1st Annual RPI Workshop on Image-Based Modeling and Navigation for Space Applications
Rensselaer Polytechnic Institute, Troy, NY—June 4-5, 2018

SOFTWARE ARCHITECTURE FOR CLOSED-LOOP
AUTONOMOUS OPTICAL NAVIGATION SCENARIOS

Thibaud Teil; Hanspeter Schaubf

This paper develops an optical navigation software architecture in order to
realistically develop, run, and test novel autonomous navigation methods. This
architecture harnesses two main components: a high-fidelity, faster than real-time,
astrodynamics simulation framework; and a sister software package to dynami-
cally visualize the simulation environment. Maneuvers such as fly-bys and orbit
insertions occur over short periods of time and must occur autonomously. Yet,
there are no open-source software packages that provide fully coupled spacecraft
dynamics and Flight Software (FSW) capabilities, especially for Optical Naviga-
tion (OpNav) mission scenarios. The presented tool consists of the Basilisk astro-
dynamics framework interfacing with a Unity-based visualization that provides a
synthetic image stream of a camera sensor. This allows guidance navigation and
control (GNC) algorithms to be run in a closed-loop format. The optical measure-
ments are read and processed in the simulation, and used for control and decision
making. This Unity-based software has the ability to import shape-models, planet
maps, and change into an instrument point-of-view. Paired with open-source im-
age processing libraries, these combined components have provided all the nec-
essary pieces to fully simulate autonomous, closed-loop, OpNav scenarios. This
allows for progress in the autonomy sector, as full-fledged Flight Software could
be tested in a real flight context. Furthermore, this increases the reliability of GNC
methods, allowing for sufficient state estimation with minimal instruments. This
paper presents the Basilisk and Unity engine interface.

INTRODUCTION AND MOTIVATION

As future missions ambitiously take us farther into the Solar System, there will be a need for au-
tonomous operations with minimal Earth contact. Furthermore, renewed interest in sending humans
beyond low Earth orbit calls for enhanced safety, for which autonomy from ground teams plays a
key role in case of communication failures. Whether it be for robotic exploration of the solar sys-
tem, manned spaceflight, or small satellite development, autonomy opens the door to new mission
concepts.

One key enabler for autonomy is on-board, optical navigation. This paper outlines a novel frame-
work which seeks to combine navigation algorithms within a simulated environment. These al-
gorithms require this reliable test-bed to be developed and improved. This software package will
provide that capability in order to open new avenues in spacecraft autonomy. This work outlines the
architectural decisions that were made and the tools that are being used to optimize functionality.

*Graduate Student, Aerospace Engineering Sciences, University of Colorado Boulder.
fGlenn L. Murphy Chair of Engineering, Department of Aerospace Engineering Sciences, University of Colorado, 431
UCB, Colorado Center for Astrodynamics Research, Boulder, CO 80309-0431. AAS Fellow.

8

Figure 1. Mars Orbit Insertion Scenario

OpNav simulations have in the past focused either on the image processing component! , or on
the estimation component,”? or on using mission data.* These provide valuable insight on both
many facets of the problem. Yet no common open-source software package exists, which provides
modularity and repeatability all the while bringing together contributions from many actors. Fur-
thermore, current simulations do not couple the spacecraft dynamics and control into the OpNav
measurements.” Camera models are linked to the image processing and filter performances,® but
this does not loop back to the spacecraft control algorithms.

One major scenario of motivation is an orbit entry maneuver. This maneuver occurs in dangerous
proximity to the body of interest, during a short time span (often too short for human intervention),
and is paramount to mission success. A spacecraft’s sole use of optical measurements provides
assurance of mission success, all the while showcasing the OpNav chain linked with attitude control
and trajectory modifications. Figure 1 shows a Mars Orbit Insertion performed in Basilisk.” In future
work, this will be the baseline test for the software architecture.

In the future, this software will also help develop many other scenarios. For entry, decent, and
landing (EDL) and asteroid missions safety, these developments could add an important element
of reliability by providing a testbed for autonomy and quantifying performance. SLAM and cross-
correlation methods could also be implemented and tested in a realistic spacecraft environment.
These algorithms are currently being developed for these purposes notably within NASA and ESA.°

SOFTWARE ARCHITECTURE

In this section, the components of the software framework are described.

