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NONLINEAR COULOMB FEEDBACK CONTROL OF A SPINNING
TWO SPACECRAFT VIRTUAL STRUCTURE

Shuquan Wang∗ and Hanspeter Schaub†

This paper studies a spinning two-spacecraft Coulomb virtual structure control
problem in an orbital environment. Only Coulomb forces are utilized to control
the configuration of the two-spacecraft formation flying in a geostationary orbit.
After deriving the separation distance equation of motion, a feed-forward nomi-
nal control charge is developed by assuming purely two spacecraft configuration.
An asymptotically stable full-state feedback control is developed. It requires the
inertial and relative position vectors which are difficult to measure accurately. A
partial-state feedback control is proved stable assuming a fast spinning rate thus
the influence of the orbital motion can be neglected. The boundaries of the orbital
motion part are proved to be neglectable for a tight formation in a geostationary
orbit. An integral feedback term can be utilized to compensate for the error in
estimating the feed-forward nominal charge product but the stability is not proved.
Numerical simulations illustrate the performance of the controllers.

INTRODUCTION

Coulomb Formation Flying (CFF) is a novel concept that first introduced by Lion B. King in
2002.1 CFF uses only the electrostatic forces (Coulomb forces) to control the formation shape and
size. The spacecraft charges are actively controlled by continuously emitting charged particles such
as electrons and ions. In a vacuum the magnitude of the Coulomb forces are inversely proportional
to the square of the separation distances. Thus Coulomb forces are proposed to control a tight
formation with separation distances within 100 meters. Other novel techniques for close proxim-
ity flying include Electric Propulsion (EP)1 and Electro-Magnetic Formation Flying (EMFF).2 The
mechanism of EP method is momentum exchange. It generates high velocity, large volume (com-
paring to Coulomb thrusting method) ionic plumes to gain a momentum in the inverse direction of
the exhaust. These ionic plumes may disturb the motions of neighboring spacecraft if the exhaust
plumes impinge on them. Moreover, the caustic charge plumes may damage sensitive instruments.
The EMFF method creates electromagnetic dipoles on each spacecraft to generate inter-spacecraft
control forces and torques. Reaction wheels are employed to orient the electromagnetic spacecraft
and the associate magnetic field, and to absorb momentum imparted onto the spacecraft through the
magnetic fields and torques of the other electromagnetic spacecraft.

The CFF concept is appealing in close proximity flying because of three reasons. First, using
the CFF concept to control the relative motion electrostatically is essentially propellantless. The
generation of the Coulomb forces is achievable with effective fuel efficincies Isp ranging from 109–
1013 seconds.1 Second, it is 3–5 orders of magnitude more power-efficient than EP.1 It requires
only several Watts of electric power to operate and can be controlled on a millisecond’s time scale.3

Third, it does not generate caustic plumes that may cause damages to some sensitive instruments
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during a long-term space mission. These three advantages make CFF attractive for long-term space
missions.

Utilizing CFF also has some challenges. First, unlike the conventional thrusters that can pro-
duce a force vector in any direction, the Coulomb forces only lie primarily along the line-of-sight
directions between spacecraft. It’s very challenging to control the inertial orientation of a forma-
tion using only Coulomb forces. But the use of Coulomb forces is still attractive in controlling
the relative motion between spacecraft in a formation. Second, the plasma environment in space
will partially shield the electrostatic charges. This plasma shielding effect reduces the magnitude of
the Coulomb force that a neighboring charged spacecraft experiences. The amount of shielding is
characterized by the Debye length.4, 5 The Coulomb force magnitude drops substantially when the
separation distance is greater the local Debye length. The plasma shielding effect is very strong in
LEO orbit with the Debye length as small as centimeters. At GEO the Debye length ranges between
100–1000 meters.1, 6 At 1 AU in deep space, the Debye length ranges around 20–50 meters.1 So
the Coulomb thrusting concept is feasible for HEO and deep space formation missions while the
minimum separation distances are less than 100 meters.

