
Interplanetary Trajectory Development

by

Thomas Reed Reppert

Honors Thesis submitted to the Aerospace Engineering Department Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE
Honors Baccalaureate

APPROVED

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hanspeter Schaub, Research Advisor, Aerospace and Ocean Engineering

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Christopher D. Hall, Co-Advisor, Aerospace and Ocean Engineering

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kevin A. Shinpaugh, Committee Member, Aerospace and Ocean Engineering

This student has fulfilled the requirements of the
Aerospace Engineering Department to graduate Honors Baccalaureate

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Madhu B. Kapania, Honors Advisor, Aerospace and Ocean Engineering

May 2007
Blacksburg, Virginia



Abstract

Given the costly nature of interplanetary travel, it is important to be able to model accurately
a spacecraft’s trajectory. Accurate transfer models help to keep the mission fuel budget as
low as possible and provide a good starting point for mission operations ground teams. The
particular transfer orbit analyzed in this paper is that of a spacecraft traveling from Earth to
Mars. The gravitational influences of the sun, Earth, and Mars upon the spacecraft are taken
into account for the entire time of flight; thus, this application is termed the restricted four-
body problem. A Runge-Kutta integrator is built and used to propagate the non-Keplerian
trajectory of the spacecraft. The planets’ orbits are initially modeled as circular, but this
restriction is eventually relaxed. All interplanetary motion discussed in this paper is planar,
although the modeling concepts developed may be extended to three-dimensional motion.
Once the spacecraft’s equations of motion are derived, they are then integrated to model a
Hohmann transfer from Earth to Mars. Sensitivity correction schemes are used to achieve
desired arrival orbit geometries for the Hohmann transfer. Finally, the continuation method
is used to alter both the spacecraft’s time of flight and Mars’ heliocentric eccentricity. As
such, this paper provides a detailed discussion of several optimization techniques that may
be used to accurately model interplanetary trajectories.
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Nomenclature

a Semi-major axis
A Nonlinear operator
[A] Coefficient matrix
c Chord length
da Perpendicular miss distance of the arrival orbit
de Error in miss distance calculation
d∗ Desired miss distance
e Eccentricity
g Integration time step
G Universal gravitation constant
h Angular momentum
i Iteration counter
[I] Identity matrix
k Spring constant
L Auxiliary linear operator
m Point mass
n Mean orbit rate
N Continuation method maximum iterations
p Semilatus rectum
P Transfer orbit period
r3 Arrival orbit periapsis radius
r3e Error in periapsis calculation
r Orbit position
r3 Earth’s mean heliocentric orbit radius
r4 Mars’ mean heliocentric orbit radius
t Orbit time
v Heliocentric velocity
x(t) Generic state vector
y(t) Spacecraft state vector

α Continuation method step parameter
β Sensitivity optimization weight parameter
δx(t) Error vector
∆t̂ Current integration time
∆t̃ Desired integration time
ε Sensitivity perturbation value
φ Increment function
Φ Departure burn angle
[Φ(t, t0)] State transition matrix
γ Phase difference between Earth and Mars
λ Eigenvalue of the coefficient matrix
µ Gravitational coefficient

iii



ν Planet-relative velocity
ϑ Planet-relative heading angle
σ Heliocentric heading angle
τ Continuation parameter
ωn Natural frequency
ξ Stopping criterion

iv
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Chapter 1

Development of the Restricted
Four-Body Problem

1.1 Introduction

A Hohmann transfer is an interplanetary mission that requires a change in true anomaly of
180 degrees. It is a particular type of minimum energy transfer orbit. In fact, the Hohmann
transfer is an interplanetary mission that requires a minimum initial burn in order to reach
the foreign planet.[2] The Hohmann is commonly used to transfer from one circular orbit to
another. Thus, it is an attractive option for designing future missions from Earth to Mars.

Analytic solutions relating the planets’ mean heliocentric orbit radii to the required depar-
ture burn have already been established.[13] These equations were developed chiefly through
the application of conservation laws, including the conservations of both angular momen-
tum and energy. But these solutions only provide a rough estimate of how to reach Mars’
sphere of influence. We desire a higher fidelity method for estimating the required initial
burn. In addition, we seek a method which allows us to alter the departure orbit geometry
and to analyze the effects upon the arrival at Mars. The analytic Hohmann solution fully
disregards the gravitational influences of both Earth and Mars. By failing to consider the
spacecraft’s departure and arrival orbits, this solution only provides a preliminary estimate
of the required departure burn.

The patched-conic approximation has thus been developed as a more accurate solution
to interplanetary transfer description. It involves partitioning the overall transfer into dis-
tinct conic solutions. For instance, as a spacecraft travels from Earth to Mars, its orbit
is approximated as a hyperbolic departure, an elliptic transfer, and a hyperbolic arrival.
The patched-conic approximation breaks the entire orbit down into several two-body prob-
lems. In other words, only one celestial body’s influence is considered to be acting upon the
spacecraft at all times. This approximation provides a much better understanding of the
relation between the departure orbit and the overall transfer than the analytic Hohmann
solution. However, the patched-conic approximation is still limited in that it only considers
the gravity of one celestial body at a time. During a true Hohmann transfer from Earth to
Mars, the sun will have some minute gravitational effect upon the spacecraft during both
the departure and arrival orbits. A numerical integrator is necessary in order to take such
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smaller perturbations into account.
When looking to design a real-time interplanetary mission from Earth to Mars, we seek a

higher fidelity orbit description than the patched-conic approximation. Thus, we introduce
the restricted four-body problem, which offers a more precise representation of the transfer
orbit. The restricted four-body problem, applied to a Hohmann transfer from Earth to
Mars, considers the gravitational influences of Earth, the sun, and Mars at all times. Thus,
unlike the patched-conic approximation, this orbit integration scheme allows us view the
direct effect of altered initial conditions upon the hyperbolic arrival orbit. Perhaps most
importantly, the restricted four-body problem presents a method of analyzing a highly non-
linear transfer orbit without breaking the actual orbit into separate parts.

1.2 Patched-Conic Approximation

The patched-conic approximation offers an efficient method for developing interplanetary
orbits. By partitioning the overall orbit into a series of two-body orbits, it greatly simplifies
mission analysis. For instance, the initial part of an interplanetary voyage may be approxi-
mated as a hyperbola with the departure planet at the focus. Once the spacecraft leaves the
departure planet’s sphere of influence, the orbit may be approximated as an ellipse whose
focus is centered at the sun. Once the vehicle enters the arrival planet’s sphere of influence,
the orbit may again be approximated as hyperbolic, with its focus now centered at the arrival
planet. For each of the three portions of the orbit, one gravitational force is assumed to be
acting upon the spacecraft at a time.[2]

To illustrate the efficiency of the patched-conic approximation, we partition the standard
Hohmann transfer of a spacecraft traveling from Earth to Mars into three separate conic
stages. During the initial portion of the voyage, we approximate the transfer as a hyperbolic
departure orbit with its primary focus positioned at the center of the Earth. After escaping
the Earth’s sphere of influence, the spacecraft then enters its elliptic orbit about the sun.
Following this second stage, the spacecraft enters Mars’ sphere of influence. Once again, we
approximate the motion as a hyperbolic orbit, this time with its focus located at the center
of Mars. All portions of the transfer orbit are assumed to be planar. Because each portion
of the voyage is considered a two-body problem, there is never more than one gravitational
force acting upon the spacecraft at a given time.

1.2.1 Establishing the Initial Offset Angle

If the spacecraft is to intercept Mars after its transfer, there needs to exist some specific
offset angle γ(t1) between Earth and Mars at the initial time t1. Figure 1.1 illustrates the
Hohmann transfer orbit from Earth to Mars. Note that time t1 corresponds to the instant
at which the spacecraft leaves Earth’s sphere of influence, while time t2 denotes the instant
when the craft enters Mars’ sphere of influence. If n3 denotes the mean Hohmann orbit rate,
then the Hohmann transfer period is given by

P =
1

2

2π

n3
= π

√
a3
3

µS
(1.1)
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Figure 1.1: Illustration of the Hohmann Transfer. The Hohmann is a minimum-energy
transfer orbit.

where a3 is the semi-major axis of the transfer orbit, as shown in Figure 1.1. Taking the
value of a3 from the constants listing, the transfer period P is determined to be 258.979
days. Because Mars travels a distance n4P during the spacecraft’s travel, the initial phase
difference between Earth and Mars must be

γ(t1) = π − n4P (1.2)

where n4 corresponds to Mars’ mean orbit rate. Using the value of n4 given in the constants
listing, the initial offset angle for the Hohmann transfer is found to be 44.343 deg.

1.2.2 Determining the Heliocentric Departure Velocity

The typical application of the patched-conic solution is to determine approximately what
∆v is needed to complete a certain transfer mission. This method is most accurate in
establishing the magnitude of the ∆v, as opposed to its direction or timing. We first seek the
necessary heliocentric velocity v1 as the spacecraft leaves the Earth’s sphere of influence. This
particular velocity is illustrated in Figure 1.1. The v1 necessary to complete the Hohmann
transfer may be computed as

v1 =

√
2µS

r3 + r4

(
r4
r3

)
(1.3)

where µS denotes the sun’s gravitational coefficient, r3 denotes the Earth’s mean orbit
radius, and r4 denotes Mars’ mean orbit radius. For a complete derivation of Equation
(1.3), consult Schaub and Junkins.[13] Using the quantities for µS, r3, and r4 given in the
constants listing, the heliocentric velocity v1 is computed to be 32.715 km/s. Once the
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heliocentric departure velocity is calculated, ∆v1 may be computed as

∆v1 = v1 − v3 = v3

(√
2r4

r3 + r4
− 1

)
(1.4)

where v3 is the Earth’s mean heliocentric velocity, as shown in Figure 1.1. Because r4 > r3,
the resulting ∆v1 will be positive. Using the value of v3 in the constants listing, the ∆v1 for
the Hohmann transfer is calculated as 2.943 km/s. After performing the ∆v1, the spacecraft
leaves Earth’s sphere of influence and enters into its elliptic orbit about the sun. During this
portion of the mission, the sun is the only celestial body considered to be influencing the
motion of the spacecraft. At the end of the Hohmann transfer, the spacecraft enters Mars’
sphere of influence and begins its hyperbolic arrival orbit. The departure and arrival orbits
will now be considered.

1.2.3 Leaving Earth’s Sphere of Influence

The following discussion offers a closer examination of how the spacecraft escapes Earth’s
sphere of influence. Figure 1.2 offers an illustration of the departure. Note that time t0 corre-

Φ

0
r

C
ν

0
ν∆

0
ν

1
ν

1
υ

1
r

sun

hyperbolic

asymptote

Earth’s sphere

of influence

1
υ

Figure 1.2: Illustration of the Hyperbolic Departure. The spacecraft escapes Earth’s
sphere of influence and attains the heliocentric velocity v1.

sponds to the spacecraft’s departure from the initial parking orbit, while time t1 again corre-
sponds to the instant at which the spacecraft escapes Earth’s sphere of influence. Throughout

4



the following analysis, heliocentric velocities are expressed as vi, while planet-centric veloci-
ties are denoted as νi. In an attempt to leave Earth’s sphere of influence, either a parabolic
or hyperbolic orbit is necessary. But because the spacecraft is required to converge to some
velocity v1 as it leaves Earth’s sphere of influence, the departure orbit must be hyperbolic.
The necessary Earth-relative velocity ν1 at the limit of the sphere of influence is computed
as

ν1 = v1 − v3 (1.5)

Thus, the corresponding Earth-relative velocity ν1 for the Hohmann transfer is 2.943 km/s.
We can also use the vis-viva equation[13] to determine the Earth-relative velocity ν1 as

ν1 =

√
2µ3
r1

− µ3
ah

≈
√
−µ3

ah

(1.6)

where µ3 denotes the Earth’s gravitational coefficient and ah corresponds to the semi-major
axis of the departure hyperbola. We approximate r1 ≈ ∞ due to the assumption that the
spacecraft trajectory asymptotically approaches its limiting value at time t1. Therefore, we
can relate the departure hyperbola’s semi-major axis to either ν1 or v1 via

ah =
−µ3
ν2

1

= − µ3
(v1 − v3)2

(1.7)

Because ν1 equals 2.943 km/s, we find the hyperbolic semi-major axis ah to be -46010 km.
Using the vis-viva equation once again, the Earth-relative speed ν0 that the vehicle must
have in order to initiate the hyperbolic transfer orbit at t0 becomes

ν0 =

√
2µ3
r0

− µ3
ah

(1.8)

where r0 denotes the spacecraft’s initial parking orbit radius about the Earth. After substi-
tuting the relation for ah given in Equation (1.7), the speed ν0 is expressed as

ν2
0 = ν2

1 +
2µ3
r0

(1.9)

At this point, it is important to note that once ν1 and r0 are chosen for a particular mission,
the corresponding patched-conic approximation for ν0 is set. However, because ν1 is deter-
mined via the semi-major axis of the elliptic transfer orbit, we truly set ν0 with our choices
of a3 and r0. Throughout the remainder of Chapter 2, we consider the value of a3 given in
the constants listing (1.8877e+008 km), as well as an initial parking orbit radius r0 of 7500
km. Using these values, we find a corresponding ν0 of 10.722 km/s.

In order to maintain its initial parking orbit about Earth, the spacecraft has a critical
speed of

νc =

√
µ3
r0

(1.10)

which is calculated to be 7.290 km/s given the previous values of µ3 and r0. Thus, in order
to begin the hyperbolic transfer, the initial burn required is given as

∆ν0 = ν0 − νc =
√

2ν2
c + ν2

1 − νc (1.11)
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As shown in Figure 1.2, the point where the initial ∆ν0 burn must be applied is defined
via the angle Φ. For any transfer to an outer planet, the spacecraft’s velocity should asymp-
totically align itself with the Earth’s heliocentric velocity. Thus, the burn angle Φ may be
determined from the geometry of the departure hyperbola as

Φ = cos−1

(
1

eh

)
+ π (1.12)

where eh refers to the eccentricity of the hyperbolic departure orbit. For a complete derivation
of Equation (1.12), refer to Bate, Mueller, and White.[1] In order to find the departure
eccentricity, we analyze the orbit’s angular momentum. Referring to the definition of angular
momentum, as well as the orbit geometry, we find that

h2
h = µ3p = µ3ah(1− e2

h) = µ3rp(1 + eh) (1.13)

where hh denotes the angular momentum of the departure orbit, p refers to the departure
semilatus rectum, and rp represents the radius at periapsis. But because the burn point at
time t0 is the periapsis point of the departure hyperbola, we know that r0 = rp. Therefore,
the angular momentum can also be expressed as

h2
h = r2

0ν
2
0 (1.14)

Relating Equations (1.13) and (1.14), we we can now express the departure orbit eccentricity
as

eh =
r0ν

2
0

µ3
− 1 =

r0ν
2
1

µ3
+ 1 (1.15)

Using the previously stated values of r0 and ν0 (7500 km and 10.722 km/s, respectively), the
departure eccentricity eh is given as 1.163. It is important to note that all hyperbolic orbits
must have an eccentricity greater than one. Finally, referring back to Equation (1.12) and
using the calculated value of eh, we find the initial burn angle Φ to be roughly 211 degrees.

The patched-conic solution analytically approximates the required velocity ν1 at the
Earth’s sphere of influence necessary to begin the Hohmann transfer to Mars. More rigorous
details, such as the effect of the distance between the spacecraft velocity direction and the
Earth’s heliocentric velocity direction on the orbit, require the use of numerical integration
techniques. These techniques will be introduced in Chapter 3.

