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Abstract

The ballistic missile problem is a typical topic of discussion in introductory
astromechanics courses when discussing Keplerian motion. This study revisits
the introductory ballistic missile problem by modelling spherical Earth, Earth
rotation, and addition of atmospheric drag. The scope of this exercise comprises
launching from an initial set of coordinates in the form of latitude and longitude
in the Earth frame to a desired target set of coordinates. As intuition suggests,
resolving the target location increases in difficulty as the model complexity
increases. Further, when a significant atmosphere is introduced, analytic so-
lutions are no longer possible using traditional methods. Modern techniques
are then explored using the state transition matrix, a sensitivity based tool, to
correct the initial velocity guess in order to converge upon the desired target
within a specified accuracy. An analytical solution of the two-body problem
and a numerical approach are used to compute the state transition matrix. A
comparison is made to determine the regions of convergence available to each of
these techniques for an array of targets and various launch locations, in order
to determine their usefulness in the form of number of iterations required to
converge, trends if the solutions did not converge, and computational speed.
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Nomenclature

a Semimajor axis, km
f True anomaly angle, rad
h Altitude above surface, km
p Semilatus rectum, km
r Trajectory radius, km
V Trajectory velocity, km/s
∆t Time of flight, s
∆V Change in velocity, km/s
Λ Atmosphere scale height, km
Φ12 State transition matrix
β Modified ballistic coefficient, kg/km2

γ Sidereal time, radians
δrf Range error, km
δv Initial velocity correction, km/s
λ Longitude, degrees
µ Gravitational parameter, km3/kg2

φ Latitude, degrees
ρ Density, kg/km3

Subscripts

x, y, z Cartesian body axes, km
f Final state
ref Reference state
UT Universal time
0 Initial state on surface

Superscripts

t target

Constants

µEarth = 3.986× 105 km3/kg2

REarth = 6378 km (mean Earth equatorial radius)
ωEarth = 7.292115854670501× 10−5 rad/sec rotation rate with respect to inertial Earth
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1 Introduction

The ballistic missile problem is typically represented in introductory astromechanics
texts as a simplified planar two-body problem with a non-rotating Earth. From this
information we can usually determine the range of a projectile, the initial flight path
angle, the orbit eccentricity and semi-major axis, and its true anomaly angles at
launch and impact. It is of interest to expand upon this basic model in order to add
realism to the problem.

Applications desiring increased complexity include determining the initial launch vec-
tor direction and velocity requirements for a vehicle, simulation of the ground track of
a hypersonic vehicle, orbit plane determination, analysis of energy required at various
launch sites to reach different targets, and means to determine potential load factors,
deceleration, and temperature gains of a body as it travels through the atmosphere.
Additionally, interplanetary missions such as those to Mars and Venus may require
high degree of landing accuracy when entering their respective atmospheres. Thus hy-
perbolic trajectories can also be utilized in order to resolve an appropriate, necessary
velocity at a fixed point in space. More recently, missile defense applications require
the modelling of the ballistic missile problem. Modelling the ballistic missile problem
is the first part in series of requirements of modelling the system wide architecture of
ballistic missile defense systems that also includes modelling the interceptor missile
and tracking systems.

Modelling of the ballistic, unpowered free-flying point mass trajectory1 requires high
fidelity in order to make predictions and determine regions at risk. In order to make
the necessary adjustments to the increased realism levels, the complexity of our sys-
tem must be increased in order to account for the dynamics in a inertial, cartesian
coordinate frame. To meet the need of this complexity, it is of further interest to
utilize the power of modern computers in order to rapidly account for perturbations
such as J2 and atmospheric drag and the effects due to the rotation of the primary
body.

Numerical integration techniques can be employed to account for effects such as those
of a thrusting projectile through an atmosphere, the drag and lift on this body, and
relevant effects of J2 and other perturbations2 of these problems. However, when
perturbation methods are taken in to account, resolving the trajectory of the vehicle
to arrive at a specified target is no longer a function of Keplerian motion. Modern
techniques must be invoked in order to resolve the more complex dynamics of these
systems. One such technique is the use of the state transition matrix (STM).

The state transition matrix is a powerful sensitivity based tool that can used to assist
in to correction of an initial guess of velocity.2 The STM can be used to formulate
the necessary launch criteria for a ballistic missile in order to make the necessary
corrections to hit a target when adjusting to a variety of perturbation methods. The
STM can be formulated either through the analytic solutions of motion or accounted
for directly by using a numeric sensitivity technique.

We use the STM to determine the sensitivity of the final impact position of the
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projectile to its initial velocity. We then resolve error by making a velocity correction
derived from the state transition matrix. We chose to make our comparison between
the method of formulation of the STM by setting up a grid of equally dispersed targets
and resolving trajectory solutions from a variety of launch locations.

2 Primary Formulation of the State Transition Ma-

trix

As discussed in Schaub and Junkins, the state transition matrix is a matrix of func-
tions that comprise sensitivities of final states with respect to initial states as in
Equation 1. Here we discuss the full blown equation in its raw form.

∂X(tf)

∂X(t0)
= [Φ(t0, tf)] =

[
Φ11 Φ12

Φ21 Φ22

]
=

 ∂r
∂r0

∂r
∂ṙ0

∂ṙ
∂r0

∂ṙ
∂ṙ0

 (1)

X =

[
r
ṙ

]
(2)

δX(tf) ≈ [Φ(t0, tf)]δX(t0) (3)

Here X defines the states, in our case position and velocity as shown in 2. We examine
the states at two specific times, the initial time, t0 and final time, tf. This gives us
a combination of effects, how small changes in initial position affect final position,
Φ11, how small changes in initial velocity affect final position, Φ12, how small changes
in initial position affect final velocity, Φ21, and how small changes in initial velocity
affect final velocity.

For the ballistic missile problem we only use the sensitivity of the final position with
respect to changes in initial velocity, Φ12, thus neglect the other portions of this
matrix and refer to Φ12 as the state transition matrix. We resolve the necessary state
changes as shown in Equation 3. Later we discuss how this relation can be used in
detail to resolve error in where the projectile ends up to where it should be.

