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Modelling the Ballistic Missile Problem
with the State Transition Matrix:

A Comparative Analysis

Justin S. McFarland∗

Virginia Tech, Blacksburg, VA 24061

The ballistic missile problem is a typical topic of discussion in introductory astrome-
chanics courses when discussing Keplerian motion. This study revisits the introductory
ballistic missile problem by including the spherical Earth, rotation, and addition of at-
mospheric drag. The scope of this exercise comprises launching from an initial set of
coordinates in the form of latitude and longitude in Earth frame to a desired target set
of coordinates. As intuition suggests, resolving the target location increases in difficulty
as the model complexity increases. Further, when a significant atmosphere is introduced,
analytic solutions are no longer possible using traditional methods. Modern techniques
are then explored using the state transition matrix, a sensitivity based tool, to correct
the initial velocity guess in order to converge upon the desired target within a specified
accuracy. An analytical solution of the two-body problem and a numerical approach are
used to compute the state transition matrix. A comparison is made to determine the
regions of convergence available to each of these techniques, in order to determine their
usefulness in the form of number of iterations required to converge, trends if the solutions
did not converge, and computational speed.

Nomenclature
a Semimajor axis, km
f True anomaly angle, rad
h Altitude above surface, km
p Semilatus rectum, km
r Trajectory radius, km
V Trajectory velocity, km/s
∆t Time of flight, s
∆V Change in velocity, km/s
Φ State transition matrix
β Modified ballistic coefficient, kg/km2

δrf Range error, km
δv Velocity correction, km/s
λ Atmosphere scale height, km
µ Gravitational parameter, km3/kg2

ρ Density, kg/km3

Subscripts

x, y, z Cartesian body axes, km
f Final state
ref Reference state
0 Initial state on surface

Superscripts

t target

Introduction

THE ballistic missile problem is typically repre-
sented in introductory astromechanics texts as
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Copyright c© 2004 by Justin S. McFarland. Published by the

American Institute of Aeronautics and Astronautics, Inc. with per-
mission.

a simplified planar two-body problem with a non-
rotating Earth. From this information we can usually
determine the range of a projectile, the initial flight
path angle, the orbit eccentricity and semi-major axis,
and its true anomaly angles at launch and impact. It
is of interest to expand upon this basic model in order
to add realism to the problem.

Applications desiring increased complexity include
determining the initial launch vector direction and ve-
locity requirements for a vehicle, simulation of the
ground track of a hypersonic vehicle, orbit plane deter-
mination, analysis of energy required at various launch
sites to reach different targets, and means to determine
potential load factors, deceleration, and temperature
gains of a body as it travels through the atmosphere.
Additionally, interplanetary missions such as those to
Mars and Venus may require high degree of landing
accuracy when entering their respective atmospheres.
Thus hyperbolic trajectories can also be utilized in or-
der to resolve an appropriate, necessary velocity at a
fixed point in space. This provides the ballistic unpow-
ered free-flying point mass trajectory1 to arrive in the
locale of the target and then use a guidance system to
make fine adjustments. In order to make the necessary
adjustments to the increased realism, the complexity
of our system must be increased in order to account
for motion in a inertial, cartesian coordinate frame.

To meet the need of this complexity, it is of fur-
ther interest to utilize the power of modern computers
in order to rapidly account for perturbations such as
J2 and atmospheric drag and the effects due to the
rotation of the primary body. Numerical integration
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techniques can be employed to account for effects such
as those of a thrusting projectile through an atmo-
sphere, the drag and lift on this body, and relevant
effects of J2 and other perturbations2 of these prob-
lems. However, when perturbation methods are taken
in to account, resolving the trajectory of the vehicle
to arrive at a specified target is no longer a function
of Keplerian motion. Modern techniques must be in-
voked in order to resolve the more complex dynamics
of these systems. One such technique is the use of the
state transition matrix (STM).

