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Abstract

Statistical active contour models (aka statistical pres-
sure snakes) have attractive properties for use in mobile
manipulation platforms as both a method for use in visual
servoing and as a natural component of a human-com-
puter interface. Unfortunately, the constantly changing
illumination expected in outdoor environments presents
problems for statistical pressure snakes and for their
image gradient-based predecessors. This paper introduces
a new color-based variant of statistical pressure snakes
that gives superior performance under dynamic lighting
conditions and improves upon the previously published
results of attempts to incorporate color imagery into
active deformable models.

1. Introduction

Active contour models, also known as snakes, have
experienced relative popularity in the computer vision
community since their introduction. Various formulations
and techniques have been investigated in an attempt to
improve upon performance under a variety of conditions.
In general, image gradient-based snakes [10] are used in
the majority of this work with less than satisfying results.

Our work is motivated by ongoing research on using
vision and visual servoing techniques to automate basic
tasks on mobile manipulation platforms. Such platforms
are used by public safety organizations worldwide for
tasks such as Urban Search And Rescue (USAR), security
and surveillance, explosive disposal, and inspection. The
typical environments for these tasks present a host of diffi-
culties for computer vision and image processing tech-
niques. The most critical among these are dynamic light-
ing conditions, shadowing, and spectral variability (for
example, neon vs. incandescent vs. sunlight). 

Furthermore, safety organizations have uniformly
found that pure teleoperation requires intensive training
and quickly produces operator fatigue and errors. Any
vision or visual servoing technique must be easy to initial-
ize, intuitive to adjust, and provide reliable operation
under the aforementioned conditions.

To address these problems and requirements, we have
adapted previous work in statistical pressure snakes
[1][8][11] to color imagery. Color has been used previ-

ously in snakes under several different methods. The most
common is the use of edge detection in each color plane
(the Red, Green, and Blue of RGB) that is then combined
to give a color “gradient”. A traditional Kass, et al. [10]
snake is then placed into the resulting gradient image.
Rather than a true color snake, this is simply an alternate
formulation for the image gradient. These snakes inherit
all of the problems associated with initialization and per-
formance of gradient-based snakes without providing
color selectivity.

We have taken previous work in statistical pressure
snakes and adopted a color-based pressure term that uses
Hue-Saturation-Value (HSV) color space. Our color pres-
sure term matches non-uniformly in the three components
of the color vector, unlike previous color gradient
approaches. We use a narrow match in hue and broader
statistical matches in saturation and value. The result is a
snake that produces striking performance under dynamic
lighting conditions and during shadowing. Furthermore,
we can also use only hue and achieve performance over a
greater dynamic lighting range; however, this also
degrades performance in color discrimination for similar
hues. The latter choice in color selection is particularly
useful for targets with preselected color fiducial markers.

2. Previous Color Snakes

One way to address illumination and shadowing prob-
lems is to use a color matching model that allows pixels
from a brightly illuminated region to statistically match
pixels from a shadowed or poorly illuminated region. We
turned to color models as a potential solution to the types
of changing illumination observed in common mobile
manipulation environments. These included illumination
intensity changes, shadowing, and illumination spectra
changes. Many prior efforts to develop color snakes basi-
cally fall into one large group of similar techniques, with a
small number of notable exceptions.

Most prior efforts use a standard color cube model with
RGB bitplanes to produce an image gradient (typically
edge detection) in each bitplane. The results were then
combined to form a single “color gradient” image that was
then used to drive a traditional Kass, et al. snake. Clearly,
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illumination changes will affect the strength of the gradi-
ent and sharp shadows will produce strong gradients that
are not related to the target occluding contour. A variation
of this method uses three snakes, one for each bitplane,
and then attempts to merge the results into a unified snake.
These particular forms of color snakes do not address our
design requirements and were therefore rejected.

A different method that used RGB looked at color
angular maps [4]. Edge detection was then used on the
angular maps to produce a gradient image. Again, prob-
lems with initialization required the use of techniques to
improve the robustness of the snakes. This effort also
failed to address changing illumination and shadowing.

Sapiro [13] used edge detection in a CIE (Comission
Internationale de l'Eclairage) standard color space (1976
L*a*b*, or simply CIELAB) to drive diffusion for snake
image energy. This is a color opposition model where
color is defined on two axes with (  and ) where red is

, green is , yellow is , and blue is . This provides
similar information to HSV, where the opposing colors
yellow and blue have angles  radians apart and the
opposing colors green and red are  radians apart.

