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Observations of inactive satellites in Earth orbit show that these objects are generally rotat-

ing, some with very fast rotation rates. In addition, observations indicate that the rotation rate

at which defunct satellites spin tends to evolve over time. However, the cause for this behavior

is unknown. The observed secular change in the spin rate and spin axis orientation of asteroids

is known to be caused by the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, which re-

sults in a torque that is created from reflected thermal energy and sunlight from the surface of an

asteroid. This thesis explores the effect of YORP on defunct satellites in Earth orbit and offers

this as a potential cause for the observed rotation states of inactive satellites. In this work, several

different satellite models are developed to represent inactive satellites in Geostationary Earth Orbit

(GEO). The evolution of the spin rate and obliquity for each satellite is then explored using Euler’s

equations of motion as well as spin and year averaged dynamics. This results in the dynamics

being analyzed to understand the secular changes that occur, as well as the variations that result

from short period terms over the course of a year. Some of the model satellites have asymmetric

geometries, leading to the classical YORP effect as originally formulated for asteroids. One model

satellite is geometrically symmetric, but relies on mass distribution asymmetry to generate the

YORP effect. Because the YORP effect is directly dependent on geometric, optical and thermal

properties of the satellite, varying these parameters can lead to different long-term rotational be-

havior. A sensitivity study is done by varying these parameters and analyzing its effect on the

long-term dynamics of a satellite. Additionally, available observation data of inactive GEO satel-

lites are used to estimate the YORP torque acting on those bodies. A comparison between this

torque and the expected torque on a defunct satellite shows that the two are of the same order of

magnitude, demonstrating that YORP could be a cause for the observed behavior.
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Chapter 1

Introduction

1.1 The YORP Effect

For ages humans have been studying outer space and trying to understand the dynamics

governing objects in it, both natural and artificial. A mechanism that explains the observed ro-

tational dynamics of asteroids is known as the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP)

effect [63]. This effect is credited for the observed secular change in angular velocity of various as-

teroids, including (2000) PH5, (1862) Apollo, (1620) Geographos, (3103) Eger and (25143) Itokawa

[37, 74, 28, 17, 16, 15, 38]. One aspect of YORP is sunlight being absorbed and re-emitted as

thermal radiation [63]. The photons that are re-emitted create a net force on the body’s surface

which acts opposite the normal of the surface. Another aspect of this effect is the force created by

sunlight, which is reflected by the body’s surface and whose direction is dependent on the optical

properties of the surface [65]. In general, these forces do not act through the center of mass of

the body and therefore create torques. The net torque yields a change in the angular velocity and

orientation of the spin axis (obliquity) of an asteroid [63, 10]. The net moment caused by YORP on

an asteroid is rather small and therefore the impact of YORP on an asteroid’s rotational dynamics

occurs over long periods of time [65].

1.2 Space Debris Problem

While the YORP effect has been extensively studied and observed for asteroids, its effect

on inactive satellites has not been analyzed. For decades, mankind has launched satellites into
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Earth orbit, which has led to the large amount of space debris found in orbit. It is estimated

that there are currently more than 21,000 pieces of debris larger than 10 cm found in Earth orbit

and another 500,000 pieces of debris ranging in size from 1 - 10 cm are estimated to exist [52].

All of this debris creates a collision hazard for active satellites found in orbit. These collisions

create a domino effect by creating more debris and hence increasing the risk of future collisions.

This domino effect could leave regions of space unusable in the future. There are two main debris

creating events that have occurred in low Earth orbit (LEO). The first is the February 2009 collision

between Cosmos 2251, a U.S. communications satellite, and Iridium 33, an inactive Russian satellite

[80]. This collision resulted in 2,199 new pieces of catalogued debris [60]. Due to the added debris

from the collision, the European Space Agency’s (ESA) ERS-2 and Envisat missions, which were

in similar orbits, experienced a 30% increase in the probability of a collision with space debris

[14]. Another important event that affected the amount of space debris occurred in January 2007

when China destroyed Fengyun-1C, an inactive weather satellite. The destruction of the satellite,

which occurred at an altitude of 863 km, took place as part of a Chinese anti-satellite weapon test.

This event alone increased the amount of space debris by 20% [59]. The destruction of Fenguyn-

1C was especially worrisome because there was already a high density of debris at the altitudes

between 700 and 1000 km where many observation satellites are located [59]. In June 2007 NASA

had to maneuver its Terra satellite to avoid collision with space debris created from the January

destruction [14].

The hazardous conditions created by debris has led to a growing concern, due to the fact

that this space “trash” can remain in orbit for long periods of time [6]. This threat is particularly

important for objects found in or near geosynchronous Earth orbit (GEO) where there is a lack of

a natural mechanism to remove debris, unlike in LEO where drag causes an object’s semi-major

axis to change causing the object to eventually re-enter the Earth’s atmosphere where it will burn

up [27]. According to the European Space Agency’s (ESA) annual report, the GEO ring consists of

orbits which have a mean motion between 0.9 and 1.1 revolutions/day, eccentricity smaller than 0.2

and inclination no greater than 70 degrees [20]. These parameters make GEO a very unique region
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because satellites will appear to be stationary over a fixed point on Earth (as the inclination of the

orbit deviates from 0o inclination, the satellite will no longer appear fixed but will form a figure “8”

shape with its North and South motion), making this region ideal for communication and military

satellites [72]. In the GEO ring alone, there are 1396 known objects. Of those objects only 436

are controlled and in their designated longitude slots, while the remaining 933 are either drifting,

or in libration orbits, or in highly-inclined orbits or do not have any orbital data [20]. According

to the Inter-Agency Space Debris Coordination Committee (IADC), space debris is defined as any

man-made object found in Earth orbit or re-entering the atmosphere that is no longer functional

[26]. Therefore, the debris found in GEO is made up partly of inactive satellites. In an effort to

reduce the number of defunct satellites found in GEO, in 1997 the IADC proposed that satellites in

GEO should be placed above GEO altitude and their propulsion system should be deactivated at

the end of their life [6]. Despite these recommendations, only 2/3 of disposals are compliant with

the IADC guidelines [30].

1.3 Dynamical Modeling of Space Debris

As a result of the number of uncontrolled objects found in Earth orbit, an important area of

research, known as space situational awareness (SSA), focuses on better understanding the space

environment. This includes both tracking and understanding the dynamics of objects in space.

Having more knowledge of the motion of debris allows for better predictions of potential collision

hazards and allows for more development of debris mitigation technologies. Understanding the

dynamics governing space debris found in Earth orbit involves studying both the orbital motion of

debris as well as the attitude and rotational motion. The major perturbations that will affect the

rotational dynamics of debris are gravity gradient, Eddy current, solar radiation pressure (SRP)

and atmospheric drag torques [70]. The importance of each torque is largely dependent on the

altitude of the debris. Atmospheric drag and Eddy current torques are most dominant in LEO

while SRP is the main perturbation in the GEO ring.

Because of the importance of SSA, there has been a recent push to advance the understanding
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of the dynamics governing space debris, with much of the work having a focus on high-area-to-mass

ratio (HAMR) objects. A large population of these objects in highly eccentric orbits near GEO was

first detected by Schildknecht et. al. [69]. HAMR objects are now believed to be pieces of multilayer

insulation (MLI) that have peeled off from spacecraft [4, 68]. Since their discovery, many researchers

have worked to understand the dynamics of HAMR objects. To de-couple the orbital dynamics from

the attitude dynamics when considering perturbations from SRP, the cannonball model for SRP

is often used. It has been shown that for HAMR objects under geopotential harmonics, luni-solar

perturbations and solar radiation pressure with shadowing effects the eccentricity can experience

large variations [58]. In addition, it has been found that the Saros resonance is important in

the long-term evolution of HAMR objects under the perturbations of Earth’s oblateness, luni-

solar effects and SRP and this resonance can lead to complex evolutions [62]. Furthermore, when

considering SRP in the orbital evolution of HAMR objects, Earth shadowing effects have proven

to have a large impact on the dynamics [75].

In addition to studying the orbital dynamics of HAMR objects, other studies have started

considering either the coupling of the attitude and orbit dynamics or the attitude dynamics alone

alone for these HAMR objects. Früh et. al. studied the coupled attitude and orbit dynamics of

pieces of MLI in near-GEO that are under the influence of Earth’s gravitational field and SRP

perturbations [23]. That work showed that for flat sheets of MLI, even if the optical properties are

constant, the torques created by SRP create changes in the object’s attitude and can yield large

differences in position when the attitude and orbital dynamics are considered coupled. Furthermore,

it was shown that the evolution of the MLI’s attitude changes at a faster rate when the optical

properties are not uniform or if the center of mass is offset from its geometric center [23]. Another

study by Früh and Jah, demonstrates the importance of self-shadowing for coupled attitude and

orbit propagation of MLI being perturbed by the Earth’s gravitational field and SRP [22]. That

paper demonstrated that, under the influence of SRP and gravitational torques, HAMR objects

will have fast changing attitude dynamics and high angular velocity rates. Additionally, Ojakangas

and Hill have studied the effects of YORP on small Earth orbiting objects in an effort to better
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understand light curves and observed data [53]. That study analyzed the effects of SRP torques

on the attitude of HAMR objects, by first considering a pin-wheel which had the same area-to-

mass ratio as MLI and then a small 2 x 1 cm flake used to represent a flake-like object created

during a satellite break-up. The results found that solar radiation pressure has a strong effect on

the angular momentum of a small Earth orbiting object, leading to a complex, tumbling rotation.

All of these studies have demonstrated that SRP will drastically affect the attitude dynamics and

hence the orbital dynamics of HAMR objects since the two are coupled when SRP torques are

being considered. Note that HAMR objects are found in or near GEO, therefore, SRP is the main

perturbation acting on both the orbital and rotational dynamics of these objects. In addition,

HAMR objects by nature have large surface areas which will reflect a large amount of sunlight.

Furthermore, HAMR objects have very small moments of inertia, making it easy for their attitude

to be altered by the torques acting on these objects due to SRP.

Despite all of this research, there is a lack of literature focusing on the dynamics of inactive

satellite. As with HAMR objects, some work analyzes only the long term orbital evolution of

inactive satellites by using the cannonball model of SRP. Van der Ha presented a model using

averaging methods to study the orbital evolution of drifting satellites in near-GEO under the

influence of luni-solar effects, Earth’s gravitational field and SRP. In that paper he compares the

model presented to numerical results from the GEOS-2 satellite, which is in orbit 260 km above GEO

[76]. The model proved to be accurate enough to be used for rough orbit predictions. Aiafar and

Jehn analyzed the long term orbital evolution of retired GEO satellites that were re-orbited above

GEO in 2003, 2004 and 2005 [5]. For that analysis, the satellites were considered to experience the

effects of Earth’s oblateness, luni-solar perturbations and SRP. These satellites were propagated for

200 years and special focus was paid on the evolution of the orbit’s eccentricity for the purpose of

determining the best eccentricity of graveyard orbits [5]. The paper found that an ideal graveyard

orbit will have an eccentricity vector which is initially pointing towards the Sun. Those studies

showed that SRP will largely affect the eccentricity of satellite’s whose orbit is in or near GEO.

In addition to the work done to understand the orbital evolution of inactive satellites, work
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has been done to study the attitude dynamics of these objects. There have been studies to consider

the effects of the various torques previously mentioned on the attitude of satellites. Zanardi and

Real studied the effects of altitude on the gravity gradient, solar radiation pressure, aerodynamic

and magnetic torques acting on a circular cylindrical satellite. That analysis focused on LEO with

altitudes analyzed between 0 - 800 km from the surface of the Earth [82]. The results of that study

showed that the effects of each torque are highly dependent on the altitude of the satellite as well

as the physical properties of the satellite including size, mass, and moments of inertia. In 2007,

van der Ha presented a method to study the long-term drift of the spin axis for a spin-stabilized

spacecraft as a result of SRP torques [77]. The method presented in that paper used averaging

over the spin period of the spacecraft and was applied to CONTOUR, which was supposed to have

a long hibernation period. The methods given in that paper are presented as tools for the design

of attitude control systems, particularly for deep space probes with long hibernation periods [77].

In 1975, Modi and Pande studied the effects of gravity gradient and SRP torques on slow spinning

satellites to study the resonant behavior [46]. Gravity gradient torques and Eddy current torques

created from Earth’s magnetic field are prominent in LEO and have been used in simulations of the

inactive LEO satellite Envisat. The simulations demonstrate that a combination of both torques

could be an explanation for the observed rotational behavior of the satellite between April 2013 and

September 2013 [54]. Despite these studies, the effects of SRP on the attitude evolution of inactive

satellites in GEO, where SRP is the main perturbation, are still not understood; though it is well

known that SRP torques will have an impact on a satellite’s attitude and methods for attitude

control have been developed to take advantage of these torques [13, 44, 45, 56, 71]. Recently, more

accurate models of SRP have been developed to help improve the understanding of the effects of

this force on satellites and to improve orbit determination (OD) [83, 41].

1.4 Observations of Inactive Satellites

In addition to studying the dynamical behavior of debris through simulations, there is work

focusing on observations of these objects. Observations taken of Envisat on September 25, 2013
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demonstrated that the satellite had a rotational period of 134.74 seconds. The satellite was then

observed over seven consecutive months where its rotational period increased at a rate of 36.7

ms/day [34]. Using Graz 2kHz satellite laser ranging (SLR) data from October 9, 2003 - December

22, 2008 it was determined that the rotational period of the passive LEO satellite, AJiASAI, has a

spin period of about 2 seconds and the period increases in an exponential manner [35]. Kucharski

et. al. point out that the accuracy at which they were able to estimate the rotational period

of the satellite allows for examination of the effects of SRP on the spin period of the satellite

which will improve OD [35]. Additionally, observations of defunct GEO satellites show that the

rotational period can vary in time, and fast spin rates are often detected [57]. It is important to

note however, that while some satellites have very fast observed rotation rates, there are others that

have been observed to have spin rates of less than 1o/sec [9]. The rotational periods of the satellites

Solidaridad 1, Telstar 401, EchoStar 2 and HGS-1, which were observed between March 2012 and

December 2013, experienced variations of 15-25% over the time in which they were observed [18].

Observations also show that satellites that once were spin stabilized now have rotation periods

ranging from 2 to 7 seconds, empty launch vehicles now have periods between 5 to 15 seconds, and

a variety of satellites that were 3-axis stabilized now have periods ranging from 15 to 500 seconds

[29, 57]. In addition, these observations demonstrate that some objects experience an increase in

rotational period followed by a decrease in rotational period and vice versa [57]. Other observations

indicate that it is hard to determine the rotational period of some observed objects as light curves

are rapidly changing. Additionally, some observations prove difficult to distinguish the true rotation

period of the satellite due to symmetry and optical properties.

Currently, there is no explanation as to what is causing defunct satellites to begin rotating

and reach such fast rotation rates. Yet having this knowledge is very important for better orbit

propagation models which will in turn improve the accuracy of collision predictions. In addition,

understanding why objects are rotating the way they are allows us to better predict their rotational

behavior which is key to developing active debris removal methods and technologies. Many debris

removal methods, including suggestions to salvage parts from defunct satellites, require direct
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interaction with the inactive satellite [12, 21, 25]. This can prove to be a very difficult task if a

satellite has a very fast rotation rate, especially if that rate is changing with time and the changes

cannot be predicted.

1.5 Contributions

This thesis seeks to gain knowledge of the rotational dynamics of inactive GEO satellites

due the YORP effect. We focus on GEO satellites since SRP is the main perturbation in GEO

and is the main source of uncertainty for predicting GEO debris motion. The SRP perturbation

intrinsically depends on the attitude of the body with respect to the Sun, so a good understanding

of the body’s attitude dynamics will allow for more accurate orbital predictions. The work in this

thesis lays down the ground work to apply the YORP effect for inactive satellites as opposed to

asteroids and demonstrates that the YORP effect could be causing the observed rotational behavior

of inactive satellites.

The goals of the work presented in this thesis can be summarized by the following thesis statement:

Thesis Statement

Studying the evolution of the rotational dynamics of inactive satellites in Earth
orbit due to the YORP effect demonstrates that YORP is a dominating factor for
the rotational dynamics of defunct satellites. Understanding the effects of YORP
on the rotational dynamics of inactive satellites and orbital debris improves space
situational awareness (SSA).

The contributions of this thesis are divided into three different categories:

Analytical Theory

• Developed analytical solution for the normal emission portion of the averaged Yarkovsky-

O’Keefe-Radzvieskii-Paddack coefficient for a single facet

Dynamical Evolution

• Used spin and year averaged equations of motion to analyze the evolution of angular velocity
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and obliquity for the Gorizont and GOES 8 satellite under the influence of a net YORP

torque

• Analyzed variations in angular velocity and obliquity due to short period terms for the

GOES 8 and Gorizont satellites under the influence of a net YORP torque

• Studied the effect of varying optical, thermal, and geometrical properties of a satellite on

the net YORP torque acting on the satellite and the eventual long-term rotational behavior

of the satellite.

Comparison of Theory with Observations

• Used year averaged theory to make comparisons between theory and observations of the

Gorizont, GOES 8 and GOES 10 satellites.

• Used Euler’s equations of motion to propagate the rotational dynamics of the GOES 8

satellite under the influence of a net YORP torque to make comparisons between theory

and observations of the GOES 8 satellite.

1.5.1 Journal Papers

The following journal papers resulted from the work done for this thesis:

• Albuja, A.A., Scheeres, D.J., “Analytical Solution for the Normal Emission Portion of the

Averaged Yarkovsky-O’Keefe-Radzvieskii-Paddack Coefficient for a Single Facet”, Monthly

Notices of the Royal Astronomical Society, 2015.

• Albuja, A.A., Scheeres, D.J., McMahon, J.W., “Evolution of Angular Velocity for Defunct

Satellites as a Result of YORP: An Initial Study, Advances in Space Research, 2015.

• Albuja, A.A., Scheeres, D.J., “The YORP Effect on the GOES 8 and GOES 10 Satellites:

A Case Study”, In preparation.
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1.5.2 Conference Papers

The following conference papers resulted from the work done for this thesis:

• Albuja, A.A. and Scheeres, D.J., “Representation of Short Period Variations in an Inac-

tive Satellite’s Rotational State Due to the YORP Effect”, 30th International Symposium

on Space Technology and Science, Kobe, Japan, July, 2015.

• Albuja, A.A. and Scheeres, D.J., “Short Period Variations in Angular Velocity and Obliq-

uity of Inactive Satellites Due to the YORP Effect”, 25th AAS/AIAA Spaceflight Mechanics

Meeting, Williamsburg, Virginia, January, 2015.

• Albuja, A.A. and Scheeres, D.J., “Effects of Optical and Geometrical Properties on YORP

Effect for Inactive Satellites”, Advanced Maui Optical and Space Surveillance Technologies

Conference, Maui, Hawaii, September, 2014.

• Cognion, R., Albuja, A.A. and Scheeres, D.J., “Tumbling Rates of Inactive GEO Satel-

lites”, 65th International Astronautical Congress, Toronto, Canada, September, 2014.

• Albuja, A.A., and Scheeres, D. J., “Evolution of Angular Velocity for Large Space Debris

as a Result of YORP,” IAC 13-A6.2.6, 64th International Astronautical Congress, Beijing,

China, September, 2013.

• Albuja, A.A., and Scheeres, D.J., “Defunct Satellites, Rotation Rates and the YROP

Effect”, Advanced Maui Optical and Space Surveillance Technologies Conference, Maui,

Hawaii, September, 2013.

• Albuja, A.A., Scheeres, D. J., and McMahon, J.W., “Evolution of Angular Velocity for

Space Debris as a Result of YORP,” AAS 13-316, 23rd AAS/AIAA Space Flight Mechanics

Meeting, Kauai, Hawaii, February, 2013.



11

1.5.3 Abstracts and Invited Talks

The following abstracts resulted from the work done for this thesis:

• Albuja, A.A. and Scheeres, D.J., The YORP Effect on the GOES 8 Satellite, 5th Smead

Fellows Symposium, Vail, Colorado, May, 2015.

• Albuja, A.A. and Scheeres, D.J., “The Effect of YORP on the Rotation of Inactive

Satellites”, The Spacecraft Anomalies and Failures Workshop Act II, Chantilly, Virginia,

July, 2014.

• Albuja, A.A. and Scheeres, D.J., “Rotation of Inactive Satellites Due to YORP”, 4th

Smead Fellows Symposium, Vail, Colorado, May 2015.

• Albuja, A.A. and Scheeres, D.J., Defunct Satellites and the YORP Effect, 3rd Smead

Fellows Symposium, Vail, Colorado, April, 2013.

• Albuja, A.A. and Scheeres, D.J., Space Debris and the YORP Effect, 2nd Smead Fellows

Symposium, Vail, Colorado, May, 2012.

• Albuja, A.A. and Scheeres, D.J., Space Debris and the YORP Effect, 1st Smead Fellows

Symposium, Vail, Colorado, July, 2011.

1.6 Organization

In this thesis, the theory of the YORP effect is given in Chapter 2. That chapter gives

a description of the heliocentric and body-fixed coordinate frames used for the work presented

throughout this thesis. In addition, the YORP force and moment are developed for a satellite

whose geometry is described by N facets. Both the net YORP force and moment are expressed as

Fourier series and a definition of the necessary coefficients is given. Furthermore, the net YORP

torque can be averaged over a year to find the average torque acting on a satellite. As with the

instantaneous net YORP torque, this averaged torque can be expressed as a Fourier series. As
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such this representation of the averaged torque and the necessary averaged Fourier coefficients are

described in Chapter 2. Next, an analytical solution for the averaged C0 coefficient is developed and

tested for two different asteroid shape models. Lastly, the inferred normalized YORP coefficients

are given in the last section of the chapter.

Chapter 3 of this dissertation gives a description of the equations of motion that describe

the rotational dynamics of an inactive satellite under the influence of the YORP effect. For the

work presented in this thesis, three different levels of accuracy are explored to analyze the evolution

of the rotational dynamics of an inactive satellite. First, we use Euler’s equations of motion and

quaternions to propagate the angular velocity and orientation of a satellite. These equations of

motion are described in the first section of Chapter 3. Then, those equations of motion are averaged

once over the spin period of the satellite to obtain the spin averaged dynamics which are given in

the second section of the chapter. Finally, the equations of motion are averaged once more over a

year, which are presented in the last section of Chapter 3.

The fourth chapter of this thesis explores how the net YORP torque acting on a satellite

changes as the optical, thermal and geometrical properties of a satellite are varied. A simple

satellite model, described in the first section of Chapter 4, is used for the study. The simple model

leads to a simplified expression for the YORP torque, which is developed and presented. The last

section of the chapter gives the results found through the analysis in the chapter.

The dynamics of GEO satellites under YORP are analyzed in Chapter 5. First, a description

of the various satellite models used to study the effect of YORP on the rotational dynamics of

an inactive satellite are given. Next, the dynamics of each satellite model are analyzed. Here the

different equations of motion are used to propagate the rotational dynamics of the various satellite

models. For that portion of the analysis, all satellites are assumed to be uniformly rotating about

their maximum moment of inertia (i.e. the satellites are in a stable rotation state). Once the

dynamics of a stably rotating satellite are analyzed, we consider a satellite tumbling satellite and

demonstrate the importance of accounting for energy dissipation.

In Chapter 6, the theory is used to make comparisons to observations of three different
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satellites. First, year averaged theory is used to make comparisons with previously published

observations of the Gorizont satellites. Next, Euler’s equations of motion are used to propagate

the rotational state of the GOES 8 satellite and the results are used to make comparisons with

observations of the rotational period of the satellite. Lastly, year averaged theory is once again

used to make comparisons with observations of the GOES 10 satellite. The comparisons made

between the theory and observations for these three satellites indicate that the YORP effect may

be an explanation for the observed rotational dynamics of inactive satellites in Earth orbit.



Chapter 2

The YORP Effect Theory

As previously mentioned, the YORP effect is a mechanism which uses the reflection and

re-emission of sunlight and thermal energy to alter the spin rate and obliquity of an asteroid. The

work presented in this thesis applies the YORP effect to inactive satellites to gain an understanding

of its effect on the rotational dynamics of those objects. In the context of asteroids, much previous

work has been done developing the YORP theory and this thesis leverages that previous work

for the application to inactive satellites. Čapek and Vokrouhlický analyzed the effects of YORP

when the surface conductivity is assumed to be non-zero [11]. In 2007, Nesvorný and Vokrouhlický

computed the YORP torques analytically, however, this was limited to near-spherical objects [48].