1.2.4 Entering Mars’ Sphere of Influence

The following section presents the patched-conic approximation of how the spacecraft enters
Mars’ sphere of influence. Figure 1.3 offers an illustration of the arrival orbit. It is typical for
any spacecraft traveling to an outer planet to enter that planet’s sphere of influence ahead
of the planet. The spacecraft reaches the outer planet at the apoapsis of the transfer orbit.
Therefore, the spacecraft’s speed will be less than that of the planet, allowing the planet
to overtake it. Once again, using the vis-viva equation,[13] we find the heliocentric arrival
velocity v2 of the spacecraft to be

v2 =

√
2µS

(
1

r4
− 1

r3

)
+ v2

1 (1.16)
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Figure 1.3: Illustration of the Hyperbolic Arrival. The spacecraft enters Mars’ sphere
of influence with the heliocentric velocity v2 as it approaches the periapsis radius r3.

Given the previous calculation of v1, we find v2 to be 21.471 km/s for the transfer to Mars.
In general, the spacecraft’s heliocentric velocity will be tangent to that of the Earth when it
begins the Hohmann. But when it arrives at Mars, it will most likely cross Mars’ sphere of
influence with some heading angle σ2.[1]. In order to compute the σ2 heading angle between
the sun-normal direction and the craft’s heliocentric velocity, we again recall the formal
definition of angular momentum as

h = r × v (1.17)

Assuming that the radius of Earth’s sphere of influence is negligible compared with the major
heliocentric orbit axis, we find he = r3v1. As the spacecraft enters Mars’ sphere of influence,
its angular momentum can also be given as

he = |r4 × v2| = r4v2 sin(
π

2
− σ2) = r4v2 cos(σ2) (1.18)

Thus, we find the heading angle relative to the sun normal direction to be

σ2 = cos−1

(
he

r4v2

)
= cos−1

(
r3v1

r4v2

)
(1.19)

The heading angle corresponding to the Hohmann transfer is determined to be roughly 0
degrees. For a perfect Hohmann transfer, the value of σ2 would be exactly equal to 0 degrees.
To compute the spacecraft’s Mars-centric velocity vector ν2, Mars’ heliocentric velocity must
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be subtracted from that of the spacecraft:

ν2 = v2 − v4 (1.20)

Via the law of cosines, the magnitude of ν2 is calculated as

ν2 =
√

v2
2 + v2

4
− 2v2v4 cos σ2 (1.21)

which yields a value of 2.648 km/s for the given Hohmann. The heading angle ϑ2 between
the v2 and ν2 velocity vectors is roughly 180 degrees for the Hohmann transfer, where Figure
1.4 offers an illustration of the triangular geometry. For a perfect Hohmann transfer, the

2
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ν

2
ϑ

2
υ

Mars’s sphere

of influence

M
υ

sun

2
σ

Figure 1.4: Illustration of the Arrival Heading Angles. The spacecraft’s trajectory is
described using two heading angles upon its entrance into Mars’ sphere of influence.

value of ϑ2 would be exactly 180 degrees.
Identical to the process used for the departure orbit, we use the energy (vis-viva) equation

to determine the semi-major axis of the arrival orbit through

1

ah

=
2

r2

− ν2
2

µ4
(1.22)

Making the patched-conic assumption that the spacecraft’s approach orbit is hyperbolic, we
approximate ah as

ah = −µ4
ν2

2

(1.23)

where r2 ≈ ∞. If the Hohmann orbit were perfect, the spacecraft would directly hit the
Martian surface. To avoid this occurrence, the hyperbolic arrival trajectory is aimed such
that it will miss Mars by some miss distance dm, as shown in Figure 1.3. However, from
the spacecraft’s perspective, it is easiest to estimate the shortest distance da between the
approach asymptote and Mars, given by

da = dm sin(ϑ2 + σ2) (1.24)
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Similar to the departure orbit, we examine the spacecraft’s constant angular momentum in
order to determine the arrival eccentricity. Figure 1.3 illustrates how the angular momentum
simplifies to

hh = |r2 × ν2| = daν2 (1.25)

Substituting Equation (1.25) into Equation (1.13), we find the hyperbolic eccentricity eh as

eh =

√
1 +

d2
aν

4
2

µ4
(1.26)

Finally, the periapsis radius rp of the arrival orbit can be calculated by substituting Equation
(1.23) into the angular momentum expression of Equation (1.13) as

rp =
µ4
ν2

2

(eh − 1) (1.27)

The transfer mission is usually designed in such a way that the periapsis radius is equiva-
lent to the final parking orbit radius. Thus, the final orbit radius about Mars is uniquely
determined once both the eccentricity eh and arrival speed ν2 are given. Because eh depends
upon the miss distance, the arrival is actually set with prescribed values of dm and ν2.

1.3 Restricted Four-Body Problem

In this section, we extend the patched-conic approximation to a restricted four-body problem.
Taking into consideration the gravitational influences of the sun, Earth, and Mars at all times,
we determine the spacecraft’s transfer orbit from Earth to Mars. The motion is not analyzed
with respect to the three separate spheres of influence. Instead, this method incorporates
the gravitational effects of each celestial body even when the spacecraft is beyond the body’s
sphere of influence. The analysis incorporates these comparatively minute effects in order
to better estimate the exact state of the vehicle upon arrival at Mars. All orbital motion
during the transfer is assumed to be planar. Thus, the effects of Earth’s and Mars’ orbit
inclinations are not considered when integrating the spacecraft’s trajectory.

Because the restricted four-body problem is considerably more complex than the two-
body problem, numerical integration is used to develop the spacecraft’s orbit. Integrating
numerically allows for the incorporation of the sun’s, Earth’s, and Mars’ gravitational in-
fluences at all times. After completing the orbit integration, we perform a series of sanity
checks on the results in an attempt to verify their legitimacy. Of particular interest is how
the initial conditions of the four-body setup may be modified in order to achieve the desired
arrival position and velocity. Thus, adjustments in the initial position and velocity data are
made and the effects upon the spacecraft’s arrival at Mars are measured.

1.3.1 Derivation of the Equations of Motion

Application of the n-Body Problem

Before beginning the numerical integration process, we must first derive the equations of
motion that we wish to integrate. Figure 1.5 offers an illustration of the coordinate frames
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Figure 1.5: Coordinate Frames and Position Vectors. Definition of the coordinate
frames and position vectors used to derive the spacecraft’s equations of motion. Note that
the sun-centered frame is inertial.

we use to designate the state of the spacecraft for all time t. The S: {ŝ1, ŝ2, ŝ3} frame is an
inertial frame centered at the sun. Thus, we make the assumption that the sun is stationary
during the spacecraft’s transfer orbit. The E : {ê1, ê2, ê3} frame is a non-rotating frame
centered at Earth. We use this frame to describe the state of the spacecraft with respect to
Earth. In addition, the M: {m̂1, m̂2, m̂3} frame is a non-rotating frame centered at Mars.
In a similar manner, we use the M frame to track the state of the spacecraft relative to
Mars. Now that the coordinate frames have been established, we can express the position
of the spacecraft with respect to the three origins. As shown in Figure 1.5, the spacecraft’s
position with respect to the sun, Earth, and Mars are labeled r1, r2, and r3, respectively.

For a general n-body problem, the total force fi acting upon mass mi, due to the other
n− 1 masses, is

fi = G

n∑
j=1

mimj

r3
ij

(rj − ri) (1.28)

where G is the universal gravitation constant. Note that the term for which i = j is to be
omitted. Newton’s Second Law of Motion states

fi = mi
d2ri

dt2
(1.29)
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Therefore, the n vector differential equations

d2ri

dt2
= G

n∑
j=1

mj

r3
ij

(rj − ri) (1.30)

along with appropriate initial conditions completely describe the motion of the system of
n particles. Consult Battin for the complete derivation of Equation (1.30).[2] With our
restricted four-body assumption, we neglect the gravitational effects of the spacecraft upon
the three celestial bodies. We also treat the two planetary orbits as perfect circles, neglecting
any relatively small deviations from these idealized orbits. Thus, for our specific case, we
can apply Equation (1.30) as

r̈1 +
µS
r3
1

r1 +
µ3
r3
2

r2 +
µ4
r3
3

r3 = 0 (1.31)

where r̈1 represents the second inertial derivative of r1 with respect to time. Also, we have
used the relation

µ = G(m1 + m2) (1.32)

in order to express our equations of motion of the spacecraft in terms of the three gravita-
tional coefficients µi of the celestial bodies. By analysis of Equation (1.31), we see that as
the spacecraft’s trajectory is outside the spheres of influence of Earth and Mars, the second
term will govern. Thus, because the sun’s gravitational coefficient is so much greater than
that of Earth and Mars, the sun will provide the primary gravitational force during most of
the transfer. But when the spacecraft is sufficiently close to either planet (i.e. within their
spheres of influence), the third and fourth terms will govern. The patched-conic approxi-
mation involved a simplified version of Equation (1.31) by assuming the smaller terms for
each portion of the transfer to be zero. But our four-body integrator will take these small
perturbations into consideration in order to achieve a more accurate representation of the
spacecraft’s state development.

Motion of Earth and Mars

As stated earlier, we assume the motion of both Earth and Mars to be circular. Figure 1.6
offers an illustration of Earth’s circular orbit about the sun. We define the angle θ from
the positive ŝ1 direction to the Earth’s position vector r3. Thus, we can express the ŝ1

component of the Earth’s position as

x3 = r3 cos θ (1.33)

Similarly, we find that the ŝ2 component of r3 is

y3 = r3 sin θ (1.34)

In order to express the position of Earth in terms of time t, we can use Earth’s mean orbit
rate as θ = n3t. Finally, we write Earth’s position vector in the S frame as

r3(t) =

Sr3 cos n3t
r3 sin n3t

0

 (1.35)
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Figure 1.6: Earth’s Motion With Respect to the Sun. During the first stages of the
interplanetary transfer analysis, the planets’ motions with respect to the sun are assumed
circular.

where, due to our planar orbit assumption, the third component is always equal to zero.
Using the same method, we find Mars’ position vector expressed in S-frame components as

r4(t) =

Sr4 cos n4 t
r4 sin n4 t

0

 (1.36)

Therefore, we can write the three spacecraft position vectors r1, r2, and r3 as

r1(t) =

Sx1(t)
y1(t)

0

 , r2(t) =

Sx1(t)− r3 cos n3t
y1(t)− r3 sin n3t

0

 , r3(t) =

Sx1(t)− r4 cos n4 t
y1(t)− r4 sin n4 t

0


(1.37)

With all position vectors expressed in the inertial S frame as functions of time, we now
set up the numerical algorithm used to determine the spacecraft’s state vector during the
Hohmann transfer.

1.3.2 Numerical Integrator

We do not have an analytical solution to the restricted four-body problem of a spacecraft’s
Hohmann transfer from Earth to Mars. Therefore, we require a numerical integration tech-
nique in order to estimate the spacecraft’s state vector over time. The integration technique
chosen to perform this task is the Classical Fourth-Order Runge-Kutta Method.[3] We choose
this integrator because Runge-Kutta methods reach the accuracy of a Taylor series expan-
sion without the necessity of computing the higher derivative terms. The generalized form
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of the method is
yi+1 = yi + φg (1.38)

where yi and yi+1 denote the state vector at times ti and ti+1, respectively, and φ is the
representative slope over the current time step g. The increment function φ is expressed as

φ = a1k1 + a2k2 + · · ·+ ankn (1.39)

where the a’s are constants and the k’s are individual slope estimates. Note that vector
notation is used for the state variables and slope estimates. We use this notation because
the Runge-Kutta Method can be used to simultaneously integrate a system of ordinary
differential equations. The spacecraft’s state vector that we integrate for the Hohmann
transfer from Earth to Mars contains six elements, and therefore six simultaneous differential
equations are solved.

We can use different types of Runge-Kutta methods by varying the number of terms in
the increment function φ. The Fourth-Order Runge-Kutta Method (n = 4) has a global
truncation error on the order of g4.[3] Figure 1.7 offers an illustration of one iteration of the
Fourth-Order Runge-Kutta Method. Using this method, we integrate the state variable as

φ

g

it 2/1+it 1+it t

y

1
k

2
k

3
k

4
k

2
k

3
k

1
k

Figure 1.7: Fourth-Order Runge-Kutta Method. Illustration of the calculation of slope
estimates during one iteration of the Runge-Kutta Method.

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)g (1.40)

where
k1 = f(ti, yi) (1.41a)

13



k2 = f(ti +
1

2
g,yi +

1

2
k1g) (1.41b)

k3 = f(ti +
1

2
g,yi +

1

2
k2g) (1.41c)

k4 = f(ti + g,yi + k3g) (1.41d)

and the weighting coefficients of Equation (1.39) have been given the values

a1 =
1

6
, a2 =

2

6
, a3 =

2

6
, a4 =

1

6
(1.42)

Because each of the k’s represents a slope estimate, Equation (1.40) uses a weighted slope
average to more efficiently determine the state vector at the future time ti+1.

At this point, it must be noted that we can use a variable time step in order to improve
the efficiency of the Runge-Kutta integrator. For instance, if the time step is increased
for some portion of the integration, then the ki slope estimates are averaged over larger
changes in time ti+1 − ti during that portion. This variable time step is very convenient
when applied to the restricted four-body problem. As the spacecraft travels through either
Earth’s or Mars’ sphere of influence, it accelerates at a much greater rate than during the
heliocentric portion of the mission. Therefore, it is very computationally efficient to increase
the integration time step g during the heliocentric portion of the transfer orbit. The next
section discusses how to implement the variable time step within the four-body algorithm.

1.3.3 Four-Body Algorithm

This section provides an explanation of the algorithm we use to integrate the spacecraft’s
state over the course of the transfer orbit. For a listing of the MatLab code used to execute
the algorithm, please contact the author. As shown in Equation (1.31), the equations of
motion of the spacecraft are nonlinear. We can express the initial value problem of any
nonlinear system as

ẏ(t) = f(t,y(t)), y(t0) = y0, a < t < b (1.43)

where y0 represents the vector of initial conditions and a and b denote the time limits of
integration.[6] In the case of the Hohmann transfer, the state vector y(t) and its inertial
derivative ẏ(t) are given by

y(t) =


x1(t)
y1(t)

0
ẋ1(t)
ẏ1(t)

0

 , ẏ(t) =


ẋ1(t)
ẏ1(t)

0
ẍ1(t)
ÿ1(t)

0

 (1.44)
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After writing Equation (1.31) as a system of scalar equations and substituting into Equation
(1.44), we find that

ẏ(t) =



ẋ1(t)
ẏ1(t)

0
−µS

r3
1
x1 − µ3

r3
2
x2 − µ4

r3
3
x3

−µS
r3
1
y1 − µ3

r3
2
y2 − µ4

r3
3
y3

0


(1.45)

Thus, we have derived the rate of change of the spacecraft’s state vector as a function
of both its current state y(t) and the current time t. We can now use the Fourth-Order
Runge-Kutta Method to calculate the spacecraft’s state vector over the course of the entire
Hohmann transfer from Earth to Mars.

Once we establish the desired initial conditions and the appropriate time interval for the
integration, we perform an iterative loop. For each time step of this loop, the following
calculations are made:

• Use the current state vector and time to determine the k1 slope estimate via Equation
(1.45).

• 2. Use y(t) and the computed value of k1 to calculate the state at the midpoint of the
interval g as

y(t +
g

2
) = y(t) + k1

g

2
(1.46)

• Use the current time t and the computed state vector at t + g
2

to calculate the new
slope estimate k2.

• Update the state vector at the midpoint of the interval by substituting k2 into Equation
(1.46).

• Repeat this process until all slope estimates k1, k2, k3, and k4 have been determined.

• Calculate the increment function φ as a weighted average of the four slope estimates,
via Equation (1.39).

