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A Coulomb structure is a cluster of free-flying satellites which maintains its
shape through inter-vehicle electrostatic forces. These Coulomb forces are gener-
ated using on-board charge emission devices. This paper investigates the 1-D re-
stricted motion of a 3-craft cluster. Two charge feedback strategies are discussed
where the charge saturation limitation is considered. First a unsaturated formation
shape feedback control strategy is presented. Next, a saturated control strategy is
developed to arrest any relative motion rates of the Coulomb structure. If the struc-
ture can be brought to rest, then the unsaturated charge control is engaged to achieve
the desired virtual structure. The saturated feedback control development is devel-
oped using Lyapunov’s direct method and can control the separation rates between
the satellites by changing the signs of the three saturated charge products. Imple-
mentable real-charge solutions are ensured through scaling the Lyapunov function
rate. The control is shown to be Lyapunov stable. Because of the limitation of the
control charge magnitudes, certain initial conditions will not lead to the desired zero
relative motion rates. Conditions under which the relative motion of the Coulomb
structure can be stabilized are analyzed through investigating the total energy of the
system in the symmetric motion assumption. The general converge areas are illus-
trated numerically in the phase planes. Simulations demonstrate the performance of
the control.

1 INTRODUCTION

King et al.1 originally discussed the novel method of exploiting Coulomb forces for formation fly-
ing in 2002. Since then many papers have been published in this area. Coulomb forces are proposed
to control a tight formation with separation distances up to 100 meters. Electrostatic force fields are
generated to control the formation’s shape and size. There are some other promising techniques in
close formation flying such as the Electric Propulsion(EP)1 and Electro-Magnetic Formation Fly-
ing(EMFF).2 EP systems generate forces by expelling ionic plumes. The ionic plumes can disturb
the motions of nearby spacecraft, and the intensive and caustic charge plumes are also threatening to
sensitive instruments. The EMFF method controls relative separation and attitude of the formation
by creating electromagnetic dipoles on each spacecraft in concert with reaction wheels. In contrast
to the EP method, the Coulomb formation flying technique has no exhausting plume contamination
issues. The Coulomb force field is also simpler to model than the electromagnetic force field, and
the strength does not drop off as fast as electromagnetic force field. The generation of Coulomb
forces has been shown to require only Watt-level of power, and can be controlled on a millisecond
time scale.3 In addition, Coulomb force control is 3-5 orders of magnitude more fuel-efficient than
EP.1 This is an essential advantage in long-term space missions.

∗Graduate Research Assistant, Aerospace Engineering Science Department, Colorado University, CO,
†Associate Professor, Aerospace Engineering Science Department, Colorado University, CO.
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Many challenges in Coulomb formation flying have been investigated. Hyunsik Joe et al. in-
troduced a formation coordinate frame which tracked the principal axes of the formation in Refer-
ence 4. Gordon G. Parker et al. presented a sequential control strategy for arranging N charged
bodies into an arbitrary geometry using N + 3 participating bodies in Reference 5. This paper
overcame two challenging problems of Coulomb force control: the Coulomb force coupling and
unimplementable control solutions arising from the quadratic charge nonlinearity. First order differ-
ential orbit element constraints for Coulomb formation are studied in Reference 6. Arun Natarajan
et al. developed charge feedback laws to stabilize the relative distance between two satellites of a
Coulomb tether formation in References 7, 8 and 9. For the nadir-aligned 2 craft case the in-plane
attitude of the Coulomb tether formation can also be stabilized by exploiting the gravity gradient
torque.

This paper discusses the control of a 1-D restricted 3-craft Coulomb virtual structure. A Coulomb
structure is a virtual structure composed of several spacecraft. The structure’s shape and size is con-
trolled by utilizing the inter-spacecraft electrostatic forces. This virtual structure control can be
used in large scale distributed spacecraft concepts. The general three-dimensional charged space-
craft motion is very complex, and its control is an open area of research. This paper focuses on the
1-D restricted 3-craft Coulomb virtual structure to investigate charge implementability issues and
charge saturation limitations. This control is directly applicable to the control of three charged test
vehicles on a non-conducting hover track. Such a test bed is envisioned to perform basic charged
vehicle relative motion control experiments.

Reference 10 designs a charge feedback strategy which stabilizes the shape and size of a 1-
D restricted Coulomb structure to a desired configuration. Reference 10 also presents a method
to exploit the nullspace to determine implementable (i.e. non-imaginary) charge solutions. This
paper will present a modified version of this control which uses the relative kinematic energy as
the Lyapunov function. This leads to a simpler control solution. The craft are assumed to only
experience electrostatic forces. No orbital motion is modeled. Instead, the equations of motion are
applicable for a 1-D charged vehicle test track. The relative kinetic energy is then used to provide
bounds on the initial conditions to guarantee convergence in the presence of charge saturation.

Because of the limited amount of charge that a spacecraft can safely store, the Coulomb structure
shape may be not controllable in some situations. For example, if the three spacecraft are departing
each other at very high speeds, then the limited actuation capability of the saturated Coulomb forces
may not be able to pull them back to construct a virtual structure. This paper designs a saturated
control based on Lyapunov’s direct method. The control is intended to stabilize the relative rates of
the Coulomb structure and stop an initial expansion. Once the motion is stabilized, other control
approaches can be used to shape the structure to certain configurations. The magnitudes of the
control charges are always kept at their maximum values, the only items that are varying are the
signs of these control charges. The control stability is analytically determined, and the regions of
convergence investigated.

