of a Bezier shape

The signed volume of a single Bezier Tetrahedron ∆V is defined as

∆V =

˚

δV

dV

Using the divergence theorem, this becomes

∆V =
1

3

‹

δV

rTdS

where δV is the closed surface enclosing the volume of interest and r the position vector of the point

of interest. It can noted that some simplifications may take place over the Bezier tetrahedron. First,

it is clear than only the surface element corresponding to the Bezier triangle will have a non-zero

contribution to this integral. Indeed, the position vector r originating from the origin and tracing

the outline of the Bezier triangle is always tangent to the Bezier tetrahedron surface. As a result,
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rTdS cancels over these regions since dS is normal to the surface. Hence the volume integral reduces

to

∆V =
1

3

¨

T

rTdS

where T is the Bezier triangle spanning the volume element, and

r (χ) =
∑

|i|=n
Bn

i (χ) Ci

dS ≡ ∂r

∂u
× ∂r

∂v
=

∑

|j|,|k|=n

∂Bn
j

∂u

∂Bn
k

∂v
Cj ×Ckdudv

Therefore, the volume of the Bezier tetrahedron is given by

∆V =
1

3

¨

T


 ∑

|i|,|j|,|k|=n
Bn

i

∂Bn
j

∂u

∂Bn
k

∂v
(χ) CT

i [Cj ×Ck]


 dudv

which can be transformed into

∆V =
∑

|i|,|j|,|k|=n
αijkCT

i [Cj ×Ck] (6.1)

where

αijk =
1

3

¨

T

(
Bn

i

∂Bn
j

∂u

∂Bn
k

∂v

)
dudv =

1

3

1ˆ

0

1−vˆ

0

(
Bn

i

∂Bn
j

∂u

∂Bn
k

∂v

)
dudv (6.2)

The αijk can be computed analytically after the index triplets have been defined

i = i, j, (n− i− j) (6.3)

j = k, l, (n− k − l) (6.4)

k = m, p, (n−m− p) (6.5)

Then the Bezier surface can be written as

r (χ) =
n∑

i=0

n−i∑

j=0

Bn
i,j,n−i−j (χ) Ci,j,n−i−j
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by consequence,

αijk =
1

3

1ˆ

0

1−uˆ

0

(
Bn
i,j,n−i−j

∂Bn
k,l,n−k−l
∂u

∂Bn
m,p,n−m−p
∂v

)
dvdu

=
1

3

1ˆ

0

1−uˆ

0

(
Bn
i,j

∂Bn
k,l

∂u

∂Bn
m,p

∂v

)
dvdu

where the third index is dropped from the expression of the Bernstein polynomials because of its

redundancy. Expanding the Bezier derivatives,

αijk =
n2

3

1ˆ

0

1−uˆ

0

Bn
i,j

(
Bn−1
k−1,l −Bn−1

k,l

)(
Bn−1
m,p−1 −Bn−1

m,p

)
dvdu

which becomes after expanding the products

αijk =
n2

3



n

i, j




1ˆ

0

1−uˆ

0

[

n− 1

k − 1, l







n− 1

m, p− 1


uk+m+i−1vl+j+p−1 (1− u− v)3n−i−j−k−l−m−p

−



n− 1

k − 1, l






n− 1

m, p


uk+m+i−1vl+j+p (1− u− v)3n−i−j−k−l−m−p−1

−



n− 1

k, l







n− 1

m, p− 1


uk+m+ivl+j+p−1 (1− u− v)3n−i−j−k−l−m−p−1

+



n− 1

k, l






n− 1

m, p


uk+m+ivl+j+p (1− u− v)3n−i−j−k−l−m−p−2

]
dvdu

Introducing

Sba =

1ˆ

0

ua (1− u)b du =

b∑

i=0



b

i


 (−1)i

i+ a+ 1
(6.6)

and the shortcut

|ijk| = i+ j + k + l +m+ p (6.7)
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the coefficients finally become

αijk =
n2

3



n

i, j



[

n− 1

k − 1, l







n− 1

m, p− 1


S

3n−|ijk|
l+j+p−1S

3n−i−k−m
k+m+i−1

−



n− 1

k − 1, l






n− 1

m, p


S

3n−|ijk|−1
l+j+p S3n−i−k−m

k+m+i−1

−



n− 1

k, l







n− 1

m, p− 1


S

3n−|ijk|−1
l+j+p−1 S3n−i−k−m−1

k+m+i

+



n− 1

k, l






n− 1

m, p


S

3n−|ijk|−2
l+j+p S3n−i−k−m−1

k+m+i

]
(6.8)

One will also note that the αijk are completely independent from the control mesh, and can

thus be computed ahead of time. The total volume of a Bezier shape formed by a collection of

interconnected Bezier triangles can be found by summing the output of Equation (6.1) over all

surface elements:

V =

Ne∑

e=1

∆Ve =

Ne∑

e=1

∑

|i|,|j|,|k|=n
αijkCeT

i

[
Ce

j ×Ce
k

]
(6.9)

6.1.1.2 Center of mass of a Bezier shape model

The computation of the center of mass of the Bezier shape follows the same principle, as-

suming that the shape being dealt with is of constant density. The center of mass of a given Bezier

tetrahedron is given by

∆cm =
1

∆V

˚

δV

rdV

If the volume element is a Bezier tetrahedron, one can parametrize the position vector origi-

nating from O as

r = aP (u, v)
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As a result,

dV =

∣∣∣∣ ∂r
∂a

∂r
∂u

∂r
∂v

∣∣∣∣ dadudv

= a2
∑

|k|,|l|,|m|=n
Bn

k

∂Bn
l

∂u

∂Bn
m

∂v
CT

k (Cl ×Cm) dadudv

So

∆cm =
1

∆V

1ˆ

0

1ˆ

0

1−uˆ

0

ra2
∑

|j|,|k|=n

∑

|l|=n
Bn

j

∂Bn
k

∂u

∂Bn
l

∂v
CT

j (Ck ×Cl)

· dvduda (6.10)

=
1

∆V

1ˆ

0

1ˆ

0

1−uˆ

0

a3
∑

|i|=n
Bn

i Ci

∑

|j|,|k|=n

∑

|l|=n

·Bn
j

∂Bn
k

∂u

∂Bn
l

∂v
CT

j (Ck ×Cl) dvduda (6.11)

=
1

∆V

1ˆ

0

1ˆ

0

1−uˆ

0

a3
∑

|i|,|j|,|k|,
|l|=n

Bn
i CiB

n
j

∂Bn
k

∂u

∂Bn
l

∂v
CT

j (Ck ×Cl)

· dvduda (6.12)

=
1

4∆V

∑

|i|,|j|,|k|,
|l|=n

1ˆ

0

1−uˆ

0

Bn
i B

n
j

∂Bn
k

∂u

∂Bn
l

∂v
CiC

T
j (Ck ×Cl) dvdu (6.13)

=
1

∆V

∑

|i|,|j|,|k|,
|l|=n

γijklCiC
T
j (Ck ×Cl) (6.14)

where

γijkl =
1

4

1ˆ

0

1−vˆ

0

(
Bn

i B
n
j

∂Bn
k

∂u

∂Bn
l

∂v

)
dudv (6.15)

Define the handy shortcut

|ijkl| = i+ j + k + l +m+ p+ q + r (6.16)
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the closed-form expression of these coefficients can be computed in a way similar to the αijk:

γijkl =
n2

4



n

i, j






n

k, l




1ˆ

0

1−uˆ

0

[


n− 1

m− 1, p






n− 1

q, r − 1




· ui+k+m+q−1vj+l+p+r−1 (1− u− v)4n−|ijkl|

−




n− 1

m− 1, p






n− 1

q, r


ui+k+m+q−1vj+l+p+r (1− u− v)4n−|ijkl|−1

−



n− 1

m, p






n− 1

q, r − 1


ui+k+m+qvj+l+p+r−1 (1− u− v)4n−|ijkl|−1

+



n− 1

m, p






n− 1

q, r


ui+k+m+qvj+l+p+r (1− u− v)4n−|ijkl|−2

]

· dvdu

which becomes after integrating
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γijkl =
n2

4



n

i, j






n

k, l



[


n− 1

m− 1, p






n− 1

q, r − 1


S

4n−|ijkl|
j+l+p+r−1S

4n−i−k−m−q
i+k+m+q−1

−




n− 1

m− 1, p






n− 1

q, r


S

4n−|ijkl|−1
j+l+p+r S4n−i−k−m−q

i+k+m+q−1

−



n− 1

m, p






n− 1

q, r − 1


S

4n−|ijkl|−1
j+l+p+r−1S

4n−i−k−m−q−1
i+k+m+q

+



n− 1

m, p






n− 1

q, r


S

4n−|ijkl|−2
j+l+p+r S4n−i−k−m−q−1

i+k+m+q

]
(6.17)

=
n2

4



n

i, j






n

k, l



[


n− 1

m− 1, p




·






n− 1

q, r − 1


S

4n−|ijkl|
j+l+p+r−1 −



n− 1

q, r


S

4n−|ijkl|−1
j+l+p+r


S4n−i−k−m−q

i+k+m+q−1

−



n− 1

m, p









n− 1

q, r − 1


S

4n−|ijkl|−1
j+l+p+r−1 −



n− 1

q, r


S

4n−|ijkl|−2
j+l+p+r




· S4n−i−k−m−q−1
i+k+m+q

]
(6.18)

The center of mass of a Bezier shape comprised of Bezier triangles is thus given by

cm =
1

V

Ne∑

e=1

∆Ve∆cm,e =
1

V

Ne∑

e=1

∑

|i|,|j|,|k|,
|l|=n

γijklC
e
i C

eT
j (Ce

k ×Ce
l ) (6.19)

6.1.1.3 Inertia of a Bezier shape model

Define [̃y] as the matrix representation of the linear mapping x 7→ y × x, the inertia tensor

of the Bezier tetrahedron about an arbitrary origin O is given by [68]

[∆I]O = −
˚

δV

[r̃][r̃]dm
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Under the assumption of a constant density ρ,

[∆I]O = −ρ
˚

δV

[r̃][r̃]dV

The inertia tensor becomes

[∆I]O = −ρ
1ˆ

0

1ˆ

0

1−uˆ

0

[r̃][r̃]a2
∑

|k|,|l|,|m|=n
Bn

k

∂Bn
l

∂u

∂Bn
m

∂v
CT

k (Cl ×Cm)

· dvduda

= −ρ
1ˆ

0

1ˆ

0

1−uˆ

0

a2
∑

|i|=n

∑

|j|=n
Bn

i B
n
j [C̃i][C̃bj]a

2

·
∑

|k|,|l|,|m|=n
Bn

k

∂Bn
l

∂u

∂Bn
m

∂v
CT

k (Cl ×Cm) dvduda

= −ρ
1ˆ

0

1ˆ

0

1−uˆ

0

a4
∑

|i|,|j|,|k|,
|l|,|m|=n

Bn
i B

n
j [C̃i][C̃j]B

n
k

∂Bn
l

∂u

∂Bn
m

∂v
CT

k (Cl ×Cm)

· dvduda

After swapping the sums with the integrals and integrating over a,

[∆I]O = −ρ1

5

∑

|i|,|j|,|k|,
|l|=n

∑

|m|=n
[C̃i][C̃j]C

T
k (Cl ×Cm)

·
1ˆ

0

1−uˆ

0

Bn
i B

n
j B

n
k

∂Bn
l

∂u

∂Bn
m

∂v
dvdu (6.20)

= ρ
∑

|i|,|j|,|k|,
|l|=n

∑

|m|=n
[C̃i][C̃j]C

T
k (Cl ×Cm)κijklm (6.21)
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where

κijklm = −1

5

1ˆ

0

1−uˆ

0

Bn
i B

n
j B

n
k

∂Bn
l

∂u

∂Bn
l

∂v
dvdu

= −n
2

5



n

i, j






n

k, l







n

m, p




1ˆ

0

1−uˆ

0

[

·



n− 1

q − 1, r






n− 1

s, t− 1


ui+k+m+q+s−1vj+l+p+r+t−1 (1− u− v)5n−|ijklm|

−



n− 1

q − 1, r






n− 1

s, t


ui+k+q+m+s−1vj+l+p+r+t (1− u− v)5n−|ijklm|−1

−



n− 1

q, r






n− 1

s, t− 1


ui+k+m+q+svj+l+p+r+t−1 (1− u− v)5n−|ijklm|−1

+



n− 1

q, r






n− 1

s, t


ui+k+m+q+svj+l+p+r+t (1− u− v)5n−|ijklm|−2

]

· dvdu

Define

i = i, j, (n− i− j) (6.22)

j = k, l, (n− k − l) (6.23)

k = m, p, (n−m− p) (6.24)

l = q, r, (n− q − r) (6.25)

m = s, t, (n− s− t) (6.26)

|ijklm| = i+ j + k + l +m+ p+ q + r + s+ t (6.27)
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the final expression of the κijklm becomes

κijklm = −n
2

5



n

i, j






n

k, l







n

m, p



[

n− 1

q − 1, r




·






n− 1

s, t− 1


S

5n−|ijklm|
j+l+p+r+t−1 −



n− 1

s, t


S

5n−|ijklm|−1
j+l+p+r+t


S5n−i−k−m−q−s

i+k+m+q+s−1

−



n− 1

q, r









n− 1

s, t− 1


S

5n−|ijklm|−1
j+l+p+r+t−1 −



n− 1

s, t


S

5n−|ijklm|−2
j+l+p+r+t




· S5n−i−k−m−q−s−1
i+k+m+q+s

]
(6.28)

and the inertia tensor of the complete Bezier shape is given by

[I]O ≡
Ne∑

e=1

[∆I]O,e = ρ

Ne∑

e=1

∑

|i|,|j|,|k|,
|l|,|m|=n

[C̃e
i ][C̃

e
j ]C

eT
k (Ce

l ×Ce
m)κijklm (6.29)

6.1.2 Inertia quantities statistics

In what follows, it is assumed that the control mesh of a given shape obeys a normal distri-

bution of mean C̄ and known covariance. In addition, the amplitude of the shape randomness is

assumed to be sufficiently small so that the first variation in each control point coordinates satisfies

δCi ≡ Ci − C̄i << C̄i

in the L2-norm sense.
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6.1.2.1 Uncertainty in volume given Gaussian control mesh

The first variation in the total volume reads

δV ' V − V̄

≡
Ne∑

e=1

∑

|i|,|j|,|k|=n
αijk

(
δCeT

i

[
C̄e

j × C̄e
k

]

+ C̄eT
i

[
δCe

j × C̄e
k

]
+ C̄eT

i

[
C̄e

j × δCe
k

])

=

Ne∑

e=1

∑

|i|,|j|,|k|=n
αijk




vejk

veki

veij




T 


δCe
i

δCe
j

δCe
k




where vejk = C̄e
j × C̄e

k. The variance in the total volume becomes

σ2
V =

Ne∑

e,f=1

∑

|i|,|j|,|k|,
|m|,|p|,|l|=n

αijkαlmp

·




vejk

veki

veij



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

P
Ce

i C
f
l

P
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P
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P
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P
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j C
f
p

P
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kCf
l

P
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kCf
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P
Ce

kCf
p







vfmp

vfpl

vflm




(6.30)

where P
Ce

i C
f
l

= E
(
δCe

i δC
fT
l

)
captures the uncertainty in the considered control points.
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6.1.2.2 Uncertainty in center of mass given Gaussian control mesh

A first order expansion of the center of mass expression about the mean value of the control

points such that c̄m = 0 gives

δcm ≡ cm − c̄m

' 1

V̄

Ne∑

e=1

∑

|i|,|j|,|k|,
|l|=n

γijkl

[
C̄e

i C̄
eT
j

(
C̄e

k × δCe
l + δCe

k × C̄e
l

)

+
(
C̄e

i δC
eT
j + δCe

i C̄
eT
j

)
C̄e

k × C̄e
l

]
− δV

V̄t
c̄m︸︷︷︸
0

=
1

V̄

Ne∑

e=1

∑
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|l|=n

γijkl

[
C̄e

i

(
veTjk δC

e
l + veTlj δC

e
k

)

+
(
C̄e

i δC
eT
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i C̄
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j

)
vekl

]
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γijkl
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
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The outer product of the center of mass deviation reads

δcmδc
T
m =

1

V̄ 2

Ne∑
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r
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fT
m

vfrpC̄fT
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vfpqC̄fT
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


(6.31)
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The covariance in the center of mass position is finally given by

Pcm =
1

V̄ 2
t

Ne∑
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(6.32)

6.1.2.3 Inertia’s second moments about the mean

Contrary to the first-order mapping readily providing the second moment about the mean

of the volume and center of mass, respectively in the form of a standard-deviation and covariance

matrix, the inertia tensor requires more caution. Instead of directly extracting the statistical

moments of the inertia tensor, one should operate on its parametrization in terms of inertia moments

and attitude parameters describing the orientation of the principal axes. Starting from M = ρV ,

the inertia tensor with respect to the center of mass is given by the parallel-axis formula [68]:

[I]cm = [I]O −M [c̃m][c̃m]T

where

[I]O = ρ

Ne∑

e=1

∑

|i|,|j|,|k|
|l|,|m|=n

κijklm[C̃e
i ][C̃

e
j ]C

eT
k (Ce

l ×Ce
m)

The control mesh about which the linearization is computed can have its coordinates ex-

pressed with respect to its barycenter, so that cm = 0. This way, one can directly operate on [I]O

without linearizing the contribution of the parallel axis theorem. This manuscript therefore uses

[I] ≡ [I]O = [I]cm to represent the barycentered inertia tensor from now on. Following Dobrovol-

skis’ notation [103], the principal dimensions of the equivalent ellipsoid are given by



101

a =

√
5 (B + C −A)

2M

b =

√
5 (A+ C −B)

2M

c =

√
5 (A+B − C)

2M

where the three moments of inertia A, B and C are the eigenvalues of the inertia tensor sorted

in ascending order and M the total mass of the body. Defining the inertia tensor’s parametrization

as

I =




Ixx

Iyy

Izz

Ixy

Ixz

Iyz




(6.33)

this section is thus concerned with the expression of the first-order variations and second

moment about the means of I, the principal dimensions, moments and parametrization of the

principal frame attitude relative to the current body frame.

Principal dimensions, moments, and inertia parametrization

First variations

The first variation in the ellipsoid axes dimensions is given by

δa =
5

4aM




−1

1

1

−B+C−A
M




T 


δA

δB

δC

δM




=
∂a

∂M
δM (6.34)
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δb =
5

4bM
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
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=
∂b

∂M
δM (6.35)

δc =
5

4cM
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M
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


=
∂c

∂M
δM (6.36)

which can be conveniently expressed as

d =




a

b

c



, M =




D

M


 , D =




A

B

C




(6.37)

and

The first variations in A, B, C and M can be expressed through

δd =
∂d

∂M
δM

=
∂d

∂M



δD

δM




The variation in the mass is simply given by

δM = ρδV (6.38)

The first variation in the moments can be obtained from the manipulation of the inertia tensor.

From the definition of the principal axes {ûi}i=A,B,C and moments {λi}i=A,B,C

[I]ûi = λiûi (6.39)

Taking the first variation of this equation yields

[δI]ûi + [I]δûi = δλiûi + λiδûi (6.40)
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Defining the matrix Ui through the relationship [I]ûi = UiI and taking the dot product of Equation

(6.40) with ûi cancels out the first variation in the eigenvector to leave

δλi =
1

ûTi ûi
ûTi UiδI (6.41)

Leveraging the unit-norm of the eigenvectors and repeating the process for the other two eigenvalues

leaves

δD =




ûTAUA

ûTBUB

ûTCUC



δI (6.42)

so the sought-for partial is

∂D

∂I
=


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ûTAUA

ûTBUB

ûTCUC


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(6.43)

Since

Irq = êTr [I]cm êq

with r, q ∈ {x, y, z} × {x, y, z} such that

êx =



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, êz =
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0
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
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the first variation of one of the inertia tensor’s individual components is given by

δIrq = ρ

Ne∑

e=1

∑

|i|,|j|,|k|,
|l|,|m|=n

κijklm

(
−CT

k (Cl ×Cm) ·
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(6.44)

= ρ
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


T 


δCi

δCj

δCk

δCl

δCm




(6.45)

= ρ

Ne∑
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∑
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κijklmLTrq
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(6.46)

Therefore

δI = ρ
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(6.47)

Finally, the first variation in the mass is given by

δM = ρδV = ρ

Ne∑
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(6.48)
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Second moments about the mean

The sought-for second moment about the mean of the principal dimensions is given by

Pd = E
(
δdδdT

)
=

[
∂d

∂M

]
PM

[
∂d

∂M

]T
(6.49)

with

PM = E
(
δMδMT

)
=



PD PMD

P TMD σ2
M


 (6.50)

PD = E
(
δDδDT

)
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]
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]T
(6.51)

PMD = E (δMδD) =

[
∂D

∂I

]
PMI (6.52)

PM = ρ2σ2
V (6.53)

(6.54)

where PM holds the covariance of the principal moments. The covariance PI and correlation

matrix PMI are given by
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and
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PMI ≡ ρ2
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Principal axes First variation The three orthogonal unit-norm eigenvectors expressed

in the body-frame (B) êA, êB and êC associated with each of the principal moments A, B, C define

the body-frame to principal-frame (P) Direction Cosine Matrix (DCM) [PB] through

[PB] =




êTA

êTB

êTC




(6.57)

From the definition of the principal frame,

[I] = [BP][D][PB] (6.58)

where

[D] =




A 0 0

0 B 0

0 0 C




(6.59)

Introducing a variation in the shape modifies the definition of the principal axes and moments.

Letting primed quantities denote post-variation values and frames, Equation (6.58) become

[I] + [δI] = [BP][PP ′] ([D] + δ[D]) [P ′P][PB] (6.60)
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Parametrize [PB] in terms of the Modified Rodrigues Parameter (MRP) set σ [68], the

incremental DCM [P ′P] is given by

[P ′P] ' I3 − 4[δ̃σ] (6.61)

By expanding out Equation (6.60), discarding the zero-th and second order terms, and taking

its left and right dot product with êr and êq with r, q ∈ {x, y, z}×{x, y, z}, one can get the following

scalar equation

êTr [δ̃σ][D]êq − êTr [D][δ̃σ]êq =
1

4

(
êTr [PB][δI][BP]êq − êTr [δD]êq

)
(6.62)

Use the anti-commutative property of the cross-product matrix and define f̂r = [BP]êr and f̂q =

[BP]êq such that

êTr

(
[D][ ˜̂eq]− [[̃D]êq]

)
δσ =

1

4

(
f̂Tr [δI]f̂q − êTr [δD]êq

)
(6.63)

Finally, define Jqr such that f̂Tr [δI]f̂q = JqTr δI to obtain

Hiδσ = VT
i δI (6.64)

with Hi = êTr

(
[D][ ˜̂eq]− [[̃D]êq]

)
and VT

i = 1
4

(
JqTr − δqr êTr ∂D

∂I

)

where δqr is the Kronecker delta. Accounting for all nine combinations of êr, êq and stacking

up the nine consecutive equations,




...