This document will show the correlation between the analytical solution and a nu-
merical solution in computing the STM for the advanced ballistic missile problem. A
comparison will also be made in the computational effort and trends of convergence
or divergence between the two methods for a series of launch points to a fixed array
of globally dispersed targets. But first we will examine a detailed examination of the
constant gravity ballistic problem.
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3 Computation of the STM for a Ballistic Projec-

tile in Constant Gravity

We define our constant gravity vector in a 2-Dimensional plane shown in Figure 1
to be in the y direction. We define constant surface gravity for Earth as -9.81 m/s2.
The vector form of the accelerations for this flat Earth, no drag, no rotation model
is shown in Equation 4.

a =

[
0

g0y

]
(4)

Figure 1: Identification of nomenclature and a representative trajectory to solve the
constant gravity problem.

Next, we integrate with respect to time to determine our equations of motion in
Equations 5 and 6 for velocity and position respectively.

v =

[
V0x

V0y + g0y∆t

]
(5)

r =

[
r0x + V0x∆t

r0y + V0y∆t + g0y
∆t2

2

]
(6)

Now we perform the necessary operations to form the state transition matrix, Φ.
We utilize the partial derivative to determine the values analytically for the state
transition matrix for the constant gravity problem in Equations 7 - 10.
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Φ11 =
∂r

∂r0

=
[

∂r
∂r0x

∂r
∂r0y

]
=

[
1 0
0 1

]
(7)

Φ12 =
∂r

∂ṙ0

=
[

∂r
∂ ˙r0x

∂r
∂ ˙r0y

]
=

[
∆t 0
0 ∆t

]
(8)

Φ21 =
∂ṙ

∂r0

=
[

∂v
∂r0x

∂v
∂r0y

]
=

[
0 0
0 0

]
(9)

Φ22 =
∂ṙ

∂ṙ0

=
[

∂v
∂v0x

∂v
∂v0y

]
=

[
1 0
0 1

]
(10)

With Φ we can determine how to resolve a particular target at a particular velocity
from a given set of initial conditions. In most cases we would like to just hit our
target given an initial guess with a constrained initial position.

For these purposes, we utilize a change in initial velocity to determine the final posi-
tion and thus concentrate our efforts with Φ12. Here we correct our position with a
simple correction.

3.1 Error Resolution

First we use an initial guess to provide us with data on where the projectile lands after
a fixed flight time. We can compare the error of where the projectile’s impact point
on the surface is, rf , to where we should be, rt

f . Equation 11 shows this relationship
to determine the range error δrf .

δrf = rf − rt
f (11)

After we have the error vector, we can now find the velocity correction using Φ12.

3.2 Velocity Correction

With Φ12 and δrf we can backsolve to find the necessary velocity correction vector,
δv as shown in Equation 12.

δv = [Φ12]
−1[−δrf ] (12)

The velocity corrected vector δv is then added to the initial velocity vector set to
make the correction and precisely hit the target.
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3.3 Example Velocity Only Correction Constant Gravity Pro-
jectile

We define our initial conditions X(t0) as follows: r0x = 0 m, r0y = 0 m, V0x = 5 m/s,
V0y = 3 m/s. And define our final conditions X(tf ) as follows: rt

x = 5 m, and rt
y =

20 m. Lastly we define our time of flight ∆t as 5 seconds.

We use these initial conditions with our equations of motion to determine where our
projectile lands after the time of flight, rf . Then we use Equation 11 to resolve the
error vector δrf . We find it to be as follows:

δrf =

[
20.0000
−127.6250

]
m (13)

Next we use Equation 12 to apply the necessary velocity correction, δv to resolve the
target. The result is plotted in Figure 2.

Figure 2: Corrected Trajectory uses Φ12 to change initial velocity to strike target.

Examining the error vector following the correction and using the equations of motion
to resolve the final position, we find that it is exactly zero. With no perturbations to
the system and being in a constant acceleration environment this result makes sense.
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4 Methods to Compute Φ12 for the Ballistic Mis-

sile Problem

The state transition matrix provides a method for mapping the initial state vector
of a system to a final state vector at any particular time. Corrections must be made
to the initial velocities in order to minimize induced effects on trajectories. This
document resolves effects due to drag on the projectile as well as accounting for a
spherical rotating Earth.

There are two primary methods for computing such initial velocity corrections: the
analytic solutions for determining where a body will be given an initial guess as well as
the final portion of the initial guess; and the numerical solution where by a sensitivity
of the trajectory to small velocity variations from the initial guess are computed.

4.1 Analytic Method

The analytic method3 employs the special case compilation of terms from the F and G
solution of propagating a two-body problem, or Keplerian motion, found in Equation
14. Here we no do not account for any perturbations or non-linearities in the system.
The only effects considered in this analytic method are the inverse square law gravity
effects. As in the example STM calculation, we require initial position, initial velocity,
and time of flight. We also require the resultant position and velocity that results
from the initial state.

[Φ12] =
r0

µ
· (1− F )

( ∆rx

∆ry

∆rz

 [ V0x V0y V0z

]
−

 ∆Vx

∆Vy

∆Vz

 [ r0x r0y r0z

])

+
C

µ

 Vx

Vy

Vz

 [ V0x V0y V0z

]+ G

 1 0 0
0 1 0
0 0 1


(14)

Where F and G are the terms from the F and G solution represented in Equations
15, 16, and 17; and C is represented in Equation 18.

F = 1− r

p
(1− cos(∆f)) (15)

G =
r0rḞ√

µa
(16)

Ḟ =
√

µp tan

(
∆f

2

)(
1− cos(∆f)

p
− 1

r0

− 1

r

)
(17)
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C = a

√
a3

µ
(3 sin(Ê)− (2 + cos(Ê))Ê)−∆ta(1− cos(Ê)) (18)

Ê = arctan

 −r0rḞ√
µa

1− (1−F )r0

a

 (19)

Where Ê is the modified eccentric anomaly in Equation 19, a is the semi-major axis,
p is the semilatus rectum, f is the true anomaly angle, and ∆t is the flight time of
the projectile. For our simulation, we derive a and p from a mapping of the cartesian
coordinate set to its orbital elements and use the definition of the dot product to
compute the change in true anomaly angle, ∆f , between the location of the target
and the launch location. We utilize the two-body solution’s launch position, r0, and
velocity V0 as well as the arrival position, r, and velocity, V , to compute the changes
in position and velocity. These calculations use the form of subtracting the launch
conditions from the target conditions.

