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The problem of controlling Micro-Robotic Vehicles (MRVs) is studied in
this report. Two types of state estimators are presented for the cases of
full and partial state measurement. A potential gradient type control law is
then developed to drive the MRVs to the target location without hitting one
another.

INTRODUCTION

Microrobotic systems are being studied for future use on land and in space. To
perform a specific task, the philosophy is to replace one large, expensive and complex
robot with a multitude of small, inexpensive and simple robots. This report studies
miniature land based robotic vehicles(MRVs). They are assumed to have sensors
aboard which are to be transported to a specific target area. As long as “most”
MRVs make it to the target area, the mission is considered to be a success.

Each MRV has some limited navigational sensing capability such as heading or
range to target. Also, it is assumed that the MRVs are able to sense each other in
some manner. The idea is to control the MRVs in such a manner that they do no
collide and are capable of some simple cooperation. As an example, it the MRVs only
have a limited sensor range, then not all will see the target initially. Here it would
be beneficial for MRVs that do see the target to be able to communicate and guide
the MRVs that do not see it.

This report will present two types of state estimators. The first one assumes that
the MRVs have the full state measured. The second one assumes that the MRVs
only can measure their relative distance to the target and their compass heading.

∗
Graduate Research Assistant, Aerospace Engineering Department, Texas A&M University, College Station TX 77843.

†
George Eppright Chair Professor of Aerospace Engineering, Aerospace Engineering Department, Texas A&M University,

College Station TX 77843.

1



In this case the relative orientation to the target will be obtained through the state
estimator. These estimators will be useful in running simulations since they allow one
to incorporate realistic effects of measurement noise and limited sensing capabilities.
Of particular interest will be to generate some stochastic model of how many MRVs
actually reach the target given different conditions and measurement assumptions.

PROBLEM STATEMENT

Each miniature robot is equipped with two tracks to propel it forward and rotate
it as illustrated in Figure 1. The origin of the coordinate system is assumed to be the
target. The MRV heading is given by the angle θ. The range to target is denoted by
r and the relative heading is φ.

φ

θ
(x,y)

r

Figure 1 Illustration of the Miniature Robot Crawler

Let pi = (xi, yi, θi)
T be the state vector of the i-th MRV, then the equations of

motion are given by1

ṗi = B(pi)ωi =
1

2







Rr cos θi Rl cos θi

Rr sin θi Rl sin θi

2 Rr

Rw
−2 Rl

Rw







[

ωri

ωli

]

= f(pi, ωi) (1)

where ωi = (ωri
, ωli)

T , Rr and Rl are the right and left track radii and Rw is the
distance between the two tracks. The MRV can rotate by having each track rotate
at different speeds. Track slippage or sticking effects are not modeled here.
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STATE ESTIMATION

Estimation Algorithm Outline

In the following development the state estimation process for a particular MRV
is studied. Therefore the index counter i for each MRV state pi is dropped in this
section. Since the position sensor updates typically occur at a low frequency, it is
necessary to estimate the states between these updates to calculate the current control
input. Between these sensor updates it is assumed that the track angular velocities
can be sampled at a high frequency. The measured track angular velocities ωm will
contain some white noise w which is assumed to have a standard deviation of σω. The
true track angular velocity is given as

ω(t) = ωm(t) − w(t) (2)

The following extended Kalman estimator provides current state estimates and is
able to filter out some measurement noise by optimal weighting based upon forward
propagating the state covariance matrix.2 With the following formulas, a subscript
indicates the number of data sets that were used to find its estimate. A superscript
indicates the time step of the state estimate. Let p̂k

k be the current state estimate at
time step k. Until the next sensor update is available at time k+1, the state estimates
are then forward integrated using the nonlinear equations of motion in Eq. (1), this
process is indicated formally as

p̂k+
k = p̂k

k +
∫ k+

k
ṗdt (3)

The notation pk+ indicates the state p at time k+, where k < k+ < k + 1. To be
able to forward propagate the state covariance estimate derived from measurement
error covariances, the linearized dynamics about some reference states pref and ωref

are required.
ṗref = f(pref , ωref) (4)

Taking the first Taylor expansion of Eq. (1) about the reference motion we obtain

ṗ ≈ f(pref , ωref) +
∂f(p, ω)

∂p

∣

∣

∣

∣

∣

ref

(p − pref) +
∂f(p, ω)

∂ω

∣

∣

∣

∣

∣

ref

(ω − ωref) + · · · (5)

After subtracting Eq. (4) from (5) we obtain

δṗ =
∂f(p, ω)

