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ANALYTIC SOLUTIONS FOR EQUAL MASS 4-CRAFT STATIC
COULOMB FORMATION

Harsh Vasavada∗ and Hanspeter Schaub†

This paper investigates analytic constant charge solutions for a square planar and 3-D tetrahe-
dron 4-craft static Coulomb formations. The solutions are formulated in terms of the formation
geometry and attitude. In contrast to the 2 and 3 spacecraft Coulomb formations, a 4 space-
craft formation has additional constraints that need to be satisfied for the individual spacecraft
charges to be both unique and real. A spacecraft must not only satisfy three inequality 3-craft
constraints to yield a real charge solution, but it must also satisfy 2 additional equality con-
straints to ensure that the spacecraft charges are unique. Further, a method is presented to
reduce the number of equality constraints arising due the dynamics of a 4 spacecraft formation.
The unique and real spacecraft charges are determined as a function of the orientation of the
square formation in a given principal orbit plane. For the 3-D tetrahedron formation scenario
there is only a unique set of charged products. The implementability constraints are numeri-
cally evaluated to show that only trivial equal-mass tetrahedron formations are possible where
one craft is on the along-track axis with zero charge.

INTRODUCTION

Spacecraft formation or general proximity flying is increasingly gaining interest in the aerospace commu-
nity. The benefits of a spacecraft formation include lower life cycle cost, reconfigurability of the formation
shape and size, as well as adaptability of the formation in case of a malfunctioning satellite.1–4 Applications
such as synthetic aperture radar, space interferometry and sensor web formations are more feasible using
spacecraft formation flying, rather than large monolithic structures.1, 2

For small spacecraft separation distances on the order of 100 meters or less, thruster exhaust plume im-
pingement with neighboring satellites is a major technological hurdle. Further, conventional chemical thrust-
ing concepts are not very effective in generating the small micro-Newton level forces required to maintain a
cluster dozens of meters in size. Coulomb thrusting is providing an attractive and a novel solution to these
technological hurdles arising from the control of spacecraft in a tight formation.

Geo-stationary spacecraft naturally charge to kilo-volt levels due to their interaction with the local space
plasma environment and sun light. For spacecraft flying dozens of meters apart the resulting electrostatic
potentials can cause 100’s of meters of error motion over an orbit. The concept of Coulomb propulsion varies
the spacecraft potential from its natural equilibrium potential using active charge emission. Missions showing
the feasibility of active charge control include Equator-S,5 Geotail,6, 7 and CLUSTER.8, 9 With static Coulomb
formations constant Coulomb forces are used to cancel out the differential gravitational forces and maintain
a fixed formation with respect to the rotating formation chief Local Vertical/Local Horizontal (LVLH) frame.
The electrostatic forces acting on the spacecraft are internal forces, and thus cannot change the total inertial
angular momentum of the multi-body cluster.

Coulomb thrusting is considered an attractive solution for the control of a tight spacecraft cluster of less
than 100 meters in high Earth orbits. While electric propulsion is a very fuel efficient method to control
the spacecraft in a formation compared to traditional chemical thrusting concepts, the usefulness of electric
propulsion is diminished for small spacecraft separation distances as the ionic exhaust plume could potentially
damage near-by spacecraft. Coulomb propulsion has the advantage of being essentially propellant-less and

∗Graduate Student, Aerospace and Ocean Engineering Department, Virginia Tech, Blacksburg, VA, 24061.
†Assistant Professor, Virginia Tech, Blacksgurg, VA, 24061-0203

1



Chief 
velocity

vcôh
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Figure 1 Illustration of a Coulomb virtual structure formation in a circular chief orbit.

offers mass savings up to 98%.10, 11 Coulomb propulsion is a highly efficient propulsion system achieving Isp
to the order of 1013s. The power required to charge the spacecraft is in the order of watts (W).11 In addition
to being a highly efficient system, Coulomb propulsion is also based on a renewable source, increasing the
mission lifetime as compared to electric propulsion.12

Parker and King performed the initial study on Coulomb thrusting in a NASA Institute for Advanced
Concepts (NIAC) Phase I project. This NIAC report contains a discussion on Coulomb thrusting, potential
applications, and simple techniques to find the static Coulomb formations using symmetry arguments. The
report presents analytic solutions for 3 and 5-craft formations and numerical solutions for a 6 spacecraft
formation. The report uses simplifying assumptions based on symmetry of the formation to determine the
analytic solutions for charges on a spacecraft.

One of the challenging and interesting applications of Coulomb propulsion discussed in the NIAC report
is the concept of a static Coulomb formation. The Coulomb forces exactly cancel out the relative motion
dynamics creating a virtual Coulomb structure.12, 13 These static solutions are relative equilibrium solutions
of the charged relative equations of motion. Berryman and Schaub in Reference 12 extend the work of the
NIAC report and present complete analytic solutions for 2 and 3 spacecraft formations.

The necessary equilibrium conditions for static Coulomb formations with constant charges are developed
in Reference 14. The conditions require that the center of mass of the static formation structure should be at
the origin of the Hill frame. Also, the formation principal inertia axes of the static formation structure need
to be aligned with the Hill frame axes. If the center of mass condition is not satisfied the formation drifts
relative to the LVLH frame. The principal axes constraints ensure that the gravity gradient torques on the
formation are zero.

In a virtual Coulomb structure the truss and beam structural members are replaced with electrostatic force
fields. In the presence of external disturbances, the force fields are only able to provide tension and com-
pression to maintain the structural shape of a spacecraft cluster. The force fields maintain this static virtual
structure as seen by the rotating Hill frame. Figure 1 shows a Coulomb virtual structure in space. Here
the connections between spacecraft represent the electrostatic force fields acting on the spacecraft. The first
feedback stabilized 2-craft virtual Coulomb structures are discussed by Natarajan in References 13, 15, 16.

