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AUTONOMOUS ON-ORBIT OPTICAL NAVIGATION TECHNIQUES
FOR ROBUST POSE-ESTIMATION

Thibaud Teil∗, Samuel Bateman†, Hanspeter Schaub‡

This paper seeks to improve image acquisition and processing methods through
the use of Neural Networks. Flight Software algorithms must be developed for
robust onboard use as these algorithms interact heavily with the space environ-
ment. Testing them reliably therefore requires high-fidelity and computationally
fast simulations that allow simulated crafts to navigate visually. Raw camera im-
ages are often noisy, imperfect, and contain artifacts. Therefore modeling images
requires knowledge of the environment and of the camera. A fast and reliable
OpNav simulation opens the door to training Convolutional Neural Networks as it
can provide numerous images paired with truth data. The caveat being that both
the training environment and the resulting neural network need to be tested and
vetted to ensure applicability to real missions.

The proposed research will focus on navigation in proximity to known celes-
tial bodies rather than in a deep space cruise. The scenario used is a spacecraft on
orbit around Mars. In this situation, the baseline method for orbit determination is
based on Center and Apparent Diameter (CAD) measurements. The primary goal
of this research is to assess the accuracy of existing methods and compare them
to new Neural Networks pre-trained in the Basilisk-Vizard environment. The re-
sults demonstrate the ability for neural network based image processing for space
applications and display the robustness of the navigation solution.

INTRODUCTION

Spacecraft Navigation and Autonomy

Autonomous Optical Navigation (OpNav) leads to an increase in spacecraft autonomy as it pro-
vides measurements that can be gathered without contacting Earth.1 Aside from lightening the load
on ground-based tracking, autonomy can be a back-up when communication failures occur or when
ground-in-the-loop navigation is impossible given maneuver time and spacecraft distance.2

Autonomy relies on different techniques depending on the mission to which it is applied. For
instance, low earth orbit missions have access to Global Position System (GPS) measurements, as
well as telemetry data from various sources. On the other hand, deep space missions rely heavily on
range and range rate measurements from the Deep Space Network (DSN). Yet there is increasing
demand to use the network with limited bandwidth and operational capabilities. OpNav uses images
of visible celestial bodies to extract position and velocity information. Therefore, it can rely solely
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on the spacecraft’s interaction with the deep space environment instead of relying on Earth contact
— provided that the algorithms used are computationally tractable.

To allow for on-board navigation, Flight Software (FSW) algorithms must be developed and
provide robust state estimation allowing for failure detection or mitigation. Testing FSW reliably
requires high-fidelity and computationally fast simulations that allow simulated crafts to navigate
in flight-like conditions. Neural networks can provide powerful image processing solutions that
have been under tremendous development in recent years. Developing new processing methods
such as neural networks can broaden the capabilities of previous navigation algorithms and enhance
autonomy as a whole. Many types of OpNav measurements exist,3 from centroid and apparent
diameter,4 star occultation,5 and landmark tracking6 to Stereo-Photoclinometry7 (SPC). Each of
these have specific application scenarios depending on the object they require to track, and the
distance at which they do so. Centroid and apparent diameter measurements, for instance, find the
limb of a body and use the knowledge of its actual size and shape. By extracting direction and
distance, the spacecraft’s location relative to the body can be determined.8 The work presented
focuses on the use of extracting Centroid and Apparent Diameter (CAD) from the images given a
visible planet limb.

Yet these measurements are often noisy, imperfect, and sometimes do not fully observe the space-
craft’s states. The goal of this work is to enhance the image processing suite for OpNav using neural
networks. The simulation and training of CAD regression networks using noisy images and camera
models provides robust solutions to the image processing problem.

The paper first develops the network architecture as well as the training methods. The initial
results showcase the choices in training data by analyzing performance on clean, noiseless images.
Once the network — named MarsNet — is appropriately trained, the final results compare a robust
Hough Circle implementation with the the network’s navigation solution on imperfect data.

The neural network solution is trained and formatted to fit the CAD FSW stack as a novel contri-
bution, but can provide much more flexibility in the types of measurements it can output. Depending
on the desired use and situation, the networks can provide a much broader set of applications from
de-noising images to direct feature extraction. The results provided demonstrate the ability for
neural network based image processing for space applications.