Hi

...



δσ =




...

VT
i

...



δI (6.65)
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Define

H =




...

Hi

...




(6.66)

V =




...

VT
i

...




(6.67)

G ≡
(
HTH

)−1
HTV (6.68)

the first variation in the MRP set orienting the principal axes is finally given by

δσ = GδI (6.69)

The least square solution presented in Equation 6.69 is not an approximation of δσ, because six

of the nine combinations of êr, êq are linear combinations of the three combinations that actually

yield linearly independent equations. The least-square approach to extracting δσ merely facilitates

implementation. It must be noted that the matrix HTH becomes singular when two of the inertia

moments of the reference shape become equal, which corresponds to an infinity of possible principal

frames definitions.

Covariance The covariance in the MRP set parametrizing [P ′P] is thus given by

Pσ = GPIG
T (6.70)

6.2 Results

The methods developed in this chapter are demonstrated on a perturbed first-order Bezier -

hence polyhedron - shape model, where each control point Ci was assigned with a self-covariance

of the form

PCiCi
= σ2

(
n̂in̂

T
i + ε

[
ê1ê

T
1 + ê2ê

T
2

])
(6.71)
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such that ε << 1, n̂i being the outward surface normal at Ci. This direction was obtained by

simply averaging the normals at this point evaluated across the different patches owning this point.

The surface tangents ê1 and ê2 were chosen such that n̂i, ê1 and ê2 form an orthonormal basis. The

uncertainty in the control point was thus prescribed to be mostly along their normal. In addition,

the control points were correlated with each other through the correlation matrix

PCiCj
= σ2e−

‖Ci−Cj‖
2

l2 n̂in̂
T
j (6.72)

This correlation matrix was automatically set to zero should ‖Ci−Cj‖ become larger than 3l. The

correlation length l plays a similar role as in [63].

The inertia statistics computed with the analytical model were compared to the results of a

Monte-Carlo simulation featuring 10,000 runs. In each run, the baseline shape model had its control

mesh coordinates perturbed by a deviation sampled from the multivariate Gaussian distribution of

zero mean and covariance given by

PCC =




PC0C0 PC0C1 . . . PC0CN−1

PC1C0 PC1C1 . . . PC1CN−1

PC2C0 PC2C1 . . . PC2CN−1

. . . . . .

PCN−1C0 PCN−1C1 . . . PCN−1CN−1




(6.73)

where the 3x3 covariance matrices comprising PCC are obtained from Equation (6.71) and (6.72)

for each of the N control points. The deviation to be applied to the control mesh in a given

Monte-Carlo run is thus

δC = LδU (6.74)

where δU ∈ R3N is a random vector obeying a Gaussian distribution of zero-mean and unity

covariance, and L being a square-root of PCC. When N gets larger that a few thousands, getting

L from the Cholesky decomposition of PCC may fail due to numerical instabilities. Instead, the

spectral decomposition PCC = HDHT where D (resp H) is the diagonal matrix storing the positive

eigenvalues (resp the orthogonal matrix of unity eigenvectors) was empirically found to be better
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behaved than the Cholesky decomposition in this case, with L then readily provided by L =

H
√
DHT .

Table 6.1 shows the resolution and mean inertia parameters of the polyhedron shape model

of asteroid Itokawa [104] and the polyhedron shape model of comet 67P/ChuryumovGerasimenko

[105] used in this study. Table 6.2 lists the input parameters of the different tests that were run in

this study. Cases 1 and 2 consider a shape model of Asteroid Itokawa under different uncertainty

levels while Case 3 focuses on Comet ChuryumovGerasimenko (67P)

A comparison of the Monte-Carlo and predicted statistical moments of the different consid-

ered inertia terms is shown on Tables 6.3, 6.4 and 6.5 for the three different cases. The agreement

between the Monte-Carlo moments and the analytical ones appears very good overall. The large

deviations than can be seen for some of the cross correlations are fairly inconsequential for the

shape of the covariance ellipses themselves, as the off-diagonal correlations are negligible compared

to the diagonal ones.

Figures 6.2, 6.3 and 6.4 show a subsample of the generated Monte-Carlo shapes for the

three different cases. Furthermore, as said in the previous paragraph, the covariances computed

from the analytical model are nearly indistinguishable from those computed from the Monte-Carlo

samples, as shown in the distribution of the centers of mass (Figures 6.5,6.6 and 6.7), principal

inertia moments (Figures 6.8, 6.9 and 6.10), principal dimensions (Figures 6.11, 6.12 and 6.13)

and principal axes MRP (Figures 6.14, 6.15 and 6.16). The few outliers seen in Figure 6.15 are

discussed hereunder.
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Table 6.1: Small bodies mean inertia parameters
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Table 6.2: Simulation parameters

Case 1 Case 2 Case 3

Shape model Itokawa 8 Itokawa 8 67P/C-G

Standard deviation σ (m) 5 10 75

Correlation length l (m) 50 100 300

Figure 6.1: Illustration of a Bezier tetrahedron, generated from the triangular Bezier patch T
subtending 3 sides S1, S2 and S3 between its end control points Cn00, C0n0 and C00n and an
arbitrary origin O

.
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Table 6.3: Volume, center of mass, inertia moments, principal dimensions and principal axes co-
variance error between analytical prediction and Monte-Carlo results, case 1
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Table 6.4: Volume, center of mass, inertia moments, principal dimensions and principal axes co-
variance error between analytical prediction and Monte-Carlo results, case 2
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Table 6.5: Volume, center of mass, inertia moments, principal dimensions and principal axes co-
variance error between analytical prediction and Monte-Carlo results, case 3

M
o
n
te

-C
a
rl

o
M

o
d
el

ed
D

ev
ia

ti
o
n

(%
)

σ
V

(k
m

3
)

0
.2

6
8

0
.2

6
6

0
.8

7
9

P
c
m

(m
2
)

[ 3
.4

0
1
·1

0
2

4
.5

6
5

−
4
.4

3
8
·1

0
−
1

·
1
.7

0
1
·1

0
2

1
.1

1
1

·
·

1
.3

5
8
·1

0
2

]
[ 3
.4

6
0
·1

0
2

5
.4

4
3

−
1
.5

0
3

·
1
.6

6
1
·1

0
2

2
.5

6
7

·
·

1
.3

2
6
·1

0
2

]
[ 1.71

7
1
9
.2

4
0

2
3
8
.5

9
6

·
−

2
.3

5
4

1
3
1
.1

0
7

·
·

−
2
.3

3
2

]
P
A
B
C

(k
m

1
0
)

[ 2
.1

8
0
·1

0
−
1

2
.2

9
1
·1

0
−
1

2
.6

6
0
·1

0
−
1

·
5
.9

3
3
·1

0
−
1

5
.7

8
0
·1

0
−
1

·
·

6
.6

3
1
·1

0
−
1

]
[ 2
.0

6
7
·1

0
−
1

2
.1

6
6
·1

0
−
1

2
.5

1
1
·1

0
−
1

·
5
.7

4
2
·1

0
−
1

5
.5

5
5
·1

0
−
1

·
·

6
.3

4
7
·1

0
−
1

]
[ −5.

2
1
7

−
5
.4

6
4

−
5
.6

1
2

·
−

3
.2

1
8

−
3
.8

9
2

·
·

−
4
.2

8
9

]

P
a
b
c

(k
m

2
)

[ 5
.5

3
6
·1

0
−
4

−
7
.9

3
7
·1

0
−
5

−
7
.1

9
3
·1

0
−
5

·
3
.4

3
2
·1

0
−
4

−
4
.5

3
6
·1

0
−
5

·
·

2
.8

8
1
·1

0
−
4

]
[ 5
.4

8
6
·1

0
−
4

−
8
.6

7
4
·1

0
−
5

−
7
.0

6
7
·1

0
−
5

·
3
.4

1
6
·1

0
−
4

−
4
.8

8
8
·1

0
−
5

·
·

2
.8

8
8
·1

0
−
4

]
[ −0.

9
0
0

9
.2

8
9

−
1
.7

5
9

·
−

0
.4

4
4

7
.7

4
9

·
·

0
.2

5
6

]
P
σ

[ 2
.6

3
1
·1

0
−
4

4
.2

8
5
·1

0
−
6

−
1
.3

8
5
·1

0
−
6

·
1
.1

7
0
·1

0
−
5

−
6
.1

1
3
·1

0
−
7

·
·

1
.9

8
7
·1

0
−
5

]
[ 2
.5

3
2
·1

0
−
4

4
.4

0
3
·1

0
−
6

−
1
.7

8
8
·1

0
−
6

·
1
.1

5
5
·1

0
−
5

−
3
.6

6
3
·1

0
−
7

·
·

1
.9

3
1
·1

0
−
5

]
[ −3.

7
5
1

2
.7

6
4

2
9
.0

3
6

·
−

1
.3

3
2

−
4
0
.0

7
3

·
·

−
2
.8

1
5

]



116

150 100 50 0 50 100 150
Y (m)

100

50

0

50

100

Z 
(m

)

200 100 0 100 200 300
X (m)

200

100

0

100

200

Z 
(m

)

200 100 0 100 200 300
X (m)

200

100

0

100

200

Y 
(m

)

Figure 6.2: Mean (black) and MC shapes (blue), case 1. Only a fraction of the MC outcomes are
shown
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Figure 6.3: Mean (black) and MC shapes (blue), case 2. Only a fraction of the MC outcomes are
shown
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Figure 6.4: Mean (black) and MC shapes (blue), case 3. Only a fraction of the MC outcomes are
shown
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Figure 6.5: Dispersion in the center of mass coordinates (blue) and 3 σ ellipses from the MC (green)
and from the uncertainty model (red), case 1
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Figure 6.6: Dispersion in the center of mass coordinates (blue) and 3 σ ellipses from the MC (green)
and from the uncertainty model (red), case 2
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Figure 6.7: Dispersion in the center of mass coordinates (blue) and 3 σ ellipses from the MC (green)
and from the uncertainty model (red), case 3
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Figure 6.8: Dispersion in the three principal moments (blue) and 3 σ ellipses from the MC (green)
and from the uncertainty model (red), case 1
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Figure 6.9: Dispersion in the three principal moments (blue) and 3 σ ellipses from the MC (green)
and from the uncertainty model (red), case 2
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Figure 6.10: Dispersion in the three principal moments (blue) and 3 σ ellipses from the MC (green)
and from the uncertainty model (red), case 3
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Figure 6.11: Dispersion in the three principal dimensions (blue) and 3 σ ellipses from the MC
(green) and from the uncertainty model (red), case 1
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Figure 6.12: Dispersion in the three principal dimensions (blue) and 3 σ ellipses from the MC
(green) and from the uncertainty model (red), case 2
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Figure 6.13: Dispersion in the three principal dimensions (blue) and 3 σ ellipses from the MC
(green) and from the uncertainty model (red), case 3



128

0.02 0.01 0.00 0.01 0.02
2

0.015

0.010

0.005

0.000

0.005

0.010

0.015

3

0.06 0.04 0.02 0.00 0.02 0.04 0.06
1

0.04

0.02

0.00

0.02

0.04

3

0.06 0.04 0.02 0.00 0.02 0.04 0.06
1

0.04

0.02

0.00

0.02

0.04

2

Figure 6.14: Dispersion in the principal axes MRP (blue) and 3 σellipses from the MC (green) and
from the uncertainty model (red), case 1
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Figure 6.15: Dispersion in the principal axes MRP (blue) and 3 σ

ellipses from the MC (green) and from the uncertainty model (red), case 2
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Figure 6.16: Dispersion in the principal axes MRP (blue) and 3 σ ellipses from the MC (green) and
from the uncertainty model (red), case 3
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6.3 Discussion

The results from the numerical simulations have confirmed the ability of the derived model

to predict the variations in the inertia characteristics of a shape given surface uncertainties, under

a linearized error assumption. The quality of the prediction is good at the considered error levels,

but would degrade as these get bigger due to the violation of the linearized formulation. The few

outliers that can be seen in Figure 6.15 showing a seemingly large deviation in the first component

of the MRP are caused by the coalescence of the second and third inertia moments of Itokawa under

the applied deviation, the former becoming larger than the third. This causes two principal axes to

flip, effectively affecting the MRP governing their orientation. These outliers are thus the results

of a mislabeling of the principal axes in the Monte-Carlo outcome evaluation and not a limitation

of the linearized uncertainty model. If one were to run a MC simulation without visually checking

the results, but only computing statistics, these types of errors can lead to erroneous results, which

is yet another benefit of the proposed approach over pure numerical simulations.

Beyond providing an analytical insight into the behavior of the inertia parameters under shape

uncertainties, the developed model could also provide an alternative to Monte-Carlo sampling of

the shape uncertainties should the extraction of the square root of the shape covariance become

intractable, as the model only operates on the subpartitions of the shape covariance. Although the

density was not considered as varying in this work, it would be fairly straightforward to add it to

the uncertain parameters as long as it is assumed as uniform, as the uniform density hypothesis

would remove any correlations between the uncertainty in the mesh control points and that in the

density. The only modification would be to rewrite Equation (6.48) as δM = ρδV + δρV , and

augment the input statistics with E
(
δρ2
)

= σ2
ρ. Allowing the density distribution to become non-

uniform and uncertain would drastically increase the computational burden associated with the

inertia statistics. It must also be noted that the density would have to remain piecewise-constant

across the Bezier tetrahedrons comprising the shape.

Since the uncertainty model derived in this chapter relies on a local description of the asteroid
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terrain, it is able to handle highly irregular, non-convex bodies that cannot be described in terms of

spherical coordinates. This is an improvement over Muinonen’s Gaussian sphere technique. Also,

there is no limitation on the correlation distance between a given pair of points, as the only limiting

factor is the norm of the uncertainty in the shape control points which should remain small relative

to the shape’s dimensions.

Although the methods were only demonstrated over a polyhedron, the provided expressions

remain valid for Bezier shapes of arbitrary order n strictly greater than 1. Yet, one must be

wary of the combinatorial explosion occurring when computing the statistical moments of the

inertia properties. In particular, evaluating PI over a Bezier shape of order n = 2 would require a

maximum of 610 = 60466176 evaluations per facet pair. In practice, this number can be reduced

by eliminating the κijklmκpqrst products evaluating to zero. The remaining computational burden

can still be spread out over multiple agents due to its embarrassingly parallel nature.

Finally, it must be noted that this chapter does not address the computation of the covariances

PCiCj
, as these would normally be provided along with a shape model estimate reconstructed by

means of remote observations (lightcurve, radar,...). [106] provide a detailed procedure explaining

how one could come up with the corresponding covariances for a shape reconstructed by means

of point cloud data acquired by a Lidar instrument. Other observations types like radar images

or luminosity curves could be handled similarly. Since the gravity spherical harmonics less or

equal than two in degree and order are a function of the inertia tensor parameters [107], analytical

quantification of the uncertainty in the orbit dynamics about an unknown small body is thus

captured by the linearized model up to the second degree and order.



Chapter 7

Uncertainties in Polyhedron Gravity Model Arising From An Uncertain Shape

7.1 The Polyhedron Gravity Model

Werner and Scheeres proposed closed form expressions of the potential created by a constant-

density polyhedral shape comprised of triangular surface elements (dubbed ”facets”), from which

expressions of the gravity acceleration and gravity gradient matrix could be readily derived [5].

These expressions are known as that of the Polyhedron Gravity Model, or PGM. Denote the i-th

shape vertex as Ci. An edge indexed by e is formed by connecting two points CiEe,0
and CiEe,1

. A

facet indexed by f is formed by associating in a counter-clockwise fashion the points CiFf,0
, CiFf,1

and CiFf,2
. The potential, acceleration and gravity-gradient matrix arising from a polyhedron shape

comprised of Nf facets and Ne edges of constant uniform density ρ takes the form

U (r) =
Gρ

2



Ne∑

e=1

rT
iEe,0
EeriEe,0

Le −
Nf∑

f=1

rT
iFf,0
FfriFf,0

ωf


 (7.1)

a (r) = Gρ


−

Ne∑

e=1

EeriEe,0
Le +

Nf∑

f=1

FfriFf,0
ωf


 (7.2)

[
∂a

∂r

]
= Gρ



Ne∑

e=1

EeLe −
Nf∑

f=1

Ffωf


 (7.3)
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The edge potential Le, performance factor ωf and the other terms constituting these expressions

are detailed below.

ri = Ci − r (7.4)

ri = ‖ri‖ (7.5)

Le = ln

(
rie,0 + rie,1 + le

rie,0 + rie,1 − le

)
(7.6)

le = ‖CiEe,1
−CiEe,0

‖ (7.7)

ωf = 2 · arctan2

(
rT
iFf,0

(
riFf,1
× riFf,2

)

, riFf,0
riFf,1

riFf,2
+ riFf,0

rT
iFf,1

riFf,2
+ riFf,1

rT
iFf,2

riFf,0
+ riFf,2

rT
iFf,0

riFf,1

)
(7.8)

Ff = n̂f n̂
T
f (7.9)

The edge dyad Ee is defined as

Ee = n̂An̂
A
12 + n̂Bn̂

B
21 (7.10)

following the notations of Figure 7.1.

The PGM is an exact representation of the gravity field of a constant-density polyhedron, as

opposed to a truncated spherical harmonics expansion of its gravity field. The PGM expressions

remain valid within the Briouillin sphere of the object, unlike exterior spherical harmonics expan-

sions that diverge once evaluated within it [108]. The PGM in its provided form is valid everywhere

except on the edges of the considered shape, although modified PGM expressions dealing with these

singularities do exist [109].

7.2 First variation in the PGM expressions

The expressions of the first variations δU (r) and δa (r) provide valuable insight into the

evolution of these gravity terms under a change in the shape, in addition to providing the pathway

towards linearized uncertainty quantification in these quantities.
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Figure 7.1: Facet-Edge geometry in definition of edge dyad [5]
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7.2.1 First variation in the potential due to a change in the shape

Rewrite the potential as

U (r) =
Gρ

2



Ne∑

e=1

UFf +

Nf∑

f=1

UEe


 (7.11)

with

UEe = rT
iEe,0
EeriEe,0

Le (7.12)

UFf = −rT
iFf,0
FfriFf,0

ωf (7.13)

Taking the first variation yields

δU (r) =
Gρ

2



Ne∑

e=1

δUEe +

Nf∑

f=1

δUFf


 (7.14)

with

δUEe =




rT
iEe,0
EeriEe,0

2LeEeriEe,0
LeR

ET
iEe,0

riEe,0




T 

δLe
δriEe,0
δEe


 (7.15)

where Ee and RE
iEe,0

are defined implicitly as EeriEe,0
= RE

iEe,0
Ee. Similarly,

δUFf =




rT
iFf,0
FfriFf,0

2ωfFfriFf,0
ωfR

FT
iFf,0

riFf,0




T 

δωf
δriFf,0
δFf


 (7.16)

where again FfriFf,0
= RF

iFf,0
Ff . In so many words,

δUEe =
∂UEe
∂XE

e

δXE
e (7.17)

δUFf =
∂UFf

∂XF
f

δXF
f (7.18)

with

XE
e =



Le
riEe,0
Ee


 (7.19)

XF
f =



ωf
riFf,0
Ff


 (7.20)
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The following sections delve into the derivation of the first variations in the different partitions

of XE
e and XF

f so as to relate them to the first variations in the underlying first variation in the

vertices coordinates.

