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Nonlinear Charge Control for a Collinear Fixed Shape
Three-Craft Equilibrium

Shuquan Wang∗ and Hanspeter Schaub†

The collinear equilibrium three-craft formation charge feedback control problem
is investigated in this paper. Given a charged equilibrium collinear configuration of
spacecraft flying in deep space, a nonlinear charge feedback control algorithm is de-
veloped to stabilize the underactuated formation to the desired shape and size. The
Coulomb forces are assumed to be acting along the line-of-sight directions between
the bodies, and thus do not provide general vehicle position controllability. A study of
the charged collinear three-craft formation shows that there exists an infinite number
of equilibrium charge solutions for any collinear configuration. Given a real value of
one spacecraft charge, the required equilibrium charges of the remaining two vehicles
are solved analytically. A Lyapunov based nonlinear control algorithm is developed to
stabilize the configuration to the equilibrium state using only the spacecraft charges as
the control states. Real charge solutions are ensured by utilizing the one-dimensional
solution null-space. Numerical simulations illustrate the new charge feedback con-
trol performance. Collinear configurations are stabilized even in the presence of very
large initial position errors.

I. Introduction
Electrostatic actuation methods in space environments have been investigated for several years. In 1966 Cover,

Knauer and Maurer discuss in their U.S. patent application how active charge emission can be used to control the
electrostatic potential of a reflecting membrane structure.1 Here the outer membrane edge is held fixed by a solid
support structure, while the absolute charge control is employed to electrostatically inflate the membrane itself. The
absolute charge control is achieved using continuous emission of either positive (ion) or negatively (electrons) charged
particles. With the space plasma environment encountered at geosynchronous orbit altitudes, they state that this charge
control can be achieved using as little as Watt levels of electrical power.

In the 1970’s the SCATHA2 and ATS-6 missions3 studied the natural charging levels that can occur at geostationary
altitudes, and found while flying through the Earth’s shadow the hot plasma electrons can cause negative absolute
charging reaching up to 10-20 kV. These missions also demonstrated that using active charge emission it is feasible to
control the absolute potential of a space vehicle. The spacecraft potential was artificially increased to 15-20kV levels
during sun-lit orbit conditions. Current geostationary spacecraft constructions does not typically employ active charge
emission to avoid charging. Instead, the outer vehicle surface is constructed such that all components are conductively
interconnected . This avoids the challenging differential charging and the associated electrostatic discharges, and
allows the vehicle to homogeneously raise and lower its absolute potential. The later type of charging has a minimal
impact on satellite operations.

Studying the SCATHA charge experiment data lead King and Parker to conduct a NASA NIAC study to investigate
if such charge levels could disturb relative motion.4 Their study shows that the worst case natural absolute charge levels
can already cause milli-Newton levels of disturbance forces on neighboring spacecraft 20 meters away. Further, using
active charge control, similar to that proposed in Reference 1, it is feasible to control the inter-spacecraft electrostatic
forces, and thus create interesting relative motion solutions for close proximity flying scenarios. Their NIAC study also
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Figure 1: Illustration of a Charge Spacecraft Cluster in a Geosynchronous Orbit

demonstrates that electrostatic force, in combination with differential gravitational forces in orbit, can yield interesting
charged relative equilibrium solutions.5

By controlling the separation distances it is possible to achieve particular formation types such as Coulomb virtual
tethers6, 7, 8 or Coulomb virtual structures4, 9, 10, 11 as illustrated in Figure 1. The associated non-affine feedback control
problem is very challenging to solve for a general cluster of spacecraft. However, there are three primary reasons
that make the CFF concept attractive in close proximity flying control. First, generating Coulomb forces is essentially
propellant-less.4 Second, CFF is very power-efficient, it requires only several Watts of electric power to operate,
which is 3–5 orders of magnitude more power-efficient than Electric Propulsion (EP).1 Third, because it is essentially
propellant-less, it does not generate the caustic exhaust plumes as the ion thrusters do, which might cause some
damages to the neighboring spacecraft. The CFF concept is thus appealing in long-term clustered-flying missions.