Background on Neural Networks

Neural networks are a structured set of connected, simple processing elements (colloquially called
neurons) operating on a given input. Through repeated non-linear transforms, a trained network can
work as a linear classifier or learn a regression task. Although originally inspired by biology, the
modern iterations have evolved into many distinct forms ranging from simple Feed-Forward Neural
Networks (FFNN),9 to Convolutional Neural Networks (CNN),10 as well as Boltzmann Machines11

and Bayesian Networks.12 In general, these functions are trained by assuming that the spaces from
which the input and outputs are pulled are stochastic. By defining a differentiable metric between
outputs, an independent identical distribution of the input-output pairs is pulled from the data. In
turn, the average derivative of the distribution is calculated to approximate the true gradient (output
with respect to the input) to improve the networks function.13 Theoretically, a neural network with
sufficiently large hidden layers — which provide intermediate transformations between the inputs
and the output — are universal function approximators.14

In the field of image processing and computer vision, CNNs have seen a great success from med-
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ical imagery15 to digit recognition.16 In navigation, CNNs are recently used for depth mapping17

and Terrain Relative Navigation (TRN).18 The field is constantly growing and evolving: develop-
ments with autoencoders19 have shown promising denoising capabilities and super resolution.20

Recent results display strong feature detection and generalization notably with the use of deep vari-
ational autoencoders.21 Neural networks are also being developed in order to navigate around other
spacecraft for detumbling or docking by pairing physical test-beds with simulated environments to
enhance performance.22 This paper inscribes itself in the intersection between computer vision and
spacecraft navigation.

A common task for CNN in image processing is to locate and classify all objects in an image
and provide bounding boxes, which is known as the object detection task. In the realm of object
detection, modern variants of YOLO23 and Faster R-CNN24 are the state of the art: YOLO operates
in realtime while Faster R-CNN produces higher quality object detection at a slower speed. These
approaches operate on a image feature space produced by a large CNN known as a “backbone”,
rather then directly on a image. Residual Neural Networks25 (ResNets) were originally tested and
trained on the immense, general classification task ImageNet26 as classifiers. ResNets allow for
much deeper networks and better propagation of signal from the loss resulting in faster learning.
Due to richness of their resulting features, ResNets have become nearly ubiquitous in the object
detection and localization task as the aforementioned backbone, only losing out in the application
to constrained compute environments.27

A strong natural image prior is placed on the backbone through training with a larger dataset.
By utilizing the feature space of the trained backbone CNN, smaller networks have been shown to
learning a different task with a much smaller dataset then would normally be required. This idea of
reusing the priors of larger networks to make a new task easier is known as Transfer Learning.28

Using only real data to train a CNN for learning for space applications is practically intractable
due to the relative sparsity of data and absence of labeled datasets on which to train. Transfer
learning can not directly be used either because of the absence of a rich enough prior distribu-
tion which would require a large labeled dataset similar to the one to be trained on. However,
armed with an accurately simulated environment, a well simulated camera, and faster-than-realtime
speeds, CNNs for OpNav are realizable. CNNs allow for the processing of raw measurements and
can learn the camera parameters as well as environmental parameters such as lightning and plan-
etary features. Although visualizations continue to improve, the space environment is not highly
challenging to model: lighting is purely unidirectional with parallel light rays; near celestial bodies
are well mapped; and the background is very dark. Furthermore, training networks for control and
navigation tasks on synthetic data which is then applied to real data has been previously successful
in robotics,29 giving further credence to the use of synthetic data for network training. With these
concepts in mind and the tools developed throughout this paper, a first instantiation of CNNs for
CAD extraction is designed at the intersection of ML and spacecraft navigation.