7.2.1.1 First variation in XF
f

The first variation in XF
f can be written as

δXF
f =



δωf
δriFf,0
δFf


 (7.21)

=
∂XF

f

∂Tf
δTf (7.22)

=




∂ωf
∂Tf
∂r
iF
f,0

∂Tf
∂Ff
∂Tf


 δTf (7.23)

where the current triangular facet is formed by three control points whose coordinates are stacked

in a vector Tf

Tf =




CiFf,0

CiFf,1

CiFf,2


 (7.24)

The different partials are now defined
∂ωf
∂Tf

:

One must be wary of the use of the arctan2 function when taking its derivative. Indeed, treat-

ing arctan2 like arctan and differentiating (7.8) will yield spurious results should the denominator

and numerator be of different signs. Instead, define

Zf =




1 + r̂T
iFf,1
r̂iFf,2

+ r̂T
iFf,2
r̂iFf,0

+ r̂T
iFf,0
r̂iFf,1

r̂T
iFf,0

(
r̂iFf,1
× r̂iFf,2

)

 (7.25)

=

(
αf
γf

)
(7.26)

ê1 =

(
1

0

)
(7.27)

ê2 =

(
0

1

)
(7.28)
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and use the following definition of arctan2:

arctan2 (Z) = 2 arctan

(
êT2 Z

‖Z‖+ êT1 Z

)
(7.29)

Then, the performance factor simply becomes

ωf = 4 arctan

(
êT2 Zf

‖Zf‖+ êT1 Zf

)
(7.30)

Defining r̂f =




r̂iFf,0
r̂iFf,1
r̂iFf,2


 and rf =




riFf,0
riFf,1
riFf,2


, the first variation of the performance factor is then

given by

δωf = 4

[
‖Zf‖+ êT1 Zf

]
êT2 − êT2 Zf

[
êT1 +

ZTf
‖Z‖

]

(
‖Zf‖+ êT1 Zf

)2
+
(
êT2 Zf

)2
∂Zf
∂r̂f

∂r̂f
∂rf

∂rf
∂Tf

(7.31)

And

δZf =




r̂iFf,2
+ r̂iFf,1

[̃r̂iFf,1
]r̂iFf,2

r̂iFf,0
+ r̂iFf,2

[̃r̂iFf,2
]r̂iFf,0

r̂iFf,0
+ r̂iFf,1

[̃r̂iFf,0
]r̂iFf,1




T 


δr̂iFf,0
δr̂iFf,1
δr̂iFf,2


 (7.32)

The first variation in either of the r̂iFf,j
=

r
iF
f,j

‖r
iF
f,j
‖ (j ∈ {0, 1, 2}) is given by

δr̂iFf,j
=


 I33

‖riFf,j‖
−

riFf,j
rT
iFf,j

‖riFf,j‖
3


 δriFf,j

(7.33)

=
∂r̂iFf,j
∂riFf,j

δriFf,j
(7.34)

Finally, since riFf,j
= CiFf,j

− r, it is clear that




δriFf,0
δriFf,1
δriFf,2


 =



I33 033 033

033 I33 033

033 033 I33







δCiFf,0

δCiFf,1

δCiFf,2


 (7.35)

=




δCiFf,0

δCiFf,1

δCiFf,2


 (7.36)

= δTf (7.37)
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∂r
iF
f,0

∂Tf
: Since

riFf,0
= CiFf,0

− r (7.38)

The sought-for partial simply reads

∂riFf,0
∂Tf

=
[
I33 033 033

]
(7.39)

∂Ff
∂Tf

:

The facet dyad Ff = n̂f n̂
T
f is formed from the outer-product of the normalized surface normal

with itself. It is obviously symmetric, so that it can be parametrized by

Ff =



Ff (0, 0) Ff (0, 1) Ff (0, 2)

. Ff (1, 1) Ff (1, 2)

. . Ff (2, 2)


 (7.40)

Again,

Ff (i, j) = êTq Ff êr (7.41)

So the vector-form parametrization of Ff

Ff =




Ff (0, 0)

Ff (1, 1)

Ff (2, 2)

Ff (0, 1)

Ff (0, 2)

Ff (1, 2)




(7.42)

can actually be rewritten as

Ff =




êT0 Ff ê0

êT1 Ff ê1

êT2 Ff ê2

êT0 Ff ê1

êT0 Ff ê2

êT1 Ff ê2




=




êT0 n̂f n̂
T
f ê0

êT1 n̂f n̂
T
f ê1

êT2 n̂f n̂
T
f ê2

êT0 n̂f n̂
T
f ê1

êT0 n̂f n̂
T
f ê2

êT1 n̂f n̂
T
f ê2




=




n̂Tf ê0ê
T
0 n̂f

n̂Tf ê1ê
T
1 n̂f

n̂Tf ê2ê
T
2 n̂f

n̂Tf ê0ê
T
1 n̂f

n̂Tf ê0ê
T
2 n̂f

n̂Tf ê1ê
T
2 n̂f




(7.43)

Therefore,

δFf =




2n̂Tf ê0ê
T
0

2n̂Tf ê1ê
T
1

2n̂Tf ê2ê
T
2

n̂Tf
(
ê0ê

T
1 + ê1ê

T
0

)

n̂Tf
(
ê0ê

T
2 + ê2ê

T
0

)

n̂Tf
(
ê1ê

T
2 + ê2ê

T
1

)



δn̂f (7.44)

=
∂Ff

∂n̂f
δn̂f (7.45)
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Introducing the non-normalized surface normal Nf ,

n̂f =
Nf

‖Nf‖
(7.46)

with

Nf =
(
CiFf,1

−CiFf,0

)
×
(
CiFf,2

−CiFf,0

)
(7.47)

Hence

δn̂f =

(
I33

‖Nf‖
−

NfN
T
f

‖Nf‖3

)
δNf (7.48)

=
∂n̂

∂Nf
δNf (7.49)

and

δNf =
[

˜[CiFf,2
−CiFf,1

] ˜[CiFf,0
−CiFf,2

] ˜[CiFf,1
−CiFf,0

]
]



δCiFf,0

δCiFf,1

δCiFf,2


 (7.50)

=
∂Nf

∂Tf
δTf (7.51)

Therefore, the sought-for partial is given by

∂Ff

∂Tf
=
∂Ff

∂n̂f

∂n̂f
∂Nf

∂Nf

∂Tf
(7.52)

7.2.1.2 First variation in XE
e

The first variation in XE
e can be written as

δXE
e =



δLe
δriEe,0
δEe


 (7.53)

=




∂Le
∂Ae

0T3 0T3
∂r
iEe,0

∂Ae
033 033

∂Ee
∂Ae

∂Ee
∂T

iEFe,0

∂Ee
∂T

iEFe,1






δAe

δTiEFe,0

δTiEFe,1


 (7.54)
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where the current edge is formed by two control points whose coordinates are stacked in a

vector Ae

Ae =

(
CiEe,0

CiEe,1

)
(7.55)

and TiEFe,0
, TiEFe,1

hold the coordinates of the control points of the two facets adjacent to edge e.

Be =




Ae

TiEFe,0

TiEFe,1


 (7.56)

The different partials are now defined:
∂r
iEe,0

∂Ae
: Since

riEe,0
= CiEe,0

− r (7.57)

The sought-for partial simply reads

∂riEe,0
∂Ae

=
[
I33 033

]
(7.58)

∂Ee
∂Ae

: Following Werner and Scheeres’ notation, the edge dyad Ee is formed from

Ee = n̂An̂
A
12 + n̂Bn̂

B
21 (7.59)

Transforming this expression so as to make it consistent with our own notations,

Ee =
1

le

(
n̂iEFe,1

n̂T
iEFe,1
− n̂iEFe,0 n̂

T
iEFe,0

)
˜[CiEe,1
−CiEe,0

] (7.60)

Here, the index iEFe,j with j ∈ {0, 1} refers to the index of the j-th facet associated with the e-th

edge.

It is remarkable that Ee is a symmetric tensor [5]. It can thus be parametrized by

Ee =



Ee(0, 0) Ee(0, 1) Ee(0, 2)

. Ee(1, 1) Ee(1, 2)

. . Ee(2, 2)


 (7.61)

It must be noted that for (q, r) ∈ {0, 1, 2} × {0, 1, 2},

Ee(q, r) = êTq Eeêr (7.62)
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So the vector-form parametrization of Ee

Ee =




Ee(0, 0)

Ee(1, 1)

Ee(2, 2)

Ee(0, 1)

Ee(0, 2)

Ee(1, 2)




(7.63)

can actually be rewritten as

Ee =




êT0 Eeê0

êT1 Eeê1

êT2 Eeê2

êT0 Eeê1

êT0 Eeê2

êT1 Eeê2




(7.64)

Given an arbitrary component of the edge dyad Ee(q, r) = êTq Eeêr can be written

Ee(q, r) =
1

le
êTq

(
n̂iEFe,1

n̂T
iEFe,1
− n̂iEFe,0 n̂

T
iEFe,0

)
˜[CiEe,1
−CiEe,0

]êr (7.65)

The first variation of Ee(q, r) can be compactly expressed as

δEe(q, r) =
1

le




−Ee(q, r)
MT [̃êr]

[(
êTq n̂iEFe,1

)
n̂iEFe,1

−
(
êTq n̂iEFe,0

)
n̂iEFe,0

]

−
[
êqn̂

T
iEFe,0

+
(
êTq n̂iEFe,0

)
I33

]
Vr

[
êqn̂

T
iEFe,1

+
(
êTq n̂iEFe,1

)
I33

]
Vr




T




δle
δAe

δn̂iEFe,0
δn̂iEFe,1


 (7.66)

with M =
[
−I33 I33

]
and Vr = ˜[CiEe,1

−CiEe,0
]êr.

Also,

δle =

(
CiEe,0

−CiEe,1

)T (
δCiEe,0

− δCiEe,1

)

le
(7.67)

=

(
CiEe,0

−CiEe,1

)T

le

[
I33 −I33

]
δAe (7.68)

=
∂le
∂Ae

δAe (7.69)
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and since n̂iEFe,0
=

N
iEFe,0

‖N
iEFe,0
‖ ,

δn̂iEFe,j
=


 I33

‖NiEFe,j
‖ −

NiEFe,j
NT
iEFe,j

‖NiEFe,j
‖3


 δNiEFe,j

(7.70)

=
∂n̂iEFe,j
NiEFe,j

δNiEFe,j
(7.71)

with

δNiEFe,j
=

[
˜[CiF

iEF
e,j

,2

−CiF
iEF
e,j

,1

] ˜[CiF
iEF
e,j

,0

−CiF
iEF
e,j

,2

] ˜[CiF
iEF
e,j

,1

−CiF
iEF
e,j

,0

]
]



δCiF
iEF
e,j

,0

δCiF
iEF
e,j

,1

δCiF
iEF
e,j

,2




(7.72)

=
∂NiEFe,j

∂TiEFe,j

δTiEFe,j
(7.73)

So the first variation in the parametrization of Ee is given by

δEe =




∂E(0,0)
∂Be

∂E(1,1)
∂Be

∂E(2,2)
∂Be

∂E(0,1)
∂Be

∂E(0,2)
∂Be

∂E(1,2)
∂Be




δBe (7.74)

=
∂Ee

∂Be
δBe (7.75)

∂Le
∂Ae

:

From

Le = ln

(
rie,0 + rie,1 + le

rie,0 + rie,1 − le

)
(7.76)

δLe =
δrie,0 + δrie,1 + δle

rie,0 + rie,1 + le
− δrie,0 + δrie,1 − δle

rie,0 + rie,1 − le
(7.77)

Writing

β+
e = rie,0 + rie,1 + le (7.78)

β−e = rie,0 + rie,1 − le (7.79)
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This first variation becomes

δLe =
δrie,0 + δrie,1 + δle

β+
e

− δrie,0 + δrie,1 − δle
β−e

(7.80)

=




1
β+
e

+ 1
β−e

1
β+
e
− 1

β−e
1
β+
e
− 1

β−e




T 


δle
δrie,0
δrie,1


 (7.81)

Since

δle =
∂le
∂Ae

δAe (7.82)

δrie,j =
rTie,j
rie,j

δrie,j (7.83)

=
∂rie,j
∂rie,j

δrie,j (7.84)

and

∂riEe,0
∂Ae

=
[
I33 033

]
(7.85)

∂riEe,1
∂Ae

=
[
033 I33

]
(7.86)

The first variation in Le finally becomes

δLe =




1
β+
e

+ 1
β−e

1
β+
e
− 1

β−e
1
β+
e
− 1

β−e




T



∂le
∂Ae

∂rie,0
∂rie,0

∂r
iEe,0

∂Ae

∂rie,1
∂rie,1

∂r
iEe,1

∂Ae


 δAe (7.87)

=
∂Le
∂Ae

δAe (7.88)

7.2.2 First variation in the acceleration due to a change in the shape

From

a (r) = Gρ



Ne∑

e=1

aEe +

Nf∑

f=1

aFf


 (7.89)

with

aEe = −EeriEe,0Le (7.90)

aFf = FfriFf,0
ωf (7.91)
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The first variation in the acceleration caused by a change in the shape is given by

δa (r) = Gρ



Ne∑

e=1

δaEe +

Nf∑

f=1

δaFf


 (7.92)

= Gρ



Ne∑

e=1

[
∂aEe
∂C

]
+

Nf∑

f=1

[
∂aFf
∂C

]
 δC (7.93)

=

[
∂a

∂C

]
δC (7.94)

where

δaEe =
[
EeriEe,0

LeEe LeR
E
iEe,0

]


δLe
δriEe,0
δEe


 (7.95)

=

[
∂aEe
∂XE

e

]
δXE

e (7.96)

=

[
∂aEe
∂XE

e

] [
∂XE

e

∂BE
e

] [
∂BE

e

∂C

]
δC (7.97)

and

δaFf =
[
FfriFf,0

ωfFf ωfR
F
iFf,0

]


δωf
δriFf,0
δFf


 (7.98)

=

[
∂aFf

∂XF
f

]
δXF

f (7.99)

=

[
∂aFf

∂XF
f

][
∂XF

f

∂TF
f

][
∂TF

f

∂C

]
δC (7.100)

7.3 Second moment about the mean of the PGM quantities

7.3.1 Variance in potential of polyhedron gravity model

The variance in the potential arising from the stochastic polyhedron gravity model can be

obtained in a straightforward manner. Recall

U (r) =
Gρ

2



Ne∑

e=1

UEe +

Nf∑

f=1

UFf


 (7.101)
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with

UEe = rT
iEe,0
EeriEe,0

Le (7.102)

UFf = −rT
iFf,0
FfriFf,0

ωf (7.103)

Since the first variation in the potential caused by a change in the shape has been found to be

δU (r) =
Gρ

2



Ne∑

e=1

(
∂UEe
∂C

)
+

Nf∑

f=1

(
∂UFf
∂C

)
 δC =

(
∂U

∂C

)
δC (7.104)

where

δUEe =




rT
iEe,0
EeriEe,0

2LeEeriEe,0
LeR

ET
iEe,0

riEe,0




T 

δLe
δriEe,0
δEe


 (7.105)

=

(
∂UEe
∂XE

e

)
δXE

e (7.106)

=

(
∂UEe
∂XE

e

)[
∂XE

e

∂BE
e

] [
∂BE

e

∂C

]
δC (7.107)

=

(
∂UEe
∂C

)
δC (7.108)

and

δUFf =




rT
iFf,0
FfriFf,0

2ωfFfriFf,0
ωfR

FT
iFf,0

riFf,0




T 

δωf
δriFf,0
δFf


 (7.109)

=

(
∂UFf

∂XF
f

)
δXF

f (7.110)

=

(
∂UFf

∂XF
f

)[
∂XF

f

∂TF
f

][
∂TF

f

∂C

]
δC (7.111)

=

(
∂UFf
∂C

)
δC (7.112)

the variance in the gravitational potential at a fixed point in space r is given by

σ2
UU (r) =

(
∂U

∂C

)
PCC

(
∂U

∂C

)T
(7.113)
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7.3.2 Covariance in the acceleration

The covariance in the acceleration at a given point in space is given by

Paa (r) =

[
∂a

∂C

]
PCC

[
∂a

∂C

]T
(7.114)

7.4 Gravitational slopes

The gravitational slope at the center of facet f is defined as

sf = arccos
(
−b̂Tf n̂f

)
(7.115)

= arccos (−u) (7.116)

sf is equal to 0 if the body-fixed acceleration direction b̂f = bf/‖bf‖ evaluated at the center of the

facet Pf and the facet normal direction n̂f are equal. The body-fixed acceleration at the center of

the f-th facet is given by

bf = af − ω × (ω × (Pf −G)) (7.117)

where G denotes the barycenter of the small body. Gravitational slopes are of utmost interest

to small body science and engineering since they may be indicative of areas where material can

settle on the small body surface [110] [58] [57]. The next section offers a short summary of the

quantities of interest when investigating the variation in the slopes caused by uncertainties in the

shape vertices coordinates and the small body rotation period. The actual expression of the first

variation in the shape is then derived.

7.4.1 Inertia quantities of interest

The gravitational slope at the center of facet sf is obviously tied to the local geometry

through the facet normal n̂f , but also to the position of the center-of-mass of the body since the

latter is undergoing rotation about an axis that goes through this point. This remark essentially

ties together three important inertia quantities: the volume of the small body, its center-of-mass

and its inertia tensor. Expressions of these quantities are thus provided to the reader in this section
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before moving on. Computing the volume, center-of-mass and inertia tensor of a constant density

polyhedron boils down to accumulating the contribution of each of the Nf facets - instead, of each

tetrahedron subtended by the facet - in an orderly fashion [103], in a similar manner to what was

achieved in Chapter 6 of this thesis for higher-order surface elements. The expressions in this

section are nonetheless specialized to triangular, planar, first-order surface elements.

7.4.1.1 Volume

The total volume of the polyhedron is given by

V =

Nf∑

f=1

∆Vf (7.118)

where ∆Vf = 1
6

∣∣∣CiFf,0
CiFf,1

CiFf,2

∣∣∣ designates the signed volume of the considered tetrahedron

[103].

7.4.1.2 Center-of-mass

The coordinates of the constant-density polyhedron center-of-mass are given by

G =
1

V

Nf∑

f=1

∆Vf∆Gf (7.119)

where ∆Gf stands for the barycenter of the tetrahedron subtended by the f-th facet [103]

∆Gf =
1

4

(
CiFf,0

+ CiFf,1
+ CiFf,2

)
(7.120)

=
1

4
ATf (7.121)

with A =
[
I33 I33 I33

]
.

7.4.1.3 Inertia tensor

The unit-density inertia tensor of the whole shape about (0, 0, 0)T is given by [111]

[I]O =

Nf∑

f=1

[∆I]O,f (7.122)
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where the contribution to the inertia tensor of every tetrahedron can be written as

[∆I]O =
[∆I]O,f

∆Vf
∆Vf (7.123)

and

[∆I]O,f
∆Vf

= − 1

20

(
˜[Cf,0 + Cf,1 + Cf,2]

2
+ [̃Cf,0]

2
+ [̃Cf,1]

2
+ [̃Cf,2]

2
)

(7.124)

= − 1

20

(
[̃ATf ]

2
+ ˜[A0Tf ]

2
+ ˜[A1Tf ]

2
+ ˜[A2Tf ]

2
)

(7.125)

with

A0 =
[
I33 033 033

]
(7.126)

A1 =
[
033 I33 033

]
(7.127)

A2 =
[
033 033 I33

]
(7.128)

Just like in Chapter 6, the parametrization of the inertia tensor is denoted I :

I =




[I]O (0, 0)

[I]O (1, 1)

[I]O (2, 2)

[I]O (0, 1)

[I]O (0, 2)

[I]O (1, 2)




(7.129)

=

Nf∑

f=1




[∆I]O,f (0, 0)

[∆I]O,f (1, 1)

[∆I]O,f (2, 2)

[∆I]O,f (0, 1)

[∆I]O,f (0, 2)

[∆I]O,f (1, 2)




(7.130)

with [I]O (q, r) = êTq [I]O êr for (q, r) ∈ {0, 1, 2} × {0, 1, 2}

7.4.2 Partial derivative of the inertia quantities of interest

The expressions of the partial derivatives of the quantities of interest, specialized to triangular,

planar, first-order surface elements are given hereunder
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7.4.2.1 Volume

The partial derivative in the total volume relative to the shape is given by

(
∂V

∂C

)
=



Nf∑

f=1

(
∂∆Vf
∂C

)
 (7.131)

where
(
∂∆Vf
∂C

)
=

1

6

([
CiFf,1

×CiFf,2

]T
−CiFf,0

[̃CiFf,2
] CiFf,0

[̃CiFf,1
]

)[
∂Tf

∂C

]
(7.132)

7.4.2.2 Center of mass

The partial derivative in the barycenter with respect to the vertices coordinates is readily

given by
[
∂G

∂C

]
=

1

V

Nf∑

f=1

[
(∆Gf −G)

(
∂∆Vf
∂Tf

)
+ ∆Vf

[
∂∆Gf

∂Tf

]] [
∂Tf

∂C

]
(7.133)

7.4.2.3 Inertia tensor parametrization

The first variation of the inertia tensor parametrization is written as

δI =




δ [I]O (0, 0)

δ [I]O (1, 1)

δ [I]O (2, 2)

δ [I]O (0, 1)

δ [I]O (0, 2)

δ [I]O (1, 2)




(7.134)

=

Nf∑

f=1




δ [∆I]O,f (0, 0)

δ [∆I]O,f (1, 1)

δ [∆I]O,f (2, 2)

δ [∆I]O,f (0, 1)

δ [∆I]O,f (0, 2)

δ [∆I]O,f (1, 2)




(7.135)

where

δ [∆I]O,f (q, r) = δ

(
∆Vf ê

T
q

[∆I]O,f
∆Vf

êr

)
(7.136)

=


êTq

[∆I]O,f
∆Vf

êr

[
∂∆Vf
∂Tf

]
+ ∆Vf



∂
(
êTq

[∆I]O,f
∆Vf

êr

)

∂Tf





[
∂Tf

∂C

]
δC (7.137)
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and


∂
(
êTq

[∆I]O,f
∆Vf

êr

)

∂Tf


 = − 1

20
TT
f

[
AT
(

[̃êq][̃êr] + [̃êr][̃êq]
)
A

+AT0

(
[̃êq][̃êr] + [̃êr][̃êq]

)
A0 +AT1

(
[̃êq][̃êr] + [̃êr][̃êq]

)
A1 +AT2

(
[̃êq][̃êr] + [̃êr][̃êq]

)
A2

]
(7.138)

7.4.3 Partial derivative of the gravitation slope relative to the shape coordinates

and attitude

Taking the first variation of Equation (7.115),

δsf =
δu√

1− u2
(7.139)

and

δu = n̂Tf δb̂f + b̂Tf δn̂f (7.140)

=

(
n̂f
b̂f

)T (
δb̂f
δn̂f

)
(7.141)

=

(
n̂f
b̂f

)T [
∂b̂f
∂ω

∂b̂f
∂C

033
∂n̂f
∂C

](
δω

δC

)
(7.142)

∂n̂f
∂C has already been found in 7.2.1.2, in addition to

∂b̂f
∂bf

, so only
∂bf
∂C and

∂bf
∂ω need to be

investigated. The first variation of (7.117) yields

δbf = δaf − [̃ω]
2

(δPf − δG) +
(

˜[ω × (Pf −G)] + [̃ω] ˜[Pf −G]
)
δω (7.143)

=
[

˜[ω × (Pf −G)] + [̃ω] ˜[Pf −G]
[
∂af
∂C

]
+
[
∂af
∂Pf

] [
∂Pf
∂Tf

] [
∂Tf
∂C

]
+ [̃ω]

2 ([
∂G
∂C

]
−
[
∂Pf
∂C

])](δω
δC

)

(7.144)

where
[
∂af
∂Pf

]
denote the gravity gradient matrix of the polyhedron gravity model evaluated at the

reference facet center.
[
∂af
∂C

]
has already been found. Also,

[
∂Pf

∂C

]
=

1

3

[
I33 I33 I33

] [∂Tf

∂C

]
(7.145)

Making the assumption that the body is rotating about an axis ê,

ω = ωê (7.146)
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If ê is taken as the largest inertia axis, the small body is undergoing principal rotation and

one can write

ω = ω[BP]ê3 (7.147)

where P and B respectively stand for the principal and current body-fixed frames, and ê3 =

(
0 0 1

)T
. Letting [PB] be parametrized by a set of Modified Rodrigues Parameters σ such that

[PB] = [PB] (σ), linearizing a perturbed DCM [P ′B] about a reference [PB] yields

[P ′P] = I33 − 4[̃δσ] (7.148)

As a result, the first variation in the angular velocity caused by a change in the spin rate and

principal axes direction is given by

δω =
[

[BP]ê3 −4ω[BP][̃ê3]
](δω

δσ

)
(7.149)

=
[(
∂ω
∂ω

) [
∂ω
∂σ

]](δω
δσ

)
(7.150)

=
[(
∂ω
∂ω

) [
∂ω
∂σ

]] [ 1 0T3NC
03

[
∂σ
∂C

]
](

δω

δC

)
(7.151)

=
[(
∂ω
∂ω

) [
∂ω
∂C

]](δω
δC

)
(7.152)

7.5 Results

7.5.1 25143 Itokawa

The methods developed in the previous chapter are demonstrated over asteroid Itokawa,

subjected to significant deviations in its vertices coordinates. The model used to generate the

vertices covariance in similar as in Chapter 6. The inputs used in the successive simulations are

listed on Table 7.1. The shapes drawn from the Monte-Carlo and overlaid with the reference,

unperturbed Itokawa-8 shape outline can be found on Figure 7.2 and Figure 7.3. The decrease

on the correlation distance and its effect on the seemingly more erratic behavior of otherwise

neighboring vertices is clear.
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Table 7.1: Input parameters for the investigation of the uncertainty in Itokawa’s polyhedron gravity

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Correlation distance (m) 100 100 100 200 200 200

Standard deviation in normal error (m) 10 10 10 10 10 10

Monte-Carlo samples 300 1000 3000 300 1000 3000
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Figure 7.2: 30 outcomes from the Monte-Carlo sampling of the shape deviations (lightblue), overlaid
with the reference Itokawa-8 shape model (black), (Case 1, 2 and 3)
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Figure 7.3: 30 outcomes from the Monte-Carlo sampling of the shape deviations (lightblue), overlaid
with the reference Itokawa-8 shape model (black), (Case 4, 5 and 6)
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The proposed uncertainty model enables the evaluation of the variance of the potential σ2
V (r)

and the covariance of the acceleration Pa (r) at any point in space r. The present section focuses

on the acceleration. The model was first validated by comparing the predicted uncertainty levels to

these obtained from a Monte-Carlo simulations where shape outcomes were randomly sampled and

used to evaluate acceleration outcomes at selected positions. The acceleration covariances at the

selected points were compared to the predicted ones so as to assess the accuracy of the uncertainty

model relative to the Monte-Carlo runs, as in percentages of
‖Pa(r)−PaMC

(r)‖2
trace(PaMC)

where Pa,MC (r)

denotes the covariance in the Monte-Carlo acceleration outcomes and ‖.‖2 the usual L2-norm.