On the other hand, CFF also encounters several challenges. First, in the vacuum the magnitude of the Coulomb
force reduces quadratically as the separation distance increases. Thus the Coulomb force is proposed to control only
tight formations with separation distances roughly within 100 meters. Second, the control development of the charged
formation is very challenging. Unlike the inertial thrusters that can produce the control forces in any direction, the
Coulomb force always lie essentially in the line-of-sight direction between two spacecraft. Thus the Coulomb forces
form an under-actuated set of control forces to influence the general satellite relative positions and velocities. Another
complication arises from the fact that the spacecraft charges, the control variables of a Coulomb control law, appear
nonlinearly in the equations of motion. This leads to a complex non-affine control problem where mathematical com-
plications such as imaginary or non-unique charge solutions must be accounted for.9 Third, the plasma environment in
space will partially shield the electrostatic force field that a neighboring charged satellite will experience. This effect
is called “Debye shielding effect”.12, 13 The Debye shielding effect reduces the magnitude of the Coulomb force. The
strength of the Debye shielding effect is measured by the Debye length. The shorter Debye length implies the stronger
Debye shielding effect. Depending on the spacecraft potential, the Coulomb force magnitude can drop substantially
when the separation distance is greater than the local Debye length. The Debye shielding is very strong in Low Earth
Orbit (LEO) with the Debye length as small as several milli- to centi-meters. At geostationary orbit (GEO) the nom-
inal Debye length ranges between 100–250 meters.4, 14 At 1 Astronomical Unit (AU) in the deep space the range of
the Debye length is 20–50 meters.4 Concluding both the pros and the cons of the CFF concept, Coulomb thrusting is
suitable for the long-term tight formation missions in High Earth Orbit (HEO) or in the deep space, with separation
distances less than 100 meters.

The charge feedback control development of a general cluster of satellites remains an active area of research.
Berrymann and Vasavada et al. study the equilibrium charges and positions for multi-satellite charged static virtual
structures in References 15,9,10,11. Natarajan et al. investigate the two-craft nadir Coulomb tether control problem in
References 7,6,16,8 where only linearized relative motion is considered. The European studies in References 17,18,19
and 20 look at hybrid techniques employing both electrostatic and inertial thrusting to control the relative motion of a
swarm of spacecraft. Projection methods are used to map the set of required control forces onto the satellite line-of-
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sight vectors to determine a sub-set of control forces that can be achieved using active absolute electrostatic control,
while the remaining control forces are created using inertial thrusting. Even though such techniques do not explicitly
exploit the charged relative motion dynamics, fuel savings on the order of 80% over a pure inertial thrusting solutions
are discussed. Reference 21 studies the charge feedback control of a spinning two-craft formation at GEO. If both
the inertial and relative position vectors of the two spacecraft are measurable, the control asymptotically stabilizes the
separation distance to the expected distance. Otherwise, the boundaries of the error are developed in the situation that
only the separation distance is fed back into the control algorithm.

Reference 22 studies the stability of a spinning two-craft Coulomb-tether where the system is assumed to be in
deep space and not orbiting a planet. To date this spinning two-craft system is the only passively stable Coulomb
spacecraft formation that has been found. Reference 23 studies the necessary relative equilibrium conditions for
a spinning charged three-body system in deep space, and develops a simple linear feedback control to stabilize a
collinear configuration. However, as discussed in Reference 23, the linear feedback control law has a very small area
of convergence, and cannot handle large departure motions.

The focus of this paper is the development of a charge-only feedback control strategy to stabilize the 3-vehicle
spacecraft motion relative to collinear equilibrium configurations subject to large departure motions. Prior work re-
quires hybrid control strategies,19 or linear control solutions that are only applicable for very small departure motions.23

References 24 and 25 are direct prior work upon which the new feedback control results of this paper are built. In par-
ticular, Reference 24 develops a nonlinear control for the one-dimensionally constrained three-craft Coulomb virtual
structure. Here the control employs the null-space to determine real charge solutions. Reference 25 investigates the
fixed triangular shape control of a three-craft Coulomb virtual structure in free space. In contrast to the collinear equi-
librium configurations considered in this paper, for a general triangular shape there is no equilibrium charge solution.
As a result the charge control will never settle to a constant value, but will continue to switch between real charges in
the end state. Because not all three triangle side lengths can always be controlled through electrostatic forces, a stable
two-side switched control strategy is developed based on the multiple Lyapunov function analysis tool developed by
Branicky.26 Here the control determines which two sides have the larges shape tracking error, and then uses the three
spacecraft charges to negate these errors. Reference 24 develops analytical stability guarantees of the discontinuous
control strategy. Careful feedback gain selections ensure that the tracking errors are Lyapunov-like across two discrete
control time steps.

This paper investigates the collinear configuration control of a three-craft Coulomb virtual structure in free space.
For a collinear configuration, there always exists a family of equilibrium solutions instead of a unique solution. This
extra degree of freedom (DOF) can be utilized to develop an implementable real charge control solution. A switched
Lyapunov function based nonlinear control is investigated to stabilize the separation distances to the desired distances
corresponding to the expected fixed collinear configuration. Of interest is how the nonlinear control can stabilize the
collinear configuration in the presence of system momentum uncertainties, as well as very large initialization errors.

