
Restricted Three-Body Problem

Kevin Daugherty

Fall 2004



Contents

1 Introduction 3

2 “Cookbook” 4
2.1 Finding the Locations and/or Masses . . . . . . . . . . . . . . 4

2.1.1 Equilateral Triangle . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Collinear . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Finding the initial velocities . . . . . . . . . . . . . . . . . . . 9
2.2.1 Finding ḟ and ω . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Using ḟ and ω . . . . . . . . . . . . . . . . . . . . . . . 12

3 Jacobi Integral & Zero-Relative-Velocity Surfaces 14
3.1 Non-Dimensional Equations of Motion . . . . . . . . . . . . . 15
3.2 Zero-Relative Velocity Surfaces . . . . . . . . . . . . . . . . . 16

4 Lagrange Point Stability 18

5 LEO-Moon Transfer 22

6 MATLAB Code Description/Usage 26
6.1 general3d.m & general3dode.m . . . . . . . . . . . . . . . . . . 26
6.2 rotating.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 surfacevalue.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 zerorela.m & zerorelb.m . . . . . . . . . . . . . . . . . . . . . 29
6.5 zerorel2d.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.6 solvequintic.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.7 circle.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



A MATLAB Code 32
A.1 general3d.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 rotating.m & rotatingode.m . . . . . . . . . . . . . . . . . . . 44
A.3 surfacevalue.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.4 zerorela.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
A.5 zerorelb.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.6 zerorel2d.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.7 solvequintic.m . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.8 circle.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2



Chapter 1

Introduction

The Fall 2004 independent study covered Three-Body orbit problems. The
faculty advisor for this study was Dr. Hanspeter Schaub. Regular meetings
and progress reports, in addition to homework assignments made up the
grade for this independent study. The three-body problem topics included:

• Lagrange’s Three-Body Solution

– Equilateral Triangle Arrangement

– Collinear Arrangement

– Circular Orbits

• Circular Restricted Three-Body Problem

– The Jacobi Integral

– Zero Relative Velocity Surfaces

– Lagrange Libration Point Stability

The information on these topics can be found in:

H. Schaub and J. L. Junkins, Analytical Mechanics of
Space Systems, AIAA Education Series, Reston, VA, 2003.

This report contains the individual reports and MATLAB code written
during the semester, beginning with a “cookbook” explaining how to find
the initial setup and conditions for the only stable arrangements of 3 massive
bodies.

3



Chapter 2

“Cookbook” For Finding the
Initial Setup and Conditions

2.1 Finding the Locations and/or Masses

The first step to solving a three body problem is to figure out where all the
masses are at an initial time. Since there are only two possible types of
configurations which will work, that makes things a little bit easier. The two
possible ways, as shown on page 428 in the book, are equilateral triangle and
collinear arrangements.

2.1.1 Equilateral Triangle

For an equilateral triangle, all three masses must be given the position of
at least 2 of the masses, and the velocity vector of one of these. The shape
of the initial setup does not depend on the the mass of the bodies, only on
the positions. Given 2 of the positions relative to some inertial origin (x1

and x2), we can find the distance between these points, and therefore the
length of each side of the equilateral triangle, ρ, by first finding the vector
r12 pointing from body 1 to body 2.

r12 = x2 − x1 (2.1)

This is the vector along the one known side of the triangle. The length of
this vector is ρ; the length of the sides of the equilateral triangle.

ρ =
√

r12 · r12 (2.2)

4



Since the angle between the sides of the triangle are known to be 60 degrees,
it is easiest to rotate the vector pointing from body 1 to body 2 by 60 degrees
about an axis perpendicular to the plane of motion (ı̂h) to get r13. In order
to find this vector we must be given either a velocity of one of the bodies,
or a vector which is known to either lie in, or perpendicular to the plane of
of motion. Given a vector perpendicular to the plane of motion, hvec, the
unit vector ı̂h is easily found by dividing the vector by its magnitude

ı̂h =
hvec√

hvec · hvec
(2.3)

Finding ı̂h from the velocity vector or vector in the plane of motion, and
positions can be done with a simple cross product, since cross products yield
vectors orthogonal to both of the vectors.

ı̂h =
r12 × v1

|r12 × v1|
(2.4)

Remember that the magnitude of the cross product can be found by taking
the result of the cross product, dotting it with itself and then taking the
square root:

|r12 × v1| =
√

(r12 × v1) · (r12 × v1) (2.5)

Now that the ı̂h vector is known we can also find ı̂r12 and ı̂θ. The goal is to
break the vector up into this new coordinate frame and then rotate it by 60
degrees around ı̂h to find the r13 vector, as seen in Figure 2.1. This new r13

gives the position of the third body relative to the first body.
The unit vector pointing from body 1 to body 2, ı̂r12 , is easily found via:

ı̂r12 =
r12

|r12|
(2.6)

Then since we have 2 of the unit vectors for the coordinate frame, the third
(ı̂θ) can be found using

ı̂θ = ı̂h × ı̂r12 (2.7)

The r12 vector can be written in this new coordinate frame as

r12 = ρı̂r12 (2.8)

Using the definition for a rotation matrix which rotates a vector by an angle
θ around the third axis found as Equation (3.31c) in the book also shown

5



Figure 2.1: Rotating r12 by 60◦ around ı̂h to get r13

here

M3(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2.9)

In this coordinate frame r13 can be found using this rotation matrix using

r13 = [M3(θ)]r12 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ρ
0
0

 (2.10)

Using θ = ±60 and r12 in this coordinate frame, we get a convenient equation
for r13

r13 = 1/2ρı̂r12 ∓
√

3/2ρı̂θ (2.11)

This equation gives both of the possible vectors from the first body to the
third body. For simplicity only the + is being used from here out, either can
be chosen.

Replacing ı̂r12 and ı̂θ with the vector components in the original cartesian
coordinate frame allows us to find the position of the third body using the
equation:

x3 = x1 + r13 (2.12)

We now have all the initial positions and masses.

6



2.1.2 Collinear

If all the masses lie in a single line, then there are two possible sets of givens.
These are:

• All 3 masses are known

• The locations of 2 of the masses are known

• The location of the third is known relative to the first two...i.e. between
the masses, beyond mass 1, or beyond mass 2.

or

• 2 of the masses are known

• The locations of all three masses are known

The methods for finding all the initial position and mass information is there-
fore broken up into two categories

2.1.2.1 All 3 masses known

To find the location of the third mass, change the numbering of the masses
so that mass 1 is on one end, mass 2 is in the middle, and mass 3 is on the
other end. Then use Lagrange’s quintic equation, Eq. (10.52) from the book
to find χ:

(m1 + m2)χ
5 + (3m1 + 2m2)χ

4 + (3m1 + m2)χ
3

− (m2 + 3m3)χ
2 − (2m2 + 3m3)χ− (m2 + m3) = 0 (2.13)

Unfortunately there is no real easy way to analytically solve Lagrange’s
quintic equation. The best way to solve for χ is to use either a solver in a
calculator or MATLAB. sovequintic() described in Section 6.6 can be used
to solve Lagrange’s quintic equation for χ.