Nesvorný and Vokrouhlický analyzed the effect of YORP on obliquity by representing the surface as

a series in spherical harmonics [49]. Again, this work was restricted to objects with near-spherical

shapes. In 2008, Nesvorný and Vokrouhlický showed that the torques acting on a body due to

impinging radiation pressure alone vanish when averaged over the rotational and orbital periods

of the body. This was done by analytically computing the YORP torques acting on the body [50].

The implication is that only reflection and re-emission effects dominate YORP. Mysen developed

an analytical method to describe effects of thermal emission on the rotation state and orbit of an

asteroid [47]. In 2007, Scheeres expressed the YORP torque as a Fourier series. Furthermore, that

work developed differential equations averaged over the rotational and orbital period of the asteroid

to show the effect of YORP on angular velocity and obliquity. The equations of motion developed

are functions of the Fourier coefficients used to express the YORP moment. From that work, it
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was shown that the Fourier coefficients used to describe the YORP torques can be averaged to find

the secular effects of YORP on the spin state of an asteroid and integral definitions to find the

necessary averaged coefficients were given [65]. That paper also outlined an analytic solution for

the YORP torque on a single facet, but that solution was not valid across all facet geometries.

The theory developed by Scheeres [65] is used in the work presented here to study the YORP

effect in the context of inactive satellites. This chapter presents the theory necessary to obtain

the results described in this thesis. In the following sections, the coordinate frames and definition

of the body’s orientation used throughout the paper are described. Next, the YORP force and

its corresponding coefficients are defined. This is followed by a description of the YORP moment

and the moment coefficients. Next, the year averaged moment and year averaged coefficients are

presented. Lastly, we re-examine the averaged coefficients described by Scheeres [65] and develop

an analytical solution for finding the averaged ~C0 coefficient used to describe the secular YORP

effect on a body. It is important to note that for the analytical solution, we focus only on normal

emission of light. Throughout this chapter, special note is made when the theory is updated for

use with defunct satellites rather than asteroids

2.1 Body Orientation

There are two coordinate frames used in this work. The body fixed frame, B, is defined to

have its origin at the center of mass (CM) of the satellite with its axes lined up along the principle

moments of inertia of the satellite. The ẑ-axis lies along the maximum moment of inertia, and

the x̂-axis and ŷ-axis lie along the minimum and intermediate moments of inertia forming a right-

handed system. The second coordinate frame used is an inertial heliocentric frame, H, where the

x̂-axis lies along the line of nodes, the ẑ-axis lies along the Earth’s rotation pole, and the ŷ-axis

completes the right-handed system. The relationship between the two frames are shown in Figure

1.

The satellite is assumed to be uniformly rotating about its maximum moment of inertia (the

z-axis of the B frame). The orbit of the satellite is defined in the body-fixed frame. In an inertial,
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Figure 2.1: Heliocentric and body fixed coordinate frames

body-centered frame, the Sun will appear to orbit the body with an inclination (obliquity), is, right

ascension of the ascending node, Ωs, and argument of periapsis, ωs. These orbital elements are

used to define the solar latitude, δs, and solar longitude, λs, in the body-fixed frame. These two

parameters (δs and λs) are used to define the unit vector of the Sun’s position in the body frame

as

û = cos (δs) cos (λs)x̂ cos (δs) sin (λs)ŷ + sin (δs)ẑ (2.1)

where

sin δs = sin is sin (ωs + ν) (2.2)

λs = Ωs + tan−1(cos is tan (ωs + ν))− φ (2.3)

where ν is the true anomaly and φ is the rotation angle of the satellite. The notation x̂ will be

used throughout this thesis to denote a unit vector. Figure 2.2 shows the geometry described here,

where n̂orb is the vector normal to the orbit plane. In this frame, Ωs evolves at the angular rate

ωz, so this orbit plane rotates about the ẑ axis once per satellite spin period.

2.2 YORP Force and Force Coefficients

When computing the YORP force acting on the satellite several assumptions are made. The

theory presented and applied in this work assumes that a satellite’s surface is made up of N facets,
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Figure 2.2: Geometry related to body orientation

where the geometry of the body will be more accurately captured as N approaches infinity. In the

work done for this thesis, we neglect the effects of shadowing on the appendages of the satellite from

the bus. For the following discussion, it is assumed that the surface of the body being analyzed is

represented by an arbitrary number of facets. When considering the YORP torques caused by the

appendages (e.g. solar panels and antenna) of the satellite, the model for the SRP force defined by

McInnes [40] is used. The SRP force acting on a single facet is

~fi = −G1

R2
[{ρisi (2n̂in̂i − U) + U} · ûû · n̂i + a2,in̂in̂i · û]H(û)Ai (2.4)

a2,i = B(1− si)ρi + (1− ρi)B
(
εf,i − εb,i
εf,i + εb,i

)
(2.5)

When considering the YORP torques caused from other components of the satellite (e.g. bus),

the SRP force defined by Scheeres [65] is used. The force is defined in the same manner, however,

a2,i = B(1− si)ρi + (1− ρi)B.

The facet’s optical and thermal properties are defined such that, ρi is the facet’s albedo

(the fraction of received radiation that is reflected), si is the fraction of the reflected light that is

specularly reflected, Ai is the facet’s area, B is the Lambertian scattering coefficient (usually taken

to be 2/3), G1 is the solar radiation constant approximated by 1×1014 kg km/s2, R is the distance

to the Sun and εf,i and εb,i are the emissivity of the front and back of the facet, respectively. The
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force is also dependent on the facet’s orientation; the vector normal to the facet is given by n̂i and

H(û) is a function which is equal to 1 when the facet is lit by the Sun and 0 when it is not. Lastly,

U is the identity dyad. The vector normal to the facet is found by

n̂i = [cos (δi) cos (λi), cos (δi) sin (λi), sin (δi)]
T (2.6)

where δi is the latitude of the normal vector for the ith facet and λi is the longitude of the normal

vector for the ith facet. The geometry of one facet in the B frame is shown by Figure 2.3, where

the blue zoom-in shows the latitude and longitude of the normal vector by placing the facet at the

center of the body-fixed frame for ease of explanation.
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Figure 2.3: Orientation and position of a single facet in B frame

Note, that using McInnes’ definition of the force for the facets making up the appendages

assumes that the satellite’s appendages are at thermal equilibrium [40]. This model allows con-

duction through the appendages of the satellite which lessens the effect of YORP. The force model

used for the bus of the satellite assumes that all emission occurs from the front side of the facets

and that the emissivity of the front of the facet is equal to one. For this work all thermal emission

is assumed to occur instantaneously and therefore, thermal lag is ignored (this only affects the
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obliquity evolution by scaling the coefficients by sin (φlag) and cos (φlag)). In addition, the internal

temperature gradients of the satellite are not accounted for in this work. According to Vigue et.

al. [78], for a GPS satellite, the temperature difference between the front and back of a solar panel

is approximately 3K. In that case the solar panels of the satellite are controlled in such a way so

that they are continuously facing the Sun. However, an inactive satellite which is rotating will not

control its solar panels so that they are pointed towards the Sun, so the motion of the satellite will

cause both the front and the back of the panel to receive sunlight. As a result, the temperature

difference between the two sides of the solar panel is ignored.

There are two important differences when the YORP effect is applied to defunct satellites

as opposed to natural bodies, such as asteroids. First, the front and back of the facets making

up the appendages of the satellite are important, whereas for asteroids only the front of a facet is

considered for all facets making up the asteroid model. This is seen in the a2 term by taking into

consideration the effects of the facet’s front and back emissivity for the appendages of the satellite.

The second difference when analyzing the effect of YORP in defunct satellites and asteroids is the

importance of the specular reflection component. Natural bodies in general do not have a significant

specular reflection component.

With the force on a single facet defined, the total force acting on the satellite can be defined

as

~F =
N∑
i=1

~fi (2.7)

As described by Scheeres [65], the total force (given in Eq. 2.7) acting on the satellite can be

represented as a Fourier series

~F =
G1

R2

∞∑
n=0

[
~An cos (nλs) + ~Bn sin (nλs)

]
(2.8)

where ~An and ~Bn are Fourier coefficients which are a function of solar latitude and λs is the

longitude of the Sun. These coefficients can be broken up into three terms and written as

~An =
N∑
i=1

(
−Ai
π

I2
cn,i · n̂i

)
+

N∑
i=1

(
a2,i
−Ai
π

n̂in̂i · I1
cn,i

)
+

N∑
i=1

(
ρisi
−Ai
π

(2n̂in̂i − U) · I2
cn,i · n̂i

)
(2.9)
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~Bn =
N∑
i=1

(
−Ai
π

I2
sn,i · n̂i

)
+

N∑
i=1

(
a2,i
−Ai
π

n̂in̂i · I1
sn,i

)
+

N∑
i=1

(
ρisi
−Ai
π

(2n̂in̂i − U) · I2
sn,i · n̂i

)
(2.10)

where the first term represents the force from impinging photons (before being reflected), the second

term shows the radiation that is isotropically scattered and re-emitted, this is a combination of

reflected light and thermal emission, and the third term is the radiation that is specularly reflected.

Note that for ~A0 and ~B0 the area of the facets should be divided by 2π instead of π in all three

terms. The I1
cn,i, I

2
cn,i, I

1
sn,i and I2

sn,i matrices are defined as

I1
cn,i =

∫ λr,i

λs,i

û cos (nλs) dλs (2.11)

I2
cn,i =

∫ λr,i

λs,i

ûû cos (nλs) dλs (2.12)

I1
sn,i =

∫ λr,i

λs,i

û sin (nλs) dλs (2.13)

I2
sn,i =

∫ λr,i

λs,i

ûû sin (nλs) dλs (2.14)

where λs,i is the longitude of the Sun at sunset for the ith facet and λr,i is the longitude of the Sun

at sunrise for the ith facet, these longitudes are further discussed in Section 2.5.1.

2.3 YORP Moment and Moment Coefficients

The YORP torque is the net torque acting on the satellite after summing the torque on each

facet at a given time. The moment due to the force acting on each facet is simply the cross product

of the vector pointing from the center of mass to the center of the facet with the force acting on

that facet,

~mi = ~ri × ~fi (2.15)

where ~ri is the vector pointing to the center of the ith facet expressed in the B frame. The total

moment acting on the satellite due to YORP is then found by adding all the moments together,

~M =
∑N

i=1 ~mi. Note that this gives the total moment acting on the satellite as a result of solar
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irradiation at a given point along the orbit. As with the total force, the total moment acting on

the satellite can be represented as a Fourier series

~M =
G1

R2

∞∑
n=0

[
~Cn cos (nλs) + ~Dn sin (nλs)

]
(2.16)

where ~Cn and ~Dn are vector Fourier coefficients expressed in the B frame that are functions of the

solar latitude [65]. Similar to the ~An and ~Bn coefficients, the moment coefficients can be broken

up into three components to represent the torque resulting from insolation, scattered reflection and

specular reflection.

~Cn =
N∑
i=1

~ri×
(
−Ai
π

I2
cn,i · n̂i

)
+

N∑
i=1

~ri×
(
a2,i
−Ai
π

n̂in̂i · I1
cn,i

)
+

N∑
i=1

~ri×
(
ρisi
−Ai
π

(2n̂in̂i − U) · I2
cn,i · n̂i

)
(2.17)

~Dn =

N∑
i=1

~ri×
(
−Ai
π

I2
sn,i · n̂i

)
+

N∑
i=1

~ri×
(
a2,i
−Ai
π

n̂in̂i · I1
sn,i

)
+

N∑
i=1

~ri×
(
ρisi
−Ai
π

(2n̂in̂i − U) · I2
sn,i · n̂i

)
(2.18)

The moment coefficients, ~Cn and ~Dn, are found by taking the cross product of ~r with the force

coefficients, ~An and ~Bn, respectively. Hence, for the ~C0 and ~D0 coefficients the area of the facets

should be divided by 2π instead of π in all three terms.

2.4 Year Averaged YROP Moment and Year Averaged Moment Coefficients

As described in Section 2.3, the Fourier coefficients describing the total moment acting on the

satellite are a function of solar latitude, which will be dependent on the satellite’s true anomaly. The

average YORP torque that a satellite experiences throughout the course of a year is found by using

averaging methods. We can integrate the total moment over the true anomaly of the satellite to find

the year averaged moment which will described the average YORP torque a satellite experiences

in one year. The year averaged moment will be dependent on year averaged coefficients, which are

defined as

~̄Cn =
1

2π

∫ 2π

0

~Cn dν (2.19)

~̄Dn =
1

2π

∫ 2π

0

~Dn dν (2.20)
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These coefficients are no longer dependent on δs since this dependence has been averaged over during

the orbit averaging process, however, the averaged coefficients will be a function of obliquity.

2.5 Analytical Solution for Averaged C0 Coefficient and Examples

This section further examines the year averaged coefficients described in Section 2.4 and

develops an analytical solution for finding the year averaged ~C0 coefficient. As will be shown in

Section 3.3, only this coefficient is needed to describe the secular change in spin rate of a body due to

the YORP effect. It is important to note that we will focus only on radiation that is isotropically

scattered and re-emitted (i.e. the second term of the ~C0 coefficient shown in Eq. 2.17). This

component has been shown to be the most relevant for the spin rate evolution of asteroids. For

this derivation, it is implicitly assumed that no self shadowing occurs across the body.

Resulting from the analysis presented in the following sections is a closed form YORP co-

efficient for a single facet. This solution is derived completely analytically and does not require

any integration. This allows for the shape contributions to YORP to be better understood and

analyzed. We present the coefficient for a single facet and sum them as examples for asteroids 1998

ML14 and Apollo.

2.5.1 Sunrise and Sunset Conditions

When we only consider isotropically scattered and re-emitted radiation, the Fourier coefficient

~C0,i for each facet is defined as

~C0,i = ~ri ×−
Ai
2π
Bn̂in̂i · I1

0,i (2.21)

where

I1
0,i =


cos(δs)(sin(λr,i)− sin(λs,i))

− cos(δs)(cos(λr,i)− cos(λs,i))

sin(δs)(λr,i − λs,i)

 (2.22)

The Fourier coefficients describing the YORP forces and torques acting on a facet are dependent on

the longitude of the Sun at sunrise and sunset. The sunrise and sunset longitudes will define when
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the facet is lit by the Sun which occurs when the dot product of n̂i and û is positive. Therefore,

the Sun will rise and set when the dot product of the two vectors is equal to zero. Taking the dot

product of the two vectors and setting it equal to zero results in

cos δs cos δi cos (λs − λi) + sin δs sin δi = 0 (2.23)

where δi and λi are the latitude and longitude of the facet’s normal vector, respectively.

The sunrise and sunset longitudes can be found by solving Eq. 2.23 for the solar longitude.

The sunrise longitude, λr,i, and the sunset longitude, λs,i are given by

λr,i = λi + arccos(− tan δs tan δi) (2.24)

λs,i = λi − arccos(− tan δs tan δi). (2.25)

Define

∆λi = λr,i − λs,i (2.26)

and substitute Eqs. 2.24 and 2.25 for λr and λs, ∆λi is expressed in terms of the latitude of the

Sun and ith facet

∆λi = 2 arccos(− tan δs tan δi). (2.27)

As the year progresses a facet can experience three different lighting conditions: continuously lit,

never lit (both of which result in no day-night cycle), or intermittently lit, resulting in a day-night

cycle. These three conditions are governed by the inequalities

∆λi =


2π tan δs tan δi ≥ 1

2 arccos(− tan δs tan δi) 1 ≥ tan δs tan δi ≥ −1

0 tan δs tan δi ≤ −1.

(2.28)

From Eq. 2.28, it is clear that when the facet is always lit, the rise and set longitudes are equal to

2π and 0, respectively. On the other hand, when the facet is never lit the rise and set longitudes are

both equal to 0. Lastly, when the facet experiences a day-night cycle, the rise and set longitudes are

defined by Eqs. 2.24 and 2.25. Figure 2.4, shows which of the three conditions will be applicable

as ν varies from 0 to 2π.



24
!

Always Lit 

Intermittently 
Lit 

Intermittently 
Lit 

Never Lit 

!!!!!!

!!! !!!

Figure 2.4: Lighting conditions for a single facet throughout an orbit

The true anomaly angle νi will define which condition is experienced by the facet. The νi values

will be determined by tan δs tan δi being greater than, less than or equal to ±1.

2.5.2 Year Averaged ~C0,i Coefficient

As described in Section 2.4, the year averaged coefficients are found by integrating the Fourier

coefficients over the satellite’s true anomaly. Therefore, the averaged C0 coefficient that we are

considering here is defined as

~̄C0,i =
−BAi

2π
(~ri × n̂i)(n̂i · Ī1

0,i) (2.29)

Recall, that here we are only considering the radiation that is isotropically scattered and re-emitted.

An analytical solution to the averaging of the I1
0,i vector is found with ki = sin is

cos (δi)
being a key

parameter, which can be greater than, less than, or equal to one

Ī1
0,x,i =



4

π
cosλiE (ki) k2

i < 1

4

π
cosλi k2

i = 1

4

π

cos δi
sin is

cosλi

[(
1− k2

i

)
K

(
1

ki

)
+ k2

iE

(
1

ki

)]
k2
i > 1

(2.30)
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Ī1
0,y,i =



4

π
sinλiE (ki) k2

i < 1

4

π
sinλi k2

i = 1

4

π

cos δi
sin is

sinλi

[(
1− k2

i

)
K

(
1

ki

)
+ k2

iE

(
1

ki

)]
k2
i > 1

(2.31)

Ī1
0,z,i =



4

π
tan δi

[
K(ki)− cos2 isΠ(sin2 is, ki)

]
k2
i < 1

2

π
sin is tan δi ln

(
1 + sin is
1− sin is

)
ki = 1

4

π

sin δi
sin is

[
K

(
1

ki

)
− cos2 isΠ

(
cos2 δi,

1

ki

)]
k2
i > 1

(2.32)

where K, E and Π are the complete elliptical integrals of the first, second, and third kind, respec-

tively,

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ (2.33)

Π(n, k) =

∫ π/2

0

dθ

(1− n2 sin2 θ)
√

1− k2 sin2 θ
.

The vector pointing to the center of the ith facet is defined as ~r = r[cosLi cos li, cosLi sin li, sinLi]
T .

Therefore, the term ~r×n̂ = r[(cosLi sin li sin δi−sinLi cos δi sinλi), (sinLi cos δi cosλi−cosLi cos li sinλi),

(− cos δi cosLi sin (li − λi))]T , however, only the z component of this will affect the spin rate. Mak-

ing all the relevant substitutions yields the final form of this coefficient

C̄0,z,i =
−2rAiB cosLi

π2
sin(λi − li)



[
K(ki) sin2 δi + E(ki) cos2 δi −Π(k, sin2 is) cos2 is sin2 δi

]
k2
i < 1

1

2

[
ln

(
1 + sin is
1− sin is

)
sin is sin2 δi + 2 cos2 δi

]
k2
i = 1

cos δi
sin is

[
K

(
1

ki

)
cos2 is + E

(
1

ki

)
sin2 is

−Π

(
1

ki
, cos2 δi

)
sin2 δi cos2 is

]
k2
i > 1

(2.34)

Under the Lambertian scattering assumption, the solution is solely a function of the geometry

of the facet and orbit. Here, is is the obliquity or solar inclination, δi is the latitude of the facet’s
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normal vector, λi is the longitude of the facet’s normal vector, and Li and li are the latitude and

longitude of the facet’s ~r vector, respectively. Special cases occur when δi = ±π/2:

C̄0,z,i = 0 (2.35)

and when when is = 0:

C̄0,z,i =
−rAiB cosLi cos2 δi

π
sin (λi − li). (2.36)

The analytical solution found here is universal for any facet and its orientation. This ana-

lytical theory can be used to analyze the general behavior of the YORP effect for one facet. This

allows us to better understand the nature of the coefficients as the coefficient for a body with

multiple facets will simply be a combination of the surface given in Figure 2.5. The scaling term,

which can be factored out for all the cases, is
−2rAiB

π2
cosLi sin (λi − li). Note that sin (λi − li)

controls if a facet contributes to the spin-up or spin-down of the body. A facet will not contribute

to the spin-up or spin-down of a body if ~r and n̂ are lined up (in longitude) with one another as

this geometry results in no torque being created. This results in sin (λi − li) = 0. If (λi − li) is

between 0o and 180o, the facet will contribute to the spin-down of the asteroid. However, if (λi− li)

is between 180o and 0o the facet will contribute to the spin-up of the asteroid. The computation

for the YORP coefficient of a single facet using numerical quadrature in MATLAB takes 5.3 sec-

onds, while the same computation using the analytical solution and MATLAB’s elliptical integral

functions takes 29.4 seconds. The advantage of this solution does not lie in the run-time rather the

gained understanding of the behavior of the YORP coefficient that directly impacts the evolution

of the spin period of the asteroid.

Figure 2.5 shows the surface for the C̄0,z,i coefficient with the scaling term factored out. This

will be a sole function of obliquity, is, and the latitude of the facet normal vector, δi. Figure 2.6

shows the curve describing the C̄0,z,i coefficient with the scaling term factored out for nine different

values of δi. To find the total C̄0,z,i coefficient, the coefficients from each facet are added together.
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Figure 2.5: Surface of scaled C̄0,z coefficient for a single facet
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Figure 2.6: Scaled C̄0,z coefficient for single facet at selected δi values

2.5.3 Validation Examples

Two different asteroid shape models are used to verify the analytical solution derived. First

the averaged C0,z coefficient for the asteroid 1998 ML14 is found with the presented analytical

solution and by numerical integration. These two solutions are compared to validate the results

obtained with the analytical solution. In addition, the curve of the YORP coefficient is qualita-

tively compared to that published by Scheeres [65]. Next, the comparison between the numerically



28

computed coefficient and the analytically computed coefficient is repeated for the asteroid Apollo.

2.5.3.1 1998 ML14

A shape model of the asteroid 1998 ML14 is used to verify the analytical solution. This

shape model, shown in Figure 2.7, is made up of 1020 triangular facets and is described by Ostro

et. al. [55]. The averaged C0,z,i coefficient for each facet is computed both analytically and with

adaptive numerical quadrature (MATLAB quadgk function). The coefficient for each facet is added

together to obtain a total coefficient for the asteroid. A total coefficient for the asteroid is found

at all possible obliquity values (0o - 180o). A comparison of the coefficients found numerically and

analytically is shown in Figure 2.8. The difference between the two solutions is less than 1× 10−8.

The average coefficient curve was quantitatively compared to those given for 1998 ML14 by Scheeres

[65], and have the same features.
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Figure 2.7: Views of asteroid 1998 ML14 shape model
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Figure 2.8: Total C̄0,z coefficient for asteroid 1998 ML14

2.5.3.2 Apollo

A shape model of the asteroid Apollo, shown in Figure 2.9, is used to validate the analytical

representation of the C̄0,z coefficient. The shape model is made up of 2040 triangular facets and

is obtained from the database of asteroid models from inversion techniques (DAMIT) database.

Note that most asteroids in this database are convex, therefore, the formula presented in this paper

applies directly to these asteroids.

The averaged C0,z,i coefficient for each facet is first computed using adaptive numerical

quadrature (MATLAB quadgk function), these coefficients are then added together to find the

total C̄0,z coefficient for the asteroid. This is then repeated using the analytical closed form solu-

tion. The averaged coefficient is found at each possible obliquity value (0o - 180o) and the results

from both solutions are compared. The total C̄0,z coefficient for the asteroid as a function of obliq-

uity is shown in Figure 2.10. This figure shows the results of both the numerical integration and

the analytical solution. The difference between the two solutions is less than 1× 10−8.