After the relative motion is stabilized, the unsaturated feedback law for formation shape control
is employed to shape the structure to a certain desired configuration. This step completes the two-
stage control strategy to control the shape of the 1-D constrained Coulomb structure with charge
saturation limits. Numerical simulation will be used to illustrate the effectiveness of the control
strategy.

2



 12xδ  23xδ

 1x

 2x

 3x

 x

 0x =

 1m  2m  3m CM

 cx

Figure 1 Illustration of 1-D constrained coordinates of the 3-body system.

2 CHARGED EQUATIONS OF MOTION

Let the Coulomb structure consist of 3 bodies with masses mi, which they are restricted to move
in one-dimension only as illustrated in Figure 1. This setup simulates the motion of test vehicles
floating on a non-conducting hover track. The inertial positions of the three bodies are given through
their inertial coordinates xi. The charges qi always appear in pairs qiqj both in the dynamic functions
and in the control formulation. Charge products are introduced as

Qij = qiqj (1)

This approach quickly leads to the problem of physical feasibility in extracting individual charges
qi from a given set of charge products. This issue is addressed in the later sections. Without loss of
generality, assume that x1 < x2 < x3. Let the spacecraft fly freely in space, the inertial equations
of motion of the charged bodies are given through

m1ẍ1 = kc

[
− Q12

(x2 − x1)2
− Q13

(x3 − x1)2

]
(2)

m2ẍ2 = kc

[
Q12

(x2 − x1)2
− Q23

(x3 − x2)2

]
(3)

m3ẍ3 = kc

[
Q13

(x3 − x1)2
+

Q23

(x3 − x2)2

]
(4)

where kc = 8.99×109C−2 ·N ·m2 is the Boltzmann’s constant. A charge feedback law is required
to control the relative motion of the three-body Coulomb structure and make the formation assume
a specific shape.

Not all of the inertial xi states can be controlled independently. Because the spacecraft charges
produce formation internal forces, the momentum of the Coulomb cluster must be conserved if
there are no other external forces acting on it. As a result it is not possible to directly control all
the three inertial coordinates xi. For the 1D motion considered in this paper, the linear momentum
conservation imposes one constraint on the system. Thus, the motion of the three-body system only
has two controlled degrees of freedom. To control the shape of the 1D-restricted 3-craft Coulomb
structure, it is equivalent to control the two relative distances:

δx12 = x2 − x1, δx23 = x3 − x2 (5)
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Here the third distance δx13 is determined as δx13 = δx12 + δx23. To control the shape of the
Coulomb structure is to drive [δx12, δx23]T to the desired values [δx∗12, δx

∗
23]T that yield a specific

virtual structure shape. Note that the two relative position coordinates are independent coordinates.
The momentum conservation has already been incorporated into the relative motion coordinate
choice. None of the control strategies presented in this paper will attempt to control the formation
cluster’s center of mass motion.

From the inertial equations of motion in Eqs. (2)–(4), using the definition of δxij , the separation
distance equations of motion are found to be

δẍ12 = ẍ2 − ẍ1 = kc

(
1
m1

+
1
m2

)
Q12

δx2
12

− kc
m2

Q23

δx2
23

+
kc
m1

Q13

δx2
13

(6)

δẍ23 = ẍ3 − ẍ2 = − kc
m2

Q12

δx2
12

+ kc

(
1
m2

+
1
m3

)
Q23

δx2
23

+
kc
m3

Q13

δx2
13

(7)

The formation kinetic energy T is a convenient measure to construct a Lyapunov function of the
system and analyze the nonlinear stability.

T =
1
2

3∑
i=1

miẋ
2
i (8)

However, the control goal is not to control the total energy of the system, but rather to control the
relative energy which affects the virtual structure shape. Thus the inertial kinetic energy expression
in Eq. (8) needs to be rewritten in terms of the relative coordinate rates δẋ12 and δẋ23. Taking
derivative of Eq. (5) yields

ẋ1 = ẋ2 − δẋ12, ẋ3 = ẋ2 + δẋ23 (9)

Substituting Eq. (9) into Eq. (8) leads to

T =
M

2
ẋ2

2 +
m1

2
δẋ2

12 +
m3

2
δẋ2

23 + ẋ2(m3δẋ23 −m1δẋ12) (10)

where M =
∑3

i=1mi is the total mass of the three spacecraft cluster. The expression of the total
kinetic energy in Eq. (10) still contains an inertial rate variable ẋ2 which cannot be controlled
independently with Coulomb forces. One more step to express ẋ2 in terms of δẋij is needed.

