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Collision avoidance is becoming a key concern with many envisioned spacecraft
cluster mission concepts. This paper considers a 2-spacecraft collision avoidance
problem where the craft are floating a few dozen meters apart and slowly drifting
towards each other. The Coulomb thrusting approach is used to develop a trajectory
programming strategy to avoid the potential collision while conserving the initial
relative velocity direction and magnitude. By assuming the spacecraft to be float-
ing freely in deep space and maintaining piece-wise constant electrostatic charge
levels, the relative trajectory are described through splices of conic sections. A sym-
metric 3-conic-section trajectory programming strategy is designed to match up the
arrival direction with the departure direction. Allowing general conic sections while
orbiting each other, five constraints are introduced to formulate the five degrees of
freedom (DOF) problem. Newton’s method is used to iterate across one variable
to determine an answer A special circular circumnavigation case is also discussed
which provides an easy to determine solution.

INTRODUCTION

Spacecraft collision avoidance is an important topic in close formations and small satellite swarms
with separation distances ranging on the order of dozens to hundreds of meters. A collaborative
formation or swarm of multiple satellites flying closely has many advantages over a single large
monolithic satellite. However, spacecraft swarm concepts also introduce the issue of potential colli-
sions due to the failure of the control or the sensor of some spacecraft within the cluster, or the lack
of the guidance strategy to guarantee collision avoidance.

Many previous works in spacecraft collision avoidance consider specifically the probability of
the collision for satellites in a formation, and determines the spacecraft maneuvers to lower the
collision risk to an acceptable level. Russell P. Patera and Glenn E. Peterson in Reference 1 develop
a method to select a maneuver that will reduce the collision probability. The method minimizes
the maneuver magnitude and space vehicle propellant expenses. G. L. Slater et al. in Reference 2
use the available state and disturbance information to calculate the actual probability of collision
based on a probabilistic model, and then discusses the velocity correction requirements to avoid
collisions. In Reference 3, Russell P. Patera proposes a spherical conflict volume to calculate the
conflict probability in identifying high-risk conjunctions. The conflict probabilities are larger than
associated collision probabilities and therefore are more easily interpreted.

This paper discusses an active avoidance scenario when a potential collision has been detected to
happen. Not focusing on reducing the probability of a collision or a confliction, the paper is going to
design an immediate control using only electrostatic (Coulomb) forces to prevent the collision. Note
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that most of the previous works in spacecraft collision avoidance are based on the control strategies’
capability to control all three components of the thrust vector in 3-D space. These control strategies
use propellent, which will increase the fuel budget of the spacecraft. Further, the associated exhaust
plume impingement may cause damage to instruments on board when spacecraft are flying less than
100 meters apart. Coulomb force has advantages over traditional thrusters in preventing a spacecraft
collision in that it is essentially propellentless and will not increase the fuel budget. Thus it will not
generate any propellent plume impingement issues that threaten neighboring spacecraft.

The application of Coulomb force in spacecraft cluster flying has sprung out a lot of discussions
since Lyon B. King et al. originally introduced Coulomb Formation Flying (CFF) in Reference 4.
CFF uses Coulomb forces to control the distances between spacecraft to achieve the desired rel-
ative motion. Spacecraft will naturally charge to either positive or negative voltages due to their
interaction with the local space plasma environment. The spacecraft charge level can be actively
controlled by continuously emitting electrons or ions. The fuel-efficiency of Coulomb thrusting
is at least 3–5 orders greater than that of Electric Propulsion (EP).4 Coulomb thrusting typically
requires only a few Watts of electrical power to operate.4 A challenge of CFF is that, unlike conven-
tional thrusters that can produce a thrust vector in any direction, the Coulomb forces only lie along
the line-of-sight directions between spacecraft. But this is less of an issue in using Coulomb forces
to avoid a collision. The most important factor in preventing collision is the separation distance,
which can be fully controlled using Coulomb forces. Another challenge of CFF is that the sparse
space plasma will shield electrostatic charges. This effect will reduce the amount of electrostatic
force that a neighboring charged spacecraft will experience. The amount of shielding is charac-
terized by the Debye length5.6 At separation distances greater than a Debye length the perceived
inter-craft Coulomb force quickly becomes negligle. At LEO where the plasma is relatively dense
and cold, the Debye length is on the order of centimeters. This results in a strong shielding of
Coulomb forces and makes Coulomb thrusting un-feasible. However, at GEO the Debye lengths
range between 100–1000 meters.4, 7 At 1 AU in deep space the Debye length ranges around 20–50
meters.4 This makes the Coulomb thrusting concept feasible for HEO and deep space missions
while the minimum separation distances are less than 100 meters.