2.6 Inferred Normalized YORP Coefficients

As will be noted in Section 3.3, only the z component of the ~̄C0 coefficient will affect the

secular (average) change in the satellite’s spin period. Assuming that an observed change in ro-
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Figure 2.10: Total C̄0,z coefficient for asteroid Apollo
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tational period is due only to the secular effects of YORP, an estimate of the averaged coefficient

can be found if the change in rotational period, the mass and moments of inertia are known for the

observed object. Given an observed change in rotation rate, ∆ω, and a time, ∆T ,we estimate the

mean YORP coefficient as

C̄0,z =
∆ωz
∆T

Iza
2
√

1− e2

G1
(2.37)

It is important to note that obtaining the averaged coefficient in this manner assumes that the

coefficient remains constant throughout time, that is to say that the obliquity does not change over

time. Therefore, this only provides an averaged estimate of the coefficient.

It is of interest to normalize this value in order to compare inferred YORP coefficients across

bodies. Following the work done by Scheeres [65], we take the YORP coefficient and divide it by

the moment of inertia about the ẑ-axis, multiply it by the total mass, and divide by the largest

dimension of the satellite, as shown in Eq. (2.38), where b is the largest dimension and M is the

total mass.

C0,z =
C̄0,zM

Izb
(2.38)

This allows for easy comparison of YORP coefficients between bodies of different sizes.



Chapter 3

Rotational Dynamics Due to YORP

This section provides a summary of the evolution of rotational dynamics of a body due to

the YORP effect. The work in this thesis investigates three different levels of accuracy used to

propagate the attitude dynamics of an inactive satellite as a result of YORP. First, the attitude

is propagated using a full integration of the satellite’s angular velocity and attitude orientation.

Next, the dynamics are averaged over the satellite’s rotational period, and lastly, the dynamics

are averaged once more over an orbital period around the Sun (one year). The dynamics that

are averaged over the spin period of the satellite will be referred to as spin averaged dynamics

throughout this thesis. The dynamics averaged over an orbital period around the Sun are referred

to as year averaged dynamics. The spin and year averaged dynamics described in this chapter

follow the work presented for asteroids by Scheeres [65]. The averaging work in this thesis requires

several assumptions. It is assumed that the body being analyzed is uniformly rotating about its

maximum moment of inertia. This assumption is plausible because this is the eventually stable

state for a large, freely rotating, flexible body. This assumption holds in general for inactive

satellites as any internal energy dissipation will drive them to this state. Other external torques

could cause a body to have more complex dynamics; however, for this analysis we do not consider

a tumbling body. It is important to note that averaging theory is not applicable when the spin

rate of a body approaches zero, since complex rotational dynamics can occur. The YORP theory

developed by Scheeres [65] is for an asteroid in a heliocentric orbit. This is acceptable as a first

order approximation for an Earth orbiting satellite because its heliocentric trajectory deviates from
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the Earth orbit by relatively small displacements which can be ignored. Therefore we assume the

Earth orbit for the heliocentric satellite motion when studying its rotation. Because our focus

is on large GEO satellites, we note that the the primary torque affecting the satellite’s attitude

will be SRP and therefore, we assume that gravity gradient torques are not as significant and are

neglected for all of the work presented in this thesis. In addition, we do not consider shadowing

effects. Since we are concerned with long-term evolution of the rotational state of the satellite, we

consider shadowing effects to not be as significant as the duration of time in which the satellite is

in the Earth’s shadow is small for GEO satellites. In the following sections, the evolution of the

body’s angular velocity and solar inclination for the three levels sets of dynamics are presented.

3.1 Full Attitude Dynamics

The evolution of the rotational dynamics of an inactive satellite under external torques are

first found by integrating Euler’s equations of motion for a rigid body

~̇ω = I−1
(
−ω̃I~ω + ~M

)
(3.1)

where ~ω is the angular velocity vector of the B frame with respect to the H frame, I is the

principle moment of inertia matrix, ω̃ is the skew symmetric matrix representing a cross product

and ~M is the total moment acting on the satellite, expressed in the B frame [64]. Quaternions are

used to represent the satellite’s attitude. The equations of motion governing the evolution of the

quaternions are

~̇β =
1

2



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0





β0

β1

β2

β3


(3.2)

where β0 is the scalar component of the quaternion [64]. Equations 3.1 and 3.2 with ~M being

the net YORP torque acting on the satellite are integrated simultaneously to find the evolution of

the rotational and attitude dynamics of an inactive satellite under YORP torques. The external
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moment required in Eq. 3.1 is found by using the force representation described by Eq. 2.4. Note

that the orbital motion of the satellite on its circular orbit around the Sun is assumed to be constant

and defined by

νt = nt+ νt0 (3.3)

where νt is the current true anomaly, n is the mean motion, t is the current time and νt0 is the

initial true anomaly.

3.2 Spin Averaged Dynamics

The equations of motion can be averaged over the spin period of the satellite. Using the

geometry and assumptions previously described we can find the evolution of the angular velocity

and the obliquity due to YORP torques acting on the body. Note that with each rotation of the

satellite, the Sun will appear to rotate through 360o in longitude at an approximately fixed latitude

(assuming fast rotation). Linearizing Euler’s equations of motion leads to the the angular velocity

about the ẑ-axis, the angular velocity of interest, being decoupled from the angular velocity about

the x̂ and ŷ-axis. These mathematical simplifications are used by Scheeres [65] to find the spin

average rate of change of the angular velocity about the ẑ-axis, ˙̄ωz.

˙̄ωz =
P (R)C0,z

Iz
(3.4)

Where P (R) = G1
R2 is the solar pressure acting on the spacecraft, G1 is the solar radiation constant

R is the body’s distance to the Sun, Iz is the moment of inertia of the satellite about the ẑ-axis

and C0,z is the z component of the ~C0 coefficient at a given true anomaly value (defined in Section

2.3).

Also of interest is the evolution of the solar inclination (equivalently the spacecraft’s obliquity)

in the body-fixed frame. This is defined as the angle between the the spin pole of the satellite and

the vector normal to the Sun’s orbit in the body-fixed frame. The equation describing the spin

averaged rate of change of the solar inclination is

˙̄is =
P (R)

2ωzIz
{(C1,y −D1,x) cosλν + (C1,x +D1,y) sinλν} (3.5)
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where λν = tan−1 (cos is tan (ωs + ν)) is the longitude of the Sun.

3.3 Year Averaged Rotational Dynamics

The Fourier coefficients describing the net YORP torque acting on a satellite are a function of

solar latitude which depends on true anomaly. In addition, the spin averaged equations previously

presented are a function of longitude, which is also dependent on true anomaly. Therefore, the

equations can be averaged once more over the heliocentric orbit giving

˙̄̄ωz =
G1

Iza2
√

1− e2
C̄0,z (3.6)

˙̄̄
is =

G1

2ωzIza2
√

1− e2

(
C̄1,x + D̄1,y

)
(3.7)

where a is the semi-major axis of the heliocentric orbit and e is the eccentricity of the heliocentric

orbit. Note that a typo in reference [65] is corrected here by the addition of a 1/2 in Eq. (3.7).

Here, Eq. (3.7) ignores any lag effects from thermal inertia of the spacecraft materials. In both,

Eq. (3.6) and Eq. (3.7), the averaged YORP coefficients are used, which are defined in Section 2.4.

It is important to note that the dynamics of angular velocity and solar inclination are coupled. The

averaged YORP coefficients vary as the inclination evolves, therefore the rate of change of angular

velocity is implicitly dependent on the evolution of the obliquity.



Chapter 4

The YORP Effect and Optical Properties of Satellites

Due to the fact that the YORP effect results from light and thermal energy being reflected

and re-emitted from the surface of a body, the moments that are created are highly dependent on the

optical and thermal properties of the body. Hence, the dynamical evolution of the angular velocity

and obliquity of a satellite as a result of the YORP effect are directly affected by the optical and

thermal properties of the satellite. This chapter explores the sensitivity of the net YORP torque

acting on a satellite to variations in the optical, thermal, and geometrical properties of an inactive

satellite. This work uses the simplest satellite model to analyze how the net YORP torque changes

as the optical, thermal and geometrical parameters are varied to account for all possible values. By

analyzing the net YORP torque and how it changes with the various optical parameters possible

the long-term behaviors for a satellite can be defined. The theory described in Chapters 2 and

3 is used, however, some simplifications can be made due to the simplicity of the model used in

this analysis. These simplifications are presented in Section 4.2. The satellite model used for this

analysis is described in Section 4.1. The YORP coefficients are computed for various optical and

thermal parameters and are given in Section 4.3. Based on the YORP coefficient analysis, possible

long-term behaviors are described in this chapter.

4.1 Satellite Model Description

The model used for this sensitivity analysis is the most simple satellite model that can be used

to represent some satellites in GEO. The model is composed of a symmetric bus with one symmetric
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appendage. Many satellites that use the Boeing 376 satellite will have this same configuration where

the appendage is an antenna. Additionally, the GOES satellites (which will be discussed in detail in

following chapters) also have a similar configuration with a single solar panel. The satellite model,

represented in the B frame, used for this study is shown in Figure 4.1.

x axis
-20220

15
10

y axis
5

0

-2

0

2

-5

z 
ax

is

Figure 4.1: Satellite Model

For this analysis we are concerned with the effects of optical and thermal properties on the

averaged coefficients. Therefore, the CM is assumed to be located at the center of the bus (i.e.

the mass of the appendage is ignored). The geometrical effects are considered by rotating the

appendage about the ŷ-axis. The model is composed of two facets, one for the front and one for

the back of the appendage.

4.2 Simplified YORP Moment

Recall from Eqs. 2.17 and 2.18, that the Fourier coefficients describing the total YORP torque

are direct functions of the optical, thermal, and geometrical properties of each facet. Furthermore,

recall that the year averaged YORP coefficients are found by simply integrating the coefficients

over the true anomaly (as described in Section 2.4). In addition, from Chapter 3, we can see

that only the ~̄C0, ~̄C1 and ~̄D1 coefficients are required to capture the year averaged evolution of the

angular velocity and obliquity of an inactive satellite under YORP torques. Therefore, this analysis

focuses only on the sensitivity of those three coefficients to variations in the optical, thermal and

geometrical parameters of a satellite. The following relationships hold true for the simple satellite
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model used in this analysis.

~r1 = ~r2

n̂1 = −n̂2

n̂1n̂1 = n̂2n̂2

A1 = A2

Ī1
0,1 = −Ī1

0,2

Ī2
0,1 = Ī2

0,2

Using these relationships and the fact that there are only two facets, the averaged coefficients can

be simplified as shown in Eqs. 4.1, 4.2 and 4.3, where ∆a2 = a2,1 − a2,2 and ∆ρs = ρs1 − ρs2.

~̄C0 = ~r1 ×
[(
−A1

2π
∆a2n̂1n̂1 · Ī1

0,1

)
+

(
−A1

2π
∆ρs(2n̂1n̂1 − U) · Ī2

0,1

)]
(4.1)

~̄C1 = ~r1 ×
[(
−A1

π
∆a2n̂1n̂1 · Ī1

c,1

)
+

(
−A1

π
∆ρs(2n̂1n̂1 − U) · Ī2

c,1

)]
(4.2)

~̄D1 = ~r1 ×
[(
−A1

π
∆a2n̂1n̂1 · Ī1

s,1

)
+

(
−A1

π
∆ρs(2n̂1n̂1 − U) · Ī2

s,1

)]
(4.3)

4.3 Year Averaged Fourier Coefficient Variations

To analyze the possible long-term behavior of the angular velocity and obliquity for this

simple satellite model, we look at all possible ∆ρs and ∆a2 values and determine the effects of

variations in these two parameters on the year averaged YORP coefficients. Furthermore, the

appendage is rotated about the ŷ-axis so that the normal vector varies as well. The possible values

for ρ, s, εf and εb ranges from 0 to 1. Recall that a2,i has a combination of all of these properties,

so we must first find the possible combinations for ∆ρs and ∆a2, and these are shown in Figure

4.2.

Note that as ∆ρs varies the possible values of ∆a2 changes. We vary ∆ρs by increments of 0.1 and

∆a2 in a way such that 10 different values are always tested starting and ending with the limits

of possible values. The satellite’s appendage was rotated about the ŷ-axis in increments of 10o



39

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

∆ a
2

∆
 ρ

 s

Figure 4.2: Possible Values for ∆ρs and ∆a2

ranging from -90o rotation to a 90o rotation. However, for the results of this work we have selected

only a few cases that show the general effects of varying all of these parameters.

Recall from Section 3.3, the secular evolution of the angular velocity will be solely affected by

C̄0,z. Figures 4.3a - 4.3d show the averaged C0,z coefficient over obliquity, as ∆ρs and ∆a2 change

for a satellite model where the appendage is rotated 30o about the ŷ-axis.

From Figure 4.3 we can see how varying ∆ρs and ∆a2 affects the C̄0,z coefficient which will directly

impact the evolution of the angular velocity. We note that as ∆a2 changes the magnitude of the z

component of the C̄0,z coefficient changes, however, the general shape of the curve (as a function of

obliquity) remains the same. It can be seen that regardless of the value of ∆ρs, as the magnitude

of ∆a2 decreases the magnitude of C̄0,z coefficient also decreases. Figure 4.3 also shows that as

∆ρs increases in value, the magnitude of the coefficient increases as well. Furthermore, we see that

negative values of ∆ρs result in coefficient curves that are inverses of those that resulted positive

values of ∆ρs.

An all positive coefficient would indicate a continuously increasing angular velocity, an all

negative coefficient would indicate a continuously decreasing angular velocity and a coefficient which

crosses zero indicates a change in spin direction at the obliquity value where the zero crossing occurs.
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Figure 4.3: C̄0,z Coefficients for 30o appendage rotation
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From Figure 4.3 we see that all three behaviors are possible. Varying ∆ρs will change which of

these behaviors occurs for a given ∆a2 value.

Figures 4.4a - 4.4d show the C̄0,z coefficient over obliquity, as ∆ρs and ∆a2 change for a

satellite model where the appendage is rotated 60o about the ŷ-axis.

From Figure 4.4 we can see how varying ∆ρs and ∆a2 affects the C̄0,z coefficient for a satellite with

an appendage which has a 60o rotation. Again, as ∆a2 changes the magnitude of the z component

of the C̄0,z coefficient changes, however, the general shape of the curve (as a function of obliquity)

remains the same. As with the 30o rotation, regardless of the value of ∆ρs, as the magnitude of

∆a2 decreases, the magnitude of the C̄0,z coefficient also decreases. Figure 4.4 also shows that

as ∆ρs increases in value, the magnitude of the coefficient increases as well. Furthermore, we

see that negative values of ∆ρs result in coefficient curves that are inverses of those that resulted

from positive values of ∆ρs. From Figure 4.4 we see that once again all three possible long term

behaviors can occur. Varying ∆ρs will change which of these behaviors occurs for a given ∆a2

value.

While we note that varying ∆ρs and ∆a2 has the same effects on the averaged C0,z coefficient

regardless of the angle of the appendage, changing the angle has an impact as well. A higher angle

of rotation leads to more tightly packed C̄0,z curves as ∆a2 varies. In addition, the curves are more

sinusoidal when a higher angle of rotation is used for the appendage. This results in a change in

the long term behavior of the satellite. For example, when ∆ρs = 1 and the appendage is rotated

at 60o, all curves (regardless of ∆a2 value) will have a zero crossing, indicating a change in spin

direction of the satellite. However, only a few curves exhibit this behavior when ∆ρs = 1 and the

appendage is rotated 30o, as was shown in Figure 4.3.

In Section 3.3 it was shown that the evolution of the obliquity will depend only on C̄1,x+D̄1,y.

Figures 4.5a - 4.5d show C̄1,x + D̄1,y over obliquity, as ∆ρs and ∆a2 change for a satellite model

where the appendage is rotated 30o about the ŷ-axis.

From Figure 4.5 we can see how varying ∆ρs and ∆a2 affects C̄1,x + D̄1,y, which will directly

impact the evolution of the obliquity. We note that as ∆a2 varies the magnitude of the sum of the
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Figure 4.4: C̄0,z Coefficients for 60o appendage rotation
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Figure 4.5: C̄1,x + D̄1,y for 30o appendage rotation
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coefficients changes and as the magnitude of ∆a2 increases and goes from negative to positive, the

curve is inverted. We also note that in this case, the curves that result from negative values of ∆ρs

are not inverse of those that result from positive ∆ρs values, but rather are the exact same curves.

It can be seen that all curves, regardless of ∆ρs or ∆a2 values, are zero when the obliquity

is 0, 90 or 180o. In general, if the curve is positive the obliquity will increase and it will decrease if

the curve is negative. We note that for the curves that are positive between 0 and 90o of obliquity,

crosses zero at 90o and is negative between 90o and 180o of obliquity, the obliquity will eventually

approach and remain at 90o. Therefore, 90o is a stable equilibrium. Furthermore, if a curve is

negative between 0 and 90o, crosses zero at 90o and is positive between 90o and 180o of obliquity,

the obliquity will move away from 90o and will approach either 0o or 180o (i.e. 90o is an unstable

equilibrium). The initial obliquity of the satellite will determine if the satellite’s long-term obliquity

will approach and remain at either 0o or 180o. From Figure 4.5 we can see that both scenarios

occur and the dominating factor in this case is ∆a2.

Figures 4.6a - 4.6d show C̄1,x + D̄1,y over obliquity, as ∆ρs and ∆a2 change for a satellite

model where the appendage is rotated 60o about the ŷ-axis.

From Figure 4.6 we can see how varying ∆ρs and ∆a2 affects C̄1,x + D̄1,y which will directly

impact the evolution of the obliquity. We note that as ∆a2 varies the magnitude of the sum of the

coefficients changes. We also note that in this case, the curves that result from negative values of

∆ρs are inverse of those that result from positive ∆ρs values.

It can be seen from these figures that as ∆ρs changes the curves change in such a way that

there is an additional zero crossing. The additional zero crossing that occurs when ∆ρs = −0.4 is

an unstable equilibrium point and for the curves that have this additional crossing the obliquity

will approach 0o, 90o or 180o depending on the value of the initial obliquity of the satellite. The

additional zero point when ∆ρs = 0.4 is a stable equilibrium point. Note that these additional zero

points occur as the angle of rotation for the appendage increases.

The averaged YORP coefficients that directly impact the evolution of angular velocity and

obliquity are sensitive to variations in the optical, thermal and geometrical parameters of the facets
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(b) C̄1,x + D̄1,y for 60o appendage rotation
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Figure 4.6: C̄1,x + D̄1,y for 60o appendage rotation
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making up a satellite. The sensitivity of the torque is dependent on the combination of ∆a2, ∆ρs

and rotation angle. For example, when the rotation angle is 60o and ∆ρs = ±1 the C̄0,z coefficient

is not sensitive to variations in ∆a2. However, when ∆a2 = ±0.4 the C̄0,z coefficient is sensitive to

∆a2 and the level of sensitivity is dependent on the value of ∆a2. As was shown here, varying these

parameters can drastically change the long-term behavior of a satellite. While some parameter

combinations will lead to simple behavior, changing one parameter slightly (in some cases) can

result in more complex dynamics. For example adding a stable equilibrium for the evolution of the

obliquity. This shows the importance of having good knowledge of materials making up satellites

and how these materials degrade over time in the space environment in order to accurately model

dynamics and make long-term predictions. If materials degrade in different manners in the space

environment for various satellites this could offer an explanation as to why the rotational periods

of inactive satellites evolve differently over time for different satellites. This work further motivates

the importance of understanding the properties of materials making up satellites and how those

might change after being in space for a period of time.



Chapter 5

Dynamics of GEO Satellites Under YORP

To gain an understanding of how YORP changes the rotational dynamics of defunct satellites,

five different models are developed to simulate different types of uncontrolled satellites found in

Earth orbit. The first satellite model is similar to those that use the Boeing 376 satellite, the

second model is similar to the Gorizont family of satellites, the third model is a simple model for

the GOES 8 satellite and the fourth and fifth models are more complex models of the GOES 8 and

GOES 10 satellites, respectively. The theory presented in Chapter 2 is applied for the five different

satellite models and the evolution of the body’s rotational dynamics is analyzed. The dynamics

are propagated using the three sets of equations of motion described in Chapter 3. The following

sections give a description of the models used for the simulations and the results obtained.

5.1 Satellite Models

In this section, the different satellite models used to obtain the results presented throughout

this thesis are described. The satellite models are selected to represent different types of satellites

found in GEO. To accurately represent satellites in GEO, this thesis considers both symmetric and

asymmetric satellites. The Boeing 376, GOES 8 and GOES 10 satellites are highly asymmetric

satellites while the Gorizont satellites are geometrically symmetric.
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5.1.1 Boeing 376 Satellite Model

The Boeing 376 satellite, shown in Figure 5.1a [1], is used as the first model for this work.

This satellite is made up of a cylindrical body with a large circular antenna on top of the cylindrical

bus. This satellite configuration is used for a number of satellites found in GEO, including Anik C1

- C3 (Canadian communications satellites [31]), Anik D1 - D2 (Canadian communications satellites

[32]), APStar 1 and 1A (communication satellites in China [33]), Aussat A1 - A3 (Australian

broadcasting satellites [19]), and Brasilsat A1 - A2 (Brazilian communication satellites [7]), among

many others [3].

(a) Boeing 376 satellite
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Figure 5.1: Boeing 376 satellite and model

The dimensions publicly available for Anik C1 - C3 are used for this satellite model. The

cylindrical bus of the satellite is 2.16 m in diameter and 4.63 m tall and the antenna of the satellite

is 1.8 m in diameter. The total mass of the satellite at beginning-of-life is 562.5 kg of which 99 kg

are propellant [31]. Note that these dimensions and mass are only an order of magnitude estimate.

To better simulate the satellite at end-of-life (EOL), the mass of the propellant is not included

when computing the moments of inertia of the satellite. The Boeing 376 model used in this work

is shown in Figure 5.1b.

The center of mass of the satellite is assumed to be offset 3 cm from the center of the

cylindrical bus along the x̂-axis. Because this satellite model is used only to check the consistency

of the averaged dynamics against a 6 degree of freedom (DOF) simulation, the mass of the antenna
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is ignored and all the mass of the satellite is assumed to be located in its bus. Furthermore, the

assumed center of mass offset is simply used to create moments of inertia so that there is a clear

maximum, intermediate, and minimum moment of inertia. The moments of inertia that result

from the mass being located in the bus of the satellite and having an offset center of mass are Ix =

733.81 kg m2, Iy= 917.31 kg m2 and Iz = 917.73 kg m2. This type of satellite is expected to have

significant YORP coefficients due to the geometrical asymmetry.

Because the satellite’s bus is assumed to be symmetric in geometry, mass, optical and thermal

properties, it is likely that no torque will be created as a result of YORP, therefore, when computing

the YORP torque on the body, only the antenna is modeled and considered. However, it should

be noted that if the symmetry assumed is not present, a satellite will experience torques from the

body in addition to the antenna. To model the antenna of this spacecraft, two facets are used to

simulate the front and back. The optical properties of both facets are given in Table 5.1. The

reflectance and emissivity of the antenna represent those of materials commonly used on satellite

antennas as defined by Gilmore [24].

Table 5.1: Optical Properties of Facets for Boeing 376 Satellite Model

ρρρ s B εfεfεf εbεbεb

Front 0.8 0.2 2/3 0.9 0.87

Back 0.4 0.2 2/3 0.87 0.9

With the satellite model defined, the vector which points from the center of the bus to the

center of the facet can be found (in a frame with its origin at the center of the bus). In addition,

the vector normal to each facet is defined. A rotation matrix which will rotate each vector to

the previously defined B frame (a body-fixed frame with its origin at the center of mass of the

satellite) can be found by computing the moments of inertia about the center of mass and finding

the principal axes. This rotation matrix is then used to rotate the radius and normal vectors into

the B frame. The geometrical placement of each facet (in the B frame) is given in Table 5.2, where

n̂ is the unit normal vector and r̂ is the unit vector which points from the center of mass to the

center of each facet.
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Table 5.2: Geometrical Properties of Facets for Boeing 376 Satellite Modell

n̂̂n̂n r̂̂r̂r

Front [1,0,0]T [0.9452, -0.3264, 0]T

Back [-1,0,0]T [0.9452, -0.3264, 0]T

As previously mentioned, the satellite is assumed to be in a heliocentric orbit since the motion

of the satellite around the Earth is ignored. The defunct satellite is placed in an orbit around the

Sun with the orbital elements shown in Table 5.3 [81]. The epoch of these orbital elements is J2000

(Julian Date 2451545.0). This will simulate the orbit traced out by an equatorial Earth orbiting

satellite. Note that the inclination of the orbit varies as the obliquity changes. Because the rotation

pole of the defunct satellite is initially set to be parallel with that of Earth’s, the inclination is set

to 23.4o.