∂p

∣

∣

∣

∣

∣

ref

δp +
∂f(p, ω)

∂ω

∣

∣

∣

∣

∣

ref

δω (6)

where δp = p − pref and δω = ω − ωref . For linearization of the dynamics, the
reference states are set equal to the best present estimates. Therefore pref = pk+

k and
ωref = ωm. Using Eq. (2) the vector δω is clearly −w and is the driving process noise
of the linearized system. The linearized system can now be written as

δṗ = F (pk+
k , ωm)δp + G(pk+

k )δω (7)
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where the matrices F and G are defined as

F = F (pk+
k , ωm) =

∂f(p, ω)

∂p

∣

∣

∣

∣

∣

(pk+

k
,ωm)

=
1

2







0 0 −(Rrωr + Rlωl) sin θ
0 0 (Rrωr + Rlωl) cos θ
0 0 0





 (8)

G = G(pk+
k , ωm) =

∂f(p, ω)

∂ω

∣

∣

∣

∣

∣

(pk+

k
,ωm)

=
1

2







Rr cos(θ) Rl cos(θ)
Rr sin(θ) Rl sin(θ)
2Rr/Rw −2Rl/Rw





 (9)

From here on we will only use the short hand notation F and G where their depen-
dence will be implicitly understood.

Let P k
k be the state covariance matrix at time step k. This covariance matrix

provides a measure of how uncertain the current state estimates are. A high entry in
P indicates a high uncertainty of the current state estimate. Let Q be the covariance
matrix associated with the driving process noise and the 2x1 vector σw be the standard
deviation of the process noise. The matrix Q is then defined as

Q =
[

σ2
w1

0
0 σ2

w2

]

(10)

Without including the effect of process noise the covariance matrix P would eventually
tend to zero. This means that only the previous measurements will be trusted and
future updates ignored. Including the covariance matrix Q allows the estimator to
be tuned such that P never will go to zero. Past measurements are never perfectly
trusted. In between sensor updates, this covariance matrix P is updated using

P k+
k = P k

k +
∫ k+

k
Ṗ dt (11)

where the covariance matrix derivative is given as the inhomogeneous Lyapunov equa-
tion3

Ṗ = FP + PF T + GQGT (12)

Standard literature on continuous covariance propagation includes an extra “learning”
term in the above equation, resulting in the Riccati equation.

Ṗ = FP + PF T − PHTΛ−1
vv HP + GQGT

This term would “decrease” the covariance matrix if the sensor output were sampled
continuously. However, the sensor output is only sampled at discrete times and not
continuously like the track angular velocities. Therefore this term is dropped here
since no sensor based learning occurs between times k and k + 1. Once a new sensor
measurement is available the covariance matrix P will also be updated discretely
along with the state vector.

Since the F and G matrices for the MRVs contain large blocks of zeros, the calcu-
lation of Ṗ can be simplified. Let the P matrix be partitioned as

P =
[

P11 P12

P T
12 P22

]

(13)
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where P11 is a 2x2 matrix, P12 is a 2x1 matrix and P22 is a scalar. The matrix F is
partitioned as

F = F (p, ωm) =
[

0 F12

0 0

]

(14)

where the 2x1 matrix F12 is defined as

F12 =
1

2

[−(Rrωmr
+ Rlωml

) sin θ
(Rrωmr

+ Rlωml
) cos θ

]

(15)

The matrix G is written as

G = G(p) =
[

G1

G2

]

(16)

with the 2x2 matrix G1 being

G1 =
1

2

[

Rr cos(θ) Rl cos(θ)
Rr sin(θ) Rl sin(θ)

]

(17)

and the 2x1 matrix G2 being

G2 = [ Rr

Rw
− Rl

Rw
] (18)

Using these definitions, the time derivatives of the P matrix partitions are expressed
as

Ṗ11 = P12F
T
12 + F12P

T
12 + G1QGT

1 (19a)

Ṗ12 = F12P22 + G1QGT
2 (19b)

Ṗ22 = G2QGT
2 (19c)

Let Ŷ k+1 be the estimated output vector of the sensors at time k + 1. It is defined
as

Ŷ k+1 = h(p̂k+1
k ) (20)

The generally nonlinear term h(pk+1
k ) maps the current state estimate into a best

prediction of the observation vector. The measured sensor output vector Ỹ k+1 at
time k + 1 given in terms of the true state vector pk+1 is

Ỹ k+1 = h(pk+1) + v (21)

where the vector v is the gaussian measurement noise with standard deviation σv. The
covariance matrix associated with the measurement noise, assuming no correlation of
measurement errors, is

Λvv =







σ2
v1

0 · · ·
0 σ2

v2
· · ·

...
...