The state transition matrix is a powerful sensitivity
based tool that can used to assist in to correction of
an initial guess of velocity.2 The STM can be used
to formulate the necessary launch criteria for a ballis-
tic missile in order to make the necessary corrections
to hit a target when adjusting to a variety of pertur-
bation methods. The STM can be formulated either
through the analytic solutions of motion or accounted
for directly by using a numeric sensitivity technique.

This document will show the correlation between
the analytical solution and a numerical solution in
computing the STM for the advanced ballistic missile
problem. A comparison will also be made in the com-
putational effort and trends of convergence or diver-
gence between the two methods for a series of launch
points to a fixed array of globally dispersed targets.

Methods within the STM

The state transition matrix provides a method for
mapping the initial state vector of a system to a final
state vector at any particular time. Corrections for
perturbations such as J2, J4, and drag must be made
in order to minimize error on trajectories.

There are two primary methods for computing such
corrections: the analytic solutions for determining
where a body will be given an initial guess as well as
the final portion of the initial guess; and the numeri-
cal solution where by a sensitivity of the trajectory to
small velocity changes from the initial guess are com-
puted.

Analytic Method

The analytic method3 employs the special case com-
pilation of terms from the F and G method of propa-
gating a 2-body problem, or Keplerian motion, found
in Equation 1.

[Φ] =
r0

µ
· (1− F )

( ∆rx

∆ry

∆rz

 [ V0x V0y V0z

]

−

 ∆Vx

∆Vy

∆Vz

 [ r0x r0y r0z

])

+
C

µ

 Vx

Vy

Vz

 [ V0x V0y V0z

]
+ G

 1 0 0
0 1 0
0 0 1



(1)

Where F and G are the terms from the F and G so-
lution represented in 2, 4, and 3; and C is represented
in Equation 5.

F = 1− r

p
(1− cos(∆f)) (2)

Ḟ =
√

µp tan
(

∆f

2

)(
1− cos(∆f)

p
− 1
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− 1
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)
(3)
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r0rḞ√

µa
(4)

C = a

√
a3

µ
(3 sin(Ê)−(2+cos(Ê))Ê)−∆ta(1−cos(Ê))

(5)

Ê = arctan

 −r0rḞ√
µa

1− (1−F )r0
a

 (6)

Where Ê is the modified eccentric anomaly in Equa-
tion 6, a is the semimajor axis, p is the semilatus
rectum, f is the true anomaly angle, and ∆t is the
flight time of the projectile.

Now that we have the state transition matrix [Φ], we
can now determine our range error δrf of final position
vector from where we end up,rf from where we should
be, rt

f , in Equation 7.

δrf = rf − rt
f (7)

With [Φ] and δrf we can backsolve to find the
necessary velocity correction vector, δv as shown in
Equation 8.

δv = [Φ]−1[−δrf ] (8)

The velocity corrected vector δv is then added to the
initial cartesian velocity vector set to correct for the
effects of the perturbation. After successive iterations
of recomputing the final location of the trajectory after

2 of 10

American Institute of Aeronautics and Astronautics Paper 04–22666



applying the correction, the error vector δrf is driven
to zero when the solution converges; else it diverges.
It is observed that for successive increases in error, the
solution will diverge and the case cannot be resolved
just by using this method. For cases where the solution
diverges or converges slowly the numerical STM can be
employed.

Numerical STM

The numerical STM is determined by adding small
changes in velocity to the initial cartesian parameter
set.2 These changes are represented as vector quanti-
ties. For instance 9 demonstrates a small change, vε in
velocity in the cartesian x direction where vε is 0.001
km/s.

δv1 = [vε 0 0] (9)

A change in each of the cartesian directions is added
to the input cartesian set. Each is then propagated for
a predetermined flight time whereby a final location is
resolved for the three perturbed cases. These final lo-
cations are then compared to the unperturbed velocity
cartesian parameter set location as depicted in Figure
1.

Fig. 1 Numerical STM compares a reference tra-
jectory final location to 3 perturbed trajectories.