Table 5.3: Defunct Satellite Orbital Elements

e a (km) i (deg) ΩΩΩ (deg) ωωω (deg) ννν (deg)

0 149.60× 106 23.40 -11.26 114.21 0

5.1.2 Gorizont Satellite Model

The Gorizont satellites, shown in Figure 5.2a [8], are used as the second model in this paper.

This family of satellites is made up of Russian GEO satellites used for communications, and a

number of these are now inactive satellites in orbit [39]. The symmetrical geometry exhibited by

this satellite is much more commonly seen among GEO satellites. The Gorizont satellites have a

cylindrical body with radius of 2 m and length of 5 m and two solar panels that are approximately

3.73 m × 5.45 m each [2, 36]. Based on the dimensions available, the solar panels are assumed

to be rectangular for this model. The total mass of the satellite is 2110 kg [8]. Note that these

dimensions and mass are only an order of magnitude estimate. The Gorizont model used in this

work is shown in Figure 5.2b.

Note that the satellite is ideally symmetric and should experience no torque if its center of
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Figure 5.2: Gorizont satellite and model

mass were at its center of figure. The center of mass is assumed to be offset by 10 cm from the

center of figure along the ŷ-axis. This simulates some asymmetry that may be present in the bus of

the satellite. The moments of inertia of the bus are computed by assuming a solid cylinder and the

moments of inertia of the solar panels are computed assuming thin plates. The moments of inertia

for this satellite model are Ix = 2, 381.47 kg m2, Iy = 4, 939.66 kg m2 and Iz = 5, 753.96 kg m2.

As with the Boeing 376 satellite, only the solar panels are accounted for and modeled (note

that this is conservative, as the bus would also contribute a torque if it were displaced from its

center of figure, albeit a smaller contribution than the solar arrays). The surface of each solar panel

is made up of two facets. The optical and thermal properties of the front and back facets are shown

in Table 5.4.

Table 5.4: Optical Properties of Facets for Gorizont Satellite Model

ρρρ s B εfεfεf εbεbεb

Front 0.21 0.2 2/3 0.81 0.85

Back 0.82 0.2 2/3 0.85 0.81

The optical and thermal parameters are chosen to be representative of real solar panels [61].The

geometrical placement and orientation of each facet (in the B frame) are given in Table 5.5. The

orbit used for this model is the same as the Boeing 376 model, with the orbital elements shown in
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Table 5.3.

Table 5.5: Geometrical Properties of Facets for Gorizont Satellite Model

n̂̂n̂n r̂̂r̂r

Solar Panel 1
Front [1,0,0]T [0,1,0]T

Back [-1,0,0]T [0,1,0]T

Solar Panel 2
Front [1,0,0]T [0,-1,0]T

Back [-1,0,0]T [0,-1,0]T

5.1.3 Simple GOES 8 Satellite Model

The GOES family of satellites is composed of eight weather satellites located in GEO, five

of which have been decommissioned [51]. The satellites in this family are ideal candidates to study

the YORP effect due to the asymmetry exhibited by their geometry. One of the decommissioned

satellites is the GOES 8 satellite, for which a simple model is developed as the third satellite model

in this thesis. The end-of-life mass, moments of inertia and center of mass location for the GOES

8 satellite were obtained from personal communications with John Tsui from the National Oceanic

and Atmospheric Administration (NOAA). The mass of the satellite is 972.3565 kg, the center of

mass location (with respect to the center of figure) is [1.15837, 0.1626, 0.0125] m, and the moments

of inertia about the center of mass in the B frame are Ix = 980.5133 kg m2, Iy = 3440.9438 kg m2,

and Iz = 3561.0894 kg m2. Figure 5.3a shows a picture of the GOES satellites and Figure 5.3b

shows the model used for this analysis along with the dimensions [73] of the satellite, all in the B

frame.

As with the two previous models, only the moments created as a result of the solar panel

and trim tab are accounted for due to the symmetry of the satellite’s bus. In this model, the solar

panel and the trim tab are each made up of two facets. The optical properties of the facets are

given in Table 5.6 and the geometrical properties are given by Table 5.7. The materials used for

each component of the satellite [73] are used to determine the optical and thermal properties of

each facet [24].
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Figure 5.3: GOES satellite and model

Table 5.6: Optical Properties of Facets for Simple GOES 8 Satellite Model

ρρρ s B εfεfεf εbεbεb

Solar Panel
Front 0.21 0.2 2/3 0.81 0.85

Back 0.82 0.2 2/3 0.85 0.81

Trim Tab
Front 0.54 0.2 2/3 0.86 0.85

Back 0.07 0.2 2/3 0.85 0.86

Table 5.7: Geometrical Properties of Facets for Simple GOES 8 Satellite Model

n̂̂n̂n r̂̂r̂r

Solar Panel
Front [-0.004,-0.217,0.976]T [0.964,0.218,-0.149]T

Back [0.004,0.217,-0.976]T [0.964,0.218,-0.149]T

Trim Tab
Front [-0.004,-0.217,0.976]T [0.989,0.122,-0.087]T

Back [0.004,0.217,-0.976]T [0.989,0.122,-0.087]T

Like the two previous models, this satellite model is placed in an orbit around the Sun with the

orbital elements given in Table 5.3.

5.1.4 Full GOES 8 Satellite Model

The fourth satellite model used for the work presented in this thesis is a more complete model

for the GOES 8 satellite. The mass, moments of inertia and center of mass location are the same as

those given in Section 5.1.3. Unlike in the simple model, the full GOES 8 satellite model accounts

for all the major components of the satellite: the solar sail, bus, solar panel and trim tab. This
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results in a satellite model made up of 15 facets (i.e. N=15). The satellite model in the B frame,

including the dimensions of each component, is shown in Figure 5.4. The mass and moments of

inertia used for this satellite model are the same that were used for the simple GOES 8 satellite

model and are given in Section 5.1.3.
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Figure 5.4: Full GOES 8 satellite model

The optical properties of each facet are given in Table 5.8. The bus of the satellite is covered

with MLI blankets[73], which are assumed to be silverized teflon [24]. The trim tab, which has an

aluminized front and bare graphite back [73], is assumed to be made of aluminized Kapton Surface

finish tape and graphite epoxy. The cone of the solar sail is made of 0.5 millimeter thick aluminized

Kapton [73]. The optical and thermal properties of these materials are used for this satellite model

[24]. Once again, the optical and thermal properties for solar panels are chosen to be representative

of those of actual solar panels [61]. Note that with this model, Eq. 2.5 will be used only when

computing the YORP force acting on the solar panel and trim tab. When computing the YORP

force acting on the bus and solar sail, a2,i = B(1−si)ρi+(1−ρi)B is used. Therefore, no emissivity

values are given for the facets making up these two components (this was discussed in Section 2.2).

For this model, the trim tab is rotated 0o. It is important to point out that the rotation angle

of the trim tab will affect the YORP coefficients and ultimately the dynamical evolution of the

satellite. The geometrical properties of the various facets are given in Table 5.9.

This satellite is placed in an orbit around the Sun with the orbital elements given in Table 5.3.
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Table 5.8: Optical Properties of Facets for Full GOES 8 Satellite Model

ρρρ s B εfεfεf εbεbεb

Solar Panel
Front 0.21 0.2 2/3 0.81 0.85

Back 0.82 0.2 2/3 0.85 0.81

Trim Tab
Front 0.88 0.2 2/3 0.04 0.85

Back 0.07 0.2 2/3 0.85 0.04

Bus 0.93 0.2 2/3 - -

Solar Sail 0.66 0.2 2/3 - -

Table 5.9: Geometrical Properties of Facets for Simple GOES 8 Satellite Model

n̂̂n̂n r̂̂r̂r

Solar Panel
Front [-0.004,-0.217,0.976]T [0.979,0.17 1,-0.119]T

Back [0.004,0.217,-0.976]T [0.979,0.171,-0.110]T

Trim Tab
Front [-0.004,-0.217,0.976]T [0.992,0.104,-0.075]T

Back [-0.004,-0.217,0.976]T [0.992,0.104,-0.075]T

Bus [0.006,0.537,0.844]T [-0.084,0.968,0.234]T

[-0.999,0.013,-0.001]T [-0.777,0.528,-0.338]T

[-0.012,-0.844,0.537]T [-0.738,-0.595,0.317]T

[-0.006,-0.537,-0.844]T [-0.092,0.189,-0.978]T

[0.999,-0.013,0.001]T [0.712,0.586,-0.387]T

[0.012,0.844,-0.537]T [-0.054,0.840,-0.540]T

Solar Sail [-0.999,0.013,-0.001]T [-0.997,0.064,-0.034]T

[0.006,0.537,0.844]T [-0.996,0.093,0.002]T

[0.012,0.844,-0.537]T [-0.992,0.107,-0.062]T

[-0.006,-0.537,-0.844]T [-0.996,0.044,-0.076]T

[-0.012,-0.844,0.537]T [-0.999,0.0294,-0.012]T

5.1.5 Full GOES 10 Satellite Model

The last satellite model used in this thesis is a full model for the GOES 10 satellite. Since all

satellites in the GOES family of satellites are of identical build, this model is identical to the full

GOES 8 satellite (described in Section 5.1.4), with the exception of the mass, moments of inertia

and center of mass location. The end-of-life values for the GOES 10 satellite provided by John Tsui

of NOAA are used in this model. The mass of the satellite is 989.0328 kg, the moments of inertia

are Ix = 987.7787 kg m2, Iy = 3429.5805 kg m2, and Iz = 3551.758 kg m2 and the center of mass

location (with respect to the center of the bus) is [1.164, 0.157,0.0093] m. As with all previous

models, this satellite model is placed in an orbit around the Sun with the orbital elements given in
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Table 5.3.

5.2 Satellite Dynamics

Using the models described in Section 5.1, the rotational dynamics of each satellite due to

YORP can be analyzed. The dynamics of four of the five satellite models are propagated using the

full attitude equations of motion, spin averaged equations of motion and year averaged equations

of motion. The dynamics for the GOES 10 satellite are only propagated using the year averaged

equations of motion, due to the satellite’s similarity to the full GOES 8 satellite model. In the

following sections the dynamical evolution for the various satellite models is studied.

5.2.1 Boeing 376 Satellite Dynamics

The rotational dynamics of the Boeing 376 satellite model are first analyzed. This satellite

model is used to check the consistency of the spin averaged and year averaged dynamics with a

6DOF simulation. The rotational dynamics of this satellite model are therefore propagated using

a 6 DOF simulation, the spin averaged equations of motion and the year averaged equations of

motion. The results from the three methods are then compared to one another. Next, the year

averaged dynamics are used to propagate the satellite’s angular velocity and obliquity to study the

long-term dynamical evolution of these two parameters.

5.2.1.1 YORP Coefficients

Using the Boeing 376 satellite model described in Section 5.1.1, the YORP moment coeffi-

cients required for the spin averaged dynamic evolution are found as a function of solar latitude,

shown in Figures 5.5a and 5.5b. All components of the ~C1 coefficient are zero for all solar latitude

values and are therefore not shown. This means that the evolution of the obliquity will depend

solely on the x and y components of the ~D1 coefficient.

Figures 5.6a and 5.6b show the year averaged moment coefficients as a function of obliquity.

These coefficients are required to compute the year averaged dynamical evolution. The C̄0,z coef-
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Figure 5.5: Coefficients as a function of solar latitude for Boeing 367 satellite model

ficient is negative for all obliquity values, indicating that the angular velocity computed with the

year averaged dynamics will continuously decrease. Note that since the ~C1 coefficient was zero for

all obliquity values, the ~̄C1 coefficient will be zero for all obliquity values and is therefore not shown

here. The year averaged evolution of the obliquity will be solely dependent on the D̄1,x and D̄1,y

coefficients.

5.2.1.2 Dynamical Evolution: Full Attitude Integration, Spin Averaged, Year

Averaged

Using the net YORP torque, a 6 DOF numerical simulation can be performed as described by

McMahon and Scheeres [42]. The 6 DOF simulation integrates the satellite’s orbit about the Earth

simultaneously with the attitude dynamics of the satellite. Both the orbital and attitude dynamics

are perturbed by SRP effects. The attitude dynamics are integrated through Euler’s equations,

with the time-varying forcing torques determined by Eq. 2.16 with Fourier coefficients up to order

n = 10. The orbit is similarly perturbed by the SRP force computed in an analogous Fourier

series fashion, although these perturbations are small for this object. Note that the computed SRP
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Figure 5.6: Averaged coefficients as a function of obliquity for Boeing 376 satellite model

perturbations are in no way averaged - these are the instantaneous forces and torques caused by

the interaction of the SRP with the satellite body. This simulation also includes the motion of the

Earth about the Sun which causes an annual oscillation in the Sun’s orientation with respect to

the Earth centered inertial coordinate frame. For the 6 DOF simulation the same satellite model

as described in Section 5.1.1 was used. The results of this simulation show that there are two

periodicities. One over the rotational or spin period of the satellite and a second over the orbital

period.

The evolution of angular velocity and obliquity for the Boeing 376 satellite model are first

analyzed using spin averaged dynamics. The 6 DOF simulation is used to check the consistency

of the result obtained with the spin averaged theory. Both simulations are carried out over a 1

year time period. For this analysis the satellite is assumed to have an initial angular velocity of

12o/s and an initial obliquity of 23.4o. A plot showing a comparison of the evolution of the angular

velocity as a result of YORP with the averaged theory and the numerical integration can be seen in

Figure 5.7a. As seen in this figure the spin averaged theory accurately averages over the periodicity

caused by the rotation of the satellite. There is a slight offset from the mean due to to short period
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terms. The correction for this offset can be computed, as discussed by McMahon and Scheeres [41],

however, it is not important for this analysis. In addition, in Figure 5.7a, we see that in the spin

averaged dynamics the periodicity due to the orbital period is still present and accurately matches

the periodicity seen in the 6 DOF integration.
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Figure 5.7: Evolution of rotational dynamics over 1 year for Boeing 376 satellite model

The evolution of the obliquity is computed using the 6 DOF numerical integration and the

spin averaged dynamics. A plot showing a comparison of the results obtained with these two

methods is shown in Figure 5.7b. Once again the spin averaged theory accurately averages the

rotation period periodicity. The same small offset is present due to short period terms. In addition

the periodicity due to the orbital period is still present and matches the results obtained with the

6 DOF simulation. In the 6DOF simulation the angle between the angular velocity vector and the

ẑ-axis is oscillatory and remains below 0.15 degrees throughout the year.

The same comparison is done by using the year averaged dynamics which is shown by the red

line in Figures 5.7a and 5.7b. The average of the orbital periodicity shown by the 6DOF is slightly

offset from the mean due to short period terms. The secular evolution of the angular velocity and

obliquity are accurately captured by using the year averaged theory and is computationally much
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faster. The 6 DOF numerical integration takes about 6 hours to complete while the results are

obtained in seconds in MATLAB when using the spin averaged dynamics and the year averaged

dynamics.

5.2.1.3 Long Term Dynamical Evolution

Using the year averaged dynamics, long-term propagations of the evolution of the angular

velocity and obliquity of the body can be quickly simulated. Figures 5.8a and 5.8b show how these

two parameters change over a period of 40 years. For this simulation, the satellite had an initial

angular velocity of 12o/s about the ẑ-axis of the B frame and an initial obliquity of 23.4o.
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Figure 5.8: Evolution of rotational dynamics over 40 years for Boeing 376 satellite model with
optical properties given in Table 5.1

Recall that the angular velocity and obliquity are coupled; the changes in obliquity result

in changes in the averaged coefficients which in turn will affect the angular velocity evolution.

As can be seen from Figures 5.8a and 5.8b when the angular velocity crosses zero, the obliquity

changes direction. Note that the actual evolution through a zero spin state is not fully understood

as averaging theory is not applicable to more complex motion. This motion has been studied by

Vokrouhlicky et. al. [79]. Tumbling motion is also numerically explored in Section 5.2.6. We see
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that the angular velocity continues to get more negative as was expected due to the fact that the

averaged C0,z coefficient is negative for these obliquities. In this particular case, by continuing to

get a more negative angular velocity, the satellite slows down and then begins to spin up in the

opposite direction.

Because the torque is solely dependent on the optical and thermal properties of the satellite,

the properties can be changed in such a way as to obtain different YORP coefficients and ultimately

a different evolution of the angular velocity and obliquity, as was discussed in Chapter 4. For this

particular satellite model, we can maintain the configuration of the satellite and change the optical

and thermal properties to those shown in Table 5.10. We then use the year averaged dynamics to

once again find the evolution of the angular velocity and obliquity of our sample satellite over a 40

year time period. The satellite once again has an initial angular velocity of 12o/s about the ẑ-axis

of the B frame and an initial obliquity of 23.4o. The results are shown in Figures 5.9a and 5.9b.

The averaged coefficients that correspond to this dynamical evolution are shown in Figures 5.10a

- 5.10b. Again, note that all components of the ~̄C1 coefficient are zero for all obliquity values and

are therefore not shown.

Table 5.10: Altered Optical Properties of Facets for Boeing 376 Satellite Model

ρ s B εf εb

Front 0.82 0.2 2/3 1 0

Back 0.21 0.2 2/3 1 0

We can see that by simply changing the optical and thermal properties of the antenna of the

satellite, the evolution of the angular velocity and obliquity change drastically. In this case, the

angular velocity decreases then begins to increase instead of continuously decreasing like was seen

previously. Here, the obliquity approaches 0o then begins to approach 90o. The change that is seen

in the angular velocity is due to the C̄0,z coefficient having a zero crossing and changing sign. The

effect of such complex YORP coefficients is discussed further by Scheeres and Mirrahimi [67].
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Figure 5.9: Evolution of rotatioal dynamics over 40 years for Boeing 376 satellite model with altered
optical properties from Table 5.10
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Figure 5.10: Averaged coefficients as a function of obliquity for Boeing 376 satellite model with
altered optical properties

5.2.2 Gorizont Satellite Dynamics

The second satellite model used to study the dynamics of an inactive satellite due to the

YORP effect is the Gorizont satellite. The rotational dynamics of this satellite model are propagated
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using the full attitude equations of motion, the spin averaged equations of motion and the year

averaged equations of motion. The results of the three methods are compared to one another. Due

to the nature of averaging methods, the results obtained from the year averaged equations of motion

do not capture large variations that may occur in the angular velocity and obliquity over the course

of a year. Therefore, it is important to analyze the rotational dynamics not only with averaged

theory but also by doing a full attitude integration. This allows for a better understanding of the

short period variations in angular velocity and obliquity that occur due to YORP. The ability of

the spin and year averaged dynamics to capture the short period variations obtained with the full

attitude integration is analyzed by comparing the solutions obtained with the three different sets of

equations of motion. Once a comparison of the three results is done, the year averaged dynamics are

used to propagate the satellite’s angular velocity and obliquity to study the long-term dynamical

behavior of these two parameters.

5.2.2.1 YORP Coefficients

The Gorizont satellite model described in Section 5.1.2 is used to find the YORP moment

coefficients required for the spin averaged equations of motion, shown in Figures 5.11a and 5.11b.

Note, that only the components required for the spin averaged equations of motion are shown.

Furthermore, the ~D1 coefficient is not show as all components are zero for all solar latitude values.

The evolution of the obliquity, when the spin averaged equations of motion are used, will be solely

dependent on the C1,x coefficient because the ~D1 coefficient and the C1,y coefficient are zero for all

solar latitude values.

Figure 5.12 shows the year averaged YORP moment coefficients as a function of obliquity.

These coefficients are required to propagate the dynamics using the year averaged equations of

motion. Once again, only the components of the coefficients needed for the year averaged equations

of motion are given. The ~̄D1 coefficient is not shown since all components of the coefficient are zero

for all obliquity values.

Notice that the C̄0,z coefficient is positive for all solar latitude values, this indicates that the angular
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Figure 5.11: Coefficients as a function of solar latitude for Gorizont satellite model
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Figure 5.12: Averaged coefficients as a function of obliquity for Gorizont satellite model

velocity will continuously increase. The evolution of the obliquity will be solely dependent on the

C̄1,x coefficient.
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5.2.2.2 Dynamical Evolution: Full Attitude Integration, Spin Averaged, Year

Averaged

The evolution of the rotational dynamics of the Gorizont satellite model is analyzed by

propagating the angular velocity and obliquity using the full attitude equations of motion, the spin

averaged equations of motion and the year averaged equations of motion. All three simulations

are carried out over a 1 year time period. The satellite is given an initial angular velocity of 6o/s

about the ẑ-axis of the B frame and an initial obliquity of 23.4o. The coefficients shown in Section

5.2.2.1 are used in the integration of the spin and year averaged equations of motion. Figures 5.13a

and 5.13b show the three different solutions for the angular velocity and the obliquity, respectively.

Recall that for the spin and year averaged equations of motion it is assumed that the satellite is

uniformly rotating about the ẑ-axis, therefore, only this component of the angular velocity obtained

from the full integration is shown in Figure 5.13a. In the full integration there are no constraints

on the rotation of the satellite, so the evolution of all three components of angular velocity are

shown in Figure 5.14.
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Figure 5.13: Evolution of rotational dynamics for 1 year for Gorizont satellite model

Note from Figure 5.14 that even though there are no constraints in the rotation of the satellite for
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Figure 5.14: x, y, and z components of angular velocity from full integration for Gorizont satellite
model

the full attitude integration, the satellite continues to uniformly rotate about the ẑ-axis. Hence,

the assumption made for the spin averaged and year averaged dynamics is valid for this satellite.

In addition, we can see from Figure 5.13a that the year averaged dynamics accurately capture the

secular evolution of the angular velocity and obliquity for the Gorizont satellite model.

Figure 5.15 shows the year averaged solution minus the full integration solution for the angular

velocity and obliquity.

In Figure 5.15, it can clearly be seen that since there are no large short period terms in the full

integration, the year averaged dynamics accurately represents the evolution of both the angular

velocity and the obliquity. From Figure 5.13, we see that larger short period variations occur in

the obliquity. This clearly shows up in Figure 5.15 where the difference in obliquity is an order of

magnitude larger than the difference in angular velocity. However, it is important to note that the

difference is still very small.

Figure 5.16 shows the spin averaged solution minus the full integration solution for both

angular velocity and obliquity.

Figure 5.16, shows that the spin averaged dynamics again accurately capture the evolution of the

dynamics of the angular velocity and obliquity. The difference between the spin averaged dynamics



67

Time (days)
0 100 200 300

ω
z
 d

if
fe

re
n

c
e

 (
d

e
g

/s
e

c
)

×10
-3

-6

-5

-4

-3

-2

-1

0

1

(a) Difference in angular velocity for Gorizont satellite
model

Time (days)
0 100 200 300

i s
 d

if
fe

re
n

c
e

 (
d

e
g

)

-0.01

0

0.01

0.02

0.03

0.04

0.05

(b) Difference in obliquity for Gorizont satellite model

Figure 5.15: Rotational dynamics difference for Gorizont satellite model - year averaged minus full
integration
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Figure 5.16: Rotational dynamics difference for Gorizont satellite model - spin averaged minus full
integration

and the full integration is two orders of magnitude smaller than the difference between the year

averaged dynamics and the full integration. This indicates that the spin averaged dynamics much

more accurately capture the short period variations exhibited by the full integration, this can also
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be seen in Figure 5.13 as the full integration solution lies directly on top of the spin averaged

solution.

The short period variations in both angular velocity and obliquity can be explained through

an analysis of the YORP coefficients used in the spin averaged dynamics. Since the ~D1 and C1,y

coefficients are zero for all solar latitudes, Eq. 3.5 can be simplified as follows

˙̄is =
G1

R22ωzIz
[C1,x sinλν ] (5.1)

Now, recall that the Fourier coefficients are a function of solar latitude, δs, where sin δs = sin is sin (ωs + ν).