Many mission scenarios of utilizing CFF have been studied. Berrymann and Vasavada et al.
research equilibrium charges and positions for multi-satellite charged static virtual structures in
References 7,8,9,10. Natarajan et al. investigate the two-craft nadir Coulomb tether control problem
in References 11,12,13,14 where only linearized relative motion is considered. Schaub and Hussein
study the stability of a spinning two-craft Coulomb-tether in Reference 15 where the system is
assumed to be in deep space and not orbiting a planet. The same authors develop a feedback control
for a three-craft collinear Coulomb tether structure in Reference 16 where system is also assumed
to be in deep space.

The above works are directly related to the control of a Coulomb virtual structure. Other than the
above works, Joe et al. introduce a formation coordinate frame which tracks the principal axes of
the formation in Reference 17. Lappas et al. in Reference 18 develop a hybrid propulsion strategy
to control the relative motion of a cluster of spacecraft by combining Coulomb forces and standard
electric thrusters for formation flying on the orders of tens of meters in GEO. Simulation results
show that incorporating the Coulomb forces into the hybrid control of a spacecraft cluster can yield
more than 80% saving in power for propulsion. Reference 19 proposals aN -craft Coulomb structure
control strategy by utilizing three drone spacecraft to assist controlling the N main spacecraft.

This paper investigates the nonlinear control of a spinning two-craft Coulomb virtual structure
orbiting the Earth at a geostationary altitude. A Coulomb virtual structure is a cluster/formation
of spacecraft controlled by only Coulomb forces to establish a certain fixed configuration. A two-
craft Coulomb virtual structure is the simplest case of general Coulomb virtual structure control
problems. But the study of the two-craft control provides fundamental insights to general Coulomb
virtual structure control problem. Because the charges appear in a nonlinear and coupled form in
the equations of motion, the control problem quickly becomes excessively challenging when the
number of the spacecraft is greater than two. Thus fully understanding the two-craft Coulomb
virtual structure control is a prerequisite for studying the general Coulomb virtual structure control
problem. Earlier active feedback control work on the control of a charged two-craft system only
considered linearized motion about equilibria.11, 12 In contrast, this paper will investigate a nonlinear
control strategy which can stabilize a spinning two-craft system which is in orbit. Unlike the two-
craft spinning system discussed in Reference 15 which is passively stable if the separation distance
is less than the local Debye length, when orbiting a planet the differential gravity will cause the
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spinning two-craft system to be unstable without feedback. The paper investigates the requirement
for full-state measurements to achieve shape convergence, as well as how simpler reduced state
measurements can be used to still guarantee a stable system. The position vectors are difficult to
measure accurately for a close proximity formation. Alternatively dropping these position vector
feedback terms may introduce errors of the control. This paper studies the influence of dropping the
position vector feedback terms. Numerical simulations are used to study the influence of the plasma
shielding effect.

CM

r

R1

R2

Rc ôrc

m1, q1

m2, q2

Inertial Orbits F

−F

ôr1

ôr2

Figure 1. Scenario of the 2 spacecraft system.

EQUATIONS OF MOTION

This paper considers the scenario that a two-spacecraft formation operates in a Geostationary
Earth Orbit (GEO). The actively controlled electrostatic forces (Coulomb forces) between the space-
craft are the sole method utilized to control the separation distance. No hybrid thrusting is consid-
ered. Note that Coulomb forces cannot directly change the inertial angular momentum of the system
because they are system-internal forces. Instead, the objective of the control is to maintain the sep-
aration distance to be a certain desired value such that the shape of the two-body formation is held.

Assuming the spacecraft potential is small compared to the local plasma kinetic energy, the
Coulomb force between the two spacecraft acting on spacecraft-1 (SC-1) is approximated as:20

Fc = −kc
Q

L2

(
1 +

L

λd

)
e
− L
λd êr (1)

where kc = 8.99 × 109 Nm2C−2 is the Coulomb constant, Q is the charge product of the two
spacecraft, L = ‖r‖ is the separation distance between the two spacecraft, êr = r/L is the unit
vector pointing from SC-1 to SC-2, λd is the Debye length characterizing the plasma shielding
effect.