4.2 Numerical STM

The numerical STM is determined by adding small changes in velocity to the initial
cartesian state.2 These changes are represented as vector quantities. For instance
Equation 20 demonstrates a small change, vε in velocity in the cartesian inertial x
direction where vε is 0.001 km/s.

δv1 = [vε 0 0] (20)

A change in each of the cartesian directions is added to the reference cartesian state.
Each is then forward propagated for a predetermined flight time whereby a final
location is resolved for the three cases of velocity variation. These final locations
are then compared to the reference cartesian state’s resultant final position, rref, as
depicted in Figure 3.

Sensitivities are then derived by dividing the change in range over the magnitude of
the variation in velocity. Equation 21 indicates the calculation for the first column
of the STM. Here, Target i, for i = 1, 2, 3, from Figure 3 is indicated as ri

f and the
reference final location is rref. 

δrx

δvi
δry

δvi
δrz

δvi

 =
ri

f − rref

vε

. (21)

The numerical sensitivity matrix is then formed as shown in Equation 22 by utilizing
the three varied final projectile locations formed by propagating the perturbed initial
conditions along the flight time.
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Figure 3: Numerical STM compares a reference trajectory final location to 3 per-
turbed trajectories.

[Φ12] =

 δrx

δv1

δrx

δv2

δrx

δv3
δry

δv1

δry

δv2

δry

δv3
δrz

δv1

δrz

δv2

δrx

δv3

 (22)

Problems using the numerical STM involve the creation of a singular matrix. These
singularities are introduced when the sensitivity in range is computationally negligible
with respect to the small change in velocity. These instances can occur when the
projectile is sent on a hyperbolic trajectory. A critical velocity loop exception is
introduced to the program to account for these effects.

Further, we must use constant flight time when using the numerical STM. Propagators
can be set up in order to utilize the constraint of the surface in order to determine a
time of impact. With perturbations in velocity, the flight time for each case will differ.
This would imply that the STM is also a function of time, which it is not. Instead,
a constant flight time propagation technique must be invoked regardless of whether
the projectile’s final perturbed position is above or below the surface. However, to
determine the reference position of the projectile, rref, the trajectory is propagated
until a surface hit is observed. This assures that the projectile will hit the surface if
not on an escape trajectory and thus all solutions are found in a ring on the surface
and not just within a sphere.
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The forward propagation technique in a purely numerical STM is a numerical method
using numerical integration that accounts for the atmosphere and the projectile’s bal-
listic coefficient. This numerical solution uses a propagation technique that accounts
for all effects encountered by the projectile while on its path as defined by the forward
propagation technique. Therefore it appears to be more robust than pure analytical
methods when for accounting for drag and other perturbations.

5 Use of the ODE45 Numerical Integrator with

Event Detection

The ODE45 numerical integrator is one of many built-in functions in the Matlab
software library. ODE45 is considered to be an accurate means of integration because
it uses an internally variable time step in order to resolve the solution to a desired
accuracy as defined by the user. The user must also recognize that because the steps
are variable, this will induce a conditional environment that may alter results of a
complex environmental model.

The defined atmosphere used in this simulation is such that the atmosphere is invoked
when on the rising portion of the trajectory above a 122 km altitude and remains on
until impact. In order to satisfy this condition, the previous height on the downward
portion of the trajectory below 122 km must be greater than the current height.

Caution must be observed when using the propagator as the previous steps are com-
pared due to the nature of ODE45 actually proceeding backwards in time and stepping
with smaller increments forward in time. When computational time becomes extreme
and solutions are not determined after multiple minutes, its entirely possible that the
the atmosphere is being turned on and off, making it extraordinarily difficult for
ODE45.

Two methods of ODE45 can be used, a fixed time approach going from some initial
state to some final state with an undetermined number of points in between. This
is useful for setting a very large time and having the event detection option find the
impact point and flight time. Therefore a constant for final time is used throughout
and actual flight time is extracted using the event detection method. For use in
computing the sensitivity matrix of the numerical model, a constant flight time is
used to compare how the changes in the initial state affect the final state. Thus,
events detection is no longer utilized in this operation.

Alternative forms of numerical integration can be utilized in the future, but detailed
analysis would need to occur to determine the impact point location and tolerances
explored.
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6 Problem Definition

It is desired to formulate the necessary initial conditions of velocity for a given ini-
tial surface location and a desired final target location in the Earth fixed frame of
reference. The initial position and velocity vectors are then propagated throughout
the flight time of a simulated point-mass projectile until impact. An initial guess is
computed using the Keplerian two-body solution for flight time and initial velocity.
Various methods including the F and G solution and Keplerian orbit plane determi-
nation are available for computing this solution and will not be reviewed here. This
guess is then subjected to the state transition matrix technique and velocity correc-
tions are applied. In order to determine a measure of effectiveness for each type of
state transition matrix a host of globally dispersed targets is composed and conver-
gence criteria such as number of iterations to converge (if at all) and computational
time is compared for a variety of launch locations.

6.1 Non-Keplerian Effects

Numerous non-Keplerian motion effects can be added to increase the fidelity of the
ballistic missile problem model. Some of the major effects due to the environment
will be resolved in this study including planetary rotation and the atmosphere on a
simple projectile with a defined ballistic coefficient. This projectile will not have a
defined an inertia tensor nor will lift be modelled.

6.1.1 Rotation

Planetary rotation is a significant source of error for projectiles with long flight times.
As the body rotates, the target itself will move. For minimum energy two-body
trajectories, the flight time can remain constant, and a new trajectory computed to
essentially lead the target.4 However, since the purpose of these simulations is to build
tools capable of resolving higher fidelity solutions, the minimum energy transfer time
is not used to form solutions; it is used as an initial guess only.