Given χ you can now use either Eq. (10.46) or Eq. (10.47) from the
book to find the relationship controlling the distances between the bodies.
Each equation is easier to use for certain cases depending on which distances
are already known. A combination of the following equations will give the
location of the desired body for each of the 3 cases as described below the
equations.

x12 =
x23

χ
(2.14a)

7



x12 =
x13

1 + χ
(2.14b)

x13 =
1 + χ

χ
x23 (2.14c)

then use
x1 = x2 − x12 (2.15a)

x2 = x1 + x12 (2.15b)

x3 = x1 + x13 (2.15c)

To find the location of body 1, 2 or 3 use Eqs. 2.14a and 2.15a, 2.14b and
2.15b, or 2.14c and 2.15c respectively.

2.1.2.2 All 3 positions known

With all three positions known and 2 of the masses. Make sure the bodies
are numbered with 1 on one end, 2 in the middle, and 3 on the other end.
Use Eq. (10.46) to find χ.

χ =
|x3 − x2|
|x2 − x1|

(2.16)

then use Lagrange’s quintic equation Eq. (10.52)

(m1 + m2)χ
5 + (3m1 + 2m2)χ

4 + (3m1 + m2)χ
3

− (m2 + 3m3)χ
2 − (2m2 + 3m3)χ− (m2 + m3) = 0 (2.17)

to find the unknown mass. It is possible to solve the quintic equation ana-
lytically for each of the masses as shown below.

m1 =
(3χ2 + 3χ + 1)m3 − (χ5 + 2χ4 + χ3 − χ2 − 2χ− 1)m2

χ5 + 3χ4 + 3χ3
(2.18a)

m2 =
(3χ2 + 3χ + 1)m3 − (χ5 + 3χ4 + 3χ3)m1

χ5 + 2χ4 + χ3 − χ2 − 2χ− 1
(2.18b)

m3 =
(χ5 + 3χ4 + 3χ3)m1 + (χ5 + 2χ4 + χ3 − χ2 − 2χ− 1)m2

3χ2 + 3χ + 1
(2.18c)

or

m1 =
c3m3 − c2m2

c3

(2.19a)

8



m2 =
c3m3 − c1m1

c2

(2.19b)

m3 =
c1m1 + c2m2

c3

(2.19c)

where
c1 = χ5 + 3χ4 + 3χ3 (2.20a)

c2 = χ5 + 2χ4 + χ3 − χ2 − 2χ− 1 (2.20b)

c3 = 3χ2 + 3χ + 1 (2.20c)

Now the final mass may be determined so that all three positions and masses
are known. Once this has been accomplished, the next step is to find the
initial velocities

2.2 Finding the initial velocities

The locations and sizes of each of the bodies make up half of the initial
conditions. The velocity of each of the bodies must be found in order to
begin simulating the motion. As shown later in the analysis

ṙi(0) = ri0 ḟ0ı̂ri
+ ri0ωı̂θi

so if we can find ḟ and ω we can find the initial velocity vectors for each of
the bodies

2.2.1 Finding ḟ and ω

The method for finding ḟ and ω is different when dealing with circular versus
non-circular orbits. For non-circular orbits, a velocity vector of one of the
bodies must be given in order to find the others, but in the case of circular
orbits, none of the velocities are required initially.

2.2.1.1 Non-Circular Orbits

The book explains and proves that each of the bodies in the system must be
rotating at the same speed as each other around the center of mass in order
to remain in the same shape. This means that the omega vector for each of
the bodies must be the same, so the key to finding the initial velocities is

ω1 = ω2 = ω3 = ωı̂3 (2.21)

9



and as the book points out in Equations (10.12-14) the position or any of the
bodies can be related to its initial position through a common scalar factor
f .

r1(t) = r10f(t) (2.22a)

r2(t) = r20f(t) (2.22b)

r3(t) = r30f(t) (2.22c)

Because the initial position of each body is a constant, and f varies with
time, taking the inertial derivative yields

ṙi(t) = ri0 ḟ(t) (2.23)

so ḟ must also be the same for all the bodies. Using Equations (10.17) and
(10.18) shown here:

ri = riı̂ri
(2.24)

ṙi = ṙiı̂ri
+ riωı̂θi

(2.25)

Define mi to be the mass for which you know the velocity of in the general
case and using Eq 2.23

ṙi = ri0 ḟ ı̂ri
+ ri0fωı̂θi

(2.26)

At t = 0, f = 1 since the initial conditions are the conditions at time t = 0.
We would like to find a simple expression for the initial ḟ so that we can
plug it back into the velocity equation for each of the other bodies. Since ḟ
is the same for all the bodies, it can be found using the known velocity.

ṙi(0) = ri0 ḟ0ı̂ri
+ ri0ωı̂θi

(2.27)

dividing through by ri0 will help to further isolate ḟ and give a simplified
equation.

ṙi0

ri0

= ḟ0ı̂ri
+ ωı̂θi

(2.28)

ḟ is now the only term in the ı̂ri
direction, and if we find a way to both

remove the ı̂θi
components and scalarize the equation, we can find ḟ . This

is best accomplished by dotting both sides of the equation by ı̂ri(
ṙi0

ri0

)
• ı̂ri0

= (ḟ ı̂ri
+ ωı̂θi

) • ı̂ri0
(2.29)

10



since ı̂ri
• ı̂ri

= 1 and ı̂θi
• ı̂ri

= 0(
ṙi0

ri0

)
• ı̂ri0

= ḟ0 (2.30)

so just flipping the sides of the equation we get a nice expression for ḟ

ḟ0 =

(
ṙi0

ri0

)
• ı̂ri0

(2.31)

where ı̂ri0
can be found by dividing the position vector by its magnitude

ı̂ri0
=

ri0

ri0

(2.32)

To find ω we want to start by finding the angular momentum of the body
for which we know the velocity. Begin with equation (9.51) from the book,
shown here

h = r × ṙ = hı̂h (2.33)

The ı̂h unit vector can be found using the position and velocity of the particle,
so for later use

ı̂h =
r × ṙ

|r × ṙ|
(2.34)

The magnitude of the angular momentum h can be defined using ω which
will be used reversely to find ω

h = ωr2
i0

(2.35)

Combining these equations and rearranging for ω gives an equation for ω
which only uses known quantities

ω =
| ṙi0 × ri0 |

r2
i0

(2.36)

Another way to determine omega can be found by beginning with Eq. 2.28
and rearranging to get the vector component with ω on the left side by itself

ωı̂θ =

(
ṙi0

ri0

− ḟ ı̂ri0

)
(2.37)

11



The magnitude of this vector is ω

ω =

∣∣∣∣∣ ṙi0 − ḟri0

ri0

∣∣∣∣∣ (2.38)

Use whichever definition of ω seems easier at the time
The special case is circular orbits. For circular orbits none of velocities

are necessarily given. For any other case, at least 1 velocity should be given
to allow the others to be determined.

