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Abstract—In order to develop robust relative position and

orientation control algorithms for Coulomb charge control of

spacecraft, accurate but computationally efficient electrostatic

models are necessary. The Multi Sphere Model (MSM) predicts

the interactions of a charged spacecraft using multiple conducting

spheres. In order to improve the accuracy of this model further,

a new method is proposed whereby equal radius spheres are

placed uniformly on the surface of the spacecraft. The radius

is chosen such that the self-capacitance of the MSM is matched

to a numerical solution for the conducing shape. The accuracy

of this method is verified using a simple system with two

spheres, whereby its ability to capture induced charge effects is

highlighted. Then, a cylinder-sphere system is analyzed using 105

spheres on the cylinder and 30 spheres on the sphere, providing

comparison with a previous three sphere volume populated model

for the cylinder. The surface populated model provides much

higher accuracy in forces and torques when the separation

distances are within 10 craft radii, but there is little improvement

outside this range. While the cylinder MSM with three spheres

provides force solutions an order of magnitude quicker than the

surface MSM method, the setup time for the surface populated

MSM is two orders of magnitude faster.

Index Terms—Coulomb charge control, electrostatic modeling

I. INTRODUCTION

A substantial research effort is in progress to determine the
feasibility of using Coulomb charge control for relative motion
control of nearby spacecraft. Using electron or ion emitters,
a spacecraft can accurately control its voltage up to 10s of
kV within milliseconds. If the proximity and charge on two
craft are sufficient to overcome the local plasma environment,
the resultant forces can be utilized to affect their relative
position.[1], [2], [3], [4], [5] In the realm of cooperative for-
mation flying missions, this technology provides a benefit over
thruster control in its power efficiency and lack of expendable
fuel or exhaust plumes. Furthermore, there are some exciting
non-cooperative applications for Coulomb charge control, such
as electrostatic tugs used to reorbit debris objects.[6], [7], [8]

The drawback that accompanies these benefits of elec-
trostatic actuation is a decrease in controllability. Only one
dimension of control is possible per spacecraft body while
the resultant electrostatic forces and torques are dictated by
the craft shapes, positions and orientations. Moreover, real
time knowledge of the exact electrostatic interactions is not
possible as there is no analytic solution to Poisson’s equation
for the potential fields surrounding generic geometries. There
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are various models that approximate the electrostatics of 3D
bodies, each presenting a compromise between accuracy and
computational cost, as seen in Figure 1. The highlighted model
is the subject of this manuscript, which attempts to bridge
the gap in accuracy between previous simplified models and
Finite Element Analysis (FEA) approaches, while keeping
computational costs low.
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Fig. 1. Comparison of various electrostatic models

The simplest approximation is to treat a spacecraft as a
prescribed point charge. This method is used in numerous
studies that analyze the relative motion dynamics of Coulomb
formations.[9], [10], [11], [12], [13], [14], [15] While the
execution of the point charge model is as simple as computing
Coulomb’s law, it results in a substantial approximation. In
actuality, it is not the charge but the voltage that can be
controlled on a spacecraft. The total electric charge is then
a function of the spacecraft geometry and external potential
fields, and is distributed asymmetrically across conducting
surface.

An increase in accuracy can be achieved by modeling
a spacecraft using an effective sphere with a radius that
best represents its electrostatic interaction.[16] When multiple
spacecraft are analyzed together, consideration of the Position
Dependent Capacitance (PDC) [17] improves knowledge of
the voltage to charge relationship throughout the system. One
drawback of this approach is that it does not capture the
induced charge effects that result from the redistribution of
charge within a body in case of small separation distances. For
two identical spheres, induced effects can be approximated by
certain analytic approaches, but these methods do not expand



to multiple or varying size spheres.