Therefore, to understand the short period variations we first need to understand the time evolu-

tion of δs and sinλν ; Figure 5.17 and 5.18 show the time evolution of solar latitude and sinλν ,

respectively.
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Figure 5.17: Time evolution of solar latitude for Gorizont satellite model

From Figure 5.17 we notice that solar latitude starts around 20o and is decreasing for the

first 150 days. The same behavior can be seen in Figure 5.18 for sinλν . For the first 50 days of

the simulation, sinλν and C1,x are positive but decreasing in magnitude and begin approaching

zero. This means that Eq. 5.1 will be positive and therefore the obliquity will increase, which is

seen in Figure 5.13b. From 50 to 70 days, the solar latitude decreases from 5o to 0o. At these
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solar latitudes, C1,x is nearly zero meaning Eq. 5.1 is near zero as well. This corresponds to the

constant obliquity seen in Figure 5.13b between 50 and 70 days. Between 70 and 250 days, the solar

latitude is negative which corresponds to a negative C1,x value. However, during this same time

period sinλν is also negative, therefore, Eq. 5.1 will be positive. Hence, the increasing obliquity

seen in Figure 5.13b between 70 and 250 days. At 250 days, due to C1,x and sinλν , Eq. 5.1 will be

near zero corresponding to the constant obliquity seen at this time. Next, C1,x and sinλν become

positive, yielding the increasing obliquity seen between 250 and 365 days in Figure 5.13b.

Now, recall that the evolution of the angular velocity is solely dependent on the C0,z coeffi-

cient, which is a function of solar latitude. We notice that the coefficient is positive for all solar

latitude values, which is why we see a positive slope in the angular velocity for the entire simulation

period. Furthermore, from Figure 5.17 we notice that over the course of the year the solar latitude

only varies from -25o to 20o. In Figure 5.17, we see that for those solar latitude values the C0,z

coefficient only varies slightly. This is why we do not see any significant variations in the angular

velocity, unlike in the obliquity where the coefficients varied more.

Though there are short period variations that occur for this Gorizont model, they are very

small and therefore the averaged dynamics accurately capture the secular evolution of the satellite’s

angular velocity and obliquity as well as the variations that occurs over short periods of time (i.e.
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over a couple of weeks or months).

5.2.2.3 Long Term Dynamical Evolution

Using the year averaged equations of motion, the rotational dynamics of the defunct Gorizont

satellite can be quickly propagated over long periods of time. For this analysis the satellite is given

an initial angular velocity of 12o/s about the ẑ-axis of the B frame and an initial obliquity of 23.4o.

Using the year averaged coefficients described in Section 5.2.2.1, the year averaged equations of

motion are used to propagate the angular velocity and obliquity over 40 years. Figures 5.19a and

5.19b show how these two parameters evolve over time.
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Figure 5.19: Evolution of rotational dynamics over 40 years for Gorizont satellite model

Recall that the C̄0,z coefficient is always positive indicating that the angular velocity will

continuously increase, as seen in Figure 5.19a. In addition, the obliquity approaches 90o over the

40 year time period. It can be seen from Figure 5.12b that 90o is a stable obliquity orientation for

this satellite. Notice that between 0o and 90o of obliquity, the C̄1,x coefficient is positive meaning

obliquity will increase, approaching 90o. Between 90o and 180o of obliquity the C̄1,x coefficient is

negative causing the obliquity to decrease, again approaching 90o.
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5.2.3 Simple GOES 8 Satellite Dynamics

The third satellite model used to study the rotational dynamics of an inactive satellite in

GEO due to YORP is the simple model for the GOES 8 satellite. As with the Gorizont satellite

model, the rotational dynamics of the simple GOES 8 model are propagated with the full attitude

equations of motion, the spin averaged equations of motion and the year averaged equations of

motion. The results obtained with each set of equations of motion are compared to one another.

This comparison gives insight into the importance of short period terms for highly asymmetric

satellites.

5.2.3.1 YORP Coefficients

The simple model for the GOES 8 satellite, described in Section 5.1.3, is used to compute the

YORP coefficients used in the spin and year averaged equations of motion. The coefficients, ~C0,

~C1, and ~D1 as a function of solar latitude are shown in Figures 5.20a, 5.20b and 5.20c, respectively.

As before, only the components needed for the spin averaged equations of motion are shown. Note

that all coefficients, ~C0, ~C1, and ~D1, have non-zero components, which was not the case for the

Gorizont satellite model. This is due to the high degree of asymmetry present in the geometry of

the GOES 8 satellite.

Figure 5.21 gives the year averaged YORP coefficients (i.e. those needed for the year averaged

equations of motion) as a function of obliquity. Figure 5.21a shows that the C̄0,z has a zero

crossing, meaning it is neither positive or negative for all obliquity values. A zero crossing will

result in a change in direction in the evolution of the angular velocity of the satellite.

5.2.3.2 Dynamical Evolution: Full Attitude Integration, Spin Averaged, Year

Averaged

The full attitude equations of motions, spin averaged equations of motion and year averaged

equations of motion are integrated over 1 year in order to study the evolution of the angular velocity

and obliquity for the GOES 8 satellite due to YORP. Recall from Section 5.1.3 that this simple
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Figure 5.20: Coefficients as a function of solar latitude for simple GOES 8 satellite model

satellite model only accounts for the solar panel and trim tab since these will have the largest

YORP torque contributions, therefore, the results obtained with this model are conservative. The

dynamics of the GOES 8 satellite using a more complex model (accounting for all components of the

satellite) are studied and presented in Section 5.2.4.2. For the simulations of the dynamics of the

simple satellite model, the satellite is given an initial angular velocity of 24o/sec about the ẑ-axis

of the B frame and an initial obliquity of 23.4o. The YORP coefficients presented in Section 5.2.3.1

are used to propagate the rotational dynamics of the satellite using the spin and year averaged

equations of motion. The results obtained using the three different sets of equations of motion are



73

Obliquity (deg)
0 50 100 150

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
d
 C

0

×10
-3

-16

-14

-12

-10

-8

-6

-4

-2

0

2
Avg. C

0,z

(a) ~̄C0 coefficient

Obliquity (deg)
0 50 100 150

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
d
 C

1

×10
-3

-1.5

-1

-0.5

0

0.5

1

1.5
Avg. C

1,x
Avg. C

1,y

(b) ~̄C1 coefficient

Obliquity (deg)
0 50 100 150

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
d
 D

1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Avg. D

1,x

Avg. D
1,y

(c) ~̄D1 coefficient

Figure 5.21: Averaged coefficients as a function of obliquity for simple GOES 8 satellite model

compared in Figure 5.22.

Figure 5.22a shows only the z component of the angular velocity vector found by integrating

the full attitude equations of motion because the averaged dynamics assume uniform rotation about

the ẑ-axis. However, in the attitude integration, no constraints are set on the angular velocity of

the satellite. That is to say the x and y components of the angular velocity are not constricted to

be zero beyond the initial conditions. The evolution of all three components of the angular velocity

vector, obtained by integrating the full attitude equations of motion, are shown in Figure 5.23. As

can be seen in Figure 5.23, even though the x and y components of angular velocity are allowed to
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Figure 5.22: Evolution of rotational dynamics over 1 year for simple GOES 8 satellite model

vary they remain nearly zero throughout the year.
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Figure 5.23: x, y, and z components of angular velocity from full integration for simple GOES 8
satellite model

Figure 5.22 shows that the year averaged solution accurately captures the secular change

in both the angular velocity and obliquity. In addition, we note that the variations seen in both

parameters through out the year are very large. Figures 5.24a and 5.24b show the year averaged

solution minus the full integration solution for angular velocity and obliquity, respectively.
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Figure 5.24: Dynamics evolution difference between year averaged and full integration for simple
GOES 8 satellite model

From Figure 5.24a it is very clear that even though the year averaged dynamics accurately captures

the secular change in angular velocity, due to the large variations that occur throughout the year,

the year averaged solution may be up to 4o/s away from the actual angular velocity. Similar

behavior is seen for the satellite’s obliquity in Figure 5.24b. Despite the fact that the year averaged

dynamics accurately capture the secular evolution, the variations throughout the year cause this

solution to be up to 5o away from the true obliquity.

Figure 5.25 shows the difference between the spin averaged solution and the full attitude

integration for both the angular velocity and obliquity.

Here we can see that the spin averaged dynamics much more accurately captures the large varia-

tions seen throughout the year. The angular velocity obtained with the spin averaged equations

of motion is less than 0.4o/s away from the full integration at its largest point. Likewise, the

obliquity computed with the spin averaged dynamics is 0.9o different from the true obliquity at its

largest point. Both of these are significantly smaller than the difference between the year averaged

dynamics and the full integration. From Figure 5.22, we can see that it appears as though there



76

Time (days)
0 100 200 300

ω
z
 d

if
fe

re
n

c
e

 (
d

e
g

/s
e

c
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Difference in angular velocity for simple GOES 8
satellite model

Time (days)
0 100 200 300

i s
 d

if
fe

re
n

c
e

 (
d

e
g

)

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) Difference in obliquity for simple GOES 8 satellite
model

Figure 5.25: Dynamics evolution difference between spin averaged and full integration for simple
GOES 8 satellite model

is a slight shift in the spin averaged curve as compared to the attitude integration curve, which

is what is leading to these differences. This shift could be caused by assumptions no longer being

applicable due to the large variations in the obliquity.

Once again, the large variations seen in the angular velocity and obliquity evolution can be

explained through an analysis of the Fourier coefficients used for the spin averaged equations of

motion. Recall, the coefficients are functions of solar latitude. A time history of the solar latitude

throughout the year is given in Figure 5.26.

First consider the variations seen in the angular velocity. From Eq. 3.4 we see that the evolution

of the angular velocity is solely dependent on the z component of the ~C0 coefficient. For the first

70 days, the angular velocity is increasing. During this time the solar latitude is positive which

results in a positive C0,z coefficient, meaning the rate of change of ωz is positive. Between 70 and

250 days, the solar latitude is negative which corresponds to a negative coefficient and a decreasing

angular velocity. Lastly between 250 days and 365 days the solar latitude is positive, meaning a

positive coefficient and an increasing angular velocity. Such large variations occur due to the large

and rapid differences in the C0,z coefficient in the solar latitude. The same type of analysis can be
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Figure 5.26: Time evolution of solar latitude for simple GOES 8 satellite model

done for the obliquity, though it is more complex since Eq. 3.5 does not simplify as it did for the

Gorizont model.

Because of the large variations in angular velocity and obliquity that are seen throughout the

course of a year for this satellite model, using year averaged dynamics is not adequate if comparing

the model to observations taken over short periods of time (i.e. less than a year). For example,

if an observation is taken at day 70 and a second observation is taken at day 250, there is an

observed change of 7o/s. If this change is compared to what the year averaged theory predicts,

such a large change could not be explained by the YORP effect. Comparing the results obtained

with this satellite model to those obtained for the Gorizont satellite, it is clear that short period

terms are more important for satellites with a higher degree of asymmetry since large variations

will be present throughout a year.

5.2.3.3 Long Term Dynamical Evolution

Using the year averaged equations of motion, the angular velocity and obliquity can be quickly

propagated over long periods of time for the simple GOES 8 satellite model. Here, the satellite’s

rotational dynamics are propagated over a 40 year time period. The year averaged coefficients

shown in Section 5.2.3.1 are used to integrate the year averaged equations of motion. The satellite
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has an initial angular velocity of 24o/s about the ẑ-axis of the B frame and an initial obliquity of

23.4o. Figures 5.27a and 5.27b show the evolution of the angular velocity and obliquity over this

40 year time period, respectively.
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Figure 5.27: Evolution of rotational dynamics over 40 years for simple GOES 8 satellite model

Recall from Figure 5.21a that the C̄0,z coefficient has a zero crossing which occurs when the

obliquity is about 10o and a second crossing when the obliquity is about 170o. At the first zero

crossing the coefficient goes from being positive to negative, while at the second zero crossing the

coefficient changes from being negative to positive. These changes in sign of the C̄0,z coefficient

indicate a change in direction of the angular velocity. This can be seen in Figure 5.27a. We can

see that during the first 15 years the angular velocity is continuously decreasing (i.e. it has a

negative slope), however, from year 15 to year 40 the angular velocity increases (i.e. has a positive

slope). This occurs due to the first zero crossing. In Figure 5.27b we see that for the first 15 years

the obliquity remains above 10o and below 90o, which corresponds to a negative C̄0,z coefficient,

indicating the decreasing angular velocity. At 15 years the obliquity becomes less than 10o and

approaches 0o, which corresponds to a positive C̄0,z coefficient, resulting in the increasing angular

velocity seen in Figure 5.27a after 15 years. In Figure 5.27b we see that the obliquity approaches
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90o and after 12 years it begins to approach 0o. This change occurs when the angular velocity

crosses 0o/s. Note that the true behavior of the satellite as it crosses 0o/s is not captured with the

year averaged dynamics as the satellite will begin to tumble. When the satellite is in a tumbling

state, the assumption that it is uniformly rotating about its maximum moment of inertia is no

longer valid.

5.2.4 Full GOES 8 Satellite Dynamics

The dynamics of the GOES 8 satellite are now explored by using the full GOES 8 satellite

model. As with the previous models, the rotational dynamics of this satellite model are propagated

using the full attitude equations of motion, the spin averaged equations of motion and the year

averaged equations of motion. The results obtained with each method are then compared to one

another. Furthermore, the effects of varying various geometric and optical properties on the YORP

coefficients is explored.

5.2.4.1 YORP Coefficients

The satellite model described in Section 5.1.4 is used to compute the YORP coefficients

required to propagate the dynamics with the spin and year averaged equations of motion. Figure

5.28 show the components of the ~C0, ~C1, and ~D1 coefficients that are required to integrate the

spin averaged dynamics. The coefficients are given as a function of solar latitude. Note that

the coefficients are different than those obtained with the simple GOES 8 satellite model. This

difference is due to the fact that we are accounting for more components of the satellite. The solar

sail makes the largest impact on the coefficients since it has a large radius arm. Once again, we

see that the there are no components which are zero for all solar latitudes as a result of the high

degree of asymmetry exhibited by the satellite.

The normalized components of the ~̄C0, ~̄C1, and ~̄D1 coefficients needed for the year averaged

equations of motion are shown in Figure 5.29. Again, the average coefficients are different than

those found with the simple GOES 8 model, however, the shape of the coefficients is very similar.
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Figure 5.28: Coefficients as a function of solar latitude for full GOES 8 satellite model

5.2.4.2 Dynamical Evolution: Full Attitude Integration, Spin Averaged, Year

Averaged

The rotational dynamics of the GOES 8 satellite are then studied using the full attitude

equations of motion, spin averaged and year averaged equations of motion. For the simulations

presented here to explore the evolution of the rotational dynamics of the GOES 8 satellite using

the full satellite model, the satellite is given an initial angular velocity about the ẑ-axis of the B



81

Obliquity (deg)
0 50 100 150

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e

d
 C

0

-0.024

-0.022

-0.02

-0.018

-0.016

-0.014

-0.012
Avg. C

0,z

(a) ~̄C0 coefficient

Obliquity (deg)
0 50 100 150

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e

d
 C

1

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Avg. C

1,x
Avg. C

1,y

(b) ~̄C1 coefficient

Obliquity (deg)
0 50 100 150

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
d

 D
1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Avg. D

1,x

Avg. D
1,y

(c) ~̄D1 coefficient

Figure 5.29: Averaged coefficients as a function of solar latitude for full GOES 8 satellite model

frame of 48o/sec and an initial obliquity of 23.4o. The YORP and year averaged YORP coefficients

described in Section 5.2.4.1 are used in the integration of the spin and year averaged equations of

the motion, respectively. The evolution of the satellite’s angular velocity obtained with each set of

equations of motion are compared to one another in Figure 5.30a. The same comparison is repeated

for the evolution of the satellite’s obliquity, which is shown in Figure 5.30b.

Note that Figure 5.30a only shows the z component of the angular velocity vector found by
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Figure 5.30: Evolution of rotational dynamics over 1 year for full GOES 8 satellite model

integrating the full attitude equations of motion. In that integration there were no constraints

set on the x and y components of angular velocity to be zero beyond the initial conditions. The

evolution of all three components of angular velocity as a result of integrating the full attitude

equations of motion is shown in Figure 5.31. As can be seen in Figure 5.31, even though the x

and y components of angular velocity are allowed to vary they remain close to zero throughout the

simulation period.

In Figure 5.30 we see that the year averaged solution captures the secular change in both

angular velocity and obliquity, however, there is an offset from the mean due to short period terms

which are not accounted for in the initial conditions. Again, this can be computed, as discussed

by McMahon and Scheeres [41], however, it is not important for this analysis. It can also be seen

that the variations seen in both parameters over the course of a year are very large, and these are

not capture by the year averaged solution. Figure 5.32 shows the year averaged solution minus the

full integration solution for both the angular velocity and the obliquity of the satellite.

Note that some of the difference between the two solutions shown in Figure 5.32a is due to the offset

previously discussed. However, it is still clear from these results that though the year averaged
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Figure 5.32: Dynamics evolution difference between year averaged and full integration for full
GOES 8 satellite model

dynamics accurately captures the secular change in angular, the averaged solution may be up to

6o/sec away from the actual angular velocity of the satellite. The same can be seen for the satellite’s

obliquity in Figure 5.32b. As a result of not capturing the large variations that occur over the course

of the year, the year averaged solution can be up to 12o away from the true obliquity.
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Figure 5.33 shows the difference between the spin averaged solution and the full attitude

integration for both the angular velocity and obliquity.
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Figure 5.33: Dynamics evolution difference between spin averaged and full integration for full GOES
8 satellite model

Here we can see that the spin averaged dynamics much more accurately captures the large

variations seen over the course of year. However, we note that the tracking in the angular velocity is

not as accurate as it was for the simple GOES 8 satellite model. It can also be seen from Figure 5.33

that tracking is better for the satellite’s obliquity than it is for the angular velocity. It is important

to note that even though the tracking is not perfect, the general shape of the curves describing

the evolution of angular velocity and obliquity are captured by the spin averaged dynamics. In the

angular velocity, the solution obtained with the spin averaged dynamics is up to 4.5o/sec away from

the true angular velocity. The obliquity computed with the spin averaged dynamics is less than

1.5o different from the true obliquity value at tis largest point. While these differences are larger

than those that were presented in Section 5.2.3.2 for the simple GOES 8 satellite model, they are

smaller than those found with the year averaged dynamics.

As was shown for the Gorizont satellite and the simple GOES 8 satellite, the large variations
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seen in the angular velocity and obliquity evolution can be explained by analyzing the Fourier

coefficients used for the spin averaged equations of motion. A time history of the solar latitude

throughout the year is given in Figure 5.34 since the coefficients are functions of the solar latitude.
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Figure 5.34: Time evolution of solar latitude for full GOES 8 satellite model

First consider the variations that occur in the angular velocity. Recall that the evolution of the

angular velocity depends solely on the C0,z coefficient. From Figure 5.30a we can see that the

angular velocity increases during the first 60 days (in the spin averaged solution). During this time

period, the solar latitude is decreasing but remains above 2o. From Figure 5.28a we note that the

C0,z coefficient is positive when the solar latitude is greater than 2o. Therefore, during the first 60

days the coefficient is positive resulting in an increasing angular velocity. Next, between 60 and

250 days the angular velocity decreases. For this range of days the solar latitude is less than 2o,

which corresponds to a negative C0,z coefficient, hence the decrease in angular velocity. Lastly,

the angular velocity once again increases after 250 days until the end of the year. During the last

portion of the year the solar latitude is once again greater than 2o resulting in a positive coefficient

and an increasing angular velocity. The large variations that occur are a result of rapid and large

changes in the C0,z coefficient. The large variations that occur in obliquity can also be explained

through an analysis of the C1 and D1 coefficients. However, this analysis is more complex since

Eq. 3.5 does not simplify as it did with the Gorizont model due to the high degree of asymmetry
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present in this is satellite model.

As was shown in Chapter 4, there are a number of parameters that if altered will change

the YORP coefficients and ultimately the dynamical evolution of the satellite. For this satellite

model, there are 5 major parameters that can be altered: the rotation angle of the trim tab, the

x, y, and z components of the center of mass offset and lastly the specular reflection term. Note

that there is no available data for the specular reflection term for the particular materials used in

each component of the satellite. Here we use the satellite model described in Section 5.1.4 and vary

these parameters in such a way that they are remain realistic for the satellite.

The rotation angle of the trim tab is first varied from -90o to 90o. Figures 5.35a - 5.35e show

how varying this parameter alters the C0,z, C1,x, C1,y, D1,x and D1,y coefficients, respectively.

Form Figure 5.35 we can see that varying the angle of the trim tab affects each coefficient differently

and some of them are more affected by the varying angle than others. From Figure 5.35a we can

see that the C0,z coefficient reaches its minimum value when the trim tab rotation angle is 30o,

meaning that when the trim tab has that rotation angle, the angular velocity will experience the

greatest change (i.e. the steepest slope). This occurs when the solar latitude is -26o. Along that

solar latitude, the C0,z coefficient varies by 0.055 at most as the trim tab angle varies. Figure

5.35b shows that the minimum of the C1,x coefficient occurs when the rotation angle is 65o and the

solar latitude is -50.5o. At that solar latitude the coefficient changes by 0.0073 at most when the

rotation angle is -39o. For the C1,y coefficient, the minimum value is obtained when the rotation

angle is -44o and the solar latitude is -76.5o. For that solar latitude value, the coefficient varies at

most by 0.0277. Figure 5.35d shows that the minimum for the D1,x coefficient occurs when the

rotation angle of the trim tab is 89o and the solar latitude is 25.5o. As the rotation angle of the

trim tab is varied, the D1,x coefficient changed by 0.0229 at most (the solar latitude remained the

same at -76.5o to compute this change). Lastly, the D1,y coefficient varies by a maximum of 0.0613.

The minimum for this coefficient occurs when the trim tab is rotated by 34o and the solar latitude

is -32o. Because each coefficient is most affected by a different rotation angle, variations in the

evolution of the angular velocity will be maximized by one rotation angle while variations in the
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obliquity will be maximized by a different rotation angle. Furthermore, these results show that the

variation in the trim tab’s rotation angle affects the C0,z and D1,y coefficients the most.

Next, the x position of the satellite’s center of mass offset was varied. Recall that the nominal

x position is 1.16 m. Since this position is already near the edge of the satellite, for the sensitivity

study we shifted the position from 1.16 m to -1.16 m in increments of 1 mm. The effects of varying

the x component of the center of mass position on the YORP coefficients is shown in Figure 5.36.

From Figure 5.36, it can be seen that the variation in this parameter affects each coefficient differ-

ently. Figure 5.36a shows that the minimum C0,z coefficient occurs when the center of mass offset

is -1.158 m and the solar latitude is -90o. Maintaining the solar latitude constant and varying the

x component of the center of mass position shows that the C0,z coefficient varies a maximum of

0.0003. The minimum value of the C1,x coefficient is obtained when the x component of the center

of mass position is 1.158 m. This occurs when the solar latitude is -43.5o. Along this solar latitude

value the coefficient varies by 0.0025 at most. In Figure 5.36c it can be seen that the minimum

C1,y coefficient corresponds to an x center of mass position offset of -1.158 m and a solar latitude

of -38o. Varying the x component of the center of mass offset and maintaining the solar latitude

constant shows that the C1,y coefficients varies a maximum of 0.2672. Note that the minimums for

the C1,x and C1,y coefficients occur at opposite center of mass positions. Figure 5.36d shows that

the minimum D1,x coefficient occurs when the x component of the center of mass position is at

1.158 m and the solar latitude is 23.5o. The D1,x coefficient varies by a maximum of 0.3057 when

the x component of the center of mass offset is varied and the solar latitude is maintained constant.

Lastly, the D1,y coefficient reaches its minimum when the x component of the center of mass offset

is -1.158 m and the solar latitude is -32o. When the solar latitude is maintained constant and the

center of mass position is changed the coefficient varies at most by 0.0004. These results show that

varying the x component of the center of mass offset has the least impact on the C0,z and D1,y

coefficients. This means that the variations in angular velocity will not be affected by changes is

the x component of the center of mass position.

The third parameter that is varied is the y component of the center of mass offset. This
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(a) C0,z coefficient for GOES 8 satellite with variation
in x component of center of mass position

(b) C1,x coefficient for GOES 8 satellite with variation
in x component of center of mass position
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(d) D1,x coefficient for GOES 8 satellite with variation
in x component of center of mass position

(e) D1,y coefficient for GOES 8 satellite with variation
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Figure 5.36: YORP coefficients for GOES 8 satellite with variation in x component of center of
mass position
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parameter was varied from 0.162 m (the nominal value) to -0.162 m in increments of 1 mm. The

C0,z, C1,x, C1,y, D1,x and D1,y coefficients as the y component of the center of mass position is

varied are shown in Figures 5.37a - 5.37e, respectively.