The agreement between the predicted covariance and the Monte-Carlo one measured by the

L2 criterion is shown on Figures 7.4 through 7.9 . Outliers showing in red denote points for which

the relative accuracy error was above the maximum value found in 90% of the other sampled points

points, and were thus colored in a different color so as to avoid compressing the color scale. The

agreement between the two statistical moments appears to be best away from the shape, with a

rapid decay in the relative accuracy error as the query point moves away from the reference surface.

Outliers appear to be systematically close to the reference surface, which appears to be consistent

with the general trend of having higher relative accuracy errors in the acceleration uncertainty

near the surface. The mean L2 errors over the selected positions are listed on Table 7.2, 7.3 and

7.4. It can be seen that the least error at each point is reached for either Case 3 and Case 6,

both corresponding to the highest number of Monte-Carlo samples. This is an indication that the

Monte-Carlo may have needed more samples to effectively converge. The worst outliers that were

found in each of the cutting plane are the closest to the shape. The polyhedron gravity model

as derived by Werner & Scheeres is singular along the edges of the shape of interest, which could

explain why some, but not all of the points that were evaluated close to the surface present large

prediction errors. The Kullback–Leibler (KL) divergence can also be used to obtain a measure of

similarity between the two probability distributions p0 (x0) and p1 (x1), and is defined as [112]

DKL (p0‖p1) ≡ Ep0

(
ln

(
x0

x1

))
(7.153)
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Specialized to the case where the two considered probability density functions are n-dimensional

Gaussians as in p0 (x0) = Nx0 (m0, P0) and p1 (x1) = Nx1 (m1, P1), the KL divergence becomes

DKL (m0, P0‖m1, P1) =
1

2

(
trace

(
P−1

1 P0

)

+ (m0 −m1)T P−1
1 (m0 −m1)− n+ ln

detP1

detP0

)
(7.154)

The agreement between the predicted covariance and the Monte-Carlo one measured by the

L2 criterion is shown on Figures 7.4 through 7.9 . Outliers showing in red denote points for which

the relative accuracy error was above the maximum value found in 90% of the other sampled points

points, and were thus colored in a different color so as to avoid compressing the color scale. The

agreement between the two statistical moments appears to be best away from the shape, with a

rapid decay in the relative accuracy error as the query point moves away from the reference surface.

Outliers appear to be systematically close to the reference surface, which appears to be consistent

with the general trend of having higher relative accuracy errors in the acceleration uncertainty

near the surface. The mean L2 errors over the selected positions are listed on Table 7.2, 7.3 and

7.4. It can be seen that the least error at each point is reached for either Case 3 and Case 6,

both corresponding to the highest number of Monte-Carlo samples. This is an indication that the

Monte-Carlo may have needed more samples to effectively converge. The worst outliers that were

found in each of the cutting plane are the closest to the shape. The polyhedron gravity model

as derived by Werner & Scheeres is singular along the edges of the shape of interest, which could

explain why some, but not all of the points that were evaluated close to the surface present large

prediction errors.

The KL divergence does not convey as much physical sense as the L2 accuracy error norm,

but accounts for errors in both the mean of the distributions as well as their covariance. In a

similar fashion to L2 case, the most extreme outliers are located close to the reference shape. Some

selected points that are flagged as outliers are actually not quite as extreme as other much closer

to the shape. In any case, the need for more Monte-Carlo samples is demonstrated on Tables 7.5,

7.6 and 7.7, since nearly every single point features a decreasing KL divergence as more samples
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are drawn. The proposed analytical uncertainty model, although linearized, is thus more efficient

than the Monte-Carlo PGM evaluations to capture the uncertainty in the underlying gravity field.
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Table 7.2: L2 error norm for selected points in the Y—Z plane

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(0,−600, 0) 2.88 8.21 3.88 1.47 9.03 4.54

(0,−500, 0) 3.87 8.10 3.92 1.64 8.99 4.57

(0,−424,−424) 2.70 7.80 2.58 1.57 8.70 3.70

(0,−424, 424) 1.83 8.92 5.11 2.36 9.47 5.32

(0,−400, 0) 5.14 7.97 3.94 2.60 8.96 4.60

(0,−353,−353) 3.79 7.58 2.49 1.44 8.59 3.61

(0,−353, 353) 2.03 8.97 5.32 2.38 9.53 5.48

(0,−300, 0) 6.28 7.78 3.91 4.04 8.95 4.60

(0,−282,−282) 5.26 7.26 2.39 2.36 8.42 3.48

(0,−282, 282) 2.39 9.08 5.57 2.52 9.63 5.68

(0,−212,−212) 6.85 6.78 2.29 3.84 8.15 3.30

(0,−212, 212) 3.09 9.36 5.83 2.87 9.85 5.94

(0, 0,−600) 3.31 8.03 2.07 3.43 8.71 3.30

(0, 0,−500) 3.47 7.91 2.03 3.41 8.60 3.18

(0, 0,−400) 3.76 7.74 2.07 3.41 8.45 3.07

(0, 0,−300) 4.31 7.44 2.24 3.49 8.20 2.96

(0, 0, 300) 3.04 9.19 5.82 3.16 9.89 6.00

(0, 0, 400) 2.87 9.21 5.66 3.18 9.76 5.77

(0, 0, 500) 2.82 9.21 5.45 3.23 9.69 5.57

(0, 0, 600) 2.82 9.19 5.25 3.27 9.63 5.41

(0, 212,−212) 7.37 6.60 2.03 5.88 8.10 2.95

(0, 212, 212) 2.70 7.07 3.34 3.44 8.88 4.55

(0, 282,−282) 6.99 7.48 2.03 5.62 8.52 3.13

(0, 282, 282) 3.26 8.03 3.82 3.89 9.22 4.72

(0, 300, 0) 5.53 5.90 1.69 5.32 8.14 3.30

(0, 353,−353) 6.56 7.92 2.08 5.38 8.74 3.27

(0, 353, 353) 3.68 8.50 4.01 4.11 9.35 4.76

(0, 400, 0) 5.90 7.21 2.24 5.40 8.70 3.63

(0, 424,−424) 6.15 8.16 2.16 5.17 8.86 3.39

(0, 424, 424) 3.92 8.73 4.08 4.20 9.41 4.75

(0, 500, 0) 5.96 7.89 2.57 5.35 8.96 3.81

(0, 600, 0) 5.85 8.25 2.77 5.24 9.10 3.91
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Table 7.3: L2 error norm for selected points in the X—Z plane

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(−600, 0, 0) 3.24 8.75 4.79 2.20 9.63 5.11

(−500, 0, 0) 4.35 8.26 4.86 2.62 9.33 5.18

(−424, 0,−424) 2.76 9.52 3.70 2.37 9.95 4.38

(−424, 0, 424) 1.35 8.67 5.28 1.59 9.64 5.42

(−400, 0, 0) 6.43 7.32 4.81 3.63 8.68 5.22

(−353, 0,−353) 3.15 9.52 3.72 2.49 9.99 4.39

(−353, 0, 353) 1.44 8.22 5.39 1.43 9.44 5.51

(−300, 0, 0) 9.44 5.49 4.47 6.12 7.24 5.13

(−282, 0,−282) 3.75 9.49 3.74 2.81 10.03 4.40

(−282, 0, 282) 1.79 7.42 5.43 1.34 9.04 5.58

(−212, 0,−212) 4.51 9.59 3.91 3.48 10.21 4.47

(−212, 0, 212) 2.56 6.15 5.26 1.47 8.30 5.57

(0, 0,−600) 3.31 8.03 2.07 3.43 8.71 3.30

(0, 0,−500) 3.47 7.91 2.03 3.41 8.60 3.18

(0, 0,−400) 3.76 7.74 2.07 3.41 8.45 3.07

(0, 0,−300) 4.31 7.44 2.24 3.49 8.20 2.96

(0, 0, 300) 3.04 9.19 5.82 3.16 9.89 6.00

(0, 0, 400) 2.87 9.21 5.66 3.18 9.76 5.77

(0, 0, 500) 2.82 9.21 5.45 3.23 9.69 5.57

(0, 0, 600) 2.82 9.19 5.25 3.27 9.63 5.41

(212, 0,−212) 2.58 2.63 1.14 4.03 2.83 0.96

(212, 0, 212) 8.58 7.43 6.13 7.57 7.80 5.93

(282, 0,−282) 3.51 1.80 0.83 5.03 3.83 1.26

(282, 0, 282) 7.39 7.52 5.18 6.88 7.80 5.25

(300, 0, 0) 32.53 30.48 30.66 27.76 29.29 30.93

(353, 0,−353) 4.16 2.95 0.42 5.26 5.04 1.77

(353, 0, 353) 6.65 7.59 4.64 6.35 7.93 4.91

(400, 0, 0) 7.45 4.42 1.39 7.90 4.03 2.23

(424, 0,−424) 4.40 4.13 0.23 5.23 5.92 2.19

(424, 0, 424) 6.08 7.68 4.30 5.94 8.08 4.72

(500, 0, 0) 6.70 4.15 1.35 7.28 4.80 2.56

(600, 0, 0) 6.31 4.65 1.50 6.80 5.60 2.85
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Table 7.4: L2 error norm for selected points in the X—Y plane

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(−600, 0, 0) 3.24 8.75 4.79 2.20 9.63 5.11

(−500, 0, 0) 4.35 8.26 4.86 2.62 9.33 5.18

(−424,−424, 0) 3.75 8.54 4.58 1.63 9.57 5.00

(−424, 424, 0) 5.07 9.02 4.09 4.37 9.77 4.68

(−400, 0, 0) 6.43 7.32 4.81 3.63 8.68 5.22

(−353,−353, 0) 5.08 8.10 4.64 2.82 9.39 5.05

(−353, 353, 0) 5.81 8.74 4.10 4.90 9.63 4.70

(−300, 0, 0) 9.44 5.49 4.47 6.12 7.24 5.13

(−282,−282, 0) 6.79 7.37 4.75 4.61 9.03 5.11

(−282, 282, 0) 7.03 8.27 3.98 5.90 9.35 4.71

(−212,−212, 0) 8.32 6.44 5.31 7.34 8.35 5.22

(−212, 212, 0) 9.03 7.77 3.55 8.17 8.93 4.70

(0,−600, 0) 2.88 8.21 3.88 1.47 9.03 4.54

(0,−500, 0) 3.87 8.10 3.92 1.64 8.99 4.57

(0,−400, 0) 5.14 7.97 3.94 2.60 8.96 4.60

(0,−300, 0) 6.28 7.78 3.91 4.04 8.95 4.60

(0, 300, 0) 5.53 5.90 1.69 5.32 8.14 3.30

(0, 400, 0) 5.90 7.21 2.24 5.40 8.70 3.63

(0, 500, 0) 5.96 7.89 2.57 5.35 8.96 3.81

(0, 600, 0) 5.85 8.25 2.77 5.24 9.10 3.91

(212,−212, 0) 4.76 5.19 2.35 5.78 5.76 3.41

(212, 212, 0) 12.19 6.60 3.30 8.42 6.28 3.49

(282,−282, 0) 4.05 5.06 2.31 5.30 6.12 3.47

(282, 282, 0) 10.22 6.29 2.45 7.81 6.56 3.22

(300, 0, 0) 32.53 30.48 30.66 27.76 29.29 30.93

(353,−353, 0) 3.67 5.46 2.39 4.92 6.60 3.56

(353, 353, 0) 8.90 6.40 2.18 7.25 6.94 3.23

(400, 0, 0) 7.45 4.42 1.39 7.90 4.03 2.23

(424,−424, 0) 3.44 5.91 2.49 4.65 7.01 3.65

(424, 424, 0) 8.00 6.64 2.14 6.80 7.29 3.32

(500, 0, 0) 6.70 4.15 1.35 7.28 4.80 2.56

(600, 0, 0) 6.31 4.65 1.50 6.80 5.60 2.85
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Figure 7.4: Accuracy of predicted uncertainty in acceleration relative to Monte-Carlo covariance,
Case 1
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Figure 7.5: Accuracy of predicted uncertainty in acceleration relative to Monte-Carlo covariance,
Case 2
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Figure 7.6: Accuracy of predicted uncertainty in acceleration relative to Monte-Carlo covariance,
Case 3
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Figure 7.7: Accuracy of predicted uncertainty in acceleration relative to Monte-Carlo covariance,
Case 4
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Figure 7.8: Accuracy of predicted uncertainty in acceleration relative to Monte-Carlo covariance,
Case 5
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Figure 7.9: Accuracy of predicted uncertainty in acceleration relative to Monte-Carlo covariance,
Case 6



167

Table 7.5: KL divergences for selected points in the Y—Z plane

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(0,−600, 0) 0.027 0.025 0.020 0.013 0.014 0.009

(0,−500, 0) 0.028 0.025 0.019 0.014 0.014 0.009

(0,−424,−424) 0.029 0.021 0.018 0.020 0.012 0.008

(0,−424, 424) 0.032 0.026 0.019 0.020 0.014 0.008

(0,−400, 0) 0.030 0.024 0.018 0.016 0.014 0.009

(0,−353,−353) 0.029 0.021 0.017 0.020 0.011 0.007

(0,−353, 353) 0.033 0.026 0.018 0.020 0.014 0.008

(0,−300, 0) 0.032 0.023 0.016 0.018 0.014 0.009

(0,−282,−282) 0.027 0.020 0.016 0.020 0.011 0.007

(0,−282, 282) 0.033 0.025 0.018 0.020 0.014 0.008

(0,−212,−212) 0.024 0.017 0.013 0.020 0.011 0.006

(0,−212, 212) 0.032 0.025 0.016 0.020 0.014 0.008

(0, 0,−600) 0.034 0.021 0.017 0.024 0.012 0.007

(0, 0,−500) 0.033 0.020 0.017 0.024 0.012 0.007

(0, 0,−400) 0.031 0.018 0.015 0.023 0.011 0.006

(0, 0,−300) 0.027 0.015 0.013 0.023 0.010 0.006

(0, 0, 300) 0.023 0.024 0.016 0.015 0.014 0.008

(0, 0, 400) 0.025 0.025 0.017 0.017 0.014 0.008

(0, 0, 500) 0.027 0.026 0.018 0.018 0.014 0.008

(0, 0, 600) 0.029 0.026 0.018 0.019 0.014 0.008

(0, 212,−212) 0.018 0.021 0.014 0.014 0.014 0.006

(0, 212, 212) 0.018 0.021 0.015 0.013 0.012 0.008

(0, 282,−282) 0.021 0.023 0.016 0.015 0.014 0.007

(0, 282, 282) 0.022 0.023 0.017 0.015 0.012 0.008

(0, 300, 0) 0.020 0.021 0.015 0.011 0.013 0.007

(0, 353,−353) 0.023 0.024 0.018 0.016 0.015 0.007

(0, 353, 353) 0.025 0.024 0.018 0.016 0.012 0.009

(0, 400, 0) 0.021 0.023 0.017 0.010 0.013 0.008

(0, 424,−424) 0.024 0.025 0.018 0.016 0.015 0.008

(0, 424, 424) 0.026 0.024 0.019 0.017 0.012 0.009

(0, 500, 0) 0.021 0.024 0.018 0.010 0.014 0.008

(0, 600, 0) 0.021 0.025 0.019 0.010 0.014 0.009
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Table 7.6: KL divergences for selected points in the X—Z plane

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(−600, 0, 0) 0.028 0.026 0.018 0.019 0.016 0.008

(−500, 0, 0) 0.026 0.025 0.017 0.019 0.016 0.008

(−424, 0,−424) 0.030 0.021 0.017 0.022 0.012 0.007

(−424, 0, 424) 0.029 0.025 0.018 0.020 0.014 0.008

(−400, 0, 0) 0.025 0.023 0.015 0.019 0.016 0.009

(−353, 0,−353) 0.029 0.019 0.016 0.023 0.012 0.007

(−353, 0, 353) 0.027 0.025 0.017 0.019 0.014 0.008

(−300, 0, 0) 0.027 0.019 0.013 0.019 0.016 0.009

(−282, 0,−282) 0.029 0.017 0.014 0.024 0.011 0.007

(−282, 0, 282) 0.025 0.023 0.016 0.017 0.014 0.008

(−212, 0,−212) 0.031 0.013 0.011 0.027 0.010 0.006

(−212, 0, 212) 0.023 0.021 0.014 0.015 0.014 0.007

(0, 0,−600) 0.034 0.021 0.017 0.024 0.012 0.007

(0, 0,−500) 0.033 0.020 0.017 0.024 0.012 0.007

(0, 0,−400) 0.031 0.018 0.015 0.023 0.011 0.006

(0, 0,−300) 0.027 0.015 0.013 0.023 0.010 0.006

(0, 0, 300) 0.023 0.024 0.016 0.015 0.014 0.008

(0, 0, 400) 0.025 0.025 0.017 0.017 0.014 0.008

(0, 0, 500) 0.027 0.026 0.018 0.018 0.014 0.008

(0, 0, 600) 0.029 0.026 0.018 0.019 0.014 0.008

(212, 0,−212) 0.029 0.020 0.015 0.023 0.013 0.007

(212, 0, 212) 0.025 0.026 0.013 0.018 0.017 0.007

(282, 0,−282) 0.034 0.022 0.017 0.025 0.014 0.007

(282, 0, 282) 0.027 0.026 0.015 0.018 0.016 0.007

(300, 0, 0) 0.046 0.039 0.038 0.035 0.044 0.037

(353, 0,−353) 0.036 0.023 0.017 0.025 0.014 0.007

(353, 0, 353) 0.029 0.026 0.016 0.018 0.015 0.007

(400, 0, 0) 0.025 0.022 0.014 0.023 0.019 0.011

(424, 0,−424) 0.037 0.023 0.018 0.025 0.014 0.007

(424, 0, 424) 0.029 0.026 0.017 0.018 0.015 0.008

(500, 0, 0) 0.026 0.024 0.016 0.019 0.017 0.010

(600, 0, 0) 0.027 0.025 0.017 0.017 0.016 0.009
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Table 7.7: KL divergences for selected points in the X—Y plane

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(−600, 0, 0) 0.028 0.026 0.018 0.019 0.016 0.008

(−500, 0, 0) 0.026 0.025 0.017 0.019 0.016 0.008

(−424,−424, 0) 0.034 0.024 0.019 0.017 0.014 0.009

(−424, 424, 0) 0.023 0.025 0.018 0.012 0.015 0.008

(−400, 0, 0) 0.025 0.023 0.015 0.019 0.016 0.009

(−353,−353, 0) 0.036 0.024 0.018 0.019 0.014 0.009

(−353, 353, 0) 0.024 0.025 0.018 0.012 0.015 0.008

(−300, 0, 0) 0.027 0.019 0.013 0.019 0.016 0.009

(−282,−282, 0) 0.039 0.022 0.018 0.021 0.013 0.009

(−282, 282, 0) 0.024 0.023 0.017 0.012 0.015 0.008

(−212,−212, 0) 0.044 0.020 0.016 0.026 0.013 0.009

(−212, 212, 0) 0.029 0.021 0.016 0.015 0.015 0.009

(0,−600, 0) 0.027 0.025 0.020 0.013 0.014 0.009

(0,−500, 0) 0.028 0.025 0.019 0.014 0.014 0.009

(0,−400, 0) 0.030 0.024 0.018 0.016 0.014 0.009

(0,−300, 0) 0.032 0.023 0.016 0.018 0.014 0.009

(0, 300, 0) 0.020 0.021 0.015 0.011 0.013 0.007

(0, 400, 0) 0.021 0.023 0.017 0.010 0.013 0.008

(0, 500, 0) 0.021 0.024 0.018 0.010 0.014 0.008

(0, 600, 0) 0.021 0.025 0.019 0.010 0.014 0.009

(212,−212, 0) 0.027 0.023 0.014 0.018 0.015 0.008

(212, 212, 0) 0.020 0.020 0.015 0.009 0.012 0.008

(282,−282, 0) 0.028 0.024 0.017 0.017 0.015 0.009

(282, 282, 0) 0.020 0.022 0.017 0.009 0.013 0.009

(300, 0, 0) 0.046 0.039 0.038 0.035 0.044 0.037

(353,−353, 0) 0.029 0.025 0.018 0.016 0.014 0.009

(353, 353, 0) 0.020 0.024 0.019 0.010 0.013 0.009

(400, 0, 0) 0.025 0.022 0.014 0.023 0.019 0.011

(424,−424, 0) 0.029 0.025 0.019 0.016 0.014 0.009

(424, 424, 0) 0.020 0.024 0.019 0.010 0.013 0.009

(500, 0, 0) 0.026 0.024 0.016 0.019 0.017 0.010

(600, 0, 0) 0.027 0.025 0.017 0.017 0.016 0.009
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The predictive aspect of the uncertainty model is shown on Figures 7.10 and 7.11, that

depict the relative uncertainty in the acceleration foreseen by the model, measured in percentages

of
√

trace(Pa(r))
‖a(r)‖ . These maps were obtained by sampling three uniform 10-meter spaced, orthogonal

planar grids. It can be seen that the uncertainty in the acceleration is greatest close to the shape,

and decreases as the distance to the surface increases. Moreover, the impact of the correlation

length is apparent in the uncertainty levels. Increasing the correlation lengths causes the vertices

deviations to interact in a constructive manner, effectively contributing to increasing the volume