NEURAL NETWORKS FOR ON-ORBIT NAVIGATION

This paper focuses on a low-level task which uses neural networks for image processing. Su-
pervised learning is a task in Machine Learning (ML) which parametrizes models using a training
dataset. The full dataset represents a sample of the input distribution of the camera images. When
paired with the associated truth data, the data contains the information needed to approximate the
function that maps the input space to the output space.
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Although supervised learning has been very successful in recent years, it leads to two key limita-
tions. The first limitation is that the quantity of data needed for training is often large and needs to be
associated to a set of truth data (which often requires other sensor modalities or human annotation).
The second limitation is generalization: if a model “over-fits” the data, then it can perform excep-
tionally well on the training data while performing much worse on inputs for which it has never
trained on (often called test data). This means the model has learned a feature representation which
abuses the training dataset without having generalized near the true distribution of images. Hence,
the training data set may allow the network to extract undesirable features that do not perform well
on new and real data.

Space imaging suffers from both of those issue for supervised learning in general: there are
few real images to train on, and images depend largely on the camera parameters which do not
necessarily generalize. The nominal solution to poor generalization — data augmentation — is
poorly suited to space imaging because flipping, scaling, and rotational modifications may not be
realistic. On the other hand, adding noise and artifacts in the image can be seen as a form of data
augmentation specific to the OpNav application, while bringing the simulated images even closer
to real images. This subsection intends to harness previous work in OpNav to produce new results
in the field of ML for OpNav. The designed network is called MarsNet, and aims to output CAD
measurements given a raw camera image as an input.

MarsNet Architecture

Within any network paradigm, sets of hidden layers of varying sizes (number of neurons per layer)
can be activated through different activation functions such as the sigmoid function, hyperbolic
tangent, or Rectified Linear Unit (ReLU). The activation function is responsible for transforming the
summed weighted input of each intermediate representation into an output for downstream layers,
while introducing a non-linearity to warp the intermediate representation space to represent non-
linear functions. The ReLU activation function is a piecewise linear function that either outputs a
scaled value of the input if it is positive, or outputs zero. It is the default activation function for
many types of neural networks due to ease of training and better performances in a wide variety of
applications. Given it’s success throughout the literature — notably because it helps solve vanishing
gradients30 — ReLU is almost always the activation function chosen for CNNs.

However, space applications offer a challenging problem which is not seen in traditional applica-
tions of CNNs: the fact that often a non-zero part of the image is nearly black other then the noise of
the sensor. After normalization, this provides an unusual distribution of pixel intensities as almost
all are very weak or negative. For a normal ReLU, this is problematic as it will eliminate almost all
the signal in the first layer. For this application, it was found that Leaky ReLU31 performed well:

ReLU(x) = max{λx, x}, 0 < λ� 1 (1)

Leaky ReLU — Equation (1) — doesn’t completely eliminate the signal, yet has the same desired
traits of the normal ReLU. Furthermore, if the weights become predominantly negative, the slight
slope defined by λ transfers what would otherwise be strictly zero signal back to a positive domain
and prevent “dead neurons”.

Network optimization happens during the back-propagation step and where methods can either
be adaptive (as Adam, Adagrad or RMSprop) or stochastic like commonly used Stochastic Gradient
Descent (SGD). Although methods like Adam tend to perform well in the initial portion of training
it is outperformed by SGD at later stages of training. Despite some downsides, Adam is chosen for
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the training of the ResNets implemented given fast training speeds and high performance on sparse
datasets thanks to per-parameter step-size.

The model is implemented and trained using Pytorch∗ which provides an array of test scripts and
implemented methods to facilitate development. The higher level architecture is a series of Down
Convolutions — in which not every pixel is sampled in order to decrease the dimensional size of
the image while increasing the perceptive field of each feature pixel. The convolutions are input
to ResNet Blocks, which are then followed by a linear output layer to provide the prediction. A
depiction of the network is pictured in Figure 1.

Each model trained for 40 epochs with a batch size of 14, using a learning rate scheduler which
reduces the learning rate after 5 epochs without improvement. The loss function used is Huber
loss32 because it is less sensitive to outlier predictions from the network, particularly in earlier
epochs when the prediction error is arbitrarily large in the regression task. This allows to train
with a larger learning rate without running into exploding gradients for this problem, similar in the
approach to object detection.33
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Figure 1: Architecture of MarsNet, each Layer is two ResNet Blocks 2

For each dimension size, three ResNet blocks are applied which each perform the follow sequence
twice before summing the input and the output (identity operation central to the ResNet design) :

• Applies a 2D-Convolution to the input

• Activates the convolved input with a “Leaky-ReLU”

• Batch-normalizes the activated layer

• Performs a 1
2 dropout. In training this means zeroing each neuron with probability one-half,

in evaluation weight each neuron output by half to get a cumulative contribution.