This paper presents analytical open loop charge solutions to establish a 4-craft static Coulomb formation.
The charges required are constant and there is no charge feedback to maintain the formation shape. The static
formations are naturally occurring equilibrium solutions which are open-loop unstable. How to stabilize the
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Figure 2 Illustration of Debye shielding in space plasma environment

charged cluster about these equilibrium with 3 or more craft is an open area of research. The analytic solutions
presented in this paper extend the work done in References 10 and 12. This paper investigates solutions for
particular 4-craft formations, and explores the issue of obtaining unique individual spacecraft charges. This
uniqueness issue only appears for formations with 4 or more craft.

Analytic solutions for a square 4-craft formation are discussed first. A square formation is a convenient ge-
ometry for missions involving interferometry. All spacecraft are assumed to have equal and constant masses.
The second analysis focuses on a 3-D tetrahedron formation. This formation shape is of interest because its
symmetry yields zero gravity gradient torque regardless of the formation attitude. The charge implementabil-
ity conditions are investigated numerically across a range of three-dimensional formation orientations.

COULOMB THRUSTING CONCEPT

The electrostatic Coulomb force between two charged bodies in a vaccum is proportional to the product of
the charges and inversely proportional to the square of the distances between them. However, the magnitude
of the Coulomb force in a space environment is expressed as

F = kc
q1q2
d2
ij

e
−
dij
λd (1)

Here kc = 8.988× 109 Nm2C−2 is the electrostatic constant and dij the separation distance between space-
craft. Figure 2 illustrates the interaction between charged bodies in a space evironment. The exponential term
in Eq (1) represents the shielding effect of the space plasma environment on the Coulomb force experienced
by a second charge body through the term Debye length term λd. The plasma field in the space environment
reduces the effect of Coulomb interaction by shielding the spacecraft. The Debye length in low Earth orbit is
on the order of centimeters, thus requiring spacecraft to be charged to a very large potential to overcome the
plasma environment.10, 11 For the purposes of the analysis in this paper, it is assumed that the spacecraft clus-
ters are in Geostationary Earth Orbits (GEO), where the Debye length ranges from 150m to 1000m, making
it more feasible to use Coulomb forces to control the formation. The concept of Coulomb thrusting employs
active charge emission devices to expel electrons or ions to modify the natural electrostatic equilibrium of the
spacecraft.

Coulomb propulsion has potential uses in spacecraft cluster applications other than static Coulomb forma-
tions. Natarajan and Schaub present the 2-craft Coulomb tether structure concept in Reference 13. Here an
electrostatic field replaces the physical tether. The paper also presents the use of the gravity-gradient torque
to stabilize the virtual Coulomb structure about the orbit nadir direction. Reference 13 also presents the
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Figure 3 Illustration of Hill Frame Coordinate system

first feedback law for a stabilized virtual Coulomb structure, with the separation distance and time rate of
separation distance as the feedback terms.

References 17 and 18 develop control laws to maintain a charged spacecraft cluster. Reference 17 develops
a non-linear control law based on orbit element differences to control a 2-craft Coulomb formation. The
paper also proves the stability of such a control law. Reference 18 discusses the potential use of electrostatic
Coulomb forces for spacecraft collision avoidance using separation distance as feedback.

Another exciting application of Coulomb propulsion is given by Pettazzi et.al in Reference 19. Here the
hybrid use of electrostatic forces and conventional thrusting for swarm navigation and reconfiguration is
discussed. The paper also discusses the different strategies for integrating the Coulomb actuation into swarm
navigation and reconfiguration scheme. Application of Coulomb forces in aiding the self-assembly of the
large space structures is discussed in Reference 20.

CHARGED SPACECRAFT EQUATIONS OF MOTION

Let us define the rotating Hill coordinate system H with respect to which the relative motion dynamics
of the spacecraft formation is expressed. The Hill frame is defined as H = {O, ôr, ôθ, ôh} as illustrated
in figure 3. Here the origin of the Hill frame lies at the center of mass of the formation. The vector ôr
points radially outward, ôh points in the out of plane direction, and the along-track direction ôθ completes
the coordinate system such that ôθ = ôh × ôr. The relative position vector between the deputy and the chief
in interial frame is expressed as ρi = rdi − rc, where rdi is the inertial position of the deputy spacecraft
and rc is the inertial position of the chief satellite. The relative position vector in Hill frame component is
expressed as

ρi =

Hxiyi
zi

 (2)

The conditions for a static Coulomb formation are achieved by allowing the electrostatic forces to cancel out
the relative acceleration experienced in the Hill frame. Using the definition of electrostatic force given in
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equation (1), the charged relative equations of motion with linearized orbital motion are written as12

ẍi − 2nẏi − 3n2xi =
N∑
j=1

kc
mi

xi − xj
d3
ij

qiqje
−
dij
λd (3a)

ÿi + 2nẋi =
N∑
j=1

kc
mi

yi − yj
d3
ij

qiqje
−
dij
λd (3b)

z̈i + n2zi =
N∑
j=1

kc
mi

zi − zj
d3
ij

qiqje
−
dij
λd (3c)

Here subscript i indicates the ith position in the spacecraft formation, dij is the distance between the ith and
jthspacecraft, and n is the mean orbit rate.