Another limitation of this Effective Sphere Method is its
inability to resolve electrostatic torques and non line-of-sight
forces that result from non-symmetric spacecraft bodies. This
is crucial when relative attitudes and small separation distances
on the order of the spacecraft dimensions are a consideration
in the mission scenario. The Multi Sphere Model (MSM),
as presented in Reference [18], is an approach that attempts
to resolve these shortcomings. A generic spacecraft shape is
modeled by a collection of conducting spheres. Computation is
limited to inverting an n⇥n matrix (where n is the number of
spheres in the system) to determine the charge on each sphere,
and forces and torques are subsequently predicted by summa-
tion of the contribution of each sphere by Coulomb’s law. This
allows for six degree of freedom electrostatic simulations of
relative spacecraft motion in real time, which is crucial for the
development of robust relative position and orientation control
algorithms in local space situational awareness applications.

At the most accurate end of the spectrum, FEA software
such as Ansoft’s Maxwell 3D c�,[19] creates a highly precise
but computationally expensive solution of the electrostatic
potential fields by solving Poisson’s equation on each finite
element in the entire 3D space, with boundary conditions
created from the spacecraft geometries and potentials. FEA
solvers are not capable of faster-than-realtime charged relative
motion simulations, and therefore do not provide analytical
insight into the dynamics and control of such scenarios. They
are, however, useful for creating truth solutions that can be
used to verify the lower order models of interest here.

The prior MSM scheme that attempt to populate the space-
craft volume with interior spheres is referred to as the Volume
MSM, or VMSM. Here a nonlinear fit is used to match the
forces and torques from a truth model as described above at
various separation distances and orientations. One drawback
of this VMSM approach is the necessity for an external shape
to generate forces and torques. Another limitation is that,
despite implementing symmetry arguments, the nonlinear fit
is not robust for increasing numbers of spheres, which is
desirable to capture the 3D and induced charge effects of more
intricate geometries at small separation distances. This paper
will investigate how to populate generic spacecraft shapes with
higher numbers of uniformly positioned spheres, placed on
the surface of the conducting body. This method is referred
to as the Surface MSM, or SMSM. There is a slightly higher
computational cost when computing forces and torques due to
the increase in size of the Position Dependent Capacitance ma-
trix, but the time necessary to set up the model is dramatically
decreased. In the end, this new method helps to bridge the gap
in accuracy between the original MSM and FEA approaches.
Meanwhile, none of the models discussed above are rendered
obsolete by the inclusion of a new approach, if the trade-offs
of computation time and accuracy are considered. Rather, the
new SMSM method provides a new tool for scenarios where
increased electrostatic force and torque modeling is critical for
single digit craft radii separation distances.

II. MULTI SPHERE MODEL METHODOLOGY REVIEW

In order to discuss the new method for populating spheres
on the surface of a spacecraft body, the general Multi Sphere
Model is reviewed. The novel SMSM research addresses how
the size and location of spheres are chosen. Once this is
accomplished, computing forces and torques on the bodies in
the system is equivalent to the original methodology proposed
in Reference [18]. A rigid spacecraft or space debris object is
modeled by a collection of spheres with fixed sizes and relative
positions, as shown in Figure 2. Satellite A is modeled by 4
spheres, while object B happens to be represented by a single
sphere.
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Fig. 2. Conceptual depiction of Multi Sphere Method

While the absolute electrostatic voltage is assumed to be
prescribed on a spacecraft, the Coulomb force between the
spheres depends on the charge that each holds. The voltage Vi

on a given sphere is a result of both the charge on that sphere
and the charges on its neighboring spheres. This relation is
given in Eq. (1), [17], [20] where Ri represents the radius
of the sphere in question and ri,j = rj � rj is the center-to-
center distance to each neighbor. The constant kc = 8.99⇥109

Nm2/C2 is Coulomb’s constant, and qi stands for the charge
on a given sphere.

Vi = kc
qi
Ri

+
mX

j=1,j 6=i

kc
qj
ri,j

(1)

The linear relations for each of the m = n + 1 spheres in
the system (n spheres in the MSM plus the external sphere)
can be combined in the matrix form of Eq. (2), where V =
[VA, VA, ..., VA, VB ]T and q = [q1, q2, ..., qn, qB ]T represent
matrix collections of the voltages and charges in the entire
system.

V = kc[CM ]�1q (2)

Note that VA is the prescribed voltage on all spheres in the
model while the external sphere is held at VB . The effects
of varying the voltage on different spheres within the model
have not been analyzed, but keeping the voltage constant is
logical since the modeled conducting spacecraft would be held
at uniform voltage. This approach also reduces the amount of
model parameters.