• Use the current state vector y(t) and the weighted slope estimate φ to calculate the
future state y(t + h) as in Equation (1.40).

We use a variable time step g to increase the speed of integration. The spacecraft acceler-
ation is greatest as it travels through the spheres of influence of Earth and Mars. Therefore,
we set the planet-centric time step gh to a lower value as the spacecraft travels through
each sphere of influence. In fact, to be conservative, we implement the smaller time step
gh whenever the craft is within 1.5 times the sphere of influence of either Earth or Mars.
Using a smaller time step for both the hyperbolic departure and arrival orbits allows us to
accurately integrate the two portions of the transfer that are most sensitive to integration
error. During the heliocentric portion of the trip, we implement a larger time step ge in
order to improve computational efficiency. The integration process does not require as small
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a time step during the elliptic orbit because the craft does not accelerate to the extent that
it does during the hyperbolic orbits. For the specific case of the planar Hohmann transfer
from Earth to Mars, the time step ge can be at least 1000 times greater than gh. Even
with such a large difference between the two time step values, the transfers achieved are
roughly identical to those that result from using the smaller step gh throughout the entire
orbit. Thus, using a variable time step allows us to greatly improve computational efficiency
without sacrificing integration accuracy.

As previously stated, please contact the author to request the MatLab code used to run
the iterative loop. The code contains the functions used to integrate the circular motion
of both Earth and Mars about the sun. Now that we have established how the four-body
integrator works, we check the validity of its output.

1.3.4 Validity Check

Before using the Runge-Kutta integrator to examine the restricted four-body problem, we
first perform a checks upon the integrator results. It must be noted at this point that, unless
stated otherwise, the initial offset angle between Earth and Mars used during integration
is that solved for in section 1.2.1 (44.343 degrees). In order to perform the first check, we
set the initial state of the spacecraft such that it should maintain a relatively circular orbit
about Earth during the entire period of integration. We assign the critical velocity νc of
7.290 km/s at the initial parking orbit radius of 7500 km. Figure 1.8 displays the motion
of the spacecraft relative to Earth during the orbit. As expected, the spacecraft does not
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Figure 1.8: Critical Orbit Integrator Check. Check on a critical orbit about Earth with
an initial altitude of 7500 km. The x and y positions are taken relative to the center of the
non-rotating Earth frame E .
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appear to deviate substantially from an altitude of 7500 km. But we must still focus on a
smaller portion of the orbit in order to determine how much the spacecraft deviates from
an altitude of 7500 km. Figure 1.9 displays a small portion of the nearly-circular orbit for
two different planet-centric step sizes gh. For a step size of 100 seconds, the spacecraft stays
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Figure 1.9: Integration Time Step Validation. Illustration of the variation in altitude
during a critical orbit about Earth. The x and y positions are taken relative to the center
of the non-rotating Earth frame E .

within roughly 40 km of its initial 7500 km orbit radius. But when the step size is halved to
50 seconds, the motion of the spacecraft deviates only 3 km from the 7500 km radius. Thus,
the error accrued in Figure 1.3.4 is most likely round-off error due to the size and precision
limits of the integrator itself. Once the step size is set to 50 seconds, the spacecraft stays
within 0.04 percent of its initial orbit radius. These results seem reasonable, as we expect the
orbit radius to deviate slightly from its initial value due to the small gravitational influences
of the sun and Mars.

After performing a check on the validity of the Runge-Kutta integrator, we now use it
to examine the application of the four-body problem to a Hohmann transfer from Earth to
Mars. We are interested in how the analytical solutions of the patched-conic approximation
compare with the actual output of the integrator. In addition, we determine the effect of
varying the initial conditions upon the development of the transfer. Thus, we can comment
on the advantages and disadvantages of various orbit setups.

1.4 Integration Results

1.4.1 Comparison of the Patched-Conic and Restricted Four-Body
Solutions

As noted in Chapter 1.2, the patched-conic approximation essentially partitions the overall
transfer orbit into three separate two-body problems. During the first portion of the mission,
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we assume that the Earth provides the only gravitational influence upon the spacecraft.
After the craft leaves Earth’s sphere of influence, we then assume the sun to provide the sole
gravitational influence. Once the spacecraft has entered Mars’ sphere of influence, we treat
Mars as the only source of gravitational force.

We first analyze the spacecraft’s motion through Earth’s sphere of influence for both
the patched-conic approximation and the restricted four-body solution. We have already
seen the development of a Runge-Kutta integrator for the restricted four-body problem.
Using the same process, we develop a Runge-Kutta integrator to integrate the spacecraft’s
departure orbit as a simpler two-body problem. Having both the four-body and two-body
integrators, we can compare the spacecraft’s motion for the two cases. We set the initial
parking orbit radius and the elliptic semi-major axis to be 7500 km and 1.8877e+008 km,
respectively. These initial conditions match those used in Chapter 1.2 to apply the patched-
conic approximation to the Hohmann transfer from Earth to Mars. In addition, we set
the time step gh to 50 seconds for the transfer orbit. Figure 1.10 illustrates the integrated
solutions for both the two-body and four-body problems. As shown by Figure 1.10, the
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Figure 1.10: Patched-Conic and Four-Body Motions. Comparison of the patched-
conic and restricted four-body predictions of the spacecraft’s motion through Earth’s sphere
of influence. Positions x and y are relative to the center of the Earth frame E .

patched-conic approximation basically matches the spacecraft motion under the restricted
four-body problem. In both cases, the spacecraft leaves Earth’s sphere of influence with a
heliocentric velocity in the same direction as that of the Earth. Thus, the results support
the patched-conic prediction of a departure velocity v1 parallel to the Earth’s heliocentric
velocity v3.

Using the same initial conditions (r0 = 1500 km, ae = 1.8877e+008 km), we now examine
the spacecraft’s motion during the entire Hohmann transfer. With a step size gh of 50
seconds, we use the Runge-Kutta integrator to calculate the spacecraft’s state over the
transfer orbit. Figure 1.11 displays a plot of the integrated orbit from Earth to Mars.
The patched-conic approximation predicts that the spacecraft’s trajectory will be an perfect
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Figure 1.11: Restricted Four-Body Heliocentric Motion. Illustration of the space-
craft’s heliocentric motion during the entire Hohmann transfer. Step size used with the
four-body integrator is gh = 50 seconds.

ellipse with a semi-major axis ae equal to 1.8877e+008 km. As shown by Figure 1.11, this
is a good prediction when we analyze the motion on heliocentric orders of magnitude. The
spacecraft’s transfer orbit does indeed appear to be almost a perfect ellipse. At this point,
it must be noted that the actual semi-major axis of the transfer will be slightly different
from that used to graph Figure 1.11. The difference comes from the fact that the spacecraft
performs the departure burn at some offset distance from the center of the Earth. The
patched-conic approximation ignores this minute detail, but we will study its effects upon
the arrival orbit in a later section.

We are also interested in the spacecraft’s motion during its arrival orbit through Mars’
sphere of influence. Thus, using the same initial conditions and the same integrator, we plot
the spacecraft’s motion relative to Mars. Figure 1.12 displays the planet-centric trajectory of
the spacecraft. As Figure 1.12 shows, the Hohmann transfer enters Mars’ sphere of influence
at a Mars-centric heading angle ϑ2 that is very close to 180 degrees. If the spacecraft were
on a perfect Hohmann transfer, the ϑ2 heading angle would be exactly equal to 180 degrees,
given its definition in Figure 1.4. It is reassuring to know that the restricted four-body
problem yields a transfer orbit that does enter the Martian sphere of influence. Further, the
heading angle upon entry is very similar to that of a perfect Hohmann transfer. As predicted
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Figure 1.12: Restricted Four-Body Arrival Orbit. Illustration of the spacecraft’s arrival
orbit through Mars’ sphere of influence.

by the patched-conic approximation, the spacecraft enters the sphere of influence from the
front door. In other words, Mars intercepts the spacecraft at the end of the transfer.

Perhaps the most important feature of Figure 1.12 is the similarity between the two
graphs. Halving the planet-centric time step gh from 50 to 25 seconds has roughly no effect
on the spacecraft’s arrival orbit. Therefore, we can set the planet-centric time step to be
at least 50 seconds without sacrificing significant accuracy. For the orbits shown in Figure
1.12, the heliocentric time step ge is maintained at 50000 seconds.

While the spacecraft does stay within Mars’ sphere of influence, it also overshoots the
planet by roughly 4e+005 kilometers. At first, such a result would seem counter-intuitive
The spacecraft actually begins its orbit slightly farther away from the sun than if it were to
begin a perfect Hohmann transfer directly from Earth’s surface. However, as the spacecraft’s
initial position shifts slightly farther away from the sun, we do not alter the calculation of
the initial escape velocity ν0. When we view the problem from the heliocentric point of view,
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we recognize that the spacecraft does not require as much initial speed when beginning the
orbit slightly farther away from the sun. Such a statement can be proved by applying the
conservation of angular momentum to the elliptic heliocentric orbit. Therefore, because we
keep the same ν0 at a larger distance from the sun, the spacecraft is expected to overshoot
Mars by some miss distance dm.

In many respects, the four-body integration supports the patched-conic approximations
given in Chapter 1.2. The hyperbolic departure orbit is identical for the two- and four-body
scenarios. The integrated Hohmann transfer to Mars’ sphere of influence closely matches a
perfect ellipse. Perhaps most importantly, the spacecraft penetrates Mars’ sphere of influence
in same fashion predicted by the patched-conic approximation. The results support the
validity of using the patched-conic approximation as a rough estimate of the ∆v1 needed
to perform the Hohmann transfer. Having compared the two- and four-body problems as
well as their results, we now analyze the effect of changing certain initial conditions of the
transfer orbit. Of particular interest is how the arrival orbit is altered due to the changes in
initial conditions.

1.4.2 Altering the Initial Conditions

Changing the Mars Offset Angle

As discussed in Chapter 1.2, there must exist some initial offset angle γ(t1) between Earth
and Mars. If there were no initial offset angle, the spacecraft would perform the Hohmann
transfer without ever entering Mars’ sphere of influence. Up to this point, we have performed
all numerical integrations with the initial offset angle computed in Chapter 1.2 (44.343
degrees). By changing this initial offset angle, we can examine the effect that it has upon
the hyperbolic arrival orbit. Thus, we perform a series of restricted four-body integrations,
varying this offset angle γ(t1). Figure 1.13 displays a group of arrival orbits for six different
Mars offset angles. The planet-centric step size used to integrate the six different cases is
50 seconds. At this point we are most concerned with the relative geometries of the orbits
depending upon the initial Mars offset angle. As shown by Figure 1.12, a step size gh of 50
seconds is small enough to accurately give us the relative geometries. Figure 1.13 illustrates
that increasing the initial offset angle γ(t1) affects the hyperbolic arrival orbit in two ways.
It noticeably varies the miss distance dm between the spacecraft’s projected trajectory and
the sun direction. As γ(t1) is increased from 44.343 to 44.843 degrees, the miss distance
decreases and the eccentricity of the hyperbolic arrival increases. But for all of these orbit
geometries, the spacecraft orbits Mars in a clockwise fashion. Once γ(t1) surpasses 44.843
degrees, the spacecraft begins performing counter-clockwise orbits about Mars. This effect
is particularly important if we want to ultimately have a geostationary orbit about Mars.
In such a case, we would need to be orbiting Mars in the same direction as the planetary
rotation.

Secondly, the changes in initial offset angle γ(t1) have a slight effect upon the arrival
heading angle σ2 + ϑ2. Note that, as the offset angle is increased from 44.343 to 45.031
degrees, the heading angle decreases from its initial value of roughly 180 degrees. The
reason for this slight decrease in heading angle is that the spacecraft is now penetrating
Mars’ sphere of influence at an earlier time on its Hohmann transfer. Thus, the heading
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(c) γ(t1) = 44.781 deg.
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(d) γ(t1) = 44.843 deg.
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(e) γ(t1) = 44.906 deg.
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(f) γ(t1) = 45.031 deg.

Figure 1.13: Arrival Orbits Corresponding to Initial Offset Angle Variations. Series
of hyperbolic arrival orbits corresponding to six different initial offset angles between Earth
and Mars. The x and y positions are taken relative to the Mars-centered frame M. The
step size gh used is 50 seconds.

angle begins to regress from the ideal value of 180 degrees for a perfect Hohmann transfer.

Changing Mars’ Heliocentric Orbit Radius

As noted in Section 1.4.1, when we use the patched-conic approximation to estimate the
necessary initial conditions for the Hohmann transfer, the arrival orbit overshoots Mars by
roughly 4e+005 kilometers. Therefore, if we want to achieve a certain hyperbolic periapsis
radius r3 about Mars, we must alter at least one initial condition. Referring to the patched-
conic arrival orbit solutions presented in Section 1.2.4, we find that the r3 parking radius
depends upon the miss distance dm and the velocity ν2. Equation (1.24) gives the relation
between the actual miss distance dm and the perpendicular miss distance da. The planar
Hohmann transfer from Earth to Mars will always yield a planet-centric velocity ν2 roughly
equal to 2.648 km/s, as calculated in Section 1.2.4. Thus, to achieve a specific parking orbit
radius about Mars, we can alter the miss distance da until the necessary arrival geometry is
obtained. One way to alter the miss distance da of the arrival hyperbola is to make small
changes in Mars’ heliocentric orbit radius. For instance, if the spacecraft overshoots Mars
by too great a distance, we subtract the extra miss distance from Mars’ orbit radius and
iterate the same Hohmann transfer. Using such a method, we can determine what Martian
heliocentric orbit radius will yield the miss distance da corresponding to our desired parking
radius r3. Figure 1.14 offers a flow chart illustrating the r4 correction process.
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Figure 1.14: Semi-Major Axis Correction Algorithm. Flow chart depicting the loop
used to iteratively correct Mars’ orbit radius r4 in order to achieve the desired arrival parking
radius r3 about Mars.

The advantage of using a variable time step is accentuated when we perform the given
iteration to determine a unique arrival orbit geometry. In performing the iteration, we are
integrating the Hohmann transfer a number of times in order to analyze changes in the
arrival hyperbola. Thus, being able to quickly integrate the heliocentric portion of each
Hohmann transfer is a valuable asset. Figure 1.15 offers an illustration of both the corrected
and uncorrected arrival orbit geometries. For the iterations performed, we set the desired
Mars parking radius r3 to 4000 km. The initial iteration yields a miss distance of roughly
4e+005 kilometers. But after seven iterations are performed, the miss distance is almost
exactly equal to the necessary value dstar of 8142 kilometers. Both graphs of Figure 1.15
show the projection of the ν2 velocity upon entry into Mars’ sphere of influence as a blue
line. We use this projection to then calculate the perpendicular distance to the center of
Mars, corresponding to the actual miss distance da. Table 1.1 offers a listing of the actual
distance da, necessary distance dstar, and distance error derror for each iteration.

Note that by the seventh iteration, the magnitude of derror has dropped below 1 kilometer.
Figure 1.15 illustrates how the seventh iteration yields an arrival orbit with a periapsis
radius r3 of roughly 4000 kilometers. Thus, we have taken the restricted four-body problem
and found one set of initial conditions that result in a desired final parking orbit radius
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Figure 1.15: Semi-Major Axis Correction Results. Illustration of both the uncorrected
and corrected arrival orbit geometries for the Mars orbit radius iteration. Values x and y are
defined relative to the non-rotating Mars frame M. Seven iterations were performed before
achieving the final corrected arrival.

Table 1.1: Semi-Major Axis Correction Scheme Miss Distance Values. Table of miss
distance values calculated during each iteration of the Mars orbit radius correction scheme.