The inertial equations of motion (EOM) are given by

m1R̈1 = −GMm1

R2
1

ôr1 − kc
Q

L2

(
1 +

L

λd

)
e
− L
λd êr (2a)

m2R̈2 = −GMm2

R2
2

ôr2 + kc
Q

L2

(
1 +

L

λd

)
e
− L
λd êr (2b)
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where G = 6.67428 × 10−11 m3kg−1s−2 is the gravitational constant, M = 5.9736 × 1024 kg is
the Earth’s mass. The states Ri, mi and qi are the inertial position vector, the mass and the charge
of the ith spacecraft respectively, while ôri = Ri/Li is the unit vector of the inertial position vector
of the ith spacecraft.

In order to develop a control algorithm to stabilize the separation distance (i.e. the virtual structure
shape) of the two spacecraft, we derive the separation distance equation of motion.Using Eq. (2),
the relative EOM is:

r̈ = R̈2 − R̈1 =
GM

R2
1

ôr1 −
GM

R2
2

ôr2 + kc
Q

L2

(
1
m1

+
1
m2

)(
1 +

L

λd

)
e
− L
λd êr (3)

Differentiating the identity L =
√

r · r twice yields the separation distance acceleration relation-
ship:

L̈ = r̈ · êr +
1
L
‖ṙ‖2

(
1− cos2∠(r, ṙ)

)
(4)

Substituting Eq. (3) into Eq. (4) yields the desired separation distance EOM:

L̈ =kc
Q

L2

(
1
m1

+
1
m2

)(
1 +

L

λd

)
e
− L
λd +GM

(
1
R2

1

ôr1 −
1
R2

2

ôr2

)
· êr︸ ︷︷ ︸

f1

+
1
L
‖ṙ‖2

(
1− cos2∠(r, ṙ)

)
︸ ︷︷ ︸

f2

(5)

Note that the term f1 is a function of the inertial position vectors of the formation, while f2 is solely
a function of the relative position vectors of the formation.

TWO-CRAFT SHAPE CONTROL ALGORITHM

The goal of this paper is to develop a static shape control of a spinning charged two-spacecraft
formation. The control objective is thus only the shape of the formation, not the orientation of the
formation. This section develops a Lyapunov-based nonlinear controller to make the separation
distance of the two spacecraft stabilized at the desired distance. Let us define a shape error as

∆x = L− L∗ (6)

where L∗ is the desired constant distance. The objective of the control is to make ∆x→ 0. Because
the desired distance L∗ is constant, the relative trajectory of the two body system is circular. For
a two body Coulomb formation with separation distance within 100m, the satellites’ major accel-
erations is due to the Coulomb forces. Thus, after the distance error converges, the control charge
would be a constant value that maintains the shape of the spinning structure. This paper defines the
control charge product as a summation of a feed-forward and a feedback component:

Q = Qn + δQ (7)

Here Qn is the feed-forward control component that maintains the shape of the final spinning struc-
ture, δQ is the feedback part that stabilizes the distance error.
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Spinning Two-Craft Feed-Forward Control

The feed-forward control is obtained by finding the equilibrium solution of the control charge
product under the assumption that the two spacecraft are flying in deep space. This way the influence
of the planetary gravity is treated as a disturbance that is taken care of by the feedback control part.
Neglecting the planetary gravity influences, the EOM in Eq. (5) becomes

L̈∗ = kc
Q

L∗2

(
1
m1

+
1
m2

)(
1 +

L∗

λd

)
e
−L
∗
λd + f∗2 (8)

where f∗2 is the ideal value of f2 when the distance error converges to zero. Forcing L̈ = 0 yields
the feed-forward control charge product:

Qn = − L∗2λd
kc(L∗ + λd)

m1m2

m1 +m2
e
L∗
λd f∗2 (9)

Note thatQn is a constant, it does not compensate for the distance error ∆x. When implementing
the feed-forward control, an estimated value of f∗2 is required at the beginning of the control.

Note that to obtain an estimate f∗2 , measurements of both r and ṙ are required at an instant. If the
accuracy requirement of these measurements can be reduced, or the requirement for f∗2 removed,
then this charge control would be much simpler to implement.

Full-State Feedback Control & Stability Analysis

The prior section determines the feed-forward charge product for a circular relative orbit by as-
suming a pure two-spacecraft system. This section develops the charge feedback component of the
final control that stabilizes the shape errors.