Note that the Coulomb forces are internal forces in the Coulomb structure, by assuming the
spacecraft to be flying freely in deep space, the following center of mass condition must be true:

m1ẋ1 +m2ẋ2 +m3ẋ3 = Mẋc (11)

where xc is the inertial cluster center of mass coordinate. Utilizing Eq. (11), yields the following
algebraic derivations:

Mẋ2 = Mẋ2 −m1ẋ1 −m2ẋ2 −m3ẋ3 +Mẋc

= m1ẋ2 −m1ẋ1 +m2ẋ2 −m2ẋ2 +m3ẋ2 −m3ẋ3 +Mẋc

= m1δẋ12 −m3δẋ23 +Mẋc (12)
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Thus ẋ2 is expressed in terms of δxij as:

ẋ2 =
1
M

(m1δẋ12 −m3δẋ23) + ẋc (13)

Substituting Eq. (13) into Eq. (10), yields

T =
(m1δẋ12 −m3δẋ23)2

2M
+
m1

2
δẋ2

12 +
m2

2
δẋ2

23 −
1
M

(m1δẋ12 −m3δẋ23)2

+
M

2
ẋ2
c +

M

2
2
M
ẋc(m1δẋ12 −m3δẋ23)− ẋc(m1δẋ12 −m3δẋ23)

=
m1

2
δẋ2

12 +
m2

2
δẋ2

23 −
1

2M
(m1δẋ12 −m3δẋ23)2 +

M

2
ẋ2
c

=
m1m2

2M
δẋ2

12 +
m1m3

2M
(δẋ12 + δẋ23)2 +

m2m3

2M
δẋ2

23 +
M

2
ẋ2
c

=
1
2
ẊT [M ]Ẋ +

M

2
ẋ2
c (14)

where [M ] is the system mass matrix:

[M ] =
1
M

[
m1m2 +m1m3 m1m3

m1m3 m1m3 +m2m3

]
(15)

Finally, the kinetic energy Trel of the 3-craft cluster relative to the center of mass is given by

Trel =
1
2
ẊT [M ]Ẋ (16)

This energy expression directly reflects whether the virtual structure shape is changing its geometry
with time.

3 CONTROL STRATEGY

3.1 Shape Coordinate Equations of Motion

This section develops a unsaturated feedback control strategy that controls the 1-D 3-body for-
mation to a certain desired shape. The desired shape is given by a vector of separation distances
[δx∗12, δx

∗
23]T , and it’s assumed to be stationary (i.e. constant desired shape).

For the control development, let the system state vector X define to be the relative distance
tracking error:

X =
[

∆x12

∆x23

]
=
[
δx12 − δx∗12

δx23 − δx∗23

]
(17)

For notational convenience the 3× 1 vector ξ is introduced as:

ξ =
[
kcQ12

δx2
12

,
kcQ23

δx2
23

,
kcQ13

δx2
13

]T
= kc[D]Q (18)

where [D] = diag
(

1
δx2

12
, 1
δx2

23
, 1
δx2

13

)
is a diagonal matrix, Q = [Q12, Q23, Q13]T is a vector of

the charge products. The vector Q is also the control input of the Coulomb structure control sys-
tem. Because the desired relative position coordinates are constants, the tracking error dynamics is
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expressed usingX as

Ẍ =

[
1
m1

+ 1
m2

− 1
m2

1
m1

− 1
m2

1
m2

+ 1
m3

1
m3

]
︸ ︷︷ ︸

[A]

ξ = kc[A][D]Q (19)

3.2 Formation Shape Control

The controller in this subsection is intended to make the formation attain a certain shape where
both Ẋ andX are driven to zero. The control development does not yet consider spacecraft charge
saturation issues.

3.2.1 Minimum Norm Shape Stabilizing Control

Because the state X and the time derivative of the state Ẋ are all expected to be zero, the Lya-
punov function here is defined as a quadratic function ofX and Ẋ as

V1 =
1
2
ẊT [M ]Ẋ +

1
2
XT [K]X (20)

Note that the first term in V1 is the relative kinetic energy Trel of the system.

Differentiating Eq. (20) with respect to time, and utilizing the shape error EOM in Eq. (19), yields

V̇1 = ẊT [K]Ẋ + ẊT [M ]Ẍ = ẊT
(

[K]X + [M ][A]ξ
)

(21)

Denote [C] = [M ][A], the matrix [C] turns out to be a constant matrix with the following simple
form:

[C] =
[

1 0 1
0 1 1

]
(22)

Next the Lyapunov function rate V1 is set to the negative semi-definite form

V̇1 = −ẊT [R]Ẋ (23)

where [R] is a 2 × 2 positive definite matrix. V̇1 is negative semi-definite because V1 is a function
of both Ẋ andX but only Ẋ appears in Eq. (23).

Equating the actual V̇1 in Eq. (21) and the desired V̇1 in Eq. (23) leads to the following feedback
control condition:

[C]ξ = −[K]X − [R]Ẋ (24)

Solving Eq. (24) for ξ yields the charge products that stabilizes the system. Because [C] only has
rank 2, there is an infinite number of solutions for ξ in Eq. (24). Let ξ̂ be the minimum norm
solution to Eq. (25):

ξ̂ = −[C]†
(

[K]X + [R]Ẋ
)

(25)

Note that ξ̂ in Eq. (25) minimizes the norm of the charge products while satisfying Eq. (24), but not
the charge inputs qi of the control. There is a hat symbol above the vector ξ in Eq. (25) because ξ̂
is not the final solution of ξ that will be used in the control.
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3.2.2 Spacecraft Charge Computation Issues