The inverse of the Position Dependent Capacitance (PDC)
matrix in Eq. (2), [CM ]�1, can be expanded as follows,
according to the nomenclature adopted in Figure 2, with
ri,B = d� ri:

[CM ]�1 =

2
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7777775
(3)

The next step is to solve for the array of charges q from
Eq. (2) by inverting this n + 1 size symmetric matrix, a
computation that becomes increasingly intensive when more
spheres are used in the model. Coulomb’s law can then
be implemented to calculate the linear force between each
charged sphere. Since the location of the spheres within the
modeled body are held fixed with respect to each other, their
equal and opposite contributions cancel. The total force F and
torque L about the origin O on body A due to external shape
B is then given by the following summations:

FO =kcqB

nX

i=1

qi
ri,B3

ri,B (4)

LO =kcqB

nX

i=1

qi
ri,B3

ri ⇥ ri,B (5)

While any origin can be chosen for body A, the force and
torque in Eqs. (4) and (5) are now defined from this reference
origin. If the object B is modeled by another MSM, the force
and torque relations contain double summations.

III. SURFACE POPULATION MOTIVATION

During previous developments, three spheres are used to
model a cylinder shape. While considering symmetry of the
original geometry, the size and position of each sphere is de-
termined by fitting to the numerically solved force and torque
values on the cylinder in the presence of a charged external
sphere. While this volume based sphere population works
well to predict the electrostatic interactions of the cylinder
shape, capturing the 3D and induced charge effects of more
intricate geometries at small separation distances will require a
model with more than three spheres. The MSM algorithm for
calculating forces and torques can handle models with large
numbers of spheres, but the nonlinear fitting schemes used to
optimize the sphere positions and sizes are not robust in this
domain. As with any nonlinear fitting algorithm, when the
parameter set increases, successful convergence is dependent
on the chosen initial conditions and global optimization is not
guaranteed.

For this reason, expanding the MSM to higher accuracy lev-
els requires populating the spacecraft shape with an increasing
number of uniformly positioned spheres. This leads to a higher
fidelity prediction of the electrostatic interactions because the
charge has a higher degree of freedom to move between the
various spheres in the model, much like it would on the actual

conducting shape. In this way, induced charge effects can be
captured in any dimension where multiple spheres are present.
Since the underlying assumption that the modeled body is fully
conducting remains, it is known that all the contained charge
will reside on its surface. Therefore, the approach is taken to
populate only the surface of a given shape with spheres.

The goal of the new method of surface population is to
minimize the parameters that need to be selected when creating
an MSM for a given shape. Therefore, it is desirable to pick a
set of spheres that are uniformly distributed along the surface
of the geometry. For complex shapes this is not a trivial
task. Several CAD programs contain algorithms to generate
point clouds from solid models and this is most likely the
approach that will be taken during future work for generating
sphere positions for generic spacecraft. For simpler shapes
such as spheres and cylinders, specific algorithms are created
to uniformly populated the surface as described below. By
this approach, the new SMSM method is significantly faster
and more robust to set up. The resulting computations are
more accurate, while the run-time costs are only marginally
increased.

IV. TWO SPHERE SYSTEM

To analyze the quality of a uniform surface populated MSM,
simple shapes are used to provide benchmark performance
results. An isolated sphere in space has an analytic solution
for its self-capacitance, and for a system with two spheres
separated at appreciable distances the Position Dependent
Capacitance model can predict Coulomb forces fairly accu-
rately. For smaller separation distances, several analytic and
numerical options exist that can be used as accurate truth
models. By comparing these truth models with the PDC
solution, it is easy to isolate the contribution from induced
charge effects.

A. Uniform Population on a Sphere

To model the two sphere system with the MSM, the
goal is to uniformly populate the surface of a sphere with
equidistant points, which is a well documented computer sci-
ence problem.[21] Coincidentally, the most robust algorithms
involve equal electrostatic repulsion of the points, which could
be used to generate surface points for generic shapes in
later research. For the current effort, a Golden Section Spiral
distribution provides sufficiently uniform spacing of points.
The sphere is divided into parallel bands of equal area, and
points are placed along the spiral at successive longitudes such
that their ratio is the most irrational golden ratio, resulting in
the golden angle:

 = ⇡(3�
p
5) (6)

Figure 3 shows the resulting sphere population for n = 4, 10
and 30 spheres.