The size and number of ResNet blocks are taken from the literature25 — in order to ensure a effi-
cient and performant implementation. The specific additions are the use of Batch-normalization and
Dropout. Batch-normalization makes weight normalization a part of the model architecture as it in-
corporates it within the network layers. Batch-normalization allows the use of higher learning rates,

∗https://pytorch.org/
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engenders robustness to initializationm and acts as a regularizer.34 Dropout arbitrarily deactivates
neurons in a layer during training. The deactivation of random neurons protects against overfitting
by preventing intertwined feature detection. Dropout allows the network to act like a ensemble of
distinct models each with different features to rely on, which has been shown to outperform any of
the given models.35

Simulation Description

This paper builds on previous developments for simulating OpNav. In References 36, 37, the au-
thors develop a open-source simulation that allows for fast, close-loop OpNav scenario simulation.
The architecture harnesses two main components: a high-fidelity, faster than real-time, astrodynam-
ics simulation framework Basilisk;38, 39 and a sister software package — Vizard40 — to dynamically
visualize the simulation environment.37

The scenario simulates a spacecraft on an elliptical orbit around Mars as shown in Figure 2.
The conditions are designed to allow for variation in the apparent size of the planet. This section
specifies the simulation parameters as well as the flight-software algorithms used.

Figure 2: OpNav on Mars Orbit

The simulation uses SPICE∗ data, where the simulation begins on December 12th at 22:00 (GMT)
2019. Given the initial conditions of the spacecraft in orbit — seen in Tables 1 and 2 — Mars first
appears as a waxing crescent and as the spacecraft reaches apoapse Mars becomes full. Near the
end of the simulation Mars begins to go through a waning crescent phase. This allows the FSW
algorithms to be tested along a wide variety of lighting conditions and planet sizes.

Table 1: Spacecraft Initial States

σBN
[
0 0 0

]T
ωBN [rad/s]

[
0 0 0

]T
Orbital Elements (18000km, 0.6, 10◦

(a, e, i,Ω, ω, f ) 25◦, 190◦, 80◦)

∗naif.jpl.nasa.gov/naif/
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Table 2: Camera Parameters

σCB
[
0 0 0

]T
BrCB[m]

[
0 0.2 0.2

]T
Resolution (pixels)

[
512 512

]T
Sensor Size (mm)

[
10 10

]T
Field of View (◦)

[
55 55

]T
The simulation modules assigned to modeling the spacecraft dynamics and environment are de-

scribed in Table 3. These modules simulate spacecraft attitude gyroscopics and gravity,41 eclipse,
reaction wheels,42 and star trackers. Eclipsing is also modeled: this usually creates a halt in the
spacecraft measurements. In a fully coupled Attitude-OD simulation this means the spacecraft en-
ters a search mode, which intends to allow for the modeling of a fully independent spacecraft. In
this scenario, a rough pointing to Mars can be accomplished even with inaccurate knowledge of the
spacecraft position. Therefore, in order to focus on the OD solution, the spacecraft goes through a
3 minute guided pointing mode before starting to navigate and point using OpNav.

Table 3: Simulation Parameters

Simulation Modules Instantiated Necessary parameters at initialization
Spacecraft Hub Inertia [I] = diag(900, 800, 600) kg·m2, mass M = 750kg

Gravity Effector/Eclipse December 12th 2019 at 18:00:00.0 (Z)
µmars = 4.28284 · 104km3/s2, µearth = 0.3986 · 106km3/s2,
µjup = 1.26686 · 108km3/s2, µsun = 0.327124 · 1011km3/s2

Simple Navigation Star Tracker Attitude error σatt = 1/3600◦

Rate error σrate = 5 · 10−5◦/s
Reaction Wheel Effector 4 Honeywell HR16 Wheels

Wheel orientations Elevation Angles (el): 40◦

Azimuths angles (az): 45◦, 135◦, 225◦, 315◦

Pos in B [m]:
[
0.8, 0.8, 1.79070

]T [
0.8,−0.8, 1.79070

]T[
−0.8,−0.8, 1.79070

]T [−0.8, 0.8, 1.79070
]T

Table 3 defines the spin axes of the wheels43 in the body frame through the elevation and azimuth
angles with the equation:

Bĝs =
[
cos(el)cos(az) cos(el)sin(az) sin(el)

]T (2)

More specific information on the wheel specifications are available on Honeywell documents∗.