(hence the mass) uncertainty. It can be seen in all cases that the decay in the uncertainty is initially

really quick upon leaving the shape, but becomes much slower as the distance increases.
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Figure 7.10: Relative uncertainty contours around Itokawa-8, with the inside of Itokawa shown in
white (Case 1, 2 and 3)
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Figure 7.11: Relative uncertainty contours around Itokawa-8, with the inside of Itokawa shown in
white (Case 4, 5 and 6)
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Figure 7.12: (16) Psyche shape model

7.5.2 (16) Psyche

The slope uncertainty model is now demonstrated over the surface of asteroid (16) Psyche,

the target of the eponymous incoming NASA mission. Psyche is thought to be the remnant of a

protoplanet core, and exhibits a visible/near-infrared characteristic of metal-rich M-class Asteroids

[113]. The radar shape model of Psyche shown on Figure 7.12 was reconstructed based on radar

observations collected by the Arecibo radio telescope, the only facility on Earth capable of collecting

radar observations of main-belt objects [114]. The knowledge of Psyche is marked by fairly large

uncertainties in the dimensions, density and pole directions, and thus represents an interesting

test subject for the proposed gravity uncertainty model. The lack of information on the dynamical

environment about Psyche is a strong mission design driver, and stable orbits are typically preferred

over other trajectories that may be more fruitful from a science standpoint [115, 116]. Being able

to quantify gravity uncertainties arising from the shape would help relax the mission design by

providing more insight into the expected variability in the small body dynamical environment.
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7.5.2.1 Foreword on covariance regularization

Uncertainty quantification over Psyche by means of the proposed method requires some

special care. The considered shape model is comprised of NC = 1148 vertices, where the Itokawa-8

model was only comprised of NC = 386 vertices. This stark increase causes the associated shape

covariance matrix to considerably grow in size. If memory availability is not a concern for ground-

based computations, numerical errors very much are, as the extraction of the covariance square root

by means of a Cholesky decomposition is likely to fail as the covariance matrix gets bigger. The

spectral decomposition of the covariance used in 6.2 has been found to be generally more stable

than the Cholesky equivalent, but requires the covariance matrix to remain positive semi-definite

to be usable as is. This positive semi-definiteness can be violated either by construction of the

covariance, or by numerical errors that creep-in during the eigenvalue computation process. The

shape covariance matrix must thus be investigated before extracting its square root or running it

through the linearized uncertainty quantification pipeline, and appropriate measures be taken so

as to ensure that it remains positive semi-definite at all times.

A simple yet satisfying covariance regularization scheme consists in first computing the eigen-

value decomposition of the prescribed vertices covariance PCC as in

PCC = UDUT (7.155)

where D is the diagonal matrix of eigenvalues, then by regularizing D itself. That is, a new diagonal

matrix of eigenvalues D′ is defined through

D′(i, i) = max (0, D(i, i)) ∀i ∈ [0 . . . 3NC − 1] (7.156)

The zero-clamped eigenvalue matrix D′ can be combined with the original eigenvectors to

produce a well-behaved covariance matrix through P ′CC = UD′UT along with the covariance square

root
√
P ′CC = U

√
D′UT .

The necessity of the covariance regularization scheme is now demonstrated over an example

involving the Psyche shape model, where PCC was generated with σ = 5 km and l = 50 km. PCC
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was found to have 412 negative eigenvalues, with the largest one in absolute value in the order

of 10−2. These eigenvalues obviously need to be clamped to zero before extracting the square

root. Figure 7.13 provide a side-by-side comparison of the original shape covariance next to the

regularized one. It is striking to notice that the sparsity of the original covariance is lost through

the regularization. Although this may seem to be a high price to pay, it nonetheless ensures that

the covariance used in the linearized uncertainty quantification pipeline and the covariance square

root used in the Monte-Carlo sampling of the shape are consistent with each other.

7.5.2.2 Gravity field uncertainty due to polar shape model errors

The actual uncertainty in the Psyche shape model is not uniformly distributed, but concen-

trated around the poles. This is a common issue in radar astronomy as a number of published

asteroid shape models feature poor observability of high latitudes [57] [60] [117]. This paragraph

thus explores the application of local uncertainty regions over the poles of Psyche. A local uncer-

tainty region centered at Cc and characterized by a correlation distance l and standard deviation

σ can be formed by adding the following 3x3 partition to the proper block in PCC :

PCiCj += σ2e−
1

2l2
(‖Ci−Cc‖2+‖Cj−Cc‖2+2‖Ci−Cj‖2)n̂in̂Tj (7.157)

The use of += allow uncertainty regions to overlap, provided that the initial covariance PCC has

all its components set to zero at initialization. This expression covers all cases, when i = j as

well as when i 6= j. This covariance matrix partition is set to zero should either of the distances

‖Ci −Cc‖, ‖Cj −Cc‖ or ‖Ci −Cj‖ become greater than 3l.

Inertial acceleration uncertainty The proposed method is employed to define two polar

uncertainty regions on Psyche, at -90 and 90 degrees of latitude, centered about vertices 0 and

1147 respectively. Both regions feature the same noise standard deviation and correlation length,

respectively set to 10 km and 75 km. 5000 Monte-Carlo shapes were drawn to construct the

acceleration covariances and means to compare against the analytical prediction of the gravity

uncertainty. The bulk density of the asteroid was set to 4500 kg/m3. A handful of the corresponding
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Figure 7.13: Top: PCC. Bottom: P ′CC. Components of P ′CC less in absolute value than the
minimum of P ′CC are shown in white
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shape outcomes from the Monte-Carlo are shown on Figure 7.14. The validation of the uncertainty

model in the X—Y plane is demonstrated on Figure 7.15, as the worst L2-norm covariance error is

only 1.186 % . This is also confirmed by the KL divergence metric, which features very homogeneous

values across the whole set of considered locations, as illustrated by the marginal outliers. The

actual prediction in the gravity uncertainty in the X—Y plane is shown on Figure 7.16. The

structure of the acceleration uncertainty map closely matches that of the underlying shape error,

with a maximum uncertainty over the polar regions, but also features a constant background

uncertainty of about 4% all around the body.

Inertial acceleration uncertainty, constant mass The same case as in the previous

paragraph was run, but this time with the additional constraint that the mass of Psyche must

remain constant as its shape varies. That is, M = ρV must be conserved. This can only happen

if the first variation in the density satisfies δρ = −δV ρ/V . The partials of the potential and

acceleration were thus simply augmented with −U(r)ρ
V

(
∂V
∂C

)
and −a(r)ρ

V

(
∂V
∂C

)
to account for this

constraint, where the potential and acceleration are evaluated at the reference density. The error

in the prediction of the uncertainty in the acceleration is shown on Figure 7.17. The agreement

between the Monte-Carlo and the analytical model is confirmed. The analytical prediction in the

uncertainty can be found on Figure 7.18. The major difference with the previous case lies in the

rapid decay in the uncertainty as the queried point moves further away from the shape. The gravity

field structure converges towards that of a point-mass as the point moves further away from the

shape. Because the standard gravitational of the shape is constant, there is thus no uncertainty

left in the point-mass gravity, causing the acceleration covariance to nullify away from the shape.

Surface gravity slopes The PGM uncertainty model can also applied to the quantification

of the uncertainties in the surface slopes of Psyche. The rotation period of Psyche was set to 15105.4

s, in accordance with the reported estimate in [114]. This reference states that the rotation period

is known within ±0.000001 hours, which led to considering no uncertainty in the angular velocity

magnitude, thus setting δω = 0. The two polar uncertainty regions are however sufficient to induce

local and global uncertainties in the slope, by respectively affecting the facet normal and facet
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Table 7.8: Facet center coordinates and associated reference slopes

Facet 0 Facet 1500

Coordinates (km) (4.94 2.853 94.14)T (125.544 −4.605 −3.5761)T

Slope (deg) 0.382 18.087

body-fixed acceleration. The statistics of the slopes distribution at two sample facets (facet 0 and

facet 1500) were computed and compared to the analytical predictions arising from the linearized

acceleration gravity model. Table 7.8 provides the Cartesian coordinates of the facet centers as

well as the gravitational slopes evaluated at the facet centers of the reference shape. The resulting

statistics in the slopes distribution and prediction errors are shown on Table 7.9. It is clear from this

table that the uncertainty in the slopes is not well captured in all cases. Facet 0 lies at the center

of one of the two uncertainty regions, and is thus highly perturbed by the resulting terrain motion.

On the contrary, facet 1500 is much closer to the equator, such that the local shape uncertainty

at this facet’s center is limited. The much better performance of the slope uncertainty prediction

at Facet 1500 thus simply stems from the fact that the direction of the surface at this facet varies

much less than at Facet 0.

In conclusion, Figure 7.19 depicts a side-by-side comparison of the gravitational slopes along

with their corresponding uncertainty measure over the surface of Psyche. Although polar region

are not necessarily well captured by the proposed linearized uncertainty model, these maps are

Table 7.9: Comparison of the standard deviation of the slopes distribution from the Monte-Carlo
samples and those obtained from the analytical uncertainty model

Standard deviation Facet 0 Facet 1500

Monte-Carlo (deg) 4.5 1.882

Predicted (deg) 7.04 1.8557

Relative error (%) -59.19 3.095
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nonetheless providing valuable insight into the surface geophysical environmental of imperfectly

known small bodies.

7.6 Performance

Some insight into the performance of the linearized gravity uncertainty model can be in-

ferred from the respective runtimes of the uncertainty grid evaluation and that of the Monte-Carlo

sampling of the selected points in the gravity field validation. For instance, the simulation that

was run to produce Figure 7.15 featured an X—Y grid comprised of 4761 points. Evaluating the

analytical prediction of the acceleration covariance over each of these points took a total of 644.3

seconds on the designated simulation computer. On the other hand, sampling the acceleration over

the 5000 different shape models at each of the 48 selected points took 64.2 seconds. Extrapolating

the Monte-Carlo runtime to the entire grid yields a rough estimate of 6363.3 seconds. For this

given number of Monte-Carlo samples, the analytical gravity uncertainty quantification model is

thus roughly 10 times faster than the Monte-Carlo. The implementation of this code is available

as part of the Small Body Geophysical Analysis ToolBox, (SBGAT), in addition to the methods

presented in Chapter 6. SBGAT is available on MacOS and Linux systems, and can be retrieved

from GitHub at https://github.com/bbercovici/SBGAT or directly installed through Homebrew

on Macs.

https://github.com/bbercovici/SBGAT
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(a) Slopes (deg), first view (b) Slope uncertainties (deg), first view

(c) Slopes (deg), second view (d) Slope uncertainties (deg), second view

Figure 7.19: Side-by-side comparison of gravitational slopes (left) and associated analytical one-
sigma standard deviations (right) over Psyche



Chapter 8

Model-based navigation

8.1 Initial orbit determination

This section demonstrates how a vector of rigid transform invariant ε constraining the succes-

sive instrument positions relative to the center-of-mass of the object of interest can be constructed.

Figure 8.2 depicts the spacecraft and its Lidar sensor in the proximity of a small body as the

spacecraft flies along its trajectory. Let two paired point clouds {Di}pi=1 and {Si}pi=1 be collected

at successive times tk−1 and tk and registered by means of ICP in the instrument frame at tk−1.

Assuming a perfect ICP registration, every source/destination pair indexed by i yields ap-

proximate overlap of the two paired points:

Mk
Lk (LkSi) + Xk ' Lk−1 (Lk−1Di) (8.1)

where the instrument frames at the successive times Lk−1 and Lk have been explicitly specified,

along with the instrument location at successive times Lk−1 and Lk. Let F be a fictitious body-

fixed surface feature on the small body, fixed in its body frame B. Contrary to the point pairs that

never associate exactly overlapping features, F exactly satisfies

Mk
Lk (LkFk) + Xk = Lk−1 (Lk−1Fk−1) (8.2)

Looking at the frames showing on both sides of the equation, it is clear that M ′k can be written as

Mk = [Lk−1Lk] = [Lk−1Bk−1][BkLk] = [LB](tk−1)[BL](tk) (8.3)
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Figure 8.1: Notional depiction of the ICP process. Top left: the source and destination point clouds
are acquired in the instrument frame at two successive times. Top right: the rotational component
of the rigid transform rotates the source point cloud about the instrument’s origin. Bottom: the
translational component of the rigid transform finally aligns the areas of overlap in the two point
clouds
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Figure 8.2: Notional depiction of the spacecraft on its trajectory, the imaged small body whose
barycenter is located at C, the inertial and body-fixed frames N and B along with the successive
instrument frames Lk
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8.1.1 Incorporating spacecraft attitude knowledge

Assuming that the spacecraft attitude [LN ] is known at every measurement time, Mk
Lk (LkFk)

can be further expanded into

Mk
Lk (LkFk) = [LN ](tk−1)[NB](tk−1)[BN ](tk)[NL](tk)

Lk (LkFk) (8.4)

= [LN ](tk−1)[NB](tk−1)[BN ](tk)
N (LkFk) (8.5)

Introducing the sequential rigid transform of parametrization I′k =
(
X
′T
k σ

′T
k

)T
, such that

M ′k
(
σ′k
)
≡ [NL](tk−1)Mk[LN ](tk) (8.6)

= [NB](tk−1)[BN ](tk) (8.7)

X′k ≡ [NL](tk−1)Xk (8.8)

the equation satisfied by F becomes

M ′k
N (LkFk) + X′k = N (Lk−1Fk−1) (8.9)

8.1.2 Leveraging the barycentric rotation

Introducing the small body’s center-of-mass C,

M ′k
N (LkC + CFk) + X′k = N (Lk−1C) + N (CFk−1) (8.10)

Note that C is the origin of frames N and B. The above equation becomes

M ′k
N (LkC) + X′k = N (Lk−1C) +N (CFk−1)−M ′k N (CFk) (8.11)

Since F has undergone pure rotational motion about C between tk−1 and tk,

N (CFk−1)−M ′k N (CFk) = 0 (8.12)
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As a result, the unknown spacecraft location in the N frame at successive observation times satisfies

M ′k
N (LkC) + X′k − N (Lk−1C) = 0 (8.13)

Introducing the spacecraft position rk ≡ N (CLk), it finally becomes

M ′krk + X′k − rk−1 = 0 (8.14)

Assuming that N such measurements are available, the determination of the spacecraft posi-

tion relative to the center-of-mass at the epoch time can be reformulated into solving the problem

min
r0,ṙ0,Θ

εT ε (8.15)

with

ε =




r0 −M ′1 r1 + X′1
r1 −M ′2 r2 + X′2

...

rN−1 −M ′N rN + X′N


 (8.16)

At this stage, the trajectory takes no particular form as the observation residuals are only a function

of the position.

8.1.3 Extracting (M ′k,X
′
k) from

(
M̃k, X̃k

)

For practical purposes, it is desireable to perform registration not from the Lk frame to Lk−1,

but to a reference stitching frame L0. In this case, the registration equation reads

M̃k
Lk (LkFk) + X̃k = M̃k−1

Lk−1 (Lk−1Fk−1) + X̃k−1 (8.17)

where
(
M̃k, X̃k

)
is the absolute rigid transform mapping from Lk to the stiching frame L0:

M̃k = [LN ](t0)[NB](t0)[BN ](tk)[NL](tk) (8.18)
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(M ′k,X
′
k) can thus be extracted from

X′k = [NL](tk−1)M̃T
k−1

(
X̃k − X̃k−1

)
(8.19)

M ′k = [NL](tk−1)M̃T
k−1M̃k[LN ](tk) (8.20)

One needs to derive the first variation in I′k given those in Ĩk, Ĩk−1. A first-order Taylor

expansion of Equation (8.19) about the a-priori rigid transform yields

X̄′k + δX′k ' [NL](tk−1)δM̃T
k−1

¯̃MT
k−1

(
¯̃Xk + δX̃k − ¯̃Xk−1 − δX̃k−1

)
(8.21)

Introducing the incremental rotation matrices and associated MRP parametrizations, which under

a small angle assumption reduces to [68]

δM̃k = I3 − 4[̃σ̃k] (8.22)

the first-order Taylor expansion of Equation (8.19) becomes

X̄′k + δX′k ' [NL](tk−1)δM̃T
k−1

¯̃MT
k−1

(
¯̃Xk + δX̃k − ¯̃Xk−1 − δX̃k−1

)
(8.23)

' [NL](tk−1)
(
I3 + 4[̃σ̃k−1]

)
¯̃MT
k−1

(
¯̃Xk + δX̃k − ¯̃Xk−1 − δX̃k−1

)
(8.24)

Expanding the above equation and retaining only first-order terms,

δX′k ' [NL](tk−1)
(
I3 + 4[̃σ̃k−1]

)
¯̃MT
k−1

(
¯̃Xk + δX̃k − ¯̃Xk−1 − δX̃k−1

)
(8.25)

= [NL](tk−1)
[

¯̃MT
k−1

(
δX̃k − δX̃k−1

)
+ 4 ˜[δσ̃k−1] ¯̃MT

k−1

(
¯̃Xk − ¯̃Xk−1

)]
(8.26)

Introducing the shortcut

āk ≡ ¯̃MT
k−1

(
¯̃Xk − ¯̃Xk−1

)
(8.27)

Ūk ≡ −4[̃āk] (8.28)

such that

4 ˜[δσ̃k−1] ¯̃MT
k−1

(
¯̃Xk − ¯̃Xk−1

)
= Ūkδσ̃k−1 (8.29)

The first variation in X′k reads

δX′k = [NL](tk−1)
[

¯̃MT
k−1

(
δX̃k − δX̃k−1

)
+ Ūkδσ̃k−1

]
(8.30)
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The same process must be repeated with δM ′k and its associated parametrization δσ′k.

A first-order Taylor expansion of Equation (8.20) about the a-priori rigid transform yields

M̄ ′kδM
′
k = [NL](tk−1)δM̃T

k−1
¯̃MT
k−1

¯̃MkδM̃k[LN ](tk) (8.31)

Introducing a similar MRP parametrization of the incremental error matrices as before,

M̄ ′k
(
I3 − 4[̃δσ′k]

)
= [NL](tk−1)

(
I3 + 4 ˜[δσ̃k−1]

)
¯̃MT
k−1

¯̃Mk

(
I3 − 4[̃δσ̃k]

)
[LN ](tk) (8.32)

Retaining only the first order terms of interest,

−4M̄ ′k [̃δσ
′
k] = 4[NL](tk−1) ˜[δσ̃k−1] ¯̃MT

k−1
¯̃Mk[LN ](tk)

− 4[NL](tk−1) ¯̃MT
k−1

¯̃Mk [̃δσ̃k][LN ](tk) (8.33)

or

[̃δσ′k] = M̄
′T
k [NL](tk−1)

(
¯̃MT
k−1

¯̃Mk [̃δσ̃k]− ˜[δσ̃k−1] ¯̃MT
k−1

¯̃Mk

)
[LN ](tk) (8.34)

which can be rewritten as

[̃δσ′k] = M̄
′T
k [NL](tk−1)Āk [̃δσ̃k][LN ](tk)− M̄

′T
k [NL](tk−1) ˜[δσ̃k−1]Āk[LN ](tk) (8.35)

with

Āk ≡ ¯̃MT
k−1

¯̃Mk (8.36)

(8.37)

The underlying MRP can now be accessed. The cross-product application x 7→ z× x = [̃z]x being

parametrized by z =



z0

z1

z2


,

[̃z] =




0 −z2 z1

z2 0 −z0

−z1 z0 0


 (8.38)
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z0 = êT2 [̃z]ê1 (8.39)

z1 = êT0 [̃z]ê2 (8.40)

z2 = êT1 [̃z]ê0 (8.41)

with

ê0 =




1

0

0


 , ê1 =




0

1

0


 , ê2 =




0

0

1


 (8.42)

Letting [̃z] ≡ [̃δσ′k],

δσ′k =



êT2 M̄

′T
k [NL](tk−1)Āk [̃δσ̃k][LN ](tk)ê1 − êT2 M̄

′T
k [NL](tk−1) ˜[δσ̃k−1]Āk[LN ](tk)ê1

êT0 M̄
′T
k [NL](tk−1)Āk [̃δσ̃k][LN ](tk)ê2 − êT0 M̄

′T
k [NL](tk−1) ˜[δσ̃k−1]Āk[LN ](tk)ê2

êT1 M̄
′T
k [NL](tk−1)Āk [̃δσ̃k][LN ](tk)ê0 − êT1 M̄

′T
k [NL](tk−1) ˜[δσ̃k−1]Āk[LN ](tk)ê0


 (8.43)

Finally,

δσ′k =

[
∂σ′k
∂Zk

]
δZk (8.44)

with

Zk ≡
(
σ̃k−1

σ̃k

)
(8.45)

and

[
∂σ′k
∂Zk

]
≡



êT2 M̄

′T
k [NL](tk−1)

[̃
C1
k

]
−êT2 M̄

′T
k [NL](tk−1)Āk

[̃
B̄1
k

]

êT0 M̄
′T
k [NL](tk−1)

[̃
C2
k

]
−êT0 M̄

′T
k [NL](tk−1)Āk

[̃
B̄2
k

]

êT1 M̄
′T
k [NL](tk−1)

[̃
C0
k

]
−êT1 M̄

′T
k [NL](tk−1)Āk

[̃
B̄0
k

]


 (8.46)

Bi
k ≡ [LN ](tk)êi (8.47)

C̄i
k ≡ Āk[LN ](tk)êi (8.48)

So

δI′k =

[
∂I′k
∂Ṽk

]
δṼk (8.49)

where Ṽk holds the states of the two consecutive rigid transforms with respect to the stitching

frame

Ṽk ≡
(

Ĩk−1

Ĩk

)
(8.50)
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and

[
∂I′k
∂Ṽk

]
=


−[NL](tk−1) ¯̃MT

k−1 [NL](tk−1)Ūk [NL](tk−1) ¯̃MT
k−1 033

033

[
∂σ′k
∂Zk

]
(:,0:2)

033

[
∂σ′k
∂Zk

]
(:,3:5)


 (8.51)

In conclusion, the first variation in the parametrization of the sequential rigid transforms can

be related to that of the absolute rigid transforms through

δI′ ≡




δI′1
δI′2
...