. . .






(22)

Assume that at time k + 1 a new sensor update Ỹ k+1 is available. The current state
estimate p̂k+1

k is updated to incorporate the new sensor measurement through the
extended Kalman filter recursion2

p̂k+1
k+1 = p̂k+1

k + Kk+1
(

Ỹ k+1 − Ŷ k+1
)

(23)
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The matrix Kk+1 is the optimal kalman gain matrix which is found through

Kk+1 = P k+1
k HT

(

Λvv + HP k+1
k HT

)

−1
(24)

where H is defined as

H =
∂h

∂p

(

pk+1
k

)

(25)

The state covariance matrix P is updated to reflect the presence of a new sensor
measurement through

P k+1
k+1 =

(

I − Kk+1H
)

P k+1
k (26)

Full State Measurement Case

If the MRV sensor are capable of feeding back the full state vector, then the esti-
mated observation vector Ŷ k+1 can be written as

Ŷ k+1 = pk+1
k (27)

For this case the mapping h(pk+1
k ) is the identity mapping and the H matrix is the

identity matrix. This estimator was numerically simulated where the track angular
velocity vector is prescribed to be

ω(t) =
[

1
1

]

+
[

.7

.5

]

t (28)

The true initial states are

p(0) =







−10
9
.3






(29)

All angle measurements are given in radians. The initial state estimate was simply
set to zero. To reflect this large initial ignorance, the state covariance matrix P is
initialized as a diagonal matrix with diagonal entries 100. The standard deviations
vectors of the state or angular velocity measurements are

σv =







0.1
0.1
0.01





 (30)

σω =
[

0.1
0.1

]

(31)

The simulation used a simple Euler integration method to solve the differential
equations. The estimation errors are shown as a solid black line in Figure 2 below.
As a comparison, the actual sensor measurement noise levels were included in the
background.

Since the initial covariance matrix is very large, the estimator almost ignores exist-
ing state estimates and uses the new sensor data to quick converge close to the true
states. The estimators can also act as a noise filter. The amount of filtering achieved
is controlled by the entries of the two vectors σv and σω.
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Figure 2 State Estimator Noise Filtering Capability

Partial State Measurement case

If the MRV sensors only can feed back the range to target and the compass heading
θ, then the relative heading to the target will have to be learned by the estimator.
Let the range r be

r =
√

x2 + y2 (32)

The estimated observation vector is then

Ŷ k+1 = H(pk+1
k )pk+1

k =
[

x/r y/r 0
0 0 1

]

pk+1
k (33)

A numerical simulation was run to show how well the relative heading φ can be
estimated. The track angular velocity was prescribed to be

ω(t) =
[

1
1.1

]

+
[

.7
.69

]

t (34)

The initial state and state estimate were the same as in the previous simulation. The
standard variation vector σv of the measurement noise is set to

σv =
[

0.5
0.01

]

(35)

and σω is kept the same as in the previous simulation.

The state estimation errors are shown in Fig. 3. The range r and relative heading
φ can be estimated. The estimation errors in θ are orders of magnitude smaller than
the ones for r and φ since the angle θ is measured directly. The noise level on the
range measurement is plotted in the background. For this simulation, after about 40
seconds the range estimate error is smaller than the range noise level.

This simulation makes the MRV move large distances as is shown in Fig. 4. The
larger the maneuver, the better the estimator will filter out the range and heading
information. A second factor affecting how fast the estimator will estimate the states
properly is how accurately the range itself is measured.
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Figure 3 Partial State Measurement Case
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Figure 4 MRV States During Maneuver

POTENTIAL GRADIENT CONTROL LAW

The objective of each MRV is to reach a certain target area without colliding with
other MRVs. Further, the computational effort of the control law should be kept
as low as possible. To achieve this a simple Potential gradient type control law is
presented here. The underlying principle involves generating an attractive potential
around the target state and projecting the MRV kinematics onto the gradient of the
potential function as illustrated in Fig. 5. The MRV will move until it reaches a local
potential function minimum.