CM

m1

m2

m3

r1

r2

r3

r12
r23

r13

rcm

Inertial Frame

α1

α2

α3

a) Geometry of the three-body system.
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b) Collinear equilibrium illustration.

Figure 2: Charged three-Body system.
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II. Equations Of Motion
This paper develops a control algorithm using only Coulomb forces to make a free-flying three-craft system stabi-

lized to the desired collinear configuration. Figure 2 shows the setup of the spinning three-craft system. Figure 2(a)
illustrates the basic geometry and notations. The parameters m1–m3 are the masses of the three spacecraft, r1–r3 are
the three inertial position vectors of the spacecraft, r12–r13 are the relative position vectors between the spacecraft,
and rcm is the inertial position vector of the center of mass (CM). Note that if we let the center of the inertial frame be
the CM of the 3-craft, then rcm = 0. The angle αi is the angle between the two relative position vectors cornered at
the ith spacecraft. Figure 2(b) shows the scenario of the equilibrium/expected state. The collinear configuration system
is spinning about the CM. Note that depending on the CM location, the spinning direction ofm2 may be reversed from
the illustration in Figure 2(b).

For a sphere-like particle with charge q1 immersed in a plasma environment with a Debye length λd, the potential
φ at a distance r is expressed

φ(r) = kc
q1

r
e−r/λd , (1)

where kc = 8.99 × 109 Nm2/C2 is the Coulomb constant. This simple analytical solution for the potential about a
point charge or sphere assumes that the potential of the object is relatively small in comparison to the local plasma
temperature. For example, at geosynchronous orbit altitudes where the spacecraft fly through the Earth’s plasma
sheath, this potential threshold is about 1-10 kV. If the full Poisson-Vlaslov partial differential equations are solved
instead of using a truncated version that yields the simple analytical result in Eq. (1), then large potentials can reduce
the plasma charge shielding effect. This Coulomb force behavior is discussed in Reference 27 where the electrostatic
forces to move an astroid in deep space are discussed. For example, effective Debye length λ̂d can be multiple times the
conventional Debye length. The partially shielded electrostatic potential φ(r) can be approximated up to the effective
Debye length distance through:27

φ(r) = kc
q1

r
e−r/λ̂d , (2)

The electrostatic force magnitude Fc that a second object with charge q2 would experience is given by

Fc = ∇rφ · q2 = kc
q1q2

r2
er/λ̂d

(
1 +

r

λ̂d

)
(3)

In following develop we consider the case where the separation distances are smaller than the effective Debye length
of the local plasma environment. While it is true that Debye lengths in the interplanetary medium at 1 AU from the
sun can be 20-50 meters,4 on the order of the craft separation distances, objects charged to high potentials (>1 kV)
will experience effective Debye lengths many times larger.27 Considering that such potential levels are proposed for
Coulomb force actuation, it is a reasonable approximation to assume minimal Debye shielding effects for the current
study. The electrostatic force in Eq. (3) must be considered a conservative lower bound on the achievable Coulomb
actuation, while treating λ̂d → ∞ provides the upper bound used in this paper. Because the separations distances
considered are on the order of dozens of meters, and the effective Debye lengths are well into the 100’s of meters, the
resulting relative motion is dominated through the classical electrostatic force equations.

By the assumption that the three-craft system is flying in a free space and ignorable effective Debye lengths, the
inertial equations of motion (EOMs) of the three spacecraft are given by:

m1r̈1 =− kc
q1q2

r2
12

ê12 − kc
q1q3

r2
13

ê13 (4a)

m2r̈2 =kc
q1q2

r2
12

ê12 − kc
q2q3

r2
23

ê23 (4b)

m3r̈3 =kc
q1q3

r2
13

ê13 + kc
q2q3

r2
23

ê23 (4c)

where qi is the charge of the ith spacecraft which can be actively controlled, êij is the unit vector pointing from the ith

to the jth spacecraft, and rij is the separation distance between the ith and the jth spacecraft. For the convenience of
notation, a vector ξ is defined as a function of the charge products and the separation distances:

ξ = (ξ1, ξ2, ξ3)T =
(
kc
q1q2

r2
12

, kc
q2q3

r2
23

, kc
q1q3

r2
13

)T
(5)
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Figure 3: Geometries of the equilibrium state.