Define a Lyapunov candidate function as

V =
1
2
p∆x2 +

1
2

∆ẋ2 (10)

Taking a time derivative of V yields:

V̇ = ∆ẋ(p∆x+ ∆ẍ) = ∆ẋ
(
k∆x+ kc

Q

L2

(
1
m1

+
1
m2

)(
1 +

L

λd

)
e
− L
λd + f1 + f2

)
(11)

Ideally we would like to force V̇ to be of the following negative semi-definite form:

V̇ , −d∆ẋ2 (12)

with d > 0. Note that V̇ is negative semi-definite because V is a function of both ∆x and ∆ẋ, but
only ∆ẋ appears in V̇ . Studying the higher order derivatives of V it can be shown that this control
will be asymptotically stabilizing.

Substituting Eq. (11) into Eq. (12), and solving for the feedback charge product δQ, yields:

δQf =
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd

(
− p∆x− d∆ẋ− f1 − f2

)
−Qn

=
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd (−p∆x− d∆ẋ− f1 − f2 + f∗2 ) (13)
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Note that the f∗2 term in the brackets comes from the feed-forward control Qn. The usage of this
term is to cancel out the function of the relative position vector f2. However f∗2 is a constant
while f2 is time varying, perfect canceling f2 is not achievable. Because the f1 function requires
knowledge of the inertial position vectors of the two spacecraft, this feedback control in Eq. (13) is
called full-state feedback control.

The full-state feedback control given by Eq. (13) ensures V̇ to be negative semidefinite as shown
in Eq. (12). Taking a second time derivative of V , yields

V̈ = −2d∆ẋ∆ẍ (14)

When V̇ = 0, ∆ẋ = 0, thus V̈ = 0. Taking a third time derivative of V , yields
...
V = −2d∆ẍ2 − 2d∆ẋ∆

...
x (15)

When V̇ = 0,
...
V = −2d∆ẍ2 < 0. Thus the system is asymptotically stable under the full-state

feedback control in Eq. (13)

Partial-State Feedback Control & Stability Analysis

The full-state feedback control given by Eqs. (9) and (13) developed in the previous section re-
quires the measurement of the inertial and relative position vectors. If the measurement is accurate
then the full-state feedback control is asymptotically stable. However, these position vectors are
very difficult to measure accurately in a tight formation flying in GEO orbit with separation dis-
tance within 100m. This section studies the separation distance feedback control with the feedback
components simplified to only require separation distance measurements:

δQp =
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd (−p∆x− d∆ẋ) (16)

The feed-forward part is given by Eq. (9). The feedback part δQp in Eq. (16) is obtained by re-
moving the f1 function from δQf in Eq. (13). It requires only the measurement of the separation
distance which is easy to measure accurately. Substituting Eq. (9) and (16) into the EOM in Eq. (5)
yields

∆ẍ+ d∆ẋ+ p∆x = f1 + f2 − f∗2 (17)

Note that f2 is a function of the relative position vector, it’s time varying. Thus f∗2 − f2 never stays
at zero no matter what the guess of f∗2 would be. In order to study this error, let us start from the
expression of f2:

f2 =
1
L
‖ṙ‖2

(
1− cos2∠(r, ṙ)

)
(18)

It’s beneficial if f2 can be expressed in terms of the states ∆x and ∆ẋ. In this way the Taylor
series expansion can be utilized to linearize the function f2 about the estimated value f∗2 . The
following identities will be used in developing new expression of f2:{

r = Lêr
ṙ = L̇êr + Lθ̇êθ

(19)
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The cosine function in Eq. (18) is expressed by:

cos∠(r, ṙ) =
r · ṙ
‖r‖‖ṙ‖ =

L̇√
L̇2 + (Lθ̇)2

(20)

For a fast spinning two-craft formation, the momentum is approximately conserved if the local
gravity gradient torque can be ignored over the short-term (fraction of an orbit):

h = L2θ̇ = L∗2θ̇∗ (21)

where L∗ is the expected separation distance, θ̇∗ is the nominal spinning angular rate. Solving for θ̇
from Eq. (21) yields

θ̇ =
L∗2

L2
θ̇∗ (22)

Substituting Eq. (22) into Eq. (20) yields

cos∠(r, ṙ) =
L̇√

L̇2 +
(
L∗2

L θ̇∗
)2

(23)

