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AAS 07-112

SPACECRAFT COLLISION AVOIDANCE USING COULOMB
FORCES WITH SEPARATION DISTANCE FEEDBACK

Shuquan Wang∗ and Hanspeter Schaub†

A 2-spacecraft collision avoidance problem is discussed in this paper. The space-
craft are assumed to be floating freely in deep space. A control strategy using cluster
internal Coulomb forces is developed to prevent a collision between two spacecraft.
The control law is designed to keep the separation distance greater than a constraint
value, and is also designed to keep the departure relative kinetic energy at the same
level as the approach kinetic energy. Further, this strategy only requires measure-
ments of the separation distances. If spacecraft charge saturation is also considered
than it is not guaranteed that the collision can always be prevented. Conditions under
which a collision can be avoided are discussed by formulating the charged spacecraft
relative motion using concepts of orbital mechanics. Given an initial separation dis-
tance and distance rate, the minimum spacecraft charge limit required to guarantee
collision avoidance is determined. Or, inversely, when the limitations of charges are
given, the maximum approach speed at which a potential collision can be avoided is
estimated. Numerical simulations illustrate the analytical results.

INTRODUCTION

Collision avoidance is a general concern in a tightly flying cluster of spacecraft with separation
distances ranging on the order of dozens to hundreds of meters. Such mission concepts include small
satellite swarms or close proximity flying scenarios where a smaller spacecraft is circumventing and
inspecting a secondary craft. A spacecraft formation is a group or cluster of satellites flying with
a specific shape or geometry. The spacecraft swarm concept envisions a large number of satellites
flying relative to each other with loose position keeping requirements, while the swarm members
provide a highly distributed and redundant sensor platform. Collisions can occur when spacecraft
within the cluster have control or sensor failures, or lack the guidance strategy to guarantee collision
avoidance among a large number of cluster members. Preventing collisions has many challenges.
First, the collision onset must be sensed with sufficient accuracy to warrant a corrective maneuver.
Second, a control strategy must be developed which can provide the required small corrective forces
without causing plume impingement issues on neighboring satellites. This paper focuses on a mis-
sion scenario where a loose cluster of satellites are flying in deep space in a bounded configuration.
The satellites are assumed to have a low approach speed with respect to each other. This strategy is
not designed to repel high-velocity bodies.

A traditional approach to avoid collisions within a formation is to perform a velocity correction
of the spacecraft as discussed in References 1 and 2. Slater in Reference 1 discusses the collision
probability of a formation under the influence of orbital disturbances, and presents requirements for
velocity corrections to avoid collision. Singh in Reference 2 considers a minimum effort collision
avoidance strategy for a 2 spacecraft formation and develops a solution. This approach is labor
intensive and becomes increasingly difficult to manage as the number of spacecraft in the formation
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increases. All the above approaches are based on the control strategies’ capability to control all three
components of the thrust vector in 3-D space. In addition, these control strategies use propellent,
which will increase the fuel budget. Fuel efficient relative motion control is a critical factor for
long term spacecraft cluster or swarm missions. Further, employing conventional thrusters when
spacecraft are flying less than 100 meters apart is very challenging because of the associated thruster
exhaust plume impingement issues.

This paper presents a new collision avoidance approach which uses only electrostatic (Coulomb)
forces. Because the Coulomb force generation is essentially propellentless, it will not generate
any propellent plume impingement issues that threaten neighboring spacecraft. Its application in
spacecraft cluster flying has been studied frequently since Lyon B. King et al. originally discussed
Coulomb Formation Flying (CFF) in Reference 3.

CFF uses Coulomb forces to control the distances between spacecraft to achieve the desired rel-
ative motion. The spacecraft charge level is actively controlled through the continuous emission
of electrons or ions. Coulomb force control is 3-5 orders of magnitude more fuel-efficient than
Electric Propulsion (EP) methods, and typically only require watt levels of electrical power to oper-
ate.3 Whereas conventional thrusters can produce a thrust vector pointing in any direction, Coulomb
forces only lie along the line-of-sight directions between the craft. Further, in space the spacecraft
are not flying in a vacuum, but rather a sparse plasma environment which can shield electrostatic
charges. The amount of shielding is controlled through the Debye length factor.4, 5 The cold and
high-density plasma environment at LEO results in centimeter-length Debye lengths. This makes
the use of Coulomb thrusting not feasible at low Earth orbit altitudes. However, at GEO the De-
bye lengths range between 100-1000 meters,6, 3 while at 1 AU in deep space they are around 20-40
meters.3 This makes the Coulomb thrusting concept feasible for high Earth orbit altitudes and deep
space missions where the minimum separation distances are less than 100 meters.