The CFF concept has been investigate for several different mission scenarios in recent publica-
tions V. Lappas et al. in Reference 8 develops a hybrid propulsion strategy by combining Coulomb
forces and standard electric thrusters for formation flying on the orders of tens of meters in GEO.
Reference 9 analyses the stability of a spinning 2-craft Coulomb tether. It shows that if the Debye
length is larger than the separation distance, the nonlinear radial motion is locally stable, otherwise
unstable. And the perturbed out-of-plane motion is always stable regardless of Debye length. H.
Vasavada and H. Schaub in Reference 10 present analytical tools to determine the charge solution
for a static 4–craft formation. Reference 11 designs a two-stage charge feedback control strategy
for a 1–D constrained Coulomb structure. It also analyses the condition for symmetric relative mo-
tions of Coulomb structure to be stabilizable by investigating the total energy of the system. I. I.
Hussein and H. Schaub derive the collinear three-craft spinning family of solutions in Reference 12.
A feedback control based on the linearized model is designed to stabilize a symmetric Coulomb
tether system. Asymptotic stability is achieved if the system’s angular momentum is equivalent to
that of the desired equilibrium. However, none of these CFF related works consider the issue of
performing active collision avoidance. Such a capability will be required when considering flying
larger numbers of craft in close proximity.

The previous charged collision avoidance work in Reference 13 develops a collision avoidance
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strategy using an active charge control law with separation distance and rate feedback. The con-
troller is designed based on Lyapunov stability analysis. Without charge saturations the controller
can prevent any collision. Considering charge saturations, the paper finds the analytical criteria for
an avoidable collision by assuming the Debye length to be infinity. Numerical simulations show that
the criteria is usable even when limited Debye length is applied on spacecraft. While this feedback
control strategy can maintain specified safety separation distances, this control will cause the craft
to depart in a different direction from when the collision avoidance maneuver started.

This paper investigates using Coulomb forces to prevent a potential collision between two slowly
approaching spacecraft. The feasible electrostatic forces are typically too small to avoid the col-
lision of two rapidly approaching spacecraft. A new open-loop control approach to prevent the
collision is presented which aims to maintain the initial velocity vector magnitudes and directions
of the approaching craft. By assuming the Debye length to be large compared to the separation
distance, and that the spacecraft charges are constant, the relative EOM has exactly the same form
as gravitational two body problem (G2BP). Thus the relative trajectory of the spacecraft is a conic
section.14 Through switching the value of the spacecraft charges, a patched conic section trajectory
is investigated which will satisfy the separation distance and the departure velocity requirements.
Numerical simulation will illustrate how these open-loop charge solutions will generate the desired
collision avoidance maneuver.
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m1 , q1
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F
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Figure 1 Illustration of the 2-spacecraft system.

CHARGED SPACECRAFT EQUATIONS OF MOTION

Consider two spacecraft free-flying in 3-dimensional space where there are no external forces
acting on the system. The scenario of the two body system is shown in Figure 1. The Coulomb
force vector between the two spacecraft, acting on m1, is

F = −kc
q1q2
r3

e
− r
λd r = −kc

q1q2
r2

e
− r
λd êr (1)

Here the parameter kc = 8.99 × 109C−2 ·N ·m2 is the Coulomb constant, r is the separation
distance between the two spacecraft, r is the relative position vector pointing from spacecraft 1
(SC1) to spacecraft 2 (SC2), êr is the unit vector of r, and λd is the Debye length. The smaller
the plasma Debye length is, the shorter the effective range is of a given electrical charge. For high
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Earth orbits the Debye length ranges between 100–1000 meters.4, 15, 7 CFF typically has spacecraft
separation distances ranging up to 100 meters.

The inertial equations of motion of the two charged spacecraft are approximated through the
point-charge models using

m1R̈1 = −kc
q1q2
r2

e
− r
λd êr (2a)

m2R̈2 = kc
q1q2
r2

e
− r
λd êr (2b)

where Ri is the inertial position vector of the ith spacecraft. The inertial relative acceleration vector
r̈ is

r̈ = R̈2 − R̈1 =
kcq1q2
m1m2r2

(m1 +m2)e
− r
λd êr (3)

Note that these equations do not explicitly consider orbital motion of spacecraft. However, if the
collision avoidance maneuver time is very small compared to the cluster orbital period, then they
can also be considered an approximation of the charged relative orbital motion. For example, a
GEO spacecraft collision avoidance maneuver which takes minutes would be very short compared
to the 1 day orbit period, and thus the relative orbital motion would have a secondary effect on the
relative motion.