For the purposes of this study, we employ the local sidereal time, γt. Knowing the
reference Greenwich sidereal time, γUT, we can rotate the Earth to the target’s lon-
gitudinal position, λt, of the Earth frame to the inertial frame. Then we account for
the rotation of the Earth during the flight time of the projectile shown in Equation
23.

γt
0 = γUT + λt (23)

We then propagate the local sidereal time as shown in Equation 24.

γt
f = γt

0 + ωEarth∆t (24)
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The remaining step is to now determine the target location in inertial coordinates.

rt = REarth

 cos(φt) cos(γt
f )

cos(φt) sin(γt
f )

sin(φt)

 (25)

Here we find the final inertial position of the target rt used in Equation 30 using for
the first time, the latitude location of the target, φt.

We also note that the launch site has an initial inertial velocity that will translate
to a different ”real” launch velocity due to the Earth’s rotation. We expect that it
is less expensive to launch east than to launch west in these cases since we already
have an initial eastward velocity. Further discussion of this topic will be reviewed in
the trajectory analysis section.

6.1.2 Atmosphere

A piece-wise exponential model was selected from previous work,5 to represent the
atmosphere. It is assumed that an exponential density model can accurately rep-
resent the atmosphere.1,6, 7 The nature of exponential atmosphere density model
provides the ability to estimate the density at altitude and obtain closed-form so-
lutions while maintaining reasonable accuracy. However, since the analysis will be
performed numerically, any model can be utilized. We choose to use this model due
to its availability and understanding of its inherent error with respect to the 1976
Standard Atmosphere. For sea-level conditions we assume a initial density, ρ0 of
1.225×109 kg/km3.

For this exponential model the term Γ will be used to represent the density ratio at
altitude as shown in Equation 26.

Γ =
ρ

ρ0

= e
−h
Λ (26)

The piecewise function changes properties at 152 km altitude (500,000 ft.) For the
upper segment of the piecewise function, the reference density ratio at 1.524×102 km
is 1.4848 kg/km3. A scale height, Λ for elevations from 0 to 152 km is 6.882 km. For
152 km and above, 83.887 km is used. In Figure 6.1.2 we see the comparison of the
1976 Standard Atmosphere Model with that of the comprised piecewise exponential
density function. For low altitudes we see there is good agreement with a general
trend following the higher altitude portion that otherwise would be neglecting a far
greater portion of density if a single relation was used.

This study invokes the atmosphere at 122 km (400,000 ft.) on the rising portion of the
trajectory through the descent phase to the surface. It is assumed the the trajectory
on the ascending portion to this altitude location of 122 km follows a Keplerian
trajectory using thrust to match the necessary conditions when drag begins to be
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Figure 4: A plot of density vs. altitude comparing the 1976 Standard Atmosphere to
the McFarland model5 employed in this simulation.

modelled. Thereafter drag is employed throughout the trajectory until impact on the
surface.

6.1.3 Projectile Definition

The next task is to model a vehicle. This vehicle has three key parameters that we
must know in order to determine the influence of drag acceleration. They are mass,
representative area, and drag coefficient. In many cases all three of these parameters
are not constant. A vehicle with an ablative heat shield will lose mass; a vehicle could
deploy speed brakes or a parachute to increase area; drag coefficient is generally a
function of lift coefficient which varies with Mach number and angle of attack to
include some of the variations. For our discussion, we model a ballistic missile; thus
we neglect lift terms and consider drag to be much greater than lift and consider drag
coefficient and area to be constant.1

When mass: m, area: S, and drag coefficient: CD are combined they represent a term
called the ballistic coefficient,8 β. This is represented as m

CD·S
, and is traditionally in

units of kg/m2.

To maintain unit consistency throughout the simulation, we will redefine the units as
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kg/km2. The ballistic parameter, β for satellites is considered low8 at values of 20×106

kg/km2 and high for 200×106 kg/km2. Feathers for instance have a very low ballistic
parameter, while a battleship projectiles and ballistic missiles have large values. This
is the parameter that defines how well a projectile can penetrate the atmosphere.9

For the purposes of this study, four values of β are chosen in kg
km2 : ∞, to indicate

that the projectile is unaffected by the atmosphere; 2×1012; 2× 109, and 200× 106.
Realizing that these values are not wholly representative of probable objects and that
values of β are not constant, but fundamental to the introductory examination of the
effects of drag. Ballistic missiles by design will attempt to penetrate the atmosphere,
so lower values are not realistic. Next we determine the method in which we model
drag.

6.1.4 Modeling Drag

The drag force is generally defined1 as in Equation 27.

D =
1

2
ρv2CDS (27)

Where D is drag force and v is velocity magnitude. To incorporate the more advanced
vector form of acceleration, we divide by mass and multiply by the negative velocity
direction unit vector as shown in Equation 28.

aDrag =
1

2
ρ(v · v)

CDS

m

(−v)

‖ v ‖
(28)

Next we simplify the equation and incorporate β in 29.

aDrag =
ρ

2β
(v · v)

(−v)

‖ v ‖
(29)

Now that rotation, drag, and the projectile are defined, we have the tools setup to
produce a trajectory solution. Now we examine how to compare error and make
corrections to the initial state.

6.2 Error Resolution

We can compare the error of where the projectile’s impact point on the surface is, rf ,
to where we should be, rt

f . Previously in the rotation section we discussed how to
determine where the target will be on the surface of the Earth after the given flight
time. We can compare our forward propagated solution’s impact location in Equation
30 to the target location to determine the range error δrf .

δrf = rf − rt
f (30)
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For target locations on the poles for pure rotation solutions, we expect the answer to
be the same as the two-body solution for the spherical body. With the addition of
drag and other perturbations to the problem, the non-linear dynamics of the system
will alter this and must be corrected.

6.3 Velocity Correction

With [Φ12] and δrf we can backsolve to find the necessary velocity correction vector,
δv as shown in Equation 31.