Both promising and challenging, many applications of Coulomb thrusting have been studied. The
following papers discuss deep-space (i.e. no orbital motion) Coulomb thrusting applications. Gor-
don G. Parker et al. present a sequential control strategy for arranging N charged bodies into an
arbitrary geometry using N + 3 participating bodies in Reference 7. Hussien et al. study shape-
preserving spinning formations of three spacecraft in Reference 8. Inspired by the gravitational
three-body problem, they derive general conditions for open-loop charges that guarantee preserva-
tion of the geometric shape of the rotating formation. Reference 9 is an example of an orbit based
Coulomb proximity flying mission. Here a GEO chief satellite deploys deputy craft to specified end
states. A multiple deputy deployment is designed by modulating the control authority across the for-
mation. Feedback charge control strategies are discussed for the 2-craft GEO-based Coulomb tether
concept in References 10 and 11. While this previous work investigates charge controlled relative
motion between spacecraft, the collision avoidance problem is not directly addressed. Reference 12
discusses the concept of Coulomb thrusting and presents a semi-major axis based feedback strat-
egy to use electrostatic forces to bounded the motion between 2 craft. Further, this paper discusses
the potential of Coulomb thrusting to provide effective collision avoidance strategies. A numerical
example illustrates that using a simple repulsive force field while at GEO will not guarantee a suc-
cessful collision avoidance. Reference 12 does not provide any collision avoidance control strategy,
it simply discusses the challenges and the potential of this Coulomb thrusting application.

This paper considers the first feedback control strategy using Coulomb thrusting to perform colli-
sion avoidance maneuvers. A potential collision of two spacecraft flying in deep space is considered
where no external forces and torques are acting. A charge feedback control strategy is investigated
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which maintains a desired minimum separation distance between 2 spacecraft. To minimize the
sensor requirements, the control only requires separation distance measurements between the craft
during the collision avoidance phase. The separation distance is much simpler to measure than the
full six degree of freedom relative state vector.

A very simple concept to avoid a collision has both spacecraft charge up to large values of equal
sign. The resulting repulsive force drives the craft apart, thus avoiding the collision. But this strategy
also results in the 2 spacecraft flying apart at a considerable velocity, thus noticeably changing their
inertial motion. This can cause sensing issues for the spacecraft themselves, but is also of concern if
the 2 craft are operating within a larger cluster of spacecraft. This additional velocity makes future
collision avoidance maneuvers more challenging. Instead the charge feedback control is developed
with the additional goal to minimize changes to the relative kinetic energy level between the 2 craft.

Finally, the paper also considers the effect of charge saturation on the collision avoidance strategy.
Even with sophisticated spacecraft designs there will always be a physical limit to which a craft can
safely be charged. Of interest is determining how much initial approach speed the craft can have
and still successfully avoid a collision. Analytical conditions are investigated to guarantee that a
collision can be avoided if a given charge limit is considered.

Numerical simulations illustrate the performance of the developed collision avoidance control
strategy. This simulations typically consider the craft to be operating in deep space. While the
orbiting collision avoidance is not analytically considered in this paper, the numerical simulations
do illustrate how the control performs if the spacecraft are not in deep space, but rather in an Earth
geostationary orbit.

m1

m2

Inertial frame

R1

R2

center of mass

rr1

r2

v1

v2

Figure 1 Illustration of the 2-spacecraft system.

CHARGED SPACECRAFT EQUATIONS OF MOTION

Consider two spacecraft flying in the free 3-dimensional space where there are no external forces
acting on the system as shown in Figure 1. In CFF, the electrostatic forces directly control separation
distance r and not the the inertial positions Ri. And we are intending to use the separation distance
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r and the distance rate ṙ as the control feedback. So the separation distance equations of motion are
required to develop a control strategy. The Coulomb force vector between the two spacecraft is

F = −kc
q1q2

r3
e
− r

λd r = −kc
q1q2

r2
e
− r

λd êr (1)

where kc = 8.99 × 109C−2 ·N ·m2 is the Coulomb constant, r is the distance between the two
spacecraft, r = R2−R1 is the relative position vector pointing of spacecraft 1 to spacecraft 2, êr is
the unit vector of r, and λd is the Debye length. The smaller the plasma Debye length is, the shorter
the effective range is of a given electrical charge. For high Earth orbits the Debye length ranges
between 100–1000 meters.3, 12, 6 CFF concepts typically consider spacecraft separation distances
ranging up to 100 meters.

The inertial equations of motion of the two spacecraft are

m1R̈1 = −kc
q1q2

r2
e
− r

λd êr (2a)

m2R̈2 = kc
q1q2

r2
e
− r

λd êr (2b)

where Ri is the inertial position vector of the ith spacecraft. The inertial relative acceleration vector
r̈ is

r̈ = R̈2 − R̈1 =
kcq1q2

m1m2r2
(m1 + m2)e

− r
λd êr (3)

where r = rêr. Taking a second time derivative yields the kinematic acceleration expression:

r̈ = (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ (4)

Substituting Eq. (4) into (3) yields the scalar separation distance equation of motion:

r̈ = rθ̇2 +
kcQ

m1m2r2
(m1 + m2)e

− r
λd (5)

Note that 2ṙθ̇ + rθ̈ = 0 is a consequence of the inertial angular momentum being conserved with
Coulomb forces. The term Q = q1q2 is the charge product between the 2 spacecraft charges qi.
Because only the separation distance and distance rate will be fed back to the controller, θ̇ should
be expressed in in terms of r, ṙ, and the initial conditions. This is accomplished by considering the
angular momentum about the cluster center of mass.