The collinear configuration is specified through the relationship of the separation distances:

r13 = r12 + r23 (6)

Using the inertial EOMs in Eq. (4), the relative positions EOMs are:

r̈12 = r̈2 − r̈1 = ξ1

(
1
m1

+
1
m2

)
ê12 − ξ2

1
m2
ê23 + ξ3

1
m1
ê13 (7a)

r̈23 = r̈3 − r̈2 = −ξ1
1
m2
ê12 + ξ2

(
1
m2

+
1
m3

)
ê23 + ξ3

1
m3
ê13 (7b)

r̈13 = r̈3 − r̈1 = ξ1
1
m1
ê12 + ξ2

1
m3
ê23 + ξ3

(
1
m1

+
1
m3

)
ê13 (7c)

Applying the relationship between the separation distance and the relative position vector

r̈ij = r̈ij · êij +
1
rij
‖ṙij‖2

(
1− cos2∠(rij , ṙij)

)
to Eq. (7) yields the separation distance equations of motion:

r̈12 = ξ1

(
1
m1

+
1
m2

)
+ ξ2

1
m2

cosα2 + ξ3
1
m1

cosα1 + g1 (8a)

r̈23 = ξ1
1
m2

cosα2 + ξ2

(
1
m2

+
1
m3

)
+ ξ3

1
m3

cosα3 + g2 (8b)

r̈13 = ξ1
1
m1

cosα1 + ξ2
1
m3

cosα3 + ξ3

(
1
m1

+
1
m3

)
+ g3 (8c)

Here the term gi represents the following strongly nonlinear components:

g1 =
1
r12
‖ṙ12‖2

(
1− cos2∠(r12, ṙ12)

)
(9a)

g2 =
1
r23
‖ṙ23‖2

(
1− cos2∠(r23, ṙ23)

)
(9b)

g3 =
1
r13
‖ṙ13‖2

(
1− cos2∠(r13, ṙ13)

)
(9c)

III. Collinear Equilibrium Charge Solution
The objective of the control development is to find an algorithm of the charges [q1, q2, q3]T that makes the sepa-

ration distances stabilize with respect to the desired distances [r12, r23, r13]T → [r∗12, r
∗
23, r

∗
13]T , where the following

requirement enforces the final configuration to be collinear:

r∗13 = r∗12 + r∗23 (10)

This section investigates the family of equilibrium charge solution for a given set of nominal collinear separation
distances. There are two questions need to be answered: (1) does the equilibrium charge solution exist; and (2) what is
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the solution space. Such insight is critical to the collinear feedback control development where the equilibrium charges
can be employed in a feed-forward control component. This was not feasible in the prior three-vehicle triangular
control in Reference 25 because no equilibrium charges existed for such nominal two-dimensional shapes.

For better physical understanding of gi, let us rewrite these nonlinear expressions in terms of the angular momen-
tum:

g∗ =

 g∗1
g∗2
g∗3

 =


r∗12

H2

(Σmir2i )2

r∗23
H2

(Σmir2i )2

r∗13
H2

(Σmir2i )2

 (11)

where H is the magnitude of the angular momentum of the three-craft system H = Σri × (miṙi). Because there
are no external forces acting on the system due to the assumption on unperturbed deep space motion, the angular
momentum is conserved, thus H is determined by the initial conditions. The scalar parameter ri is the separation
distance of the ith spacecraft measured from the CM as shown in Figure 3. The relationship between ri and rij is:

r1 =
m2 +m3(1 + a)
m1 +m2 +m3

r∗12

r2 = r1 − r∗12

r3 = r1 − (1 + a)r∗12

(12)

where a is the ratio between the two separation distances a = r∗23 : r∗12. Let us define the two charge ratio parameters
as:

β =
q∗2
q∗1
, γ =

q∗3
q∗1

(13)

Thus, instead of solving the individual charges [q∗1 , q
∗
2 , q

∗
3 ]T directly, the following derivation solves the parameters

[q∗1 , β, γ] corresponding to the individual charges. The separation distances’ EOMs at the equilibrium state are derived
from Eq. (8):

r̈∗12 =
kcq

∗2
1

r∗2
12

(
1
m1

+
1
m2

)
β − kcq

∗2
1

r∗2
12

1
m2

βγ

a2
+
kcq

∗2
1

r∗2
12

1
m1

γ

(1 + a)2
+ g∗1 = 0 (14a)

r̈∗23 = −kcq
∗2
1

r∗2
12

1
m2

β +
kcq

∗2
1

r∗2
12

(
1
m2

+
1
m3

)
βγ

a2
+
kcq

∗2
1

r∗2
12

1
m3

γ

(1 + a)2
+ ag∗1 = 0 (14b)

r̈∗13 =
kcq

∗2
1

r∗2
12

1
m1

β +
kcq

∗2
1

r∗2
12

1
m3

βγ

a2
+
kcq

∗2
1

r∗2
12

(
1
m1

+
1
m3

)
γ

(1 + a)2
+ (1 + a)g∗1 = 0 (14c)