B. Optimal Packing Parameter

With the spheres in the MSM positioned in a uniform
manner on the surface of the modeled geometry, the one
remaining parameter to choose is the spheres’ radius R, which
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Fig. 3. Various uniform point distributions on the surface of a sphere

is assumed constant throughout the SMSM model. While the
goal is ultimately to match Coulomb forces and torques with
external objects, only one scalar invariant quantity is necessary
to determine an optimal radius. In contrast to the VMSM
method where increasing numbers of sphere locations and radii
must be chosen as the number of spheres increases, the SMSM
method only needs to determine a single parameter R. This
provides a significant simplification of the model development
with a large number of spheres. The self-capacitance of a
conducting geometry in space is a good candidate empirical
quantity to be used to determine the optimal sphere radius R.

For a modeled sphere with radius RS , the self-capacitance
C is analytically known:

Csphere =
RS

kc
(7)

Meanwhile, the capacitance of the MSM can be computed by
summation of the charge qi on each sphere in the model (as
determined by the process in Section II) for a given voltage
V :

CMSM =
Q

V
=

nP
i=1

qi

V
(8)

A simple optimizing function based on a golden section search
and parabolic interpolation is used to choose a radius R that
minimizes

f(R) = CMSM � Csphere (9)

This is performed for various n numbers of spheres in the
model.

In order to analyze the optimal sphere size across various
geometries, comparing the total surface area 4⇡R2n of every
sphere in the MSM to the total surface area S of the modeled
geometry provides geometric insight. This relation is repre-
sented by the packing parameter �:

� =
4⇡R2n

S
(10)

For the benchmark spherical spacecraft case being modeled
with the SMSM, the optimal packing parameter is plotted
against the number of spheres in the model in Figure 4.
Interestingly, even though the number of spheres in the model
and therefore the spacing between them changes, the parameter
� appears to converge to a constant value.
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⇡
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Fig. 4. Optimal packing parameter for surface MSM on sphere

C. Truth Models

While the radii of the spheres in the model are optimized
as above to match the self-capacitance of the modeled sphere,
validation requires that the resultant electrostatic forces match
those from analytic and numerical solutions. A simple system
is used that consists of two spheres with radii RS = 0.5 m,
various separation distances d, and equal as well as opposite
sphere voltages V = ±30 kV. Maxwell 3D is used to provide
a numerical answer. The mesh and charge distribution in
Maxwell is visible in Figure 6(a) of the following section.

The simplicity of the two sphere system lends itself to
several analytic solutions. The PDC model for two spheres
captures the relationship between the prescribed voltage and
the total charge on each sphere, but not the induced charge
effects. If each sphere is modeled with a single charge at its
center, the resulting voltage in space is not constant at the
sphere boundaries, as it would be on a conducting body. The
two approaches in Figure 5 attempt to offset this anomaly by
ensuring that the spheres form equipotential surfaces. They are
valid only for a system where both conducting spheres are of
equal radius and are held at equal magnitude voltages, as is
the case here.

The first order induced charge model, shown in Figure 5(a),
attempts to capture induced effects by a one dimensional
change in separation distances. The separation d between
the charges qA and qB that are computed using the PDC,
is adjusted by an extra distance x. This distance is chosen
such that VL and VR are equal, resulting in a cubic equation
in x.[22] The figure shows an increased separation as for
the repulsion case; attraction would result in a decreased
separation distance.

In Soules’ Method of Images (MOI), illustrated in Fig-
ure 5(b), successively smaller image charges qi are placed
at distances xi along the line of centers to approximate the
induced charged distribution:[23]

qi =± rqn�1

d� xn�1
(11a)

xi =
RS

2

d� xn�1
(11b)



Here n > 1, q1 is determined for a given voltage using the
PDC, and x1 = 0. In Equation (11b), the successive charges
switch polarity (�) for the repulsion case and maintain the
same polarity (+) for attraction. In the case of an infinite
series of charges, the result is claimed to approach an exact
formula for the same system as derived by Maxwell using
zonal harmonics.[20] The algorithm is implemented using 19
spheres as in Reference [22].