An alternate method by Gevers, et al. [6] used a color
gradient method containing RGB, normalized RGB, inten-
sity, and hue to determine gradient in an attempt to provide
color constancy under varying illumination. The method
was supported by limited examples with saturated colors
and very little true illumination change. Again, the use of
RGB-based color models called into question the ability to
determine color similarity; however the work did use hue
as a partial measure of color gradient.

The work of Zhu and Yuille [14] was based upon region
competition and an attempt to base segmentation on
albedo. Again, limited results using saturated colors were
presented where the true changes in the illuminant were
negligible. The appeal of this work is the idea of removing
the illuminant and growing regions in multiband data
using albedo. When possible, removing the effects of illu-
mination should improve performance; however, it would
also appear that this method would be applicable under
only a narrow dynamic range of illumination changes and
would also become intractable in cases of multiple light
sources and interrflections. Other work has investigated
the color constancy problem [2][5][9], but these often
have strong prior assumptions (e.g. gray-world, smoothly
varying illumination, etc.) or are computationally expen-
sive While possibly offering better color matching, use of
these techniques would overly constrain our environment.

Zhu and Yuille also point out that balloon snakes [3]
and region growing [7] are really variations on the same
solution. Since our prior experience with statistical pres-
sure snakes has demonstrated excellent performance in
terms of segmentation and tracking bandwidth, we
selected these as our underlying model.

3. Color Pressure Snakes

3.1 The Basic Pressure Snake

The traditional deformable model was first proposed by
Kass et al. [10] and is a parametric curve of the form 

. (1)
This curve is placed onto a potential field (typically

image gradient) derived from the image and allowed to
change shape and position, minimizing the energy along
the length of the curve. The energy function is defined as: 

(2)

that includes internal, image, and constraint energies.

(3)

where the internal energy is given by

. (4)

In the closed contour case ( ), we obtain

(5)

where  and  are weights.  is the potential induced by
the image values. 

We replaced  with a single term that maintains a
constant third derivative (i.e. a zero fourth derivative) to
more accurately reflect the original motivations for active
deformable models [11]. The implementation of this
energy term includes an even spacing constraint required
for discrete derivatives, making the tension term in (3)
redundant. We also replaced  with a statistical pressure
term

(6)

where

(7)

and is based upon the mean  and standard deviation 
of pixel values from a seed region or target model appear-
ance [8][11][12]. The  factor determines the spread of
acceptance on pixels values (e.g. 1.0 , 2.3 , 3.25 , etc.)
The pressure is applied perpendicular to the derivative of
the snake curve  and is weighted by . The seed region
or target appearance identifies positive vs. negative pres-
sure regions. In other words, image regions that are statis-
tically similar to the seed region yield positive pressure
while image regions that are some number of standard
deviations away from the seed yield negative pressure.
When a portion of the contour is in a positive region, it
expands. When a portion of the contour is in a negative
region, it contracts. It follows that the minimum energy of
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the contour lies on the pressure boundary between the pos-
itive and negative regions.

This work can be viewed as the application of statistical
segmentation or region growing to the snake image force.
The advantage is that image pressure is defined across the
extent of the image, whereas image gradient is a highly
localized feature. Pressure snakes therefore converge
faster and have very loose constraint upon initial place-
ment.

3.2 Statistical HSV Color Pressure

The use of greyscale pixel values in the snake pressure
term produces significant sensitivity to illumination
changes. Intuitively, as illumination increases, the object
luminance increases accordingly, resulting in a shift of
greyscale values toward white (camera saturation). As
illumination decreases, the greyscale values shift toward
black (minimum camera lux).

In order to track objects in greyscale across illumina-
tion changes, the value  can be expanded, automatic gain
control can be used, or post processing techniques such as
histogram stretching or equalization can be utilized. Each
of these methods has significant problems when used to
achieve constant object pixel values. Each of these meth-
ods also fail to handle partial shadowing where an object
of constant surface color may appear to have many differ-
ent shades.

Color information provides a better statistical measure
across these changes. The pressure force calculation only
requires a scalar measure indicating how well the current
pixel values match those of the target. To make the snake
routine work with a full color image, the target is specified
in terms of all three color channels. Here the target error
signal is defined as

(8)

where  are local average pixel color channel values, 
are the target color channel values, and  are the target
color channel standard deviations. The change to the pres-
sure force subroutine code was minimal to incorporate a
full three color channel image target specification.