Substituting Eqs. (19) and (23) into Eq. (18) yields

f2 =
L∗4

L3
θ̇∗

2
(24)

In this expression only L is a variable, other parameters are constants determined by the expected
separation distance and nominal spinning rate. Thus f2 is a function of L by assuming a fast
spinning two-craft formation compared to the orbit period. Taking a Taylor series expansion about
the expected separation distance yields the first order relationship:

f2(L) = f∗2 +
df2

dL
∆x = f∗2 −

3L∗4

L4
θ̇∗

2
∆x+O(∆x2) (25)

Substituting Eq. (25) into the close-loop EOM in Eq. (17) yields

∆ẍ+ d∆ẋ+ p∆x+
3h∗2

L4
∆x = f1 (26)

where h∗ = L∗2θ̇∗ is the nominal momentum. Note that f1 is a function of the inertial position
vector. The next section will prove that the value of f1 is very small for a formation in GEO orbit
(the magnitude is up to 10−6m/s2), thus the influence of f1 can be neglected for short-term stability
discussions. Note that the close-loop dynamics in Eq. (26) is obtained by assuming the feed-forward
part has perfect estimation f̂2 of the expected value f∗2 . If the estimation is not perfect, then there
would exist a constant bias in the EOM. Denote the estimation error as

δf2 = f∗2 − f̂2 (27)
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then the EOM in Eq. (26) becomes

∆ẍ+ d∆ẋ+
(
p+

3h∗2

L4

)
∆x = δf2 (28)

The estimation error δf2 acts as a constant perturbation to the system and may introduce bias or even
destroy the stability of the system. To get rid of this constant error, this paper inserts an integral
feedback term in the feedback control part:

δQp2 =
L2

kc

m1m2

m1 +m2

λd
L+ λd

e
− L
λd

(
−p∆x− d∆ẋ− ki

∫
∆x
)

(29)

By assuming a fast spinning two-craft formation and ignoring the inertial position function f1, the
partial-state feedback control in Eq. (16) is proved to be stable. If there is an error of the estimated
value of the expected f∗2 function, there would be a constant perturbation to the system that may
introduce bias or instability factor. A new feedback control that includes an integral feedback is
used to get rid of the constant bias. But the stability has not been analytically proved yet.

Schaub et. al. study the spinning 2-craft formation in Reference.15 They prove that the 2-craft
spinning Coulomb tether is passively stable in deep space. This paper considers a different situation
where the 2-craft system is spinning in a GEO orbit. The gravitation forces are treated as extra
disturbances. The stability is ensured for short term fast spin compared to the orbit rate. But long
term stability is not ensured.

Boundaries Of The f1 Function

The previous section develops an asymptotically stable full-state feedback controller and a stable
partial-state feedback controller. The stability proof of the partial-state feedback controller assumes
the influence of the inertial position function f1 is neglectable. This section investigates the bound-
aries of the function f2.

SC-1

SC-2

Local Horizontal Plane

êr

r

Rc

R1

R2

ôr1

ôr2

α

CM

ôrc

Figure 2. Geometry of the 2-craft system.
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Let us start from the definition of f1:

f1 =
GM

R2
1

ôr1 · êr −
GM

R2
2

ôr2 · êr (30)

Because CFF considers formation with separation distance within 100 meters, L is very small
comparing with Ri. The following approximations have sufficient accuracy (the error is within
3×10−5m for the formation in GEO orbit):

R1 = Rc −
1
2
L sinα (31a)

R2 = Rc +
1
2
L sinα (31b)

where α is the angle between the unit vector êr and the local horizon plane as shown in Figure 2. α
ranges within [−90, 90]◦. From Figure 2, the unit vectors ôr1 and ôr2 can be expressed as

ôr1 =
1
R1

(Rcôrc −
1
2
Lêr) (32a)

ôr2 =
1
R2

(Rcôrc +
1
2
Lêr) (32b)