Sensitivities are then derived by dividing the change
in range over the magnitude of perturbed velocity
change. Equation 10 indicates the calculation for the
first column of the STM. Here, Target i, for i = 1, 2, 3,
from Figure 1 is indicated as ri

f and the reference final
location is rref.

δrx

δvi
δry

δvi
δrz

δvi

 =
ri

f − rref

vε
. (10)

The numerical sensitivity matrix is then formed as
shown in Equation 11 by utilizing the three target lo-
cations formed by propagating the perturbed initial
conditions along the flight time.

[Φ] =


δrx

δv1

δrx

δv2

δrx

δv3
δry

δv1

δry

δv2

δry

δv3
δrz

δv1

δrz

δv2

δrx

δv3

 (11)

Problems using the numerical STM involve the cre-
ation of a singular matrix. These singularities are
introduced when the sensitivity in range is computa-
tionally negligible with respect to the small change in
velocity. These instances can occur when the projec-
tile is sent on a hyperbolic trajectory. Further, we
must use constant flight time when using the numeri-
cal STM. Propagators can be set up in order to utilize
the constraint of the surface in order to determine a
time of impact. With perturbations in velocity, the
flight time for each case will differ. This would im-
ply that the STM is also a function of time, which
it is not. Instead, a constant flight time propagation
technique must be invoked regardless of whether the
projectile’s final perturbed position is above or below
the surface. However, to determine the reference posi-
tion of the projectile, rref, the trajectory is propagated
until a surface hit is observed. This assures that the
projectile will hit the surface if not on an escape tra-
jectory and thus all solutions are found in a ring on
the surface and not just within a sphere.

Problem Definition
It is desired to formulate the necessary initial condi-

tions of velocity for a given initial surface location and
a desired final target location in the Earth fixed frame
of reference. The initial position and velocity vectors
are then propagated throughout the flight time of a
simulated point-mass projectile until impact. An ini-
tial guess is computed using the Keplerian two-body
solution for flight time and initial velocity. This guess
is then subjected to the state transition matrix tech-
nique and velocity corrections are applied. In order
to determine a measure of effectiveness for each type
of state transition matrix a host of targets dispersed
globally is composed and convergence criteria such as
number of iterations to converge (if at all) and com-
putational time is compared for a variety of launch
locations.

Non-Keplerian Effects

Numerous non-Keplerian motion effects can be
added to increase the fidelity of the ballistic missile
problem model. Some of the major effects due to the
environment will be resolved in this study including
planetary rotation and the atmosphere on a simple
projectile with a defined ballistic coefficient. This pro-
jectile will not have a defined an inertia tensor nor will
lift be modelled.

Rotation
Planetary rotation is a significant source of error

for projectiles with long flight times. As the body ro-
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tates, the target itself will move. For minimum energy
2-body trajectories, the flight time can remain con-
stant, and a new trajectory computed to essentially
lead the target.4 However, since the purpose of these
simulations is to build tools capable of resolving higher
fidelity solutions, the minimum energy transfer time is
not used to form solutions; it is used as an initial guess
only.

Atmosphere
A piece-wise exponential model was selected from

previous work,5 to represent the atmosphere. It is
assumed that an exponential density model can ac-
curately represent the atmosphere.1,6, 7 The nature
of exponential atmosphere density model provides the
ability to estimate the density at altitude and obtain
closed-form solutions while maintaining reasonable ac-
curacy. For sea-level conditions we assume a initial
density, ρ0 of 1.225×109 km3.

For this exponential model the term Γ will be used
to represent the density ratio at altitude as shown in
12.

Γ =
ρ

ρ0
= e

−h
λ (12)

The piecewise function changes properties at 152
km altitude (500,000 ft.) For the upper segment of
the piecewise function, the reference density ratio at
1.524×102 km is 1.4848 kg/km3. A scale height, λ for
elevations from 0 to 152 km is 6.882 km. For 152 km
and above, 83.887 km is used.

This study invokes the atmosphere at 122 km
(400,000 ft.) on the rising portion of the trajectory
through the descent phase to the surface. It is assumed
the the trajectory on the ascending portion to this lo-
cation follows a Keplerian trajectory using thrust to
match the necessary conditions when drag begins to
be modelled.