Next the solutions for [q∗1 , β, γ] from Eq. (14) are found. Note that the three equations in Eq. (14) are linearly
coupled, specifically adding up Eq. (14a) and Eq. (14b) yields Eq. (14c). Thus there are actually two independent
equations for solving three parameters, yielding a one-dimensional null-space for the equilibrium charge solutions.
Assuming that a value q∗1 is given, solving Eqs. (14a) and (14b) for γ yields the following quadratic relationship:

γ2 + γ
[
(1 + a)2ν

(
m1m2 + (1 + a)m1m3

)]
− (1 + a)2a2ν

(
(1 + a)m1m3 + am2m3

)
= 0 (15)

where ν is a function of q∗1 :

ν =
r∗3
12H

2

kcq∗2
1 (Σmir2

i )2Σmi
(16)

The other parameter β is given by

β = − γ

(1 + a)2
− ν
(
m1m2 + (1 + a)m1m3

)
(17)

Thus, after solving γ from Eq. (15), the equilibrium charge solution is solved. To verify the existence of a real solutions
to Eq. (15) requires the following inequality:

f(ν) = (1 + a)4m2
1

(
m2 + (1 + a)m3

)2
ν2 + 2a2(1 + a)2

(
(1 + a)m1m3 + 2am2m3 −m1m2

)
ν + a4 ≥ 0 (18)
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where f(ν) is a quadratic function of ν. Note that ν is a function of q∗1 as shown in Eq. (16). For the inequality in
Eq. (18), there are two cases need to be considered:

1. There are no real solutions or there are two identical solutions to f(ν) = 0. In this case the inequality in Eq. (18)
is always true. m1 ≥ am2 ensures this case.

2. There are two distinct solutions to f(ν) = 0, corresponding to the situation m1 < am2. In this case the
requirement for ν is ν ≥ ν2 or ν ≤ ν1, where ν1,2 are the two real solutions to f(ν) = 0 and ν2 > ν1.

If ν2 ≤ 0, any choice of q∗1 will automatically satisfy ν ≥ ν2, because ν > 0 by definition. Otherwise ν2 > 0,
the requirement for q∗1 is

q∗1 ≤

√
r∗3H2

kc(Σmir2
i )2Σmiν2

(19)

or q∗1 ≥

√
r∗3H2

kc(Σmir2
i )2Σmiν1

if ν1 > 0. (20)

Thus the requirement in Eq. (19) can always be satisfied regardless of the charge saturation issue.

Concluding the above analysis of the existence of the equilibrium solutions, if m1 > am2 or ν2 ≤ 0, given any
value of q∗1 there exists a pair of equilibrium solutions. Otherwise any value of q∗1 that satisfies the inequality in
Eq. (19) results in a pair of equilibrium solutions.

IV. Lyapunov-Based Nonlinear Control Algorithm
Let us define the state vectorX as:

X = (r12, r23, r13)T (21)

The control objective is for X → X∗ where X∗ represents the desired separation distances. The separation distance
EOMs are rewritten as:

Ẍ = [B]ξ + g (22)

where [B] is the 3× 3 matrix:

[B] =


1
m1

+ 1
m2

cosα2
m2

cosα1
m1

cosα2
m2

1
m2

+ 1
m3

cosα3
m3

cosα1
m1

cosα3
m3

1
m1

+ 1
m3

 (23)

Note that ξ is a function of the individual charges. The following development finds an implementable algorithm of
ξ to stabilize the system. In the following context an implementable solutions is a control that requires real, and not
imaginary charge values.

Let us define the following Lyapunov candidate function

V =
1
2

∆XT [K]∆X +
1
2

∆ẊT∆Ẋ (24)

to determine the 3-vehicle cluster shape tracking errors, where [K] is a 3 × 3 positive definite matrix. Note that this
V is a function of all three side errors. Thus, driving V → 0 ensures that the three spacecraft converge to the desired
spinning collinear shape. Taking the time derivative of V and utilizing the Eq. (22), yields:

V̇ =∆Ẋ([K]∆X + ∆Ẍ)

=∆Ẋ
(
[K]∆X + [B]ξ + g

)
(25)

In order to utilize the equilibrium charge solution developed in the prior section, the control vector ξ is rewritten
as:

ξ = ξ∗ + δξ (26)
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where ξ∗ corresponds to the equilibrium charge solution. Forcing V̇ to be the negative semi-definite form:

V̇ = −∆ẊT [P ]∆Ẋ (27)

yields the following equation:

[B]δξ = −[P ]∆Ẋ − [K]∆X − [B]ξ∗ − g (28)

Solving δξ from Eq. (28) yields a solution of ξ that would stabilize the system. One issue is that by the definition in
Eq. (23) the matrix [B] is not always invertible. The following theorem proves that the matrix [B] is singular only at
the collinear configurations.