From Figure 5.37, it can be seen that the variation in this parameter has little to no impact on

all coefficients. Figure 5.37a shows that the minimum C0,z coefficient occurs when the center of

mass offset is -0.162 m and the solar latitude is -89.5o. Maintaining the solar latitude constant and

varying the y component of the center of mass position shows that the C0,z varies by a maximum of

0.0046. The minimum value of the C1,x coefficient is obtained when the y component of the center

of mass position is 0.162 m. This occurs when the solar latitude is -43.5o. Along this solar latitude

value, the coefficient varies by 0.000025 at most. In Figure 5.37c it can be seen that the minimum

C1,y coefficient corresponds to a y center of mass position offset of 0.162 m and a solar latitude of

-89.5o. Varying the y component of the center of mass offset and maintaining the solar latitude

constant shows that the C1,y coefficients varies a maximum of 0.00009. Figure 5.37d shows that the

minimum D1,x coefficient occurs when the y component of the center of mass position is at 0.162

m and the solar latitude is 23.5o. The D1,x coefficient varies by a maximum of 0.0001 when the

y component of the center of mass offset is varied and the solar latitude is maintained constant.

Lastly, the D1,y coefficient reaches its minimum when the y component of the center of mass offset

is -0.162 m and the solar latitude is -32o. When the solar latitude is maintained constant and

the center of mass position is changed the coefficient varies at most by 0.007. These results show

that varying the y component of the center of mass offset has very little impact on the majority of

YORP coefficients. The most affected coefficient is the C0,z coefficient, therefore, it will impact the

evolution of the satellite’s angular velocity. Since the remaining coefficients experience almost a

negligible change as the y component of the center of mass offset is varied, the evolution of GOES

8’s obliquity will not be affected by altering this parameter.

The fourth parameter that is varied is the z component of the center of mass offset. This

parameter was varied from 0.012 m (the nominal value) to -0.012 m in increments of 1 mm. The

effects of varying the z component of the center of mass position on the YORP coefficients is shown
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(a) C0,z coefficient for GOES 8 satellite with variation
in y component of center of mass position

(b) C1,x coefficient for GOES 8 satellite with variation
in y component of center of mass position

(c) C1,y coefficient for GOES 8 satellite with variation in
y component of center of mass position

(d) D1,x coefficient for GOES 8 satellite with variation
in y component of center of mass position

(e) D1,y coefficient for GOES 8 satellite with variation
in y component of center of mass position

Figure 5.37: YORP coefficients for GOES 8 satellite with variation in y component of center of
mass position
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in Figure 5.38.

From Figure 5.37, it can be seen that the variation in this parameter has little to no impact on all

coefficients. Figure 5.37a shows that the C0,z coefficient remains constant as the z component of the

center of mass varies. The minimum value of the C1,x coefficient is obtained when the z component

of the center of mass position is 0.012 m. This occurs when the solar latitude is -43.5o. Along this

solar latitude value, the coefficient varies by 0.000112 at most. In Figure 5.37c it can be seen that

the minimum C1,y coefficient corresponds to a z center of mass position offset of -0.012 m and a

solar latitude of -89.5o. Varying the z component of the center of mass offset and maintaining the

solar latitude constant shows that the C1,y coefficients varies a maximum of 0.0001023. Note that

the minimums for the C1,x and C1,y coefficients occur at opposite center of mass positions. Figure

5.37d shows that the minimum D1,x coefficient occurs when the z component of the center of mass

position is at 0.012 m and the solar latitude is 23.5o. The D1,x coefficient varies by a maximum

of 0.0032 when the z component of the center of mass offset is varied and the solar latitude is

maintained constant. Lastly, the D1,y coefficient reaches its minimum when the z component of

the center of mass offset is -0.012 m and the solar latitude is -32o. When the solar latitude is

maintained constant and the center of mass position is changed the coefficient varies at most by

0.0003. These results show that varying the z component of the center of mass offset has very little

impact on the YORP coefficients. Therefore, changing this parameter will not have a large impact

on the rotational evolution of the satellite.

The last parameter that is varied is the specular reflection, s, which remains constant across

all facets of the GOES 8 satellite model. The specular reflection is varied from 0 to 1 by increments

of 0.1. Recall that s = 0.2 is the nominal value for this parameter. Figures 5.39a - 5.39e show how

varying this parameter alters the C0,z, C1,x, C1,y, D1,x and D1,y coefficients, respectively.

Form Figure 5.39 we can see that varying the specular reflection of the satellite affects the coefficients

differently, however, this parameter has a significant impact on all the coefficients. From Figure

5.39a we can see that the C0,z coefficient reaches its minimum value when the when the specular

reflection is 1. This occurs when the solar latitude is 90o. Along that solar latitude, the C0,z
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mass position
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coefficient varies by 0.3303 at most as the specular reflection varies. Figure 5.39b shows that the

minimum of the C1,x coefficient occurs when the specular reflection is 0 and the solar latitude is

-43o. At that solar latitude, the coefficient changes by 0.00477 at most when the specular reflection

is varied. For the C1,y coefficient, the minimum value is obtained when the specular reflection is 1

and the solar latitude is -78o. For that solar latitude value, the coefficient varies at most by 0.0091.

Figure 5.39d shows that the minimum for the D1,x coefficient occurs when the specular reflection

is 0 and the solar latitude is 2.5o. As the specular reflection is varied, the D1,x coefficient changed

by 0.0818 at most (the solar latitude remained the same at 2.5o to compute this change). Lastly,

the D1,y coefficient varies by a maximum of 0.311 when the specular reflection is varied and the

solar latitude is maintained constant. The minimum for this coefficient occurs when the specular

reflection is 1 and the solar latitude is -45.5o. From these results it is clear that varying the specular

reflection will affect the C0,z and D1,y coefficients the most. This means that varying the specular

reflection of the satellite’s components will have a large impact on the variations of the angular

velocity.

This sensitivity study shows the effects of varying the center of mass position, the trim tab

angle and the specular reflection term on the YORP coefficients. Varying these parameters changes

the coefficients and ultimately the evolution of the angular velocity and obliquity of the satellite.

The results demonstrated that not all parameters will have a large impact on the coefficients.

Varying the rotation angle of the trim tab and the specular reflection proved to cause the largest

changes in the coefficients, while varying the center of mass position had a very small effect on the

YORP coefficients. Therefore, to cause larger variations on the rotational dynamics of the satellite,

the trim tab angle and the specular reflection parameter should be varied. Since all coefficients are

affected differently as these satellite properties are varied, it is possible to influence the evolution

of the angular velocity more than the obliquity or vice versa.
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5.2.4.3 Long Term Dynamical Evolution

The year averaged equations of motion can be integrated to quickly propagate the angular

velocity and obliquity of the full GOES 8 satellite model over long periods of time. The satellite is

given an initial angular velocity about the ẑ-axis of the B frame of 24o/s and an initial obliquity

of 23.4o and the two states are propagated over a 40 year time period. To integrate the year

averaged equations of motion, the year averaged YORP coefficients shown in Section 5.2.4.1 are

used. Figures 5.40a and 5.40b show the evolution of the angular velocity and obliquity over this 40

year time period, respectively.
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Figure 5.40: Evolution of rotational dynamics over 40 years for full GOES 8 satellite model

Recall from Figure 5.29a that the averaged C0,z coefficient is negative for all obliquity values.

Since the evolution of the angular velocity only depends on the C̄0,z coefficient, a negative coefficient

for all obliquity values indicates that the angular velocity will always be decreasing (i.e. will have a

negative slope). It can be seen in Figure 5.40a that the angular velocity continuously decreases over

the 40 year time period, as expected from the coefficient. Note that the main difference between

the averaged C0,z coefficient computed for this satellite model as compared to the coefficient for

the simple GOES 8 satellite model is that it does not have the zero crossing. While this may seem
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like a small difference, it drastically changes the evolution of the satellite’s angular velocity. With

no zero crossing the angular velocity continuously decreases as opposed to decreasing for a portion

of the time and then increasing. In Figure 5.40b it can be seen that the obliquity approaches 90o

for the first 6 years of the simulation. After 6 years, the obliquity then begins to decrease and

approaches 0o. This change occurs at the same time that the angular velocity crosses zero and

goes from a positive value to a negative one. It is important to point out that the true behavior of

the satellite as it crosses 0o/s is not captured with the year averaged dynamics. Notice that this is

the same behavior that we saw in the long-term evolution of the obliquity for the simple GOES 8

satellite model. This is because the C̄1 and D̄1 coefficients are only different in magnitude between

the two satellite models; there are no distinct differences like the zero crossing difference in the C̄0,z

coefficient.

5.2.5 Full GOES 10 Satellite Dynamics

The fifth satellite model used to study the effects of YORP on the rotational dynamics of an

inactive satellite in GEO, is the full satellite model for the GOES 10 satellite. Since this satellite

is extremely similar to the GOES 8 satellite, for which a complex model was also developed, the

rotational dynamics are only propagated using the year averaged equations of motion. We focus

only on the evolution using the year averaged dynamics as this is later used for comparisons with

observations of the satellite (this will be discussed in Chapter 6). The following two sections show

the averaged YORP coefficients for this satellite and the long-term evolution of the rotational

dynamics for this satellite using the year averaged equations of motion.

5.2.5.1 YORP Coefficients

The full GOES 10 satellite model described in Section 5.1.5 is used to compute the year

averaged coefficients required to propagate the rotational dynamics of the satellite using the year

averaged equations of motion. Figure 5.41a shows the C̄0,z coefficient which is required for the

evolution of the angular velocity. Figures 5.41b and 5.41c shows the C̄1,x, C̄1,y, D̄1,x and D̄1,y
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coefficients needed to propagate the obliquity of the satellite. Note that the the coefficients are

only slightly different in magnitude when compared to those for the GOES 8 satellite shown in

Section 5.2.4.1. These small differences are due to the small changes in mass, moments of inertia

and center of mass location at the end-of-life between the two satellites. Note that the C̄0,z is

negative for all obliquity values, which means that the angular velocity will continuously decrease.
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Figure 5.41: Averaged coefficients as a function of solar latitude for full GOES 10 satellite model
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5.2.5.2 Dynamical Evolution: Year Averaged

Since the coefficients of this satellite are very similar to those for the full GOES 8 satellite,

the dynamical evolution will be very similar as well. Therefore, here we only present the long-term

evolution obtained with the year averaged dynamics. The averaged YORP coefficients shown in

Section 5.2.5.1 are used with the year averaged equations of motion to propagate the satellite’s

angular velocity and obliquity over 40 years. For this simulation, the satellite is given an initial

angular velocity of 24o/s about the ẑ-axis of the B frame and an initial obliquity of 23.4o. Figure

5.42a shows the evolution of the satellite’s angular velocity. It can be seen from Figure 5.42a that

the angular velocity decreases over the 40 years, this is due to the C̄0,z coefficient being negative

for all obliquity values. In addition, we note that the angular velocity crosses 0o/s at 7 years. The

evolution of the satellite’s obliquity is shown in Figure 5.42b. The obliquity approaches 90o for

the first 7 years, however, when the angular velocity has its zero crossing, the obliquity begins

to decrease and approach 0o. The long-term evolution of both the angular velocity and obliquity

shown in Figure 5.42 is very similar to that for the full GOES 8 satellite model as a result of the

large number of similarities between the two satellite models.
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Figure 5.42: Evolution of rotational dynamics over 40 years for full GOES 10 satellite model
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5.2.6 Tumbling Satellite

In this section we explore a satellite which has an initial state where the satellite is uniformly

rotating about the maximum moment of inertia, however, over the course of a year the satellite

begins to tumble (i.e. the satellite no longer uniformly rotates about a single axis but has a non-zero

angular velocity component in the x, y and z directions). All the simulations we have presented so

far assume that the satellite has reached a stable rotation about the maximum moment of inertia

through energy dissipation, however, energy dissipation is not modeled. In this section we first

develop a very simple and heuristic model for energy dissipation. This is followed by validation

examples to demonstrate how the torque works. Lastly, we apply energy dissipation to a tumbling

GOES 8 satellite and explore the resulting dynamics.

5.2.6.1 Energy Dissipation Torque

To model energy dissipation, we derive a torque that decreases energy while maintaining the

magnitude of angular momentum constant. It is important to point out that while the magnitude

of the angular momentum is maintained constant, the direction of the angular momentum vector

will change, therefore, this is not a rigorous model for energy dissipation, but is a convenient one

to use. Using this model for energy dissipation, we notice small deviations in obliquity as a result

of the angular momentum vector not being conserved. Nonetheless, with this portion of the work

we verify the importance of energy dissipation in the dynamics of a satellite. Developing a more

rigorous energy dissipation model is left as an avenue for future research to advance the work

presented in this thesis. Using these two requirements, we can derive two conditions which must

be met by the torque used to model energy dissipation. Let’s first define angular momentum,

~H = I · ~ω (5.2)

with this definition, we can express the magnitude of the angular momentum vector as
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H2 = (I · ~ω) · (I · ~ω) (5.3)

Now, we can take the time derivative of H with respect to the B frame.

2HḢ = (I · ~ω) · (I · ~̇ω) + (I · ~ω) · (I · ~̇ω) (5.4)

= 2(I · ~ω) · (I · ~̇ω) (5.5)

Recall Euler’s equations of motion, given in Eq. 3.1. Rearranging Eq. 3.1 and substituting it into

Eq. 5.5 yields,

HḢ = (I · ~ω) · ( ~M − ~ω × (I · ~ω)) (5.6)

= ~M · (I · ~ω)− (I · ~ω) · (~ω × (I · ~ω)) (5.7)

= ~M · ~H − ~ω · ((I · ~ω)× (I · ~ω)) (5.8)

= ~M · ~H (5.9)

Since we want the magnitude of the angular momentum of the satellite to remain constant, we

solve for Ḣ and set it equal to zero.

Ḣ =
~M · ~H
H

= 0 (5.10)

This results in the first condition which the energy dissipation torque must meet.

~M · ~H = 0 (5.11)

Now, we can derive the second condition that the torque must meet by using the requirement

that energy must decrease as a result of this torque. Let us first define rotational kinetic energy as

T =
1

2
~ω · I · ~ω (5.12)
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With this definition, we can now take the time derivative of T with respect to the B frame.

Ṫ = ~ω · (I · ~̇ω) (5.13)

Now recall Euler’s equations of motion once again. Rearranging and substituting Eq. 3.1 into Eq.

5.13 yields [64]

Ṫ = ~ω · ( ~M − ~ω × (I · ~ω)) (5.14)

= ~ω · ~M − ~ω · (~ω × (I · ~ω)) (5.15)

= ~ω · ~M − (I · ~ω) · (~ω × ~ω) (5.16)

Ṫ = ~ω · ~M (5.17)

Therefore, the following condition must also be met by the energy dissipation torque.

~ω · ~M < 0 (5.18)

From Eq. 5.11 we find that given a value for Mx and My, the following relationship must

hold for Mz.

Mz =
−MxIxωx −MyIyωy

Izωz
(5.19)

For the energy dissipation torque, we set Mx = −αωx and My = −αωy. Therefore, given the

relationship in Eq. 5.19, the energy dissipation torque used in this work is

~MED =


−αωx

−αωy
α(Ixω2

x+Iyω2
y)

Izωz

 (5.20)

where α must have units of kg m2/s.
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5.2.6.2 Validation Results

We can verify that the conditions defined by Eq. 5.11 and 5.18 are met by ~MED, both

analytically and numerically. Let us begin by verifying Eq. 5.18 analytically. Substituting Eq. 5.20

into ~ω · ~M yields

~ω · ~M = −αω2
x − αω2

y +
α(Ixω

2
x + Iyω

2
y)

Iz
(5.21)

=
−α
Iz

[
ω2
x(Iz − Ix) + ω2

y(Iz − Iy)
]

(5.22)

The condition given in Eq. 5.18 is met since Iz > Iy > Ix, which makes Eq. 5.22 negative. Now,

we can verify that ~MED also meets the condition defined by Eq. 5.11. Substituting Eq. 5.20 into

~M · ~H results in

~M · ~H = −αIxω2
x − αIyω2

y +
αIzωz
Izωz

(Ixω
2
x + Iyω

2
y) (5.23)

= −αIxω2
x + αIxω

2
x − αIyω2

y + αIyω
2
y = 0 (5.24)

which verifies that the condition given in Eq. 5.11 is met.

Now, we can verify that the conditions are met and that the torque is working as desired

through an example with numerical integration. In this validation example we have a rigid body

whose moments of inertia are Ix = 800.070 kg m2, Iy = 860.215 kg m2, Iz = 1130.565 kg m2.

This object is given an initial angular velocity of ~ω = [1.5, 2, 10]T o/s and an initial quaternion of

[1, 0, 0, 0]T . Euler’s equations of motion are then integrated for 30 minutes. The only torque acting

on the system is ~MED, where α = 10 kg m2/s. Note that because of how this torque is defined it

will only be non-zero when ωx and ωy are non-zero (i.e. while the object is not rotating uniformly

about its maximum moment of inertia). Figure 5.43 shows the three components of angular velocity

over the 30 minutes. It can be seen that after 5 minutes the x and y components of angular velocity

become zero and the rigid body spins solely about the ẑ-axis. From these results it is clear that

the torque does drive the rigid body to a stable rotation about its maximum moment of inertia.
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Also note that after 5 minutes, when ωx and ωy are zero, ~MED is zero, therefore for the remaining

simulation time it is a torque free system.
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Figure 5.43: x, y, and z components of angular velocity from full integration with energy dissipation

To verify that the conditions set in Section 5.2.6.1 are met, we must check the total energy

and the magnitude of the angular momentum of the rigid body. Figure 5.44 shows the total energy

over the 30 minutes.
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Figure 5.44: Total energy from full integration with energy dissipation

It can be seen from Figure 5.44 that the total energy decreases for the first 5 minutes and remains
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constant for the remaining 25 minutes. Recall that after the first 5 minutes it is a torque free

system, which means both energy and angular momentum should be conserved. The energy results

shown in Figure 5.44 show that energy decreases as a result of ~MED and that energy is conserved

when no torque is acting on the system.

The time history of the magnitude of the angular momentum is shown in Figure 5.45. As can

be seen, the magnitude of angular momentum is conserved throughout the 30 minutes, as expected.

These results demonstrate that the two conditions required from the energy dissipation torque are

met and that the torque drives a tumbling rigid body to a stable rotation about its maximum

moment of inertia solely by reducing the energy in the system.
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Figure 5.45: Angular momentum magnitude from full integration with energy dissipation

5.2.6.3 GOES 8 Satellite and Energy Dissipation

In this section we simulate the GOES 8 satellite over a year, during which time the satellite

will begin to tumble. Here, the GOES 8 satellite has an initial angular velocity in which only the

z component is non-zero, meaning the satellite is uniformly rotating about its maximum moment

of inertia. The satellite has an initial angular velocity of ~ω = [0, 0, 21]T o/s and an initial obliquity

of 90o. The evolution of the three components of the angular velocity is shown in Figure 5.46a and

the evolution of the satellite’s obliquity is given in Figure 5.46b.
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Figure 5.46: Evolution of rotational dynamics over 1 year for tumbling GOES 8 satellite

As can be seen in Figure 5.46a, as the z component of angular velocity approaches 0, the x and

y components begin to be non-zero and continue to increase with time. Once the satellite begins

to tumble the obliquity rapidly oscillates between 0o and 180o. Note that this is the satellite’s

behavior when no energy dissipation is present in the system, therefore, with time, ωx and ωy will

continue to increase.

Next, energy dissipation is added to the system by including the energy dissipation torque

described in Section 5.2.6.1, where α = 3000 kg m2/s. The torque acts on the system throughout

the year, though note that because of the definition of the torque it will be small while the satellite

is uniformly rotating about the ẑ-axis since the x and y components of angular velocity will be

near zero. The evolution of the three components of the angular velocity is shown in Figure 5.47a

and the evolution of the satellite’s obliquity is given in Figure 5.47b.

As can be seen in Figure 5.47, once energy dissipation is included in the system, the satellite

no longer tumbles, but rather remains in a stable spin about a maximum moment of inertia.

Furthermore, we see that the obliquity of the satellite no longer rapidly varies between 0o and 180o.

This confirms that including a very simple energy dissipation torque in the system will simulate the
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Figure 5.47: Evolution of rotational dynamics over 1 year for tumbling GOES 8 satellite with
energy dissipation

behavior of a satellite in which energy dissipation will drive the satellite to a uniform spin about

the its maximum moment of inertia.



Chapter 6

The YORP Effect and Observed Rotational Data

In order to verify that YORP could in fact be causing the observed rotational behavior of

inactive satellites, it is important to compare simulations and results obtained with the theory to

actual observations of the rotational period of satellites. To do so, we take two different approaches.

First, averaged YORP coefficients can be estimated for satellites whose rotational period has been

observed using the method outlined in Section 2.6. These inferred coefficients provide a representa-

tion of the amount of torque required to obtain the observed change in rotational period solely due

to the YORP effect, we call this a “required torque”. A satellite model can then be used to com-

pute the year averaged YORP coefficients for the satellite. We take the coefficient at an obliquity

value of 23.4o to be a representation of how much torque a satellite would experience due to the

YORP effect, we refer to this as an “estimated torque”. The required torque can then be compared

to the estimated torque. Comparing the order of magnitude of both will indicate weather YORP

could be causing the observed behavior. This approach for comparing theory to observations is

used for the Gorizont satellite and both the GOES 8 and 10 satellites. The second approach used

to compare theory with observations is by propagating the angular velocity or rotational period of

a satellite with the full attitude equations of motion and comparing the predicted behavior with

observations. This method is used with the GOES 8 and GOES 10 satellite. The following sections

provide in-depth comparisons between observations and theory with the two methods previously

described as applied to the Gorziont, GOES 8 and GOES 10 satellites.
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6.1 Gorizont Satellite

As described, a required torque can be computed for a satellite whose rotational period has

been observed to describe how much torque is required to obtain the observed change in rotational

period only due to the YORP effect. An example of this is provided for the GEO satellite Gorizont-

11. The satellite was observed in 1994 and was found to have a rotational period of 189.4 seconds

[29]. This is a 3-axis stabilized spacecraft and is expected to have begun rotating under external

torques at the end of its lifetime [29], therefore, an initial angular velocity of 0o/s is assumed.

Furthermore, we assume that all Gorizont family spacecraft are of equal mass and dimensions,

those that were previously described in Section 5.1.2. This satellite was launched in 1985 and had

an operational life span of 3 years [2]. This mission was considered successful and it became a

defunct satellite in 1988. Hence the satellite must have reached its observed rotational period of

189.4 seconds in a time span of six years. This corresponds to an average rate of change of the

angular velocity, ∆ω
∆T , during that time of 1.7521×10−10 rad/sec2. The moment of inertia about the

ẑ-axis for this satellite is 5,732.86 kg m2 (this is computed assuming a perfectly symmetric satellite).

This information can then be used to compute the C̄0,z coefficient. It is relevant to compare this

quantity with the computed quantity for our Gorizont satellite model. For this comparison the

YORP coefficients are made into dimensionless numbers. Doing so for the Gorizont model gives a

value of 2.1×10−2, while doing so for the inferred Gorizont-11 example gives a value of 7.6×10−3.

However, if the center of mass offset of our Gorizont model is changed, so that it is only offset by

3.5 cm as opposed to 10 cm, the normalized coefficient becomes 7.5×10−3. It is also important to

note that as long as there is an offset in the center of mass location so that it is not aligned with

the center of figure, there will be a non-zero coefficient. The effect of density inhomogeneity on

YORP was studied for the asteroid Itokawa by Scheeres and Gaskell [66] and used to infer that

asteroid’s mass distribution properties by Lowry et. al. [38]. A non-zero YORP coefficient can

also be achieved by rotating the solar panels asymmetrically instead of shifting the center of mass

of the satellite.
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Table 6.1 shows the mean normalized inferred YORP coefficient for a number of defunct

satellites. These coefficients were computed by using the change in rotational period from the date

the satellite became defunct to the first observation. The observation data for each satellite is

also shown in Table 6.1. The observation dates and observed rotational periods were published by

Karavaev et. al. [29]. These are all 3-axis stabilized so we assume a zero initial rotation rate.