Projectile Definition
The next task is to model a vehicle. This vehicle

has three key parameters that we must know in or-
der to determine the influence of drag acceleration.
They are mass, representative area, and drag coeffi-
cient. In many cases all three of these parameters are
not constant. A vehicle with an ablative heat shield
will lose mass; a vehicle could deploy speed brakes or
a parachute to increase area; drag coefficient is gener-
ally a function of lift coefficient. For our discussion,
we model a ballistic missile, thus we neglect lift terms
and consider drag to be much greater than lift.

When mass: m, area: S, and drag coefficient: CD

are combined they represent a term called the ballistic
coefficient,8 β. This is represented as m

CD·S , and is
traditionally in units of kg/m2.

To maintain unit consistency throughout the sim-
ulation, we will redefine the units as kg/km2. The
ballistic parameter, β for satellites is considered low8

at values of 20 × 106 kg/km2 and high for 200 × 106

kg/km2. Feathers for instance have a very low ballistic
parameter, while a battleship projectiles and ballistic
missiles have a large values. This is the parameter that
defines how well a projectile can penetrate the atmo-
sphere.9 For the purposes of this study, four values of
β are chosen in kg

km2 : ∞, to indicate that the projectile
is unaffected by the atmosphere; 2×1012; 2× 109, and
200 × 106. Realizing that these values are not wholly
representative of probable objects, but fundamental
to the examination of the introduction of the effects of
drag to the problem. Next we determine the method
in which we model drag.

Modeling Drag
The drag force is generally defined1 as in Equation

13.

D =
1
2
ρv2CDS (13)

Where D is drag force and v is velocity magni-
tude. To incorporate the more advanced vector form
of acceleration, we divide by mass and multiply by
the negative velocity direction unit vector as shown in
Equation 14.

aDrag =
1
2
ρ(v · v)

CDS

m

(−v)
‖ v ‖

(14)

Next we simplify the equation and incorporate β in
15.

aDrag =
ρ

2β
(v · v)

(−v)
‖ v ‖

(15)

Now that drag and the projectile are defined, the
target array is defined.

Array of Targets

An array of targets was formulated using a grid work
of points in latitude and longitude. Initial studies in-
cluding rotation utilize a 703 point array ranging from
90o N latitude to 90o S latitude in increments of 10o.
A longitudinal grid from -180o to 180o E is formulated
also using increments of 10o. For cases employing drag,
a much smaller grid size of 49 points is used due to the
much heavier computational requirements. This grid
is defined from 90o N to 90o S in increments of 30o with
longitude from 90o W to 90o E by increments of 30o.
The grid size reduced in longitudinal span to eliminate
the large errors associated with the two-body solution
initial guess.

Array of Launch Locations

Launch locations were chosen with strict regard to
the assumption of symmetry across the equator. The
initial locations of the representative launch locations
are chosen to be 0o N by 0o E, 45o N by 0o E, and 90o

N by 0o E.
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Comparison of STMs
The primary means of comparing the numerical and

analytical STM effectiveness is chosen to be the num-
ber of iterations required to correct the velocity. The
number of iterations results in the indirect compari-
son of the computational power required in order to
resolve a solution. An outline of the program created
to solve the problem is shown in Figure 2.

Fig. 2 Iterative approach used to resolve solution.

The program receives inputs of launch site and tar-
get site initial conditions. The two-body no-rotation
solution is then processed. A flight time and initial
cartesian coordinate set are outputted to a propaga-
tor to create the full trajectory profile. This is then
outputted to the STM of choice. The error of the ro-
tated target to the final projectile’s location after the
time of flight is compared in the while loop. If the er-
ror is not within an acceptable tolerance, the velocity
is corrected. The number of iterations represents the
number of times correcting the velocity of the cartesian
coordinate set.