Theorem 1 Given a 3 × 3 matrix [B] defined by Eq. (23), with (α1, α2, α3) being the inner angles of a triangle as
shown in Figure 2(a), the matrix [B] is singular if and only if cosα1 cosα2 cosα3 = −1.

One necessary and sufficient condition for a square matrix to be singular is that its determinant is zero. To prove
the above theorem, we just need to prove that

∣∣[B]
∣∣ = 0 if and only if (iff.) cosα1 cosα2 cosα3 = −1. From the

definition in Eq. (23), the determinant of [B] is∣∣[B]
∣∣ =
(

1
m1

+
1
m2

)(
1
m2

+
1
m3

)(
1
m1

+
1
m3

)
+

2 cosα1 cosα2 cosα3

m1m2m3

−
(

1
m1

+
1
m2

)
cos2 α3

m2
3

−
(

1
m2

+
1
m3

)
cos2 α1

m2
1

−
(

1
m1

+
1
m3

)
cos2 α2

m2
2

(29)

Because cos2 αi ≤ 1, the following inequality is true:∣∣[B]
∣∣ ≥( 1

m1
+

1
m2

)(
1
m2

+
1
m3

)(
1
m1

+
1
m3

)
+

2 cosα1 cosα2 cosα3

m1m2m3

−
(

1
m1

+
1
m2

)
1
m2

3

−
(

1
m2

+
1
m3

)
1
m2

1

−
(

1
m1

+
1
m3

)
1
m2

2

(30)

Note that the equal relationship in Eq. (30) is true if and only if cos2 αi = 1, i = 1, 2, 3. The right hand side of the
inequality is simplified to: ∣∣[B]

∣∣ ≥ 2 + 2 cosα1 cosα2 cosα3

m1m2m3
(31)

From the inequality in Eq. (30), the determinant
∣∣[B]

∣∣ ≥ 0,
∣∣[B]

∣∣ = 0 iff. cosα1 cosα2 cosα3 = −1. �

Note that the necessary and sufficient condition for
∣∣[B]

∣∣ = 0, cosα1 cosα2 cosα3 = −1, represents all the
collinear configurations, including the desired collinear configuration specified byX∗.

Let us investigate those situations where
∣∣[B]

∣∣ = 0. At the equilibrium state where X = X∗, the state errors
∆X = 0 and ∆Ẋ = 0. From the procedure of finding the equilibrium charge solution, at the equilibrium state
[B]ξ∗ + g = 0. Thus at the equilibrium state, the right hand side of Eq. (28) is zero. In this situation, any element in
the null space of the singular matrix [B] is the solution to Eq. (28), including the zero vector.

Another special case is the one-dimensional constraint motion that can result if the cluster has no angular momen-
tum, and the spacecraft are lined up initially in a collinear configuration. This situation is discussed and studied earlier
in Reference 24. In this case there are only two DOFs in the system, we need to control only two sides. Thus we use
only two equations from Eq. (28), which contains three equations. Real charge control solutions are always obtainable
in this special configuration.

Reference 25 discusses a switched control strategy where only the worst two shape tracking errors are controlled
at once. The three individual Lyapunov functions Va, Vb and Vc track the shape errors of two sides of the triangular
3-vehicle cluster:

Va =
1
2
k(∆X2

1 + ∆X2
3 ) +

1
2

(∆X2
1 + ∆X2

3 ) ,
k

2
∆XT

a ∆Xa +
1
2

∆ẊT
a ∆Ẋa, (32a)

Vb =
1
2
k(∆X2

1 + ∆X2
2 ) +

1
2

(∆X2
1 + ∆X2

2 ) ,
k

2
∆XT

b ∆Xb +
1
2

∆ẊT
b ∆Ẋb, (32b)

Vc =
1
2
k(∆X2

2 + ∆X2
3 ) +

1
2

(∆X2
2 + ∆X2

3 ) ,
k

2
∆XT

c ∆Xc +
1
2

∆ẊT
c ∆Ẋc. (32c)
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Figure 4: Illustration of the new two-side switching strategy with discrete control time steps.