To find a charged relative equilibrium, the relative acceleration and velocity of the spacecraft are set to
zero, freezing the formation with respect to the Hill frame. The individual spacecraft charges qi can be scaled
through:

q̃i =
√
kc
n
qi (4)

The normalized spacecraft charge q̃i, is not a non-dimensional charge. Using Eq. (4) and the definition of
charged product as Qij = q̃iq̃j , the charged spacecraft equations of motion are written as12

−3xi =
N∑
i=1

1
mi

xi − xj
d3
ij

Q̃ij (5a)

0 =
N∑
i=1

1
mi

yi − yj
d3
ij

Q̃ij (5b)

zi =
N∑
i=1

1
mi

zi − zj
d3
ij

Q̃ij (5c)

Note that for a formation in which the spacecraft are aligned with the along-track (ôθ) direction, there are no
spacecraft charges required to achieve the relative equilibrium.

4-CRAFT STATIC COULOMB PLANAR FORMATION SOLUTIONS
A square planar formation lies in the principal planes defined by ôr-ôh, ôr-ôθ or ôh-ôθ planes. The

formation lies entirely in these planes and there is no out of plane component. A square formation is one
of the possible 4-craft planar formations. The square formation geometry is convenient for interferometric
missions where the craft are ideal distributed on a projected circle orthogonal to the sensing axis. The center
of mass condition is satisfied by placing the center of the square at the origin of the Hill frame. The square is
rotated in the principal plane about the third axis. Note that the principal axes constraint is satisfied for any
square orientation within the principal orbit plane.

Charge Products for Relative Equillibrium

A planar square formation can be parameterized in terms of the angle θ and the radius ρ as illustrated in
figure 4. The angle θ represents the orientation of the square formation in any given plane. The radius ρ is
the distance of the spacecraft from the origin of the Hill frame. Figure 4 shows the square formation in ôr-ôθ
plane, where the square is rotated through an angle of θ = 45◦ from its nominal position of θ = 0◦. The
square can be parametrized in a similar manner for ôh-ôθ and ôr-ôh plane. For the formation in the ôr-ôθ
plane, the position vectors of the 4 spacecraft are given by
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Figure 4 Planar 4-Satellite formation in ôr − ôh plane

ρ1 =

 ρ cos θ
ρ sin θ

0

 , ρ2 =

 −ρ sin θ
ρ cos θ

0

 , ρ3 =

 −ρ cos θ
−ρ sin θ

0

 , ρ4 =

 ρ sin θ
−ρ cos θ

0


With a square formation there are 8 non-trivial charged equations of motion from Eq. (5), 4 each in the ôr

and ôθ directions. The number of these equations is reduced by applying the center of mass conditions and
principal axes constraints.14 These conditions require that the center of mass of the static formation lie at the
origin of the Hill frame, and the principal axes of the static formation be aligned with the axes of the rotating
Hill frame. Due to symmetry for a planar formation there are 2 center of mass constraints and 1 principal
axes constraint. The number of equations is now reduced to 5. Thus applying the center of mass and principal
axes constraint and using Eqs. (5a)−(5c), the formation dynamics in ôr − ôθ is expressed in matrix form as


−3mx1

−3mx2

−3mx3

0
0

 =



x1−x2
d312

x1−x3
d313

x1−x4
d314

0 0 0
x2−x1
d312

0 0 x2−x3
d323

x2−x4
d324

0

0 x3−x1
d313

0 x3−x2
d323

0 x3−x4
d334

y1−y2
d312

y1−y3
d313

y1−y4
d314

0 0 0
y2−y1
d312

0 0 y2−y3
d323

y2−y4
d324

0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(6)

where dij =
√

(xi − xj)2 + (yi − yj)2 is the distance between the ith and jth spacecraft. Equation (6) is
expressed in compact form as

x = [A]Q̃ (7)

The matrix [A] only depends upon the orientation angle θ and the radius ρ of the spacecraft. It is interesting
to note that [A] does not depend on the plane in which the formation is oriented. The null-space of [A] is
identical for any given plane. To solve for the individual charges on spacecraft, a solution to the charged
products Q̃ij is required. The rank of matrix [A] is 5, and it is a full row rank matrix. There are infinitely
many solutions to Q̃, which can be expressed in terms of least squares solution, Q∗, and the null-space Qnull.
The least squares solution for the system described by (7) is given by

Q∗ = [A]T
(
[A][A]T

)−1
x (8)
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Figure 5 Breakdown of a square formation into triangular loops

All the possible solutions for Q̃ are

Q̃ = Q∗ + tQnull (9)

where t is a scalar used to scale the null space of [A]. For the given ôr-ôθ plane, the least squares solution
and the null space of the system are

Q∗ =



− 3
√

2
10 mρ

3 (4 + 5 sin 2θ)
− 6

5mρ
3 (1 + 5 cos 2θ)

3
√

2
10 mρ

3 (−4 + 5 sin 2θ)
3
√

2
10 mρ

3 (−4 + 5 sin 2θ)
− 6

5mρ
3 (1− 5 cos 2θ)

− 3
√

2
10 mρ

3 (4 + 5 sin 2θ)


(10)

Qnull =
[

1 −2
√

2 1 1 −2
√

2 1
]T

(11)

The least squares solution, for the ôr-ôθ plane depends on the size of the square formation and the orientation
of the square in the plane. The null-space of the system does not depend on the orientation of the formation,
and as discussed earlier is the same for any given plane.