It was chosen that 10 iterations would be allowed
for velocity corrections to resolve the target solution
within an accuracy of 1.6 km (recall this error is a lin-
ear error that is the direct subtraction of vectors from
the target location to the final location of the projec-
tile). Solutions that did not converge with this number
of iterations are given a value of 10. If solutions be-
gan to diverge or exceeded the critical velocity, a value
of of the last iteration plus 10 is assigned. A critical
velocity requirement is necessary to prevent numerical
simulation of a hyperbolic trajectory. These trajecto-
ries will never fall back to the surface of rotating body,
and thus will always fail to converge. Here critical ve-
locity2 is defined as 16 where REarth is the radius of
the spherical body.

Vcrit =
√

2µ

REarth
(16)

Using this requirement, resultant corrected veloci-
ties exceeding the critical velocity will result in the

iteration loop termination and a value of 10 added.
Hybrid techniques placing the analytical and nu-

merical solutions inside the iterative loops are also
examined. These hybrids employ the STM at the be-
ginning of the internal processing loop of the velocity
correction and internal comparison of error.

The solutions are further examined using the time
required to attempt a solution for each grid point. This
examination is subjective, however, to the available
computing resources and is not directly repeatable.
Solutions are examined as far as determining the in-
clination of the suborbital trajectory’s plane and the
angular distance between surface locations in order to
determine discontinuities. These discontinuities would
result when solutions would fail to converge and errors
are large. When drag is introduced, the computational
requirement is observed to increase by nearly three
orders of magnitude, and rate of failure to converge
rapidly increases.

Rotation Effects

The addition of rotation is the first level of complex-
ity added to the basic ballistic missile problem. Target
sites will move as the Earth rotates during the period
of flight. These target sites therefore must be led in
order to hit them after the missile’s time of flight. An
exact analytic solution exists for this constant flight
time problem to account directly for the amount of
rotation the Earth during this period.4 Thus, pure
rotation is seen as a good baseline for an initial com-
parison, and this method is employed to determine
what the final coordinates of the target location are af-
ter the flight time of the vehicle. This method is used
throughout the simulation as flight time is refined to
reflect the flight time necessary to hit inside the tar-
get ring of accuracy. With these tools, we initiate our
simulation with β = ∞ to account for the rotational
effects. Shown in Figure 3 we see that rotational error
exceeds over 1000 km in direct normalized vector form
when nearing 180o of angular distance shown in Figure
4.

We note that darker regions have increased error and
the darkest regions exceed error of 1000 km. Error also
is symmetrical as we should expect. Also, error at the
poles is virtually zero since targets located precisely
at the poles do not rotate. Values from the simulation
indicate error on the order of 1× 10−6 are accounted.
Internal storage of values throughout the numerical
integration process appears to be the cause of this dis-
crepancy.

We also examine the case for launch location of 45o

N 0o E. We notice here that the angular range will
increase diagonally and thus the two-body solution’s
error due to rotation will increase in these regions. Fig-
ure 5 shows the southward trend of error as the launch
location is shifted northward. We also note the change
in the contour to bulge towards the prime meridian.
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Fig. 3 Plot of error accumulated from pure ro-
tation when launching from a 0o N 0o E using
uncorrected initial velocity provided by the two-
body solution.

Fig. 4 Plot of angular distance between the launch
location 0o N 0o E and the final target locations
in the 703 point array. Original positions shift in
longitude easterly with rotation during the time of
flight. Two-body conditions are provided for the β
= ∞ case.

This trend continues with increasing latitude of the
launch site.

Analytical Method
The analytical STM method was utilized in order to

create the velocity correction necessary to hit the mov-
ing target. Figure 6 depicts the number of iterations
required across the 703 point grid array.

The iteration contour map includes the colorbar
legend denoting increasing iterations with increasing
darkness. As shown, the regions between -150o W and
150o E have a difficult time converging. To understand
why there is such a difficulty the angular distance be-
tween the origin and the target site following rotation
is analyzed.

We review the angular range of the region where so-
lutions fail to converge (10+ iterations) and determine

Fig. 5 Error contour plot for launch location 45o N
0o E for solutions uncorrected initial velocity pro-
vided by the two-body solution. This plot contains
data for the 703 point target array β = ∞.