Beyond the pure simulation modules, the simulation also implements several FSW algorithms.
These are all developed in C for speed, and compatibility with heritage FSW. The imaging modules
encompass the OpNav raw measurements (limbs and circles) as well as the measurement models to
provide spacecraft position. Table 4 shows the modules implemented for centroid-based pointing
guidance,37 OD, and control using MRP-Feedback seen in Example 8.14 of Reference 43.

∗aerospace.honeywell.com
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Table 4: Flight Software Pointing and Orbit Determination

Flight Software Modules Instantiated Necessary parameters at initialization
OpNav Point minAngle = 0.001◦, timeOut = 100s

ωsearch = [0.06, 0.0,−0.06]◦/s, Chc = [0, 0, 1]m
relativeOD α = 0.02, β = 2, κ = 0, noiseSF = 5

rerror = [10, 10,−10]km
rerror = [0.1,−0.01, 0.01]km/s

MRP Feedback RW K = 3.5 , P =30 (no integral feedback)
RW motor Torque Control axes are B

[
b1, b2, b3

]

Training Data

As stated in the introduction, the difficulty with using CNNs for OpNav lies primarily in the data
for training. There needs to be an easy way to generate large quantities of realistic training data, and
provide a test for the fully integrated algorithm. The simulation used throughout this paper provides
the ability to do so with a large control over the noise of the data and the camera parameters.

Table 5: Orbital Data Dispersions

Parameter Dispersion
Semi-Major Axis (km) N [20, 000, 3, 000]

Eccentricity U [0.1, 0.6]
Inclination (◦) U [−80, 80]

True Anomaly (◦) U [0, 359]
RAAN (◦) U [−40, 40]

Off-pointing σ = [U [−0.05, 0.05],U [−0.05, 0.05],U [−0.05, 0.05]]

The dispersions used on the spacecraft orbit and position of the planet on the camera plane are
given in Table 5. These cover a wide variety of orbits with inclinations nearly reaching from pole
to pole and eccentricities going up to 0.6 to allow for many images to be generated in each episode.
Each run therefore generates one hundred images according to the random generation of the orbit
and position of the planet on the camera.

Depending on the goal, it is possible to vary camera parameters within the training set randomly
as well as all simulation parameters. In the first iteration, the training data did not contain any noise
and only dispersed the orbit of the spacecraft as well as the position of the planet on the camera
frame.

Figure 3 shows the variety of images that the neural network has to train on. The selected images
display some of the 90,000 images that were produced. The truth values for the circles are found by
using the inverse transform used for OpNav in previous chapters. The images illustrate the variety
of perspectives that can be achieved and the ease with which the data can be generated. It is also
important to note that although Mars was chosen as a target, Vizard easily allows for other planets
or bodies to be added instead.
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Figure 3: Samples from the CNN training data

NEURAL NETWORK RESULTS

Preliminary Network Evaluation

Once trained the neural network can be tested on a subset of the data (10% isolated into the
validation set) that is kept aside. Some of those results are seen in Figure 4. The trained CNN,
although a first cut implementation, displays some positive results. Some of the images display
very dim if not undetectable limbs to the eye, yet the CNN often produces very accurate and precise
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estimates. If no information is in the image, the algorithm guesses the center is in the middle of the
sensor and provides a radius roughly equal to half of the image width. This shows that the CNN has
learned a bias to the center and mean radius, for which the regression just adds and subtracts from
to create the precise localization of the planet.