Iteration da, km dstar, km derror, km
1 -4.09519e+005 -8.05389e+003 -4.01465e+005
2 -9.34220e+004 -8.12439e+003 -8.52976e+004
3 -1.95337e+004 -8.13963e+003 -1.13941e+004
4 -9.49786e+003 -8.14167e+003 -1.35619e+003
5 -8.30000e+003 -8.14192e+003 -1.58085e+002
6 -8.16003e+003 -8.14194e+003 -1.80811e+001
7 -8.14283e+003 -8.14195e+003 -8.83155e-001

about Mars. Table 1.1 also offers a listing of the necessary miss distance dstar values for
each iteration. We iterate the necessary miss distance value because the arrival speed ν2

is altered slightly for each new value of the Mars orbit radius. Because the changes in ν2

for each iteration are so small, the magnitude of dstar changes only slightly. By the fifth
iteration, the value of dstar has already reached its approximate final value of -8.1419e+003
km. Figure 1.16 offers a plot of the miss distance error magnitude for the Mars orbit radius
correction process. After three iterations, most of the correction to Mars’ orbit radius r4 has
already been made. Between iterations three and seven, much smaller corrections are made
to Mars’ orbit radius, and the corrections in the error derror are therefore also much less.

Our iteration yields an orbit with a periapsis radius about Mars roughly equal to the
desired value of 4000 km. But the spacecraft rotates about Mars in a retrograde fashion. If
we desire the same periapsis radius, but corresponding to a posigrade rotation about Mars,
we would need to change the necessary miss distance dstar to a positive value. However, in

24



1 2 3 4 5 6 7
10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Iteration i

M
is
s
 D
is
ta
n
c
e
 E
rr
o
r 
d e
rr
o
r M
a
g
n
it
u
d
e
, 
k
m

Figure 1.16: Semi-Major Axis Correction Miss Distance Errors. Graph of the miss
distance error magnitude derror for each step of the Mars orbit radius correction scheme.

doing so, we would need to alter the first correction of Mars’ orbit radius to be sure that the
second iteration does not yield an orbit that strikes Mars’ surface. This singularity would
significantly change the results of the iterative process. One suggestion for iterating to yield
a posigrade orbit is to over-correct the first Mars orbit radius. Once the r4 orbit radius has
been over-corrected, we can then iterate using the method explained in this section to yield
the desired periapsis radius r3.

1.4.3 Comparison of Predicted ∆v Values

So far, we have analyzed three different ways to estimate the necessary ∆v value to travel
from Earth to Mars on a Hohmann transfer. We first view the transfer orbit as a single
elliptic orbit with a change in true anomaly of 180 degrees. Such an approximation treats
the sun as the only gravitational influence upon the spacecraft during the transfer. The
gravitational effects of both Earth and Mars are ignored entirely.

Our second representation of the Hohmann transfer is as a series of two-body orbits about
Earth, the sun, and Mars, respectively. Because we represent each portion of the orbit as a
conic solution, we term this solution the patched-conic approximation. The patched-conic
approximation allows us to take into account the gravity of Earth and Mars as the spacecraft
travels through the planets’ spheres of influence. However, this approximation ignores the
gravitational effects of the planets when the spacecraft is traveling outside of their spheres
of influence. The patched-conic approximation yields a better estimate of the ∆v required
to reach Mars than the simple Hohmann solution. This better estimate results from taking
into account the gravitational influence of Earth as the spacecraft performs its hyperbolic
departure orbit.

The final representation of the transfer orbit is as a restricted four-body orbit. Thus, we
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Table 1.2: Comparison of ∆v Estimates for the Hohmann Transfer. Table showing
the differences in required ∆v estimates for the Hohmann transfer, patched-conic approxi-
mation, and restricted four-body problem. The value of ∆v for the four-body approximation
corresponds to a desired Mars parking orbit radius r3 of 4000 km.

Orbit Approximation ∆v (km/s)
Hohmann Transfer 2.943

Patched-Conic 3.432
Restricted Four-Body 3.428

take the gravity of Earth, the sun, and Mars into consideration for the duration of the entire
transfer orbit. We also examine the effects of altering certain departure orbit conditions
upon the nature of the arrival orbit. More specifically, we determine the required ∆v to
achieve a particular periapsis radius r3 about Mars. Such a calculation cannot be made
when examining the orbit using either the Hohmann approximation or the patched-conic
approximation. Table 1.2 provides a listing of the ∆v estimates corresponding to each of the
three Hohmann transfer representations.

Note that the difference in required ∆v values lies mostly in going from the general
Hohmann approximation to the patched-conic approximation. There exists only a 0.004
km/s difference in the ∆v values for the patched-conic approximation and the restricted
four-body problem. However, integrating the restricted four-body problem allows us to
confirm that this seemingly minute difference allows us to achieve a desired Mars periapsis
radius of 4000 km. Such minute details become extremely important when attempting to
establish a true interplanetary mission plan.

1.5 Conclusions

The original analytic solution to the Hohmann transfer from Earth to Mars offers a crude
estimate of the ∆v required to perform the transfer. Because it neglects the gravitational
effects of both Earth and Mars, this orbit solution cannot achieve the same accuracy as
the patched-conic approximation. However, this simple orbit representation does provide a
suitable rough estimate of the initial burn required to reach Mars’ sphere of influence.

The patched-conic approximation provides a much better estimate of the ∆v required to
reach Mars on a Hohmann transfer. Its consideration of the planets’ gravitational influences
as the spacecraft travels through their spheres of influence makes this solution much more
credible than the simple Hohmann solution. By breaking the entire orbit into three separate
conic solutions, we can begin to see the effects of the departure orbit geometry on both the
elliptic transfer and hyperbolic arrival. However, the patched-conic approximation does not
allow us to alter certain departure orbit conditions and see the direct effect upon the arrival.
Instead, we much solve each of the three conic solutions as separate orbits.

The restricted four-body integration scheme allows us to view the Hohmann transfer
from Earth to Mars as one entire orbit. Thus, while taking into consideration the gravity of
Earth, the sun, and Mars for all time, we can analyze the effects of altering certain initial
conditions upon the arrival orbit. In addition, we can determine the necessary departure burn
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to achieve a desired parking orbit radius r3 about Mars. The patched-conic approximation
does not allow for such precise orbit modeling. Treating the Hohmann transfer as a restricted
four-body problem yields an even higher fidelity representation of the transfer orbit.

One idea for future work is to examine the applicability of the established four-body
integrator to other interplanetary missions. Such missions need not necessarily be Hohmann
transfers. They could also lead to arrivals at a different planet from Mars. The sensitivity
of the four-body integrator to perturbations of these different orbits could then be analyzed.
Still other future work could focus on increasing the accuracy of the presented four-body orbit
modeling scheme. For instance, atmospheric drag is a disturbance that must be considered
for both the departure and arrival orbits. In addition, the planar orbit assumption could
be dropped by taking into account the slight orbit inclination difference between Earth and
Mars. The spacecraft would then have a full three-dimensional state vector to be integrated
over the course of the transfer. In short, much work remains in yielding an orbit modeling
scheme that presents what would actually occur in a real-time transfer from Earth to Mars.
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Chapter 2

Application of Sensitivities to the
Restricted Four-Body Problem

2.1 Introduction

The objective of this chapter is to present the use of sensitivities as a method for developing
interplanetary trajectories. The interplanetary trajectory focused on during this paper is a
Hohmann transfer from Earth to Mars. A restricted four-body setup is used to describe the
motion of the spacecraft. Both Earth’s and Mars’ orbits are constrained to be circular. The
only gravitational forces taken into consideration are those of the sun, Earth, and Mars on
the spacecraft. In addition, all orbits are constrained to be planar. As previously shown by
Reppert, the restricted four-body orbit setup yields a more accurate representation of the
Hohmann transfer than the patched-conic approximation.[10]

The Hohmann transfer was already computed using initial conditions derived from the
patched-conic approximation.[11] This paper presents an analysis of how sensitivities may
be used to refine the initial propagation of the transfer orbit. These refinements are used
to provide desired arrival orbit conditions, such as a chosen Mars periapsis radius. The
sensitivities are computed both analytically and numerically. The analysis provides an ap-
proximation to how perturbations in initial conditions of the departure orbit affect the arrival
orbit geometry. Such information is valuable when trying to attain a particular arrival orbit.

Before assessing sensitivities of the four-body problem, the paper begins with a discussion
of coding the four-body integrator in both Matlab and C. The advantages and disadvantages
of using each language to perform the four-body integration are given. Thereafter, Section 2.3
provides an analysis of state transition matrices and their relation to sensitivity matrices.
The analysis given in Section 2.3 is an introduction to the concept of sensitivities. This
introduction provides preparation for the application of sensitivities to the four-body problem
in Section 2.4.

The two sensitivities that are used to examine the restricted four-body problem are ∂da

∂ν0

and ∂r3

∂ν0
. The variable ν0 is the Earth-relative departure speed, whereas da and r3 are the

arrival miss distance and periapsis radius, respectively. These sensitivities are computed
both analytically and numerically in order to provide a means of attaining a desired arrival
orbit geometry. The convergence performances of the perturbation methods are compared
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by the computation time required to achieve a particular accuracy.

2.2 Converting Code from Matlab to C

Last year, a set of Matlab code was used to propagate the spacecraft’s Hohmann transfer
from Earth to Mars. This set of code is displayed in the appendix of the corresponding
semester report.[11] Using Matlab’s many built-in functions helped make the coding process
easier to understand. However, the user-friendly advantages of coding in Matlab came at a
cost.

The last objective of this past semester’s research was to optimize the Hohmann transfer
from Earth to Mars. In order to perform this optimization, multiple integrations of the trans-
fer orbit were required. As is shown in the semester report, seven iterations of the Runge-
Kutta integration were necessary to reach the stopping criterion for the Martian periapsis
optimization.[11] Computing seven iterations of the orbit took approximately two minutes in
Matlab. It was realized that, in order to compute any lengthier orbit optimizations, coding
in another language would be much more efficient. The C programming language was chosen
as the tool to be used for computing the lengthier optimization problems.

Having a previously developed set of Matlab code allowed for an easier transition to the
C code. If a certain function in C did not provide the expected output, its contents could be
checked in a line-by-line fashion with the corresponding Matlab code. In this manner, a set
of C code was developed to complement the previously developed Matlab code. A listing of
the C code may be requested from the author.

The only critical difference between the contents of the Matlab code and the C code is the
method used to calculate the miss distance da of the arrival orbit. The Matlab code utilizes
the built-in function polyfit to perform a linear regression on the spacecraft’s position
relative to Mars upon entering the sphere of influence. A total of 10 points are used to
calculate the linear fit of the spacecraft’s propagated position.

In contrast, the C code uses the value of the spacecraft’s velocity vector upon entering
Mars’ sphere of influence to calculate the miss distance da. Figure 2.1 provides an illustration
of the geometry. As the spacecraft crosses Mars’ sphere of influence, the its velocity is
propagated tangentially as follows:

ytan = rsy +
νsy

νsx

(xtan − rsx) (2.1)

where rs and vs denote the spacecraft’s position and velocity relative to Mars, respectively.
However, problems can arise when the value of vsy/vsx becomes large. In the case of the
Hohmann transfer, the value of this slope will always be large (as shown in Figure 2.1).
Therefore, a better way to create the tangential extension of the velocity vector is to use
xtan as the dependent variable. The velocity vector is then propagated as

xtan = rsx +
νsx

νst

(ytan − rsy) (2.2)

Equation (2.2) is a more reliable way of calculating the linear extension of the velocity vector.
The value of the slope vsx/vsy is always less than one for the Hohmann transfer.
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Figure 2.1: Setup for the C Miss Distance Calculation. Depiction of the arrival orbit
geometry used to derive the C miss distance da calculation algorithm.

Once the velocity propagation is complete, the perpendicular miss distance da may be
computed as the minimum distance between the center of Mars and the propagated velocity.
This process for calculating the miss distance is more accurate than the process previously
used in the Matlab code. The increase in accuracy is due to using the actual velocity vector
instead of an approximated velocity vector to create the linear fit.

Most importantly, the C code computes the same optimization that took Matlab two
minutes in approximately 10 seconds. This savings in time is critical when attempting to
perform sensitive optimization problems. Matlab is valuable for computing and visualizing
one transfer orbit, whereas C is valuable for calculating multiple transfer orbits in a com-
putationally intense optimization problem. For a listing of the C code used to perform the
sensitivity analyses discussed in Section 2.4, contact the author at treppert@vt.edu.

2.3 State Transition Matrices

Sensitivity matrices provide a description of how perturbations of one variable cause changes
in the value of another variable. The state transition matrix [Φ(t, t0)] is a particular type
of sensitivity matrix that describes how perturbations of an initial state vector r(t0) lead
to changes in the final state vector r(t). The state transition matrix can be seen as the
sensitivity matrix of the current state to the initial conditions. One of the many applications
of this matrix is to calculate how initial trajectory errors evolve over time.[13] This appli-
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cation is later discussed with respect to the interplanetary transfer optimization problem.
Chapter 2.3 presents fundamental state transition matrix theory as it applies to linear, ho-
mogeneous dynamic systems. The theory given is later extended to perform optimizations
of the restricted four-body problem.

2.3.1 Linear, Homogeneous Dynamic Systems

Consider the homogeneous vector-matrix differential equation case:

dx

dt
= ẋ = [A]x, x(t0) = x0 (2.3)

where the coefficient matrix [A] is constant and x(t) is an n-dimensional state vector. Schaub
and Junkins show that, using a Taylor series solution, the x(t) state vector may be computed
in terms of the initial conditions as

x(t) =

(
[I] +

∞∑
n=1

An (t− t0)
n

n!

)
x(t0) (2.4)

The expression between the large parenthesis is exactly the definition of the matrix expo-
nential function.[13] Therefore, the general solution for x(t) may be written as

x(t) = e[A](t−t0)x(t0) (2.5)

Now consider a classical result that, if [A] has distinct eigenvalues, transforms the com-
putation of the matrix exponential function into a trivial exercise. A transformation to a
different n-dimensional state vector η may be written as

x(t) = [T ]η(t) (2.6)

where [T ] is a constant, non-singular n×n matrix. Substituting Equation (2.6) into Equation
(2.3) yields

η̇ = ([T ]−1[A][T ])η (2.7)

Schaub and Junkins show that the matrix multiplication of [T ]−1[A][T ] is diagonal when the
columns of the [T ] matrix are the eigenvectors of [A].[13] This state transformation converts
the originally coupled set of n differential equations into n uncoupled differential equations,
given by

η̇(t) = λiη(t) (2.8)

where each λi is an eigenvalue of [A]. Using the convenient choice of the matrix [T ] allows
for the computation of the matrix exponential function as follows:

e[A](t−t0) = [T ][diag(eλi(t−t0))][T ]−1 (2.9)

where [diag(eλi(t−t0))] is a diagonal matrix with each diagonal entry given using the corre-
sponding eigenvalue λi. The solution for the state transition matrix of the linear, homoge-
neous dynamic system is now applied to the specific case of the spring-mass system.
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2.3.2 Spring-Mass System; Direct Analytical Solution

The equation of motion governing the standard spring-mass system is

mẍ + kx = 0 (2.10)

where m denotes the mass and k is the spring constant. Various methods may be used to
find the analytical solution for x(t) as

x(t) = x0cos(ωnt) +
ẋ0

ωn

sin(ωnt) (2.11)

where x0 and ẋ0 are the initial position and speed, respectively. Differentiating Equation
(2.11) with respect to time yields

ẋ(t) = −ωnx0sin(ωnt) + ẋ0cos(ωnt) (2.12)

where ωn =
√

k
m

is the natural frequency of the spring-mass system. The values of x(t)

and ẋ(t) may be combined into the state vector x(t), which is written in terms of the initial
conditions as

x(t) =

(
x(t)
ẋ(t)

)
=

[
cos(ωnt)

sin(ωnt)
ωn

−ωnsin(ωnt) cos(ωnt)

](
x0

ẋ0

)
(2.13)

Note that Equation (2.13) gives the state vector x(t) in terms of the initial state vector
x0(t) multiplied by a matrix. This matrix is the state transition matrix for the spring-mass
system. Therefore, Equation (2.13) may be written equivalently as

x(t) = [Φ(t, t0)]x(t0) (2.14)

The previous process shows how, for some very simple systems, the state transition matrix
may be derived by solving directly for the state vector x(t) in terms of the initial conditions.
However, not all systems lend themselves to this method of solution. Thus two more robust
methods are used to solve for the state transition matrix of the spring-mass system. The
solutions of the two following methods are compared with the previous solution for [Φ(t, t0)].