Here ∆X = (∆X1,∆X2,∆X3), and the subscripts (a, b, c) denote the errors of the two sides cornered at the
(1st, 2nd, 3rd) spacecraft respectively. The final Lyapunov function candidate being activated is chosen to be the
largest sub-Lyapunov function:

Vctrl = max{Va, Vb, Vc}. (33)

The overall Lyapunov function Vctrl switches the control to the subset of triangle sides with the largest shape errors,
and thus ensures that all shape errors are reduced to zero.

Overall stability is guaranteed for a discrete time implementation by ensuring that the 3 three Lyapunov functions
Va – Vc are Lyapunov-like.26 Here it is necessary that the controlled Lyapunov function does not increase every
other control time step. The full stability discussion and implementation description is provided in Reference 25
and is too long to summarize in this paper. However, the primary concept for a function to be Lyapunov-like is
graphically visualized in Figure 4. At time step A the control is attempting to reduce the value of the worst tracking
error represented through Vc. At time step B both Vb and Vc are reduced, but the error Va has now become the largest.
Thus, between time steps B and C the control reduces the shape error measure Va. For Va to be Lyapunov-like, it
is necessary that Va(tC) ≤ Va(tA). Otherwise, it is possible for the overall error to slowly grow larger during the
switching even while the worst shape errors are being reduced during a particular control interval. To guarantee that
Va(tC) ≤ Va(tA) during the switching Reference 25 outlines a feedback gain modification technique that ensures this
requirement.

Thus, during periods where the [B] matrix is singular, or periods where the δξ solution from Eq. (28) does not
translate to real individual charges qi, the switching two-side control from Reference 25 is employed again for the
collinear three-spacecraft control. The two-side control will always yield real charge solutions, and reduce the worst
shape tracking errors.25, 24 However, note that in contrast to non-equilibrium triangle shape control where there are
no constant and real equilibrium charges to use in a feedforward control component, for the present collinear three-
spacecraft control the earlier study in Reference 23 discusses that there exists a neighborhood about the equilibrium
where all three sides are simultaneously controllable. Thus, as a consequence, as the three sides begin to approach
the desired collinear configuration, the presented control strategy is guaranteed to enter a neighborhood where all
three sides can be controlled at once, and the shape asymptotically converges to the desired values while the charges
approach the constant equilibrium charge solutions.
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Figure 5: Simulation results with the exact knowledge of the angular momentum.

V. Numerical Simulations
This section illustrates the charge feedback control performance through the use of numerical simulations. The

equations of motion in Eq. (4) are integrated using a variable time step 4th order Runge-Kutta integrator. The initial
conditions are as following:

r1 =[−4, 1, 0]T m (34a)

r2 =[25, 0, 0]T m (34b)

r3 =[40, 0, 0]T m (34c)

ṙ1 =[0, 0.001, 0.0001]T m/s (34d)

ṙ2 =[0, 0, 0]T m/s (34e)

ṙ3 =[0, 0.001, 0]T m/s (34f)

The masses of the spacecraft are m1 = m2 = m3 = 50kg. The controller coefficients are [P ] = 0.00015I3×3 s−1,
[K] = 10−8I3×3 s−2, where I3×3 is the 3 × 3 identity matrix. The nominal separation distances for the desired
collinear configuration are X∗ = [20, 20, 40]Tm. Three separate scenarios are simulated. The first two simulations
illustrate the charge feedback control performance if the spacecraft are relatively close to their desired configuration.
The last simulation illustrates a setup where the shape errors are very large. In all simulations a dead-band is imple-
mented on the shape control. The threshold for turning off the feedback part is V = 10−11m2/s2. This creates a more
realistic simulation scenario, but will prevent the shape tracking errors from perfectly converging to zero.

A. Control Results With The Exact Feedforward Equilibrium Charges
Figure 5 shows the simulation results in the case that the feedforward charge components are calculated using the

correct value of the angular momentum of the 3-craft system. Here it is assumed that the relative position and velocity
vectors of the spacecraft are perfectly known. Figure 5(a) shows the trajectories as seen from the inertial frame.
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Figure 6: Simulation results without the exact knowledge of the angular momentum.

The boxes represent the final locations of the three spacecraft, illustrating that they have converged to a collinear
configuration.

Figure 5(b) shows the time histories of the separation distances. The nominal separation distance levels of 20 and
40 meters are also draw for easy reference. The shape tracking errors smoothly approach the desired values. Figure 5(c)
shows the separation distance errors in log scale to better illustrate the final control performance when the tracking
errors become small. The reason that the shape tracking errors do not asymptotically converge to zero is because
of the tracking error dead-band. The feedback component of the charge control is turned off if V < 10−11m2/s2.
Figure 5(c) shows that the distance error levels settle down to centimeter level. Compared to the linear controller used
in Reference where the initial separation distance errors are only 1-5%, the new nonlinear controller allows much
larger shape errors to be controlled such as the 50% errors shown in this simulation.