The position vectors ri of the two spacecraft with respect to the center of mass are

r1 =− m2r

m1 + m2
êr (6a)

r2 =
m1r

m1 + m2
êr (6b)

The angular momentum Hc of the system about the center of mass is

Hc = r1 × ṙ1m1 + r2 × ṙ2m2 =
m1m2

m1 + m2
r2θ̇ê3 (7)
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Because there are no external torques acting on the system, the momentum vector Hc is conserved.
So from Hc = Hc(t0), the angular rate θ̇ is derived

θ̇ =
r2
o

r2
θ̇(t0) =

ro

r2
‖ṙ(t0)‖ sinα0 =

(
1

m1
+

1
m2

)
‖Hc(t0)‖

r2
(8)

where α0 = cos−1
(

ṙ(t0)·ro

‖ṙ(t0)‖ro

)
is the angle between ṙ(t0) and ro. Thus the separation distance

equations of motion in Eq. (5) is rewritten as

r̈ =
(

1
m1

+
1

m2

)2 ‖Hc(t0)‖2

r3
+

βQ

r2
e
− r

λd (9)

where β = kc(m1+m2)
m1m2

. The collision avoidance control law challenge is to design the charge
product Q such that the separation distance r satisfies a certain successful avoidance condition.

UNSATURATED CONTROL LAW

In order to develop a collision avoidance control law, an explicit statement describing the require-
ments is needed. A spacecraft (spacecraft 1) has a safe region Brs =

{
R

∣∣∣‖R−R1‖ ≤ rs

}
which

can not be penetrated at any time. Each spacecraft is monitoring relative motions of neighboring
spacecraft. If another spacecraft (spacecraft 2) enters a certain region Bro = {R|‖R−R1‖ ≤ ro},
named potential region, and is flying towards Brs , this relative motion is deemed as a potential col-
lision. A control law is then triggered to prevent the potential collision. Here we consider a potential
collision of only two spacecraft. Without loss of generality, we treat spacecraft 2 as a point mass
moving towards Brs of spacecraft 1. We can do this because the radius of the safe region of space-
craft 2 can be represented by adding it to the radius of the safe region of spacecraft 1.

The first and foremost goal of the control is to prevent the potential collision and drive spacecraft
2 out of the potential region Bro . That is to keep r(t) ≥ rs for all time and make r(t) > ro in a
finite time. Achievement of the first goal results in a successful collision avoidance. On the other
hand, we don’t want the final relative kinetic energy level changing too much compared with the
original kinetic energy level. Our secondary goal of the control design is to maintain the kinetic
energy level, that is to make ṙfinal ≈ |ṙ(t0)| or to keep the changes bounded. Note that because only
the separation distance is measure, not the full relative states, this condition will only achieve equal
radial energy states.

If the trajectory of spacecraft 2 does not touch the ball Brs , no relative orbit correction is needed
to avoid a collision. In this case the control strategy does not take effect. This situation is illustrated
in Figure 2(a). Otherwise the electrostatic force fields are activated to repel the two spacecraft as
shown in Figure 2(b).

Once spacecraft-2 enters Bro and is moving towards Brs , the collision avoidance control is
triggered. The term x1 =r(t) − ro< 0 represents how far spacecraft 2 has penetrated into the
region Bro , and x2 =ṙ(t) + ṙ(t0) represents the difference between the expected departure rate
and the actual distance rate (note that ṙ(t0) < 0). As stated above, the control law should reduce
the absolute values of these two terms when r(t) ≤ ro. When r(t) > ro, we have achieved a
successful collision avoidance. Now the control is only trying to make ṙ(t) → −ṙ(t0) to achieve
the secondary goal, that is to maintain the radial relative kinetic energy level. Let us define the state
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Spacecraft-2

Spacecraft-1

rc

rs

ro

(a) Not a potential collision.

Spacecraft-1

Spacecraft-2

rs

ro

rc

(b) A potential collision.

Figure 2 Collision Avoidance Scenarios as Seen by the First Spacecraft.

vector x = (x1, x2)T as

x1 =
{

r(t)− ro, r(t) < ro

0, r(t) ≥ ro
(10a)

x2 = ṙ(t) + ṙ(t0) (10b)

Any final radial separation distance rfinal > ro is acceptable, and is reflected with a zero x1 state.
If the 2nd spacecraft is outside of the region Bro and the radial departure rate is the opposite of the
radial approach rate, then both collision avoidance states xi are zero. Thus the expected final states
are x1(tf ) = 0 and x2(tf ) = 0. To successfully avoid a collision, the safety region penetration
variable x1(t) can never be less than rs − ro. To achieve this behavior the Lyapunov function
penalizing x1 is designed to go to infinity when x1(t) = rs−ro. Let us define a Lyapunov candidate
function as

V =
1
2
k1

(
1

x1 − rs + ro
− 1

ro − rs

)2

+
1
2
x2

2 (11)

where k1 are positive coefficient. This function goes to infinity at safety boundary x1 → rs − ro

and if the radial separation rate grows unbounded. Note that even though x1 is defined piecewise, it
doesn’t introduce a discontinuity in the Lyapunov function at r(t) = ro. The first time derivative of
the Lyapunov function is

V̇ = −k1

(
1

x1 − rs + ro
− 1

ro − rs

)
ẋ1

(x1 − rs + ro)2
+ x2ẋ2 (12)

Here we use ẋ2 = r̈. The separation distance equation of motion in Eq. (9) relates the charge
product Q with V̇ . In order to derive a control law from the Lyapunov function, we need to express
ẋ1 in terms of some known variables. From the definition of x1, it is obvious that ẋ1 = x2 − ṙ(t0)
when r(t) < ro. But ẋ1 6= x2 − ṙ(t0) when r(t) ≥ ro.