Table 6.1: Observation Data and Normalized Coefficient for Defunct GEO Satellites Between De-
funct Date and First Observation

Satellite
Name

Defunct Date Obs. Date Rotation Period (sec) C0,z

Gorizont 9 1987 2/22/1996 24.33 4.5e-2

Gorizont 11 1988 12/7/1994 189.4 7.6e-3

Gorizont 14 1990 12/20/1998 85.50 1.3e-2

Gorizont 16 1991 3/29/1998 89.95 1.5e-2

Raduga 10 1987 1/25/1998 24.70 3.4e-2

Raduga 12 1985 3/20/1999 37.80 1.7e-2

Raduga 14 1987 12/5/1994 46.28 2.6e-2

Raduga 20 1991 10/16/1991 495.43 2.4e-2

The physical parameters that were used to compute the moments of inertia of the defunct

satellites are shown in Table 6.2 [2, 8], the moments of inertia are computed assuming completely

symmetric bodies for all satellites. It should be noted that the dimensional data for all satellites

are not exact but rather order of magnitude estimates of the true dimensions of each satellite. It

is also important to note that the geometry of these satellites is similar to our Gorizont satellite

model, making it relevant to compare the normalized inferred coefficients to that of our Gorizont

model. Again, we offset the center of mass of our Gorizont satellite model so that it does not line

up with the center of figure. This density inhomogeneity leads to a non-zero expected coefficient

for the model. In order to match the inferred coefficients for the observed satellites, the center of

mass needs to be offset between 3.5 cm to 22 cm (3.5 cm to match the inferred coefficient of 7.6e-3

and 22 cm to match the inferred coefficient of 4.5e-2). A non-zero expected coefficient can also be

obtained by assuming density homogeneity (i.e. no center of mass offset) and rotating one of the

solar panels to create asymmetry. In that case, one the solar panels needs to be rotated between
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9o and 22o in order to match the inferred coefficients.

Table 6.2: Physical Properties for Defunct GEO Satellites

Solar Panel Bus

Satellite Name Mass(kg) Length(m) Width(m) Length(m) Radius(m)

Gorizont 9 2110 5.45 3.73 5 1

Gorizont 11 2110 5.45 3.73 5 1

Gorizont 14 2110 5.45 3.73 5 1

Gorizont 16 2110 5.45 3.73 5 1

Raduga 10 2000 7.14 3.5 5.5 2.5

Raduga 12 2000 7.14 3.5 5.5 2.5

Raduga 14 2000 7.14 3.5 5.5 2.5

Raduga 20 2000 7.14 3.5 5.5 2.5

This same type of analysis was then repeated for those satellites which had been observed

at two different times. Table 6.3 shows the mean normalized inferred YORP coefficients which

were computed by using the change in rotational period between the first and second observation

times. Again, the inferred coefficients are compared to the expected coefficients computed using

the Gorizont model. For these satellites, the center of mass offset required to obtain expected

coefficients that match the inferred coefficients ranges between 3 cm and 21 cm. If we assume no

center of mass offset, then one solar panel needs to be rotated between 8o and 21o. Note that a

combination of a center of mass offset and a solar panel rotation would also lead to a non-zero

expected coefficient. Using a combination of these two would decrease the required amount of

center of mass offset and rotation angle. These results, however, demonstrate that the density

inhomogeneity or solar panel rotation needed for the theory to match the observations is within

the realm of physical possibility.

It can be seen by comparing the change in rotational period between the defunct date (as-

sumed to have zero angular velocity) and the first rotational period to the change in rotational

period between the first observation and second observation that an increase in rotational period

can be followed by a decrease. Additionally we can see from Tables 6.1 and 6.3, the majority of the

normalized coefficients for all of the satellites are of the same order of magnitude as the Gorizont
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Table 6.3: Observation Data and Inferred Normalized Coefficients for Defunct GEO Satellites
Between Two Observations

Satellite Name Observation Pair Rotation Period (sec) ∆t (days) C0,z

Gorizont 9
2/22/1996 24.33

2832 -0.022
11/24/2003 41.50

Raduga 10
12/18/1990 15.20

2960 -0.033
1/25/1998 24.70

Raduga 12
3/27/1995 128.80

1454 0.044
3/20/1999 37.80

Raduga 14
12/5/1994 46.28

1566 -0.0064
3/20/1999 53.61

satellite model. This is particularly noteworthy because the coefficients are of the right order of

magnitude for the two different analyses shown in Tables 6.1 and 6.3. One of the satellites in

Table 6.3 has an inferred coefficient with a smaller order of magnitude when compared to those in

Table 6.1. Note that the coefficients vary with time as the obliquity changes which can explain the

difference in the order of magnitude.

Lastly, the effect of having a momentum wheel transfer angular momentum is analyzed. The

Boeing (Hughes) 601 satellites, which are also communication satellites found in GEO have two

61 Nms 2-axis gimbaled momentum wheels. For the purpose of this analysis, all the satellites

studied are assumed to have the same size and number of momentum wheels to estimate how much

momentum might be transferred to the body once it becomes defunct. The initial angular velocity

transferred to the satellite is obtained by dividing the total angular momentum contained in the

wheels by the body’s moment of inertia (Table 6.2). This analysis is done for the Gorizont satellites.

The satellites in the Raduga family are 3-axis stabilized with propellant micro engines, therefore, it

is assumed that the initial angular velocity is zero. The previously mentioned moment of inertia for

the Gorizont satellites is used (5,732.86 kg m2). This results in an imparted rotational period from

the momentum wheels on the satellite of up to 295.25 seconds. Including this initial period, rather

than assuming a zero value, changes the inferred normalized coefficient from 4.5e-2 (in Table 6.1 )

to 4.1e-2. We can see that the momentum wheels cannot explain the observed behavior. Therefore,

the inferred coefficients obtained by not incorporating any momentum wheels are a valid measure
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of the order of magnitude of the normalized inferred YORP coefficients.

6.2 GOES 8 Satellite

The GOES 8 satellite was observed at four different points in time between December 2013

and July 2014. The observation dates along with the observed rotational periods are shown in

Table 6.4. The observations taken in December 2013, February 2014, and July 2014 were obtained

through collaborations with Rita Cognion of Oceanit, while the observation taken in April 2014

was obtained through a collaboration with Eileen and Bill Ryan of New Mexico Institute of Mining

and Technology.

Table 6.4: Observation Data for GOES 8 Satellite

Observation Date Rotation Period (sec)

12/12/2013 16.83

2/27/2014 16.48

4/23/2014 22.95

7/25/2014 75.66

As with the comparisons presented in Section 6.1, the normalized inferred coefficients are

computed to determine how much YORP torque is required to obtain the observed changes in

rotational period for GOES 8. We consider observation pairs to determine the average change in

angular velocity. The first “observation” is made at the time the satellite was decommissioned; we

assume that the satellite has zero angular velocity at the moment of its de-activation. Therefore,

the first observed rotational period is one that has evolved between the satellite’s de-activation and

its first observation. For subsequent observation pairs, the inferred coefficients are computed from

the difference in the rotational period between the two observation dates. The two observations in

each pair are separated by time ∆t.

For the GOES 8 satellite, the observation pairs, their dates, observed rotation periods, sep-

aration ∆t, and the corresponding normalized inferred coefficients, are shown in Table 6.5.

The predicted coefficient from the full GOES 8 satellite model at an obliquity of 23.4o (recall we are
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Table 6.5: Observation Data and Inferred Normalized Coefficients for GOES 8 Satellite Between
Two Observations

Observation Pair Rotation Period (sec) ∆t (days) C0,z
5/5/2004 0

3508 0.009958
12/12/2013 16.83

12/12/2013 16.83
77 0.009635

2/27/2014 16.48

2/27/2014 16.48
55 -0.1829

4/23/2014 22.95

2/27/2014 22.95
93 -0.1919

4/23/2014 75.66

assuming a heliocentric orbit, and this is the obliquity of an equatorial satellite around the Earth)

is -0.015. Note that this is the instantaneous normalized averaged C0,z for this obliquity value

and so does not account for any changes in the obliquity. Comparison of the predicted coefficient

to the inferred coefficients for the first two observation pairs shows that they are very close in

order of magnitude. The inferred coefficients for the last two observation pairs are an order of

magnitude larger than the expected coefficient computed from the model. However, we note that

the time between the two observations for all observation pairs given in Table 9 are less than a

year, therefore, the year averaged predicted coefficient may not be an adequate comparison.

Sections 5.2.3.2 and 5.2.4.2 showed the importance of accounting for short period terms for

highly asymmetric satellites such as the GOES 8 satellite. Accounting for these short period terms

showed that the YORP effect will cause large variations in both the angular velocity and obliquity

over the course of a few months. These large variations that occur are not captured by using

year averaged theory. Hence, using the year averaged coefficient does not provide the best model

for comparing observations that are taken over a short period of time (e.g. over the course of a

year). Therefore, we use the full attitude equations of motion to propagate the angular velocity

and obliquity for the full GOES 8 satellite model. As it was previously discussed, there are several

parameters that can be changed in the satellite model that will affect the dynamical evolution of

the satellite. To compare the dynamical behavior of the full GOES 8 satellite by integrating the full

attitude equations of motion to the observations show in Table 6.4, several changes are made to the



115

satellite model described in Section 5.1.4. Note that the changes made do not remove the satellite

model from the realm of physical possibility. The position of the center of mass in the satellite

model used for this comparison is [1.15837, 0.01266, 0.00458] m. The trim tab is then rotated 32o.

This component of the satellite is used to for additional control with SRP [73], therefore, it is

reasonable that the trim tab would not be perfectly aligned with the solar panel (i.e. that it would

not have a 0o rotation angle). The optical parameters, given in Table 6.6, are slightly varied from

those used in the model described in Section 5.1.4, however, they are still representative of the

materials used for the different components of the satellite. The last change is that the difference

in emissivity of the front and back of the solar panel and trim tab is not accounted for. That is to

say a2,i = B(1 − si)ρi + (1 − ρi)B is used when computing the force acting on all components of

the satellite. Recall, this formulation assumes that all thermal energy is re-emitted only from the

front of the facet.

Table 6.6: Altered Optical Properties of Facets for Full GOES 8 Satellite Model

ρρρ s B

Solar Panel
Front 0.21 0.2 2/3

Back 0.82 0.2 2/3

Trim Tab
Front 0.95 0.2 2/3

Back 0.07 0.2 2/3

Bus 0.96 0.2 2/3

Solar Sail 0.76 0.2 2/3

Using this updated satellite model, the full attitude equations of motion are integrated for a

year using the energy dissipation torque described in Section 5.2.6.1, where α = 3000 kg m2/s. The

integration starts at the first observation date (12/12/2013) and the observed rotational period is

used as the initial angular velocity about the ẑ-axis of the B frame. The satellite is assumed to be

uniformly rotating about its maximum moment of inertia, so the initial angular velocities about the

x̂ and ŷ-axes are zero. The initial obliquity of the satellite is set to 90o. Because the integration is

started at the first observation date, we need to compute the orbital elements of the Earth’s orbit

around the Sun on 12/12/2013. The J2000 orbital elements of the Earth’s orbit about the Sun
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at a given Julian date can be computed using the methods described by Meeus [43]. The orbital

elements for the Julian date corresponding to the first observation date are shown in Table 6.7.

Table 6.7: GOES 8 Orbital Elements

e a (km) i (deg) ΩΩΩ (deg) ωωω (deg) ννν (deg)

0 149.598× 106 0 -49.0177 152 336.9431

The evolution of the rotational period for the GOES 8 satellite is shown in Figure 6.1, where the

red stars mark the last three observation dates given in Table 6.4.
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Figure 6.1: Rotational period evolution for GOES 8 satellite

The simulated rotational period for each observation date is shown in Table 6.8. Recall that the first

observation date is used as the initial condition and therefore the observation and the simulation

will match exactly.

Table 6.8: Simulated Rotation Data for GOES 8 Satellite with Energy Dissipation

Observation Date Simulated Rotation Period (sec)

12/12/2013 16.83

2/27/2014 16.38

4/23/2014 21.79

7/25/2014 74.05

By comparing the simulated rotation periods to the observed periods, shown in Table 6.4, we can
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see that the simulated periods are within 2 seconds of the observed periods. However, energy

dissipation is not required to match the observation dates. If the altered satellite model now has a

center of mass position of [1.15837, 0.01266, 0.00458] m, trim tab rotation angle of 32o and optical

parameters given in Table 6.9. Once again, all thermal energy is assumed to be re-emitted only

from the front side of a facet.

Table 6.9: Altered Optical Properties of Facets for Full GOES 8 Satellite Model

ρρρ s B

Solar Panel
Front 0.21 0.48 2/3

Back 0.82 0.48 2/3

Trim Tab
Front 0.95 0.48 2/3

Back 0.07 0.48 2/3

Bus 0.96 0.48 2/3

Solar Sail 0.76 0.48 2/3

Using this updated satellite model, the full attitude equations of motion are integrated for a

year once more. The initial obliquity of the satellite is set to 90o. Note that the actual orientation

of the satellite is not known. The evolution of the rotational period for the GOES 8 satellite is

shown in Figure 6.2, where the red lines mark the last three observation dates given in Table 6.4.

Because the rotation period is rapidly increasing only the first 250 days of the simulation are shown

in Figure 6.2, however, note that this covers all the observation dates. All the simulated rotation

periods, shown in Table 6.10, are within 2.5 seconds from the observed rotation periods.

Table 6.10: Simulated Rotation Data for GOES 8 Satellite

Observation Date Simulated Rotation Period (sec)

12/12/2013 16.83

2/27/2014 17.09

4/23/2014 25.32

7/25/2014 74.99

This demonstrates that the YORP effect can cause periods of small changes in rotational

period followed by large variations in the period of a satellite. In addition this further emphasizes

the importance of accounting for short period terms, particularly when comparing the theory to
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Figure 6.2: Rotational period comparison for GOES 8 satellite

observations taken over a few months. Most importantly, this comparison shows that YORP could

be causing the rotational behavior that has been observed for the GOES 8 satellite.

6.3 GOES 10 Satellite

The GOES 10 satellite was observed between February 2014 and August 2014. All observa-

tions were received through a collaboration with Rita Cognion at Oceanit. The observation dates

and corresponding observed rotation periods are shown in Table 6.11.

Table 6.11: Observation Data for GOES 10 Satellite

Observation Date Rotation Period (sec)

2/28/2014 31.1

3/19/2014 32.5

8/28/2014 26.25

Once again, the normalized inferred coefficients are computed to determine how much YORP

torque is required to obtain the observed changes in rotational period for the GOES 10 satellite. As

was done in Section 6.2, we look at observation pairs to compute the inferred coefficients. Again,

we assume that the spacecrafts angular velocity is 0o/s at the moment of its deactivation. The

observation pairs and the resulting normalized inferred coefficients are listed in Table 6.12.
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Table 6.12: Observation Data and Inferred Normalized Coefficients for GOES 10 Satellite Between
Two Observations

Observation Pair Rotation Period (sec) ∆t (days) C0,z
12/2/2009 0

1549 0.01242
2/28/2014 31.086

2/28/2014 31.086
19 -0.0446

3/19/2014 32.52

3/19/2014 32.52
162 0.02738

8/28/2014 26.2

2/28/2014 31.086
181 0.0198

8/28/2014 26.2

The normalized expected coefficient for the GOES 10 model is -0.01638. Comparison of this

value to the values in Table 6.12 shows that the normalized inferred coefficients of the same order

of magnitude as the predicted coefficient. This indicates that YORP could be the factor causing

the observed changes in rotational period for the GOES 10 satellite.

Additionally, the full attitude equations of motion are used to propagate the angular velocity

and obliquity for the full GOES 10 satellite model. A satellite model similarly altered as the altered

full GOES 8 model is used for this propagation. Note that once again, the changes made do not

remove the satellite model from the realm of physical possibility. This time, the position of the

satellite’s center of mass is not changed at all. The trim tab is rotated −68o. The optical properties

used are given in Table 6.13. Once again, the difference in emissivity of the front and back of the

solar panel and trim tab is not accounted for.

Table 6.13: Altered Optical Properties of Facets for Complex GOES 10 Satellite Model

ρρρ s B

Solar Panel
Front 0.21 0.6 2/3

Back 0.82 0.6 2/3

Trim Tab
Front 0.95 0.6 2/3

Back 0.07 0.6 2/3

Bus 0.96 0.6 2/3

Solar Sail 0.76 0.6 2/3

Using this updated satellite model, the full attitude equations of motion are integrated for a
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year. The integration starts at the first observation date (2/28/2014) and the observed rotational

period is used as the initial angular velocity about the ẑ-axis of the B frame. The satellite is

assumed to be uniformly rotating about its maximum moment of inertia, so the initial angular

velocities about the x̂ and ŷ-axes are zero. The initial obliquity of the satellite is set to 23.4o. The

orbital elements for the Julian date corresponding to the first observation date are shown in Table

6.14.

Table 6.14: GOES 10 Orbital Elements

e a (km) i (deg) ΩΩΩ (deg) ωωω (deg) ννν (deg)

0 149.598× 106 0 235 -132.0169 56.1392

The evolution of the rotational period for the GOES 8 satellite is shown in Figure 6.3, where the red

lines mark the last three observation dates given in Table 6.11. All the simulated rotation periods,

given in Table 6.15, are within 1 second of the observed rotation periods. Again, this further shows

that it is within realm of physical possibility that YORP is the cause for the observed changes in

rotation period.

Time (days since 2/28/14)
0 100 200 300

R
o

ta
ti
o

n
a

l 
P

e
ri
o

d
 (

s
e

c
)

15

20

25

30

35

40
Simulation
Observation

Figure 6.3: Rotational period comparison for GOES 10 satellite
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Table 6.15: Simulated Rotation Data for GOES 10 Satellite

Observation Date Simulated Rotation Period (sec)

2/28/2014 31.1

3/19/2014 31.77

8/28/2014 26.39



Chapter 7

Conclusion and Future Work

This thesis introduces the YORP effect in the context of space debris, particularly inactive

satellites. The YORP effect has been previously extensively studied to understand how it changes

the rotational dynamics of asteroids. It has been shown that YORP is the mechanism which causes

secular changes in an asteroid’s rotation rate and obliquity. The work in this thesis applies the

YORP effect to various models of inactive satellites in GEO to study the rotational dynamics of

these objects under the influence on YORP. Observations of inactive satellites show that some

have very fast rotation rates, and that the rotational period of these objects evolves over time.

However, there is no known explanation as to what is causing this observed behavior. Through this

dissertation, we propose the YORP effect as the cause for the changing rotational period that is

observed for inactive satellites. The results presented in this thesis indicate that the YORP effect

could be an explanation for the observed behavior of rotational period of inactive satellites.

In this work, we develop an analytical solution for finding the normal emission component

of the averaged C0,i coefficient used to describe the YORP moment. This portion of the YORP

coefficient has the largest impact on the evolution of the spin period of asteroids. The analytical

solution found is expressed in term of complete elliptic integrals. This solution is a sole function

of the facet and orbit geometry. While computing this coefficient analytically does not prove

advantageous when it comes to run-time compared to solving it with numerical quadrature, it

does further analytical investigations of YORP. The analytical expression provides insight into

the general behavior of a single facet under the influence of the YORP effect. For example, the
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orientations which allow a facet to contribute to either the spin-up or spin-down of an asteroid are

easily identified. In addition, the orientations which result in a facet not contributing to either the

spin-up or spin-down are also defined.

This thesis lays the groundwork for applying the YORP effect to inactive satellites in GEO

and uses several basic models to analyze the dynamics of these objects under the influence of the

YORP effect. Several aspects of the dynamics of an inactive satellite are studied. The YORP effect

is highly dependent on the optical, thermal and geometrical properties of a satellite. Therefore,

we analyze the sensitivity of the moments created by the YORP effect on a satellite to variations

in these three parameters, and ultimately how these variations affect the long-term dynamical

behavior of the satellite, focusing only on the spin rate and obliquity. The results showed that the

averaged YORP coefficients that directly impact the evolution of angular velocity and obliquity

are extremely sensitive to variations in the optical, thermal and geometrical parameters of the

facets making up a satellite. Small changes in these properties can lead to very different long-term

behavior of a satellite. For example, changing the orientation of a satellite appendage can lead

to additional equilibria for the obliquity. Therefore, varying these properties can cause complex

rotational dynamics. This portion of the work further motivates the importance of understanding

the properties of materials making up satellites and how those might change after being in space

for a period of time.

In addition to analyzing the impact of varying different properties on the long-term rotational

behavior of an inactive satellite, the YORP effect was applied to a number of different satellite

models. The evolution of the rotational dynamics was studied by using full attitude equations of

motion, spin averaged equations of motion and year averaged equations of motion. The results

obtained with the three different sets of equations of motion are compared to one another. Both

averaged theories prove to capture the dynamical evolution accurately. While the year averaged

equations of motion theory only captures the secular changes in angular velocity and obliquity,

the spin averaged equations of motion capture the variations that occur due to short period terms.

Using either averaged theory is computationally much faster than doing numerical integration. The
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propagation of the angular velocity and obliquity for an inactive satellite shows that YORP may

have an influence on an inactive satellites rotation state and should be accounted for when trying

to understand the dynamics of such objects.

By doing a comparison between the full integration results and those obtained with spin

and year averaged equations of motion, the short period variations that occur in angular velocity

and obliquity as a result of YORP effect are analyzed. This was done for various satellite models

with different levels of asymmetry. The Gorizont satellite model, with limited asymmetry, showed

minimal short period variations in the angular velocity and obliquity evolution obtained with the

full attitude integration. Therefore, for that satellite model, the spin averaged dynamics accurately

captured the small variations that were present. Due to the lack of large variations throughout the

year, the year averaged dynamics proved to be sufficiently accurate in describing the dynamics of the

Gorizont satellite throughout the year. The GOES satellites, on the other hand, are significantly

more asymmetric. There were two models made for the GOES 8 satellite (a simple and a full

model) and one model made for the GOES 10 satellite; however, the short period variations were

not explored for the GOES 10 model due to its similarity to the full GOES 8 satellite model. Because

of the high degree of asymmetry in these satellites there are large variations in angular velocity and

obliquity throughout the year. For the simple GOES 8 satellite model the year averaged dynamics

accurately captures the secular evolution of the angular velocity and obliquity of the satellite,

however, it does not correctly represent the dynamical evolution throughout the year. The spin

averaged dynamics however, did accurately capture the large variations in angular velocity within

0.5o/s and within 1 o for obliquity. This provides a much less computationally intensive approach

than the full attitude integration. For the full GOES 8 model the spin averaged dynamics did not

track the variations as well as in the simple GOES 8 satellite model. It is important to note that

while the tracking was not very accurate the general shape of the evolution curve was still captured

by the spin averaged dynamics.

In addition, the short period variations in angular velocity and obliquity that were present

in all models were explained by analyzing the YORP coefficients. The evolution of the angular
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velocity, when computed using the spin averaged equations of motion, is solely dependent on the

C0,z coefficient which is a function of solar latitude. Therefore, how the coefficient varies as solar

latitude changes provides insight into the variations that will be present over a year in the satellite’s

angular velocity. Likewise, the variations present in the satellite’s obliquity can be explained by

analyzing the the C1 and D1 coefficients, which are also a function of solar latitude.

The importance of simulating energy dissipation was also briefly explored in the work pre-

sented in this thesis. A very simple and heuristic energy dissipation model was derived and applied

to a satellite which began to tumble over the course of a year. The energy dissipation model con-

sisted of a torque which decreased energy and conserved angular momentum. When this torque was

applied to the tumbling satellite, it caused the satellite to avoid the tumbling state and remain in

a stable uniform spin about its maximum moment of inertia. Energy dissipation was then applied

to the GOES 8 satellite model which was used for comparisons with observations.