δv = [Φ12]
−1[−δrf ] (31)

The velocity corrected vector δv is then added to the initial cartesian velocity vector
set to correct for the effects of the perturbation. After successive iterations of re-
computing the final location of the trajectory after applying the correction, the error
vector δrf is driven to zero when the solution converges; else it diverges.

7 Problem Solving Method

We design a scheme to approach the formulation of the ballistic missile trajectory.
First we identify that the two-body Keplerian solution is valid for a non-rotating Earth
with no atmosphere. Next in this method we specify that the minimum energy semi-
major axis will be employed. We hypothesize that we can correct this initial guess for
a trajectory by employing the state transition matrix method for the ballistic missile
problem by correcting the initial velocity to resolve the appropriate final impact
location of the projectile within a tolerance.

As shown in Figure 5 the program receives inputs of launch site and target site initial
conditions.

The program receives inputs of launch site and target site initial conditions. The
two-body no-rotation solution is then processed. A flight time and initial cartesian
coordinate set are outputted to a propagator to create the full trajectory profile. The
target location on the Earth’s surface is then rotated the appropriate amount that
occurs during the time of flight, and error is compared. If error is less than the
predetermined tolerance, the function halts and a trajectory is resolved. Otherwise,
the program continues to resolve a solution.

When a solution is not within the predetermined tolerance, the initial guess trajectory
state is outputted to the STM of choice. The error vector of the rotated target to
the final projectile’s location after the time of flight is compared in the while loop.
Then the velocity correction is made. The new trajectory initial conditions are then
forward propagated until the projectile impacts the surface of the Earth. We then
rotate the target location and again compare error.
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Figure 5: Iterative approach used to resolve solution.

We setup a counter to determine the number of iterations required to correct the
velocity of the cartesian state to resolve a solution within tolerance. A predetermined
ejection criteria is also put in place to account for diverging solutions or situations
such as the 180o case where the minimum energy semi-major axis is actually the
radius of the Earth. For this situation, large difficulties arise when correcting velocity
due to the surface impact constraint and another initial guess will be researched for
this region of cases.

7.1 Representative Solution

A representative case that uses a single surface launch and target location is used to
demonstrate the model and its capabilities. Here we use φ0 = 0o N and λ0 = 80o E.
The target location for this exercise is φt = 50o S and λt = 150o W. We arbitrarily
chose a STM since we are not sure yet of how each will perform. In the case of the
two-body trajectory; no velocity correction at all is performed; the loop is directly
exited. We also examine pure rotation and rotation and drag cases. Each of these
solutions examine the trajectories followed.

Figures 6(a) and 6(b) show a comparison of the ground tracks traced over the surface
of the rotating Earth during the time of flight of a projectile with β = 200×106

kg/km2. In Figure 6(a) we see the entire profile. We note that the two body solution
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is displaced westward, as we should expect for Earth rotation. We also note that the
drag and rotation solution are similar to the rotation only solution. This also means
that rotation effects are much greater than those caused by drag. This result was
not entirely expected but makes sense when examining the similarity between the
trajectories. We find that the drag and rotation trajectory leads the target slightly,
prior to atmospheric entry, to account for the velocity slow down that results from
the atmosphere.

Figure 6(b) we see a view of the Earth constrained to the target site. Here we notice
that there is a significant deviation from the flight path of the drag and rotation
solution from the rotation solution. We note that each marker indicates the position
of the projectile with 1 second increments. The drag case is shown to have a significant
compression of these steps and a westward motion into the target. We thus expect
that the inertial speed of the projectile as it falls through the denser portion of the
atmosphere is actually now moving at a slow enough rate that the Earth’s relative
rotation speed is significant. Here we also note that the distances between the markers
for the rotation and two-body solutions are similar. This indicates that these solutions
during this period of time are approximately travelling at the same velocity.

We can therefore expect that the rotation correction solution and the drag solution
should be fairly similar in the amount of necessary initial velocity correction. This is
due to the resultant inclination chosen to reach the target, and the observation that
the trajectories do not vary in an extreme manner throughout, we do notice that the
flight time for the drag case is longer for this case, therefore even more Earth rotation
will occur in this situation than just the pure rotation case.

We demonstrate this fact by examining the time vs. altitude plot shown in Figure
7(a). We see that there is approximately 10% difference between the time of flight
of the drag and rotation case to the cases without an atmosphere. This increase is a
direct result of slowing down in the significant atmosphere. We can determine that
the time of entry is about 300 seconds long for this case which also makes sense.1

We also note that the apogee altitude varies significantly between these cases. A
point of interest is that as rotation effects increase the trajectory’s apogee altitude
decreases. This appears to be a correlation that the angular distance between the
launch location and the final location of target after the time of flight is a small
distance when launching westward. This thus results in a lower apogee altitude.

We also wish to examine conditions upon re-entry into the Earth’s significant atmo-
sphere at 122 km. We examine the plots from the downward portion of the trajectory
only, as indicated by the arrows in Figures 7(b) and 7(c). In Figure 7(b) we discover a
significant deviation in the scalar inertial velocity of the projectile as it falls through
the atmosphere. This correlates directly to the compressed time step formation indi-
cated in Figure 6(b) as well as the increased flight time as indicated in Figure 7(a).
We also note that the peak acceleration for this trajectory and value of β is about 40
G’s. Where the units ”G” are the surface acceleration of the Earth’s gravity generally
approximated as 9.81 m/s2. We expect that for larger values of β the velocity pro-
file trend more to the two-body and pure rotation cases with maximum acceleration
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decreasing.

8 Comparison of STMs for Use in Resolving Tra-

jectories for an Array of Targets

Now that we have a feel for how solutions are formed for a single trajectory case, we
form a array of target locations and an array of launch locations. These array are used
to demonstrate the effectiveness of each type of method for resolving the trajectory for
any desired launch or target location. We compare the numerical formulation with the
analytical formulation of the STM for each of these cases to determine which is better
for this specific application of the ballistic missile problem. We can also determine
whether it is better to compute the STM just once outside the iteration loop or if
it is more effective to utilize the STM inside. From the detailed examination of the
representative solution, we expect that the analytical method should be sufficient to
account for the Earth rotation and drag effects. The entry portion of time of flight
is small when compared to the time of flight for the full trajectory, and it appears to
be compensated for with more rotation of the Earth.