Basilisk and its Visualization Software

Basilisk is an open-source astrodynamics framework being developed by the University of Col-
orado Autonomous Vehicle Systems (AVS) lab and the Laboratory for Atmospheric and Space

FSW Algs (C) SC Models (C++)

Navigation Message Dynamics
Passing
Guidance Interface Kinematics
Controls N — <1~ Environment

SWIG-Python Interface Layer

Python Scripts
Scenario Setup & Modules Initialization & Results Logging

Figure 2. The Basilisk architecture’-!

Physics (LASP). Through high-fidelity, faster-than-real-time dynamics, it allows one to simulate
spacecrafts in realistic flight conditions. The inherent speed of the framework and its multithreaded
Monte-Carlo capability provides high-end analysis tools. In this simulation, FSW and spacecraft
models are separated. By communicating through the Message Passing Interface (MPI), blocks of
code can be added and contribute to the simulation without necessary knowledge of other blocks.
This interface allows for closed loop control and simulation.

Alongside this effort, a visualization software® package receives Basilisk state messages and dy-
namically displays these states using the Unity* rendering engine. This companion software has the
ability to import shape-models and planet maps and display and instrument point-of-view. Paired
with open-source image processing libraries, these combined components provide all the necessary
pieces to fully simulate autonomous, closed-loop, OpNav scenarios. This research develops the
software architecture that allows to combine these components and demonstrates its capabilities.
The open-source nature of the project is critical as it allows for any user to contribute to the project,
and therefore centralizes progress in astrodynamics.

Basilisk is a highly modular simulation framework in which all modules exchange data via mes-
sages. This modularity comes from the fact that Basilisk modules publish and subscribe without
requiring knowledge of other existing modules. The separation of FSW and spacecraft models
managed via the MPI naturally welcomes another actor: the Visualization. The interface between
FSW and spacecraft models allow for closed loop simulation and control. In the same way, the com-
bined interfaces between FSW, spacecraft models, and the Visualization can allow for closed-loop
OpNav guidance navigation and control.

Real-time interfacing

The software architecture allows the Visualization to capture information from the spacecraft’s
environment and communicate it to Basilisk while running. In turn, Basilisk is able to process this
information and use it for decision making and for navigation. The spacecraft’s attitude and position
coupled with the environment changes are critical to a realistic simulation.

*“https://unity3d.com

Black Lion
Central Controller
) ()
Basilisk Visualization
(C/C++/Python) (C#)

- J

Figure 3. Interaction between Basilisk, Black Lion, and the Visualization

Implementation of the interface produces two challenges. The first is making two heterogenous
software entities communicate and the second is to have the complete simulation execute faster than
real time. Each software package is written in different programming languages, wrap their internal
data using different structures or packet types, and execute at different speeds. The challenge is to
integrate these heterogenous components while maintaining synchronous operation of the modules.
The Black Lion'®!" package developed in the AVS lab is middleware that ensures this proper in-
terfacing between nodes. In this case, the nodes or applications are Basilisk and the Visualization.
Black Lion ensures:

e The transport of binary data via a transport layer (TCP).

e The marshaling (or translation) of binary data. Each node must know how to convert the
received bytes into structures that can be managed internally.

e The synchronization of nodes to keep all the nodes in lock-step during the simulation run.

The central controller acts as a master in the synchronization of the nodes, and a broker in the
data exchanges.

The last component is the translation layer (or marshaling) of the data. For that, Google Pro-
tobuffers® are used. They provide a platform and language agnostic translation layer library to
facilitate marshaling and unmarshaling of data between the two simulation applications. By creat-
ing these Protobuffer structures, both the C++ code in Basilisk and the C# code in Unity can read in
and write out the necessary content.

Figure 3 shows the interaction between the major nodes. Black Lion allows for the communi-
cation to occur correctly and in a synchronized manner. Figure 4 then shows the details of the
interfaces. As stated previously, Basilisk modules write and subscribe to messages via the Message
Passing Interface without any knowledge of other existing modules. Basilisk contains a C++ module
which reads the required Basilisk messages, writes them as protobuffers, and gives them to Black
Lion (symbolized by the bold black double arrow). The Visualization interface must then unpack
the protobuffers in order for the game controller to use the data.

*https://developers.google.com/protocol-buffers/

Spacecraft Visualization
Models (C#)

Message viz - "> Game Controller
Passing <— FS.W Interface
Interface Algorithms (C#)

Viz Interface Camera Planets

(C++) ﬁ Spacecraft

Figure 4. Different software interfaces

These design choices reflect the desire for a modular yet robust architecture. The use of Google
Protobuffers allows for platform independent communication; Unity provides a user friendly and
vast community for environment development; Black Lion is the middleware that connects and
applications and synchronizes them. These tools provide the building blocks for the framework
being implemented.