Unique Spacecraft Charges

To implement a static Coulomb formation, knowledge of the individual charges on a spacecraft is re-
quired. For a 4-craft formation there are 6 charge products, which results in 4 individual spacecraft charges.
This is always true for a 4-craft formation, regardless of whether the formation is co-linear, planar or three-
dimensional. There are infinitely many ways to solve for the individual charges from the charge products. To
solve for q̃1, we can break up the square into 3 different triangular loops about the spacecraft position 1 as
shown in figure 5. From the loops defined in figure 5, q̃1 can be calculated either of Eqs. (12a)–(12c):

q̃1a =

√
Q̃12Q̃13

Q̃23

(12a)

q̃1b =

√
Q̃12Q̃14

Q̃24

(12b)
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q̃1c =

√
Q̃14Q̃13

Q̃34

(12c)

For the individual charges on a spacecraft to be unique Eqs. (12a)-(12c) must yield the exact same value of
q̃1, which mathematically is written as the equality constraints

q̃1 =

√
Q̃12Q̃13

Q̃23

=

√
Q̃12Q̃14

Q̃24

=

√
Q̃14Q̃13

Q̃34

(13)

The charged products in the above equation depend on the scaling parameter t in Eq. (9). Given a unique q̃1,
the remaining individual charges are trivially calculated as

q̃2 =
Q̃12

q̃1
(14a)

q̃3 =
Q̃13

q̃1
(14b)

q̃4 =
Q̃14

q̃1
(14c)

In a 3 spacecraft formation there is only one triangular loop and it results in a unique individual charge.
However, in a 4-craft formation there are two additional triangular loops. These make the task of determining
the individual spacecraft charges non-trivial. First, assume that q̃1a and q̃1b from Eqs. (12a) and (12b) are
equal. √

Q̃12Q̃13

Q̃23

=

√
Q̃14Q̃13

Q̃34

(15)

Assuming Q̃13 6= 0 which would yield a trivial non-charged solution, Eq. (15) is simplified to

Q̃12Q̃34 − Q̃14Q̃23 = 0 (16)

Using Eqs. (9)-(11), Eq. (16) is written as(
−3
√

2
10

mρ3 (4 + 5 sin 2θ) + t

)2

−

(
−3
√

2
10

mρ3 (4− 5 sin 2θ) + t

)2

= 0 (17)

Simplifying further yields

6
5
mρ3

(
−5
√

2t+ 12mρ3
)

sin (2θ) = 0 (18)

Thus the quadratic equation in (17) simplifies to a linear equation with one root, which can be solved for t
where the individual charges are unique. Equation (18) is also true when sin 2θ = 0. Thus unique charges
can be found for specific orientation angles of θ = 0◦ and θ = 90◦. Such an orientation corresponds to two
spacecraft aligned along the ôθ axes and the remaining 2 spacecraft aligned along the ôr axes. Solving Eq.
(18), the value of t for which Eq. (15) holds true is

t =
6
√

2
5
mρ3 (19)

The value of scalar t in Eq. (19) ensures that a unique q̃1 is found from the equality constraint in Eq (16).
To prove that the second equality constraint is satisfied, let us explore the third uniqueness condition in Eq.
(12c). Eq. (12c) can also be written as

q̃1c =

√
Q̃14Q̃12

Q̃24

· Q̃13Q̃24

Q̃34Q̃12

=

√
q̃21b ·

Q̃13Q̃24

Q̃34Q̃12

(20)
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Thus it is seen that Eq. (12c) is same as (12b) if

Q̃13Q̃24

Q̃34Q̃12

= 1 (21)

Using the value of scaling parameter t from (19) and Eqs. (10) and (11), Eq. (9) is rewritten as

Q̃ = mρ3



−3
√

2 cos θ sin θ
−3
√

2 cos2 θ
3
√

2 cos θ sin θ
3
√

2 cos θ sin θ
−3
√

2 sin2 θ

−3
√

2 cos θ sin θ


(22)

Using the values of Q̃ij in Eq. (22), Eq. (21) is rewritten as

Q̃13Q̃24

Q̃34Q̃12

=

(
−3
√

2 sin2 θ
) (
−3
√

2 cos2 θ
)(

−3
√

2 sin θ cos θ
) (
−3
√

2 sin θ cos θ
) = 1 (23)

Thus the condition in Eq. (12c) is satisfied and that Eq. (12c) will yield the same q̃1 as Eq. (12b). It is shown
that to obtain a unique spacecraft charge only one equality constraints from Eqs. (12a) - (12c) needs to be
satisfied, as the second one is guaranteed to be true. This argument is only true for a square planar formation
with equal spacecraft masses.

Carefully choosing the value of the null-space scaling parameter t, the number of equality constraints
for unique spacecraft charges are reduced to 1. This method does not take into consideration that unique
spacecraft charges exist for specific orientation angles of θ = 0◦ and θ = 90◦. For θ = 0◦, the charged
products solutions is

Q̃ =



t− 6
5

√
2mρ3

−2
√

2t− 36
5 mρ

3

t− 6
5

√
2mρ3

t− 6
5

√
2mρ3

−2
√

2t+ 24
5 mρ

3

t− 6
5

√
2mρ3


(24)

It is seen from equation (24,) that only 1 equality constraint needs to be satisfied for unique spacecraft charges
as Q̃12Q̃34 = Q̃14Q̃23. The null-space scaling parameter t can be chosen in a manner such that equation (21)
is satisfied. Using the values of charged production in Eq. (24), Eq. (21) is rewritten as

7t2 − 36
5

√
2mρ3t+

936
5
m2ρ6 = 0 (25)

Equation (25) is a quadratic equation. There are two possible values of null-space scaling parameter t where
unique charges can be found for orientation angle θ = 0◦. Solving Eq. (25) the values of t for which unique
spacecraft charges exist are

t1 =
6
5

√
2mρ3 (26a)

t2 = −78
35

√
2mρ3 (26b)

From Eq. (26a) it is noted that the value of null-space scaling parameter t is same as in equation (19). This
implies that it is possible for find real spacecraft charges for orientations other than θ = 0◦ or θ = 90◦.
However if the null-space scaling parameter is used from Eq. (26b), then real charges can only be found for
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θ = 0◦ or θ = 90◦. The steps in Eqs. (24) to (26) are for θ = 90◦. For θ = 90◦, the null-space scaling
parameter for unique charges is the same as in Eq. (26).