The year averaged dynamics equations were also used to compute inferred C0,z coefficients for

satellites whose rotational period had been observed. The inferred coefficients describe how much

torque is required so that an observed defunct satellite would have the observed change rotational

period as a result of only the YORP effect. This was done for several satellites whose rotational

period has previously been observed. This is first done for Raduga and Gorizont satellites whose

observed rotational period was published. The inferred coefficients were normalized and compared

to the previously computed coefficient for the Gorizont satellite model. The results showed that

the “required torque” is of the same order of magnitude as the “expected torque”, indicating

that the YORP effect could be a cause for the observed changes in rotational period of these

defunct satellites. This same type of comparison was then repeated for the GOES 8 and GOES 10

satellites, which were observed by Oceanit and New Mexico Institute of Mining and Technology.

The comparison for the GOES 10 satellite showed that the inferred coefficients were of the same

order of magnitude as the year averaged coefficients previously computed for the GOES 10 satellite

model. The comparison for the GOES 8 satellite showed that the inferred coefficients were of the

same order of magnitude as the year averaged coefficients perviously computed for the satellite
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model for two of the four observed changes in period. However, accounting for the short period

terms and changing some of the variable properties of the satellite (e.g. the rotation angle of the

trim tab) showed that the YORP effect could in fact cause the observed changes in the satellite’s

rotation period. Though this work does not prove that YORP is in fact causing the observed

rotational behavior of defunct satellites, it indicates that YORP could, at the very least, be a

significant factor yielding the observed rotational periods.

The work presented in this thesis serves as motivation to study the effects of YORP on

inactive satellites in more detail. This dissertation also motivates the need for more observations

of defunct satellites, which should also aim to estimate optical properties of the observed objects.

If the YORP effect is causing defunct satellite rotation periods to increase secularly, this could be

a significant issue for the future of the GEO orbital belt. The YORP effect arises due to photons

impinging on the body and thus should not change as the spin rate of a body becomes arbitrarily

fast. At some point a satellite subjected to such intense centrifugal loads should undergo some sort

of failure and shed material or components, such as a solar array. A component located one meter

from the body’s center of mass would leave with a speed of about 6.3 m/s if the body were spinning

with a period of 1 second. If the level of secular acceleration observed in the Gorizont 11 satellite

continued, it would reach such a spin rate in about 1,000 years. The maximum spin rate the satellite

could sustain, however, is unknown. Such rapid spin rates also complicate any proposed physical

interactions with such defunct satellites, either for mitigation or scavenging purposes.

There are several steps that can be taken to improve and advance the work presented in this

dissertation. The work presented here does not account for any self-shadowing on the satellites.

However, in actuality there will be shadows that are created on parts of the satellite from other

satellite components, such as the solar panels. These shadows will be dependent on the orientation

of the satellite and will affect the YORP torque that acts on the satellite. Therefore, accounting

for self-shadowing will give a more accurate representation of the YORP coefficient for the satellite.

In addition, this work does not account for any portions of the year when the satellite does not

receive sunlight due to the Earth’s shadow. Including shadowing from the Earth will also influence
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the torque acting on the satellite due to YORP and ultimately affect the dynamical evolution. It

has been shown for HAMR objects that complex dynamics can occur during the transition into and

out of the Earth’s shadow. Furthermore, the work done for tumbling satellites can be expanded.

More complete methods of energy dissipation can be implemented to more accurately model the

dynamics of a tumbling satellite. Additionally, while this work focuses on applying the YORP

effect only to defunct satellites, it is also important to gain an understanding how the dynamics

of smaller pieces of debris, such as high area to mass ratio objects, are evolving. The motion of

such objects is very complex and may involve tumbling. This is an avenue for future work as the

averaged theory presented here is not applicable to such motion in its current form. Expanding

the theory analytically to be applicable to tumbling objects also provides an understanding of the

evolution of objects through a zero angular velocity state. Furthermore, because the orbital and

rotational dynamics of an object are coupled, it is important to analyze the influence of YORP on

the orbital evolution of debris. Lastly, this work focuses solely on studying the effects of YORP on

the rotational dynamics of inactive satellites, however, for highly asymmetric satellites, such as the

GOES satellites, gravity gradient torques will be present and and may influence the satellite’s spin

state.
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Appendix A

Derivation of the Averaged I1
0,i

In this section an analytical solution for computing the averaged I0,i vector is developed. To

carry out this averaging, each component of I1
0,i is considered separately. The results show there

will be different results depending on the lighting condition given by k2 > 1 and k2 < 1.

A.1 First component of I1
0,i

We first consider the first component of I1
0,i defined as

I1
0,x,i = cos δs(sinλr,i − sinλs,i). (A.1)

Considering this component of I1
0,i and accounting for the different lighting conditions, we substitute

the corresponding values for λr,i and λs,i for each condition, and write the average of this component

as

Ī1
0,x,i =

1

2π

∫ ν1

0
cos δs(sinλr,i − sinλs,i) dν

+
1

2π

∫ ν2

ν1

cos δs(sin 2π − sin 0) dν

+
1

2π

∫ ν3

ν2

cos δs(sinλr,i − sinλs,i) dν

+
1

2π

∫ ν4

ν3

cos δs(sin 0− sin 0) dν (A.2)

+
1

2π

∫ 2π

ν4

cos δs(sinλr,i − sinλs,i) dν.
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Recall from Figure 2.4, that the always lit condition occurs when the true anomaly is between ν1

and ν2 and the never lit condition occurs when true anomaly is between ν3 and ν4. Clearly, the

integrals for the always lit and never lit conditions will go to zero. This allows Eq. A.2 to be further

simplified to

Ī1
0,x,i =

1

2π

∫ ν1

0
cos δs(sinλr,i − sinλs,i) dν

+
1

2π

∫ ν3

ν2

cos δs(sinλr,i − sinλs,i) dν (A.3)

+
1

2π

∫ 2π

ν4

cos δs(sinλr,i − sinλs,i) dν.

To identify the true anomaly angles between which the facet will go through a day-night

cycle, the third inequality in Eq. 2.28 is considered. Substituting for sin δs = sin is sin ν and

cos δs =
√

1− sin2 is sin2 ν, respectively, and solving for ν, the true anomaly angles are determined

sin ν1,4 = ± 1√
sin2 is(1 + tan2 δi)

. (A.4)

Symmetries can further be shown by

cos(∆λi/2)|−ν = − cos(∆λi/2)|ν (A.5)

cos(∆λi/2)|π−ν = cos(∆λi/2)|ν . (A.6)

Note that the more compact term cos(∆λi/2) is used instead of − tan δi tan δs. From these sym-

metries we note the following results for the true anomalies at which cos(∆λi/2) = −1 (i.e., when

∆λi = 2π) and cos(∆λi/2) = 1 (i.e., when ∆λi = 0). We can also combine these to find another

set of symmetries

cos(∆λi/2)|π/2+ν = cos(∆λi/2)|π/2−ν (A.7)

cos(∆λi/2)|3π/2+ν = cos(∆λi/2)|3π/2−ν (A.8)

cos(∆λi/2)|π+ν = − cos(∆λi/2)|ν . (A.9)
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First, at ν = 0, π we find ∆λi = π, unless δi = ±90◦. This agrees with the symmetry in Eq. A.6.

As ν increases from 0 the three possible conditions previously described can occur.

From this result, it is clear that symmetry exists. Hence, the integral from ν2 to ν3 can be

combined to be 2 times the integral from ν2 to π. Furthermore, due to symmetry along the y-axis,

as can be seen in Figure 2.4, the integral from 0 to ν1 is equal to that of ν2 to π. From all this

symmetry, Eq. A.3 can once again be simplified to

Ī1
0,x,i =

2

π

∫ ν1

0
cos δs(sinλr,i − sinλs,i) dν. (A.10)

It is important to note that for some orientations of a facet, it will not be necessary to

consider all three conditions. The case in which a facet is oriented in such a way that for a portion

of the year it will always be lit and for the remainder of the year it will never be lit is considered

first. Note that the facet cannot be oriented so that it is only lit, it must also experience a period

of complete darkness. In this case, the integral given by Eq. A.2 simply becomes

Ī1
0,x,i =

1

2π

∫ v2

v1

cos δs(sinλr,i − sinλs,i) dν

+
1

2π

∫ v1

v2

cos δs(sinλr,i − sinλs,i) dν = 0. (A.11)

Next, the case in which a facet will only have a day-night cycle is considered. The integral

for this condition is

Ī1
0,x,i =

1

2π

∫ 2π

0
cos δs(sinλr,i − sinλs,i) dν. (A.12)

Substituting Eqs. 2.24 and 2.25 for λr,i and λs,i, respectively, and cos δs =
√

1− sin2 is sin2 ν, the

integral becomes
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Ī1
0,x,i =

1

π

∫ 2π

0

[
cosλi

√
1− sin2 is sin2 ν√

1− sin2 is sin2 ν

1− sin2 is sin2 ν
tan2 δi

 dν. (A.13)

Furthermore, using the symmetry previously described the integral is simplified to

Ī1
0,x,i =

4

π

∫ π
2

0
cosλi

√
1− sin2 is

cos2 δi
sin2 ν dν. (A.14)

This can now be expressed in terms of the complete elliptic integral of the second kind. The

complete elliptic integral of the second kind is defined as

E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ. (A.15)

Hence, Ī1
0,x,i is simplified to

Ī1
0,x,i =

4

π
cosλi E(ki) (A.16)

where ki =
sin is
cos δi

and is <1 for this case.

Finally, we consider the case where a facet is oriented in such a way that it will go through

all three conditions described, as shown in Figure 2.4. Recall that the integral for this case has

been simplified and is represented by Eq. A.10. Using the same process as was used for the case

in which a facet will only experience a day-night cycle, this integral can be expressed as

Ī1
0,x,i =

2

π

∫ v1

0
cosλi

√
1− sin2 is

cos2 δi
sin2 ν dν. (A.17)

However, for this case, because the facet experiences a period when it is only lit, the first inequality

of Eq. 2.28 must hold. Therefore,
sin2 is
cos2

i s
> 1 and Eq. A.17 cannot be expressed directly as an

elliptic integral. A variable transformation is performed in order to be able to express this as an

elliptic integral. Let,
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sinφ =
1

cos δi
sin is sin ν, (A.18)

therefore,

sin ν =
sinφ cos δi

sin is
. (A.19)

Then,

cosφ dφ =
1

cos δi
sin is cos ν dν. (A.20)

Solving Eq. A.20 for dν results in

dν =
cos δi cosφdφ

sin is cos ν
. (A.21)

Substituting Eq. A.21 and A.19 in Eq. A.17 and simplifying

Ī1
0,x,i =

4

π

∫ π/2

0

cos δi cosλi
sin is

cos2 φdφ√
1− cos2 δi

sin2 is
sin2 φ

. (A.22)

Equation A.22 can be expressed in terms of the complete elliptic integral of the first kind and the

complete elliptic integral of the second kind. This is done by expressing cos2 φ = 1 − sin2 φ and

then multiplying sin2 φ by k2
i

(
1

k2
i

)
followed by adding k2

i − k2
i . After all this, the numerator is

written as (1− k2
i ) + k2

i

(
1− 1

k2
i

sin2 φ

)
. Recall the complete elliptic integral of the second kind is

defined in Equation A.15. The complete elliptic integral of the first kind is defined by as

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

. (A.23)

Hence, Ī1
0,x,i is simplified to

Ī10,x,i =
4

π

cos δi
sin is

cosλi

[(
1− k2i

)
K

(
1

ki

)
+ k2iE

(
1

ki

)]
(A.24)
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where ki =
sin is
cos δi

and is > 1 for this case.

A.2 Second component of I1
0,i

This same analysis is now used to determine the integral of the second term of I1
0,i for all

possible scenarios. When the facet is always lit for a portion of the year and never lit for the

remainder of the year, the integral is

Ī1
0,y,i =

−1

2π

∫ v2

v1

cos δs(cosλr,i − cosλs,i) dν

+
−1

2π

∫ v1

v2

cos δs(cosλr,i − cosλs,i) dν = 0. (A.25)

Next, for the case when the facet only goes through a day-night cycle, the integral is

Ī1
0,y,i =

−1

2π

∫ 2π

0
cos δs(cosλr,i − cosλs,i) dν. (A.26)

Again, substituting Eqs. 2.24, 2.25 for λr,i, λs,i, respectively, and cos δs =
√

1− sin2 is sin2 ν and

using symmetry the integral is simplified to

Ī1
0,y,i =

4

π

∫ π
2

0
sinλi

√
1− sin2 is

cos2 δi
sin2 ν dν (A.27)

and can be expressed in terms of the complete elliptic integral of the second kind

Ī1
0,y,i =

4

π
sinλi E(ki) (A.28)

when k2
i < 1.

Finally, when a facet is oriented in such a way that it will experience all three conditions the

integral is

Ī10,y,i =
4

π

sin δi
sin is

sinλi

[(
1− k2i

)
K

(
1

ki

)
+ k2iE

(
1

ki

)]
(A.29)

when k2
i > 1. Note that this differs from I1

0,x,i by the sin δi and sinλi.
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A.3 Third component of I1
0,i

A similar analysis is now applied to the third component of the integral of I1
0,i . In the case

where the facet goes through a day-night cycle, then ∆λi ∈ (0, 2π) and the true anomaly will in

general range over its entire domain from [0, 2π) without reaching any limits. The integral can then

be broken into two

Ī1
0,z,i =

1

2π

(∫ π/2

−π/2
I1

0,i(3) dν +

∫ 3π/2

π/2
I1

0,i(3) dν

)
(A.30)

Ī1
0,z,i =

1

2π

(∫ π/2

−π/2
sin δs ∆λi dν

+

∫ 3π/2

π/2
sin δs ∆λi dν

)
. (A.31)

Now in the second integral if we replace ν = π−ν ′, all the values in the integrand will stay constant

but the integral will equal −
∫ −π/2
π/2 I1

0,z,i which trivially equals the first integral. Thus Eq. A.31 can

be rewritten as

Ī1
0,z,i =

1

2π

(
2

∫ π/2

−π/2
I1

0,z,i

)
dν. (A.32)

There is another, more complex, symmetry between positive and negative values of ν. From

Equation A.5 we can show that ∆λi|−ν = 2π − ∆λi|ν . Thus the integral
∫ 0
−π/2 I

1
0,z,i can be shown

to equal 2
∫ π/2

0 I1
0,z,i − 4π sin is. Therefore, the integral of interest is reduced to

Ī1
0,z,i =

1

2π

(
4

∫ π/2

0
I1

0,z,i dν − 4π sin is

)
. (A.33)

After all this simplification, there is still one integral remaining,∫ π/2

0
I1

0,z,i dν =

∫ π/2

0
sin δs ∆λi dν (A.34)



141

where ∆λi ∈ [π, 2π) due to the reduction and simplification of the integral. Before evaluating this

integral, it can be simplified once more. Redefine ∆λi = π + ∆λ′i. Then it can be shown that

∆λ′i = 2 arcsin(tan δi tan δs). Making this substitution and simplifying, we find

∫ π/2

0
I1

0,z,i dν = π sin is

+2

∫ π/2

0
sin δs arcsin(tan δi tan δs) dν. (A.35)

Substituting this into Eq. A.33 provides one additional simplification through cancellation, yielding

Ī1
0,z,i =

1

2π

(
8

∫ π/2

0
sin δs arcsin(tan δi tan δs) dν

)
(A.36)

where the value of the arcsin(−) function now varies within [0, π/2), by definition.

First define the angle θ = arcsin(tan δi tan δs). Next, apply integration by parts, with u = θ

and dv = sin δsdν. We immediately get du = dθ and v = − sin is cos ν. Integrating by parts with

the appropriate limits and simplifying yields

Ī1
0,z,i =

1

2π

(
8 sin is

∫ π/2

0
cos ν dθ

)
. (A.37)

The integral is still over the true anomaly ν, as θ has not been fully specified yet. It is simpler

at this point to restate this integral as a function of true anomaly once again. Specifically, the

following relationship is used where cos θ =
√

1− tan2 δi tan2 δs, therefore,

cos θ dθ = tan δi sin is
cos ν

cos3 δs
dν. (A.38)

Using this definition for dθ, the integral in Eq. A.37 can be rewritten in terms of true anomaly.

Once this substitution is made and the integral is simplified to

Ī1
0,z,i =

1

2π

[
8 tan δi

∫ π/2

0

(
sin is cos2 ν

1− sin2 is sin2 ν

dν√
1− (1 + tan2 δi) sin2 is sin2 ν

)]
. (A.39)
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The cos2 ν in the numerator is expressed as 1− sin2 ν and distributed

Ī1
0,z,i =

1

2π

(
8 tan δi

∫ π/2

0

sin2 is − sin2 is sin2 ν

1− sin2 is sin2 ν
(A.40)

dν√
1− (1 + tan2 δi) sin2 is sin2 ν

)
.

Now we re-write sin2 is = 1− cos2 is

Ī1
0,z,i =

1

2π

(
8 tan δi

∫ π/2

0

1− cos2 is − sin2 is sin2 ν

1− sin2 is sin2 ν
(A.41)

dν√
1− (1 + tan2 δi) sin2 is sin2 ν

)
.

This integral can now be separated into two integrals

Ī1
0,z,i =

1

2π

8 tan δi

∫ π/2

0

 1√
1− sin2 is

cos2 δi
sin2 ν

(A.42)

− cos2 is

(1− sin2 is sin2 ν)
√

1− sin2 is
cos2 δi

sin2 ν

 dν

 .
Note that (1+tan2 δi) sin2 is =

sin2 is
cos2 δi

≤ 1, per our lighting condition. This means that this integral

can be directly related to Elliptic integrals where K(k) is the complete elliptic integral of the first

kind, and Π(n, k) is the complete elliptic integral of the third kind, with the definitions k =
sin is
cos δi

and n = sin2 is. The complete elliptic integral of the third kind is defined as

Π(n, k) =

∫ π/2

0

dθ

(1− n2 sin2 θ)
√

1− k2 sin2 θ
. (A.43)

Making these substitutions into the original integral, the final form of Ī1
0,z,i is found

Ī1
0,z,i =

4

π
tan δi

[
K(ki)− cos2 isΠ(sin2 is, ki)

]
. (A.44)
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Now, consider the case when the facet is always lit for a portion of the year and never lit for

the remainder of the year. Recall the special true anomaly ν1 defined by tan δi tan δs|ν1 = 1, which

is the true anomaly at which the sun becomes continually in view. Then from symmetry it is found

that tan δi tan δs|ν4 = −1, tan δi tan δs|ν2 = 1, and tan δi tan δs|ν3 = −1. Given the properties of

the arccos function it can be seen that from ν ∈ (ν4, ν1) the ∆λi angle goes from (0, 2π) and for

ν ∈ (ν2, ν1) the ∆λi angle goes from (2π, 0).

Applying all of these symmetries and results we can split the integration into several segments

in the same manner as was described in Equation A.2. Again, we immediately note that the first

and last terms can be combined into one integral yielding

Ī1
0,z,i =

1

2π

(∫ ν1

ν4

I1
0,z,i dν +

∫ ν2

ν1

I1
0,z,i dν

+

∫ ν3

ν2

I1
0,z,i dν +

∫ ν4

ν3

I1
0,z,i dν

)
. (A.45)

From the definition of ν1 we note that ∆λi = 2π for ν ∈ (ν1, ν2) and ∆λi = 0 for ν ∈ (ν3, ν4). Thus

the integral
∫ ν4
ν3
I1

0,z,i = 0 and
∫ ν2
ν1
I1

0,z,i = 2π sin is
∫ ν2
ν1

sin ν dν = 4π sin is cos ν1. Next, we can show

that
∫ ν3
ν2
I1

0,z,i =
∫ ν1
ν4
I1

0,z,i. Finally, we have
∫ ν1
ν4
I1

0,z,i = 2
∫ ν1

0 I1
0,z,i− 2π sin is (1− cos ν1). This along

with some further simplification leads to

Ī1
0,z,i =

1

2π

(
4

∫ ν1

0
I1

0,z,i dν

−4π sin is (1− 2 cos ν1) dν) . (A.46)

After all of this simplification, there is still one remaining integral

∫ ν1

0
I1

0,z,i dν =

∫ ν1

0
sin δs ∆λi dν. (A.47)

where ∆λi ∈ [π, 2π] now due to the reduction and simplification of the integral. Before this integral

is evaluated, it can be simplified once more. Redefine ∆λi = π + ∆λ′i. Then it can be shown that

∆λ′i = 2 arcsin(tan δi tan δs). Making this substitution into Eq. A.47 and simplifying
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∫ ν1

0
I1

0,z,i dν = π sin is (1− cos ν1)

+2

∫ ν1

0
sin δs arcsin(tan δi tan δs) dν. (A.48)

Substituting this into Eq. A.46 provides one additional simplification through cancellation yielding

Ī1
0,z,i =

1

2π
(4π sin is cos ν1

+8

∫ ν1

0
sin δs arcsin(tan δi tan δs) dν

)
. (A.49)

where the value of the arcsin(−) function now varies between 0 and π/2, by definition.

Once again, there is a fundamental integral which can be shown to be equivalent to a collection

of elliptic integrals.

J =

∫ ν1

0
sin δs arcsin(tan δi tan δs) dν. (A.50)

First define the angle θ = arcsin(tan δi tan δs), which takes on values of 0 and π/2 at the two

extremes of ν = 0, ν1. Next, integrate by parts, with u = θ and dv = sin δsdν. It can immediately

be seen that du = dθ and v = − sin is cos ν, as has been seen before. Equating J = uv−
∫
vdu with

the appropriate limits and simplifying yields

J = −π
2

sin is cos ν1 + sin is

∫ ν1

0
cos ν dθ. (A.51)

The integral in Eq. A.51 is still over the true anomaly ν, as θ has not been fully specified yet.

Once again, it is simpler at this point to restate this integral as a function of true anomaly again.

Specifically, the relationship

cos θ dθ = tan δi sin is
cos ν

cos3 δs
dν (A.52)
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is used, with cos θ =
√

1− tan2 δi tan2 δs. Using these definitions and substituting them into Eq.

A.51 the integral can be rewritten as

∫ ν1

0
cos νdθ = tan δi sin is

∫ ν1

0

cos2 ν

1− sin2 is sin2 ν
dν√

1− (1 + tan2 δi) sin2 is sin2 ν
, (A.53)

after some simplifications. Note that the parameter in the denominator, (1 + tan2 δi) sin2 is =

sin2 is
cos2 δi

> 1 although (1 + tan2 δi) sin2 is sin2 ν ≤ 1. Thus this equation cannot be directly related

to elliptic integral form.

To make this transition, a final change of variables is introduced. Noting that (1+tan2 δi) sin2 is sin2 ν

goes from 0 to 1 at the limits of the integral, a new angle is defined by sinφ =
√

1 + tan2 δi sin is sin ν.Then

φ takes on limits of 0 and π/2 and the differential relationship

cosφ dφ =
√

1 + tan2 δi sin is cos ν dν (A.54)

is obtained. Additional identities are sin2 is sin2 ν = cos2 δi sin2 φ and cos ν =

√
1− cos2 δi

sin2 φ

sin2 is
.

Inserting these into the integral of interest and simplifying, yields

∫ ν1

0
cos ν dθ =

sin δi

sin2 i2∫ π/2

0

1− cos2 is − cos2 δi sin2 φ(
1− cos2 δi sin2 φ

)√
1− cos2 δi

sin2 φ
sin2 is

dφ. (A.55)

This equation can then be rewritten as

∫ ν1

0
cos ν dθ =

sin δi

sin2 i2

∫ π/2

0

1√
1− cos2 δi

sin2 φ
sin2 is

dφ− cos2 is

∫ π/2

0

1(
1− cos2 δi sin2 φ

)√
1− cos2 δi

sin2 φ
sin2 is

dφ

 . (A.56)
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Once again, Eq. A.56 can be expressed in terms of Elliptic integrals, where K(−) is the complete

elliptic integral of the 1st kind and Π(−,−) is the complete elliptic integral of the 3rd kind

∫ ν1

0
cos ν dθ =

sin δi

sin2 i2

[
K

(
cos δi
sin is

)
− cos2 isΠ

(
cos2 δi,

cos δi
sin is

)]
. (A.57)

Going all the way back to our original integral, Ī1
0,z,i =

∫ 2π
0 sin δs∆λ dν, we can now state it in

closed form

Ī1
0,z,i =

4

π

sin δi
sin is

[
K

(
1

ki

)
− cos2 isΠ

(
cos2 δi,

1

ki

)]
(A.58)

where ki = sin is
cos δi

and is > 1.