While the RGB color space is routinely used when
manipulating and printing images, it isn't ideal for the
snake algorithm code. The goal is to have the target be
identified under a range of lighting conditions. This means
that if the target is specific type of red, for example, then
we would like to register all shades of this red as the target
color. It is possible to compute such a set of target colors
in RGB space, but it is a very complicated function.
Instead, it is convenient to map the image color channels
from RGB space to Hue-Saturation-Value (HSV) color
space. A similar color space is the Hue-Saturation-Inten-
sity (HSI) color space. In the HSV color space, the hue

determines the general color of the pixel (think of the color
selection in a rainbow), the saturation determines how rich
or washed out the color is, and the value determines the
brightness or darkness of the color.

The HSV color space is illustrated in Figure 1. Assum-
ing the hue begins with blue at 0, the hue values cycle
through all possible colors until they return to blue at 360
degrees. For example, a pure green color would have a hue
value of 120, while a pure red would have a hue of 240. If
the saturation value S is 0, then the value V control the
gray scale of the pixel. For gray scale images, the hue
value is ill-defined.

Reconsider Equation (8). To achieve a hue-only snake,
the weights  and  are set to maximum value (func-
tional infinity). As these factors approach infinity, their
respective terms approach zero and the target error
becomes

. (9)

Equivalently, if one desires the original greyscale pres-
sure snakes,  and  should be set to maximum value
(functional infinity). This is useful, for instance, when the
saturation values of the target region are extremely low
(approaching black), extremely high (approaching white),
or when the saturation corresponds to RGB colors where

 (i.e. greyscale).
Let us define our target color in the HSV color space. If

we specify the target to only have a specific hue value
(with associated standard deviation), then the target error
function will return 0 if the current image pixels are of this
hue type, regardless of how light or dark, saturated or
washed out the current pixel color is. All shades and varia-
tions of a color will be accepted. If the target is surrounded
by a color with a clearly different hue (for example a blue
box surrounded by a red frame), then the snake will be
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able to easily track the blue box, even though the target
might have drastically different lighting conditions across
its surface. This idea is illustrated in Figure 2. Similarly, if
portions of the box are more brightly lit, then these blue
zones with lower saturation value would also still be regis-
tered as the correct color. Such robustness to lighting
changes between images, as well as across images, is not
possible with classical gray-scale images. By moving to
the HSV space, it is possible to make the snake routine a
lot more robust to lighting changes as would be experi-
enced in a typical unstructured outdoor environment
(shadows being cast across object, clouds move in, etc.).

If the snake is to outline a general target, however, then
only looking at the hue value to determine the error signal

 to the target color could be to forgiving. For example,
consider that a blue suit-case is to be acquired. If only the
hue value of a pixel is considered to generate , then a
very white pixel, with only a slight hint of blue, would still
be considered to be the target color. However, in practice
this very light or dark color is often the color of another
object in the scene. While the hue proximity is typically
clipped with a gain of , it is found that for general
target tracking the saturation values  and intensity values

 should also be clipped with a gain of about .
Thus, we are still weighting mostly on the hue parameter,
but also penalizing for drastic departures from the target
saturation and intensity values.

Using this HSV color space target selection scheme
will have issues when the target color is near white or near
black. For example, assume the target is nearly white, but
has a slight shade of red to it. In this case it is possible that
a different portion of the target might have a slightly blue
shade (from a different light source, reflection off another
target, etc.). If the target is very dark (near black), our
method continues to work reasonably well with the same
choice of gains. Principally, this is due to dark objects hav-
ing rather large standard deviations, desensitizing the cal-
culation of  to hue since  is large. The result is that
our algorithm automatically reverts to using mostly value
instead of hue for dark objects.

4. Experimental Results

We have implemented our color snakes using the
OpenCV libraries on both laptops and workstations run-
ning Microsoft Windows 2000 and XP. The snakes use
DirectX registered video sources and a TCL/Tk interface
to allow intuitive user input and interaction (a mouse click
on the target initializes the snake, and all parameters can
be adjusted while the snake is running via input sliders).
We have tested our models on both indoor and outdoor
imagery to validate the performance under the types of
conditions mobile manipulation platforms operate.