2.2.1.2 Circular Orbits

For the circular orbit ḟ = 0 because ḟ is the component of the velocity
towards or away from the center of mass, and Bodies travelling in circles are
not moving toward or away from the center of mass. Using F = ma where a
is the centripetal acceleration (riω

2) of the body around the center of mass

Fi = miriω
2 =

∣∣∣∣∣
3∑

j=1

Fij

∣∣∣∣∣ j 6= i (2.39)

Since there are only 2 forces acting on each body, the sum of the forces can
be written out using

Fij =
Gmj

r3
ij

rij (2.40)

so plugging in for Fij and Fik and rearranging for ω yields

ω =

√
G

ri

∣∣∣∣mj

r3
ij

rij +
mk

r3
ik

rik

∣∣∣∣ (2.41)

We now have both ḟ and ω for both the circular or non-circular orbit. To
find the other velocities we have to use these values as shown below.

2.2.2 Using ḟ and ω

To find the other velocities we must first find ı̂θi
for each body using Eq. 2.34.

This is possible since we are using a right handed coordinate system.

ı̂θi
= ı̂h × ı̂ri

(2.42)

12



where ı̂h was found earlier, and is the same for all of the bodies and

ı̂ri
=

ri

ri

(2.43)

for each body. Then we simply need to plug the unit vectors, ḟ , and ω into
equation 2.27 reshown here

ṙi(0) = ri0 ḟ0ı̂ri
+ ri0ωı̂θi

(2.44)

13



Chapter 3

Jacobi Integral &
Zero-Relative-Velocity Surfaces

The Jacobi Integral is a way to look at the circular restricted three-body
problem in the rotating frame. The book presents the Jacobi Integral in
both dimensional and non-dimensional forms. For the dimensional case the
Jacobi Integral is:

v2 = ω2(r2
x + r2

y) + 2
Gm1

ξ1

+ 2
Gm2

ξ2

− C (3.1)

where

ξi =
√

(rx − ri)2 + r2
y + r2

z (3.2)

To make the Jacobi Integral non-dimensional, a new time variable τ is in-
troduced. I find it easiest to view this new time variable as analogous to
an angle in radians through which the system has rotated since t = 0. τ is
related to t through

τ = ωt (3.3)

Time derivatives with respect to τ are designated with a “bubble” over the
variable and are related to the old time derivatives through

◦
x ω = ẋ (3.4)

τ has “units” of radians, and this new
◦
x has units of 1/rad.

Lengths are non-dimensionalized by dividing the length by the distance
between body 1 and body 2 (r12). Masses are also non-dimensionalized by

14



using a new constant scalar parameter µ which is not the same as the µ
used for gravitational coefficient. The mass of bodies 1 and 2 can also be
expressed in terms of this new constant.

µ =
m2

m1 + m2

=
1

m1

m2
+ 1

(3.5)

m1 = 1− µ (3.6)

m2 = µ (3.7)

Similarly as shown in the book, the locations of the bodies are:

x1 = −µ (3.8)

x2 = 1− µ (3.9)

This leads, as shown in the book, to the non-dimensional Jacobi Integral:

v2 = (
◦
x

2
+

◦
y

2

) = (x2 + y2) + 2
1− µ

ρ1

+ 2
µ

ρ2

− C (3.10)

where
ρi =

√
(x− xi)2 + y2 + z2 (3.11)

Also from the non-dimensionalizing analysis, the non-dimensional equations
of motion can be found

3.1 Non-Dimensional Equations of Motion

The Non-Dimensional Equations of Motion are shown in the book in equa-
tions 10.86 re-shown here:

◦◦
x −2

◦
y = x− (1− µ)

x− x1

ρ3
1

− µ
x− x2

ρ3
2

(3.12)

◦◦
y +2

◦
x =

(
1− 1− µ

ρ3
1

− µ

ρ3
2

)
y (3.13)

◦◦
z = −

(
1− µ

ρ3
1

− µ

ρ3
2

)
z (3.14)

These equations of motion allow the motion of a satellite to be plotted in the
rotating frame. The function rotating() as described in Section 6.2 plots
such motions. An example plot is shown below in Figure 3.1

15



Figure 3.1: rotating() output graph

3.2 Zero-Relative Velocity Surfaces

Analyzing the non-dimensional Jacobi integral it is possible to set the velocity
equal to zero and find a three dimensional surface for which there is a constant
value for C. It is beneficial to do visualize these surfaces because for any
satellite with that value of C in the Jacobi integral, it cannot pass through
the zero-relative-velocity surface. The value of C for a satellite is found by
plugging the velocity and position into the Jacobi integral and solving for
C. If the value of C for a given satellite is greater than the value of C for
a satellite positioned at L2 and not moving in the rotating frame, then the
satellite can never transfer from the Earth to the Moon. similarly, satellites
with a greater value of C than the C for a satellite at L3 could never leave the
Earth-Moon system. Plots of the three dimensional surfaces, or 2-D contours
can be done using zerorel2b() and zerorel2d() respectively as shown in
Chapter 6, one example is shown below cut at y = 0, more can be found in
the book. The equation for the surface is:

(x2 + y2) + 2
1− µ

ρ1

+ 2
µ

ρ2

= C (3.15)

16



Figure 3.2: zerorel2b() output graph

17



Chapter 4

Lagrange Point Stability

As discussed in the book the L1, L2, and L3 Lagrange points are not stable
due to the saddle point nature of the zero-relative-velocity surfaces. However,
for some systems L4 and L5 are stable. The condition for stability is a mass
ratio of

m1

m2

≥ 24.9599 (4.1)

The mass ratio requirement allows for stable L4 and L5 points for the Earth-
Moon system with a ratio of 81.3, and Sun-Jupiter system with a ratio of
approximately 1047. Theoretically since the mass ratio of every system in-
volving the Sun and a planet has at least the mass ratio of the Sun-Jupiter
system, each of these systems would have stable L4 and L5 points. However,
other factors would probably play a role in making these locations unstable
such as 4th body perturbations, or just simply being too close to the sun
which is not a point mass. Below are figures representing the path of a body
placed near each of the lagrange points for the Earth-Moon system, and near
L4 for the Sun-Jupiter system. In each figure the red dot represents the first
body and the green the second. Zero-relative-velocity surfaces are plotted
for the Earth-Moon system