After obtaining the vector ξ, the charge product vector is given by

Q =
1
kc

[D]−1ξ (26)

The individual charges qi are finally calculated through the algorithm11

q1 =

√
Q12Q13

Q23
, q2 = sign(Q12) · Q12

q1
, q3 = sign(Q13) · Q13

q1
(27)

Note that the singularity problem occurs when some elements of ξ̂ are equal to zero. When one
or two elements of ξ̂ equal zero, this singularity can be avoided by performing a search routine in
the null space of the [C] matrix which will be discussed in the following several paragraphs. The
remaining case is that ξ̂ = 0 which indicates that q1 = q2 = q3 = 0. This state occurs only
either when X = 0 and Ẋ = 0, which means the system has reached the desired state, or due to
(−[K]X − [R]Ẋ) being zero.

Now consider general cases where ξ̂1 · ξ̂2 · ξ̂3 6= 0. Note that ξ̂1 · ξ̂2 · ξ̂3 < 0 yields imaginary
values of qi.11 But charges must always be real numbers, so ξ̂1 · ξ̂2 · ξ̂3 < 0 is not an implementable
solution. This is a fundamental issue with developing any charge feedback law. Note that the ξ̂
value is obtained by looking for a minimum norm solutions to the vector ξ in Eq. (24). There is
actually an infinite number of solutions that satisfy Eq. (24). Using the null space of [C], all possible
ξ values that satisfy Eq. (24) are parameterized as

ξ =

ξ1ξ2
ξ3

 = ξ̂ + γ

−1
−1
1

 (28)

where the parameter γ can be any real number. The control problem is reformulated to determine a
parameter γ that satisfies the implementability constraint:

f(γ) = ξ1 · ξ2 · ξ3 = (ξ̂1 − γ)(ξ̂2 − γ)(ξ̂3 + γ) > 0 (29)

This inequality constraint guarantees that the charges qi are real, and also ensures that the singularity
case ξ1 · ξ2 · ξ3 = 0 does not occur. Because f(γ) is a third order function, there always exists real
numbers of parameter γ that satisfy the inequality in Eq. (29).

3.2.3 Minimal Charge Search Routine

Any real value of parameter γ that satisfies the inequality in Eq. (29) makes the solution physically
implementable with real charge qi solutions. In fact, note that the null space of the input matrix [C]
can be used to charge up the vehicles and not cause any relative motion to occur. The ξ̂ vector
is found such that the norm of the vector ξ is minimized. However, this doesn’t correspond to a
more logical optimal solution where the spacecraft charges qi are minimized. Define a charge cost
function J(γ) as

J(γ) =
3∑
i=1

q2i (30)
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The optimal solution ξ that minimizes spacecraft charges qi corresponds to the optimal γm that sat-
isfies the inequality constraint in Eq. (29), and at the same time minimizes the charge cost function
J(γ).

Consider the constraint inequality in Eq. (29), where (ξ̂1, ξ̂2, ξ̂3) are given by Eq. (25). There are
three real roots for the equation f(γ) = 0, and the roots are just (ξ̂1, ξ̂2,−ξ̂3). Rearrange the roots
in descent order and denote as (γ1, γ2, γ3), where γ1 ≥ γ2 ≥ γ3. The solution to the constraint in
Eq. (29) turns out to be γ > γ1 or γ3 < γ < γ2. If γ2 = γ3, then the solution is simply γ > γ1.
Figure 2(a) shows a numerical example of f(γ) and (γ1, γ2, γ3).
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(a) f(γ) and (γ1, γ2, γ3).
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(b) γm search result.

Figure 2 Numerical Illustration of Optimal γm Search.

Thus the optimization problem searches for the optimal γm of the charge cost function J(γ)
within the two open intervals (γ1,∞) and (γ3, γ2). The numerical search routine used in this paper
is the secant method shown in Figure 3.

Sort by size

Search in

get 

Search in

get 

No

Yes

 1 2 3( , , )γ γ γ

 1( , )γ ∞
 1mγ

 3 2( , )γ γ
 2mγ

 2 3γ γ=  
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min ( )m mi mii
Jγ γ γ

=
=  ˆ ( 1, 1,1)T

mγ= + − −ξ ξ

 ̂ ˆ[ ,a=ξ  ˆ ˆ, ]Tb c

Figure 3 Illustration of γm search routine.

Once γm is obtained, an implementable solution that minimizes the norm of the charge vector
(q1, q2, q3) is also reached. Figure 2 shows an example of the search result at one instant, where
γm1 and γm2 are two local optimal points.
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Notice that generally there are two eligible intervals in the search routine. Sometimes this may
introduce chatter because γm switches between γm1 and γm2 when J(γm1) and J(γm2) are very
close. To reduce the chatter of the charge history, one approach is to change the criteria for γm to
switch between the two intervals. If γm(i) = γm1(i), then γm(i + 1) = γm2(i + 1) if and only if
J(γm2) < α · J(γm1), where 0 < α ≤ 1.

3.3 Formation Shape Rate Regulation

This subsection develops a regulator that arrests the relative motion of the formation by driving Ẋ
to zero. After developing a saturated stabilizing control strategy a method to obtain implementable
spacecraft charges qi is discussed.