OPTICAL NAVIGATION COMPONENTS

 S/C Models : FSW
)| Image Navigation
Processing

&ontrol

A

| camera |:
‘| Model |:

Message Passing Interface

Unity Un|ty
Camera Spacecraft

Figure 5. Information flow between the Visualization and the Simulation

Figure 5 shows the closed loop data flow between all the interfaces. As an image is snapped by
the Visualization (or Unity) camera, it is written into a protobuffer and passed on to the simulation
(red arrow). The camera model then corrupts the image, before the image processing module can
extract features from it. These features are then digestible by the navigation filters. With updated
state estimates, the control algorithms can therefore correct for errors. This reading and writing
of messages is symbolized by blue arrows for the simulation, and green arrows for the FSW. As
the spacecraft states and environment dynamics change per the control laws, the Visualization is
notified via a protobuffer message, which can in turn change the images snapped by the on-board

camera.

Unity can save images to an external file. The message that it will provide to Basilisk will only
provide: the time tag for the image, the camera head that it corresponds to, and the location of the
image. Hence the camera model will read this message and have all the information required to
retrieve the pixel data, and corrupt it. This prevents large data flows, by never creating messages
with full image data.

Camera models and Navigation Filters

In order to realistically model OpNav scenarios, the images generated by the visualization soft-
ware must be as realistic as possible. Unity provides a large set of lighting libraries that can simulate
self-shadowing and model lighting on imported shape-models. This allows for the generation of
complex lighting scenes. By extension, it allows for the reading in of partially lit planets, showing
crescent lighting. This lighting is seen in the Visualization between Figures 6 and 7. Many more
lighting models exist within Unity if more realistic functionality were needed.

These images are written out in their highest-definition form (Figure 6), and will be read by a
camera model simulator. Depending on modifiable camera specifications (field of view, pixel size,
dynamic range), the image can be corrupted. Furthermore, a blurred filter can be added as well to
simulate spacecraft jitter or any other noise that could be desirable to model.

In order to facilitate this development, OpenCV* was chosen as a computer vision library. This
will save development time and guaranteeing robustness through widely tested functions. The cam-
era simulator (camera model) can then write its message which is read in by the image processing
module in use. Depending on the OpNav scenario, this could be a centroid tracking scenario, or
a feature tracking scenario. These options would lead to different output messages, which in turn
would be picked up by the navigation filter.

The information taken out of the visualization yields navigation data. Using the planet center
direction, and with the knowledge of the ephemeris of said planet, both orbit determination and
attitude control can be accomplished. It’s important to note that observability can be difficult to
achieve in certain configurations. For instance, the attitude problem suffers from an unobservable
rate around the planet-center direction, as it does for sun heading estimation.'> Similarly, as the
spacecraft is still far from the celestial body of interest, it will only appear as a point on pixelized
image. Only as it gets progressively closer will the planet’s size become apparent, and the range
from the object becomes observable. All these estimation challenges are fundamental to accu-
rate GNC. Nonetheless, Basilisk already contains several implementations of filters, ranging from
square-root Unscented Kalman Filters, to Extended Kalman Filters.

Vision-based navigation methods

Several optical navigation methods exist. Among these are star horizon,'? centroid and apparent

diameter,'# star occultation,!® and landmark tracking.’ Each of these have their specific application
scenarios depending on the object they are required to track.

In the context of the our software implementation for OpNav, a simple navigation method is de-
sired for initial development. Centroid and apparent diameter measurements, for instance, find the

*https://opencv.org

inertial+Z Camera

Figure 6. Spacecraft observing Mars in Visualization

(O] A = Collab - Account _~ Layers - | {layout
€ Game -
| Display 12| | Free Aspect 2| Scale Qe 2% Maximize On Play | Mute Audio | Stats | Gizmos |~

@ inertial+Y Cam
inertial+Z Camera

Figure 7. Camera views in the Visualization window

limb of a body and use the knowledge of its actual size and shape. By extracting direction and dis-
tance, the spacecraft’s location relative to the body are observable.® For further development, using
just a star tracker, the shape of the partially illuminated moon allows us to estimate the direction vec-
tor to the sun.'® With the knowledge of the body in sight, its ephemeris, and its size, determination
of both the spacecraft’s orbit and attitude can be achieved. These methods require minimal image
processing power, are relatively fast to implement, and provide a wealth of extractable information
from images. The use of OpenCV has helped accelerate module design. For these reasons they will
be the baseline methods used in simulating autonomous Optical Navigation. In the Visualization
(Figure 7) planets can appear in the camera window with all of the background star field.