Figure 4: Trained CNN evaluated on new images

Figure 4 shows how fast the CNN was able to learn given the relatively small training dataset.
Some limitations in the data set do prevent strong generalization at the moment and will be improved
upon. Before flying such an algorithm, it would be key to test it on real images or images with the
instrument hardware in the loop. At the current stage of development such results are not available
but in progress.
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Figure 5: CNN loss during training

Figure 5 shows the total loss during training of the CNN in squared pixels over all episodes. The
training was performed by splitting the images in 40 episodes each containing 5500 images. The
plot shows the steady decline of the loss on the validation data over the episodes, as is desirable. An
ideal plot would be monotone decreasing which, outside a few exceptions, is pictured.

Integration and First Navigation Results

Once the CNN is trained in Python using the generated images, it can be incorporated as a
Basilisk module through the OpenCV DNN library. This allows to load a trained network which
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has been exported in the ONNX format, and read in an image to be processed from the simulated
sensor. The process is implemented in the centerRadiusCNN module found in Basilisk under
fswAlgorithms/imageProcessing.
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Figure 6: Circles found by the CNN

Results from a simulation run with parameters in Tables 1, 3, and 4 are shown in Figure 6. The
results are similar to Hough Cirlces seen in previous work. All percentages are computed as the
norm of the difference between the estimate and the truth, normalized by the truth norm, multiplied
by 100. Since the neural network does not output un uncertainty metric, the values are chosen
empirically and conservatively:

[RCNN] =

10 0 0
0 10 0
0 0 10

 (3)

When integrated into a full OpNav stack, the CNN performs well overall. This is seen in Fig-
ure 7 as the filter output is of the same order of magnitude as the other methods. The network does
show some varying biases that are not akin to those of the other methods. Indeed the measurements
seen in subfigure 7a show a large oscillation on the range which does not match the lighting condi-
tions affects seen by Hough or Canny transforms. This indicates that although the center finding is
successful, the radius of the planet is not well matched.

Enhancing Training and Results

The results presented encouraged more training in an environment that allows for more gener-
alization: done through the addition of image corruptions. By training on a new set of data with
imperfect images, the neural network can be expected to better generalize and extract more pertinent
features for center and radius finding.
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Figure 7: Measurements and State-Error Covariances for CNN

Table 6: Orbital Monte-Carlo Dispersions

Parameter Dispersion
Semi-Major Axis (km) N [18, 000, 1, 000]

Eccentricity U [0.1, 0.5]
Inclination (◦) U [−40, 40]

True Anomaly (◦) U [−90, 90]
Off-pointing σ = [U [−0.01, 0.01],U [−0.01, 0.01],U [−0.01, 0.01]]

Gaussian Blur U [0, 3]
Hot-Dead Pixels U [0, 3]

Cosmic Rays U [0.5, 2]
Blur U [1, 5]

Table 6 shows the new set of dispersions used to generate data. Although very similar to the
previous set seen in Table 5, these values constrain the images to be closer to the reference orbit.
The data is therefore constrained to a smaller torus surrounding the planet, notably by extending
less towards the polar orbits. Furthermore, the camera is pointed more directly at the planet which
helps to generate more centered data as the pointing scheme will naturally provide much more of
these images. This data set therefore aims to target the weaknesses of the previous iteration as it
builds on the already working prior.

Most of all, the new data set adds corruptions and noise to the images using previously imple-
mented models.36 This is done with the aim of enhancing the data and forcing MarsNet to learn
useful features rather than overfitting certain components of the image. Having noise and blur also
provides more signal in each image to aid optimization, hence partly solving the extremely sparse
data problem of space imaging.

The new set of data improved the loss during training greatly. Staring from the prior of the
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previously trained net, the loss continued to decrease monotonously and ending at nearly half of
the loss of the previous iteration as seen in Figure 8. Due to greater performance, the covariance
attributed to the network was updated to be [RCNN] = 5[I]3×3.

0 20 40 60 80

Episode

10

15

20

25

T
o

ta
l

L
o

ss
(p

x2
)

Figure 8: CNN loss with additional training
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Figure 9: Measurements and State-Error Covariances for Enhanced CNN

A few important novelties are interesting with the results for Figure 9. With regard to robustness,
the newly trained CNN produces the same results with noisy images or clean images. This stresses
the fact that training under corrupt conditions has aided the weights to feature detection to converge
towards the key components of the image: the limb and lit disk, as well as specifically removing
noise from the image.