Substituting Eq. (31) and Eq. (32) into Eq. (30), yields:

f1 =GM
(
Rcôrc · êr − 0.5L
(Rc − 0.5L sinα)3

− Rcôrc · êr + 0.5L
(Rc + 0.5L sinα)3

)
=GM

(
Rc sinα− 0.5L

(Rc − 0.5L sinα)3
− Rc sinα+ 0.5L

(Rc + 0.5L sinα)3

)
(33)

Now the term f1 has been expressed as a function of the center of mass (CM) radius Rc, the
separation distance L and the angle α. Note that this paper considers a short-distance formation in a
GEO orbit, the CM radius can be approximated by the radius of the GEO orbitRc = 4.2155×107m.
The separation distance is within 100 meters, at the steady state it’s close to the desired value. The
angle α can not be controlled because Coulomb forces are internal forces in the formation and
are not capable to directly control the inertial orientation of the formation. α is the most varying
variable in the expression of f1 in Eq. (33), and it’s the only variable when the formation is at the
steady state. The behavior of f1 when α is changing should be identified.

Taking a partial derivative of f1 with respect to (w.r.t.) α, yields:

∂f1

∂α
=GM

{
Rc cosα

(Rc − 0.5L sinα)3
+

1.5L cosα(Rc sinα− 0.5L)
(Rc − 0.5L sinα)4

− Rc cosα
(Rc + 0.5L sinα)3

+
1.5L cosα(Rc sinα+ 0.5L)

(Rc + 0.5L sinα)4

}
=GM

{
1

(Rc − 0.5L sinα)4
(
R2
c cosα+RcL sinα cosα− 0.75L2 cosα

)
− 1

(Rc + 0.5L sinα)4
(
R2
c cosα−RcL sinα cosα− 0.75L2 cosα

)}
(34)

9



The extrema occurs when
∂f1

∂α
= 0. From Eq. (34), one obvious solution that makes the partial

derivative be zero is cosα= 0. When cosα= 0 then sinα=±1. Substituting sinα=±1 into the
expression of f1 in Eq. (33), yields:

f
(1)
1 = GM

[
1

(Rc − 0.5L)2
− 1

(Rc + 0.5L)2

]
(35)

Another solution that makes the partial derivative in Eq. (34) be zero is sinα = 0. Substituting
sinα=0 into Eq. (33), yields:

f
(2)
1 = −GML

R3
c

(36)

The following theorem proves that f (1)
1 is the maximum of f1, and f (2)

1 is the minimum of f1.

Theorem 1 Given a function of α defined by Eq. (33). Assume that L is constant and α ∈
[−90, 90]◦. If Rc � L, then the maximum value occurs when cosα = 0, the minimum value
occurs when sinα = 0. The maximum value is f (1)

1 given by Eq. (35) and the minimum value is
given by Eq. (36).

Proof The derivation from Eq. (34) to Eq. (36) has proved that f (1)
1 and f (2)

1 are two extrema of the
function f1. Further investigation is needed to show that these two extrema are the maximum and
minimum point of the function. Taking a second order partial derivative of f1 w.r.t. α, yields:

∂2f1

∂α2
=GM

{
1

(Rc − 0.5L sinα)4
(
−R2

c sinα+RcL cos2 α−RcL sin2 α+ 0.75L2 sinα
)

+
2L cosα

(Rc − 0.5L sinα)5
(
R2
c cosα+RcL sinα cosα− 0.75L2 cosα

)
− 1

(Rc + 0.5L sinα)4
(
−R2

c sinα−RcL cos2 α−RcL sin2 α+ 0.75L2 sinα
)

+
2L cosα

(Rc + 0.5L sinα)5
(
R2
c cosα−RcL sinα cosα− 0.75L2 cosα

)}
(37)

When cosα=0 and sinα=1, α=
π

2
. The second order partial derivative becomes:

∂2f1

∂α2

∣∣∣∣
α=90◦

=GM
(−R2

c −RcL+ 0.75L2

(Rc − 0.5L)4
− −R

2
c +RcL+ 0.75L2

(Rc + 0.5L)4

)
=GM

{
(−R2

c + 0.75L2)
(

1
(Rc − 0.5L)4

− 1
(Rc + 0.5L)4

)
−RcL

(
1

(Rc − 0.5L)4
+

1
(Rc + 0.5L)4

)}
(38)

Because Rc � L, (−R2
c + 0.75L2) < 0. The following inequality is obvious:

1
(Rc − 0.5L)4

− 1
(Rc + 0.5L)4

> 0 (39)
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So the value of the second partial derivative in Eq. (38) is negative:

∂2f1

∂α2

∣∣∣∣
α=90◦

< 0 (40)

When cosα=0 and sinα=−1, α=−π
2

. Then the second order partial derivative is:

∂2f1

∂α2

∣∣∣∣
α=−90◦

=GM
(
R2
c −RcL− 0.75L2

(Rc + 0.5L)4
− R2

c +RcL− 0.75L2

(Rc − 0.5L)4

)
=GM

{
(R2

c − 0.75L2)
(

1
(Rc + 0.5L)4

− 1
(Rc − 0.5L)4

)
−RcL

(
1

(Rc + 0.5L)4
+

1
(Rc − 0.5L)4

)}
(41)

Note that
1

(Rc + 0.5L)4
− 1

(Rc − 0.5L)4
< 0 (42)

So the partial derivative in Eq. (41) is negative:

∂2f1

∂α2

∣∣∣∣
α=−90◦

< 0 (43)

From the two results in Eqs. (40), (43), it can be concluded that cosα= 0 is the maximum point
of the f1 function. This proves that f (1)

1 is the maximum value of f1.

When sinα=0, α=0. The second order partial derivative is

∂2f1

∂α2

∣∣∣∣
α=0

= GM

{
2RcL
R4
c

+
4L
R5
c

(
R2
c − 0.75L2

)}
(44)

Clearly each term in Eq. (44) is positive, so the partial derivative in Eq. (44) is positive

∂2f1

∂α2

∣∣∣∣
α=0

> 0 (45)

This indicates that f (2)
1 in Eq. (36) is the minimum value of the function f1. �

Theorem 1 proves that f (1)
1 and f (2)

1 are upper and lower bounds of the function f1. Thus the
value level of f1 can be determined by these two boundaries. For a formation flying in a GEO orbit
with separation distance within 100m, the boundaries for f (1)

1 and f (2)
1 are determined:

f
(1)
1 ≤1.0646× 10−6m/s2 (46)

|f (2)
1 | ≤5.3228× 10−7m/s2 (47)

Figure 3 shows the real values and boundaries of f1 and f2 in a simulation test. Figures 3(a) and
3(b) show the distance error history and the control charge product history. After around 3000s the
distance error settles down to be close to zero. Figure 3(c) shows the boundaries of f1. Figure 3(d)
shows the true value and the estimation of the relative position feedback term f2. Comparing with
Figure 3(c), the magnitude of the function f2 is 4 times in order greater than f1. Thus the influence
of the inertial position function f1 can be ignored.
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Figure 3. A simulation example to show the boundaries of f1 and the history of f2.

NUMERICAL SIMULATIONS

A Lypunov-based nonlinear feedback control has been developed in the previous section. The
control requires only the separation distance and rate feedback. It ignores the two position vectors’
functions f1 and f2. The boundaries of the two functions are investigated. In this section, several
numerical simulations are used to test the performance of the controller and the behavior of the
2-craft formation.

The masses of the spacecraft are:

m1 = m2 = 50 kg (48)

The mass of the Earth is M = 5.9742 × 1024kg. The gravitational constant is G = 6.67428 ×
10−11m3kg−1s−2. Because the plasma shielding effect is strong at Low Earth Orbit (LEO), Coulomb
formation flying considers formations in GEO or deep space. The initial position of the center of
mass (CM) of the 2-craft system is set to be

Rc(t0) = [Rc, 0, 0]T (49)
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where Rc = 42155000m which is the radius of a GEO orbit. Note that the vector Rc(t0) is ex-
pressed in the ECI frame. The initial positions of the two spacecraft are functions of Rc(t0):

R1(t0) = Rc(t0)− m2

m1 +m2
r(t0), R2(t0) = Rc(t0) +

m1

m1 +m2
r(t0) (50)

where r(t0) is the initial relative position vector expressed in the ECI frame. Note that the initial
position of the CM Rc(t0) and the spacecraft masses m1 and m2 have been determined, the initial
relative position vector r(t0) determines the initial positions of the two spacecraft. The value of the
relative position vector r(t0) will be specified in the specific simulations cases.