δI′N−1


 (8.52)

=




∂I′1
∂Ṽ0

∂I′1
∂Ṽ1

. . .
∂I′1

∂ ˜VN−1
∂I′2
∂Ṽ0

∂I′2
∂Ṽ1

. . .
∂I′2

∂ ˜VN−1

...
...

∂I′N−1

∂Ṽ0

∂I′N−1

∂Ṽ1
. . .

∂I′N−1

∂ ˜VN−1







∂Ṽ0

∂Ĩ0

∂Ṽ0

∂Ĩ1
. . . ∂Ṽ0

∂ĨN−1

∂Ṽ1

∂Ĩ0

∂Ṽ1

∂Ĩ1
. . . ∂Ṽ1

∂ĨN−1

...
...

∂ṼN

∂Ĩ0

∂ṼN−1

∂Ĩ1
. . .

∂ṼN−1

∂ĨN−1







δĨ0

δĨ1

δĨ2
...

δĨN−1




(8.53)

=
[
∂I′

∂Ṽ

] [
∂Ṽ
∂Ĩ

]
δĨ (8.54)

A few observations can be made. First, if it is clear that the matrices
[
∂I′

∂Ṽ

]
and

[
∂Ṽ
∂Ĩ

]
will

grow in size quickly as the number of rigid transforms increases, they are also very sparse. Second,

it must be noted that δĨ0 ≡ 0 since the first absolute rigid transform is frozen. Third, Ṽ0 ≡ Ĩ0

while Ṽk ≡
(
ĨTk−1 ĨTk

)T
for k > 0.

8.1.4 Uncertainty propagation and filtering

A given rigid transform invariant reads

εk+1 = rk −M ′k+1 rk+1 + X′k+1 ≡ 0 (8.55)

Linearizing about the a-priori states (r̄k, r̄k+1) and the mean rigid transform
(
M̄ ′k+1, X̄

′
k+1

)
,

εk+1 = r̄k + δrk − M̄ ′k+1δM
′
k+1 (r̄k+1 + rk+1) + X̄′k+1 + δX′k+1 (8.56)

The DCM δM ′k+1 is an incremental rotation measure, parametrized as

δM ′k+1 ≡ I3 − 4 ˜[δσ′k+1] (8.57)
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where δσk+1 is the Modified Rodrigues Parameters set describing δMk+1. Discarding any second-

order term and higher in εk,

εk+1 ' r̄k + δrk − M̄ ′k+1

(
I3 − 4 ˜[δσ′k+1]

)
(r̄k+1 + rk+1)

+ X̄′k+1 + δX′k+1 (8.58)

' r̄k + δrk − M̄ ′k+1r̄k+1 − M̄ ′k+1δrk+1

− 4M̄ ′k+1 [̃rk+1]δσ′k+1 + X̄′k+1 + δX′k+1 (8.59)

(8.60)

The deviation in the state at the epoch time reads

δx0 ≡



N δr̄0
N δ ˙̄r0

δΘ


 (8.61)

and the state-transition matrix of the spacecraft state

Φk ≡
∂xk
∂x0

(8.62)

When Θ reduces to the orbited body’s standard gravitational parameter µ, Φk obeys the

matrix differential equation

Φ̇k = A|x=x̄,tΦk (8.63)

where the Jacobian of the dynamics reads

A|x=x̄,t ≡




∂ṙ
∂r

∂ṙ
∂ṙ

∂ṙ
∂µ

∂r̈
∂r

∂r̈
∂ṙ

∂r̈
∂µ

∂µ̇
∂r

∂µ̇
∂ṙ

∂µ̇
∂µ


 (8.64)

Taking the model dynamics as purely keplerian (e.g r̈ = − µ

(rT r)3/2
r), it reduces to

A|x=x̄,t ≡




033 I33 03

µ

(rT r)3/2

(
3rrT

rT r
− I33

)
033 − r

(rT r)3/2

0T3 0T3 0


 (8.65)
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Define

yk ≡ r̄k − M̄ ′k+1r̄k+1 + X̄′k+1 (8.66)

Hk ≡ M̄ ′k+1Φk+1,(0:2,:) − Φk,(0:2,:) (8.67)

δI′k ≡
(
δX

′T
k+1 δσ

′T
k+1

)T
(8.68)

Jk ≡
[
−I3 4M̄ ′k+1 [̃r̄k+1]

]
(8.69)

µk ≡ JkδI′k (8.70)

The k-th rigid transform invariant becomes

εk = 0 = yk −Hkδx0 − µk (8.71)

which is equivalent to the linear state-observation model

yk = Hkδx0 + µk (8.72)

Stacking all these vectors and matrices in dedicated containers

µ ≡




µ1
...

µN−1


 , y ≡




y1
...

yN−1


 , H ≡




H1
...

HN−1


 (8.73)

The above equations become

y = Hδx0 + µ (8.74)

Since the first variation of y reads

δy =
[
∂y
∂I′

] [
∂I′

∂Ṽ

] [
∂Ṽ
∂Ĩ

]
δĨ (8.75)

its covariance is given by

R ≡ E
(
yyT

)
(8.76)

=
[
∂y
∂I′

] [
∂I′

∂Ṽ

] [
∂Ṽ
∂Ĩ

]
PI

([
∂y
∂I′

] [
∂I′

∂Ṽ

] [
∂Ṽ
∂Ĩ

])T
(8.77)

PI ≡ E
(
δĨδĨT

)
(8.78)
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The weighted-least square solution of the orbit determination problem, δx̂0 = min
δx0

µTR−1µ

is thus given by

(
HTR−1H

)
δx0 = HTR−1y (8.79)

The solved-for state deviation δx0 is added to the state x0 at the epoch time and the procedure

is repeated until the filter converges.

8.1.5 State-observation correlations

Since Jk, (and by consequence
[
∂y
∂I′

]
) is a function of r̄k+1, there will exist a correlation

between µ and δx0, in violation of the typical assumptions made in the statistical derivation of

the Batch filter [118]. However, these correlations vanish if the uncertainties on the rotational

components of Ĩ are zero.

8.1.6 Initialization of the Batch filter

Due to its non-linear nature, the Batch approach summarized in Equation (8.79) must be

initialized reasonably well so as to have the Batch operating in a linear regime about the true state.

In order to do so, a suitable a-priori state

x̄0 =




r̄0

¯̇r0

µ̄


 (8.80)

must be provided. One should first note that the knowledge of the position relative to the center of

mass yields the position at all subsequent times. Indeed, the first rigid transform invariant reads

r0 −M ′1 r1 + X′1 = 0 (8.81)

so

r1 = MT ′
1

(
r0 + X′1

)
(8.82)
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This procedure can be repeated for all the subsequent measurements. A very crude first guess of r0

can be obtained from the averaging of all the registered point clouds at the final observation time:

¯̄r0 ≡ −
1∑p

i=0Ni

p∑

i=0

Nj∑

j=1

Sj (8.83)

A crude guess of the position at the time following the epoch is thus

¯̄r1 = MT ′
1

(
¯̄r0 + X′1

)
(8.84)

and that of the initial velocity by

¯̇̄r0 ≡
¯̄r1 − ¯̄r0

t1 − t0
(8.85)

These values are too crude to be passed as-is to the filter. However, a relatively inexpensive

refinement of these states can be obtained by applying a metaheuristic Particle-Swarm-Algorithm

[101] to the minimization of K = εT ε. The functioning of PSO can be summarized like so :

assuming that one is seeking to find the global extremum of K : x ∈ Rp 7→ K(x) ∈ R over Rp, PSO

proceeds by sampling a number of test values in Rp, the particles. J is evaluated at each particle,

before an information exchange phase takes place. At the end of this phase, the particles’ position

in state-space are updated based on: the global best state found by the population, the local best

state found by each particle, and an inertia term accounting for the motion of the particles within

the state-space. The optimizer does not stall if local minima are encountered, provided that the

state space is sufficiently populated.

In the present case, the search space on r0 and ṙ0 is bound by square boxes of size 200 meters

and 200
t0−t1 meters per second, and bound µ between 1 and 3 kg km3 s−2 (the true µ of Itokawa

being around 2.35 kg km3 s−2). A slight variation from the classical PSO is that r0 and ṙ0 are

sampled normally about their crude values, as opposed to uniformly. The PSO was then ran for a

fixed number of 30 iterations featuring 500 particles. The best-state found by the PSO was then

dubbed x̄0 and passed to the Batch filter for further refinement and covariance computation.
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8.1.7 Uncertainty on closest-approach radius

A metric that is fundamental to spacecraft safety is the radius of perigee rp = a(1− e). The

first variation in rp is given by

δrp =
[
∂rp
∂r0

∂rp
∂ṙ0

∂rp
∂µ

]


δr0

δṙ0

δµ


 (8.86)

=
[
∂rp
∂a

∂rp
∂e

] [ ∂a
∂r0

∂a
∂ṙ0

∂a
∂µ

∂e
∂r0

∂e
∂ṙ0

∂e
∂µ

]

δr0

δṙ0

δµ


 (8.87)

The variance on the closest-approach radius is thus given by

E
(
δr2
p

)
=
[
∂rp
∂a

∂rp
∂e

] [ ∂a
∂r0

∂a
∂ṙ0

∂a
∂µ

∂e
∂r0

∂e
∂ṙ0

∂e
∂µ

]
Px

([
∂rp
∂a

∂rp
∂e

] [ ∂a
∂r0

∂a
∂ṙ0

∂a
∂µ

∂e
∂r0

∂e
∂ṙ0

∂e
∂µ

])T
(8.88)

where

Px ≡
(
HTWH

)−1
(8.89)

The partial derivatives featured in the expression of δrp directly stem from the expression of the

conservation of energy and eccentricity under Keplerian dynamics, and present little challenge or

interest. The spacecraft is thus at risk of colliding with the orbited object if its periapse radius is

less than the radius of the circumscribing sphere of the orbited small body.

8.1.8 Results

The proposed initial orbit determination approach is demonstrated in the context of a mis-

sion in the close vicinity of asteroid Itokawa, whose circumscribing radius is equal to 308 m. The

asteroid was undergoing a principal rotation about the Ẑ axis of the barycentered initial frame at a

fixed period of 12 hours. In what follows, the absolute rigid transforms
(
M̃k, X̃k

)
are prescribed as

normally distributed about their true value. The covariance and correlation of the zero-mean reg-

istration errors are given on Table 8.1. Although the magnitude of the rotational registration error

may appear small, its effect is greatly amplified by the relative distance separating the instrument

to the measured point cloud. In practice, the prescribed translational and rotational registration

errors have comparative magnitudes at a distance of 1000 meters.
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Table 8.1: Second statistical moments of the registration errors. No time correlations is considered
between the absolute rigid transform errors

Quantity Amount Unit

E
(
δX̃kδX̃

T
k

)
I3 m2

E
(
δσ̃kδσ̃

T
k

)
10−8I3 -

E
(
δσ̃kδX̃

T
k

)
033 m

Table 8.2: Simulation parameters, low eccentricity

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
e 0.25 0.25 0.25 0.25 0.25 0.25

Orbit fraction 0.25 0.25 0.25 0.50 0.50 0.50
N 5.00 7.00 10.00 5.00 7.00 10.00

Table 8.3: Simulation parameters, deep-impact trajectory

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
e 0.75 0.75 0.75 0.75 0.75 0.75

Orbit fraction 0.25 0.25 0.25 0.50 0.50 0.50
N 5.00 7.00 10.00 5.00 7.00 10.00

Table 8.4: Simulation parameters, shallow-impact trajectory

Case 13 Case 14 Case 15 Case 16 Case 17 Case 18
e 0.69 0.69 0.69 0.69 0.69 0.69

Orbit fraction 0.25 0.25 0.25 0.50 0.50 0.50
N 5.00 7.00 10.00 5.00 7.00 10.00

Several approach scenarii are simulated. They differ by the orbit eccentricity e, the fraction of

the orbit that the observation arc covers and the number of collected point clouds N . The different

scenarii parameters are listed on Table 8.2, 8.3 and 8.4. All scenarios share the same orbit-semi

major axis (a = 1000 m), inclination (i = 1.4 rad), right-ascension of ascending node (Ω = 0.2 rad),

longitude of perigee (ω = 0.3 rad) and mean anomaly at epoch (M0 = 3 rad). All trajectories thus

begin close to the apoapse of the considered orbits. Three families of scenarii are investigated. The

first family correspond to a low-eccentricity trajectory. The second family puts the spacecraft on a

collision course with the asteroid with rp = 250 m . The third family corresponds to a more shallow

collision course with rp = 305 m.

A 600-run Monte-Carlo simulation was run for each case. The second-moment about the

mean of the 600 state estimates was computed from their distribution and shown on Tables 8.5,
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Table 8.5: Monte-Carlo outcome distribution statistics, low eccentricity cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
σX (m) 0.691 0.560 0.477 0.501 0.467 0.350
σY (m) 1.216 1.016 0.907 0.454 0.369 0.297
σZ (m) 13.100 11.115 9.348 2.903 2.936 2.435

σẊ (mm/s) 0.189 0.154 0.141 0.038 0.031 0.025
σẎ (mm/s) 0.124 0.105 0.095 0.030 0.028 0.021
σŻ (mm/s) 0.138 0.118 0.096 0.065 0.060 0.050
σµ (m3/s2) 0.021 0.018 0.015 0.009 0.009 0.007

8.6 and 8.7. The predicted statistics coming from the inverse of Px =
(
HTWH

)−1
for each Monte-

Carlo outcome were compared to the computed ones, with their average relative difference shown

on Tables 8.8, 8.9 and 8.10.

All Monte-Carlo runs for each case converged to a state estimate. For the sake of illustration,

detailed results of Case 15 are shown on Figure 8.3. Tables 8.5, 8.6 and 8.7 clearly show that an

increase in the number of observations or in the observation arc duration yields smaller variances.

Even more importantly, Tables 8.8, 8.9 and 8.10 demonstrate the good agreement between the

prediction of the state uncertainties and the effective ones. The larger position error along the Ẑ

direction is effectively lined up with the asteroid’s rotation axis. Since the principal rotation implies

that all M ′k roughly share the same principal rotation axis, any constant error along the rotation

axis will cancel out in ε. The problem nonetheless remains observable thanks to the dynamics that

prevent constant position biases to remain undetected.

Tables 8.11, 8.12 and 8.13 furthermore demonstrate that an overwhelming majority of the

MC outcomes yielded a radius-of-perigee estimation error consistent with the effective one. The

proposed filter is thus suitable to initial orbit determination about an unknown small body, thanks

to its ability to detect potential collision courses.
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Table 8.6: Monte-Carlo outcome distribution statistics, deep-impact trajectory cases

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
σX (m) 0.827 0.677 0.551 0.519 0.419 0.337
σY (m) 1.303 1.112 0.895 0.501 0.420 0.329
σZ (m) 23.451 20.648 17.436 4.063 2.841 2.393

σẊ (mm/s) 0.247 0.205 0.164 0.039 0.033 0.028
σẎ (mm/s) 0.136 0.118 0.098 0.024 0.022 0.016
σŻ (mm/s) 0.106 0.091 0.077 0.059 0.043 0.038
σµ (m3/s2) 0.039 0.034 0.028 0.011 0.008 0.007
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Figure 8.3: 3σ position covariance envelopes predicted from the Px (red) and those computed from
the state estimate distribution (lightblue), Case 15. The good agreement between the ensemble of
predicted covariances and the one arising from the estimate distribution is apparent
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Figure 8.4: Inertial trajectory (left) and body-frame trajectory (right), Case 15. The orange sphere
represents the circumscribing radius measured from the center of mass of the asteroid. The black
stars denote observation times. The green and red dot represent the beginning and end of the
observation arc respectively.

Table 8.7: Monte-Carlo outcome distribution statistics, shallow-impact trajectory cases

Case 13 Case 14 Case 15 Case 16 Case 17 Case 18
σX (m) 0.838 0.620 0.525 0.516 0.412 0.352
σY (m) 1.280 1.004 0.944 0.489 0.413 0.328
σZ (m) 23.070 18.403 16.612 4.184 3.081 2.577

σẊ (mm/s) 0.250 0.181 0.166 0.041 0.032 0.027
σẎ (mm/s) 0.139 0.107 0.101 0.025 0.021 0.016
σŻ (mm/s) 0.112 0.094 0.079 0.062 0.050 0.041
σµ (m3/s2) 0.036 0.030 0.026 0.011 0.009 0.007

Table 8.8: Average relative difference between MC distribution statistics and predicted statistics,
low eccentricity cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
∆σX (%) 2.965 2.786 1.262 7.625 3.841 7.495
∆σY (%) 0.420 0.646 3.469 2.443 3.318 5.350
∆σZ (%) 2.691 3.418 2.684 7.143 3.182 4.933
∆σẊ (%) 0.572 2.295 4.661 5.519 1.180 2.898
∆σẎ (%) 0.937 0.339 4.555 6.151 2.938 8.858
∆σŻ (%) 1.258 4.368 1.794 2.364 2.265 2.629
∆σµ (%) 3.262 2.266 1.539 5.385 2.724 2.875
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Table 8.9: Average relative difference between MC distribution statistics and predicted statistics,
deep-impact trajectory cases

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
∆σX (%) 2.881 0.366 0.280 0.907 0.855 2.683
∆σY (%) 0.550 1.555 4.952 1.519 2.552 2.510
∆σZ (%) 4.601 3.172 3.050 3.301 9.047 4.166
∆σẊ (%) 0.673 1.518 3.935 5.856 1.272 1.459
∆σẎ (%) 0.836 1.081 3.265 0.069 10.866 0.331
∆σŻ (%) 3.092 1.526 1.739 1.613 11.137 1.022
∆σµ (%) 0.526 2.538 3.728 1.146 10.349 1.748

Table 8.10: Average relative difference between MC distribution statistics and predicted statistics,
shallow-impact trajectory cases

Case 13 Case 14 Case 15 Case 16 Case 17 Case 18
∆σX (%) 0.430 8.169 3.851 1.394 1.146 2.569
∆σY (%) 0.782 8.211 1.328 1.532 0.373 3.360
∆σZ (%) 3.901 4.951 2.607 1.743 3.155 1.135
∆σẊ (%) 3.750 9.666 1.144 0.542 2.802 1.659
∆σẎ (%) 2.167 7.510 0.582 1.800 4.275 0.689
∆σŻ (%) 1.004 0.485 1.003 2.917 1.022 0.176
∆σµ (%) 2.812 1.037 0.237 1.220 2.782 0.331

Table 8.11: Agreement between radius-of-perigee estimation error and effective error, low eccen-
tricity cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
|rp − r̂p| ≤ 3σrp (%) 99.667 99.833 99.500 100.000 100.000 99.667
|rp − r̂p| > 3σrp (%) 0.333 0.167 0.500 0.000 0.000 0.333

Table 8.12: Agreement between radius-of-perigee estimation error and effective error, deep-impact
trajectory cases

Case 7 Case 8 Case 9 Case 10 Case 11 Case 12
|rp − r̂p| ≤ 3σrp (%) 99.333 99.833 100.000 99.833 99.500 99.833
|rp − r̂p| > 3σrp (%) 0.667 0.167 0.000 0.167 0.500 0.167

Table 8.13: Agreement between radius-of-perigee estimation error and effective error, shallow-
impact trajectory cases

Case 13 Case 14 Case 15 Case 16 Case 17 Case 18
|rp − r̂p| ≤ 3σrp (%) 99.833 100.000 99.833 100.000 99.667 100.000
|rp − r̂p| > 3σrp (%) 0.167 0.000 0.167 0.000 0.333 0.000
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8.2 Relative Navigation using flash-Lidar Data

A short overview of the model-based navigation filter of Dietrich et al. is provided below

[119]

1. At every observation time, a computed point cloud is generated from the on-board shape

model and on-board a-priori spacecraft state. This point cloud effectively produces a num-

ber of computed range measurements ρ̄i, to be compared with the noisy range measurements

produced by the Lidar instrument ρ̃i

2. The range residuals ρ̃i − ρ̄i are processed so as to extract the estimated deviation in the

spacecraft position δr̂. The latter is solved by means of an iterated batch filter, which effec-

tively returns a position measurement and an associated measurement covariance matrix

Rr

3. The position measurement and its covariance Rr are provided to an Extended Kalman

Filter, which updates the estimated states

This thesis extends the methods developed by Dietrich et al. in several ways. First, the

estimated state is augmented with the small body attitude, angular velocity, standard-gravitational

parameter and spacecraft cannonball SRP model. Second, the small body shape model is no longer

exactly known. Third, the uncertainty model developed in the previous section is used within the

filter to account for shape reconstruction error and sensor noise.