8.1 Array of Targets

An array of targets was formulated using a grid work of points in latitude and longi-
tude. Initial studies including rotation utilize a 703 point array ranging from 90o N
latitude to 90o S latitude in increments of 10o. A longitudinal grid from -180o to 180o

E is formulated also using increments of 10o. This results in 658 unique data points
for examination when accounting for the overlap that occurs numerically at the poles
and 180o.

For cases employing drag, a much smaller grid size of 49 points is used due to the
much heavier computational requirements. This grid is defined from 90o N to 90o S
in increments of 30o with longitude from 90o W to 90o E by increments of 30o. Shown
in Figures 8(a) and 8(b) is the target array with 37 unique points with respect to the
surface of Earth.

The drag case grid size reduced in longitudinal span to eliminate the large errors
associated with the two-body solution initial guess and account for increased compu-
tational time required to formulate the solutions.

8.2 Array of Launch Locations

Launch locations were chosen with strict regard to the assumption of symmetry across
the equator. The initial locations of the representative launch locations are chosen to
be 0o N by 0o E, 45o N by 0o E, and 90o N by 0o E. Figures 8(a) and 8(b) indicate
the launch locations.
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(a) Global groundtrack of solutions.

(b) End of trajectory detailed examination of groundtrack.

Figure 6: Groundtrack of solutions for two-body motion(no atmosphere or rotation
used in calculation), pure rotation(no atmosphere used in calculation for in trajec-
tory), and drag and rotation cases(β = 200×106 kg/m2)

.
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(a) Time vs. Altitude

(b) Velocity vs. Altitude

(c) Acceleration vs. Altitude

Figure 7: Plots of projectile dynamics for various levels of modelling fidelity.
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(a) Rotation Array

(b) Rotation/Drag Array

Figure 8: Array of Targets and Launch Locations for differing levels of fidelity.
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8.3 Measures of STM Effectiveness

The primary means of comparing the numerical and analytical STM effectiveness is
chosen to be the number of iterations required to correct the velocity. The number of
iterations results in the indirect comparison of the computational power required in
order to resolve a solution. An outline of the program created to solve the problem
is shown in Figure 5.

It was chosen that 10 iterations would be allowed for velocity corrections to resolve
the target solution within an accuracy of 1.6 km (recall this error is a linear error
that is the direct subtraction of vectors from the target location to the final location
of the projectile). Solutions that did not converge with this number of iterations are
given a value of 10. If solutions began to diverge or exceeded the critical velocity, a
value of of the last iteration plus 10 is assigned.

The solutions are further examined using the time required to attempt a solution for
each grid point. This examination is subjective, however, to the available computing
resources and is not directly repeatable. Solutions are examined as far as determining
the inclination of the suborbital trajectory’s plane and the angular distance between
surface locations in order to determine discontinuities. These discontinuities would
result when solutions would fail to converge and errors are large. When drag is
introduced, the computational requirement is observed to increase by nearly three
orders of magnitude, and rate of divergence rapidly increases.

8.3.1 Critical Velocity Loop Ejection Criteria

A critical velocity requirement is necessary to prevent numerical simulation of a hy-
perbolic trajectory. These trajectories will never fall back to the surface of rotating
body, and thus will always fail to converge. Here critical velocity2 is defined as Equa-
tion 32 where REarth is the radius of the spherical body.

Vcrit =

√
2µEarth

REarth

(32)

Using this requirement, resultant corrected velocities exceeding the critical velocity
will result in the iteration loop termination and a value of 10 added.

8.4 Use of the STM for Resolving the Trajectory

Previously we introduced the numerical and analytic forms of the STM. We expect the
analytic form to be computationally faster due to the fact that effects of drag are not
included in its formulation. We are not certain as to whether which solution converges
faster in the number of iterations required however, or if there are regions where
solutions cannot be resolved. We examine 4 separate methods in this analysis: the
external analytic(EA) STM, the internal analytic(IA) STM, the external numeric(EN)
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STM, and the internal numeric(IN) STM to determine convergence properties to
resolve the ballistic missile trajectory.

8.4.1 Internal Methods

An approach was conceived to determine whether a reformulation of the STM would
be appropriate and even assist increasing the speed in which the process would resolve
a solution. Here the STM is calculated inside the iteration loop shown in Figure 5.
The process reevaluates the sensitivities at each iteration correcting the velocity at
each step using this new sensitivity.

8.4.2 External Methods

Techniques placing the analytical and numerical solutions merely outside the iterative
loops are also examined. These external methods employ the STM prior to the
internal processing loop of the velocity correction and internal comparison of error.
In other words, we compute one STM instead of determining the sensitivities in
succession which reduces required computational power per iteration at the sacrifice
of accuracy.

8.5 Rotation Effects

The addition of rotation is the first level of complexity added to the basic ballistic
missile problem. Target sites will move as the Earth rotates during the period of
flight. These target sites therefore must be led in the inertial frame in order to hit
them after the missile’s time of flight. Thus, pure rotation is seen as a good baseline
for an initial comparison, and this method is employed to determine what the final
coordinates of the target location are after the flight time of the vehicle. This method
is used throughout the simulation as flight time is refined to reflect the flight time
necessary to hit inside the target ring of accuracy. With our tools we have constructed,
we initiate our simulation with β = ∞ to account only for the rotational effects of
Earth during the projectile’s flight.

8.5.1 Uncorrected Two-Body Solution for β = ∞

First we examine what amount of error we expect from our initial guess using the
two-body solution with no velocity correction. This will determine how accurate our
guess is an can gain insight into the reasons for potential failure of the STM to resolve
a trajectory within the predetermined tolerance of impact error.