2.3.3 Spring-Mass System; State Transformation Solution

The state transition matrix of the spring-mass system may also be determined by computing
the eigenvalues and eigenvectors of the system’s [A] coefficient matrix, as described earlier.
In order to do so, the homogeneous vector-matrix differential equation for the spring-mass
system is written as follows:

Ẋ(t) =

(
ẋ(t)
ẍ(t)

)
=

[
0 1

−ω2
n 0

]
X(t) ≡ [A]X(t), X(t0) = X0 (2.15)

If the [A] coefficient matrix is determined to have distinct eigenvalues, then the computation
of the matrix exponential function for this system is trivial.

32



Before computing the eigenvalues of the spring-mass system, a brief review of the eigen-
value problem is given. This problem is stated mathematically as

[A]s = λs (2.16)

where each λi is an eigenvalue of the [A] matrix. Equation (2.16) may also be written as
follows:

([A]− λ[I])s = 0 (2.17)

If the matrix ([A]− λ[I]) is invertible, then the only solution is s = 0. However, this trivial
solution is not permissible for the eigenvalue problem. The matrix ([A]−λ[I]) must have no
inverse, and therefore its determinant must be zero:

det([A]− λ[I]) = 0 (2.18)

Solving this characteristic equation for the spring-mass system yields two distinct eigen-
values, given as λ1,2 = iωn,−iωn. These eigenvalues are used to solve for the two corre-
sponding eigenvectors of the [A] matrix. While the eigenvalues of the system are unique,
the eigenvectors for a given [A] matrix are not unique. For instance, if x is an eigenvector
of [A], then any constant non-zero multiple of x is also an eigenvector of [A].[6] The two
eigenvectors of the standard spring-mass system are determined to be

s1 =

(
1

iωn

)
, s2 =

(
1

−iωn

)
(2.19)

As previously shown, because the [A] matrix for the spring-mass system has distinct
eigenvalues, the matrix exponential function for the system may be computed as

e[A](t−t0) = [T ][diag(eλi(t−t0))][T ]−1 (2.20)

where, in this case, the two columns of [T ] are the eigenvectors s1 and s2. Thus the state
transition matrix for the spring-mass system is given by

[Φ(t, t0)] = e[A](t−t0) =

[
1 1

iωn −iωn

] [
eiωn(t−t0) 0

0 e−iωn(t−t0)

] [
1 1

iωn −iωn

]−1

(2.21)

where the inverse [T ]−1 is determined to be

[T ]−1 =

[
1 1

iωn −iωn

]−1

=

[
1
2

1
2iωn

1
2

−1
2iωn

]
(2.22)

The reduced state transition matrix for the spring-mass system is calculated as

[Φ(t, t0)] =

[
1
2
(eiωn(t−t0) + e−iωn(t−t0)) 1

2iωn
(eiωn(t−t0) − e−iωn(t−t0))

iωn

2
(eiωn(t−t0) − e−iωn(t−t0)) 1

2
(eiωn(t−t0) + e−iωn(t−t0))

]
(2.23)

Euler’s equation may be used to transform the matrix entries of Equation (2.23) into sine
and cosine format.[4] In this manner, the state transition matrix is written as

[Φ(t, t0)] =

[
cos(ωn(t− t0))

sin(ωn(t−t0))
ωn

−ωnsin(ωn(t− t0)) cos(ωn(t− t0))

]
(2.24)

Note that the state transition matrix of Equation (2.24) matches the matrix of Equation
(2.13) exactly. While this second method used to solve for [Φ(t, t0)] is more time-consuming,
it can be applied to systems for which Ẋ(t) cannot be determined as a function of X(t)
directly.
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2.3.4 Spring-Mass System; Matrix Exponential Solution

One additional way to solve for the state transition matrix of the spring-mass system is to
use the definition of the matrix exponential function to solve for each entry in series format.
The problem is given as follows:

e[A](t−t0) =

(
[I] +

∞∑
n=1

An (t− t0)
n

n!

)
, [A] =

[
0 1

−ω2
n 0

]
(2.25)

Carrying out the series for the (1,1) entry of the state transition matrix yields

[Φ(t, t0)](1, 1) = 1 + 0− (ωn(t− t0))
2

2!
+ 0 +

(ωn(t− t0))
4

4!
+ . . . (2.26)

The series representation of the cosine function is given as[14]

cos(x) = 1− x2

2!
+

x4

4!
+ . . . (2.27)

Thus, by comparing Equations (2.26) and (2.27), it can be seen that, in the limit, the (1,1)
entry of the state transition matrix may be written as

[Φ(t, t0)](1, 1) = cos(ωn(t− t0)) (2.28)

which matches the (1,1) entries of the matrices given in Equations (2.13) and (2.24). In a
similar fashion, the other three entries of [Φ(t, t0)] may be derived from their series repre-
sentations. Their derivations using this method will also yield values that match the entries
given in Equations (2.13) and (2.24). Computing the state transition matrix by carrying out
the matrix exponential function serves as a good exercise in working with series representa-
tions of functions. It also supports the findings of the previous two methods used to solve
for [Φ(t, t0)].

2.3.5 Using State Transition Matrices to Apply Corrections to
Initial Conditions

The state transition matrix provides a way to map perturbations in the initial state into
changes in the final state. The mathematical representation of this mapping is repeated
here:

x(t) = [Φ(t, t0)]x(t0) (2.29)

Note that the state transition matrix may be partitioned into smaller submatrices as follows:

[Φ] =

[
Φ11 Φ12

Φ21 Φ22

]
(2.30)

Let the state vector x be defined as

x =

(
r
ṙ

)
(2.31)
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where ṙ is the inertial derivative of the position vector r. Using these definitions of the state
transition matrix and the state vector, Equation (2.29) may be rewritten as(

r
ṙ

)
=

[
Φ11 Φ12

Φ21 Φ22

](
r0

ṙ0

)
(2.32)

where the initial state vector is composed of r0 and ṙ0. Suppose that, for a particular
system, a change in the position vector r at time t is desired. This problem is applied to
the restricted four-body orbit setup in Chapter 2.4. In order to change r, perturbations in
either r0 or ṙ0 may be used.

Suppose that changing the initial velocity vector is more suitable for the given system.
The effect of perturbing the initial velocity ṙ0 by some value δṙ0 on the final position r is
calculated using the state transition matrix as follows:

δr = [Φ12]δṙ0 (2.33)

Each of the four submatrices that comprise the general state transition matrix may be used
to relate changes in initial conditions to changes in the final state vector. The question of
which submatrix to use depends upon the nature of the particular problem. If changes in
initial position are more feasible than changes in initial velocity, then [Φ11] and [Φ21] are the
two submatrices that should be considered for perturbations in the final state. Chapter 2.4
includes an examination of how to apply this sensitivity analysis to the restricted four-body
problem.

2.4 Sensitivity Analysis of the Restricted Four-Body

Problem

The previous analysis of state transition matrices offers an introduction to the concept of
sensitivities. As is stated in Chapter 2.3, the state transition matrix is the sensitivity matrix
of the current state with respect to the initial conditions. It maps perturbations in the initial
conditions into changes in the final state at time t. This concept of relating changes in initial
conditions to changes in the final state is now extended to the restricted four-body problem.

Chapter 2.4 uses a Hohmann transfer from Earth to Mars as the restricted four-body
system. Reppert provides a detailed explanation of the Hohmann transfer orbit setup.[10]
The orbits of both Earth and Mars are restricted to be circular. In addition, the only
gravitational effects considered are the effects of the sun, Earth, and Mars on the spacecraft.
All motion is constrained to be planar.

This chapter provides an analysis of how changes in the transfer orbit’s initial conditions
affect certain parameters of the Martian arrival orbit. These sensitivities of the Hohmann
transfer are calculated both analytically and numerically. The calculations of the sensitivities
provide an efficient means of estimating the initial conditions required to achieve a desired
arrival orbit geometry.
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2.4.1 Analytical Solution for ∂da

∂ν0

This section presents the development of an analytical approximation to the sensitivity of the
arrival miss distance da with respect to the initial Earth-relative speed ν0. In other words,
perturbations in the velocity ν0 are mapped into changes in the miss distance da. The
process for deriving the ∂da

∂ν0
sensitivity is very methodical. A series of partial derivatives are

used to work backward from the miss distance to the initial Earth-relative speed. Then the
chain rule for differentiation is used to relate each of the separate partial derivatives. The
partial derivatives used to calculate the sensitivity analytically are derived from patched-
conic equations. Therefore, the analytical solution for the sensitivity ∂da

∂ν0
derived in this

section is an approximation to the true non-Keplerian sensitivity. Nonetheless, as is later
shown, the approximate sensitivity provides a sufficient means of calculating the necessary
initial conditions for a desired arrival orbit.

Derivation of the Analytical Solution

The first required partial derivative is that of the miss distance da with respect to the
Hohmann semi-major axis aH . For the Hohmann transfer from Earth to Mars, the chord c
may be approximated as

c ≈ 2aH − da (2.34)

assuming that the spacecraft’s Mars-relative arrival velocity ν2 is parallel to Mars’ velocity
vector v4 . Figure 2.2 provides an illustration of the required arrival orbit geometry. Note
how the miss distance da is treated as a signed scalar. For the Hohmann transfer from Earth
to Mars, the arrival velocity ν2 is always nearly parallel to v4 . Thus Equation (2.34) presents
a good approximation for the problem being studied. Using Equation (2.34), the partial of
the miss distance with respect to the semi-major axis is calculated as follows:

∂da

∂aH

=

(
∂c

∂da

)−1(
∂c

∂aH

)
= (−1)−1(2) = −2 (2.35)

Thus if aH is perturbed by some value n, then the corresponding change in da is predicted
to be -2n.

The next partial derivative to be computed is that of the semi-major axis aH with respect
to the heliocentric departure velocity v1. Figure 2.3 offers an illustration of the hyperbolic
departure orbit. By applying the energy equation at the time t1 (when the spacecraft reaches
Earth’s sphere of influence), the semi-major axis is related to v1 as

aH =
r3µS

2µS − r3v2
1

(2.36)

where r3 is the mean orbit radius of Earth and µS is the gravitational coefficient of the sun.
By Equation (2.36), the partial of aH with respect to v1 is determined to be

∂aH

∂v1

=
2r2
3
v1µS

(2µS − r3v2
1)

2
(2.37)

Continuing to work back to the initial Earth-relative velocity ν0, the next required partial
derivative is that of the heliocentric v1 with respect to the Earth-relative ν1. Both of these
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Figure 2.2: Geometry Used to Approximate the Hohmann Chord Length. Example
of an arrival orbit velocity v2 necessary for the approximation of the Hohmann chord length.

velocities are displayed in Figure 2.3. In order to attain a relation between v1 and ν1, it is
assumed that νs converges parallel to v3 at time t1. Making this assumption, it follows that

v1 = ν1 + v3 (2.38)

Thus the partial derivative ∂v1/∂ν1 is equal to one.
Finally, the partial derivative of v1 with respect to the initial Earth-relative speed ν0 is

computed. In order to do so, the energy equation is applied at time t0. In addition, it is
assumed that r1 ≈ ∞.[10] By applying the energy equation, ν1 is expressed as a function of
ν0 as follows:

ν1 =

√
ν2

0 −
2µ3
r0

(2.39)

where r0 is the initial parking radius of the hyperbolic departure. By Equation (2.39), the
partial of ν1 with respect to ν0 is expressed as

∂ν1

∂ν0

=
ν0√

ν2
0 −

2µ3
r0

(2.40)

In order to determine the partial of the miss distance da with respect to ν0, the four
previously calculated partial derivatives are related using the chain rule for differentiation.
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Figure 2.3: Parameters of the Hyperbolic Departure Orbit. Depiction of the position
and velocity notation used to describe the spacecraft’s hyperbolic departure orbit from Earth.

The process is given as follows:

∂da

∂ν0

=
∂da

∂aH

∂aH

∂v1

∂v1

∂ν1

∂ν1

∂ν0

=
−4r2

3
v1ν0µS

(2µS − r3v2
1)

2

√
ν2

0 −
2µ3
r0

(2.41)

Equation (2.41) gives the analytical solution for the sensitivity of the miss distance da with
respect to the initial Earth-relative velocity ν0. This sensitivity may be used to relate
perturbations in ν0 to predicted changes in da.

Application Using the Four-Body Integrator

The analytical approximation to ∂da/∂ν0 is now applied to the four-body problem using the
previously developed variable step Runge-Kutta integrator.[11] Let the desired miss distance
d∗ correspond to a desired arrival periapsis of 4000 km. Using the patched-conic approxima-
tion, some initial guess for the required velocity ν0 is computed. Reppert previously showed
that this initial guess yields an arrival orbit that penetrates Mars’ sphere of influence. The
current goal is to use the analytical solution for ∂da/∂ν0 to refine ν0 such that it produces
the desired miss distance d∗. Let the miss distance error at a given iteration be defined as

de = da − d∗ (2.42)
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Table 2.1: Error Values Using Analytical ∂da/∂ν0. Listing of the miss distance values
calculated for each step of the correction scheme using an analytical ∂da/∂ν0. Note that the
iterative process stops after the miss distance error |de| drops below 10 km.

Iteration da, km d∗, km de, km
1 -4.09307e+005 -8.05187e+003 -4.01255e+005
2 -9.27212e+004 -8.05187e+003 -8.46693e+004
3 -1.97402e+004 -8.05187e+003 -1.16883e+004
4 -9.49203e+003 -8.05187e+003 -1.44016e+003
5 -8.22640e+003 -8.05187e+003 -1.74537e+002
6 -8.07298e+003 -8.05187e+003 -2.11189e+001
7 -8.05443e+003 -8.05187e+003 -2.56708e+000

where da is the actual miss distance computed using the four-body integrator. By Equation
(2.42), after a given iteration, the applied change in miss distance should be ∆da = −de.
Using the applied change in da, the required perturbation in ν0 is computed as follows:

∆ν0 =

(
∂da

∂ν0

)−1

∆da = −
(

∂da

∂ν0

)−1

de =
(2µS − r3v2

1)
2
√

ν2
0 −

2µ3
r0

4r2
3
v1ν0µS

de (2.43)

Equation (2.43) is used to make corrections in the initial Earth-relative velocity ν0 for each
iteration of the Hohmann transfer. The desired result is an arrival orbit that has a miss
distance da corresponding to a periapsis radius r3 of 4000 km. Because da is a signed scalar,
this application can be used to generate both posigrade and retrograde arrival orbits. If
the arrival orbit direction were not significant, then the desired miss distance d∗ could be
assigned the same sign as da. This process would yield the desired arrival geometry closest
to the initial integrated orbit.