8.2.1 Position estimation from range measurements

An individual range measurement reads

ρi = ûTi (P− r) (8.90)

where P is a surface point on the ray-traced object, r being the spacecraft position relative to the

object center O and ûi the unit vector directing the ray. Assuming that the ray-traced element is
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a Bezier triangle, the surface point coordinates P are given by

P = P (χ) ≡
∑

|i|=n
Bn

i (χ) Ci (8.91)

Introducing a slight deviation in the spacecraft position δr compared to the nominal position r̄, a

first order expansion of the range yields

ρ = ûT (P (χ)− r) (8.92)

= ûT (P (χ̄+ δχ)− r− δr) (8.93)

= ûT
(

P (χ̄) +

[
∂P

∂χ

]
δχ− r− δr

)
(8.94)

= ρ̄+ ûT
([

∂P

∂χ

]
δχ− δr

)
(8.95)

[
∂P
∂χ

]
= [E0,E1] is a 3× 2 matrix holding two vectors tangent to the surface at P̄. As a result,

n̂T δP = n̂T
[
∂P

∂χ

]
δχ = 0 = n̂T ûδρ+ n̂T δr (8.96)

which gives the same partial derivative in the planar facet case :

∂ρ

∂r
= − nT

nT û
= − n̂T

n̂T û
(8.97)

where

n = E0 ×E1 (8.98)

However, there exists a difference when the ray-traced shape is a Bezier patch of degree

strictly greater than one. Indeed, the partial derivative in Equation (8.97) is erroneous as it is

unable to capture the curvature on the surface element. Figure 8.5 demonstrates this claim, as the

true δP does not match the one computed from the first-order approximation δP(1): the second-

order error αû is not captured by the partial derivative. This second-order error reduces as the

filter iterates.
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8.2.2 Attitude estimation from range measurements

8.2.2.1 Formulation

Given a range measurement ρ between the spacecraft S and a surface point P along the

direction û

ρ = ûT (P− S) (8.99)

ρ =
n̂T (V − S)

ûT n̂
(8.100)

where V is a point belonging to the tangent plane of normal n̂ at P. Let B and N be the asteroid

body-fixed and centered-inertial frames respectively. The goal is to estimate a parametrization of

the direction cosine matrix [BN ]. Let B′ be an intermediate frame such that

[BN ] = [BB′][B′N ] (8.101)

Let σB′/N be the a-priori attitude:

σB′/N = σ̄ (8.102)

The error MRP measuring the deviation between B and B′ is written

σB′/B = σ (8.103)

Under the assumption of a small error, the DCM [BB′] can be linearized into [68]

[BB′] ' I3 − 4[σ̃] (8.104)

The normal n̂ and the tangent point V are available in the B frame while the measurement

direction û and the spacecraft position are expressed in the N frame. As a result, making the frame

dependencies explicit in the range measurement yields

ρ =
n̂B,T

(
VB − SB

)

n̂B,T ûB
(8.105)
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So

ρ =
n̂B,T

(
VB − SB

)

n̂B,T ûB
(8.106)

' n̂B,T
(
VB − [I3 − 4[σ̃]] SB

′
) 1 + 4n̂B,T [σ̃]ûB

′

n̂B,T ûB′

n̂B,T ûB′
(8.107)

' n̂B,T

n̂B,T ûB′
(
VB − SB

′
+ 4[σ̃]SB

′
)(

1 +
4n̂B,T [σ̃]ûB

′

n̂B,T ûB′

)
(8.108)

'
(
ρ̄+

4n̂B,T [σ̃]SB
′

n̂B,T ûB′

)(
1 +

4n̂B,T [σ̃]ûB
′

n̂B,T ûB′

)
(8.109)

'ρ̄+
4n̂B,T

n̂B,T ûB′
(
−SB

′ − ρ̄ûB′
)
× σ (8.110)

Therefore, the partial derivative relating the change in a range measurement to a change in

the attitude is

∂ρ

∂σ
= − 4n̂B,T

n̂B,T ûB′
[̃PB] (8.111)

8.2.2.2 MRP switching

The MRP set is typically switched to its shadow set once it reaches the switching surface

defined by σTσ = 1. This ensures that the attitude set remains always at least 180 degrees away

from its singularity. The covariance matrix tracking the uncertainty in the estimated state must be

updated to reflect this. Kaalgard and Schaub provide the expression of the covariance switching

matrix mapping the covariance matrix from before to after the switching [120]. Given an estimated

state of the form X =
(
rT ṙT σT ωT

)T
, and denote P̄ and P̄ s the state covariance matrices

before and after the switching,

P̄ s = ΘP̄ΘT (8.112)

with

Θ =




I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3
2σσT

(σTσ)2
− I3
σTσ

03×3

03×3 03×3 03×3 I3


 (8.113)

It can thus be seen than only the MRP partition of the covariance is affected by the switching.
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8.2.3 Estimation of standard gravitational parameter

The standard gravitational parameter of the small body can be estimated using the spherical

harmonics of the gravity field arising from the reconstructed shape, assuming a constant density

distribution. The partial derivative of the velocity with respect to this state is trivial, as it is

nothing else but the same acceleration of gravity emanating from the reconstructed shape model,

evaluated with a unit µ. Because the spherical harmonics coefficients evaluated from the shape

model are not re-estimated, it is possible that slight biases in µ may still show in the estimator.

8.2.4 Estimation of SRP cannonball coefficient

The cannonball coefficient Cr can be estimated through the dynamics, since the partial

derivative of the velocity with respect to Cr is the same acceleration evaluated at Cr = 1. An

interesting point is that the eclipse model used to toggle the SRP force depending on whether it

is eclipsed behind the small makes the estimation of this state coupled with the estimated shape

model.

8.2.5 Navigation filter and Iterated Extended Kalman Filter

The navigation filter estimates the spacecraft position r, velocity ṙ, small body attitude

σB/N and angular velocity ωB/N , small body standard gravitational parameter µ and spacecraft

cannonball coefficient CR by means of an Iterated Extended Kalman Filter (IEFK). The estimated

state is thus formally defined as

X =




r

ṙ

σB/N
ωB/N
µ

CR




(8.114)

The pseudo code describing the functioning of the IEKF is provided below in Algorithm

2, where φ̂kk−1 designates the integrated estimated dynamics between tk−1 and tk and (Γ, Q) the

process noise state-transition matrix and covariance respectively.
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Algorithm 2 Navigation filter with embedded least-squares filter

1: procedure NavigationFilter

2: Initialization:

3: Given: X̄0, P̂0, S̄, Q, G, H, φ, Γ, tol

4: Main loop:

5: for k in J1 . . . NtimesK do

6: Time update:

7: X̄k,Φk,k−1 ← φ̂kk−1(X̂k−1)

8: P̄k ← Φk,k−1P̂k−1ΦT
k,k−1 + Γk,k−1QΓTk,k−1

9: Measurement update:

10: for i in J1 . . . NiterationsK do

11: Ỹi
k, R

i
k ← LeastSquares

(
X̄i
k, S̄; Xk,S

)

12: Ki
k ← P̄kH

T
(
HP̄kH

T +Rik
)−1

13: Zik ← Ki
k

(
Ỹi
k −G

(
X̄i
k, tk

))

14: X̄i+1
k ← X̄i

k + Zik

15: P̂k,temp ←
(
I3 −Ki

k

)
P̄k
(
I3 −Ki

k

)T
+Ki

kR
i
kK

iT
k

16: γik ← ZiTk P̂
−1
k,tempZik

17: if
γik,old−γik
γik,old

< tol then

18: break

19: else

20: γik,old ← γik

21: P̂k ← P̂k,temp
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8.2.5.1 Observation model

The measurement model of the IEKF is

Yk = G (Xk, tk) =

(
r(tk)

σB/N (tk)

)
(8.115)

As a result, the state-observation matrix of the IEKF is constant and equal to

H =

[
I3 033 033 033 013 013

033 033 I3 033 013 013

]
(8.116)

More details on this observation model can be found in 8.2.6.

8.2.6 Least-squares filter

The task of the least-squares filter embedded within the navigation filter described in Algo-

rithm 2 is to provide a measurement Yk = G (Xk, tk) =

(
r(tk)

σB/N (tk)

)
of the spacecraft position

and asteroid attitude, along with a quantification of the measurement uncertainty by means of

a covariance matrix Rk. Yk is acquired by comparing range measurements over the asteroid to

those computed on-board, using the asteroid a-priori state and reconstructed shape. The covari-

ance matrix Rk accounts for both the sensor error and shape reconstruction error. Dietrich et al.

determined that the uncertainty in the shape is best captured if looked at from a consider covari-

ance perspective [121]. That is, any measure of the shape uncertainty should be incorporated into

the filter by means of consider covariance analysis as opposed to simply inflating the Lidar noise

standard-deviation, σLidar. In the context of the least-squares filter, the shape error is simply mod-

eled as a range bias of zero mean and standard deviation dictated by the directional uncertainty

model previously derived. In this context, the consider covariance takes the form [122]

P = Λ−1 + SPccS
T (8.117)

where Pcc stores the variances in the range measurements extracted from the uncertainty model

and

S = Λ−1HTW (8.118)
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where H and W are the state-observation and weight matrices of the least-squares filter. The

pseudo code of the least-squares filter is provided in Algorithm 3.
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Algorithm 3 Position and attitude least-squares filter

1: procedure LeastSquares

2: Initialization:

3: Given: r̄(tk), σ̄B/N (tk), S̄, σLidar

4: Ȳ0
k ←

(
r̄(tk)

σ̄B/N (tk)

)

5: ρ̃k ← Lidar (Yk,S)

6: W ← 1
σ2
Lidar

INranges

7: Main loop:

8: for i in J1 . . . NiterationsK do

9: H ← 0Nranges×6

10: ρ̄ik,
(
σ2

1 . . . σ2
Nranges

)
← Lidar

(
Ȳi
k, S̄

)

11: δρik ← Subtract
(
ρ̃k, ρ̄

i
k

)

12: for p in J1 . . . NrangesK do

13: H(p, :)←
[
− n̂N

′,T
p

n̂B,Tp ûB′p
− 4n̂B,Tp

n̂B,Tp ûB′p

[̃
PBp
]]

14: N ← HTWδρik

15: Λ← HTWH

16: Ȳi
k ← Add

(
Ȳi−1
k ,Λ−1N

)

17: Pcc ← diag
(
σ2

1 . . . σ2
Nranges

)

18: S ← −Λ−1HTW

19: Rk ← Λ−1 + SPccS
T

20: return ȲNiterations
k , Rk
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8.2.7 Range measurement uncertainty

The diagonal consider covariance matrix Pcc used to augment the measurement covariance

Rk in Algorithm (3) is computed from the tuned shape uncertainty model by populating each of

the non-zeros components of Pcc with the consider variance obtained from Equation (5.25).
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O

Figure 8.5: Measured ranges ρ̄ and ρ before and after a displacement δr is added to the spacecraft
location. α is non-zero when the patch degree is equal to one or when all control points are coplanar



Chapter 9

Mapping and navigation simulation results

This chapter applies the methods presented in Chapters 4, 5 and 8 to the survey, mapping

and navigation of asteroid Itokawa in the context of a proximity mission. As a reminder to the

reader, the key assumptions made in the developed framework are the perfect knowledge of the

spacecraft attitude, the uniform-density nature of the orbited object as well as the knowledge of

the small body ephemeris with respect to the Solar system barycenter. With this in mind, this

chapter presents the results of the two phases - Survey/Mapping, and Navigation - when run with

different sets of input parameters, such as the sensor noise, instrument frequency and rotational

regime of the small body, so as to investigate the sensivity of the performance of the different in

the relevant state-space parameters.

9.1 Survey and Mapping

The survey and mapping phase is concerned with the collection and registration of successive

points clouds covering the targeted small body, the Itokawa 64 shape model [104]. The objective

of this phase is to deliver a globally covering point cloud of the target, that is passed to the shape

reconstruction pipeline described in Chapter 4. The survey and mapping phase thus produces a

number of deliverables: the shape model, the uncertainty model capturing the shape reconstruction

error, the spherical harmonics expansion arising from the shape, an a-priori navigation solution, a

small body attitude state a-priori solution and a-priori standard gravitational parameter.

The results presented in this section explore the effect of a subspace of the phase’s parameter
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space on the phase’s deliverables. The goal of this sensitivity analysis is to identify the set of

parameters that have the most effect on the pipeline convergence and quality. Although it is clear

that testing every possible combination of input parameters is undeniably the most comprehensive

way to carry out this analysis, the combinatorial explosions in the number of cases to consider calls

for a different perspective. Two simulation subsets were run : the first one investigates the effect of

camera frequency and retained number of points in the bundle-adjustment phase, while the second

one assesses the robustness of the pipeline to non-principal rotation axis rotation and sensor noise.

It must be noted that the observation geometry introduces a coupling between the spacecraft

position, attitude and small body coverage. That is, every initial spacecraft state will result in

varying viewing geometries that will each yield a different global coverage of the small body, or

lack thereof. Therefore, all cases investigated in this section are kicked-off with the same spacecraft

initial state, so as to help defining the baseline case around which the sensitivity analysis can take

place. The initial spacecraft cartesian state was obtained from the initial Keplerian state defined

by the classical orbital elements (a0, e0, i0,Ω0, ω0,M0), which are defined along with the other input

parameters that are held constant in all simulations in Table 9.1.

9.1.1 Sensitivity to frequency and BA hierarchy level

The robustness of the framework was first investigated by varying the time elapsed between

two successive point-cloud acquisitions Tobs along with the hierarchical setting h in the bundle

adjustment. The integer h controls the maximum number of point-pairs that can be found between

two point clouds respectively containing 2pS and 2pD points each, as in

Npairs,max = min
(

2pS−h, 2pD−h
)

(9.1)

where pS − h > 0 and pD − h > 0. Setting h to a value greater than zero thus speeds up the

bundle-adjustment phase by making it consider fewer point-pairs, at the potential expense of a

diminished performance. The parameters that were varied in 9.1.1 are summarized in Table 9.2.

All six cases were run using a one-sigma standard deviation on the range measurement of 0.5 m.
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In addition, the asteroid was undergoing a constant-rate principal rotation about its largest inertia

axis.

The globally covering point-clouds produced at the end of each scenarii do vary in size, as

shown on Table 9.3. If the variation from Cases 1,2,3 to 4,5,6 was expected due to the greater

number of observations collected in the latter cases, the variation that can be seen within each

triplet is due by an incomplete loop closure at the final observation time, causing the last few

point-clouds that have not been bundle-adjuster in a satisfactory fashion to be left-out of the

globally covering point cloud.

The quality of the global point cloud acquired at the end of each simulation can be assessed

by computing the Hausdorff distance from each of the point clouds to the true underlying asteroid

shape model, with the resulting statistics shown on Table 9.4 . The distance distribution statistics

appear to be relatively invariant across the considered cases, as exemplified by the side-by-side

display of the distance-colored point clouds with the distance distribution histograms on Figure

9.1 and 9.2. The variation in the total simulation runtime shown on Table 9.6 appears to be more

clearly related to the input parameters. It must be noted that this duration not only includes the

accumulation of the successive point-clouds and their bundle-adjustment, but also the fitting of the

Bezier Shape as well as the training of the underlying shape uncertainty model.

The quality of the Bezier shape models obtained in each case can be assessed in a similar

manner than with the point clouds, by computing the Hausdorff distance from the Bezier shapes

to the underlying polyhedral shape of the imaged small body. The statistics in the shape-to-shape

Hausdorff distances are listed in Table 9.5, in addition to the side-by-side display of the distance-

colored fit shapes with the distance distribution histograms on Figure 9.3 and 9.4. The quality of

the shape fitting appears good in all cases, with the maximum shape fitting errors are located at

the boulders that protrude the most out of the asteroid body. However, the apparent robustness

of the proposed pipeline to varying instrument frequency and BA hierarchical level will only be

fully assessed once the deliverables (that is, the shape model and its uncertainty model) are used

to navigate about the small body.
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Table 9.1: Parameters held constant throughout all survey and mapping simulation subsets

Value Unit

Cr 1.2 -

σCr 0.1 -

a0 1000 m

e0 0.15 -

i0 80 deg

Ω0 0.57 deg

ω0 17 deg

M0 0 deg

Titokawa 12 hours

ρ 1900 kg/m3

[BN ](t0) I3 -

tf − t0 200 hours

BA iterations 5 -

Shape fitter iterations 3 -

IOD-PSO iterations 100 -

IOD-PSO arc length 10 -

IOD-PSO particles 200 -

Edges in fit Bezier shape 2000 -

Table 9.2: Input parameters, Cases 1 to 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

h 0 1 2 0 1 2

Tobs (s) 3333 3333 3333 2500 2500 2500

Table 9.3: Size of globally-covering point cloud, Cases 1 to 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Point-cloud size 2,355,111 2,355,111 2,181,109 3,176,292 3,128,898 3,176,292
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Table 9.4: Point-cloud-to-true-shape Hausdorff distance statistics, Case 1 to 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Maximum (m) 3.849 3.019 3.444 3.742 3.7615 2.856

Mean (m) 0.435 0.372 0.376 0.428 0.4 0.378

Standard deviation (m) 0.365 0.302 0.312 0.338 0.323 0.299

Table 9.5: Fit-shape-to-true-shape Hausdorff distance statistics, Cases 1 to 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Maximum (m) 5.116 3.965 3.589 4.703 3.958 2.848

Mean (m) 0.30185 0.264 0.2715 0.31076 0.3067 0.2963

Standard deviation (m) 0.2679 0.2414 0.2459 0.2767 0.263 0.2561

Table 9.6: Total simulation times, Cases 1 to 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Time (s) 1783.84 1529.95 1438.45 2542.48 2147.55 2094.81
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 9.1: Normalized Hausdorff distance-colored point clouds and distribution histogram, Cases
1 to 3
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(a) Case 4

(b) Case 5

(c) Case 6

Figure 9.2: Normalized Hausdorff distance-colored point clouds and distribution histogram, Cases
4 to 6



223

(a) Case 1

(b) Case 2

(c) Case 3

Figure 9.3: Normalized Hausdorff distance-colored fit shapes and distribution histogram, Cases 1
to 3
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(a) Case 4

(b) Case 5

(c) Case 6

Figure 9.4: Normalized Hausdorff distance-colored fit shapes and distribution histogram, Cases 4
to 6
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9.1.2 Sensitivity to non-principal spin, instrument frequency sensor noise

The robustness of the framework was further investigated by introducing an off-principal

axis component to the spin axis of the asteroid, and by varying the standard deviation of the range

masurement σ along with time elapsed between two observations Tobs. The bundle-adjustment

hierarchical setting was kept to a constant value h = 0 throughout these simulations. The spin axis

displacement from the maximum inertia axis was measured by the angle θ, detailed along with the

rest of the input parameters on Table 9.7. No outstanding behavior appears to show in Table 9.8,

as the sizes of the final point clouds exhibit no little variation. However, it is clear from Table 9.9

that the point-cloud-to-true-shape distances strongly differ based on the simulation inputs. The

strongest sensitivity is clearly in the noise standard deviation, as the distance statistics in Cases

8 and 10 show. The off-axis spin does appear to have an effect, since the statistics in Case 7 are

comparable to that in Case 1. It seems that increasing the instrument frequency is sufficient to

compensate for the acceleration in the rotational dynamics, as seen in Case 9. These statistics can

be complemented by the same side-by-side display as in the previous scenario. Figures 9.5 and 9.6

reproduce the results shown in Table 9.9 in more details : the lack of contrast in the color scheme

is caused by the normalization of the histogram to a maximum value of 9 meters, the maximum

distance value reported in Case 10. Because most of the points in the other cases exhibit much

lower errors, the color scale appears compressed. Fit-shape-to-true-shape Hausdorff distances can

be seen on Table 9.10, Figure 9.7 and 9.8. These results do not seem quite as affected by the

outliers seen in Case 8 and Case 10 as those shown in Figures 9.5, 9.6 and Table 9.9. This is due to

the fact that the Bezier shapes are obtained through the fitting of the global point clouds, which

are comprised of millions of points, while the outliers are only a few hundred thousands.
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Table 9.7: Input parameters in spin deviation, instrument frequency and sensor-noise, Cases 7 to
10

Case 7 Case 8 Case 9 Case 10

θ (deg) 5 5 5 5

Tobs (s) 3333 3333 2500 2500

σ (m) 0.5 1 0.5 1

Table 9.8: Size of globally-covering point cloud, Cases 7 to 10

Case 7 Case 8 Case 9 Case 10

Point-cloud size 2,359,034 2,347,105 3,164,355 3,164,355

Table 9.9: Point-cloud-to-true-shape Hausdorff distance statistics, Cases 7 to 10

Case 7 Case 8 Case 9 Case 10

Maximum (m) 4.714 6.755 2.961 8.995

Mean (m) 0.354 0.789 0.332 0.823

Standard deviation (m) 0.322 0.643 0.279 0.699

Table 9.10: Fit-shape-to-true-shape Hausdorff distance statistics for Cases 7 to 10

Case 7 Case 8 Case 9 Case 10

Maximum (m) 4.071 3.27 3.57 3.97

Mean (m) 0.258 0.449 0.244 0.378

Standard deviation (m) 0.24 0.385 0.229 0.324



227

(a) Case 7

(b) Case 8

Figure 9.5: Normalized Hausdorff distance-colored point clouds and distribution histogram, Cases
7 and 8
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(a) Case 9

(b) Case 10

Figure 9.6: Normalized Hausdorff distance-colored point clouds and distribution histogram, Cases
9 and 10
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(a) Case 7

(b) Case 8

Figure 9.7: Normalized Hausdorff distance-colored fit shapes and distribution histogram, Cases 7
and 8
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(a) Case 9

(b) Case 10

Figure 9.8: Normalized Hausdorff distance-colored fit shapes and distribution histogram, Cases 9
and 10
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9.2 Model-based navigation

The estimated shapes, their uncertainty models as well as the estimate in the spacecraft

and small body state obtained from the processing of the rigid transforms were provided to the

augmented model-based navigation filter. The filter was kicked-off with the a-priori stemming

from the processing of the successive rigid transforms and estimated center-of-mass location. The

estimate of µ was simply taken as from the mean and standard deviations of the µ estimated in the

successive IOD arcs. The uncertainty in Cr was set to 0.1, consistent with the difference between the

true value (1.2) and a-priori value (set to 1.1). The deliverables from Cases 1, 4, 7, 8, 9 and 10 were

combined with a variety of combinations of the Lidar line-of-sight sensor noise standard deviation

σρ, spacecraft acceleration and small-body angular velocity process noise standard deviations σr̈

and σω̇ as well as instrument observation frequency 1/Tobs. These combinations spanned a total of

96 simulations. The correspondance between each case and its designated set of inputs is compiled

in Tables 9.12, 9.13, 9.14 and 9.15. The filtering performance of each cases is measured through
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the RMS of the state errors, summed-up over the N times comprising the 100-hour filtering arc:

σr =

√√√√√
N∑
i=1
‖δr(i)− E (δr) ‖2

N − 1
(9.2)

σṙ =

√√√√√
N∑
i=1
‖δṙ(i)− E (δṙ) ‖2

N − 1
(9.3)

σΦ =

√√√√√
N∑
i=1

[δΦ(i)− E (δΦ)]2

N − 1
(9.4)

σω̇ =

√√√√√
N∑
i=1
‖δω̇(i)− E (δω̇) ‖2

N − 1
(9.5)

σµ =

√√√√√
N∑
i=1

[δµ(i)− E (δµ)]2

N − 1
(9.6)

σCr =

√√√√√
N∑
i=1

[δCr(i)− E (δCr)]
2

N − 1
(9.7)

Φ designates the magnitude of the principal rotation vector tracking the error between the true

and estimated [BN ] DCMs. The statistics in each of the RMS compiled over all cases is provided

in Table 9.11. Some perspective in the best results can be obtained by comparing these to the

navigation performance of past-flown asteroid missions. For instance, the JPL team in charge of

navigating NEAR relative to Eros used a-priori uncertainties in the spacecraft velocity of 0.1 mm/s

(one-sigma) [123]. This value is comparable to the best velocity RMS found in the parameter

sweep. It must also be said that the values reported in Table 9.11 are not smoothed, and would

thus be significantly lower had smoothing been applied to the navigation data, or had the RMS

time window started later, once the different states have started to converge.