Shown in Figure 9(a) we see that the scalar range error, δr exceeds over 1000 km
when nearing 180o of angular distance shown in Figure 11(a).

22



(a) β = ∞ (b) β = 2× 1012

(c) β = 2× 109 (d) β = 200× 106

Figure 9: Error contour plot for launch location 0o N 0o E for solutions uncorrected
initial velocity provided by the two-body solution. This plot contains data for the
703 point target array.
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Figure 10: Error contour plot for launch location 45o N 0o E for solutions uncorrected
initial velocity provided by the two-body solution. This plot contains data for the
703 point target array β = ∞.

24



(a) Plot of angular distance between the launch
location and the final target location.

(b) Trajectory’s orbital plane inclination angle.

(c) Uncorrected initial inertial velocity plot for
launch.

Figure 11: 0o N 0o E s in the 703 point array. Original positions shift in longitude
easterly with rotation during the time of flight. Two-body conditions are provided
for the β = ∞ case.
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(a) Plot of angular distance between the launch
location and the final target location.

(b) Trajectory’s orbital plane inclination angle.

(c) Uncorrected initial inertial velocity plot for
launch.

Figure 12: Plot of trends for launch location 45o N 0o E and the final target locations
in the 703 point array. Original positions shift in longitude easterly with rotation
during the time of flight. Two-body conditions are provided for the β = ∞ case.

26



Error is seen to be symmetrical across the equator as we should expect for an equa-
torial launch case. Also, error at the poles is virtually zero since targets located
precisely at the poles do not rotate. Values from the simulation indicate error on
the order of 1 × 10−6 km are accounted. Internal storage of values throughout the
numerical integration process appears to be the cause of this discrepancy, but remain
virtually zero for the purposes of any missile targeting application. We also wish to
examine the intrinsic properties of the orbit and inertial launch velocity conditions
for the two-body case. Figures 11(b) and 11(c) We make special note that the inertial
conditions are reviewed since missiles can take advantage of the rotation of Earth for
eastward launches and similarly are penalized by the eastward velocity of the Earth
when launching west.

We also examine the case for launch location of 45o N 0o E. We notice here that the
angular range will increase diagonally and thus the two-body solution’s error due to
rotation will increase in these regions. Figure 10 shows the southward trend of error
as the launch location is shifted northward. We also note the change in the contour
to bulge towards the prime meridian. This trend continues with increasing latitude
of the launch site.

We examine the relationship of angular distance, two-body projectile inclination, and
inertial initial velocity for the trajectories formed for the 45o N launch case in Figures
10-12(c). Here we discover the inclination of the resultant suborbital trajectories
correlate to the launch latitude. We note that the minimum inclination is the same
as the launch latitude and the maximum inclination is the retrograde trajectory its
counterpart. We also note that there are regions where numerous angles converge at
180o of longitude. We note that we have sharp changes at these locations and this
could result in issues for convergent solutions.

8.5.2 External Analytical STM Method for Rotation

The external analytical STM method was utilized in order to create the velocity
correction necessary to hit the moving target. Recall, that the external definition
means that we compute the STM only once before the iteration loop. Figure 13(a)
depicts the number of iterations required across the 703 point grid array.

The iteration contour map includes the colorbar legend denoting increasing iterations.
As shown, the regions between -150o W and 150o E have a difficult time converging.
To understand why there is such a difficulty the angular distance between the origin
and the target site following rotation is analyzed.

We review the angular range of the region where solutions fail to converge (10+
iterations) and determine that these targets are near 180o. However due to the nature
of failure modes, numerous discontinuities are introduced into the region of failure.
Thus to better to explain the region of failure to converge we look to the plot of
trajectory inclination.

For the minimum energy solution for 180o, the trajectory runs precisely along the
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(a) Iteration contour plot analytical method. (b) Inclination contour plot analytical
method.

(c) Iteration contour plot numerical method.(d) Inclination contour plot numerical
method.

Figure 13: launch location 0o N 0o E for solutions using the Analytic STM method
for the 703 point target array β = ∞.
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surface of the planetary body, or otherwise the apogee altitude is 0 km above the
surface. Thus solutions would be difficult to formulate using the minimum energy
assumption for this angular range. Figure 13(b) depicts a transitional boundary where
the path switches from posigrade (eastward) to retrograde (westward) trajectories.
This boundary seems to well define the region where iterations increase and has the
most direct correlation to the increase in required iterations.

As indicated in Figure 13(b), the band of trajectories using 0o inclination is depicted as
a narrow gap approaching 160o E. This correlates to the narrow region of convergence
that penetrates the iteration contour plot in the same area. Similarly a region exists
for 180o of inclination on the western portion of the grid. The solution seems to
break down earlier on the eastern side of the plot than the western side. This may
be attributed to the fact that the eastern portion of the map has a higher angular
displacement of the solution. Launching eastward is a more difficult task to catch up
to a surface point near 180o than if launching westward. Here the iteration method is
switching between launching eastward and westward and having difficulty resolving a
solution since large velocity changes are required to completely change direction and
thus a large number of iterations.

8.5.3 External Numerical STM Method for Rotation

The external numerical STM method is then examined for the rotation only case to
determine its effectiveness. We determine that the numerical method produces very
similar plots to the analytic method, however, they differ in important ways. Shown
in Figure 13(c), we see that some escape cases are not present. While, the general
trend to increase the number of required iterations does seem similar, several regions
converge using the external numerical STM where the external analytic solution could
not. On average the pure numerical STM requires nearly twice as much computing
time to complete the simulation than does the pure external analytic STM method at
this ballistic coefficient. We do discover from the examination of resultant trajectory
inclination that we see very similar plots between the external analytic method and
the external numerical method as shown in Figure 13(d).