Given a potential function Vi(xi, yi, θi), the target MRV kinematics are then chosen
to move down the local potential function gradient as4

dpi

dt
= −γ

∇Vi

||∇Vi||
= B(pi)ωi (36)

where the scalar γ is a scaling parameter which controls the overall speed at which
the MRV will move down the gradient direction. The control input ωi is then found
to be

ωi = − γ

||∇Vi||
(BT B)−1BT∇Vi (37)

We adopt the least squares inverse solution, because with only two kinematic controls,
we cannot achieve dpi/dt exactly. Since B is a 3x2 matrix, the calculation of ωi only
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Figure 5 Gradient Type Control Law Illustration

requires the inverse of a 2x2 matrix BT B.

BT B =
1

4





R2
r

(

1 + 4
R2

w

)

RrRl

(

1 − 4
R2

w

)

RrRl

(

1 − 4
R2

w

)

R2
l

(

1 + 4
R2

w

)



 (38)

Note that BT B is independent of the state vector p. The inverse of BT B is given as

(BT B)−1 =
1

4





4+R2
w

R2
r

4−R2
w

RrRl

4−R2
w

RrRl

4+R2
w

R2
l



 (39)

and only needs to be calculated once since it is constant. The control input ωi can
now be written explicitly as

ωi = − γ

||∇Vi||

[ cos θ
Rr

sin θ
Rr

Rw

2Rr

cos θ
Rl

sin θ
Rl

−Rw

2Rl

]

∇Vi (40)

Assume that the MRV is attracted to the point (x0, y0), then the following attractive
potential function V a

i is adopted

V a
i (xi, yi, θi) =

1

2
k1[∆x2 + ∆y2] +

1

2
k2α

2 (41)

where ∆x = x0 − xi, ∆y = y0 − yi and α = φ − θ as illustrated in Fig. 6 and φ is
defined as

φ = tan−1
(

∆y

∆x

)

(42)

Note that the range of the angle α must be limited to be within −π < α < π.
Otherwise the MRV might try to reorient itself by rotating the “long” way around
(i.e. +200◦ instead of −160◦). This development assumes the MRVs have a “front”
and a “’back” side. Each MRV is driven such that it drives “forward” towards the
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(xi,yi)

(x0,y0)

r

φ

θ
∆x

∆y

α

Figure 6 MRV Coordinate Illustration

target. An alternative development can accommodate the case of no preference for
driving “forwards” or “backwards.”

The gradient vector of V a
i is

∇V a
i (xi, yi, θi) =







−k1∆x + k2α
∆y

∆x2+∆y2

−k1∆y − k2α
∆x

∆x2+∆y2

−k2α





 (43)

This potential function V a
i will attract the MRV to the point (x0, y0) and orient it

such that it faces this point. Without any information about the heading angle θ in
V a

i the MRV would not be able to reach (x0, y0). The term ∂V a
i /∂θ would be zero,

which would lead to θ̇ = 0 in Eq. (37). The MRVs would simply move in a straight
line until a local minimum is found. Including the heading information is important
since the MRVs are unable to move sideways. For them to move to the left or right
they have to change their heading θ.

rb

r0

V i
r = 0

V i
r = 0

Figure 7 Repulsive Potential Zone Description

To keep one MRV from running into a second MRV, a repulsive potential function
V r

i is added around the second MRV whenever the distance r =
√

∆x2 + ∆y2 between
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them is too small. Let rb be the outer most radius of the MRV and r0 be the outer
distance from the MRV at which the repulsive potential function is non zero as shown
in Fig. 7. Then the repulsive potential will be non zero whenever the distance between
the two MRVs is less than rb + r0. By activating the repulsive potentials only over a
finite range, the computational burden of each MRV is greatly reduced. The repulsive
gradient only needs to be calculated when another MRV is within the specified stand
off distance.

As with the attractive potential function, the repulsive potential function has to
include information about the MRV heading angle θ. However, instead of trying to
point a given MRV towards another MRV, here we try to make the MRVs face away
from each other. Let r̂ = r − rb and β = φ − θ − π, then the repulsive potential is
defined as

V r
i (xi, yi, θi) =

1

2
k3

(

1

r̂
− 1

r0

)2

+
1

2
k4β

2] if r < rb + r0 (44)

The gradient of V r
i is

∇V r
i (xi, yi, θi) =









k3

(

1
r̂
− 1

r0

)

∆x
r̂2r

+ k4β
∆y

r2

k3

(

1
r̂
− 1

r0

)

∆y

r̂2r
− k4β

∆x
r2

−k4β









if r < rb + r0 (45)

Again care must be taken to ensure that the range of the angle β lies within −π ≤
β ≤ π to avoid unnecessarily large rotations.