Fig. 6 Iteration contour plot for launch location
0o N 0o E for solutions using the Analytic STM
method for the 703 point target array β = ∞.

that these targets are near 180o. For the minimum
energy solution for 180o, the trajectory runs precisely
along the surface of the planetary body, or otherwise
the apogee altitude is 0 km above the surface. Thus
solutions would be difficult to formulate using the
minimum energy assumption for this angular range.
Figure 7 depicts a transitional boundary where the
path switches from posigrade (eastward) to retrograde
(westward) trajectories. This boundary seems to well
define the region where iterations increase and has the
most direct correlation to the increase in required it-
erations.

As indicated in Figure 7, the band of trajectories
using 0o inclination is depicted as a narrow gap ap-
proaching 160o E. This correlates to the narrow region
of convergence that penetrates the iteration contour
plot in the same area. Similarly a region exists for
180o of inclination on the western portion of the grid.
The solution seems to break down earlier on the east-
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Fig. 7 Inclination contour plot for launch location
0o N 0o E for solutions using the Analytic STM
method for the 703 point target array β = ∞.

ern side of the plot than the western side. This may
be attributed to the fact that the eastern portion of
the map has a higher angular displacement of the so-
lution. Launching eastward is a more difficult task to
catch up to a surface point near 180o than if launch-
ing westward. Here the iteration method is switching
between launching eastward and westward and hav-
ing difficulty resolving a solution since large velocity
changes are required to completely change direction
and thus a large number of iterations.

External Numerical Method
The external numerical STM method is then exam-

ined for the rotation only case to determine its effec-
tiveness. We determine that the numerical method
produces very similar plots to the analytic method,
however, they differ in important ways. Shown in Fig-
ure 8, we see that some escape cases are not present.
While, the general trend to increase does seem similar,
several regions converge using the external numerical
STM where the external analytic solution could not.
On average the pure numerical STM requires nearly
twice as much computing time to complete the simula-
tion than does the pure external analytic STM method
at this ballistic coefficient.

Internal Methods
An alternative approach was conceived to determine

whether a reformulation of the STM would be appro-
priate and even assist increasing the speed in which
the process would resolve a solution. Here the STM
will now be calculated inside the iteration loop shown
in Figure 2. The process will now utilize a STM to ini-
tially correct the velocity and then lead to reanalysis
of error.

The internal methods created errors where the an-
gular phase was nearly 180o. At these phase angles the
constraint that the trajectory must not fly through the
central body is encountered often with velocity correc-

Fig. 8 Iteration contour plot for launch location
0o N 0o E for solutions using the External Numeric
STM method for the 703 point target array β = ∞.

tions. Thus, for these cases, a different initial solution
is more appropriate that has a very large apogee alti-
tude. In the next level of fidelity, the atmosphere, the
target array is condensed to avoid problems by flying
too shallow in the atmosphere.

Atmospheric Effects

The addition of atmospheric effects began by defin-
ing the ballistic coefficient. The first case examined is
2×1012 kg

km2 . This value is very large for any vehicle,
but is a good introduction to the effects of drag, and
provides a check if drag in the model that is working
correctly. Shown in Figure 9 is the uncorrected veloc-
ity as derived from the two-body non-rotating solution.

Fig. 9 Error contour plot for launch location 0o N
0o E for solutions uncorrected initial velocity pro-
vided by the two-body solution. This plot contains
data for the 703 point target array β = 2× 1012.

We notice that is is virtually identical to the β = ∞
case and when examining the iteration plots 6 and 8
we see that the target array is within 2 iterations for
these methods.

Next the β = 2 × 109 case is explored. Figure 10
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Fig. 10 Error contour plot for launch location 0o N
0o E for solutions uncorrected initial velocity pro-
vided by the two-body solution. This plot contains
data for the 703 point target array β = 2× 109.