18



Figure 4.1: Earth-Moon L1 instability

Figure 4.2: Earth-Moon L2 instability

19



Figure 4.3: Earth-Moon L3 instability

Figure 4.4: Earth-Moon L4 stability

20



Figure 4.5: Sun-Jupiter L4 stability

21



Chapter 5

Personal Example:
LEO-Moon Transfer

Modifying the rotating program, I developed code to simulate a moon trans-
fer that would never have enough energy to leave the earth moon system
completely. To do this, the energy would always have to be less than the
L3 zero-relative-velocity energy. Working backwards from a lunar altitude of
150km, just like example 10.6 from the book, except with a different velocity.
The velocity used here was calculated by:

C3 = x2
3 +

2(1− µ)

|x3 + µ|
+

2µ

|x3 − 1 + µ|
(5.1)

V3y =

√
P 2

3x +
2(1− µ)

|P3x + µ|
+

2µ

|P3x − 1 + µ|
− C3 = 1.8277 (5.2)

The motion of the spacecraft was extrapolated backwards in time to find
the point of closest approach with the Earth. This occurred at a non-
dimensionalized time of -2.4611.

Using a trial and error method, a ∆v ratio burn of .1795 working back-
wards was selected. This corresponds to a ∆v ratio burn forwards of 5.571
times the post-burn velocity, and a ∆v burn of 1.4996. In dimensional units
the ∆v is 1.536 km/s.

Next the flight was extrapolated backwards until the LEO altitude of
298km was reached. This occurred at a non-dimensional time of .1827.
At this point the spacecraft is travelling with a speed of 10.328, which is
10.581 km/s.

22



At the LEO altitude beginning the mission, the spacecraft would have
a circular velocity of 7.7268km/s. To obtain the required velocity for the
second phase (LEO being first) of the mission, the satellite would need to
undergo a ∆v or 2.855 km/s.

If the mission did not desire to circularize about the moon, a ∆vtotal of
4.391 km/s is necessary.

If the mission does desire to circularize about the moon, the 3rd ∆v of
the mission needs to be considered A circular orbit about the moon at an
altitude of 150km has a velocity of 1.6105 km/s. At periselenium the satellite
has a non-dimensionalized velocity of 1.8277 and a dimensional velocity of
1.873 km/s. This requires the third ∆v to be -0.262 km/s

Summing up the 3 required ∆v’s, a ∆vtotal of 4.653 km/s is necessary

23



Figure 5.1: Multiple Burn LEO-Moon Transfer

24



Figure 5.2: Earth, LEO and the First Transfer

25



Chapter 6

MATLAB Code
Description/Usage

6.1 general3d.m & general3dode.m

general3d() determines the position, masses, and velocities for all 3 bodies
in the 3-body system and plots their motion for the specified time. The
variables which can be set are all located at the beginning of general3d.m,
and are shown in Table 6.1. Set as many of the variables as you can but not all
of the variables must be set for each case. Table 6.2 shows the variables which
must be set for each run to work. This program is based off of the algorithm
described in the “Cookbook” in Chapter 2. Some of the flag variables are for
which body you know or don’t know something about. For these variables, in
the triangle arrangement the ordering does not matter, but for the collinear
arrangement the bodies should be in the order 1—2—3.

All vectors should be in the form [x y z]. Position vectors only need to
be relative to the inertial frame, not the center of mass, especially since in
many cases the location and masses of all of the bodies are not known.

6.2 rotating.m

The rotating() function uses two files: rotating.m and rotatingode.m. Ta-
ble 6.3 shows the variables which should be set in rotating.m and their default
values.

26



Table 6.1: Variables to be set in general3d.m
Variable Default Options/Description
SHAPE 0 0 for the triangle

1 for collinier
CIRCULAR 0 1 for circular

0 for elliptical
MISSINGINFO 3 1—–2—–3
MASSMISSING 1 1 if the mass is unknown

0 if the position is unknown
P1 [0 0 0] the location of the first body (Km)
P2 [1e8 0 0] the location of the second body (Km)
P3 [.5e8 1e8*sqrt(3)/2 0] the location of the third body (Km)
VWHICHKNOWN 1 which body you know the velocity of
Vknown [0 1 1]*1000/sqrt(2) the known velocity (Km/s)
m1 1e24 the mass of the first body (Kg)
m2 1.5e24 the mass of the second body (Kg)
m3 2e24 the mass of the third body (Kg)
WHATVEC 1 1 if you have a vector normal to the

motion
0 if you have a vector in the plane of
motion

planevec [0 10 10] the vector in the plane of motion
hdir [0 1 1] the vector in the normal direction
AdditionalT 2e5 how long the simulation should run

initially (sec)

27



Table 6.2: Variables which require values for each case
Equilateral Collinear

Variable Circular Elliptical Circular Elliptical
SHAPE * * * *
CIRCULAR * * * *
MISSINGINFO * *
MASSMISSING * *
VWHICHKNKOWN * *
Vknown * *
WHATVEC *
planevec or hdir *
AdditionalT * * * *
All Masses * *
All Positions *
P1 & P2 *
All Positions, 2 Masses or
All Masses, 2 Positions

* *

Table 6.3: Variables to set in rotating.m
Variable Default Description
P3x P2x+1.74e3+150 x location of the satellite relative to Earth
P3y 0 y location of the satellite
P3z 0 z location of the satellite
V3x 0 Speed of satellite in x direction
V3y -2.47 Speed of satellite in y direction
V3z 0 Speed of satellite in z direction
AdditionalT 0.67 Simulation run time in dimensionless units

28



6.3 surfacevalue.m

surfacevalue() computes and returns the corresponding zero relative sur-
face value for a given location in the rotating frame and velocity. Usage:

C=surfacevalue(x,y,z,v)

All input values should be non-dimensional. The value C may be input into
the function zerorel3b() to plot the surface

6.4 zerorela.m & zerorelb.m

zerorela&b are functions to plot zero-relative-velocity surfaces. The programs
allow for default options of surfaces touching the lagrange points or a custom
surface. zerorel2a should be run once per computer and computes a three
dimensional array of surface values which is used by zerorel2b. The array
is saved in a file called zerorelative.mat. The default step size in x,y, and z
directions is 0.05. While using a smaller step size will increase the accuracy
and resolution of the surface drawings, it will also rapidly increase the time
the programs have to run to compute the array and surfaces.