3.3.1 Saturated Regulator

Because the purpose of the control is different from that of the general shape control, thus a new
Lyapunov function is defined catering to the new task. Because the regulator is used to stop any
relative motion of the formation, the new Lyapunov function V2 is defined in terms of the relative
velocity vector in a quadratic, positive definite form,

V2 = Trel =
1
2
ẊT [M ]Ẋ (31)

Taking derivative of V2, and using the tracking error dynamics in Eq. (19), yields

V̇2 = ẊT [M ]Ẍ = kcẊ
T [C][D]Q (32)

The saturated control strategy will attempt to drive the rates Ẋ to zero as quickly as possible,
leading to an Lyapunov optimal control development.12 Here the spacecraft charges are always held
at the maximum magnitude. The control algorithm will need to determine the required signs of the
spacecraft charges. The charge product vectorQ is expressed as

Q =

 Q12m 0 0
0 Q23m 0
0 0 Q13m

 s1
s2
s3

 = [Qm]s (33)

where Qijm = qimqjm is the product of the charge saturation limits of the ith and jth spacecraft.
The vector s = sign(Q) is a 3 × 1 sign vector, the components of s can only be ±1 or zero. The
matrix [Qm] is a constant matrix determined by charge limitations of the spacecraft. Because [Qm]
is constant for a given 3-body Coulomb structure, the charge product Q is determined by s, thus
the vector s is actually the essential control input which determines the required spacecraft charges.
The Lyapunov function rate is rewritten as

V̇2 = kcẊ
T [C][D][Qm]s (34)

To guarantee stability, the Lyapunov rate function V̇ is set to be a negative definite function as

V̇2 = −ẊT [P ]Ẋ (35)
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Note that the matrix [C] is a 2 × 3 matrix with rank 2. Substituting Eq. (35) into Eq. (34), there
will be an infinite number of solutions for s if s is a general vector instead of a sign vector. Using
the pseudo-inverse of matrix [C], leads to the minimum norm solution s̃ (the tilde symbol means s̃
is not a sign vector that will be directly used in the control) :

s̃ = − 1
kc

[Qm]−1[D]−1[C]†[P ]Ẋ (36)

where [C]† = [C]T ([C][C]T )−1 is the minimum norm pseudo-inverse of matrix [C]. The vector s̃
is said to be nominal because this solution is not a sign vector, that is, the components in s̃ are not
restricted to be ±1 or zero. Define a sign vector s as

s = sign(s̃) = −sign
(

1
kc

[Qm]−1[D]−1[C]†[P ]Ẋ
)

(37)

Substituting ŝ in Eq. (37) into charge vector Q in Eq. (33) constructs the following saturated
charge product control law:

Q = [Qm]ŝ = −[Qm]sign
(

1
kc

[Qm]−1[D]−1[C]†[P ]Ẋ
)

(38)

The resulting actual Lyapunov function rate should be investigated because after taking the sign
function of s̃, the actual Lyapunov function rate is different from the nominal one in Eq. (35).
Substituting the actual charge product in Eq. (33) into Eq. (32), yields

V̇2 = kcẊ
T [C][D][Qm]s = kcẊ

T [C][D][Qm]sign(s̃) (39)

Note that the sign function can be deemed as a rescaling of the magnitude of the vector, introduce
a scale matrix [E] = diag(a1, a2, a3), where ai is defined as

ai =

{
1
‖s̃i‖ , if s̃i 6= 0
0, if s̃i = 0

(40)

Thus s can be rewritten as

s = [E]s̃ (41)

Substituting Eq. (41) into Eq. (39), and using Eq. (36) yields

V̇2 = kcẊ
T [C][D][Qm][E]s̃ = −ẊT [C][D][Qm][E][Qm]−1[D]−1[C]†[P ]︸ ︷︷ ︸

[F ]

Ẋ (42)

Without loss of generality, set the positive definite matrix [P ] to be a diagonal matrix:

[P ] =
[
p1 0
0 p2

]
(43)

Utilizing previous definitions of matrices [C], [D], [Qm], [E], and [P ], the matrix [F ] is expanded
as:

[F ] =
1
3

[
p1(2a1 + a3) p2(−a1 + a3)
p1(−a2 + a3) p2(2a2 + a3)

]
(44)
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From the condition pi > 0, it can be verified that the matrix [F ] is positive definite if ai > 0,
it is positive semidefinite if ai ≥ 0. By the definition of matrix [E], ai ≥ 0, so [F ] is positive
semidefinite. Thus the sign of the Lyapunov function rate is determined:

V̇2 = −ẊT [F ]Ẋ ≤ 0 (45)

Thus the saturated control law in Eq. (37) is globally stable. But it’s not asymptotically stable
because the matrix [F ] can be zero if the statesX grow infinitely large.

3.3.2 Implementable Saturated Control

The saturated charge product control in Eq. (38) provides a globally stable control that stops the
relative motion of the formation. But this formula doesn’t ensure physical implementability of the
charge products. Similar to the shape control design, an implementable sign vector s = [s1, s2, s3]
should satisfy

s1 · s2 · s3 > 0 (46)

Unlike the case in the shape control design, the saturated control should be dealing with more
cautions because the sign function (or the matrix [E]) scales everything inside of the brackets. Note
that the matrix [E] is also varying with the vector inside the sign function. A similar approach that
explores the null space of a certain matrix doesn’t easily work out because of the rescaling of the
matrix [E], and the coupling of the matrix [E] with the vector inside the sign function.