This paper is going to find a symmetric patched conic section trajectory to prevent a collision,
while forcing the departure velocity vector to be the same as the initial arrival velocity vector.
Reference 14 shows that if λd → ∞, and the charge product Q = q1q2 is constant, then the
relative motion trajectory of the two spacecraft is a conic section. Letting λ → ∞ and defining
µ = −kc Q(m1+m2)

m1m2
, Eq. (3) can be rewritten as

r̈ = − µ
r3

r (4)

Eq. (4) has exactly the same algebraic form as the EOM of G2BP. If the charge productQ is constant,
then the effective gravitational coefficient µ is also constant. Thus the resulting motion can be
described by a conic section. Note that here µ can be positive or negative. For the oppostive charge
sign case Q < 0, resulting in a positive effective gravitational constant µ > 0. In this case Eq. (4)
is exactly the same as the G2BP. If Q > 0 and µ < 0, then the relative trajectory is a repulsive
hyperbola, where SC2 is moving along a hyperbola, and SC1 stays at the farther focus point.14

Thus to find a symmetric patched conic section trajectory, this paper assumes that the two space-
craft are flying in free space without external forces, and the Debye length is approximated to be
infinityly large compared to the separation distance.

SYMMETRIC TRAJECTORY PROGRAMMING STRATEGY

This section develops a numerical routine used to find a symmetric solution of the relative tra-
jectory satisfying certain collision avoidance constraints. An example of the symmetric relative
trajectory scenario is shown in Figure 2. At the beginning, the two spacecraft are flying freely and
approaching each other such that their minimum separation distance will violate a desired safety
distance. At the pointA, the separation distance between the spacecraft reaches a potential collision
region range ro. The spacecraft are charged such that Q > 0, thus the spacecraft start to repel each
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Figure 2 Illustration of the symmetric patched conic section relative motion trajec-
tory with respect to mass m1.

other to avoid the collision. Before arriving at the point B, the magnitude of the charge product is
held constant. Thus the arc ÂB is a repulsive hyperbola. At the pointB the charge product switches
to a negative value such that the spacecraft are attracting each other. From the point B to the point
C, the charge product is again held constant. The arc B̂C is an attractive conic section which can be
ellipsis, parabola, or hyperbola depending on the relative arrival velocity magnitude. At the point C
the charge product switches back to the same value as in arc ÂB to produce a symmetric trajectory
to ÂB. At the point E, the charges are turned off and the spacecraft begin to fly freely in space.

The relative trajectory in Figure 2 is symmetric about the OD axis. This symmetry axis is per-
pendicular to the initial relative velocity and acrosses the spacecraft m1 point O. At the beginning,
the two spacecraft are flying without Coulomb forces. When the distance decreases to a certain
prescribed value ro at point A, the two spacecraft begin to repel each other. At point B, the craft
turn to attract each other. Point C is the corresponding symmetric point of B, and E corresponds to
A. At point C, the spacecraft begin to repel each other, and at pointE the control charges are turned
off and the spacecraft begin to fly freely. For the convenience of describing the process, denote the
arc ÂB as “Phase I”, B̂C as “Phase II” and ĈE as “Phase III”.

Constraints

In this scenario, there are five unknowns that need to be determined: three charge products QI,
QII and QIII, and two times at points B and C. Generally there are an infinity of possible charge
and charge switching time solutions which achieve a successful collision avoidance. This section
introduces constraints which guarantee a desired minimum separation distance rs, as well conditions
which will match the arrival and departure velocity vector magnitudes and direction. Further, as
the craft depart it is desirable to have the craft follow their original trajectories to cause minimal
disruption to the overall formation motion.

The collision avoidance task requires that the separation distance r(t) must be greater than a
certain safe-restraint distance rs for all time:

r(t) ≥ rs (5)

This constraint is global and comes from the collision avoidance mission. To find a symmetric
trajectory solution as shown by Figure 2, more information must be extracted. For the arc ÂB and
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ĈE to be symmetric, the first and final set of charge products should be equal, that is

QI = QIII (6)

For the arc B̂C in Phase II to be symmetric about the symmetric axis OD, the point D must be
the periapsis or apoapsis of Phase II, unless the arc B̂C is a part of a circular orbit. This requirement
is formulated as:

rD = rpII, or rD = raII (7)

Another requirement for Phase II to be symmetric is that the point C should be the mirror image
of the point B. This can be described by the geometry relation

6 BOD = 6 COD (8)

So far three equality constraints, Eqs. (6), (7) and (8), and one inequality constraint in Eq. (5)
are presented to narrow down the trajectory programming problem. The three equality constraints
decrease the system’s degrees of freedom (DOF) to be two. Two more equality constraints are
required to develop an iteration loop.