8.6 Atmospheric Effects

The addition of atmospheric effects began by defining the ballistic coefficient for
values of less than ∞. 3 cases are reviewed for missiles of various order of magnitude
β = 2× 1012, 2× 109, and 200× 106 kg/km2. Our results are summarized in tabular
form for the launch location of 0o N 0o E. We expect trends to continue as indicated
by the rotation only cases for increasing launch latitude and therefore only examine
this case in great detail.
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8.6.1 Uncorrected Two-Body Solution for β = 2× 1012

The first case examined is 2×1012 kg
km2 . This value is very large for any vehicle, but is

a good introduction to the effects of drag, and provides a check if drag in the model
that is working correctly. Shown in Figure 9(b) is the uncorrected velocity as derived
from the two-body non-rotating solution.

8.6.2 Uncorrected Two-Body Solution for β = 2× 109

Next the β = 2 × 109 case is explored a realistic value for ballistic missiles. Figure
9(c) shows the uncorrected error on the non-rotating two body solution. Here we
notice that error increases significantly and note the change in scale on the colorbar
from the previous example.

8.6.3 Uncorrected Two-Body Solution for β = 200× 106

Figure 9(d) shows the uncorrected error resultant from the two-body initial guess.
Error approaches 2000 km for the cases near 150o E and W longitude while error for
the region of study is near 1200 km. Values of this ballistic coefficient are actually too
low as they slow down too much in the atmosphere and would be easily intercepted.

8.7 Summary of Methods

For the two sets of target arrays and various ballistic coefficients tested the results are
presented for the 4 methods discussed for a launch location of 0o N 0o E. Subsequent
results from alternative launch locations appear to follow the trends indicated by the
test results in Table 8.7.

We see that the analytical method proves to maintain its computational ability at
resolving the targets in the array throughout the differences of the array. We can
hypothesize that this works by simulating a different average rate that the target is
moving (i.e. the rotation of the Earth). Since the method already seems to account for
these effects of different rotational speeds at various latitudes, the relatively minimal
addition of flight time which causes additional rotation of the Earth can be accounted
for in this method.

The numerical method seems to be more computationally robust at arriving at solu-
tions where the analytical solution fails. We should expect this as numerical methods
are not limited by analytical conditions. However, the initial guess still creates a
unique problem that will need to be addressed in future work. The numerical method
in particular did not converge upon solutions for the β = 200 × 106 case as the di-
rection detection protocols introduced during the modelling of drag appear to have
broken down inside the variable step size integration technique.
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β STM Target Convergence Quality Remarks
kg/km2 Method Array

∞ EA No Drag Conditionally Good Failure at ≈ 180 deg.
... IA ... Conditionally Good Failure at ≈ 180 deg.
... EN ... Conditionally Excellent Remote Failures at ≈ 180 deg.
... IN ... Conditionally Excellent Remote Failures at ≈ 180 deg.

2×1012 EA Drag Excellent No Failures
... IA ... Excellent No Failures
... EN ... Excellent No Failures
... IN ... Excellent No Failures

2×109 EA Drag Excellent No Failures
... IA ... Excellent No Failures
... EN ... Conditionally Excellent Remote Failure
... IN ... Excellent No Failures

200×106 EA Drag Excellent No Failures
... IA ... Excellent No Failures
... EN ... Computationally Rigorous DNF
... IN ... Computationally Rigorous DNF

External (E), Internal (I), Analytic (A), Numerical (N), Did not finish (DNF)

9 Conclusions and Future Work

We find that both the numerical and analytical methods have their merits. The
numerical method is robust in some cases when the analytical solution breaks down
such as the 180 degree exception cases for high values of ballistic coefficient. Internal
methods are more computationally expensive than are external methods that are
only implemented once however generally reduce the magnitude of error faster. The
analytic method is calculated with the same speed at every iteration for all values of
β, while the numerical method is slowed significantly as β decreases. The numerical
method is computationally expensive and induces numerical failures in the simulation
at the lowest chosen β. We can hypothesize that the variable step size performed by
the ODE45 numerical integrator is creating these problems.

To alleviate these errors a 2 step approach is proposed for future work. The first
step is to numerically integrate to exactly 400 kft (or 122km where the atmosphere
is first introduced on the rising portion of the trajectory). We can do this using
the event detection protocol similar to that used for detecting an impact on the
ground. Once this event is triggered, you can stop the simulation and use the final
state(position, velocity) at 400kft for continued simulation using drag on all the time.
This integration scheme would still employ the ground strike event detection method.
By doing this we eliminate the direction and altitude checks within the drag program
which create difficulties with a variable step size integrator. Using this method should
also allow us to readily compute solutions with lift and additional atmospheric factors.
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We also note that the analytic method has proven especially useful for accounting
for drag in this problem. This seems to be due to the fact that the additional flight
time required to proceed around the spherical body is not nearly as significant as are
effects of the rotation. Since the projectile’s studied still had high values of ballistic
coefficient, they were not slowed by a large fraction of their velocity at the interface
with the significant atmosphere. For the lowest values of ballistic coefficient studied
we found that the additional time of flight was only about 4 minutes or 10% for the
longest of trajectories.

In addition to completing analysis of a dense target grid as used for the β = ∞
case, further research will be conducted in the future to make these methods more
robust and fault proof. This includes the piecewise integration scheme outlined above
in addition to considering a new initial guess for trajectories nearing 180 degrees of
angular range. After utilizing this new initial guess (not the minimum energy solution)
we should find that convergence rates will improve. Different numerical integration
methods can also be researched in further detail as well as the application of the
event detection method used to create the spherical surface constraint. Effects of J2

will also be examined, though anticipated to be minimal for these relatively short
flight times. However, use of various altitudes instead of the spherical Earth model
will effect results. Drag modulated and lift modulated re-entry vehicles will also
be investigated and modelled in future work to create a flexible dynamics program.
Effects of a rigid body may also be introduced in future ballistic problem work to
determine accuracy from rotation of the warhead about the length of the projectile.
Problems will also require examination of shallow trajectories where the projectile
may skip off the atmosphere.

Lastly, in the future the ballistic missile defense problem’s other components will
require analysis. An array of radar location sites could be introduced into the problem
to indicate effective tracking of the ballistic missile. Similarly missile interceptors can
be introduced and success rate of intercept based on location can be attained. Thus
through increasing fidelity of these models and creation of simulation techniques a
multitude of publications can be based on this work.
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