Note that
(

1
x1−rs+ro

− 1
ro−rs

)
is zero when r(t) ≥ ro, so the first term in Eq. (12) is zero when

r(t) ≥ ro, no matter what ẋ1 is. Thus we can globally replace ẋ1 with x2 − ṙ(t0) in the first term
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of Eq. (12) and simplify V̇ to:

V̇ = −k1

(
1

x1 − rs + ro
− 1

ro − rs

)
x2 − ṙ(t0)

(x1 − rs + ro)2
+ x2r̈(t) (13)

Note that V̇ is continuous and well defined for all ranges of the separation distance r. Now we can
directly substitute the separation distance equation of motion in Eq. (9) into V̇ to design a charge
feedback control law Q using Lyapunov’s direct method.

Assume a charge control law with feedback of separation distance and separation distance rate as

Q =
k1

β

(
1

x1 − rs + ro
− 1

ro − rs

)
r(t)2

(x1 − rs + ro)2
e

r
λd − k2

β
r(t)2x2e

r
λd (14)

Using the Lyapunov function V in Eq. (11), and substituting the charge control in Eq. (14) into
the equations of motion in Eq. (9), we differentiate V to find the Lyapunov function rate expression:

V̇ = k1

(
1

x1 − rs + ro
− 1

ro − rs

)
ṙ(t0)

(x1 − rs + ro)2
− k2x

2
2 + x2

(
1

m1
+

1
m2

)2 ‖Hc‖2

r3
(15)

Note that
(

1
x1−rs+ro

− 1
ro−rs

)
≥ 0, and it equals zero when x1 = 0. Because ṙ(t0) < 0 the first

term in Eq. (15) cannot be positive. Thus the Lyapunov function rate is bounded by

V̇ ≤ −k2x
2
2 + x2

(
1

m1
+

1
m2

)2 ‖Hc‖2

r3
(16)

Because
(

1
m1

+ 1
m2

)2 ‖Hc‖2

r3 > 0, from Eq. (16) we find that V̇ < 0 if

x2 >
1
k2

(
1

m1
+

1
m2

)2 ‖Hc‖2

r3
or x2 < 0 (17)

Let us define the scalar function b(r) as

b(r) =
1
k2

(
1

m1
+

1
m2

)2 ‖Hc‖2

r3
(18)

The condition in Eq. (17) and the V̇ bound in Eq. (16) show that the charge product Q in Eq. (14)
will make x2 converge to the interval [0, b(r)].

Now let us investigate what occurs with the collision separation state x1 under this charge control
law. The radial rate error state x2 starts with 2ṙ0 < 0, and V̇ starts as well with a negative value. As
long as x2 < 0, Q will keep driving x2 → 0 asymptotically because V̇ < 0 in this situation.

If x2 crosses zero to enter the positive interval (0, b(r)) then V̇ becomes positive. Eq. (17) shows
that the only chance for V to go to infinity is that x2 remains bounded and stays in (0, b(r)) for an
infinite time. However, note that when x2 ∈ (0, b(r)), x1 is increasing and x1 6→ rs−ro. According
to Eq. (11), if x2 is bounded and x1 ≥ rs − ro, V is bounded too. So V can never go to infinity.

Observing the definition of V in Eq. (11) again, we find that if the craft approach too closely
with x1 ≤ rs − ro, then the Lyapunov function V must have gone to infinity. Because V is always
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bounded, the state x1 won’t violate rs − ro even when V̇ > 0. This also means that the separation
distance r(t) will never violate the restraint separation distance rs. Because r will reach ro in a
finite time without violating the constraint r ≥ rs, we can conclude that the charge control law Q
in Eq. (14) guarantees a successful collision avoidance.

Though x2 converges to the interval [0, b(r)] asymptotically, it’s not guaranteed that x2 will con-
verge to zero. If Hc = 0, the interval shrinks to the zero point, thus x2 converges to zero asymptot-
ically. Otherwise, let us analyze the properties of x2 a little further.

We have shown that x1 will converge to zero in a finite time and stay there, and x2 is approaching
the interval [0, b(r)] from an initial negative value. When x2 reaches zero, if x1 = 0, then the
charge product Q = 0. By the separation distance equations of motion in Eq. (9), x2 increases in
this scenario because ‖Hc‖ > 0. Thus x2 enters the open interval (0, b(r)). Because V̇ is positive
when x2 stays in the open interval, x2 will be driven to increase until it reaches b(r). Because V̇ < 0
when x2 > b(r), in this case x2 converges to b(r). If x1 < 0 when x2 reaches zero, because x1 will
converge to zero in a finite time, then after that finite time, x2 is going to converge to b(r). Now
we can conclude that when Hc 6= 0, x2 will converge to b(r). Note that b(r) → 0 as r → ∞, thus
x2 → 0 as r →∞.