Without loss of generality, the steps from Eqs. (12) to (26) can be repeated for the other two planes ôh-ôθ
and ôr-ôh. The formation dynamics in ôh-ôθ is written as

m


−3z1
−3z2
−3z3

0
0

 =



cos θ+sin θ
2
√

2ρ2
cos θ
4ρ2

cos θ−sin θ
2
√

2ρ2
0 0 0

− cos θ+sin θ
2
√

2ρ2
0 0 cos θ−sin θ

2
√

2ρ2
− sin θ

4ρ2 0

0 − cos θ
4ρ2 0 − cos θ+sin θ

2
√

2ρ2
0 cos θ+sin θ

2
√

2ρ2

− cos θ+sin θ
2
√

2ρ2
sin θ
4ρ2

cos θ+sin θ
2
√

2ρ2
0 0 0

cos θ−sin θ
2
√

2ρ2
0 0 cos θ+sin θ

2
√

2ρ2
cos θ
4ρ2 0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(27)

Equation (16) for ôh-ôθ plane is written as

−2
5
mρ3

(
5
√

2t+ 4mρ3
)

sin 2θ = 0 (28)

The value of t for which the unique spacecraft charges is:

t =
−4
5
√

2
mρ3 (29)

Unique spacecraft charges can also be computed for θ = 0◦ or θ = 90◦. The null-space scaling factor t
required for unique spacecraft charges is

t1 = − 4
5
√

2
mρ3 (30a)

t2 =
52

35
√

2
mρ3 (30b)

It is noted that the value of null-space scaling factor in Eq. (30a) is the same as in Eq. (29). Thus real charges
can be computed for any orientation of square in the ôh-ôθ plane. However if the value of scaling parameter
from Eq. (30a) is used, real charges can only be computed for θ = 0◦ or θ = 90◦.

The formation dynamics in the ôr-ôh plane is written as

m


−3x1

−3x2

−3x3

z1
z2

 =



cos θ+sin θ
2
√

2ρ2
cos θ
4ρ2

cos θ−sin θ
2
√

2ρ2
0 0 0

− cos θ+sin θ
2
√

2ρ2
0 0 cos θ−sin θ

2
√

2ρ2
− sin θ

4ρ2 0

0 − cos θ
4ρ2 0 − cos θ+sin θ

2
√

2ρ2
0 cos θ+sin θ

2
√

2ρ2

− cos θ+sin θ
2
√

2ρ2
sin θ
4ρ2

cos θ+sin θ
2
√

2ρ2
0 0 0

cos θ−sin θ
2
√

2ρ2
0 0 cos θ+sin θ

2
√

2ρ2
cos θ
4ρ2 0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(31)

Equation (16) for ôh-ôθ plane is written as

−2
5
mρ3

(
5
√

2t+ 4mρ3
)

sin 2θ = 0 (32)

The value of t for which the unique spacecraft charges can be found is.

t =
4
5

√
2mρ3 (33)
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Unique spacecraft charges can also be computed for θ = 0◦ or θ = 90◦. The null-space scaling factor t
required for unique spacecraft charges is

t1 = − 4
35
mρ3

(
3
√

2− 5
√

29
)

(34a)

t2 = − 4
35
mρ3

(
3
√

2 + 5
√

29
)

(34b)

It is noted that unlike ôr-ôθ and ôh-ôθ planes the value of null-space scaling factor in Eq. (34) is not common
to the scaling parameter for arbitrary orientations. Real charges can be computed for any orientation of square
in the ôr-ôh plane using the scaling parameter in equation (33). If the value of scaling parameter from Eq.
(34b) or (34a) is used, real charges can only be computed for θ = 0◦ or θ = 90◦.

From Eqs. (19),(29) and (33), it is evident that for an arbitrary orientation of a formation in the given
plane, only one set of unique individual charges on the spacecraft exists. Further the value of the scalar t
where these unique charges exist is a constant in a given plane and does not depend on the orientation θ of the
formation within the given plane. However it is also possible to find unique spacecraft charges for specific
orientations of θ = 0◦ or θ = 90◦.

Real Charges

Finding unique spacecraft charges is not a sufficient condition for the formation to exist; the charges on the
spacecraft in a formation also need to be real. In a 3-craft formation, there is only one inequality constraint
for real charges. For a 4-craft formation, there are two additional constraints. Mathematically the conditions
for real charges are expressed as the inequality constraints

Q̃12 · Q̃13 · Q̃23 > 0 (35a)

Q̃12 · Q̃14 · Q̃24 > 0 (35b)

Q̃13 · Q̃14 · Q̃34 > 0 (35c)

For real spacecraft charges in a 3-craft formation the inequality constraint in Eq. (35a) needs to be true. The
additional constraints for real spacecraft in Eqs. (35b) and (35c) need to be satisfied for a 4-craft formation.
Using Eq. (12a) Eq. (35a) can be written as

q̃21 ·
(
Q̃23

)2
> 0 (36)

Assuming the real charge condition in Eq. (35a) is satisfied. We find q̃21 > 0 as Q̃2
23 > 0 for all values of

Q̃23. Similarly equations (35b) and (35c) are expressed as

q̃21 ·
(
Q̃24

)2
> 0 (37)

q̃21 ·
(
Q̃34

)2
> 0 (38)

Because it was already proven that q21 > 0 as Eq. (35a) is true; the other two inequality constraints (35b) and
(35c) are guaranteed to be satisfied. While the individual charge q̃1 is the unique spacecraft charge required
on a formation, the arguments in equations (35a)-(35c) are valid for any 4-craft formation, not just the special
case of the square formation being considered here.