The code used to apply the ν0 correction scheme to the restricted four-body problem is
developed in C. The reasons for programming the iterative process in C are given in Chapter
2.2. On the first iteration of the correction loop, the patched-conic approximation for the
ν0 required to arrive at Mars is calculated. This value is used as the first guess for the
required departure speed. The first iteration also includes a calculation of the desired miss
distance d∗ based upon the specified Mars arrival periapsis r3 (4000 km). Thereafter, for each
iteration, the value of ν0 is corrected using the approximate sensitivity given in Equation
(2.43). The corrections are performed until the difference between the actual miss distance
da and the desired miss distance d∗ is less than 10 km. A limit of 15 iterations is placed
on the correction scheme to avoid excessive computation. Figure 2.4 provides a flowchart
outlining the iterative process that uses the analytical approximation for ∂da/∂ν0 to apply
corrections to ν0.

Using the analytical approximation to the miss distance sensitivity, the system does
indeed converge. As shown by Table 2.1, the miss distance da converges to within 10 km
of the desired miss distance d∗ after seven iterations. It is important to note that the value
of d∗ never changes throughout the iterative process. The desired periapsis radius r3 and
the overall Hohmann orbit geometry are the two main factors that affect the computation
of d∗. Because the patched-conic approximation is used to derive a relation for d∗, the
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Figure 2.4: Correction Scheme Using Analytical ∂da/∂ν0. Flowchart describing the
iterative process used to apply the analytical approximation for ∂da/∂ν0 to the restricted
four-body problem. The sensitivity is used to make corrections in the initial speed ν0.

initial departure speed ν0 is taken to have no effect on the desired miss distance. However,
the value of ν0 is taken to have an effect on the departure angle Φ (Figure 2.3). For each
correction in ν0, patched-conic relations are used to compute a corresponding perturbation
in the departure angle. If this angle were not corrected along with the departure speed, then
the spacecraft would not exit Earth’s sphere of influence at the desired hyperbolic trajectory.
In this case, controlled adjustments to ν0 could not be made, and the iterative process would
most likely fail to determine the necessary departure velocity.

Another notable feature of the data given in Table 2.1 is that both the actual and error
miss distances da and de are always negative. The spacecraft always penetrates Mars’ sphere
of influence on the negative side of the Mars-relative coordinate frame, as is later shown in
Figure 2.6. In other words, the analytical approximation to the sensitivity never yields a
correction that overshoots the desired miss distance. Each corrected value of ν0 consistently
approaches the desired arrival geometry from the same side.

As both Table 2.5 and Figure 2.5 show, the magnitude of the miss distance error de

decreases by approximately one order of magnitude for every iteration. From the first itera-
tion to the seventh iteration, the magnitude drops from 4.01×105 km to 2.57 km. After the
seventh iteration, the 10-km error stopping criterion is achieved, and the iterative process is
terminated.

In summary, the analytical approximation to the miss distance sensitivity performs very
well when used to correct ν0 for the given Hohmann transfer orbit. The actual miss distance
consistently approaches the desired miss distance, with the miss distance error decreasing
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Figure 2.5: Error Values Using Analytical ∂da/∂ν0. Plot of the decreasing miss distance
error values de for the ν0 correction scheme using an analytical sensitivity approximation.
Note that de decreases by approximately one order of magnitude at every iteration.

by an order of magnitude at each step. Using this correction scheme, it is determined that
an initial speed ν0 of approximately 10.71824 km/s is necessary to achieve the desired miss
distance. Figure 2.6 displays the corrected Mars arrival orbit geometry. As Figure 2.6 shows,
the arrival orbit achieves a periapsis radius r3 that is very close to 4000 km. However, the
correction scheme presented in this section is only used to compute corrections in the miss
distance da. Patched-conic relations are then used to relate the miss distance to the final
periapsis radius r3. A more exact correction process would incorporate the gravitational
influences of Earth and the sun into the calculated of the actual periapsis radius r3. In this
manner, corrections could be made directly to the arrival periapsis r3. Nonetheless, Figure
2.6 illustrates that the analytical approximation to ∂da/∂ν0 provides a sufficient means of
achieving a good estimate of the necessary departure speed ν0.

2.4.2 Numerical Solution for ∂da

∂ν0

The numerical miss distance correction scheme uses approximations to the ∂da

∂ν0
sensitivity.

At each iteration, a current value of ν0 is used to integrate the spacecraft’s Hohmann transfer
to Mars. The resulting miss distance da upon entering Mars’ sphere of influence is recorded.
The current ν0 is then perturbed by a value ε as follows:

ν ′0 = ν0 + ε (2.44)
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Figure 2.6: Final Mars-Relative Arrival Orbit Geometry Using Analytical ∂da/∂ν0.
Depiction of the Mars-relative orbit geometry that results from using the analytical approx-
imation to the miss distance sensitivity ∂da/∂ν0. Positions x and y are given relative to the
center of the Mars frame M.

where ν ′0 is the Earth-centric departure speed after the small perturbation. The importance
of choosing a decent ε value is discussed later in this section. Once the perturbed speed
ν ′0 is obtained, the spacecraft’s Hohmann transfer is integrated again. This second orbit is
slightly different from the first, resulting in a different miss distance d′a. The sensitivity ∂da

∂ν0

can then be approximated as:

∂da

∂ν0

≈ d′a − da

ν ′0 − ν0

=
d′a − da

ε
(2.45)

This approximate sensitivity is used to compute a new Earth-centric departure speed as
follows:

ν0i+1
= ν0i

−
(

∂da

∂ν0

)−1

de (2.46)

where de represents the error in the miss distance at the current iteration i.
In this manner, an approximate sensitivity is computed for each iteration of the correction

scheme, and therefore two complete integrations of the Hohmann transfer are necessary for
one iteration i. Each iteration of the numerical sensitivity correction scheme takes approxi-
mately twice as long as an iteration using the analytical sensitivity. However, this property
does not necessarily mean that the numerical solution takes longer to converge to a desired
miss distance criterion. A comparison of integration time using the two methods is provided
in Section 2.4.4.
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Table 2.2: Effects of Perturbation Value ε Using Numerical ∂da

∂ν0
. Tabulated values

for number of iterations k and final miss distance error magnitude |de| versus perturbation
ε using the numerical ∂da

∂ν0
. At ε equal to 1e-02 and 1e-10, the iterations do not converge

(DNC).
ε, km/s 1e-02 1e-03 1e-04 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10

k DNC 5 4 4 4 4 4 5 DNC
|de|, km DNC 4.16e-1 8.16e-1 7.29e-2 4.85e-2 1.98e-1 6.43e-1 1.09e-1 DNC

At this point, it is important to note that a good initial guess for the necessary departure
speed ν0 is required due to the nonlinearity of the spacecraft’s motion. If the initial guess
is not within a sufficient range of the required value, the numerical correction scheme fails.
For this problem, the patched-conic approximation to the necessary ν0 for the transfer is
sufficient for convergence to a solution. When solving linear systems of equations, the initial
guess is not very important when considering convergence. But for nonlinear problems such
as the restricted four-body setup, the initial guess must be chosen with care.[9]

Table 2.2 provides a listing of the number of iterations k and final miss distance error
values |de| corresponding to the use of a range of perturbation values ε. The value of ε has a
significant effect on the rate of convergence of the numerical correction scheme. For instance,
any values of ε greater than or equal to 10−2 km/s are too large to yield convergence. Such
large perturbations incur excessively large corrections to the Hohmann transfer. Conversely,
any values of ε equal to or smaller than 10−10 km/s are too small to yield convergence. Using
a 32-bit processor, the truncation error involved with such calculations makes the correction
scheme ineffective. Using a numerical approximation to ∂da

∂ν0
, the number of iterations neces-

sary for convergence to the stopping criterion (de < 10 km) plateaus at four for ε between
10−4 km/s and 10−8 km/s.

Figure 2.7 provides a plot of the number of iterations k necessary to satisfy the stopping
criterion using the different values of ε. As is noted in the figure, the minimum final miss
distance error magnitude occurs at ε = 10−6 km/s. However, all values of ε between 10−4

km/s and 10−8 km/s provide convergence within the same minimum amount of time for the
given stopping criterion.

2.4.3 Numerical Solution for ∂r3

∂ν0

The numerical periapsis correction scheme uses approximations to the ∂r3

∂ν0
sensitivity. The

algorithm for using the sensitivity approximation to apply corrections to the Earth-relative
departure speed ν0 is identical to that used for the miss distance numerical scheme. The
only difference in this case is that the sensitivity is being used to correct the periapsis
radius r3 instead of the miss distance da. Thus, after ν0 is perturbed by some value ε, the
resulting orbit yields a periapsis radius r′3. This perturbed periapsis radius is used with the
unperturbed value to approximate the sensitivity as:

∂r3

∂ν0

≈ r′3 − r3

ν ′0 − ν0

=
r′3 − r3

ε
(2.47)
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Figure 2.7: Effect of ε on Number of Iterations Using Numerical ∂da

∂ν0
. Plot of the

number of iterations k versus the ε perturbation value in ν0. Note that ε = 10−6 km/s yields
the lowest final miss distance error magnitude.

The approximation to the sensitivity can then be used to apply corrections to ν0 according
to:

ν0i+1
= ν0i

−
(

∂r3

∂ν0

)−1

r3e (2.48)

where r3e corresponds to the error of the current periapsis radius relative to the desired
value (4000 km for this report). The value of ν0 is corrected until the specified periapsis
error tolerance is achieved.

The direct periapsis correction scheme is an even more sensitive nonlinear problem than
the miss distance correction scheme. Therefore, the initial guess for ν0 is more important for
the periapsis correction algorithm. For the restricted four-body problem, using the patched-
conic approximation to the necessary departure speed ν0 is sufficient to provide convergence
for a range of perturbations ε. If the patched-conic approximation were not sufficiently
accurate for an initial guess, the solution of the miss distance correction scheme could have
been used as an initial guess for the periapsis scheme. It is important to note how a very
sensitive, nonlinear problem can be brought to a particular solution by gradually increasing
the complexity and robustness of the integration.

Figure 2.8 provides a plot of the number of iterations k taken to converge within the
specified periapsis tolerance (r3e < 10 km) for different values of perturbation ε. Similar to
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the miss distance correction case, any values of ε less than or equal to 10−10 km/s result in
correction schemes that do not converge. The lack of convergence is again due to the signifi-
cant truncation error that occurs when using such fine perturbations to make corrections in
ν0. If a 64-bit processor were used to make the calculations, then the lower limit for ε values
would most likely decrease due to the enhanced ability to handle computations with smaller
numbers. All values of ε equal to or greater than 1 km/s cause divergence as well. In this
case, the corrections to ν0 are so large that they cause excessive overshooting of the desired
departure speed.

As Figure 2.8 shows, the number of iterations k plateaus for values of ε between 10−9

km/s and 10−5 km/s. Interestingly, the periapsis correction scheme takes 38 iterations to
converge for ε = 10−4 km/s. For some reason, this seemingly standard value of ε results in
extremely slow convergence to the desired orbit geometry. The particular reasons for this
behavior are left for a subsequent study. The minimum error magnitude |r3e| (0.5455 km)
occurs for a perturbation value of 10−5 km/s. However, using perturbations of 10−9 km/s
and 10−4 km/s result in the fastest rates of convergence, as the correction schemes finish
within 4 iterations.
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2.4.4 Integration Time Comparison

The number of iterations is not the best means of comparing the convergence rates of the
three previously discussed correction algorithms. Both of the numerical sensitivity algorithms
require two complete transfer orbit integrations for each iteration. The first integration is
used to compute the current sensitivity value, and the second integration provides a means
of calculating a new departure speed. In contrast, the analytical miss distance sensitivity
algorithm requires only one integration per iteration. While the use of the analytical sen-
sitivity requires more iterations to achieve a particular miss distance accuracy, it does not
necessarily require more computational time.

Therefore, the central processor unit (CPU) time required to converge to within a par-
ticular accuracy is a better measure of the rate of convergence for the correction methods.
The C function clock is used to provide an estimate of the amount of time that each of the
three previously described methods takes to achieve the stopping criterion. The accuracy of
the time estimates is 0.001 seconds. For both of the miss distance algorithms, the stopping
criterion is set to de ≤ 10−3 km, whereas that of the direct periapsis algorithm is set to
r3e ≤ 10−3 km. For each of the numerical approximation methods, the perturbation ε is set
to 10−6 km/s.

Figure 2.9 provides plots of the time taken to provide different levels of accuracy in the
arrival periapsis r3. One of the most notable features of Figure 2.9 is the plateau in periapsis
error r3e that occurs for both of the miss distance sensitivity algorithms. This plateau
suggests that the two methods are unable to achieve an error in the periapsis radius less
than approximately 190 km. The reason for the two methods’ plateau is the approximation
built into the patched-conic relation between the miss distance da and periapsis r3. The
patched-conic relation between da and r3 is built upon the two-body assumption. However,
the sun and the Earth still have minor effects upon the trajectory of the spacecraft after it
penetrates Mars’ sphere of influence. In this manner, the patched-conic prediction for the
miss distance necessary to achieve r3 = 4000 km involves approximately 190-km error from
the actual periapsis radius.

In contrast, the algorithm using the numerical approximation to the periapsis sensitivity
continues to approach zero error after a computational time of approximately 12 seconds.
This third algorithm achieves periapsis errors roughly five orders of magnitude smaller by 24
seconds. In other words, the ∂r3

∂ν0
correction algorithm achieves roughly meter-level periapsis

accuracy by 24 seconds. The other two algorithms simply cannot achieve this accuracy.
While all three methods perform fairly equally during the first 12 seconds of CPU time,
the direct periapsis correction scheme performs much better when continuing the correction
process. The reason for this better performance is that it does not depend upon a patched-
conic relation between da and r3 for a specified accuracy. Thus, of the three examined
methods, the ∂r3

∂ν0
correction algorithm provides the best performance for correcting the arrival

periapsis r3.
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each of the numerical approximation methods, the perturbation ε is set to 10−6 km/s.

2.5 Conclusions

This chapter presents an investigation of the use of sensitivities to optimize the arrival
trajectory of a Hohmann transfer from Earth to Mars. The equations of motion are derived
from a restricted four-body setup, with Earth, Mars, and the sun as the primary celestial
bodies. Section 2.3 presents an introduction to the concept of sensitivities and, in particular,
state transition matrices. The usefulness of sensitivity matrices in providing a description
of how perturbations of one variable cause changes in another variable are discussed. The
theory presented in Section 2.3 is then extended to perform optimizations of the restricted
four-body problem. Section 2.4 discusses the use of three sensitivities to optimize the arrival
orbit geometry of the Hohmann transfer: analytical ∂da

∂ν0
, numerical ∂da

∂ν0
, and numerical ∂r3

∂ν0
.

The application of each sensitivity to a corresponding orbit correction scheme is presented.
Additionally, the convergence performances of the perturbation methods are compared by
the computation time required to achieve a particular accuracy. The following conclusions
are drawn:

1. The C programming language is more efficient than Matlab for calculating multiple
transfer orbits in a computationally intense optimization problem.
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2. Matlab provides user-friendly techniques for creating visualizations of the C output.

3. Sensitivity matrices provide a way to map perturbations in one variable into changes
in another variable.

4. State transition matrices, a subset of sensitivity matrices, provide a way to map per-
turbations in initial conditions to changes in the final state.

5. For a stopping criterion of de ≤ 10 km, the use of the analytical sensitivity ∂da

∂ν0
provides

convergence within seven iterations.

6. For a stopping criterion of de ≤ 10 km, the use of the numerical sensitivity ∂da

∂ν0
provides

convergence within four iterations for a series of departure speed perturbations ε.