 

(a) First order induced charge model (repulsion)

 

(b) Electrostatic Method of Images

Fig. 5. Two analytic models for the two sphere system that capture induced
effects

While the two induced charge models discussed above
provide a vast improvement over the PDC in force prediction
at small separation distances, Maxwell 3D is found to produce
the most accurate solution when the simulation is tuned
properly. Therefore the Maxwell solution is used as the truth
model for verification of the surface populated Multi Sphere
Model.

D. Force Comparison

This system discussed above is depicted in Figure 6 with
the charge density distribution shown in both Maxwell 3D
and on a 30 sphere surface populated MSM. This qualitatively
highlights the ability of the SMSM to capture induced charge
effects when enough spheres are present on the object surface.
In order to offset the difference in surface areas, the charge
density �i on each sphere in Figure 6(b) is normalized by the
factor � from Eq. (10):

�i = �
qi

4⇡Ri
2 (12)

Radii for the models are chosen to fit capacitance of the sphere
as above, resulting in

R (10 spheres) = 0.1460 m (13)
R (30 spheres) = 0.0835 m (14)

(a) Maxwell 3D
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(b) MSM with 30 spheres

Fig. 6. Charge density distribution on two spheres (V1 = V2 = +30 kV)

Figure 7 gives the percent error for various models at a
range of separation distances, for the attractive and repulsive
cases (7(b) & 7(b), respectively). Percent error is defined as

Err =
Fmodel � FMaxwell

FMaxwell
(15)

The PDC model produces almost 50% error at very small
separation distances, but matches the full solution well at
further distances. Using the Maxwell solution as the truth
model, it is surprising that there is a discrepancy between
it and the Method of Images solution, as this should closely
represent the full analytic solution according to Reference [20].
As more spheres are added to the MSM, however, the errors at
close distances converge to zero, thus giving further credence
to the solution given by Maxwell 3D. The first order induced
charge method matches Maxwell for the repulsion case but
is equivalent to the Method of Images for the attractive case,
which is likely a coincidence.

The SMSM with 30 spheres results in less than a percent
error for repulsion right up to where the spheres touch at d =
2RS . For attraction, induced effects are known to be even



more dominant, and more spheres are necessary to completely
capture these effects. The PDC model shows nearly twice as
much error as for the repulsion case. The 10 sphere SMSM
results in up to 40% error as the spheres nearly touch, but this
drops off quickly to less than 2% when d = 3.5RS . All in
all, the surface populated MSM is clearly shown to model the
electrostatic interactions of the spheres to a very high degree
of accuracy. It provides a more accurate solution than other
induced charge effect models, while increasing in accuracy as
more spheres are added. Moreover, this method is expandable
to generic spacecraft shapes where the others are not.
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Fig. 7. Error in force between two spheres for various electrostatic models

These results beg the question, how does the uniform sphere
radius R, and thus the packing parameter � = 4⇡R2n

S , affect
the resulting force computations? In Figure 7, this parameter
is optimized such that the capacitance of the MSM matches
the capacitance of the sphere that it is intended to model. If a
different R is chosen, might the model match the true forces
better at close separation distances? Figure 8 shows the error
in force at three separation distances, for a range of � values,
comparing both the 10 and 30 sphere model. The repulsion
configuration is chosen with V1 = V2 = +30 kV.

At the larger separation distance (d = 15RS), the force
error is minimized when � = 0.8464 for n = 10 and when
� = 0.8273 for n = 30, as shown by the red circle. This
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Fig. 8. Error in force for various packing parameters

corresponds within a fraction of a percent to the optimal values
in Figure 4, suggesting that fitting the model-sphere radii to
the body capacitance results in the optimal force prediction
at larger separation distances. To match the induced charge
effects and forces at closer distances, the optimal packing
parameter � (and therefore R) is smaller. Choosing R on
this basis, however, would result in significant errors at larger
separation distances. In the end, spacecraft proximity missions
would rarely operate at fewer than 10 craft radii separation
unless docking is considered, so the best approach is to choose
the sphere radii by matching to the spacecraft body’s self-
capacitance in deep space as outlined in Section IV-B. Notice
that the sensitivity in force error to � is appreciably decreased
for the model with more spheres, which is a promising feature
of the new method.