The RMS values for each case are listed in Tables 9.16 to 9.19. They are synthesized on Figure

9.11, which offers a synthetic view of the 96 navigation scenarii, where the color coding allows for

immediate identification of how the RMS in the different state components varied across all cases.

The normalization scheme applied to each RMS was such that the minimum RMS in a given state
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Table 9.11: Mean, standard deviation and extremum values of the state RMS over all cases

Mean Standard deviation Minimum Maximum

σr (m) 0.54 0.21 0.20 1.12

σṙ (mm/s) 0.24 0.07 0.15 0.36

σσ (deg) 0.14 0.07 0.06 0.42

σω (µdeg/s) 127.23 82.36 27.31 335.18

σµ (cm3/s2) 14813.83 8247.44 3036.49 30274.07

σCr 0.37 0.27 0.03 0.72

was equated to 0, and the worst RMS to 1, using the extremum values found in Table 9.11. Figure

9.12 displays all the different cases, this time sorted by their mean over all 6 residuals. This allows

for the immediate identification of the key trades in the Survey & Mapping and navigation phases

input parameters. Finally, Figure 9.13 provides a different ordering, this time based on the input

case from the Survey & Mapping phase that was provided to the navigation filter. For the sake of

completeness, Figures 9.9 and 9.10 show the results from the cases exhibiting the best and worst

performance of the filter over the navigation arc. The striking differences between the two cases lies

in the quality of the velocity, standard gravitational and SRP coefficient estimates. An investigation

of this behavior as well as the variation in the other RMS across all cases is carried out hereunder.

First of all, it appears that the RMS in the spacecraft velocity and Cr define the strongest

boundary in the result space, roughly partitioning the simulations in two halves of equivalent case

count. Figure 9.13 provides an unambiguous explanation, since it clearly demonstrates that the

Input Cases 4, 10 and 9 systematically yielded good spacecraft velocity and Cr RMS. On the

contrary, Input Cases 1, 7 and 8 systematically corresponded to poor Cr estimation performance,

naturally affecting that of the spacecraft velocity. As seen on Table 9.2 and 9.7, Cases 1, 7 and 8

correspond to the smallest observation rate (one observation every 3333 seconds), whereas Cases 4,

10 and 9 were set to collect one point cloud every 2500 seconds. The consequence is not so much in
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the quality of the point cloud itself, since Table 9.5 show similar statistics for Cases 1 and 4, but in

the initial velocity estimate at filter kick-off. The velocity estimate provided to the navigation filter

originates from the processing of the successive rigid transforms assuming Keplerian dynamics.

Less frequent observations leave more time for biases to creep in the dynamics of the observation

arc, driving the velocity estimate outside of its confidence bounds. This intuition is confirmed by

Figures 9.18 and 9.17 : the initial velocity estimate is way off in Navigation Case 76, causing the

filter to spuriously update Cr, whereas the initial velocity estimate in Navigation Case 96 is nearly

completely consistent with its covariance bounds.

The standard gravitational parameter does not seem to completely abide the same trends as

Cr, although it must be noted that the maximum RMS on the standard gravitational parameter only

amounts to 30, 274.07cm3/s2, 1.28% of the 2, 360, 000cm3/s2 of Itokawa’s standard gravitational

parameter [110]. It appears that Navigation Case 88 featured excellent σµ RMSs, as opposed to

the relative poor Cr results obtained in the same case. Conversely, Navigation Cases 92 and 22

feature comparatively good RMS values, with the exception of σµ that is much better in case

22. Navigation Case 22 was provided with the output from the Survey & Mapping Case 10,

while Navigation Case 92 was provided with Survey & Mapping Case 9. Figure 9.19 shows that the

difference in the two runs boils down to the larger a-priori uncertainty on the standard gravitational

parameter in Case 92.

At this stage, it is sufficient to say that the driving parameter behind the performance of

the navigation filter is the frequency at which observations were collected during the Survey &

Mapping phase, as shown on Figure 9.14 that features a clear separation between all cases based

on this criterion. The angular velocity is the last state component for which no obvious clustering

has been found yet. It can actually be seen that the process noise on the angular acceleration is

responsible for the variation in the performance, like shown by a side-to-side comparison of Figure

9.15 and 9.16.
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Figure 9.9: State errors and associated 3σ covariances, Case 72 (Best mean RMS)
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Figure 9.10: State errors and associated 3σ covariances, Case 73 (Worst mean RMS)
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Table 9.15: Simulation inputs, Cases 91 to 96

Case 91 Case 92 Case 93 Case 94 Case 95 Case 96

σρ (m) 0.50 1.00 0.50 1.00 0.50 1.00

σr̈ (nm/s2) 0.10 0.10 0.10 0.10 0.10 0.10

σω̇ (nrad/s2) 0.10 0.10 1.00 1.00 0.10 0.10

Tobs (s) 4500 4500 4500 4500 4500 4500

Input Case 9 9 10 10 10 10
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Table 9.19: State error standard deviations, Cases 91 to 96

Case 91 Case 92 Case 93 Case 94 Case 95 Case 96

σr (m) 0.530 0.521 0.380 0.384 0.378 0.392

σṙ (mm/s) 0.167 0.176 0.161 0.163 0.160 0.163

σσ (deg) 0.084 0.092 0.118 0.116 0.111 0.115

σω (µdeg/s) 70.668 56.029 116.773 131.055 39.204 39.073

σµ (cm3/s2) 13296.246 18405.889 3591.420 4372.749 3987.701 4783.589

σCr 0.182 0.192 0.045 0.042 0.050 0.045
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Figure 9.11: Normalized simulation RMS (State Partition vs Navigation Case). The minimum and
maximum values in each state partition RMS were linearly rescaled to 0 and 1 respectively
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Figure 9.12: Normalized simulation RMS (State Partition vs Navigation Case), sorted from worst
mean RMS (top) to best (bottom). The minimum and maximum values in each state partition
RMS were linearly rescaled to 0 and 1 respectively
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Figure 9.13: Normalized simulation RMS (State Partition vs Navigation Case), sorted by input
case. The minimum and maximum values in each state partition RMS were linearly rescaled to 0
and 1 respectively
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Figure 9.14: Normalized simulation RMS (State Partition vs Navigation Case), sorted by Tobs used
in the input Survey & Mapping case. The minimum and maximum values in each state partition
RMS were linearly rescaled to 0 and 1 respectively
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Figure 9.15: Normalized simulation RMS (State Partition vs Navigation Case), sorted by σω̇ RMS.
The minimum and maximum values in each state partition RMS were linearly rescaled to 0 and 1
respectively
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Figure 9.16: Normalized simulation RMS (State Partition vs Navigation Case), sorted by process
noise on angular velocity. The minimum and maximum values in each state partition RMS were
linearly rescaled to 0 and 1 respectively
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Chapter 10

Future work

This chapter goes over possible extensions of the research presented in this thesis that would

help improving upon the current framework’s runtime, robustness and performance, as well as

providing more insight into the uncertainties in the gravity field of an uncertainty small body

shape.

10.1 Uncertainty quantification about an unknown small body

10.1.1 Uncertainty in shape from different measurement type

The Lidar-based shape uncertainty model proposed in chapter 5 allows to recover the surface

element covariances best explaining the shape fitting residuals in each element. This maximum-

likelihood approach should be extended to other measurement types (namely, lightcurves and radar

observations) so as to make the methods proposed in this thesis trully comprehensive, to the benefit

of radar and optical astronomers.

10.1.2 Uncertainties in gravity arising from unknown, non-uniform density distri-

bution

The polyhedron gravity model from which an analytical uncertainty model was extracted

was based on the assumption that the small body density was a constant, uniform, known value.

Allowing uncertainty in the uniform density is actually trivial, as pointed out in Chapter 6, since

doing so leaves the shape uncertainty and the density uncertainty completely uncorrelated. This is
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no longer the case if the density becomes non-uniform. The polyhedron gravity model has already

been extended to bodies with linearly varying density profiles [124], and more ambitious multi-

layered versions of the original approach are currently being investigated, with the potential of

being suited to arbitrary density distributions [125]. If manipulating these models is possible to

attain a similar uncertainty model as in the uniform density model, one should nonetheless be wary

of the substantial increase in the complexity of the uncertainty model.

10.1.3 Uncertainty in exterior spherical harmonics expansion arising from an

uncertain shape

Besides the polyhedron gravity model, the other workhorse of small body gravity models is

the exterior spherical harmonics expansion of the gravity field created by a constant density shape,

in the form given in Chapter 2. In a similar fashion to what was achieved for the polyhedron

gravity model, the closed-form expressions of the coefficients derived by Werner could be differenti-

ated so as to yield the partial derivatives in the coefficients with respect to the shape coordinates.

Backtracking the variance and covariance in the potential and accelerations should then be rela-

tively straightforward, since these two quantities are linear combinations of the spherical harmonics

coefficients.

10.1.4 Uncertainty propagation

The polyhedron gravity model derived in this thesis would be made most helpful to small-

body mission designers when combined with a suitable uncertainty propagation scheme. That is,

given the a-priori uncertainty in the spacecraft state at the epoch (possibly in the form of an-priori

covariance matrix), this next step would consist in tying in the evaluation of the polyhedron gravity

model uncertainty into the propagation of the spacecraft uncertainty itself. Beyond classical State

Transition Matrix-based methods, State Transition Tensors [126], Polynomial Chaos Expansion

[127] and Automatic Taylor Differentiation [128] could provide the necessary framework to embed

the proposed uncertainty model into a more complete uncertainty propagation pipeline.
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10.2 Survey & Mapping framework

10.2.1 SLAM performance

The bundle-adjuster and overlap graph implemented in the frame of this thesis are by no

means a nec-plus-ultra, since the robotics community has been devoting tremendous effort into

proposing more robust and efficient optical camera-based SLAM frameworks [129, 130], which have

started to be considered by the aerospace community as well [131].

10.2.2 Observations planning

The current implementation of the Survey & Mapping phase relies on Lidar observations

collected at a fixed observation rate. The immediate consequence for such a mode of operation

is that the frequency at which observations are collected is never optimal: it is either too high

or too low, with respect to the rate at which the relative pose evolves. The former case implies

the unnecessary retrieval of point-cloud data, that serves no purpose besides increasing the spatial

resolution of the reconstructed scene. The latter would put a greater burden on the bundle adjuster

itself, possibly at the cost of discarding overlaps in the connectivity graph if the bundle adjuster

does not succeed at correcting the relative alignment of the corresponding point-clouds. Moving

away from this rigid functioning and let a managing entity schedule observations according to some

optimality criterion would be a major improvement over the current framework, as the observation

rate could then be continuously adjusted to reflect the current geometry and kinematics. Partially-

Observable Markov Decision Processes (POMDPs) could be a possible path to follow in order to

design such an observation planner, since they provide the necessary mathematical framework to

determine the actions an agent must take in order to maximize some reward [132]. In the present

case, the reward could be formulated as the percentage of the shape that has been covered by the

observations. POMDPs have already been applied to autonomous spacecraft operations [133, 134]

and could thus offer a way forward towards more decisional autonomy, for the benefit of performance

and robustness.



Bibliography

[1] Simone D’Amico, J.-S. Ardaens, G. Gaias, H. Benninghoff, B. Schlepp, and J. L. Jørgensen.
Noncooperative Rendezvous Using Angles-Only Optical Navigation: System Design and
Flight Results. Journal of Guidance, Control, and Dynamics, 36(6):1576–1595, 2013.

[2] John A. Christian, Shane B. Robinson, Christopher N. D’Souza, and Jose P. Ruiz. Cooper-
ative Relative Navigation of Spacecraft Using Flash Light Detection and Ranging Sensors.
Journal of Guidance, Control, and Dynamics, 37(2):452–465, 2014.

[3] Brent E. Tweddle, Alvar Saenz-Otero, John J. Leonard, and David W. Miller. Factor Graph
Modeling of Rigid-body Dynamics for Localization, Mapping, and Parameter Estimation of
a Spinning Object in Space. Journal of Field Robotics, 32(6):897–933, 2015.

[4] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Reconstruction.
Proceedings of the Symposium on Geometry Processing, pages 61–70, 2006.

[5] Robert A. Werner and Daniel J. Scheeres. Exterior gravitation of a polyhedron derived and
compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia.
Celestial Mechanics and Dynamical Astronomy, 65(3):313–344, 1997.

[6] Karl Heinz Glassmeier, Hermann Boehnhardt, Detlef Koschny, Ekkehard Kührt, and Ingo
Richter. The Rosetta mission: Flying towards the origin of the solar system. Space Science
Reviews, 128(1-4):1–21, 2007.

[7] F E Demeo and B Carry. Solar System evolution from compositional mapping of the asteroid
belt. Nature, 505(7485):629–634, 2014.

[8] Jean-marc Petit, Alessandro Morbidelli, and John Chambers. The Primordial Excitation and
Clearing of the Asteroid Belt. Icarus, 153(2):338–347, 2001.

[9] C T Russell, C A Raymond, A Coradini, H Y Mcsween, M T Zuber, A Nathues, M C De
Sanctis, R Jaumann, A S Konopliv, F Preusker, S W Asmar, R S Park, R Gaskell, H U Keller,
S Mottola, T Roatsch, J E C Scully, D E Smith, P Tricarico, M J Toplis, U R Christensen,
W C Feldman, D J Lawrence, and T J Mccoy. Dawn at Vesta : Testing the Protoplanetary
Paradigm. Nature, 336(May), 2012.

[10] Larry A. Lebofsky. Asteroid 1 Ceres: evidence for water of hydration. Monthly Notices of
the Royal Astronomical Society, 182(1), 1978.



258

[11] Vladimir Zakharov, Seungwon Lee, Paul Von Allmen, Laurence O Rourke, Dominique Bock-
ele, David Teyssier, Anthony Marston, Thomas Mu, Jacques Crovisier, and M Antonietta
Barucci. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505:525–
527, 2014.

[12] C T Russell, C A Raymond, E Ammannito, D L Buczkowski, M C De Sanctis, H Hiesinger,
R Jaumann, A S Konopliv, H Y Mcsween, A Nathues, R S Park, C M Pieters, T H Prettyman,
T B Mccord, L A Mcfadden, S Mottola, M T Zuber, S P Joy, C Polanskey, M D Rayman,
P J Chi, J P Combe, A Ermakov, R R Fu, M Hoffmann, Y D Jia, S D King, D J Lawrence,
S Marchi, F Preusker, T Roatsch, O Ruesch, P Schenk, M N Villarreal, and N Yamashita.
Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353(6303):2–5,
2016.

[13] D S Lauretta, S S Balram-Knutson, E Beshore, W V Boynton, C Drouet d’Aubigny, D N
DellaGiustina, H L Enos, D R Golish, C W Hergenrother, E S Howell, C A Bennett, E T
Morton, M C Nolan, B Rizk, H L Roper, A E Bartels, B J Bos, J P Dworkin, D E Highsmith,
D A Lorenz, L F Lim, R Mink, M C Moreau, J A Nuth, D C Reuter, A A Simon, E B
Bierhaus, B H Bryan, R Ballouz, O S Barnouin, R P Binzel, W F Bottke, V E Hamilton, K J
Walsh, S R Chesley, P R Christensen, B E Clark, H C Connolly, M K Crombie, M G Daly, J P
Emery, T J McCoy, J W McMahon, Daniel J. Scheeres, S Messenger, K Nakamura-Messenger,
K Righter, and S A Sandford. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu.
Space Science Reviews, 212(1):925–984, oct 2017.

[14] Yuichi Tsuda, Makoto Yoshikawa, Takanao Saiki, Satoru Nakazawa, and Sei-ichiro Watan-
abe. Acta Astronautica Hayabusa2 Sample return and kinetic impact mission to near-earth
asteroid Ryugu. Acta Astronautica, (January):1–7, 2018.

[15] Luis W Alvarez. Experimental evidence that an asteroid impact led to the extinction of many
species 65 million years ago. Proceedings of the National Academy of Sciences of the United
States of America, 80(January):627–642, 1983.

[16] Christopher Chyba, Paul Thomas, and Kevin Zahnle. The 1908 Tunguska explosion: atmo-
spheric disruption of a stony asteroid. Nature, 361(1), 1993.

[17] Marco Micheli, Richard J Wainscoat, and Larry Denneau. Detectability of Chelyabinsk-like
impactors with Pan-STARRS. Icarus, 303:265–272, 2018.

[18] Rob Landis and Lindley Johnson. Advances in planetary defense in the United States (in
press). Acta Astronautica, 2018.

[19] William F Bottke, David Vokrouhlick, David P Rubincam, and David Nesvorn. The
Yarkovsky and YORP Effects : Implications for Asteroid Dynamics. Annual Review of
Earth and Planetary Sciences, 34, 2006.

[20] Dana G Andrews, K D Bonner, A W Butterworth, H R Calvert, B R H Dagang, K J Dimond,
L G Eckenroth, J M Erickson, B A Gilbertson, N R Gompertz, O J Igbinosun, T J Ip, B H
Khan, S L Marquez, N M Neilson, C O Parker, E H Ransom, B W Reeve, T L Robinson,
M Rogers, P M Schuh, C J Tom, S E Wall, N Watanabe, and C J Yoo. Defining a successful
commercial asteroid mining program. Acta Astronautica, 108:106–118, 2015.



259

[21] Rudolf Emil Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 82(Series D):35–45, 1960.

[22] Leonard Mcgee and Stanley Schmidt. Discovery of the Kalman Filter as a Practical Tool for
Aerospace and Industry Discovery of the Kalman Filter as a Practical Tool for Aerospace
and Industry. Technical Report November, 1985.

[23] E. J. Lefferts, F. L. Markley, and M. D. Shuster. Kalman Filtering for Spacecraft Attitude
Estimation. Journal of Guidance, Control, and Dynamics, 5(5):417–429, 1982.

[24] J. W. Zielenbach, J. W. O’Neil, J. F. Jordan, S. K. Wong, R. T. Mitchell, W. A. Webb, and
P. E. Koskela. Mariner 9 Navigation, NASA Technical Report 32-1586. Technical report,
1973.

[25] S. P. Synnott, W. M. Owen, J. E. Riedel, J. A. Stuve, and R. M. Vaughan. Optical navigation
during the Voyager Neptune encounter. In Astrodynamics Conference, Guidance, Navigation,
and Control and Co-located Conferences, 1990.

[26] Kevin Criddle, Julie Bellerose, Dylan Boone, William Owen, and Duane Roth. Optical Navi-
gation During Cassini’s Solstice Mission. In AAS/AIAA Astrodynamics Specialist Conference,
Columbia River Gorge, Stevenson, WA, 2017.

[27] Francesco Castellini, David Antal-Wokes, Ramon Pardo de Santayana, and Klaas Vantourn-
hout. Far Approach Optical Navigation and Comet Photometry for The Rosetta Mission. In
Proceedings of the 25th ISSFD, number 1, pages 1–19, 2015.

[28] J. E. Riedel, W. M. Owen, J. Stuve, S. P. Synnott, and R. M. Vaughan. Optical Navigation
for the Galileo Gaspra Encounter.

[29] B. G. Williams, P. G. Antreasian, J. J. Bordi, E. Carranza, S. R. Chesley, C. E. Helfrich,
J.K. Miller, W. M. Owen, and Wang. T. C. Navigation for NEAR Shoemaker: the First
Spacecraft to Orbit an Asteroid. In AAS/AIAA Astrodynamics Specialist Conference, 2001.

[30] W. M. Owen and Wang. T. C. NEAR Optical Navigation at Eros. In AAS/AIAA
Astrodynamics Specialist Conference, Quebec City, Canada, 2001.

[31] Takashi Kubota, Tatsuaki Hashimoto, JuN’Ichiro Kawaguchi, Masashi Uo, and KeN’Ichi
Shirakawa. Guidance and navigation of hayabusa spacecraft for asteroid exploration and
sample return mission. 2006 SICE-ICASE International Joint Conference, pages 2793–2796,
2006.

[32] Francesco Castellini, Ramon Pardo De Santayana, Klaas Vantournhout, and Mathias Lauer.
Operational Experience and Assessment of the Implementation of the Maplet Technique for
Rosetta’s Optical Navigation. In AAS/AIAA Astrodynamics Specialist Conference, pages
1–20, 2017.

[33] R W Gaskell, O S Barnouin-Jha, Daniel J. Scheeres, a S Konopliv, T Mukai, S Abe, J Saito,
M Ishiguro, T Kubota, T Hashimoto, J Kawaguchi, M Yoshikawa, K Shirakawa, T Kominato,
N Hirata, and H Demura. Characterizing and navigating small bodies with imaging data.
Meteoritics and Planetary Science, 43(6):1049–1061, 2008.



260

[34] Coralie D Jackman, Derek S Nelson, Leilah K Mccarthy, Tiffany J Finley, Andrew J Liounis,
Kenneth M Getzandanner, and Peter G Antreasian. Optical Navigation Concept of Opera-
tions for the Osiris-Rex Mission. In AAS/AIAA Space Flight Mechanics Meeting, number
Code 595, pages 1–18, San Antonio, TX, 2018.

[35] Bradley J Clement and Mark D Johnston. Design of a Deep Space Network Scheduling
Application. In Proceedings of the International Workshop on Planning and Scheduling for
Space, 2006.

[36] Raymond B Frauenholz, Ramachandra S Bhat, Steven R Chesley, Nickolaos Mastrodemos,
William M Owen, and Mark S Ryne. Deep Impact Navigation System Performance. Journal
of Spacecraft and Rockets, 45(1):39–56, 2008.

[37] Joseph Starek, Marco Pavone, Issa A. Nesnas, and Behçet Açikmese. Spacecraft Autonomy
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