7. For a stopping criterion of r3 ≤ 10 km, the use of the numerical sensitivity ∂r3

∂ν0
provides

convergence within four iterations for two values of departure speed perturbation ε.

8. During the first 12 seconds of computational time, the three perturbation techniques
perform equally well.

9. After 12 seconds, the direct r3 correction scheme performs much better than the indirect
da correction schemes.

10. The r3 correction scheme performs better because it does not depend on the patched-
conic approximation to the relation between the miss distance and the periapsis radius.
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Chapter 3

Application of Continuation Methods
to the Restricted Four-Body Problem

3.1 Introduction

Chapter 2 presents the use of sensitivities as a tool for modeling interplanetary transfer
orbits. For a particular two-point boundary value problem, sensitivities may be used to
adjust initial conditions in order to achieve a desired final state. However, it is important to
note that sensitivities can only be used to optimize one two-point boundary value problem;
they cannot be used to solve a series of problems.

Thus, consider the following question: What if the solution to a series of similar boundary
value problems is desired? In this case, a sensitivity application is not sufficient to provide
the required family of answers. In Chapter 2, sensitivities are used to find the initial state
vector required of a spacecraft in order to transfer from Earth to Mars and achieve a desired
final periapsis radius r3. Suppose that similar initial state vector solutions are required
for transfer orbits with successively smaller times of flight. This more general problem
requests the solution to a series of similar two-point boundary value problems, each with
slight differences in one parameter: time of flight.

Such a general type of problem is very applicable to present-day transfer orbit modeling
and analysis. For any particular interplanetary transfer mission, information regarding fam-
ilies of similar transfer possibilities are required in order to compare and choose the optimum
transfer geometry. The series of ∆v estimates received from such an analysis can be used
with other mission design factors in order to select a particular mission geometry.

Chapter 3 presents one method that, when used in combination with sensitivity correc-
tion schemes, may be used to solve such families of boundary value problems. This method,
known either as the homotopy or the continuation method, represents a very powerful tool
for modeling general interplanetary transfer orbit problems. The chapter begins with an
introduction to the theory behind continuation methods, followed by an application of such
methods to an example problem presented by Roberts and Shipman.[12] It is important to
note that this chapter involves multi-dimensional sensitivity correction schemes, as opposed
to the scalar corrections made to the four-body problem in Chapter 2. The example prob-
lem analysis provides a detailed first look into how the continuation method incorporates
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sensitivity analysis into a more robust algorithm.
Section 3.3 then presents an application of the continuation method to the previously

established restricted four-body problem. This method is used to solve for required initial
conditions corresponding to transfers with a variety of times of flight. Additionally, the
continuation method is used to add eccentricity to the orbits of both Earth and Mars.
Thus, the circular planetary orbit restrictions held in Chapters 1 and 2 are broken with the
gradual addition of eccentricities provided by the continuation method. The final section of
the chapter presents the conclusions drawn from the application of continuation methods to
the restricted four-body problem.

3.2 Continuation Methods

3.2.1 Introduction

The continuation method builds upon the capabilities of conventional numerical techniques
for solving two-point boundary value problems by decreasing dependency upon a good initial
guess. Continuation methods break a highly sensitive two-point boundary value problem
into a series of smaller, less sensitive problems. Each of the smaller problems depends
upon some continuation parameter τ that varies smoothly along a predetermined interval,
typically [τ0, τN ] = [0, 1]. The family of smaller problems is constructed such that the
solution corresponding to τ0 is either available or obtainable. The solution corresponding to
the parameter τN is equivalent to the desired solution to the larger boundary value problem.
It is important to note that continuation methods decrease the condition number of the
problem at hand and generally yield better convergence provided there are no bifurcations
in the problem.[5]

Continuation methods are numerical techniques derived from the homotopy analysis
method, which is now presented fundamentally. Consider a differential equation

A[u(t)] = 0 (3.1)

where A is a nonlinear operator, t corresponds to the time, and u(t) is an unknown variable.
Let u0(t) be a preliminary approximation to u(t) and L be an auxiliary linear operator with
the property

Lf = 0 (3.2)

when f = 0. The so-called homotopy may then be constructed as follows:

H [φ(t, τ), τ ] = (1− τ)L[φ(t, τ)− u0(t)] + τA[φ(t, τ)] (3.3)

where τ ∈ [0, 1] is the alterable parameter and φ is a function of both t and τ . When τ = 0
and τ = 1,

H [φ(t, τ), τ ]|τ=0 = L[φ(t, 0)− u0(t)] (3.4)

and
H [φ(t, τ), τ ]|τ=1 = A[φ(t, 1)] (3.5)
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respectively. Via Equation (3.2), it is found that

φ(t, 0) = u0(t) (3.6)

is the solution to the equation
H [φ(t, τ), τ ]|τ=0 = 0 (3.7)

Conversely, the solution to
H [φ(t, τ), τ ]|τ=1 = 0 (3.8)

is as follows:
φ(t, 1) = u(t) (3.9)

As the variable parameter τ increases from 0 to 1, the solution φ(t, τ) of the equation

H [φ(t, τ), τ ] = 0 (3.10)

depends upon the parameter τ and changes from the initial approximation u0(t) to the
solution u(t) of Equation (3.1). In the field of topology, such continuous variation is termed
deformation.[8]

Because this report deals with the integration of restricted four-body orbits as two-point
boundary value problems, this chapter presents the application of continuation methods to
such boundary value problems. It must be noted that traditional shooting methods have
proved to be an unreliable solution to two-point boundary value problems with high sensi-
tivities to initial conditions. One of the main appeals of continuation methods is their func-
tionality when used in combination with shooting methods: such combinations often allow
for the solution of problems that could not be solved solely with the use of shooting methods.
Combining shooting methods with continuation methods avoids the intricacies involved with
using finite-difference methods, while still maintaining the necessary stability.[12]

Continuation methods always deal with the original nonlinear differential equations of the
problem, as opposed to linear approximations to these equations. The concern is whether or
not the missing initial conditions solved for by a particular method will satisfy the terminal
boundary conditions for the original problem over [t0, tf ]. With continuation methods, if a
solution is found over the desired interval, then this solution represents the answer to the
original problem.

With continuation methods, there are two mechanisms that may be used to control the
speed of finding a solution. The first mechanism is the weight step value ∆α which is used
for parameter variation. For instance, if it were desired to increase tf from 1.0 to 1.8 seconds
and ∆α were set to 0.25, then each iteration of the continuation method would involve a
0.2 second increase in tf . The smaller the value of ∆α, the more likely that the solution
to each successive two-point boundary value problem converges. However, a smaller ∆α
also represents increased computational cost. Thus it is of interest to find a value of ∆α
which allows for maintained convergence without excessive computational cost. The second
mechanism that may be varied is the weight β applied to the perturbation corrections of the
initial conditions. A value of β = 1 would represent applying full corrections to the initial
conditions within each individual boundary value problem.[12]

Perhaps one of the most powerful properties of continuation methods is their versatility,
especially within the realm of two-point boundary value problems. When seeking to apply
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continuation methods to a different problem, only the subroutines which specify the set
of differential equations must be changed significantly. The outline of the continuation
method remains the same, allowing for quick application to a wide variety of boundary value
problems.

One of the applications of continuation methods is to solve iteratively a sequence of
two-point boundary value problems with time spans [t0, t1], [t0, t2], [t0, tf ], where t0 <
t1 < · · · < tf . For each individual problem, the boundary conditions are held constant,
but the integration times increase from the initial t0 to the desired tf . The initial conditions
determined as the solution to integration i are used as the initial guess for integration (i+1),
which has an extended integration time. An example of such an application is now given in
more detail.

3.2.2 Application: Sensitive Two-Point Boundary Value Problem

Roberts and Shipman present a very sensitive two-point boundary value problem that is
not solvable by conventional shooting methods.[12] However, such shooting methods may be
integrated into a more robust continuation method in order to provide a problem solution.
This section provides a comparison between the use of conventional shooting methods and
continuation methods for the solution of a sensitive boundary value problem.

The differential equations for the example problem are listed as follows:

ẋ1 = x2 (3.11a)

ẋ2 = x3 (3.11b)

ẋ3 = −
(

3− n

2

)
x1x3 − nx2

2 + 1− x2
4 + sx2 (3.11c)

ẋ4 = x5 (3.11d)

ẋ5 = −
(

3− n

2

)
x1x5 − (n− 1)x2x4 + s(x4 − 1) (3.11e)

The initial conditions are given as

x1(0) = 0, x2(0) = 0, x4(0) = 0

whereas the terminal conditions are

x2(tf ) = 0, x4(tf ) = 1

Finally, the two scalar parameters are provided as

n = −0.1, s = 0.2

For the particular problem studied in this section, the limits of integration are t0 = 0.0 and
tf = 7.5. The overall objective of using a continuation method to solve the problem is to
find the initial conditions x3(0.0) and x5(0.0) that yield a final state within a specified error
ξ of the two provided terminal conditions. Figure 3.1 provides a flowchart of the algorithm
used to approach the two-point boundary value problem. In order to start the algorithm,
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Figure 3.1: Flowchart for Example Continuation Application. Flowchart depicting
the algorithm used to approach the example two-point boundary value problem provided
by Roberts and Shipman. The initial guess values of the missing initial conditions are
x3(0) = −1.0 and x5(0) = 0.6.

the missing initial conditions are initialized as x3(0.0) = −1.0 and x5(0.0) = 0.6. These
relatively good initial guesses are provided by Roberts and Shipman, and are necessary due
to the sensitive nature of the boundary value problem.[12] The remaining initial conditions
are all specified in the problem statement. The continuation method algorithm is now broken
up into its two main components in order to provide a clear interpretation of its function.
The first of these two components to be discussed is the inner sensitivity loop.

Sensitivity Loop

The sensitivity loop, designated by orange arrows in Figure 3.1, provides a solution to a
single setup of the two-point boundary value problem. In other words, this loop can be
viewed as a function that takes the specified initial and final conditions as well as the desired
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time of integration as inputs. The function then uses a sensitivity matrix to apply iterative
corrections to the initial conditions x3(0.0) and x5(0.0) until the final state vector components
x2(tf ) and x4(tf ) are within the desired error value ξ. If the final state is not within the
specified error after k = 20 iterations, then the sensitivity loop exits with its current initial
condition estimates. The state transition matrix [Φ(t, t0)], a particular style of sensitivity
matrix, is used as a mapping between the two variable initial conditions and the two specified
final conditions: (

x2(tf )
x4(tf )

)
= [Φ(tf , t0)]

(
x3(t0)
x5(t0)

)
(3.12)

where the state transition matrix is populated as:

[Φ(tf , t0)] =

[
∂x2(tf )

∂x3(t0)

∂x2(tf )

∂x5(t0)
∂x4(tf )

∂x3(t0)

∂x4(tf )

∂x5(t0)

]
(3.13)

Thus a column-wise numerical process may be executed to populate the state transition
matrix for each iteration of the sensitivity function. For instance, by perturbing the value of
x3(t0) by some small value ε and re-integrating the boundary value problem, the first column
of [Φ(tf , t0)] is calculated. Subsequently, a second integration using a slight perturbation of
x5(t0) provides the second column of the state transition matrix. For example, elements Φ11

and Φ21 are computed as:

Φ11 =
x′32 (tf )− x2(tf )

ε
(3.14a)

Φ21 =
x′34 (tf )− x4(tf )

ε
(3.14b)

where ε represents the small perturbation applied to the initial condition x3(t0). The vari-
ables x′32 (tf ) and x′34 (tf ) represent the values of the second and fourth state components after
integration of the initial state vector with a slight perturbation in x3(t0). A total of three
separate integrations of the problem are required for each iteration of the sensitivity loop.
The first integration tests the final state errors, the second computes the first column of
[Φ(tf , t0)], and the third computes the second column of [Φ(tf , t0)].

After the state transition matrix is populated, its inverse is used to apply corrections to
the variable initial conditions as follows:(

x3(t0)
x5(t0)

)′
=

(
x3(t0)
x5(t0)

)
− [Φ(tf , t0)]

−1

(
δx2(tf )
δx4(tf )

)
(3.15)

where δx2(tf ) and δx4(tf ) represent the errors in the final values x2(tf ) and x4(tf ). The prime
on the left side of the equation notes the adjustment being made to the initial conditions.
For this problem, LU decomposition is used to compute the inverse of the state transition
matrix and to adjust the initial conditions. The adjusted initial conditions x3(t0) and x5(t0)
are then used to initiate the following problem iteration until the stopping criterion ξ has
been met.

Once the sensitivity loop converges upon a solution, it then outputs both the initial state
vector that yields an acceptable error as well as the integrated state vector. It is important to
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note that each completion of the sensitivity loop represents the completion of one two-point
boundary value problem. The continuation loop encompasses the inner sensitivity loop in a
larger algorithm that demands the solution of multiple two-point boundary value problems.

Continuation Loop

The continuation loop is modeled after a similar procedure provided by Schaub for solving
Lambert’s problem given a desired time of flight.[13] As previously stated, the continuation
method begins with the initialization of the estimated values for x3(t0) and x5(t0). Addition-
ally, the loop counter i is initialized to 0. Before finishing the explanation of the algorithm
provided in Figure 3.1, it is important to note several new variables. The continuation pa-
rameter α serves as a weight measure of the problem modeling between the initial and desired
problem setups. For instance, the desired final time for this example problem is tf = 7.5, but
the applied continuation method begins with a value t̃f = 3.5. Therefore, a value α = 0.25
gives 25 percent weight to the desired final time, corresponding to a current final time of
t̂f = 4.5. Figure 3.1 provides the equation used to calculate the current integration time via
α, repeated here for clarification:

∆t̂ = α∆t + (1− α)∆t̃ (3.16)

where ∆t̂, ∆t̃, and ∆t represent the current, initial, and desired integration times, respec-
tively. Note that when α = 0, the problem is fully modeled with the initial specified inte-
gration time. The integration limit t̂f increases gradually until it reaches the desired value
tf = 6.4, corresponding to α = 1.

For each new value of integration time ∆t̂, the sensitivity function is called to provide
the initial conditions x3(0.0) and x5(0.0) that satisfy the stopping criterion. As shown by
Figure 3.1, the stopping criterion for this problem is two-fold:

|x2(t̂f )− x2(tf )| <= ξ, |x2(t̂f )− x2(tf )| <= ξ

Thus the stopping criterion deals with the errors in x2(tf ) and x4(tf ) independently. In this
manner, the continuation loop may be viewed as a gradual transformation of one two-point
boundary value problem into the final, desired boundary value problem. The loop does
not finish until after the continuation parameter α equals 1, corresponding to a setup that
completely models the desired two-point boundary value problem.

Integration Results

As previously stated, the limits of integration for the desired two-point boundary value
problem are t0 = 0.0 and tf = 7.5. The time step used for all integrations in this analysis
is g = 0.005. The perturbation value ε used to apply slight changes to the initial conditions
x3(0.0) and x5(0.0) is set to 10−6. Additionally, the stopping criterion ξ used to judge the
error in both x2(tf ) and x4(tf ) is 10−4.

As a means of comparison, the two-point boundary value problem is first integrated
without the use of the continuation method. The initial guesses for x3(0.0) and x5(0.0) (-1.0
and 0.6, respectively) are thus used to integrate directly from t = 0.0 to t = 7.5. The result
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is that the final state vector does not satisfy the convergence criterion of ξ = 10−4 for either
x2 or x4. As a matter of fact, the integration blows up for both values of the final state
vector. This divergent behavior occurs even when attempting an integration from t = 0.0 to
t = 4.0, which represents a much less demanding problem. Thus the conventional shooting
method yields an unacceptable attempt to solve the boundary value problem.