V. SURFACE MSM METHODOLOGY FOR GENERIC
SPACECRAFT SHAPE

With the accuracy of the new model sufficiently verified
for simple shapes, it can be applied to model spacecraft



with arbitrary 3D shapes. Before the results for such shapes
are analyzed, the methodology for determining the sphere
parameters for a generic spacecraft shape is given in Figure 9.
The red boxes are processes that must be executed when
analytic solutions are not present for the sphere distribu-
tion and capacitance, as is most often the case. The two
components of a full MSM are the location ri and radii
Ri of each sphere. For a generic body, a solid modeling
program will be necessary to determine a uniform point cloud
model on the surface. For most shapes, the capacitance is
to be found by an electrostatic modeling program such as
Maxwell 3D. The Position Dependent Capacitance matrix is
then used to calculate the capacitance for the system of spheres
to determine an optimal uniform radius R that matches the
capacitance from the numerical solution. At this point, the full
model can be used in conjunction with other MSM objects to
determine the electrostatic interactions.

Full MSM
defined
(ri,R)

Find uniform
sphere

locations ri

Solid
modeling
software

Fit optimal
radius R to

match C

Determine
capacitance

C

Electrostatic
modeling
software

Choose sphere
spacing

Fig. 9. Methodology for parameter selection of surface populated MSM

VI. CYLINDER MODEL RESULTS

A. Setup

In Reference [18], where the MSM was first introduced, the
interaction between a 3 m length by 1 m diameter cylinder
and a 1 m diameter sphere are used to determine optimal
sphere parameters and verify the model. Collecting force and
torque values at various separation distances and orientations
provides invaluable insight into the ability of a model to
replicate induced charge effects, 3D effects, and large distance
behaviors. The same approach is implemented to verify the
surface populated Multi Sphere Model and compare it to the
three sphere model from the previous research. Using a set
of Maxwell data that ranges to 20 m separation distance, the
model in Figure 10 is generated, with parameters given in

Table I. Note that in comparison with the setup outlined in
Figure 9, choosing parameters for this three sphere model
necessitates collecting a full sweep of Maxwell truth data,
followed by a difficult to implement nonlinear fit.
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Fig. 10. Multi Sphere Model parameters for cylinder geometry

TABLE I
PARAMETERS OF THREE SPHERE MSM FOR CYLINDER

Sphere 1 Sphere 2 Sphere 3
X Coordinate (m) 0 0 0
Y Coordinate (m) -1.1454 0 1.1454
Z Coordinate (m) 0 0 0

Radius (m) 0.5959 0.6534 0.5959

Now the methodology in Figure 9 is implemented. Since
the cylinder is still a fairly simple shape, manual algorithms
are used to populate the surface. For the end discs, a gold
section spiral is utilized much like for populating the spheres in
Figure 3, while on the circumference of the body, a hexagonal
packing is implemented. Maxwell is used to determine that the
self capacitance of the cylinder in space is

Ccylinder = 1.0616⇥ 10�10 C

V
(16)

This is used to fit the optimal sphere radius, resulting in
Figure 11, which shows the packing parameter � as a function
of the total number of spheres n in the cylinder model. Clearly,
the optimal � values do not match those for the sphere in
Figure 4. For this reason, R must be fit for a specific sphere
distribution to match the capacitance of a given model shape.

A cylinder model with n = 105 spheres (R = 0.0731 m)
and a sphere model with n = 30 spheres as above (R = 0.0835
m) is depicted in Figure 12. Each is held at V = +30kV and
the induced charge effects are clearly visible from the charge
distribution throughout the shapes.