The first set of experiments involve indoor scenes using
both fluorescent and natural lighting. These were per-
formed on an 3 Ghz Pentium 4 workstation with a Pyro
1394 Firewire WebCam. Performance in a structured
office environment (see Figure 3) was excellent with
respect to segmentation and speed (frame-rate), with the
system consistently tracking objects during illumination
changes (only ambient light from a window, one set of flu-
orescent lights on, both sets of fluorescent lights on). The
snake is shown, as well as the major and minor axes of the
snake. These experiments used , , and

.
A second set of indoor experiments was conducted with

a less powerful laptop (700 Mhz P-III) using a USB 1.0
Labtech Webcam. This camera’s color and clarity are
severely degraded from the 1394 camera used in the previ-
ous experiments. We have included four images from an
experiment involving incandescent lighting on a dimmer
switch. To characterize performance of the method only,
we shutoff the camera’s Automatic Gain Control (AGC).
We have observed that AGC can compensate for a large
range of illumination changes and the final system will no
doubt use cameras with AGC and auto-white balance.

In the first image, the lighting is set to a medium level
and the snake is initialized (a simple mouse click on the
region of interest). Figure 4 shows the lighting at initial-
ization. The target is a multi-colored patchwork quilt, with
two adjacent blocks that can be confused under low-light

Figure 2 Shadowed boxes
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conditions. As lighting increases (see Figure 5) the snake
continues to segment the selected block correctly. The
same is true for reduced illumination conditions (see Fig-
ure 6). Finally, in Figure 7, the increasingly dark lighting
conditions have led to an inability to differentiate between
the adjacent blocks. Indeed, the hue of the non-target
block is virtually identical to the target block’s hue under
the initial lighting conditions. The target block is still rec-
ognized as belonging to the initial identified color of inter-
est, even though the color is approaching black.

It is worth noting that in this set of experiments, the tar-
get was selected to give less than ideal regions. Earlier
color snake research used predominantly imagery with
highly saturated, flat matte targets. The blocks of the target
quilt provide local variations due to shadowing and con-
tain some specular components due to the material used (a
polyester blend). Throughout the experiment, the snake
parameters were left at , , and

.

A third set of experiments was conducted under real
conditions. For these experiments, footage was captured
from a Sony camcorder using a laptop and a Dazzle DVC-
50 USB capture device. This device only supports quarter
sized images (320x240) and results in the snake and axes
graphics appearing thicker.

In this set, an unattended piece of luggage is sitting par-
tially in the shadow of a vehicle. Three images (Figure 8
through Figure 10) are shown as the camera view changes
upon approach to the suitcase. The snake parameter set-
tings were the same as the second set of experiments; how-
ever the camcorder uses AGC and auto white balance.

The performance and stability of our new color snakes
allow their use for supervised and autonomous guidance of
mobile manipulation platforms by using established visual
servoing approaches. The result will be robots that can be
easily integrated into public safety teams without exten-
sive training and exhaustive teleoperation. 

Figure 4 Medium lighting conditions

Figure 5 Brighter lighting conditions
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Figure 6 Darker lighting conditions

Figure 7 Segmentation bleeds to adjacent block

Figure 8 Suitcase with mixed lighting



We have placed color figures from this paper at 
http://www.ece.unm.edu/~chsmith/IROS2003 since color
is crucial to the presentation of this work.

5. Conclusion

The standard statistical pressure snake routine was
modified to function on a color image in HSV color space.
If the target color is only specified in terms of hue, then
large variations in target lighting and shading are permit-
ted. This provides a significant increase in the robustness
of tracking a specific target in an unstructured, outdoor
environment. One requirement here is that the target is
surrounded by a frame of a clearly different hue to avoid
the snake spilling over to other image objects with similar
hues. By specifying the target color to contain hue, satura-
tion and intensity values, it is possible to a establish rea-
sonably robust method to track general image features of a
common color. Here it is important to penalize more
strictly hue departures from the target color and only
mildly penalize the saturation and intensity departures.

Our current plan is to incorporate more powerful pat-
tern recognition techniques that we have previously
applied to greyscale snakes [1]. We also plan to investigate
other measures of color constancy, including uniform
color spaces and albedo.
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Figure 9 Suitcase with mixed lighting

Figure 10 Suitcase with mixed lighting