The initial velocity of the CM of the two spacecraft system is defined as

Ṙc(t0) = [0, vc, 0]Tm/s (51)

where vc = 3070m/s is the nominal speed of a GEO orbit. Corresponding to the initial positions of
the two spacecraft in Eq. (50), the initial velocities of the two spacecraft are given by:

Ṙ1(t0) = Ṙc(t0)− m2

m1 +m2
ṙ(t0), Ṙ2(t0) = Ṙc(t0) +

m1

m1 +m2
ṙ(t0) (52)

where ṙ(t0) is the initial relative velocity. The value of ṙ(t0) will be specified in the specific
simulation cases as well.

Full-State Feedback Control Results

The full-state feedback control in Eq. (13) requires measurements of the inertial and relative
position vectors. The benefit is that it’s asymptotically stable. This simulation case shows the per-
formance of the full-state feedback control. The initial relative position vector of the two spacecraft
system is

r(t0) = [4, 4, 0]T m (53)

The initial relative velocity is

ṙ(t0) = [0.02, 0, 0.02]T m/s (54)

The expected separation distance is L∗ = 4m. The Debye length is λd = 150m. The three
controller coefficients are

p = 1× 10−5s−2, d = 4× 10−3s−1 (55)

Figure 4 shows the simulation results. Figure 4(a) shows the scenario as seen from the inertial
frame centered at the CM of the two-craft system. The distance history in Figure 4(b) shows that the
separation distance converges to the desired distance. Figure 4(c) shows the control charge product
converges to the feed-forward charge product. Figure 4(d) shows the magnitude of the Coulomb
force. During the simulation the Coulomb force is within 10mN.
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(c) Charge product.

0 0.5 1 1.5 2
0

2

4

6

8

10

time [h]

C
o

u
lo

m
b

 fo
rc

e 
[m

N
]

(d) Magnitude of the Coulomb force.

Figure 4. Full-state feedback control simulation.
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Partial-State Feedback Simulation

This paper develops two partial-state feedback control given by Eqs. (16) and (29). The control
in Eq. (16) is stable assuming a fast spinning rate comparing to the GEO orbit rate. But when the
estimation f̂2 is not equal to f∗2 , the separation distance would be biased to the expected distance.
The control in Eq. (29) utilizes an integral feedback to compensate for the bias. But the stability is
not proved.

The initial conditions and the control parameters are the same with the previous given by Eqs. (53)–
(55). Figure 5 shows the simulation results using the feedback control in Eq. (16). In this case the
feed-forward part has the perfect guess of the f∗2 value. It can be seen that the distance converges to
the expected distance and the charge product converges to the feed-forward charge product.
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(b) Charge product.

Figure 5. Partial-state feedback control without integral feedback, with perfect estimation of f∗2 .

Figure 6 shows results of the same controller except that the estimation f̂2 is not equal to f∗2 .
Figure 6 shows that there is a constant bias in the separation distance and the charge product. This
control is stable, but it can not remove the constant bias.

Figure 7 shows simulation under the control in Eq. (29). The integral feedback coefficient is
ki = 1 × 10−7s−3. The integral feedback term removes the constant biases in the separation
distance and the charge product. This shows the great advantage of the integral feedback control.
But the stability of the feedback control with the integral feedback is not proved analytically.

CONCLUSION

This paper investigates a two-craft Coulomb virtual structure control problem. A Lypunov-based
full-state feedback control and a partial-state feedback control are developed. The full-state feed-
back control is asymptotically stable but it requires measurements of the inertial and relative position
vectors which are difficult to obtain. The partial-state feedback control without integral feedback is
stable assuming a slow spinning rate. But the estimation error of the relative position function in
the feed-forward part introduces a constant bias in the distance. An integral feedback term inserted
into the partial-state feedback control removes the constant bias. But the stability of the partial-state
feedback control with the integral feedback is not proved analytically.
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(b) Charge product.

Figure 6. Partial-state feedback control without integral feedback, f̂2 = 0.81f∗2 .
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Figure 7. Partial-state feedback control with integral feedback, f̂2 = 0.81f∗2 .
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