Because the shooting method does not yield convergence within the desired limits of
integration, it is extended to a continuation method. The initial value of the final time
t̃f is set to 3.5, while the desired value is still tf = 7.5. The parameter N (introduced
in Figure 3.1) is set to eight, corresponding to eight gradual steps of 0.5 from t̃f = 3.5
to tf = 7.5. Figure 3.2 displays the results of the integration scheme implementing the
continuation method as a series of blue circles. The red box surrounding the final states
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Figure 3.2: Example Continuation Application Final States. Plot of the continuation
method results relative to the two-dimensional stopping criterion for the example two-point
boundary value problem. Note that the values of both x2(tf ) and x4(tf ) must be within 10−4

of the desired final conditions.

corresponds to the imposed stopping criterion value ξ = 10−4 for both x2(tf ) and x4(tf ). As
Figure 3.2 notes, the continuation method yields a converged solution corresponding to each
value of the final integration time t̂f . The initial value of the integration time is decreased
to ∆t̂ = 3.5 in order to provide a solution given the provided initial conditions. Once this
particular solution is provided, it is then used to find a solution to the slightly more difficult
problem involving an integration time of ∆t̂ = 4.0. This process is repeated until a solution
is found for the desired two-point boundary value problem, which specifies an integration
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time of ∆t = 7.5.
Perhaps the most important aspect of the continuation method is its ability to use the

initial conditions found from previous problems to provide convergence for a new problem.
For the particular example provided by Roberts and Shipman, the problems are distinguished
by the limits of integration. However, continuation methods may be used to solve a series of
boundary value problems with other differentiating parameters. This application is extended
to the restricted four-body problem in following sections. Regardless of the varying problem
parameter, it is important that the sensitivity optimization converges for each value of the
continuation parameter α. Table 3.1 provides a listing of the initial conditions x3(0.0) and
x5(0.0) that yield convergence for each iteration of the continuation method. The first

Table 3.1: Example Continuation Application Initial Conditions. Listing of the initial
conditions x3(0.0) and x5(0.0) that provide convergence for each iteration of the continuation
method. Note that the corrected initial conditions from each iteration are used to initialize
the new boundary value problem.

0.65290953-0.966311780.65290951-0.966311497.5

0.65290951-0.966311490.65290994-0.966309997.0

0.65290994-0.966309990.65291346-0.966304146.5

0.65291346-0.966304140.65293178-0.966289176.0

0.65293178-0.966289170.65299880-0.966297325.5

0.65299880-0.966297320.65311112-0.966675655.0

0.65311112-0.966675650.65253832-0.969167064.5

0.65253832-0.969167060.64678672-0.978197734.0

0.64678672-0.978197730.60000000-1.000000003.5

x
5
'(0.0)x

3
'(0.0)x

5
(0.0)x

3
(0.0)t

f

^

column of Table 3.1 displays the final time t̂f corresponding to each of the nine iterations
of the continuation method. The second and third columns provide the initial guesses for
x3(0.0) and x5(0.0) used to begin the sensitivity optimization for that iteration. The fourth
and fifth columns show the corrected initial condition values x′3(0.0) and x′5(0.0) found after
each use of the sensitivity optimization. The arrows in the table show how each set of
corrected initial conditions is used to initialize a new iteration of the continuation method
corresponding to a larger t̂f . As noted in Table 3.1, the values of the initial conditions
necessary to solve the desired two-point boundary value problem are x3(0.0) = −0.96631178
and x5(0.0) = 0.65290953. The table shows how the sensitivity of the boundary value
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problem to the initial conditions increases with increasing integration time ∆t̂. By the last
iteration of the continuation method, the corrected initial conditions change at most by
two significant digits. An interesting study could be performed to relate the sensitivity of
the two-point boundary value problem to the integration time ∆t̂. Such an analysis is not
provided in this report.

Conclusions

The example problem provided by Roberts and Shipman gives insight into the advantages
of using continuation methods to solve sensitive two-point boundary value problems. Tradi-
tional shooting methods have a greater risk of failing to converge upon a solution for problems
with a high sensitivity to the initial guess x(t0). This greater risk is partly due to the fact
that traditional shooting methods can only provide a solution to a single boundary value
problem. If the particular problem being studied is prone to divergence, then the shooting
method requires an excellent initial guess in order to find a solution. However, continuation
methods allow for the use of solutions to similar problems in order to converge upon the
solution of the desired boundary value problem. If the solution to a nearby problem setup
is known, then that solution may be used with a continuation method to find a solution to
the desired two-point boundary value problem. The conclusions drawn from this example
continuation method application are as follows:

1. Continuation methods allow for the use of solutions to similar two-point boundary
value problems in order to solve a sensitive desired problem.

2. Traditional shooting methods do not allow for such gradual transformation from one
problem setup to another.

3. The convergence of the sensitivity optimization depends upon many factors, several of
which include the integration time step g, perturbation value ε, convergence criterion
ξ, and initial guess x(t0).

4. For the example problem provided by Roberts and Shipman, the initial conditions de-
termined to provide convergence over the interval [0.0, 7.5] are x3(0.0) = −0.96631178
and x5(0.0) = 0.65290953.

5. A future study could develop a relationship between the sensitivity of the example
boundary value problem and the integration time ∆t̂.

3.3 Restricted Four-Body Problem

Section 3.2 provides an introduction to the concept of continuation methods, as well as
their use to solve an example problem provided by Roberts and Shipman.[12] The following
section presents the application of continuation methods to the restricted four-body problem,
which is introduced in Chapter 1. As in previous chapters, the gravitational effects of the sun,
Earth, and Mars on the spacecraft are taken into account throughout the entire transfer orbit;
the influences of Earth and Mars on the sun are neglected. All celestial motion is planar,
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but the circular restrictions on the planets’ heliocentric orbits are relaxed via use of the
continuation method. This section illustrates how effective the combination of continuation
methods and sensitivity analyses can be when used to assess families of possible transfer
orbit geometries.

3.3.1 Altering the Time of Flight: First Method

The first application of the continuation method to the restricted four-body problem is used
to decrease the time of flight of the original transfer orbit. All of the transfers dealt with
thus far throughout this paper have been approximately Hohmann, with a time of flight
of roughly 259 days. Using an algorithm very similar to that presented in Figure 3.1, it is
possible to find solutions for transfer orbits that have smaller transfer times. In this case, the
continuation parameter α is used to iteratively decrease the value of the time of flight ∆t.
Figure 3.3 illustrates the solutions to several of the iterations of the continuation method.
As the figure shows, the continuation method is used to decrease the overall transfer time
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Figure 3.3: Progressively Smaller Values of ∆t. Illustration of the final heliocentric
positions achieved after several of the iterations of the continuation method. In this case,
the method is used to decrease the transfer time of flight ∆t.

from 258.87 days to 185.19 days. This difference in transfer times represents a significant
variation in ∆v costs, as each different transfer geometry requires a unique initial Earth-
relative state vector. Each of the circles in Figure 3.3 represents the final spacecraft position
for a particular iteration of the continuation method. As previously described in Section
3.2, the initial condition results from one iteration of the continuation method are used as
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a starting point for the next iteration. In this manner, solutions are obtained for an entire
family of transfer orbits, each with a unique transfer time.

It is important to note that it is not necessary to stop the continuation analysis at a
transfer time of 185 days. The time of flight could continue to be decreased through a larger
family of transfer orbits, depending upon mission needs and constraints. The computation
time required for this particular application of the continuation method is on the order of
seconds considering present-day computational capabilities. However, this speed it partly
due to the fact that the stopping criterion for the sensitivity correction scheme only requires
achieving a particular position (xf ,yf ) relative to Mars upon completion of the transfer. The
criterion sets no limits on the spacecraft’s Mars-relative velocity at the end of the orbit,
meaning that a ballistic trajectory is deemed ‘acceptable.’ In industrial applications, such
an arrival trajectory would not be acceptable, and thus the following subsection presents a
second application of the continuation method to the four-body problem.

3.3.2 Altering the Time of Flight: Revised Method

The revised application of the continuation method uses a different sensitivity correction
scheme in order to solve each separate two-point boundary value problem. Instead of op-
timizing the final Mars-relative position, the revised method requires that the spacecraft
achieve a final Mars-relative altitude of 600 km with no radial velocity component. In this
manner, if it were desired, another burn could be applied at the final spacecraft position in
order to prepare for a parking orbit about Mars. Figure 3.4 displays the heliocentric transfer
orbit with a decreased transfer time ∆t using the revised continuation application. The time
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Figure 3.4: Final Heliocentric Transfer Geometry: Revised Method. Depiction of
the final heliocentric transfer geometry achieved by using the revised continuation method.
The transfer time for the orbit shown is 208 days.

of flight for the transfer shown in Figure 3.4 is 208 days, which is slightly greater than that
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of the shortest transfer presented in the previous section. However, despite the smaller range
of ∆t values, the revised continuation method application still takes significantly longer to
converge upon each new problem solution as it approaches the 208-day transfer. More specif-
ically, the computational time spent altering the time of flight from 259 days to 208 days
using the revised method is approximately 12.56 minutes. As stated previously, the first
application of the continuation method converges within a matter of seconds.

The disparity in computational time spent using the the two continuation applications
is partially due to the difference in sensitivity stopping criteria. Achieving a specified final
Mars-relative altitude with zero radial velocity component is more demanding than simply
attaining a final position relative to Mars.

Table 3.2 provides a listing of the initial velocity components for 11 iterations of the
revised continuation application. Note that not all iterations of the continuation method

Table 3.2: Initial Velocity Corrections: Revised Method. Listing of the corrections
made to the initial velocity components vx(t0) and vy(t0) for 11 iterations of the revised
continuation application.

35.236231109.2839284135.231996359.28572775208.33

35.161174539.3150510135.157942629.31634581213.39

35.105903719.3363243835.103647399.33713856218.44

35.069844059.3481940435.068533129.34854802223.49

35.052366349.3510360235.051967839.35094693228.55

35.053291659.3448899735.053770679.34437156233.60

35.070440829.3307944035.072265969.32958380238.65

35.104567859.3081231435.106695869.30677244243.71

35.154442629.2772576735.157338849.27549909248.76

35.219316869.2382601835.222944099.23609534253.81

35.298437559.1911457035.297932009.19141690258.87
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are shown in Table 3.2. Overall, 100 iterations are used to alter the transfer time of flight
from 259 days to 208 days. Attempting to use 80 iterations instead of 100 results in failed
convergence of the continuation method. An interesting analysis could assess the problem
characteristics that influence the threshold value for the number of iterations N . More
sensitive boundary value problems require a higher value of N in order to make neighboring
boundary value problems more similar. As stated previously in Section 3.2, the continuation
method converges as long as the solution to one boundary value problem lies within the
sphere of convergence for the neighboring problem.
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Figure 3.5 provides an illustration of the final Mars-relative arrival orbit. Another reason
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Figure 3.5: Final Mars-Relative Transfer Geometry: Revised Method. Depiction of
the final Mars-relative transfer geometry achieved by using the revised continuation method.
The transfer time for the orbit shown is 208 days.

that the revised continuation application takes so much longer to converge upon iterative
solutions is because the required final altitude is only 600 km, as opposed to the previous
4000 km. Such a small final altitude requires more iterations of the sensitivity correction
scheme for each individual transfer orbit. As the figure shows, the spacecraft approaches
its final position with roughly no radial velocity component. Another way to perform the
same arrival orbit optimization would be to require a specified periapsis radius r3 and time
to periapsis t3. Chapter 2 presents sensitivity applications that deal directly with the final
periapsis radius r3.

With the use of the continuation method, a series of arrival orbits all similar to that
shown in Figure 3.5 are achieved for a family of transfers. As such, all of the transfer orbits
satisfy the two-dimensional sensitivity stopping criterion. Depending upon the needs and
constraints for a proposed mission to Mars, a performance function could be created to assess
trade offs between increasing ∆v and decreasing ∆t for the family of orbits. The continuation
method provides an excellent method for modeling the various orbits in preparation for design
synthesis and selection.
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3.3.3 Altering Mars’ Eccentricity

In addition to changing the transfer time of flight, continuation methods may also be used to
alter the shape of the planetary orbits. The only change made to the algorithm presented in
Figure 3.1 is that the continuation parameter α is now used to gradually change a particular
orbit parameter, such as eccentricity, instead of time. In this manner, the orbits of both
Earth and Mars may be transformed from circular to to a close approximation of their true
geometries. The continuation method has the capability of altering any of the orbit elements
used to describe the planetary orbits, thereby making any trajectory possible. Once again,
the only condition is that one solution is already found for a particular transfer from Earth
to Mars.

In order to show how the continuation method may be used to alter the planetary orbits,
the algorithm in Figure 3.1 is remodeled slightly to increase Mars’ eccentricity. According to
the Jet Propulsion Laboratory, a good approximation for Mars’ eccentricity is 0.09341233.[7]
Thus, with the use of the continuation method, Mars’ eccentricity is gradually increased
from 0.0 to a final value of 0.09341233. Figure 3.6 displays the resulting heliocentric transfer
orbit of the spacecraft, after the addition of Mars’ eccentricity. The transfer orbit shown in
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Figure 3.6: Heliocentric Motion: Elliptic Martian Orbit. Illustration of the transfer
orbit from Earth to Mars, including Mars’ eccentricity of 0.09341233. Note that the transfer
time is 208 days.
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Figure 3.6 has several generalized features when compared with the transfers developed in
previous chapters. The transfer time during the continuation optimization is kept constant
at 208 days; thus, the transfer is no longer minimum-energy. Additionally, Mars has an
elliptic trajectory, with its periapsis arbitrarily chosen to be located along the x-axis of the
sun-centered inertial frame. Because the periapsis points for both Earth and Mars shift
gradually about the sun, the specific periapsis locations are not of great concern in this
optimization.

The bold portions of the planetary orbits shown in Figure 3.6 correspond to the prop-
agated positions of each planet from t0 = 0 to tf = 208 days. Mars’ initial mean anomaly
angle is set to the offset angle from previous orbit modeling done in Chapters 1 and 2. In this
manner, the spacecraft still performs its Martian rendezvous at a position relatively close to
previous orbit geometries. Perhaps the most important feature of Figure 3.6 is its illustration
of how continuation methods may be used to alter any interplanetary transfer orbit geome-
try in a generalized fashion. Simple problems, such as a Hohmann transfer between circular
orbits, are easily transformed into good approximations of true interplanetary motion. The
combination of continuation methods and sensitivity correction schemes represents a very
powerful tool for modeling non-Keplerian motion.

3.4 Conclusions

Chapter 3 presents an investigation into the use of continuation methods to model interplan-
etary transfer orbits. Section 3.2 provides an introduction to the concept of continuation
methods, including how such methods incorporate sensitivity analyses into the solution of
multiple boundary value problems. The continuation method is then used to solve a sample
problem presented by Roberts and Shipman.[12] Section 3.3 extends the concepts developed
in Section 3.2 to modeling the restricted four-body transfer orbit from Earth to Mars. Specif-
ically, the continuation method is used to alter both the spacecraft’s time of flight and Mars’
eccentricity. Several conclusions are drawn from the analysis performed in Chapter 3:

1. Traditional shooting methods do not allow for the gradual transformation of one bound-
ary value problem into another.

2. Continuation methods use information from previous boundary value problem solutions
to solve neighboring problems, and thus find entire families of solutions.

3. Continuation methods may be used to alter both time of flight and planetary orbit
parameters for a particular transfer orbit geometry.

4. In general, the combination of continuation methods and sensitivity analyses is an
effective tool for modeling interplanetary transfer orbits.

5. Future work could investigate how to predict whether or not a particular iteration of
the continuation method will converge or diverge, given the fidelity of the initial guess
developed from previous iterations.
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