Practically speaking the range of the electrostatic control is limited due to the drop off of the
Coulomb field strength. As a result, the controller will be turned off after the state goes inside a
certain deadzone region. Let us define a radius rc > ro where the collision avoidance charge control
is turned off. The effect of this limitation is a termination of the control when x1 = 0 and r(t) > rc.
Note that when the truncation happens, the potential collision has been successfully avoided. After
the control charges are turned off, there are no forces acting on the spacecraft. The two spacecraft
are now flying freely in space (by the assumption that the spacecraft are flying in free space) with
constant velocities. The separation distance is still bounded, even though it’s not converging to the
magnitude of the approach rate.

Given the charge product in Eq. (14) to produce the required electrostatic force field, the individ-
ual spacecraft charges qi are evaluated through

q1 =
√
|Q| (19)

q2 =sign(Q)q1 (20)

There are an infinity of choices how Q can be mapped into q1 and q2. This strategy evenly distributed
the charge amount across both craft. If one craft can handle a higher charge level, this can easily be
taken into account.

SATURATED COLLISION AVOIDANCE ANALYSIS

Without saturation of spacecraft charges, the controller presented in the previous section works
well in preventing a potential collision. But this is only the ideal case. The spacecraft charge
magnitudes are always limited. The ability of the two-body system to prevent a potential collision
is reduced compared with the non-saturated control law. For example, if the approach speed is too
large the spacecraft saturated charge may not generate a force large enough to prevent a collision.

This section discusses limited charge control requirements for a collision to be preventable. When
the two spacecraft are fully charged such that the charge product reaches its maximum positive
value, the two craft are doing their best effort to avoid the collision by generating the largest possible
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repulsive electrostatic forces. In this case, if the distance r still decreases to be less than the safety
restraint distance rs, we say that the collision is not avoidable. Otherwise, the collision is avoidable.

Constant Charge Spacecraft Equations of Motion

Our discussion of the conditions for a potential collision to be avoidable is based on the assump-
tions that the charge product remains at its maximum value Q = Qmax > 0 to generate the largest
repulsive force. The Coulomb force in Eq. (1) simplifies to be

F = −kc
Qmax

r3
e
− r

λd r (21)

and the inertial relative motion is

r̈ = β
Qmax

r3
e
− r

λd r (22)

Note that the form of the Coulomb force is very similar to the gravity force, this makes it possible
to describe the motion using the formulas of the gravitational 2-body problem (2BP). Reference 8
provides us an approach to analyze this Coulomb forced spacecraft motion using 2BP method.
In order to apply a 2BP method in analyzing our Coulomb forced motion, we need to find the
radial equation and the energy equation in a similar form as in 2BP. Let us introduce the effective
gravitational parameter

µ(r) = −kc
Qmax(m1 + m2)

m1m2
e
− r

λd (23)

Next, assume the plasma Debye length interaction is weak and that r � λd. Then e
− r

λd = 1 and
the parameter µ(r) becomes a constant

µ = −kc
Qmax(m1 + m2)

m1m2
(24)

The relative equation of motion reduces to the familiar 2BP form

r̈ = − µ

r3
r (25)

Eq. (25) has the same form as the equation of motion of the gravitational two-body problem
(2BP), except that here µ is a negative number with Qmax > 0. By assuming r � λd, µ becomes
a constant, so the orbit radial trajectory is a conic section curve. Because µ < 0 for the repulsive
force case, all relative trajectories are hyperbolas where craft 2 orbits the un-occupied focus.8 The
signs of some parameters of the conic section are different from that of the gravitational 2BP. In our
case, because µ < 0, the semi-latus radium p < 0 and the semi-major axis a > 0.

Because of the hyperbolic motion about the un-occupied focus, the radial equation is also differ-
ent from that of the gravitational 2BP:8

r =
p

1− e cos f
(26)
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Here the semi-latus rectum p = h2µ < 0, and h is the magnitude of the massless angular momentum
h = r× ṙ. The energy equation is derived in the same procedure as the 2BP, and yields an identical
equation:

v2

2
− µ

r
= − µ

2a
(27)

where v is the magnitude of velocity vector ṙ and

v2 = ṙ · ṙ = ṙ2 + (rḟ)2 = ṙ2 +
h2

r2
(28)

Here ḟ is the in-plane rotation rate.

Because the total energy is positive, the relative trajectory of the two spacecraft is a hyperbola.
As seen by spacecraft 1, spacecraft 2 is traveling along the hyperbola, and spacecraft 1 is standing
at the unoccupied focus point8 as illustrated in Figure 3.

Spacecraft 1

Spacecraft 2

d

rs

rp

r

f

v0

Figure 3 Illustration of the 2-Body hyperbolic trajectory.