Usage:

zerorela()

zerorelb(isosurf)

using the lone input isosurf, zerorel2b computes and plots the corresponding
isosurface. To plot the isosurface corresponding to a Lagrange point, input
‘L1’ or ‘L2’ etc.. For any other surface, input the value C for the surface The
function surfacevalue(x,y,z,v) can calculate C for you

Example:
zerorelb(‘L2’)

-or-
zerorelb(3.1)

-or-

C= surfacevalue(x,y,z,v)

zerorelb(C)

29



Inside zerorel2b.m two variables may be set, the variables and their op-
tions are listed below.

• cutlocation

options:

‘x’ cuts at x=0 showing all values with positive x component

‘y’ cuts at y=0 showing all values with positive y component

‘z’ cuts at z=0 showing all values with negative z component

‘none’ no cutaway

• transparency

options:

0 completely transparent

0 < # < 1 translucent

1 opaque

default: 0.6

• color

options:

‘red’ or ‘r’ completely transparent

‘green’ or ‘g’ translucent

‘blue’ or ‘b’ opaque

‘cyan’ or ‘c’ 0.6

‘magenta’ or ‘m’

‘yellow’ or ‘y’ completely transparent

‘black’ or ‘k’ translucent

‘white’ or ‘w’ opaque

[# # # ] [r g b] color values, 0-1

default: ‘green’

30



6.5 zerorel2d.m

zerorel2d() plots a filled contour of the desired zero-relative-velocity surface
in the x-y plane. The options and usage are below:

zerorel2d(isosurf)

Input options:

‘L1’ Isosurface contour touching L1

‘L2’ Isosurface contour touching L2

‘L3’ Isosurface contour touching L3

‘L4’ or ‘L5’ Isosurface contour touching L4 and L5

# Isosurface contour at a C value of #

Input usage and examples are identical to zerorel2b() as seen in Section 6.4
NOTE: The Z array is ONLY computed the first time zerorel2d() is

run to change the resolution of the matrix you MUST delete zerorelativecon-
tour.mat and rerun the function

6.6 solvequintic.m

X=solvequintic() solves Lagrange’s quintic equation and returns a value X
which is the χ value for the masses specified in sovequintic.m. Change the
values for the masses and run the function to solve the quintic equation for
χ

6.7 circle.m

[x y]=circle(r) returns vectors x and y with coordinates for plotting a
circle with radius r, and is used by a few of the programs mentioned above.

31



Appendix A

MATLAB Code

A.1 general3d.m

function general3d ()

%Determines the locations and/or masses of a 3 body problem

%The following variables need to be set,

%but not all apply to each case.

%For a listing of which variables must be set for each case

%refer to the report.

SHAPE=0;%0 for the triangle, 1 for collinier

CIRCULAR=0;%1 for circular, 0 for noncicular

%With the bodies alligned in the following order,

%which is of unknown mass or position

MISSINGINFO=3;%1-----2-----3

MASSMISSING=0;%1 if the mass is unknown,

%0 if the position is unknown

%Enter all coordinates and vectors in the form [x y z] with brackets

P1=[0 0 0];%the location of the first body (Km)

P2=[1e8 0 0];%the location of the second body (Km)

P3=[.5e8 1e8*sqrt(3)/2 0];%the location of the third body (Km)

VWHICHKNOWN=1;%which body you know the velocity of

Vknown=[0 1 1]*1000/sqrt(2);%the known velocity (Km/s)

m1=1e24;%the mass of the first body (Kg)

m2=1.5e24;%the mass of the second body (Kg)

m3=2e24;%the mass of the third body (Kg)

32



WHATVEC=1;%1 if you have a vector normal to the motion

%0 if a vector in the plane of motion

planevec=[0 10 10];%the vector in the plane of motion

hdir=[0 1 1];%the vector in the normal direction

AdditionalT=2e5;%how long the simulation should run initially (sec)

%when the program asks if you would like it to draw lines connecting

%the objects, 1 means yes, 0 means no

G=6.67e-11;

P1=transpose(P1);

P2=transpose(P2);

P3=transpose(P3);

Vknown=transpose(Vknown);

planevec=transpose(planevec);

hdir=transpose(hdir);

if SHAPE==0

if (CIRCULAR~=1)

r12=P2-P1;

hdir=cross(r12,Vknown);

maghdir=sqrt(dot(hdir,hdir));

ih=hdir./maghdir;

rho=sqrt(dot(r12,r12));

ir12=r12./rho;

it12=cross(ih,ir12);

r13=.5*rho.*ir12 + sqrt(3)/2*rho.*it12;

P3=P1+r13;

rc=(m1.*P1 +m2.*P2 +m3.*P3)./(m1+m2+m3);

r1=P1-rc;

r2=P2-rc;

r3=P3-rc;

magr1=sqrt(dot(r1,r1));

magr2=sqrt(dot(r2,r2));

magr3=sqrt(dot(r3,r3));

ir1=r1./magr1;

ir2=r2./magr2;

ir3=r3./magr3;

33



it1=cross(ih,ir1);

it2=cross(ih,ir2);

it3=cross(ih,ir3);

switch VWHICHKNOWN

case 1

fdot=dot(Vknown./magr1,ir1);

omega=dot(Vknown./magr1,it1);

case 2

fdot=dot(Vknown./magr2,ir2);

omega=dot(Vknown./magr2,it2);

case 3

fdot=dot(Vknown./magr3,ir3);

omega=dot(Vknown./magr3,it3);

end

end

if (CIRCULAR)

fdot=0;

rc=(m1.*P1 +m2.*P2 +m3.*P3)./(m1+m2+m3);

r1=P1-rc;

r2=P2-rc;

r3=P3-rc;

magr1=sqrt(dot(r1,r1));

magr2=sqrt(dot(r2,r2));

magr3=sqrt(dot(r3,r3));

ir1=r1./magr1;

ir2=r2./magr2;

ir3=r3./magr3;

r12=P2-P1;

r13=P3-P1;

magr12=sqrt(dot(r12,r12));

magr13=sqrt(dot(r13,r13));

hdir=cross(r12,r13);

maghdir=sqrt(dot(hdir,hdir));

ih=hdir./maghdir;

34



it1=cross(ih,ir1);

it2=cross(ih,ir2);

it3=cross(ih,ir3);

A=m2/magr12^3.*r12+m3/magr13^3.*r13;

magA=sqrt(dot(A,A));

omega=sqrt(G*magA/magr1);

end

V1=magr1*fdot.*ir1 + omega*magr1.*it1;

V2=magr2*fdot.*ir2 + omega*magr2.*it2;