However, other OpNav methods yield better navigation results. Measurements derived from land-
mark observations are to be processed onboard the spacecraft in an Extended Kalman Filter (EKF).>
Uniform distribution of points via a “icosahedron pixelization” method,'” amongst other feature
tracking methods provide promising results. This comes at a computation cost. The real-time com-
ponent of this framework creates a realistic environment to quantify and run more computationally
extensive algorithms.

This software framework allows for rapid and high-fidelity testing, and can centralize progress
from other fields within an astrodynamics framework. In the aerospace fields, this has been seen
with ORB-SLAM development!®1° and other cross-correlation methods.>?® These hold great
promise for small body autonomous orbiting and have already proven to be useful on missions
such as Rosetta. Further progress for these methods demands a high-fidelity simulation environ-
ment. Although advanced goals, this architecture allows for these developments. With exterior
work on shape models construction, the goal is to centralize progress for small body identification
and navigation within the same simulation. The Basilisk Visualization also allows one to upload
shape models for any celestial body. A shape model of Vesta was added to the visualization in
Figure 8, displaying the images made available by the simulation. This provides the opportunity
to train and test shape model reconstruction methods by using fully coupled spacecraft attitude and
orbital dynamics.

In conclusion, centroid tracking and apparent diameter measurements are the baseline OpNav
methods in the design. In parallel, developments for feature tracking will be added in along with
more image processing capabilities. The scene will be set for future improvements, notably using
SLAM methods for small body navigation.

A TESTBED FOR NOVEL NAVIGATION METHODS

As seen in the previous subsection, this software’s modularity and configurability can be applied
to a wealth of missions. On a more fundamental level, it also changes the tools that can be used for
mission design.

On-board Monte Carlo Analysis

Due to the highly non-linear, multi-parameter, and uncertain scenarios, Monte-Carlo analysis has
become the de-facto method to prove a spacecraft design. While it provides invaluable information
on the system, it is suboptimal when it comes to speed. Novel, smarter Monte-Carlo methods are
in development and Basilisk provides the ability to run fast, parallelized simulation runs. If coupled
with better Monte-Carlo techniques and better on-board processors, this could lead to the possibility
of on-board Monte-Carlos. The spacecraft could therefore predict a dangerous decision or decide

Figure 8. Vesta shape model uploaded into the Visualization

to pursue a maneuver that is predicted to be nominal given initial covariances and uncertainties.

Machine Learning

Machine learning has recently revolutionized data processing and handling. Reinforced learning
allows for fault detection, and spacecraft operating mode changes in an autonomous way. This
does require large amounts of training data, which is not a common resource in the aerospace field.
This is where the OpNav simulation framework could come into play. Harnessing its speed and
high-fidelity, Bayesian nets or neural nets could be trained over a large set of simulations. These
trained nets could then be tested on unknown scenarios to see how they perform, notably in the face
of anomaly. This is currently being developed within the AVS lab, along with a growing machine
learning expertise.

Reinforcement Learning can also be paired with error classification. An agent can be trained in
scenarios where sun-sensors, camera head units, wheels, or thrusters fail. This can lead to all-in-
one fault detection and navigation algorithms where a learner will be resilient to faults and push
autonomy forward.

CONCLUSIONS

This software architecture shall provide a testbed for modern Optical Navigation and novel nav-
igation methods. Through the closed loop, coupled interaction between the simulation and the
visualization, scenarios can provide high-fidelity data at fast rates. Amongst other improvements,
future work in this architecture will open the door to Machine Learning techniques, and Monte
Carlo analysis.

This framework hopes to push autonomy, notably for fly-by and orbit insertion maneuvers. Us-
ing a simulated camera, optical navigation methods, and the closed loop Visualization-Simulation

interaction, these scenarios can be tested using solely OpNav. In parallel to hardware testing and ex-
periments, this software package will help push the envelope when implementing SLAM and shape
reconstruction techniques as well.

ACKNOWLEDGMENT

The authors would like to acknowledge Mar Cols Margenet, Patrick Kenneally, and Jennifer
Wood for Black Lion and Unity development.

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]
(71

(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]

[20]

S. Li, “Image Processing Algorithms For Deep-Space Autonomous Optical Navigation,” The Journal
of Navigation, Vol. 66, No. 605-623, 2013.