The charge products of Phase I and III can be written as

QI = QIII = αQmax (9)

where 0 < α ≤ 1 and Qmax > 0 is the maximum charge product of the two spacecraft. Phase I is
designed to be a concave curve in order to stop the approaching of the spacecraft. Thus the main
purpose of Phase I is to prevent collision. Because larger charge product prevents a collision more
quickly, it’s resonable to choose α = 1 such that

QI, III = Qmax (10)

The inequality constraint in Eq. (5) can be written as:

rmin = γrs (11)

here γ ≥ 1. In the iteration search routine, the parameter γ can be chosen to be a fixed value greater
than 1.

Now there are five equality constraints to solve the patched conic collision avoidance trajectory.
Eqs. (6) – (8) are from the symmetric patched conic section properties. The constraint given by
Eq. (11) is required by the collision avoidance task. And the last constraint in Eq. (10) is chosen to
achieve a quick collision avoidance.

Numerical Iteration Routine

This section develops a numerical iteration routine to find a symmetric patched conic section
trajectory for the collision avoidance problem. The charge product QI and the initial conditions
[rA, ṙA] determine the conic section of Phase I. Without loss of generality, assume that tA = 0.
If tB is given, the angle 6 AOB can be calculated using Kepler’s equation in Phase I. The states
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[rB, ṙB] are also determined by solving the orbit EOM of Phase I. Utilizing the constraint that
the point D must be the periapsis or apoapsis of Phase II, the point C can be determined by the
constraint in Eq. (8). Phase III is determined by the state of point C, which can be infered from tB .
Thus the charge switching time variable tB logically determines the whole patched conic section
trajectory. In the iteration routine, tB is chosen as the variable to be propagated.

The algorithm assumes that the relative position vector rA and the relative velocity ṙA at point
A can be measured. The conic section properties of Phase I can be completely solved using rA and
ṙA. The eccentricity vector of Phase I is

cI = ṙA × h− µI

rA
rA (12)

where h = rA × ṙA is the specific angular momentum of the system, and

µI = −kc
Qmax(m1 +m2)

m1m2
(13)

is the effective gravitational coefficient of Phase I. Further, note the notation rA = |rA|. The
vector h is constant by the assumption that there are no external forces acting on the sytem. The
eccentricity and semi-major axis of Phase I are calculated by

eI = −‖cI‖
µI

(14a)

aI =
rAµI

2µI − rAv2
A

(14b)

where vA = ‖ṙA‖ is the magnitude of the relative velocity vector. The angle 6 AOD is calculated
as

6 AOD = arctan
(

h

rAvA

)
− π

2
(15)

Because tB has been chosen as the variable to be propagated in the iteration loop, it starts from an
initial guess value, and is updated using an error of a target function. In the present formulation of
the algorithm the time point tB is assumed to be given. The states at point B can be determined by
using the conic section properties of Phase I. The mean hyperbolic anomaly of point B considered
in Phase I is calculated using the Kepler’s equation:

NBI = NAI +
√
µI

a3
I
· tB = NAI + nI · tB (16)

Then the hyperbolic anomaly HBI is calculated by numerically solving the standard anomaly rela-
tionship:16

NBI = eIsinh(HBI) +HBI (17)

Thus the true anomaly of point B is determined by

fBI = 2 · arctan

(
tanh

(
HBI

2

)√
eI + 1
eI − 1

)
(18)
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The radius and the magnitude of the relative velocity at point B are

rB =
h2/µI

1− eI cos fBI
(19a)

vB =

√
µI

(
2
rB
− 1
aI

)
(19b)

here h is the magnitude of the specific angular momentum determined by initial conditions. Eq. (19b)
is from the energy equation.

After obtaining the relative motion states at pointB, Phase II can be determined by the symmetric
conic section constraints. Specifically, the charge product QII and point C can be calculated. At
first, the angle 6 AOB is calculated by

6 AOB = |fBI − fAI| (20)

The angle 6 BOD is determined by the geometry relation:

6 BOD = 6 AOD − 6 AOB (21)

According to the symmetric constraint in Eq. (8), the angle

6 COD = 6 BOD (22)

is determined. Thus the point C is located. Note that of the five variables which determine the
symmetric conic section trajectory, the points B, C, the charge products QI, QIII have been solved.
The only variable left to be determined is the charge product QII. From the definition of µ in Eq. (4)
we find:

µII = −kc
QII(m1 +m2)

m1m2
(23)

Once µII is solved, QII is also determined. The following development is going to solve for µII
based on the states of the point B and the symmetric constraints.