One of the novelties of using Hough Circles was moving away from ellipses while centering the
image in order to benefit from the measurement robustness. The downside, nonetheless, is still that
camera distortions naturally falsify the circle positions. The MarsNet trained in this section does not
suffer this default: the network trains over expected circle position given the geometry and hence
learns the camera perturbations and distortions as a part of it’s training. Finally, when looking at
fault detection, it became clear that comparing methods with different strengths and weaknesses
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would help detect anomalies: if a first method works well with crescents and poorly with full disks
while the second performs inversely well, combining them will output reliable faults and results.
The CNN trained here shows in Figure 9a that the lighting conditions do not affect performance as
it did with other methods, hence providing good supporting data in a multi-measurement paradigm.

The one caveat is that the speed of the network evaluation is one order of magnitude slower on
general purpose compute hardware: roughly 100× faster than real-time instead of 1000×. This
can be improved by decreasing the size of the network through training a smaller network to match
this function, though it is not prohibitive for on-board use as is. However, by utilizing a hardware
accelerator such as a graphics accelerator or a Field Programmable Gate Array (FPGA), one could
easily perform these computations quickly and power efficiently. Furthermore, the use of half-
precision floating point or even 8-bit integer arithmetic would enhance speed, use less power, and
theoretically show nearly identical regression performance.44

COMPARISON TO PREVIOUS METHODS

This section showcases the possible results for autonomous OpNav with a spacecraft taking nu-
merous pictures: 1 image per minute. This approach also enables coupled pointing on a wide range
of orbits and permits less accurate methods to perform despite noisy measurements. All of the re-
sults shown have the spacecraft perform both duties, given initial conditions that provide the planet
in the field of view. Reference 36 develops two methods: Non-Iterative Horizon through Singular
Value Decomposition (NIH-SVD), and Hough Cirlces. The results show that in the developed simu-
lation, Hough Circles45, 46 performed similarly to NIH-SVD47 on clean images despite fitting circles
rather than ellipses. When noise and artifacts are added to the images, Hough Circles proves to be
more robust.

Given the improved performance once again, the results are now shown with a covariance of
[RCNN] = 2.5[I]3×3. It is important to note that the uncertainty metric of the CNNs is an ongoing
weakness that requires future work and analysis.

Table 7: Noise Parameters in Simulation

Parameter Value
Gaussian Blur 2

Hot-Dead Pixels 0.5
Cosmic Rays 1

Blur 3

Figures 10a and 10b show the filter results for the Hough Circle method given the initial con-
ditions in Tables 1 and 3 with the noise parameters of Table 7. The position covariance oscillates
around 300km (∼ 2%) error and 0.05km/s (∼ 9%) error on velocity, with slightly better perfor-
mance in the out-of-plane direction. The state estimates have errors in percentages below 1% on
position and below 3% on velocity.

Although Hough Cirlces performs well given the noise added to the images, Figure 10 shows the
CNN performing better than these previous implemented methods under noise. Figures 10c and 10d
show the errors within 1% for position and 2% for velocity. The covariances are also lesser than
previously notably on the velocity components. Root-Mean-Squared (RMS) errors are one measure
of this overall better performance. Indeed, the CNN-based navigation provides RMS errors on
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Figure 10: Relative Errors — Hough Cirlces

the position of 0.72% and 1.73% on the velocity. These numbers are a considerable increase on the
Hough-based method which shows 1.60% and 3.8% errors on the position and velocity respectively.
This outlines an overall better filter performance than the previous MarsNet iteration, and better than
both other methods studied.

CONCLUSIONS

The developments CNNs for spacecraft autonomy and enhancing image processing is presented.
CNNs are integrated in a full OpNav FSW stack. By training under different camera models and
orbits, the CNN has proven to outperform all other methods and has provided a new and robust
way of doing image processing. Validation using real images as well as further training are still
needed, and different network architectures can still be explored. The growing field of ML is being
increasingly applied to aerospace, these results tie in to that body of work.

Two possible directions can be taken to keep training these CNNs, the first being to model the
camera more accurately in simulation and train a network to capture its defects as well as possible,
the second would aim to use a large set of cameras and generalize the circle fitting as much as
possible. Both methods show promise for future on-board applications.
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