From Eq. (26), the closest separation distance corresponds to r(f = 0) which is the radius of
periapsis

rp =
p

1− e
= a(1 + e) (29)

Thus, given an initial spacecraft approach speed, the criterion for a successful collision avoidance
is to determine a required saturated charge level which guarantees that

rp ≥ rs (30)

Avoidance Analysis

When h 6= 0 for the dynamical system, there exists an offset d between the position of spacecraft
1 and the direction of the relative velocity of spacecraft 2, as shown in Figure 3. Note that we are
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assuming here that the current flight path will result in a potential collision where r will become
less than rs. The massless angular momentum is represented in terms of d and v0:

h = ‖ro × ṙ(t0)‖ = dv0 (31)

Using this expression instead of expressing h in terms of ṙ(t0) and θ̇, we can avoid the complexity
brought by adding up two orthogonal velocity vector components ṙ(t0)êr and rθ̇êθ. The states v0

and d are evaluated by

v0 =
√

ṙ(t0)2 + (roḟ0)2 (32)

d =
r2
o ḟ0

v0
(33)

Because the angular momentum is conserved during the electrostatic collision avoidance maneu-
ver as with the 2BP, the relation between the angular momentum and the orbit elements is:

h2 = µa(1− e2) (34)

Solving for the eccentricity e yields

e =

√
1− h2

µa
(35)

This e formulation can be used to calculate the periapses radius rp:

rp = a(1 + e) = a +

√
a2 − ah2

µ
(36)

The collision avoidance criteria rp ≥ rs yields the condition

a +

√
a2 − ah2

µ
≥ rs (37)

Subtracting a from both sides and squaring the result yields

−ah2

µ
≥ r2

s − 2ars (38)

Now we need to determine the semimajor axis a to obtain the relationship between µ and the
initial states of the system. From the energy equation in Eq. (27) we can solve for a:

a =
roµ

2µ− rov2
0

(39)

Substituting Eq. (39) into Eq. (38), and using h = v0d, yields

− rov
2
0d

2

2µ− rov2
0

≥ r2
s −

2rorsµ

2µ− rov2
0

(40)

11



Note that 2µ− rov
2
0 < 0. Multiplying both sides by −(2µ− rov

2
0) results in

rov
2
0d

2 ≥ r2
srov

2
0 + 2rs(ro − rs)µ (41)

Eq. (41) shows the relationship of d, v0 and µ for an avoidable collision. Solving Eq. (41) for µ,
and using the definition of µ in Eq. (24), we obtain the maximum required charge criteria to avoid
a collision with a given initial approach speed v0 and miss-distance d.

Qmax ≥
m1m2

m1 + m2

rov
2
0(r

2
s − d2)

2kcrs(ro − rs)
(42)

For example, a large value of ṙ(t0)2 means spacecraft 2 is approaching spacecraft 1 at a high speed.
Here v0 is large and according to Eq. (42) a large Qmax is required to avoid the collision. If the
upper limit of the initial separation distance rate ṙ(t0) is known, Eq. (42) tells us the minimum
value of the saturated charge product to avoid the collision successfully. For a given formation
flying mission where the maximum magnitude of the possible separation distance rate has been
determined, Eq. (42) helps us design the electric charge devices of the Coulomb forced spacecraft
to provide the maximum required repulsive forces.

Alternatively, solving Eq. (41) for v0 we obtain the criterion for the magnitude of the relative
velocity:

v0 ≤

√
2µrs(ro − rs)
ro(d2 − r2

s)
(43)

If parameter µ of the spacecraft is given (specifically maximum spacecraft charge is given), then
Eq. (43) tells us the maximum allowable relative velocity that guarantees the collision to be avoid-
able. As expected, the small the allowable charge levels, the smaller the allowable approach speeds
v0 are.

To provide insight into the maximum charge and initial velocity relationship, Figure 4 shows the
critical surface of parameters d, v0 and Qmax under the following conditions:{

m1 = 50kg
m2 = 50kg

,

{
rs = 4m
ro = 18m

(44)

Parameters d, v0 and Qmax in the region above the critical surface represent avoidable collisions.
Beneath the surface are parameters of unavoidable collisions.

This critical surface is one quarter of a saddle surface. When the magnitude of the relative velocity
v0 is set, the larger the offset d is, the smaller Qmax is required. And when d = rs, Qmax = 0,
the trajectory of spacecraft 2 will touch the safe region of spacecraft 1 Brs but won’t penetrate it
without any control. If the offset d is set, the larger v0 results in the bigger ṙ0 component, thus the
larger Qmax is required for a successful collision maneuver. When v0 = 0, which means the two
spacecraft are stationary to each other, nothing needs to be done to avoid a collision, so Qmax in this
case remains zero.

When h = 0, then the offset d = 0 and the craft are lined up for a head-on collision. For this
worst case situation the criterions in Eq. (42) and Eq. (43) reduce to

Qmax ≥
ṙ(t0)2

2kc

m1m2

m1 + m2

rors

ro − rs
(45)

ṙ(t0)2 ≤ 2µ

(
1
ro
− 1

rs

)
(46)
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Figure 4 Critical surface of parameters for an avoidable collision.