Since the arc B̂C is a part of a conic section, it has all of the properties of conic section orbit.
The semi latus rectum can be expressed in two ways:

p = a(1− e2) =
h2

µ
(24)

Solving for the eccentricity e, yields

e =

√
1− h2

µa
(25)

From the energy equation, the term 1
µa is expressed as:

1
µa

= −v
2

µ
+

2
r

(26)
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Substituting Eq. (26) into Eq. (25), yields

e =

√
1 +

(
v2

µ
− 2
r

)
h2

µ
(27)

For a given two body system without external forces, the specific angular momentum h is con-
stant. Thus the expression of the eccentricity in Eq. (27) contains only three variables r, v and µ.
Substituting Eq. (27) into the radius equation, yields

r =
h2/µ

1 + e cos f

=
h2

µ+ cos f
√
µ2 +

(
v2 − 2µ

r

)
h2

(28)

Transforming Eq. (28) to separate the square root term, yields

cos f

√
µ2 +

(
v2 − 2µ

r

)
h2 =

h2

r
− µ (29)

Squaring Eq. (29) and grouping terms of µ yields

(cos2 f − 1)µ2 +
2h2

r
(1− cos2 f)µ+ cos2 fv2h2 − h4

r2
= 0 (30)

Because 1− cos2 f = sin2 f , Eq. (30) can be further simplified to

sin2 fµ2 − 2h2

r
sin2 fµ− cos2 fv2h2 +

h4

r2
= 0 (31)

With h being constant, this quadratic equation of µ contains the variables f , r and v. Note that
Eq. (31) is valid for all conic section orbits. To solve for µII, evaluate f , r and v at point B in Phase
II and then solve the following quadratic equation

sin2 fBIIµ
2
II −

2h2

rB
sin2 fBIIµII − cos2 fBIIv

2
Bh

2 +
h4

r2B
= 0 (32)

where rB and vB are given by Eq. (19). If the point D is the periapsis location,then

fBII = −6 BOD (33)

Else, if D is the apoapsis location, then

fBII = π − 6 BOD (34)

In both cases, the resulting final equations after substituting fBII into Eq. (32) are identical:

sin2 6 BOD︸ ︷︷ ︸
l1

µ2
II−

2h2

rB
sin2 6 BOD︸ ︷︷ ︸
l2

µII− cos2 6 BODv2
Bh

2 +
h4

r2B︸ ︷︷ ︸
l3

= 0 (35)
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Analytically solving for µII from Eq. (35), the charge product in Phase II is obtained by Eq. (23).

Note that generally there are two solutions of µII to Eq. (35). One of them corresponds to the case
that D is the apoasis of the arc B̂C, the other one corresponds to the case that D is the periapsis.
The completed paper will analyse this phenomenon.

The previous development outlines the formulas used to solve the pointsB and C, and the charge
product of Phase II QII assuming the variable tB is given. However, in our present collision avoid-
ance application tB is not explicity determined. Note that four constraints have been used in deriving
those formulas, Eqs. (6), (7), (8) and (10). The constraint in Eq. (11) hasn’t been utilized. The nu-
merical search routine is intended to find an appropriate tB such that the closest distance rmin = γrs,
where γ ≥ 1.

SC1

D, periapsis

apoapsis

complete
ellipse major

axis

rpII
B

(a) point D is the periapsis of Phase II.

D, apoapsis

periapsis

SC1

rpII

major
axis

complete
ellipse

B

(b) point D is the apoapsis of Phase II.

Figure 3 Illustration of two cases of point D.

If the point D is the periapsis of Phase II, then rD is the closest distance in Phase II. And the
distance in Phase I and Phase III are greater than or equal to rB , and rB > rD because the point
B is on Phase II, thus in this case rmin = rD = rpII. This scenario is shown in Figure 3(a). When
the piont D is the apoapsis of Phase II, the scenario is shown in Figure 3(b). The closest distance
changes to be rmin = rB because rB < rD. But in this case rB is difficult to calculate because the
formulas for solving this general point is complicated. To simplify the calculations, the criteria for
the convergence is modified to be

rpII = γrs (36)

Note that this criteria is more conservative than rmin = γrs. When rD = rpII, rpII = γrs is
equavilent to rmin = γrs. If rD = raII, rmin > rpII = γrs. Define the target function as:

g(tB) = rpII(tB)− γrs (37)

Newton’s method is used to find tB that satisfies g(tB) = 0. The iteration algorithm propagates
according to the following steps:

Step 1 Initialization: From the measurements rA and ṙA, calculate eI , aI through
Eq. (14), and calculate the angle 6 AOD through Eq. (15). Initiate tB = t

(0)
B .
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The initial guess t(0)
B can be chosen as the time for SC2 to fly from the point A

to the periapsis of Phase I:

t
(0)
B =

|NA|√
µI/a3

I

(38)

Step 2 Solve for the point B’s states rB and vB through Eqs. (16)–(19).