Note that in designing the stabilizing saturated control using Lyapunov stability theory, the sta-
bility property is achieved by setting the Lyapunov function rate to be negative semi-definite. This
is ensured by the positive-definite property of the 2 × 2 matrix [P ]. In most cases, this matrix is
constant because usually it’s unnecessary to change the value of the matrix [P ] and a constant [P ]
matrix may result in a better convergence property of the system. Because the saturated control in
Eq. (38) is globally stable but not asymptotically stable, changing the matrix [P ] won’t sacrifice
convergence property of the system. Since the matrix [P ] is only required to be positive-definite to
guarantee the stability of the system, there exists a flexibility in choosing [P ].

Without lose of generality, set the matrix [P ] to be diagonal: [P ] = diag(p1, p2). For [P ] to be
positive-definite, the parameters p1 and p2 must be positive. Let p1 and p2 be constants, to set up a
variable matrix [P ], introduce a variable parameter τ . The matrix [P ] is then expressed as

[P ] =
[
p1 0
0 τp2

]
(47)

here τ > 0 should be positive to ensure [P ] to be positive-definite. Note that because matrices [Qm]
and [D] are all positive-definite diagonal, the sign vector in Eq. (37) can be simplified as

s = −sign([C]†[P ]Ẋ) (48)

Substituting the values of matrices [C]† and [P ] into Eq. (48), the vector s is expanded as

s = −sign

1
3

 2p1ẋ12 − τp2ẋ23

−p1ẋ12 + 2τp2ẋ23

p1ẋ12 + τp2ẋ23

 (49)
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For the sign vector s to result in an implementable control, the vector inside the sign function should
satisfy

(2p1ẋ12 − τp2ẋ23)(−p1ẋ12 + 2τp2ẋ23)(p1ẋ12 + τp2ẋ23) < 0 (50)

transform the inequality in Eq. (50) to be:

g(τ) = (p2ẋ23τ − 2p1ẋ12)(2p2ẋ23τ − p1ẋ12)(p2ẋ23τ + p1ẋ12) > 0 (51)

Now it is clear that to find an implementable control by varying the matrix [P ] is to find a proper
parameter τ > 0 that satisfies the inequality g(τ) > 0. First the existence of a solution should be
verified. When ẋ23 > 0, the inequality in Eq. (51) can be transformed to be

h(τ) =
(
τ − 2p1ẋ12

p2ẋ23︸ ︷︷ ︸
a1

)(
τ − p1ẋ12

2p2ẋ23︸ ︷︷ ︸
a2

)(
τ +

p1ẋ12

p2ẋ23︸ ︷︷ ︸
−a3

)
> 0 (52)

For the third order function h(τ), it goes to infinity as τ → ∞. So there always exists τ > 0 to
make h(τ) > 0.

If ẋ23 < 0, the inequality in Eq. (52) changes to be

h(τ) < 0 (53)

Note that (a1, a2, a3) are three roots to the equation h(τ) = 0, and they share the simple relation
sign(a1) = sign(a2) = −sign(a3). When a1, a2 > 0 and a3 < 0, then any τ ∈ (a2, a1) satisfies
h(τ) < 0. If a1, a2 < 0 and a3 > 0, in this case any τ ∈ (0, a3) satisfies h(τ) < 0.

Note that ẋ12 = 0 or ẋ23 = 0 are transient states, unless Ẋ = 0 which means the relative
motion has been rested. So it can be concluded that there always exists τ > 0 that results in an
implementable control.

4 DOMAINS OF CONVERGENCE

So far a two-stage control strategy has been presented to control the 1-D Coulomb formation.
At first a saturated charge control is used to stop the relative motion of the 3 spacecraft. After
the relative motion converges to zero, the formation shape control will be activated to make the
spacecraft to form a certain shape defined by provided distances.

As mentioned before, the saturated charge control in Eq. (38) is globally stable, but not asymptot-
ically stable. Under some initial conditions, such as the three spacecraft are flying apart each others
too fast, the relative motion cannot be rested at all. There exist certain areas of the initial distances
and distance rates for the relative motion to be restable. This section is going to find out the domains
of convergence of the initial conditions that result in stabilizable motions.

4.1 Converge Criteria For Symmetric Relative Motion

Symmetric relative motion is a very special case in 1-D Coulomb formation. The distances be-
tween any two adjacent spacecraft are always equal to each other and the adjacent distance rates are
also equal. That is

δx12 = δx23, δẋ12 = δẋ23 (54)
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And corresponding to this situation, the masses and charge limits of each body should all be equal,
m1 = m2 = m3 = m, q1max = q2max = q3max = qm. In this case, the description of the motion can
be greatly simplified. It is an easy start in studying general motion of the 1-D Coulomb formation.