V3=magr3*fdot.*ir3 + omega*magr3.*it3;

else%collinear

if MASSMISSING

r23=P3-P2;

r12=P2-P1;

magr23=sqrt(dot(r23,r23));

magr12=sqrt(dot(r12,r12));

x=magr23/magr12;

switch MISSINGINFO

case 3

m3 = (x.^3.*m1.*(x.^2+3*x+3)+...

m2.*(x.^5+2.*x.^4+x.^3-x.^2-2.*x-1))./(3.*x.^2+3.*x+1);

case 2

m2 = (m3.*(3.*x.^2+3.*x+1)-...

x.^3.*m1.*(x.^2+3*x+3))./(x.^5+2.*x.^4+x.^3-x.^2-2.*x-1);

case 1

m1 = (m3.*(3.*x.^2+3.*x+1) -...

m2.*(x.^5+2.*x.^4+x.^3-x.^2-2.*x-1))./(x.^3.*(x.^2+3*x+3));

end

else

syms m1a m2a m3a x;

temp=solve(subs((m1a+m2a)*x.^5 + (3*m1a+2*m2a)*x.^4+...

(3*m1a+m2a)*x.^3 - (m2a+3*m3a)*x.^2-...

(2*m2a + 3*m3a)*x - (m2a+m3a),...

[m1a,m2a,m3a],[m1,m2,m3]));

temp=sym2poly(temp);

x=temp(5);

switch MISSINGINFO

35



case 1

r23=P3-P2;

r12=r23./x;

P1=P2-r12;

case 2

r13=P3-P1;

r12=r13./(1+x);

P2=P1+r12;

otherwise

r12=P2-P1;

r13=r12.*(1+x);

P3=P1+r13;

end

end

%find velocities

if (CIRCULAR~=1)

r12=P2-P1;

hdir=cross(r12,V1);

maghdir=sqrt(dot(hdir,hdir));

ih=hdir./maghdir;

rho=sqrt(dot(r12,r12));

ir12=r12./rho;

it12=cross(ih,ir12);

r13=.5*rho.*ir12 + sqrt(3)/2*rho.*it12;

P3=P1+r13;

rc=(m1.*P1 +m2.*P2 +m3.*P3)./(m1+m2+m3);

r1=P1-rc;

r2=P2-rc;

r3=P3-rc;

magr1=sqrt(dot(r1,r1));

magr2=sqrt(dot(r2,r2));

magr3=sqrt(dot(r3,r3));

ir1=r1./magr1;

ir2=r2./magr2;

ir3=r3./magr3;

it1=cross(ih,ir1);

36



it2=cross(ih,ir2);

it3=cross(ih,ir3);

switch VWHICHKNOWN

case 1

fdot=dot(Vknown./magr1,ir1);

omega=dot(Vknown./magr1,it1);

case 2

fdot=dot(Vknown./magr2,ir2);

omega=dot(Vknown./magr2,it2);

case 3

fdot=dot(Vknown./magr3,ir3);

omega=dot(Vknown./magr3,it3);

end

end

if (CIRCULAR)

fdot=0;

rc=(m1.*P1 +m2.*P2 +m3.*P3)./(m1+m2+m3);

r1=P1-rc;

r2=P2-rc;

r3=P3-rc;

magr1=sqrt(dot(r1,r1));

magr2=sqrt(dot(r2,r2));

magr3=sqrt(dot(r3,r3));

ir1=r1./magr1;

ir2=r2./magr2;

ir3=r3./magr3;

r12=P2-P1;

r13=P3-P1;

magr12=sqrt(dot(r12,r12));

magr13=sqrt(dot(r13,r13));

if WHATVEC~=1

hdir=cross(r12,planevec);

end

maghdir=sqrt(dot(hdir,hdir));

ih=hdir./maghdir;

37



it1=cross(ih,ir1);

it2=cross(ih,ir2);

it3=cross(ih,ir3);

A=m2/magr12^3.*r12+m3/magr13^3.*r13;

magA=sqrt(dot(A,A));

omega=sqrt(G*magA/magr1);

end

V1=magr1*fdot.*ir1 + omega*magr1.*it1;

V2=magr2*fdot.*ir2 + omega*magr2.*it2;

V3=magr3*fdot.*ir3 + omega*magr3.*it3;

end

P1x=P1(1);

P1y=P1(2);

P1z=P1(3);

P2x=P2(1);

P2y=P2(2);

P2z=P2(3);

P3x=P3(1);

P3y=P3(2);

P3z=P3(3);

V1x=V1(1);

V1y=V1(2);

V1z=V1(3);

V2x=V2(1);

V2y=V2(2);

V2z=V2(3);

V3x=V3(1);

V3y=V3(2);

V3z=V3(3);

oldT=0;

while AdditionalT>0

IC=[m1;m2;m3;

P1x;P2x;P3x;

P1y;P2y;P3y;

P1z;P2z;P3z;

V1x;V2x;V3x;

V1y;V2y;V3y;

38



V1z;V2z;V3z];

tspan=linspace(oldT,AdditionalT+oldT,10);

options=odeset(’AbsTol’,1e-6,’RelTol’,1e-6);

[t,X]=ode45(’general3dode’,tspan,IC,options);

figure(1);

hold on;

plot3(X(:,4),X(:,7),X(:,10),’r.-’,...

X(:,5),X(:,8),X(:,11),’g.-’,...

X(:,6),X(:,9),X(:,12),’b.-’);

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

campos([15e7 -4e7 8e7]);

oldT=oldT+AdditionalT;

AdditionalT = input(’How much longer should the simulation run ’);

draw = input(’Draw lines connecting the bodies? ’);

size=size(X);

height=size(1);

P1x=X(height,4);

P2x=X(height,5);

P3x=X(height,6);

P1y=X(height,7);

P2y=X(height,8);

P3y=X(height,9);

P1z=X(height,10);

P2z=X(height,11);

P3z=X(height,12);

V1x=X(height,13);

V2x=X(height,14);

V3x=X(height,15);

V1y=X(height,16);

V2y=X(height,17);

V3y=X(height,18);

V1z=X(height,19);

39



V2z=X(height,20);

V3z=X(height,21);

if(draw)

figure(1);

line1x=linspace(P1x,P2x);

line2x=linspace(P1x,P3x);

line3x=linspace(P2x,P3x);

line1y=linspace(P1y,P2y);

line2y=linspace(P1y,P3y);

line3y=linspace(P2y,P3y);

line1z=linspace(P1z,P2z);

line2z=linspace(P1z,P3z);

line3z=linspace(P2z,P3z);

plot3(line1x,line1y,line1z,’k-’)

plot3(line2x,line2y,line2z,’k-’)

plot3(line3x,line3y,line3z,’k-’)

draw=0;

x12=sqrt((P2x-P1x)^2 + (P2y-P1y)^2 + (P2z-P1z)^2);

x13=sqrt((P3x-P1x)^2 + (P3y-P1y)^2 + (P3z-P1z)^2);

x23=sqrt((P3x-P2x)^2 + (P3y-P2y)^2 + (P3z-P2z)^2);

end

end

Sample Output:

Figure A.1: general3d() output graph

40



general3dode.m

function dy=general3dode(t,Y,flag,param)

m1=Y(1);

m2=Y(2);

m3=Y(3);

P1x=Y(4);

P2x=Y(5);

P3x=Y(6);

P1y=Y(7);

P2y=Y(8);

P3y=Y(9);

P1z=Y(10);

P2z=Y(11);

P3z=Y(12);

V1x=Y(13);

V2x=Y(14);

V3x=Y(15);

V1y=Y(16);

V2y=Y(17);

V3y=Y(18);

V1z=Y(19);

V2z=Y(20);

V3z=Y(21);

G=6.67259*10^(-11);

%Relative position vectors

r12x = P2x - P1x;

r12y = P2y - P1y;

r12z = P2z - P1z;

r13x = P3x - P1x;

r13y = P3y - P1y;

r13z = P3z - P1z;

r23x = P3x - P2x;

r23y = P3y - P2y;

r23z = P3z - P2z;

41



r12 = sqrt(r12x^2+r12y^2+r12z^2);

r13 = sqrt(r13x^2+r13y^2+r13z^2);

r23 = sqrt(r23x^2+r23y^2+r23z^2);

%Force components on each body

F12x = G*m1*m2*r12x/r12^3;

F12y = G*m1*m2*r12y/r12^3;

F12z = G*m1*m2*r12z/r12^3;

F13x = G*m1*m3*r13x/r13^3;

F13y = G*m1*m3*r13y/r13^3;

F13z = G*m1*m3*r13z/r13^3;

F23x = G*m2*m3*r23x/r23^3;

F23y = G*m2*m3*r23y/r23^3;

F23z = G*m2*m3*r23z/r23^3;

F1x = F12x + F13x;

F2x = -F12x + F23x;

F3x = -F13x - F23x;

F1y = F12y + F13y;

F2y = -F12y + F23y;

F3y = -F13y - F23y;

F1z = F12z + F13z;

F2z = -F12z + F23z;

F3z = -F13z - F23z;

%Determine new accellerations Fx=m*ax

a1x=F1x/m1;

a1y=F1y/m1;

a1z=F1z/m1;

a2x=F2x/m2;

a2y=F2y/m2;

a2z=F2z/m2;

a3x=F3x/m3;

a3y=F3y/m3;

a3z=F3z/m3;

dy=[0;0;0;

V1x;V2x;V3x;

42



V1y;V2y;V3y;

V1z;V2z;V3z;

a1x;a2x;a3x;

a1y;a2y;a3y;

a1z;a2z;a3z];

43



A.2 rotating.m & rotatingode.m

The rotating() function uses 2 files...rotating.m and rotatingode.m(for ODE45)
rotating.m

function rotating()

m1=5.97e24;

m2=7.35e22;

m3=100;%satellite mass(never used but passed to ode45)

P1x=0;

P2x=3.84e5;

%VARIABLES TO CHANGE

P3x=P2x+1.74e3+150;%x location of the satellite

%relative to Earth

%default=P2x+1.74e3+150

P3y=0;%y location of the satellite default=0

P3z=0;%z location of the satellite default=0

V3x=0;%Speed of satellite in x direction

%default=0

V3z=0;%Speed of satellite in x direction

%default=0

V3y=-2.47;%Speed of satellite in x direction

%default: -2.47

AdditionalT = .67;%how long in dimensionless units

%the simulation should run

%default=.67

r12=P2x-P1x;

P1x=P1x/r12;

P2x=P2x/r12;

P3x=P3x/r12;

mu=m2/(m1+m2);

xcm=(m1*P1x+m2+P2x)/(m1+m2);

P1x=P1x-xcm;

P2x=P2x-xcm;

P3x=P3x-xcm;

oldT=0;

IC=[m1;m2;m3;

P1x;P2x;

P3x;P3y;P3z;

44



V3x;V3y;V3z];

tspan=linspace(oldT,AdditionalT+oldT,10000);

options=odeset(’AbsTol’,1e-6,’RelTol’,1e-6);

[t,X]=ode45(’rotatingode’,tspan,IC,options);

plot3(P1x,0,0,’r.-’,P2x,0,0,’g.-’,X(:,6),X(:,7),X(:,8),’b-’);

Sample Output:

Figure A.2: rotating() output graph

45



rotatingode.m

function dy=rotatingode(t,Y,flag,param)

m1=Y(1);

m2=Y(2);

m3=Y(3);

P1x=Y(4);

P2x=Y(5);

P3x=Y(6);

P3y=Y(7);

P3z=Y(8);

V3x=Y(9);

V3y=Y(10);

V3z=Y(11);

mu=m2/(m1+m2);

%Relative position vectors

r13x = P3x - P1x;

r23x = P3x - P2x;

rho1 = sqrt(r13x^2+P3y^2+P3z^2);

rho2 = sqrt(r23x^2+P3y^2+P3z^2);

a3x=P3x-(1-mu)*r13x/rho1^3-mu*r23x/rho2^3+2*V3y;

a3y=(1-(1-mu)/rho1^3-mu/rho2^3)*P3y-2*V3x;

a3z=-((1-mu)/rho1^3+mu/rho2^3)*P3z;

dy=[0;0;0;%mass changes

0;0;%changes in body 1 and 2 locations

V3x;V3y;V3z;%change in body 3 position

a3x;a3y;a3z];%change in body 3 velocity

46



A.3 surfacevalue.m
function C=surfacevalue(x,y,z,v)

%C=surfacevalue(x,y,z,v) computes the corresponding

%zero relative surface value C for a given location

%and velocity.

%x, y, and z are the nondimensional coordinates

%in the rotating frame, and v is the nondimensional

%velocity

mu=1/(81.3+1);

C=x^2+y^2+2*(1-mu)/sqrt((x+mu)^2+y^2)+2*mu/sqrt((x-1+mu)^2+y^2)-v^2;

47



A.4 zerorela.m
function zerorela()

%This function creates a file called zerorelative.mat

%which contains all the zero relative surface values

%in a matrix C for use in zerorel2b.m

mu=1/(81.3+1);

x=-1.5:.05:1.55;%to increase the resolution of the surfaces,

%change the middle number..default is .05

y=-1.5:.05:1.55;

z=-1:.05:1.05;

for i=1:length(x)

for j=1:length(y)

for k=1:length(z)

C(j,i,k)=x(i)^2+y(j)^2+2*(1-mu)/sqrt((x(i)+mu)^2...