Step 3 Solve for µII by Eq. (35). Calculate rpII through

rpII = aII(1− eII) (39)

and aII is solved by the energy equation, eII is calculated through Eq. (27) eval-
uating at point B in Phase II.

Step 4 Find g′ = ∂g
∂tB

using the finite difference method.

Step 5 Update t(i+1)
B = t

(i)
B −

g
g′ , i = i+ 1.

Step 6 Judge whether |g(tB)| < Tol. If yes, tB = t
(i)
B , STOP. Otherwise, go to Step 2.

CIRCULAR TRANSITIONAL ORBIT PROGRAMMING

A special case of the symmetric trajectory case is that the Phase II trajectory is a section of a
circle. Because the circular orbit is a special case of the elliptic orbit it provides an additional
constraint to determine the collision avoidance maneuver. With the previous initial conditions at the
point A we assumed thatQI = QIII = Qmax. As a result the parameters tB and µII are determined by
specifying a symmetric trajectory of Phase II satisfying the safety constraint rpII = γrs. However,
this leads to an infinity of possible answers. Depending on the initial conditions of the numerical
iteration routine, the iterations may not converge to a real or practical answer.

This section investigates the circular Phase II trajectory special case. Through the initial condi-
tions at the point A a unique set of variables (QI, tB, µII) are found such that Phase II is a part of a
circular orbit, and also satisfies the safety constraint rB = γrs (the point B is the start point of the
circular trajectory). In this scenario the Phase I charge product QI is not set to Qmax, but it is deter-
mined through the desired circular collision avoidance geometry. Note that for Phase II to be part of
a circle, the relative velocity at the point B must be perpendicular to the relative position vector, thus
the point B must be the periapsis of Phase I. The switching time variable tB is calculated through

tB =
|NAI|√
µI/aI

(40)

with the right hand side of this equation is completely determined by µI, which in return is is
determined by QI. Thus, once QI is found, the shape of Phase I and the point B are all determined.

The safety constraint to avoid a collision is expressed by the condition rB = γrs. The radius rB
is calculated by

rB =
h2/µI

1− eI
(41)
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where the eccentricity eI is determined through the eccentricity vector as

eI = −‖cI‖
µI

=
∥∥∥∥ ṙA × h

µI
− rA
rA

∥∥∥∥ (42)

Thus the constraint for a circular Phase II trajectory is

h2/µI

1− eI
= γrs (43)

Note that the left hand side of Eq. (43) is a function of µI. Analytically solving for µI is too complex.
Instead, to numerically solve Eq. (43) we define the target function:

g2(µI) = γrs − rB = γrs −
h2/µI

1− eI
(44)

The purpose of the numerical method is to find a proper µI to make g2 = 0. A solution indicates
that the safety constraint is satisfied and that the 2 spacecraft will orbit each other on a circular arc
of radius γrs during Phase II. The Newton-Raphson’s method is employed to solve the equation
g2 = 0 in this paper.

After obtaining µI through solving g2 = 0, the variable tB is determined by Eq. (40). These
values of µI and tB ensure that at the point B the relative speed vector is perpendicular to the
relative position vector, and the radius rB = γrs. The next step is to find a proper µII that results in
a circular orbit. Using the momentum magnitude expression of a circular orbit, µII is found to be

µII =
h2

rII
=
h2

rB
(45)

To find the Phase II duration time tII, the Phase II symmetry constraint is utilized. Note that the
angular velocity is constant in Phase II, the duration time is proportional to the angle 6 BOC:

tII = 6 BOC · TII

2π
= 26 BOD · TII

2π
=
6 BOD · TII

π
(46)

The period of the Phase II circular orbit is TII =
√
µII/r3B , while the angle 6 BOD is given by

6 BOD = 6 AOD − |fAI| (47)

and the angle 6 AOD is expressed in Eq. (15).

Thus a symmetric trajectory with Phase II being a part of a circular orbit has been found. Figure 4
shows the scenario of the trajectory. Future work may be engaged to find a more optimal solution
that results in minimum charge or energy expenses.