For the 1-D Coulomb formation, the situation that may most likely result in an unrestable motion
is that three spacecraft are departing from each other. That is δẋ12 > 0 and δẋ23 > 0. The following
discussion deals with this “worst” case to find the critical initial conditions. The unrestable motion
happens when the center spacecraft attracts two other spacecraft, but the distance rate vector Ẋ still
doesn’t decrease to zero. In this case the charges of the 3 spacecraft are

q1 = q3 = qmax, q2 = −qmax (55)

Reference 13 presents an analytical way to find the criteria for a potential collision between 2
charged craft to be avoidable. It assumes that the charge product is constant, thus the trajectory
of the 2-body motion is a conic section. Utilizing the technic from gravitational 2-body problem
(2BP), the criteria is found through calculating the periapsis radius which is the closest distance
between the 2 spacecraft in the conic section trajectory.

Motivated by the analytical approach to solve the 2-body Coulomb forced motion, another con-
cept of the traditional gravitational 2BP, total energy level, is introduced to study the 3-body 1-D
Coulomb formation. Note that in the gravitational 2BP, the hyperbola is a non-retrievable trajectory
type, and it corresponds to an energy level that is greater than zero. By assuming that the charges of
the spacecraft are constant, the total energy (kinetic energy and potential energy) of the 3-body sys-
tem is constant. The unrestable motion corresponds to a positive energy level, and the stabilizable
motion has a total energy that is negative.

The general relative kinetic energy Trel is given by Eq. (16). Using the symmetric conditions
provided above, Trel is simplified to be

Trel =
m2

2M
δẋ2

12 +
m2

2M
(δẋ12 + δẋ23)2 +

m2

2M
δẋ2

23 =
M

3
δẋ2

12 (56)

where M = 3m is the total formation mass. The electrostatic potential energy of the formation is

Ve = kc
Q12

δx12
+ kc

Q23

δx23
+ kc

Q13

δx12 + δx23
(57)

Utilizing the symmetric motion condition in Eq. (54) and Eq. (55), Ve is simplified as

Ve = kc

(
− q

2
max

δx12
− q2max

δx12
+

q2max

2δx12

)
= −3kcq2max

2δx12
(58)

Thus the total energy is the sum of the kinetic energy and potential energy:

Ee = Trel + Ve =
M

3
δẋ2

12 −
3kcq2max

2δx12
(59)

which has a very simple form due to the symmetric relative motion assumption. Because the charges
of the spacecraft are constants in this saturated control discussion, the total energy is also constant.
For a stabilizable motion, the total energy Ee should be negative, that is

Ee =
M

3
δẋ2

12 −
3kcq2max

2δx12
< 0 (60)
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If Ee < 0, then it is impossible for δx12 → ∞. However, if Ee > 0, then δẋ12 will approach a
positive value as δx12 →∞. Transforming Eq. (60) such that only δx12 and δẋ12 remain on the left
hand side yields the condition

δẋ2
12δx12 <

9kcq2max

2M
=

3kcq2max

2m
(61)

Eq. (61) provides an analytical criteria of the initial states δx12 and δẋ12 to result in a stabilizable
symmetric motion. From the criteria, it can be seen that when the charges and masses of the three
spacecraft are set, both the distance and distance rate should be within a certain range to ensure the
symmetric relative motion can be stopped. Note that as expected a bigger charge level will result in
a larger area of stabilizable motion. This criteria is valid only for the symmetric relative motion of
the 1-D Coulomb formation. The following discussion will investigate the converge area of general
motion of the 1-D Coulomb formation.

4.2 Converge Area For General Cases

The previous subsection derives the convergence criteria for the symmetric relative motion by
investigating the total energy of the system. Because the sign of the spacecraft charges are varying
even while the magnitudes are maintained, the energy of the system is not constant. It’s very difficult
to apply a similar approach as in the symmetric motion to analyze the general converge area of the
saturated control.

Instead, this sections presents a numerical study of the general convergence areas of the initial
conditions. Usually the convergence area is illustrated by marking each set of initial conditions
for which the distance rates converge to zero in the numerical simulation. Without the assump-
tion of symmetric motion, the initial conditions of the motion contain four independant variables:
[δx12, δx23, δẋ12, δẋ23]. Thus the convergence area should be configured as a four dimensional re-
gion. To illustrate the convergences areas in 2-dimensional plots, the distances and distance rates
are illustrated separately. A certain set of initial [δẋ12, δẋ23] is prescribed, the convergence area of
initial variables [δx12, δx23] is illustrated in a 2-D phase plane. And the convergence area of the
variables [δẋ12, δẋ23] is demonstrated in the similar way in the δẋ12 − δẋ23 plane.

Taking the 1-D non-conducting hover track vehicles as an example, let the masses be m1 =
m2 = m3 = 10kg, and the charge limits be q1max = q2max = q3max = qmax = 5 × 10−5C. Let
the feedback control gain parameters be p1 = p2 = 1kg/(C2·s). Figure 4 shows the converge areas
of the distances δx12, δx23 under different initial distance rates. Figure 4(a) shows the case when
the initial distance rates [δẋ12, δẋ23] = [0.1, 0.1]m/s. These results illustrate how close the craft
must be placed if their initial velocities are not perfectly zero, but bounded by 0.1 m/s. The shaded
region represents initial positions which result in converged states, the initial position coordinates
outside of this area will not lead [δẋ12, δẋ23] to converge to zero. The convergence area is not quite
symmetric in δx12 and δx23 direction. This is because the implementation strategy which varies
the matrix [P ] doesn’t result in symmetric solutions while switching the values of the individual
distances δx12 and δx23. Figure 4(b) shows the convergence area of the δx12−δx23 plane when the
initial distance rates are set to be [δẋ12, δẋ23] = [0.1, 0.2]m/s. The convergence area shrinks along
both δx12 and δx23 axes, but more greatly in the δx23 direction. Because the departure speed of
δẋ23 is larger than δẋ12, it takes more time for δẋ23 to converge to zero than that of δẋ12.
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Figure 4 Convergence area of (δx12, δx23).