Fig. 11 External Analytic STM iteration contour
plot for launch location 0o N 0o E. This plot con-
tains data for the 49 point target array β = 2× 109.

shows the uncorrected error on the non-rotating two
body solution. Here we notice that error increases sig-
nificantly and note the change in scale on the colorbar
from the previous example.

Analytical Methods

The analytical methods both external and internal
are again used to determine their effectiveness. Not
surprisingly they again result in the same number of
iterations with the internal method having less error
at the conclusion. Figure 11 shows the resultant it-
eration contour plot. Again the analytic method has
little problem in resolving a solution within this target
regime.

Numerical Methods

Next, the numerical cases are explored. First the
external numerical method is employed to determine
its effectiveness. The resultant contour plot is show in

Fig. 12 External Numerical STM iteration con-
tour plot for launch location 0o N 0o E. This plot
contains data for the 49 point target array β =
2× 109.

Fig. 13 Internal Numerical STM iteration contour
plot for launch location 0o N 0o E. This plot con-
tains data for the 49 point target array β = 2× 109.

Figure 12.
Next, the internal method is used. Figure 13 shows

that the number of iterations are significantly lower
than the external method, and produce better results
where cases converge in the internal method where in
the external method they do not.

Lastly, the β = 200×106 kg
km2 case is examined. Since

we already know significant errors are being introduced
at longer angular ranges for the previous case, we can
expect even more failures (iterations exceeding 10) to
occur in the numerical cases as noted in Figure 12.
The functions internal to the program appear to break
down at this level for reasons not fully understood.
Research into better techniques using numerical prop-
agators with error detection will be conducted in the
future.

The analytic solutions however, provided excellent
solutions to this level of the drag problem. It appears
that the effects of rotation are in many ways similar
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to the effects of drag as used in this model, and can
be resolved at this value of β.

Figure 14 shows the uncorrected error resultant from
the two-body initial guess. Error approaches 2000 km
for the cases near 150o E and W longitude while error
for the region of study is near 1200 km.

Fig. 14 Error contour plot for launch location 0o N
0o E for solutions uncorrected initial velocity pro-
vided by the two-body solution. This plot contains
data for the 703 point target array β = 200× 106.

Since the analytic solutions both converged within
2 iterations in a similar fashion, the final error is
compared between the internal and external methods.
First we show the external method in Figure15, we see
that it is near 1.2 km on the east and west boundaries
of the region of study.

Fig. 15 External Analytic STM error contour plot
for launch location 0o N 0o E. This plot contains
data for the 49 point target array β = 200× 106.

Next we examine the internal method shown in Fig-
ure 16. Here we see that error has dropped below
0.3 km thus demonstrating the usefulness of using the
STM internally to drive error to 0 more effectively.

Fig. 16 Error contour plot for launch location 0o

N 0o E for solutions Internal Analytic STM. This
plot contains data for the 49 point target array β
= 200× 106.

Conclusions and Future Work
Both the numerical and analytical methods have

their merits. The numerical method is robust in some
cases when the analytical solution breaks down. In-
ternal methods are more computationally expensive
than are external methods that are only implemented
once. The analytic method is calculated with the same
speed at every iteration for all values of β while the nu-
merical method is slowed significantly as β decreases.
The analytic method has proven especially useful for
accounting for drag in this setup. This seems to be
due to the fact that the additional flight time required
to proceed around the spherical body is not nearly
as significant as are effects of the rotation. Since the
projectile’s studied still had high values of ballistic co-
efficient, they were not slowed by a large fraction of
their velocity at the interface with the significant at-
mosphere.

The numerical solutions will require further study.
Numerical methods break down earlier than analytic
solutions in the current formation of the implemented
code. Further research will be conducted in the future
to make these methods more robust and fault proof.
Different numerical integration methods will also be
researched in further detail as well as the application of
the event detection method used to create the spherical
surface constraint. Effects of J2 will also be examined,
though anticipated to be minimal for these relatively
short flight times. Drag modulated and lift modulated
re-entry vehicles will also be investigated and modelled
in future work to create a flexible dynamics program.
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