+y(j)^2+z(k)^2)+2*mu/sqrt((x(i)-1+mu)^2+y(j)^2+z(k)^2);

end

end

end save(’zerorelative.mat’,’x’,’y’,’z’,’C’)

48



A.5 zerorelb.m
function zerorelb(isosurf)

%using the lone input isosurf,

%zerorel2b computes and plots the corrosponding isosurface.

%

%To plot the isosurface corresponding to

%a Lagrange point, input ’L1’ or ’L2’ etc..

%For any other surface, input the value C for the surface

%The function surfacevalue(x,y,z,v) can calculate C for you

%

%NOTE: zerorela must be run once prior to ever running zerorelb

%to create the array stored in zerorelative.mat

cutlocation=’none’;

%to change which plane the surface is cut at, change cutlocation

%options:

%’z’ cuts at z=0 showing all values with negative z component

%’y’ cuts at y=0 showing all values with positive y component

%’none’ no cutaway

transparency= .6;

%sets the value for transparency for no cutaway

% 0 transparent, 1 opaque, default:.6

color=’green’;

%sets the color of the surface, options are MATLAB defined colors

%see either MATLAB help or report for a list

mu=1/(81.3+1);

switch upper(isosurf)

case ’L1’

x1=-1.00506;

Csurf= x1^2+2*(1-mu)/abs(x1+mu)+2*mu/abs(x1-1+mu);

Csurf=Csurf+.002;

case ’L2’

x2=.836915;

Csurf= x2^2+2*(1-mu)/abs(x2+mu)+2*mu/abs(x2-1+mu);

case ’L3’

x3=1.15568;

Csurf= x3^2+2*(1-mu)/abs(x3+mu)+2*mu/abs(x3-1+mu);

case {’L4’,’L5’}

49



x4=.5-mu;

y4=sqrt(3)/2;

Csurf=x4^2+y4^2+2*(1-mu)/sqrt((x4+mu)^2+y4^2)...

+2*mu/sqrt((x4-1+mu)^2+y4^2);

otherwise

Csurf=isosurf;

end

load(’zerorelative.mat’)

switch lower(cutlocation)

case ’z’

p=patch(isosurface(x,y,z(1:length(z)/2),...

C(:,:,(1:length(z)/2)),Csurf));

case ’y’

p=patch(isosurface(x,y(length(y)/2:length(y)),...

z,C((length(y)/2:length(y)),:,:),Csurf));

case ’x’

p=patch(isosurface(x(length(x)/2:length(x)),...

y,z,C(:,(length(x)/2:length(x)),:),Csurf));

otherwise

p=patch(isosurface(x,y,z,C,Csurf));

end

set(p,’FaceAlpha’,transparency);

set(p,’FaceColor’,color,’EdgeColor’,’None’);

camlight;lighting gouraud;

figure(1)

load topo;

[x y z] = sphere(15);

xe=x.*6378/384405-mu;

ye=y.*6378/384405;

ze=z.*6378/384405;

s = surface(xe,ye,ze,’facecolor’,’texture’,’cdata’,topo,...

’edgecolor’,’none’);

set(s,’backfacelighting’,’unlit’);

colormap(topomap1); alpha(’direct’); alphamap([.1;1])

campos([2 -13 10]);

xm=x.*1.74e3/384405+1-mu;

ym=y.*1.74e3/384405;

zm=z.*1.74e3/384405;

s = surface(xm,ym,zm,’facecolor’,’red’,’edgecolor’,’none’);

Sample Output:

50



Figure A.3: zerorel2b() output graph

51



A.6 zerorel2d.m
function zerorel2d(isosurf)

%plots a filled contour isosurface at a value of isosurf

%options for isosurf include:

%’L1’,’L2’ etc... or a value like 3

%NOTE: The Z array is ONLY computed the first time this

%function is run; to change the resolution of the matrix

%you MUST delete zerorelativecontour.mat and rerun the function

mu=1/(81.3+1);

if (~exist(’zerorelativecontour.mat’))

disp(’running’)

x=-1.5:.01:1.55;%to increase the resolution of the surfaces,

%change the middle number..default is .05

y=-1.5:.01:1.55;

for i=1:length(x)

for j=1:length(y)

Z(j,i)=x(i)^2+y(j)^2+2*(1-mu)/sqrt((x(i)+mu)^2...

+y(j)^2)+2*mu/sqrt((x(i)-1+mu)^2+y(j)^2);

end

end

save(’zerorelativecontour’,’x’,’y’,’Z’);

else

load(’zerorelativecontour’);

end switch upper(isosurf) case ’L1’

x1=-1.00506;

Csurf= x1^2+2*(1-mu)/abs(x1+mu)+2*mu/abs(x1-1+mu);

case ’L2’

x2=.836915;

Csurf= x2^2+2*(1-mu)/abs(x2+mu)+2*mu/abs(x2-1+mu);

case ’L3’

x3=1.15568;

Csurf= x3^2+2*(1-mu)/abs(x3+mu)+2*mu/abs(x3-1+mu);

case {’L4’,’L5’}

x4=.5-mu;

y4=sqrt(3)/2;

Csurf=x4^2+y4^2+2*(1-mu)/sqrt((x4+mu)^2+y4^2)...

+2*mu/sqrt((x4-1+mu)^2+y4^2)+.001;

otherwise

Csurf=isosurf;

end

[c,h]=contourf(x,y,-Z,[-Csurf -Csurf]);

52



Sample Output:

Figure A.4: zerorel2d() output graph

53



A.7 solvequintic.m

function X=solvequintic()

%solves lagrange’s quintic equation for X

%for the masses set below:

m1=0;

m2=100;

m3=200;

syms m1a m2a m3a x;

temp=solve(subs((m1a+m2a)*x.^5 + (3*m1a+2*m2a)*x.^4...

+(3*m1a+m2a)*x.^3 - (m2a+3*m3a)*x.^2...

- (2*m2a + 3*m3a)*x - (m2a+m3a),...

[m1a,m2a,m3a],[m1,m2,m3]));

temp=sym2poly(temp);

X=temp(5);

54



A.8 circle.m
function[x,y]=circle(xc,yc,radius)

x1=linspace(-radius+xc,radius+xc,500);

x2=linspace(radius+xc,-radius+xc,500);

y1=sqrt(radius^2-(x1-xc).^2)+yc;

y2=-sqrt(radius^2-(x1-xc).^2)+yc;

x=[x1,x2];

y=[y1,y2];

55