Figure 5 illustrates two converge areas of the distance rates in the δẋ12 − δẋ23 plane. This
setup assumes the craft are place a particular distance apart, and then investigates how large the
initial separation rates can be and still achieve convergence. It can be seen that the convergence
area reduces in the direction where the distance increases. The plots show δẋij ranging within
[−0.2, 0.8]m/s. The negative distance rate means the two spacecraft are approaching each other.
If the magnitude of the negative distance rate is too big, then the spacecraft are getting close too
fast, this may result in a collision of the spacecraft which is not discussed in this paper. Rather,
Reference 13 develops the analytical criteria for two spacecraft which are approaching each other
to be able to avoid the collision.

5 NUMERICAL SIMULATION

A two-stage control strategy is developed in this paper to control the shape of the 1-D constrained
Coulomb structure. At first the saturated control is used to rest the relative motion of the spacecraft.
After the relative motion has been stabilized, the formation shape controller is employed to make
the formation construct a certain shape which is defined by the states [δx∗12, δx

∗
23]. This section

presents some numerical simulation results to show the performance of the control strategy.

The simulation parameters are set to reflect those of a small hover track setup. The masses of the
three spacecraft are m1 = m2 = m3 = 10kg, the desired shape is given as [δx∗12, δx

∗
23] = [4, 4]m.

The separation distances between craft are within 5 meters. Without loss of generality, let the
magnitudes of the charges of the spacecraft share a unique limit qmax = 5 × 10−5C. Choose the
initial inertial positions and velocities to be:

[x1, x2, x3] = [−3, 0, 2] m (62)

[ẋ1, ẋ2, ẋ3] = [−0.04, 0, 0.04] m/s (63)

Figure 6 shows the first stage of the control which uses the saturated control to arrest any relative
motion. The two stages of simulation results are illustrated separately because the saturated control
achieves its control goal over a much shorter time span than the unsaturated shape control. The states
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of the two stage are continuous, here the state historiy illustrations are split at the time when the
relation motion is rested. The control feedback parameters of the saturated regulator are p1 = p2 =
1kg/(C2·s). The relative distance rates converge to zero in a very short time, and the control charges
are always saturated until the distance rates converge. The stability of the control is guaranteed, and
if the initial conditions are within the convergence area presented in the last section, the relative
motion can be arrested.

Figure 7 illustrates the simulation results of the second stage, the unsaturated formation shape
control. The parameters of this control are

[K] =
[

3.6 0
0 1.8

]
kg ·m/s2, [P ] =

[
14.4 0

0 7.2

]
kg ·m/s (64)

Figure 7(a) and (b) show the process of the Coulomb structure to converge to the desired shape.
Figure 7(c) and (d) are the charge histories under different conditions. The chattering issue of the
charges is nontrivial in the control process. As mentioned before in the formation shape control
section, the chattering effect is partly due to the switching between two possible values of the
variable τ . The parameter α ≤ 1 has been introduced to buffer the switching. With α = 1, no
buffer is acting on the system. When 0 < α < 1, the buffer is taking effect. Comparing Figure 7(c)
and (d), it can be seen that when α = 0.7, the chattering effect is reduced to some extent. Though
the buffer can not totally eliminate the chattering, the benefit is that this approach will not influence
the dynamics of the system. This is because any value of the variable τ results in a vector that is
within the null space of the input matrix of the control.

6 CONCLUSION

A two-stage stable charge feedback control strategy is developed to shape the configuration of
the 1-D restricted Coulomb structure. The first stage is a saturated control strategy intended to ar-
rest the relative motion of the formation. The control is designed using Lyapunov’s direct method.
It’s globally stable, but not globally asymptotically stable. Only for a finite neighborhood of ini-
tial states will the separation distance rates converge to zero. For the symmetric motion case, the
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Figure 6 Stage I: relative motion regulator.

analytical criteria for a stabilizable motion is obtained by investigating the total energy level of the
system. Numerical results are presented to illustrate the convergence area of the initial states of
stabilizable motions for general cases. The implementability issue of the saturated control is solved
through varying the value of the positive definite feedback gain matrix which is used in designing
the Lyapunov function rate. The second stage is a non-saturated formation shape control. It’s used
to control the shape of the Coulomb structure to a certain desired configuration. The control is also
designed using Lyapunov’s direct method. A minimum charge search routine in the null space of the
plant matrix is used to solve the control charge implementability problem. The search routine not
only makes the charge control law physically implementable, but also results in minimum control
charges at every instance. Numerical simulations verify the effectiveness of the control strategy.
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