Using the null-space of Q̃ in (9) Eq. (35a) is expanded as a cubic polynomial in terms of the scalar t. The
roots of this polynomial expressed in terms of θ and ρ are

t1 = − 3
5
√

2
mρ3 (1 + 5 cos 2θ)

t2 = 3
5
√

2
mρ3 (2− 5 sin 2θ)

t3 = 3
5
√

2
mρ3 (2 + 5 sin 2θ)

(39)
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Figure 6 Plot of regions where unique spacecraft charges are real

The range of t for which the inequality constraint (35a) is satisfied, can be determined in terms of the roots in
Eq. (39). Wang in Reference 21 exploits the 1-D null-space to parametrize the inequality constraint for real
charges. For the 1-D constrained 3-craft he presents an elegant method for determining the regions of real
charges in terms of the roots in Eq. (35a). Let â, b̂ and ĉ represent Q∗12, Q∗13 and Q∗23 respectively from (10),
using this parametrization and (11), Eq.(35a) can be written down as

f (t) = (â+ t)
(
b̂− 2

√
2t
)

(ĉ+ t) > 0 (40)

Let a, b and c be the roots of the polynomial in Eq. (40), arranged in the following order a > b > c.
An interesting property of the polynomial in Eq. (40) is as lim

t→∞
f (t) < 0 and lim

t→−∞
f (t) > 0. Thus the

inequality constraint in (35a) is satisfied in the region b < t < a and t < c.

Figure 6(a) shows the shape of the general polynomial described by equation (40) and the valid regions of
t where f (t) > 0. Figure 6(b) plots t̃i for 0◦ ≤ θ ≤ 90◦, where t̃i = 5

√
2

3mρ3 ti. The shaded regions show
the range of θ where the individual charges are real. Figure 6(b) also plots the value of null-space scaling
factor for unique charges in equation (26). For a solution to exist, the value of t in (26) and should lie in the
shaded region of the plot in figure 6(b). From the figure we can see for the individual charges to be real and
implementable, the square can be rotated between 0 ≤ θ ≤ 90 degrees from ôr axis for the formation to
be possible. Table 1 shows the order of roots arranged in terms of the orientation of the square in the ôr-ôθ
plane.

θ Order of Roots

0 < θ < 45 t2 > t3 > t1
45 < θ < 90 t2 > t1 > t3

Table 1 Order of Roots depending on angle of orientation for ôr − ôθ plane

The individual charges now can be calculated by substituting in the value of t from (19) in equation (12a)

12
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Figure 7 Plot of θ for real and unique charges.

to get q1 in terms of ρ and θ.

q̃1 =
√

3
√

2mρ3 cos θ (41a)

q̃2 =
√

3
√

2mρ3 sin θ (41b)

q̃3 = −
√

3
√

2mρ3 cos θ (41c)

q̃4 = −
√

3
√

2mρ3 sin θ (41d)

The individual charges found in Eq. (41) are only valid for t = 6
5

√
2mρ3. From figure 6(b) it can be seen that

for θ = 0◦ or θ = 90◦ and t = 6
5

√
2mρ3 unique and real spacecraft charges exist. While θ = 0◦ spacecraft

2 and 4 are aligned along ôθ axis and have no charges acting on them. It is also noted when t = 6
5

√
2mρ3

unique and real charges exist for formation orientations other than θ = 0◦ or θ = 90◦. It is also observed
that when t = − 78

35

√
2mρ3 real spacecraft charges only exist for θ = 0◦ or θ = 90◦. This is true because

θ = 0◦ or θ = 90◦ are the only possible orientations for the unique charges. However in this case the charges
on spacecraft aligned along the ôθ axis is not 0. The individual charges for such a formation are given by

q̃1 = 2

√
3
7

√
mρ3 (42a)

q̃2 = −4

√
6
7

√
mρ3 (42b)

q̃3 = −2

√
3
7

√
mρ3 (42c)

q̃4 = 4

√
6
7

√
mρ3 (42d)

Figures 7(a) and 7(b) show the plots of t̃i vs. θ for ôr-ôh and ôh-ôθ plane respectively. Here the shaded
area indicates the region for real spacecraft charges. The individual charges for ôr-ôh plane can be calculated
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by plugging in the value of t from (33) in Eq. (12a) to get q̃1 in terms of ρ and θ, where 0 ≤ θ ≤ 60

q̃1 = 2
√
mρ3 (1 + 2 cos 2θ) (43a)

q̃2 =
√

2mρ3 (1 + 2 cos 2θ) (43b)

q̃3 = −2
√
mρ3 (1 + 2 cos 2θ) (43c)

q̃4 = −
√

2mρ3 (1 + 2 cos 2θ) (43d)

It is noted that for ôh-ôθ plane that the value of null-space scaling factor in Eq. (34a) does not yield real
spacecraft charges for specific orientations of θ = 0◦ and θ = 90◦. The scaling factor from Eq. (34b) however
allows the computation of real and spacecraft charge. The individual spacecraft charges are computed as

q̃1 =
1267
1122

√
mρ3 (44a)

q̃2 =
1409
678

√
mρ3 (44b)

q̃3 = −1267
1122

√
mρ3 (44c)

q̃4 = −1409
678

√
mρ3 (44d)

From figure 7(b) it is evident that a square formation in ôh-ôθ plane only exists for θ = 0◦ or θ = 90◦. The
individual charges on spacecraft 2 and 4 are zero, as they lie along the ôθ plane. The square formation thus
simplifies to a linear 2-craft formation in ôh plane, solution to which has been discussed by Berryman and
Schaub in reference 12. It is also noted from figure 7(b) that the value of null-space scaling factor in Eq.
(30b) does not yield real spacecraft charges.