Figure 5(d) shows the charge histories. There are three situations of the control: 3-side feedback control when
[B] is invertible; 2-side switched feedback control when [B] is not invertible; only feedforward control when V <
10−11m2/s2. Figure 5(d) illustrates time control regions where either of these cases occur. When the tracking errors
fall below the dead-band theshold, the spacecraft charges are held constant. However, because these collinear equilib-
rium configurations are unstable, even small residual shape errors will grow large, thus triggering the charge feedback
control to be engaged again.

B. Control Results With The Incorrect Feedforward Equilibrium Charges
The next simulation setup tests the case where the angular momentum information is incorrect, and thus results in

an incorrect set of the equilibrium charges. The initial conditions are exactly the same as with the previous simulation.
In calculating the equilibrium charges, the angular momentum is reduced to 20% of the true value He = 0.2H .
Note that this setup illustrates a significant estimation error of the cluster relative motion, and tests numerically the
impact of the feed-forward component of the control. In particular, the incorrect feedforward charges are set toqff =
[1,−0.255, 1]µC. However, the true equilibrium charge values for the desired configurations with qe1 = 1µC are
qe = [1,−0.385, 1]µC.
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Figure 7: Simulation results without the exact knowledge of the angular momentum.

The simulation results are shown in Figure 6. Comparing these to the earlier results in Figure 5, the closed-loop
response of the system is similar, except after around 28 hours of the simulation time. That is because at that time
the feedback part of the control is turned off because V < 10−11m2/s2. But because the feedforward charges are not
the true equilibrium charges, the incorrect equilibrium charges allow the shape errors to grow faster than the previous
simulation. From the charge histories in Figure 6(d), it can be seen that the time span when the feedback charges
are turned off is much shorter than that in the previous simulation. This explains why the response of the system is
different from the previous simulation after around 28 hours of the simulation time.

However, this simulation illustrates that the feed-forward component of the control does not impact the overall
performance very strongly.

C. Large Initial Configurations Errors
This simulation case is an example that uses very large to illustrate that the control works globally. In this chal-

lenging example the controller needs to reverse the locations of two spacecraft. All the simulation conditions are the
same as the previous simulations except that the locations of the three spacecraft are set to be:

R1 =[−4, 1, 0]T m (35)

R2 =[40, 0, 0]T m (36)

R3 =[25, 0, 0]T m (37)

The equilibrium charges are assumed to be accurately computed in this setup. With this set of initial conditions, SC-3
is roughly allocated in the center of the nearly collinear configuration. While the expected collinear configuration
requires SC-2 be the center of the configuration, the controller needs to reverse the relative positions of SC-2 and
SC-3.

The simulation results are shown in Figure 7. The relative trajectories in Figure 7(a) are more complex than earlier
due to the required reshuffeling of the spacecraft positions. However, the final positions marked by the three boxes
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show that the three spacecraft are aligned again in a near-collinear configuration.
Figure 7(b) shows that L23 and L13 stabilize to their expected values after around 10 hours, L12 grows up to

60m, then stabilizes after around 40 hours. The distance errors in Figure 7(c) show that the error of L12 stabilizes to
centimeter level, while the errors in L23 and L13 are at much lower level. While the earlier simulations considered
initial separation distance errors on the order of 50%, this case illustrates initial errors of more than 100% still yield a
stable long-term response.

Figure 7(d) shows that there is a spike of the control charges goes up to 80µC. Practically this charge level is
very difficult to achieve using current technology. In CFF the charge levels are typically held around 1–10 µC which
corresponds to a few dozen kilo-Volts depending on the spacecraft capacitance. The presented charge solutions are
not unique to the non-uniqueness of the equilibrium charges. Future research could investigate alternate solution
methods to reduce the absolute charge requirements. Further, the current control does not consider charge saturation
issues. However, this dramatic collinear reconfiguration simulation illustrates well the global nature in which the
charge feedback control can stabilize the spinning spacecraft cluster to desired collinear configurations.

VI. Conclusion
This paper develops a Lyapunov-based globally stable control algorithm to make a three-craft Coulomb formation

stable about a desired collinear configuration. The equilibrium charge solution is utilized as the feedforward part of
the control. The two-side switched control strategy is engaged when the simultaneous three-side is not implementable
with real charges. Numerical simulations show that shape tracking error transient performance is minimally impacted
by the use of an incorrect set of feedforward charges. Finally, a drastic reconfiguration example, which requires the
reversal of two of the spacecraft relative positions, illustrates that the control is globally stable.
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