NUMERICAL SIMULATIONS

A numerical iteration routine using Newton’s method to solve for a symmetric patched conic
section trajectory has been set up. The routine is designed to search for an appropriate time value
tB for SC2 passing by the point B, such that the target function g(tB) defined in Eq. (37) converges
to zero. Once g(tB) converges to zero, then rpII = γrs where γ ≥ 1. the collision avoidance
requirement rmin ≥ rs is satisfied.
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Figure 4 Scenario of the circular Phase II trajectory.

For the following numerical simulations, let the spacecraft have the same mass

m1 = m2 = 50kg (48)

while the maximum charge product between the two craft is

Qmax = 2.5× 10−11C2 (49)

The potential collision range ro and the safe-restraint distance rs are

ro = 10m, rs = 5m (50)

The initial inertial positions and velocities of the two spacecraft are chosen as{
R1(t0) = [0, 0, 0]Tm
R2(t0) = [14, 2, 0]Tm

{
Ṙ1(t0) = [0, 0, 0]Tm/s
Ṙ2(t0) = [−0.04, 0, 0]Tm/s

(51)

The multiplier in Eq. (11) is set to be γ = 1, which means after the iteration routine converges,
rpII = rs and the closest distance in the entire trajectory is rs. The analytical solution to Eq. (35) is
chosen to be

µII =
−l2 −

√
l22 − 4l1l3

2l1
(52)

Figure 5 shows the numerical search results. Figure 5(a) illustrates the relative trajectory as seen
by SC1. In this simulation, the iteration routine ends up with rpII = rs = 5m, and the radius of
the apoapsis is raII = 8.7808m. The final direction of the relative motion is the same as the initial
relative motion direction which can be seen from Figure 5(a). The magnitude of the final departure
relative velocity converges to the initial relative velocity magnitude as shown in Figure 5(d). And
Figure 5(e) shows that the velocity direction also converges to the initial heading direction. These
results match up with the intention of the symmetric patched conic section programming.

Figure 5(b) is the history of the charge product Q. In Phase I and Phase III, Q = Qmax = 25µC2

to create two repelling hyperbola. In Phase II,Q = −2.973µC2 < 0, it results in a constant, positive
effective gravitational coefficient to form an attracting conic section. The magnitude is less than the
limit of the charge product. Figure 5(c) is the trajectories of the two spacecraft as seen in an inertial
frame.

13
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Figure 5 Symmetric patched conic section search results.
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Figure 6 Relative trajectory scenario with D being the apoapsis.

With the same initial conditions and the control parameters, but using the other solution to
Eq. (35):

µII =
−l2 +

√
l22 − 4l1l3

2l1
(53)

yields a different solution as shown in Figure 6. In this relative trajectory scenario, the point D is
the apoapsis of the complete Phase II ellipse. The periapsis radius is rpII = 5m, and the apoapsis
radius is raII = 5.8732m. The convergence criteria rpII = rs is still satisfied, and the resulting
relative trajectory is an expected symmetric patched conic section.

Though the above simulations show perfect results of the numerical search routine, it’s not guar-
anteed that the routine always comes out with an expected solution. Studying Eq. (32) again, it can
be found that there are four solutions for fBII to satisfy Eq. (35), they are:

[6 BOD, π − 6 BOD, −6 BOD, 6 BOD − π] (54)

We have known that fBII = −6 BOD corresponds to the case that the point D is the periapsis,
and fBII = π− 6 BOD indicates the point D is the apoapsis of the conic section. Both of these two
values of the angle fBII result in symmetric patched conic section trajectories. But the other two
values lead to non-symmetric solutions. These non-symmetric solutions need to be analysed further,
and avoided if possible since they will cause the craft to depart at different relative heading angles
their their approach trajectories. Another problem needs to be solved is the convergence analysis of
the iteration routine. The given technique to determine an initial state guess for the iteration routine
works well in many cases, but not all. Further studies will investigate more robust initial condition
setup routines.

CONCLUSION

A two spacecraft collision avoidance problem is discussed in this paper. An open-loop trajectory
programming algorithm is developed to find a general symmetric patched conic-section relative
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trajectory. Compared to previously published feedback charge control strategies to avoid a collision,
this approach is able to match both the direction and the magnitude of the relative motion speed
with the initial relative approach velocity vector. By assuming the value of the charge product in
Phase I to be the maximum charge level the craft can safely attain, five equality constraints are
introduced to set up a symmetric three-conic-section trajectory for the five DOF problem. Four
constraints are used to formulate the trajectory. Newton’s method is used to iteratively search for
an appropriate time variable tB to satisfy the remaining one constraint. Two possible solution for a
given set of initial conditions are discussed. Another approach seeking a circular trajectory in Phase
II is presented. The circular trajectory constraint adds an additional constraint into the system, thus
there exits a unique solution to the five DOF problem without assuming the maximum charge value
during Phase I. Future work will investigate determining a minimum charge solution that construct
a symmetric trajectory.