Note that even though the derivation of the criterions are based on the assumption that Q =
Qmax > 0 and d < rs, the same procedure can also be performed in the case Q = Qmin < 0 and
d > rs. In this case, two spacecraft are attracting each other. The problem is then changed to be
analyzing requirements for two attracting spacecraft not to collide. After the same procedure as we
done above in this section, we get

Qmin ≥
m1m2

m1 + m2

rov
2
0(r

2
s − d2)

2kcrs(ro − rs)
= g (47)

Eq. (47) has exactly the same form as Eq. (42). Because d > rs, here g < 0. It’s assumed that
the two spacecraft are attracting each other, the charge product Q is always negative. The smaller
Q is, the larger the attracting force becomes, and thus the more likely the two spacecraft will get
closer. If in a mission the two spacecraft are fully charged such that Q = Qmin, then Eq. (47) tells
us the minimum allowable value of the limit of the negative charge product Q guaranteeing that the
spacecraft won’t collide.

NUMERICAL SIMULATIONS

While the charge control is derived for general 3D spacecraft motion, the conservation of angular
momentum forces all resulting motion to be planar. Thus, without loss of generality, the following
numerical simulation all consider planar motion to simplify the visualizations.

The masses of the two spacecraft are m1 = m2 = 50kg. We assume at first that the spacecraft
are flying in the deep space with the Debye length being λd = 50m. The radii of the safe region
rs and the potential region ro determined by the requirements of a specific formation mission. For
these simulations we set rs and ro as

rs = 3m, ro = 16m.

The region of the effective control range rc will be given in specific simulation examples. The initial
inertial coordinates and inertial velocities are

R1 = [−8,−3]T m
R2 = [8, 3]T m

,
Ṙ1 = [0.0060.002]T m/s
Ṙ2 = [−0.006− 0.002]T m/s

(48)
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These initial conditions are setup such that the spacecraft cluster center of mass is stationary.

Simulation without control truncation or charge saturations

The charge control law in Eq. (14) is guaranteed to prevent any potential collision. As to the
coefficients of the controller, the larger k1 is, the more we penalize the spacecraft proximity near rs.
And larger k2 results in more effort in driving ṙ to −ṙ(t0). For the first simulation the coefficients
as k1 = 0.000001kgm4s/C2, k2 = 0.0002s/C are chosen. Using these coefficients we study a case
where the state x2 crosses zero and then converge to b(r). Figure 5 shows the numerical simulation
results in the initial conditions listed above. Note that here the effective control range rc is set to
be infinity and no control truncation is occurring. The spacecraft 1 and spacecraft 2 start from a
separation distance slightly larger than ro. Before r(t) = ro, the control is not triggered and the
charges remain zero. When r(t) = ro, the control is triggered and the spacecraft start to repel each
other. After about 1.3 hours we find that r(t) > ro, and the control law is only trying to equalize
the radial separation rate with the initial value. The collision has been successfully avoided. The
following discussion illustrates the analytical predictions of the x2 behavior.

From our analysis x2 will converge to the interval [0, b(r)]. Further, it will eventually converge
to b(r) if it crosses zero. Figure 5(d) and 5(e) show the history of the separation distance rate. After
x2 crosses zero, it keeps rising up as predicted. Figure 5(e) shows that x2 crosses b(r) at point A.
At this critical point V̇ = 0 and x2 = b(r) > 0. Using Eq. (14) we can solve the charge product
Q = −‖Hc‖2

kcr e
r

λd . From the separation distance equation of motion in Eq. (9), we can get the
acceleration of the separation distance r̈ = 0. Note that ẋ2 = r̈, thus x2 stops increasing at point A,
and starts to decrease. At point A, ẋ2 = 0, and x2 is bounded by b function value at point A. So x2

crosses the history of b(r) because b(r) is decreasing. After x2 hits b(r), it converges to the history
of b(r) asymptotically because V̇ < 0.

Figure 5(f) shows that after 15 hours the spacecraft attract each other to make x2 converge to
b(r). In Figure 5(e) this is when the state x2 becomes positive. Physically this means that the
separation rate is now larger than the original radial approach rate magnitude. To slow down the
radial motion, the charge signs become opposite to yield attractive forces. The reason the charge
values are increasing here is because the separation distances have already grown very large here.
Even though the required control force is very small, the 1/r2 dependency of the Coulomb force
expression requires a large spacecraft charge to generate it. This issue has little to no practical
consequence. The collision avoidance maneuver was effectively finished after about 1.3 hours. This
long term behavior is simply provide to numerical illustrate the analytically predicted x2 behavior.

When the controller’s coefficients are set as k1 = 0.0002 kgm4s/C2, and k2 = 0.0001 s/C, the
state x2 won’t reach zero, but still converge asymptotically to zero from a negative value. Figure 6
shows the simulation results under these conditions. As shown in Figure 6(d), because k1 is large,
the control charges penalizing the spacecraft proximity near rs dominate in the initial hour. The
charge peak happens when the two spacecraft get closest. Physically when the craft get close, the
repulsive force suddenly increases to a peak to repel the craft. This results in a sharp trajectory of
the spacecraft as shown in Figure 6(a).
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Figure 5 Simulation results without truncation and charge saturations, in the case
that x2 crosses zero.

15



0 5 10 15 20

0

5

10

15

x [m]

y 
[m

]

rs

ro

(a) scenario as seen from spacecraft 1

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

time [hours]

di
st

an
ce

 [m
]

rs

ro

(b) history of the separation distance

0 2 4 6 8 10
−3

−2

−1

0

1

time [hours]

x 2 [c
m

/s
]

(c) history of the separation distance rate

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

time [hours]

ch
ar

ge
s 

[
µC

]

q
1

q
2

because of k1

(d) history of charges q1

Figure 6 Simulation results without truncation and charge saturations, in the case
that x2 won’t cross zero.