B. Results
Figure 13 and 14 show the accuracy of the force and

torque, respectively, calculated by the VMSM model with
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Fig. 11. Optimal packing parameter for Surface MSM on cylinder
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Fig. 12. Charge density distribution on SMSM of cylinder and sphere (V1 =
V2 = +30 kV)

three spheres and the surface populated model (105 spheres
in the cylinder and 30 spheres in the sphere), compared to the
truth data from Maxwell. Figure 13(a) is a 1 to 1 plot between
the MSM models and the Maxwell data, where the black
line represents perfect matching between the two models.
The three sphere VMSM over-predicts the larger forces that
correspond to small separation distances. The drawback of
this visualization is that it isn’t possible to see where in
relation to the cylinder the sphere is located for a given data
point. Figure 13(b) and 13(c) rectify this shortcoming, as
they show the absolute force errors compared to Maxwell,
for the three sphere and surface populated MSM, respectively.
A representative size cylinder and sphere are included for
reference, while the color legend is in logarithmic scale. The
same organization is used in Figure 14 for the torques exerted
on the cylinder.

It is clear from the figures that the SMSM predicts the forces
much better at small separation distances across the range
of angles, but by about 6 m separation (12 craft radii), the
difference between the two models is fairly negligible. For
the case of torques, the three sphere model actually does a
slightly better job at separation distances larger than 4 m (8
craft radii). This is likely because the volume populated model
is fit directly to the Maxwell data, which has been shown
earlier to exhibit some accuracy discrepancies at this range.

Regardless, most Coulomb charge control applications that
don’t involve docking occur at separation distances beyond
this range.

It is important to weigh the accuracy with computation and
setup times of the different models, as shown in Table II.
The first column gives the time for each model to compute
a force and torque value at each of the 82 relative positions.
While this computation takes Maxwell about 1 hour and 14
minutes at fairly moderate accuracy settings, the MSM with
three spheres completes the task in a fraction of a second.
Meanwhile, it takes the surface populate model (with 135
spheres in the system) about 16 seconds. The next column
shows the numerical calculation time necessary for the setup
of the two MSM models. For the volume populated (3-sphere)
MSM, this requires the complete set of data calculated earlier
by Maxwell, while the surface populated MSM only requires
a single numerical computation of the capacitance of the body.
The ’Fit’ column represents the nonlinear numerical fit for the
3-sphere VMSM, and determination of the sphere positions
as well as a fit to match R to capacitance for the surface
populated model. As is clear, computation happens about an
order of magnitude quicker for the VMSM, but setup is two
orders of magnitude quicker for the new model. Depending
on the requirements on accuracy and computation time, both
models are viable candidates for use in the calculation of
spacecraft electrostatic interactions. Both exceed Maxwell 3D
or other finite element analysis software in the ability to predict
forces and torques in real time.

TABLE II
SETUP AND COMPUTATION TIME FOR CALCULATION OF FORCE AND

TORQUES BETWEEN SPHERE AND CYLINDER AT 82 RELATIVE LOCATIONS

[Time in sec] Comp. Setup
Maxwell 4434 Num. Fit Total

3-sph VMSM 0.11 4434 + 9.1 = 4443.1

Surface MSM 15.6 54.1 + 4.1 = 58.2

VII. CONCLUSION

In an attempt to increase the accuracy of the Multi Sphere
Model (MSM) while avoiding the complicated nonlinear
parameter fit, a new surface sphere population method is
created. Spheres are uniformly placed on the surface of a
modeled spacecraft shape, while the common sphere radius
is chosen to match the numerically determined capacitance of
the conducting object. This greatly reduces the setup time for
the MSM (by two orders of magnitude), while the computation
time is slightly increased due to the larger number of spheres
(one order of magnitude). The result is a model that captures
small separation distance induced charge effects very success-
fully, nearing the accuracy in electrostatic force and torque
calculation of full Finite Element Analysis (FEA) software.
Initial verification is performed using a simple system with
two spheres, for which numerical and analytical solutions
are available as truth models. The surface populated MSM
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converges to a full FEA solution for increasing numbers of
spheres, even as separation distances become especially small.
Next, forces and torques on a cylinder are examined, showing
that the increase in spheres from the three sphere MSM to
a 105 sphere surface MSM results in a vast improvement in
accuracy up to about 10 craft radii separation distance, outside
of which both models perform equally well.
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