To illustrate the attractive and repulsive potentials, the motion of a single MRV
is simulated. The initial MRV state is (20,20,.2 rad) and the target coordinates are
(0, 0). A stationary MRV is placed at (10, 10) to test the avoidance skills of this
control law. The result is shown in Fig. 8.

5 10 15 20

5

10

15

20

Figure 8 Sample Target Convergence and Obstacle Avoidance

The light colored path shows how the MRV would approach the target without
any repulsive potentials present. It’s path would take it right through the other
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MRV. With the repulsive potential active the MRV is able to maneuver around the
stationary MRV and then resume it’s path to the target. How quickly the MRV will
turn towards the target is controlled by the gain k2. The larger k2 is relative to the
gain k1, the faster the MRV will line up with the target.

Now that an attractive/repulsive potential approach has been established that lets
the MRVs converge to a target and avoid hitting each other, the next step is to try to
make them cooperate finding the target. Typically, each MRVs sensors will only have
a limited range. They will only be able to detect each other through some means
over some finite distance. At the same time there will be some upper range limit on
detecting the target. The general idea is to make the MRVs that do see the target
help the MRVs that do not see target.

Given

own state

Can LC

see target

Form attractive

potential

around target.

Form   .

around LC

V i
aCan other LC

see target?

Loop through

all visible LC

Loop through

all visible LC

Is other LC

too close?

Form   .

around LC

V i
r

Find   .ωi

yes
no

no

no

yes

yes

Figure 9 Flow Chart of Potential Gradient Construction
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What is proposed in this study is to modulate the signal that the MRVs send out
to detect each other between two states. One state would signal to others that this
MRV cannot see the target. In this case the other MRVs would simply ignore it
unless it is too close. However, if the MRV can see the target, then the signal would
be modified to indicate this information to other MRVs. If any of the other MRVs
within sensor range cannot see the target themselves, then they will form attractive
potentials around the MRVs that can see the target. With this simply can see / can’t
see signal modulation, one can greatly expand the area around the target where the
MRVs will converge upon it. The flow diagram in Fig. 9 illustrates this logic process.

The same attractive potential used around the target state can also be used to make
other MRVs attractive. If the distance between two MRVs starts to get too small,
then the repulsive potential is activated to deflect the gradient and thereby avoid
collisions. As soon as the MRV has the target within its own sensor range, then it
will ignore all other MRVs, except those within standoff range, and proceed straight
to the target.
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Figure 10 Illustration of MRV Cooperation

This concept is illustrated in the following simulation. The target is the coordinate
origin. Forty MRVs are scattered around the target with a standard deviation in
position of 100. The integration was performed using the Euler method with a step
size of 0.4 seconds and let run for 250 seconds. Both track radii are 0.5 and the wheel
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base Rw is 2. The gains for the potential functions where k1 = 3, k2 = 20, k3 = 6 and
k4 = 1. The potential function gradient gain γ is set to 1. To generate the repulsive
potential, the MRV radius rb is set to 1 and the function radius r0 is set to 5. The
MRV sensor range to detect the target is 150 and the sensor range to detect other
MRVs is 75. The simulation is run once when the cooperation is activated and once
when it is inactive. Both cases are shown in Fig. 10.

The black paths are the MRVs that made it to the target without any cooperation
from other MRVs. The light colored paths are the ones that only made it to the
target when they received cooperation. In this case MRVs that see the target act as
“attractive beacons” until the unseeing MRV has the target in sensor range. Clearly
this simple signal modification is able to greatly extend the range of convergence
for the MRVs. In this simulation the MRVs that could not see the target or other
MRV who can see the target simply remain stationary. It is possible to have them
perform some “standard search pattern” with the motto “some search is better than
no search.”
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Figure 11 Final Positions of MRVs around Target

The final positions of all the MRVs that make it close to the target within the
simulation time are shown in Fig. 11. As expected they cluster around the target
(coordinate origin) and maintain some standoff distance between them. This standoff
distance can be controlled with the parameters r0 and rb, along with the repulsive
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potential gain k3.

C-CODE OVERVIEW

The source code file name is grad8.c. All simulation data is read in from the
support file called data. The following output files are generated:

1. The file arrived lists how many MRVs have arrived at the target at a given time.
2. The file est txy provides the estimated (x, y) MRV positions for a given time

step.
3. The file diff txy provides the difference between the estimated and the actual

MRV (x, y) locations at a given time step.
4. The file xy stores the (x, y) positions of each MRV without time information.

This file is used to generate MRV tracks of their motion.
5. The file txy stores the actual MRV (x, y) locations at a given time step.
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