REFERENCES
[1] R. P. Patera and G. E. Peterson, “Space Vehicle Maneuver Method to Lower Collision Risk to an Acceptable Level,”

Journal of Guidance, Control, and Dynamics, Vol. 26, March–April 2003, pp. 233–237.
[2] G. L. Slater, S. M. Byram, and T. W. Williams, “Collision Avoidance for Satellites in Formation Flight,” Journal of

Guidance, Control, and Dyanmics, Vol. 29, Sept.-Oct. 2006, pp. 1140–1146.
[3] R. P. Patera, “Space Vehicle Conflict-Avoidance Analysis,” Journal of Guidance, Control, and Dynamics, Vol. 30,

March–April 2007, pp. 492–498.
[4] L. B. King, G. G. Parker, S. Deshmukh, and J.-H. Chong, “Spacecraft Formation-Flying using Inter-Vehicle

Coulomb Forces,” tech. rep., NASA/NIAC, January 2002. http://www.niac.usra.edu.
[5] D. R. Nicholson, Introduction to Plasma Theory. Krieger, 1992.
[6] T. I. Gombosi, Physics of the Space Environment. Cambridge University Press, 1998.
[7] C. C. Romanelli, A. Natarajan, H. Schaub, G. G. Parker, and L. B. King, “Coulomb Spacecraft Voltage Study Due

to Differential Orbital Perturbations,” AAS Space Flight Mechanics Meeting, Tampa, FL, Jan. 22–26 2006. Paper
No. AAS-06-123.

[8] V. Lappas, C. Saaj, D. Richie, M. Peck, B. Streeman, and H. Schaub, “Spacecraft Formation Flying and Reconfig-
uration with Electrostatic Forces,” AAS/AIAA Space Flight Mechanics Meeting, Sedona, AZ, Jan. 28–Feb. 1 2007.
Paper AAS 07–113.

[9] H. Schaub and I. I. Hussein, “Stability and Reconfiguration Analysis of a Circulary Spinning 2-Craft Coulomb
Tether,” IEEE Aerospace Conference, Big Sky, MT, March 3–10 2007.

[10] H. Vasavada and H. Schaub, “Analytic Solutions for Equal Mass 4-Craft Static Coulomb Formation,” AAS/AIAA
Astrodynamics Specialists Conference, Mackinac Island, MI, Aug. 19–23 2007. Paper AAS 07–268.

[11] S. Wang and H. Schaub, “1-D Constrained Coulomb Structure Stabilization With Charge Saturation,” AAS/AIAA
Astrodynamics Specialists Conference, Mackinac Island, MI, Aug. 19–23 2007. Paper AAS 07–267.

[12] I. I. Hussein and H. Schaub, “Stability and Control of Relative Equilibria for the Three-Spacecraft Coulomb
Tether Problem,” AAS/AIAA Astrodynamics Specialists Conference, Mackinac Island, MI, Aug. 19–23 2007. Paper
AAS 07–269.

[13] S. Wang and H. Schaub, “Spacecraft Collision Avoidance Using Coulomb Forces With Separation Distance Feed-
back,” AAS/AIAA Space Flight Mechanics Meeting, No. Paper No. AAS 07-112, Sedona, Arizona, January 28–
February 1 2007.

[14] I. I. Hussein and H. Schaub, “Invariant Shape Solutions of the Spinning Three Craft Coulomb Tether Problem,”
AAS Space Flight Mechanics Meeting, Tampa, Florida, January 22–26 2006. Paper No. AAS 06-228.

[15] H. Schaub, G. G. Parker, and L. B. King, “Challenges and Prospect of Coulomb Formations,” Journal of the
Astronautical Sciences, Vol. 52, Jan.–June 2004, pp. 169–193.

[16] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. Reston, VA: AIAA Education Series, October
2003.

16

http://www.niac.usra.edu

	Introduction
	Charged Spacecraft Equations of Motion
	Symmetric Trajectory Programming Strategy
	Constraints
	Numerical Iteration Routine

	Circular Transitional Orbit Programming
	Numerical Simulations
	Conclusion