4-CRAFT STATIC COULOMB 3-D FORMATION SOLUTIONS

A tetrahedron is the one of the possible three-dimensional formations which satisfies the center of mass
and the principal axes constraint for virtual Coulomb structures. An elegant property of tetrahedron is that the
principal axes of tetrahedron can be aligned arbitrarily, and can be chosen in such a manner that the principal
axes constraint is satisfied. Figure 8 shows the top and front view of a tetrahedron aligned along the ôr axes.
Spacecraft 1 is placed along the ôr axes, the vertex of the tetrahedron. The remaining spacecraft form an
equilateral triangle in the ôh-ôθ plane.

Charged Relative Equilibrium

There are several different attitude descriptions available to represent the orientation of the body frame with
respect to the Hill frame. A sequence of Euler angles is used in the analysis presented here to describe the
orientation of the body frame. A full 3-D rotation of a tetrahedron is quite complex for arbitrary orientations.
Analysis of 2 angle rotation of tetrahedron for a range of the third angle provides a family of solutions for
which a virtual tetrahedron exists. Let ψ, θ and φ represent the rotation angles about ôr, ôθ and ôh axis
respectively. The Hill frame position coordinates of the tetrahedron orientation after a sequential 3-2 Euler

14
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Figure 8 Parametrization of a Tetrahedron

angle rotation and ψ = 0◦ is given by22

ρ1 = ρ

 cos θ cosφ
sinφ cos θ

sin θ

 (45a)

ρ2 =
1
3
ρ

 −cosφ
(
cos θ + 2

√
2 sin θ

)
sinφ

(
−2
√

2 sin θ − cos θ
)

sin θ − 2
√

2 cos θ

 (45b)

ρ3 =
1
3
ρ

 − cosφ
(
cos θ −

√
2 sin θ

)
−
√

6 sinφ√
6 cosφ− sinφ

(
cos θ −

√
2 sin θ

)
√

2 cos θ + sin θ cosφ

 (45c)

ρ4 =
1
3
ρ

 − cos θ cosφ+
√

2 cosφ sin θ +
√

6 sinφ
−
√

6 cosφ− sinφ
(
cos θ −

√
2 sin θ

)
√

2 cos θ + sin θ cosφ

 (45d)

For a three-dimensional formation, there are 12 charged spacecraft equations of motions, 4 each for the
ôr, ôh and ôθ axes. The number of these equations can be reduced by applying the center of mass conditions
and principal axes constraints. For a three-dimensional formation there are 3 center of mass constraints and
3 principal axes constraints, reducing the number of equations to be solved to 6. Applying the center of mass
and principal axes constraint and using Eqs. (5a)−(5c), the formation dynamics can be expressed in matrix
form as

m


0
0
0
z1
z2
−3x1

 =



y1−y2
d312

y1−y3
d313

y1−y4
d314

0 0 0
y2−y1
d312

0 0 y2−y3
d323

y2−y4
d324

0

0 y3−y1
d313

0 y3−y2
d323

0 y3−y4
d334

z1−z2
d312

z1−z3
d313

z1−z4
d314

0 0 0
z2−z1
d312

0 0 z2−z3
d323

z2−z4
d324

0
x1−x2
d312

x1−x3
d313

x1−x4
d314

0 0 0





Q̃12

Q̃13

Q̃14

Q̃23

Q̃24

Q̃34


(46)
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Equation (46) can be expressed in compact form using Eq. (7). The rank of matrix [A] is 6, thus it is a full
rank matrix and a unique solution to Q̃ = [A]−1x is found. It is interesting to note that there is no null-space
to exploit for a tetrahedron formation. There is only a unique set of charged products for the tetrahedron
system expressed as

Q∗ =
1
9
mρ3



−4
√

6
(
3c2θ c2φ+

√
2cθ sθ (5 + 3c2φ)− s2θ

)
−
(√

6 + 5
√

6c2θ + 6
√

6c2θ c2φ− 2
√

3s2θ (5 + 3c2φ) + 36cθ s2φ
)

−
(√

6 + 5
√

6c2θ + 6
√

6c2θ c2φ− 2
√

3s2θ (5 + 3c2φ)− 36cθ s2φ
)√

2
3

(
−3− 9c2φ+ 5c2θ (5 + 3c2φ) +

√
2s2θ (5 + 3c2φ) + 6

√
6cθ sφ+ 24

√
3sθ s2φ

)√
2
3

(
5c2θ (5 + 3c2φ) +

√
2s2θ (5 + 3c2φ)− 3s2φ

(
1 + 3c2θ + 2

√
3
(√

2cθ + 4sθ
)))

−
√

2
3

(
33− 45c2φ+ c2θ (5 + 3c2φ) + 2

√
2s2θ (5 + 3c2φ)

)


(47)

Angles θ and φ are used to represent the orientation of the tetrahedron in space. The third angle ψ is set
to 0◦ to simplify these algebraic expressions. The charged product solution depends on the orientation of
tetrahedron vertex.

Unique Individual Charges

From equation (9) it is seen that the charged products for a planar formation depend on the null-space of the
system. The null-space can be exploited to find specific charged products which result in unique spacecraft
charges. For a three-dimensional formation there is only a unique set of charged products, which depend
on the orientation of the tetrahedron in the space. This differentiates the analysis of a three-dimensional
formation to that of a planar formation. The analysis presented here determines the conditions for unique
spacecraft charges for ranges of three-dimensional tetrahedron attitudes.