J. Christian, “An On-Board Image Processing Algorithm for a Spacecraft Optical Navigation Sensor
System,” AIAA Space Conference and Exposition, Anaheim, CA, AIAA, 2010.

J. Christian, “Accurate Planetary Limb Localization for Image-Based Spacecraft Navigation,” Journal
of Spacecraft and Rockets, Vol. Vol. 54, No. No. 3, 2017, pp. pp 708-730.

M. Dor and P. Tsiotras, ORB-SLAM Applied to Spacecraft Non-Cooperative Rendezvous. American
Institute of Aeronautics and Astronautics, 2018/05/21 2018, doi:10.2514/6.2018-1963.

A. Liounis, “Autonomous Navigation System Performance in the Earth-Moon System,” AIAA Space
Conference and Exposition, San Diego, CA, AIAA, September 2013.

J. Christian, “Optical Navigation Using Planet’s Centroid and Apparent Diameter in Image,” Journal of
guidance, control, and dynamics, Vol. 38, No. 2, 2015.

J. Alcorn and H. Schaub, “Simulating Attitude Actuation Options Using the Basilisk Astrodynamics
Software Architecture,” 67th International Astronautical Congress, Guadalajara, Mexico, Sept. 26-30
2016.

J. Wood, M. C. Margenet, P. Kenneally, H. Schaub, and S. Piggott, “Flexible Basilisk Astrodynamics
Visualization Software Using the Unity Rendering Engine,” AAS Guidance and Control Conference,
Breckenridge, CO, February 2—7 2018.

J. M. Carson, C. Seubert, F. Amzajerdian, C. Bergh, A. Kourchians, C. Restrepo, C. Y. Villalpando,
T. O’Neal, E. A. Robertson, D. F. Pierrottet, G. D. Hines, and R. Garcia, COBALT: Development of
a Platform to Flight Test Lander GN&C Technologies on Suborbital Rockets. American Institute of
Aeronautics and Astronautics, 2018/01/28 2017, doi:10.2514/6.2017-1496.

M. C. Margenet, P. Kenneally, and H. Schaub, “Software Simulator for Heterogeneous Spacecraft and
Mission Components,” AAS Guidance and Control Conference, Breckenridge, CO, February 2—7 2018.
M. Cols Margenet, P. W. Kenneally, H. Schaub, and S. Piggott, “Simulation Of Heterogeneous Space-
craft And Mission Components Through The Black Lion Framework,” John L. Junkins Dynamical
Systems Symposium, College Station, TX, May 20-21 2018. No. 7.

T. Teil and H. Schaub, “Comparing Coarse Sun Sensor Based Sequential Sun-Heading Filters,” AAS
Guidance and Control Conference, Breckenridge, CO, February 2—7 2018.

W. Owen, “Methods of Optical Navigation,” 2011.

J. Christian, “Onboard Image-Processing Algorithm for a Spacecraft Optical Navigation Sensor Sys-
tem,” Journal of spacecraft and rockets, Vol. 49, No. 2, 2012.

M. Psiaki, “Autonomous Lunar Orbit Determination using Star Occultation Measurements,” Guidance,
Navigation and Control Conference and Exhibit, Hilton Head, SC, ATAA, August 2007.

J. Enright, “Moon-Tracking Modes for Star Trackers,” Journal of guidance, control, and dynamics,
Vol. 22, No. 1, 2010.

M. Tegmark, “An Icosahedron-based Method for Pixelizing the Celestial Sphere,” Vol. 470, The Astro-
physical Journal Letters, 1996, pp. L81-L84.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardés, “ORB-SLAM: A Versatile and Accurate Monocular
SLAM System,” IEEE Transactions on Robotics, Vol. 31, Oct 2015, pp. 1147 — 1163.

R. Mur-Artal and J. D. Tardés, “ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo
and RGB-D Cameras,” CoRR, Vol. abs/1610.06475, 2016.

A. M. S. Martin, D. S. Bayard, D. T. Conway, M. Mandic, and E. S. Bailey, “A Minimal state aug-
mentation algorithm for vision-based navigation without using mapped landmarks,” GNC 2017: 10th
International ESA Conference on GNC Systems, Vol. 10, Salzburg, Austria, May 2017.

10

	Introduction and Motivation
	Software Architecture
	Basilisk and its Visualization Software
	Real-time interfacing

	Optical Navigation Components
	A testbed for novel navigation methods
	On-board Monte Carlo Analysis
	Machine Learning

	Conclusions
	Acknowledgment

