CCAR

Electron-induced x-rays for remote potential sensing

Kieran Wilson Graduate Research Assistant Miles Bengtson Graduate Research Assistant Hanspeter Schaub

Professor, Glenn L. Murphy Endowed Chair

- Motivation
- Theory introduction
- Experimental setup
- Experimental results

Motivation

- Knowledge of charge of one craft doesn't translate to nearby craft
 - Poses potential hazards in rendezvous
- General spacecraft charging interest
 - 30 kV observed at GEO
- Electrostatic debris remediation

Electrostatic tractor

- Proposed method to touchlessly re-orbit and detumble GEO debris
 - 10s of mN attractive force
- Control requires knowledge of charge on both bodies

Electrostatic tractor

- Proposed method to touchlessly re-orbit and detumble GEO debris
 - 10s of mN attractive force
- Control requires knowledge of charge on both bodies

Relevant Background

Prior touchless sensing work

- Trek non-contacting voltmeters
 - Require mm separations
- Electron microscopy field has used bremsstrahlung x-rays and secondary electrons
 - Significant flight heritage for both electron energy analyzers and x-ray spectrometers

Electron-atom interactions

Bremsstrahlung.

- Strong angular dependence
- S/N depends on angle

Experimental setup

Experimental setup

- Electrostatic Charging Laboratory for Interactions of Plasma and Spacecraft (ECLIPS)
 - Vacuum chamber, 10⁻⁶ Torr typical
 - Electron gun (0-30 keV)
 - Range of high voltage feedthrough, 5x high voltage power supplies
 - VUV light
 - 3 axis translation stage ($\hat{\theta}, \hat{r}$ directions done, \hat{z} pending)
 - Ion gun (awaiting install)

Experimental setup

• X-ray detector commercially sourced

- X123 Si-PIN from Amptek
- FWHM 120 eV at 5.9 keV
- Integrated thermoelectric cooling
- Spaceflight heritage

VUV

source

Experimental results

Detector characterization

Inconel target, 10 keV beam

Change in characteristic peak energies over 2 hours

Landing energy determination

- Use counts from highenergy bins
- Curve fit
- Root find on that curve

Initial results

- Aluminum target, varying beam energy
- Found landing energy to <50 eV
- Aluminum peak resolved to <15 eV

Initial results

• Example collection run with constant electron beam energy, charging plate

Initial results

- Constant beam parameters
- Varying angle
- Highest error runs first set conducted
- Resolution reduced from earlier runs
 - Higher temperature, lower peaking time

- Promising experimental results
- Sufficient resolution for Tractor concept

Next steps

- Vary targets
 - More complicated geometries
 - Additional materials
- Landing Energy resolution characterization
 - Function of angle, detector parameters
- Use environmental electrons instead of electron beam
 - Apply to flight data, look at lunar surface charging

Acknowledgements

- For experimental support, many thanks to:
 - Dalton Turpen
 - Will Starck
- Thanks to USRA and the ASEC Student Travel Grant