A tetrahedron can be broken into triangular loops as shown in figure 5, focused on spacecraft position 1
to compute the charge on spacecraft 1. The charge on spacecraft 1 can be computed as shown by Eqs. (12).
For the planar formation the charged product solutions contains a 1-D null-space which yields infinity of
potential Q̃ij solutions. By carefully choosing the value of the scaling parameter t it was shown that only one
equality constraint from Eq. (12) is needed for unique spacecraft charges. With no null-space to exploit in a
three-dimensional formation, the charge on spacecraft 1 q̃1, should be unique to all the three loops in figure
5. Mathematically this condition is represented as

Q̃12Q̃34 − Q̃14Q̃23 = 0 (48a)

Q̃13Q̃24 − Q̃14Q̃23 = 0 (48b)

For a planar square formation if one equality constraint is satisfied, the other constraint is guaranteed to be
satisfied as well. For a three-dimensional formation there are two equality constraints that need to be satisfied
for unique spacecraft charges. The conditions on φ and θ must satisfy the equality constraints in (48a) and
(48b) to obtain a unique spacecraft charge q̃1. Using Eq. 47, the equality constraints in (48) are written as

64
27
m2ρ6

(
3c2φ− 2

√
3cφ sφ

(√
2cθ + sθ

)
+ 3sθ s2φ

(
2
√

2cθ − sθ
))

= 0 (49a)

256
9
m2ρ6cφ sφ

(√
2cθ + sθ

)
= 0 (49b)

From Eqs. (49a) and (49b), it is seen that regions where unique spacecraft charge exists are not intuitive.
Figure 9(a) presents the contour plots for the equality constraints in Eqs. (49a) and (49b). Equation (49a)
in figure 9(a) corresponds to constraint I and equation (49b) is represented by constraint II. The regions of
unique charges are indicated by the points of intersection of two equality constraints. It is evident from figure
9(a) that unique charges on a tetrahedron exist for φ = 90◦ or φ = 270◦. Such an orientation corresponds to
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Figure 9 Range of θ and φ for real and unique spacecraft charges for ψ = 0◦

the vertex of the tetrahedron aligned with the ôθ direction, and the remaining spacecraft form an equilateral
triangle in ôr-ôh plane. The spacecraft 1 is aligned with ôθ axis for φ = 90◦ or φ = 270◦ only if ψ = 0◦.
Unique charges also do exist for other tetrahedron orientations, where the spacecraft is not aligned along ôθ
axis.

Real Spacecraft Charges

As in case of a planar formation, finding the regions where the uniqueness conditions are satisfied is not
sufficient for a virtual Coulomb structure. The individual charges on a spacecraft should also be real. The
mathematical conditions for real charges used for planar formations in Eq. (35) are used for the tetrahedron
formation. The inequality constraints in (35) imply that for each of the loops in the tetrahedron the individual
spacecraft should be real. It was noted that for a 4-craft formation, if a unique charge q̃1 exists, only one
inequality constraint in Eq. (35) needs to be satisfied. Figure 9(b) shows the contour plot of the inequality
constraint for real charges in Eq. (35a)

From figure 9(b) is it seen that individual charge q̃1 on spacecraft 1 is real while the spacecraft is aligned
with the ôθ axis. It is also seen that real charges are possible for orientations other than φ = 90◦ or φ = 270◦.
Such orientations lie on the contours of the inequality constraint. This implies that the inequality constraint
in equation (35a) is equal to 0 and one of the spacecraft charges is also 0. Thus the tetrahedron formation
is reduced to a 3-craft equilateral triangle in ôr- ôh plane. The analytic solution for the 3-craft formation is
developed rigorously in reference 12 .

The analysis presented here assumes that ψ = 0◦. Figure 10 shows the conditions for real and unique
spacecraft charges on φ and θ, for different values of ψ. From the figure 10 it is seen that orientations for
unique charges are only possible when the inequality constraint in Eq. (35a) is equal to 0. This implies one
of the spacecraft charges is 0, and the formation simplifies to a 3-craft equilateral triangle formation.

The analysis of the three-dimensional tetrahedron formation assumed that the spacecraft have equal masses.
It is however possible to have a tetrahedron formation oriented arbitrarily in space with variable mass. Anal-
ysis of the tetrahedron formation with variable mass needs to be addressed by future research work.
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CONCLUSION
Coulomb thrusting offers an attractive solution as a controller in close proximity flying scenarios. Coulomb

propulsion has no thruster exhaust and no damage occurs to near-by spacecraft. Coulomb thrusting also has
the advantages of being essentially propellant-less and massless.

Analytical tools for determining the charge solution for static a 4-craft formation are discussed. Analytic
solutions extend the work done on 2 and 3-craft formation and present an analysis on a 4-craft formation.
For a 4-craft formation the issues of unique spacecraft charges and multiple real-charge inequality constraints
arise for the first time.

Analytical charge solutions are investigated for a square Coulomb structure. The square formation is
parameterized in terms of the radius ρ and orientation angle θ for any principal orbit plane choice. The
range of angle θ where unique and real spacecraft charges exist are identified. Criteria are also presented for
computing unique and real spacecraft charges. With a planar formation the charged products are a function
of the null-space. By carefully choosing the null-space scaling parameter, the equality constraints for unique
spacecraft charges is reduced. The solutions to the individual spacecraft charges is provided.

The paper also presents the analysis of a 3-D tetrahedron formation where all spacecraft have the same
mass. The real and unique charge criteria are numerically investigated for arbitrary cluster orientations. The
results indicated that only trivial solutions are possible with constant charges where one of the craft has zero
charge and is located on the along-track axis.
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