Simulation with charge truncations

In the following simulations the control is truncated if the separation distance is larger than rc >
ro. The range of the control is denoted by Brc with radius rc. The control charges will be turned
off when the separation distance r(t) > rc. Setting rc = 20m, k1 = 0.0001 kgm4s/C2, k2 =
0.0003 s/C and using the previous spacecraft initial position and velocity conditions, Figure 7 shows
simulation result this case.

Because of the truncations, we cannot guarantee that x2 will converge to zero during this maneu-
ver. However, as the control analysis predicted the x2 radial rate tracking error will remain bounded
while yielding a successful collision avoidance maneuver where x1 → 0.

In order to test the robustness of the control, the spacecraft are put in an geostationary orbit to
compare the performance with that of the spacecraft flying in deep space. The initial conditions
in Eq. (48) are treated as LVLH frame position and velocity vectors, which are then mapped into
inertial vectors with respect to the Earth centered inertial frame. The full nonlinear equations of
motion are then integrated with the same charge collision avoidance control applied. After the
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Figure 7 Simulation results with truncation but without charge saturations.

integration the resulting motion is mapped back into equivalent LVLH frame position vectors, where
the rotating LVLH frame is assumed to be the spacecraft cluster center of mass. The simulation
results are illustrated in Figure 7 simultaneously with the simulation performed in deep space.

The parameters of the two spacecraft and the controller are the same. In GEO the Debye length
ranges from 100-1000 meters. But for a fair comparison, here we still use λd = 50m. While
the trajectories in Figure 7(a) are different for the deep space and GEO cases, they both yield a
separation distance r(t) is always greater than safety limit rs. From the charge control law in
Eq. (14), the charge product Q will increase if r(t) gets too close to rs. In fact, we find that
Q →∞ if r(t) → rs. Thus, while orbital motion has not been analytically considered in this paper,
the presented unsaturated collision avoidance strategy does successfully maintain a specified safety
distance rs.

Simulation with charge saturations

When spacecraft charge saturation is introduced, a potential collision will be unpreventable if
the two spacecraft are flying towards each other at a very high speed. Eq. (42) and (43) provide
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Figure 8 Simulation results with charge saturation.

the criterion for an avoidable potential collision. Note that even though our analysis of avoidable
collision is based on the assumption that the Debye length λd → ∞, here in our simulation the
Debye length is still set to be λd = 50m to show how close the estimation in Eq. (42) is with a
limited Debye length. With the same initial conditions as in the previous simulation examples in
Eq. (48), the initial offset distance d and the magnitude of initial relative velocity v0 are

d = 0.6325m, v0 = 0.0126m/s

Utilizing rs, ro and masses mi, the critical charge product for an avoidable collision is

QC =
m1m2

m1 + m2

rov
2
0(r

2
s − d2)

2kcrs(ro − rs)
= 7.8492× 10−13C2 (49)

The critical saturation limit for individual charge is qc =
√

QC = 0.88596 µC.

Figure 8 shows simulations with the same initial conditions but different charge saturation limits.
It is assumed that in the potential region Bro the two spacecraft are fully charged and doing their
best effort to repel each other. This can be achieved by setting the controller’s coefficients k1 and
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k2 to be some large numbers. Here we set k1 = 0.1kgm4s/C2, k2 = 0.1s/C. It can be seen that
the larger qmax results in more aggressive repulsion with a larger periapses radius. When qmax = qc,
the closest distance is slightly smaller than rs. Spacecraft 2 penetrates about 0.25m inside the
safe restraint region Brs with rs = 3m. This happens because the Debye length effect partially
shields the electrostatic force between the spacecraft. But note that 0.25m’s penetration is very
small compared with rs, the estimation of the minimum limit charge in Eq. (42) is sufficiently good
to provide a very practical maximum required charge computation.

CONCLUSION

This paper discusses a collision avoidance control problem of two spacecraft using Coulomb
forces. After formulating the equation of motion of the separation distance, a collision avoidance
charge control law with the feedback of the separation distance and the distance rate is developed
based on Lyapunov method. The control law is intended to keep the separation distance always
greater than a restraint safe radius and also limit changes to the relative kinetic energy. Without
charge saturation and truncation, this control works well in fulfilling these two purposes. The con-
trol truncations as the craft depart do not influence the accomplishment of a successful collision
avoidance, but result in an uncertainty in maintaining the relative kinetic energy. Even though the
magnitude of the departure distance rate won’t converge asymptotically to the magnitude of the
approach rate, the error between these two values is still bounded. The charge saturations may
lead to a failure of the collision avoidance control. By ignoring the Debye length effect, analytical
conditions under which a potential collision can be prevented are formulated using the gravitational
2-body problem method. Simulation results illustrate the performance of the controller, and show
that the controller is robust in preventing collision with control truncation when the spacecraft are
flying in GEO. Though the charge limit criteria is not accurate when the Debye length effect is taken
into account, the error in predicted minimum separation distance is small.
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