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COMPARING PROBABILISTIC ROADMAPS AND
REINFORCEMENT LEARNING FOR RELATIVE MOTION
INSPECTION OF SPACE OBJECTS

Mark Stephenson * and Hanspeter Schaub

The close-proximity inspection of objects in low Earth orbit (LEO) is important to
operations such as rendezvous, debris removal, servicing, and resident space ob-
ject (RSO) characterization, all of which are of increasing interest to commercial
and government organizations. Complex relative motion dynamics in eccentric
LEO make the problem of path planning for autonomous inspection challenging.
Agents must be able to fully inspect an object subject to illumination constraints
while avoiding collision with the RSO. In this work, two approaches to the prob-
lem are considered: a deep reinforcement learning (RL)-based solution developed
in previous work is reviewed, and a probabilistic roadmap (PRM)-based solver is
developed. The overall performance of solutions produced by the two methods
are compared across the fuel-time trade space in a high-fidelity simulation envi-
ronment: These experiments demonstrate that while PRMs result in more fuel- and
time-efficient solutions than RL, this comes at the cost of computationally expen-
sive, open-loop solutions as opposed to the closed-loop, onboard control provided
by RL-based policies.

INTRODUCTION

With the proliferation of satellites in low Earth orbit (LEO), rendezvous and proximity operations
(RPO) are becoming increasingly important. These include servicing and interacting with active
spacecraft, deorbiting defunct satellites, or inspecting assets for damage. Prior to many of these
operations, the resident space object (RSO) must be inspected to determine docking points, damage,
or other properties. This inspection task is complex, requiring the servicer to maneuver around
the RSO, inspecting all illuminated surfaces while avoiding collision. Currently, close-proximity
operations are challenging to operate and require significant ground support to upload open-loop
command sequences and monitor the resulting performance. Close relative motion maneuvers must
be fuel efficient, avoid the potential for collisions, and satisfy any imaging requirements. As with
any motion planning task, offline planners and closed-loop approaches both offer strengths and
weaknesses for solving the problem.

A variety of path planning methods have been proposed for the inspection task. References 1—
3 demonstrate pipelines for global planning of inspection trajectories for a swarm of satellites,
for impulsive and continuous thrust control. These plan a set of stable relative orbits that should
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provide coverage of the RSO, then assign orbits to individual servicers within the swarm, calculating
optimal transitions between orbits. Reference 4 decomposes a large RSO into primitive shapes and
projects inspection paths onto them. Such two-phase methods introduce significant suboptimality
by constraining the solution space to certain classes of trajectories.

Sample-based motion planners offer a more general framework for trajectory planning and op-
timization. Algorithms such as SST,> among many others, can solve kinodynamically-constrained
path planning problems across domains. Considering RPO tasks specifically, traditional A*-based
path planning methods are combined with methods for robustness to thruster failures in reference.%’
However, for the inspection task, the complex goal state of complete RSO observation makes the
problem requirements considerably more complex than point-to-point motion planning is able to
efficiently consider because the goal of complete coverage can only be represented with a very
high-dimensional state.

More recently, reinforcement learning (RL) has been posed as a method for closed-loop autonomy
for the inspection task. RL has the benefits of directly finding a policy to maximize a reward
function in an arbitrary environment. In reference 8, a neural network-based policy is used for
high-level planning between predetermined inspection waypoints. Another paper approaches the
problem with a continuous action space for continuous, low-thrust control, considering lighting
conditions.” A recent study in Reference 10 uses the waypoint-based approach for distributed and
centralized control of a swarm of servicers. In References 11, 12, the problem is considered with
a simultaneous localization and mapping (SLAM) component. However, a drawback of this class
of methods is a lack of safety guarantees. While penalties can be included to disincentivize unsafe
actions, there is no guarantee that the agent will not take an unsafe action.

To address this challenge, a variety of methods for bounding the performance and guaranteeing
safety of RL-based polices have been developed.'? Several references combine RL with trajectory
optimization steps: A few papers leverage the transformer architecture for RPO,!'* 1> while Ref-
erence 16 uses RL with traditional path planning methods as a way of directing the search of the
traditional methods while maintaining robustness. Shielded RL has been demonstrated as an ef-
fective method for various other spacecraft tasking problems,'” including resource management, '8
small-body proximity operations,'® and agile Earth observation under various conditions.?%2! Con-
trol barrier functions (CBFs) are an alternative to shields that provide guarantees on performance:
Most similar to this work, two recent papers ensure safety in an RL-controlled inspection task
with continuous control inputs using a CBF.??23 Their safety constraints include the keep-out zone
present in this work, fixed-horizon passive safety, velocity constraints, a Sun pointing constraint,
and a keep-in zone.

In this work, the RSO inspection problem (Figure 1) is considered for an RSO in an eccentric
orbit with a Hill-frame-fixed attitude and an impulsively maneuvering servicer, subject to range,
pointing, and lighting constraints for inspection. This builds on References 24 and 25, which finds
RL-based solutions for one or many servicers and develop safety guarantees for those agents un-
der various dynamic regimes. This paper provides an alternative offline solution method for the
problem, combining probabilistic roadmaps (PRMs) and mixed-integer programs (MIPs) to find a
dynamically feasible trajectory that completes the task while satisfying all constraints. This method
is compared to the RL solutions, demonstrating stronger performance in fuel and time at the cost
of higher computation time and open-loop solutions. While the PRM solutions more optimal than
the RL solutions, they come at the cost of expensive, open-loop planning as opposed to autonomous
closed-loop execution.
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Figure 1: The RSO inspection problem.

PROBLEM FORMULATION

In the inspection task, a servicer spacecraft has the objective of inspecting all facets of an RSO in
LEO, subject to illumination constraints. To achieve this, the servicer must use discrete thrusts to
control its motion relative to the RSO while avoiding collision between the two spacecraft.

Satellite Dynamics

The RSO (i.e., the chief) is a non-maneuvering satellite in an eccentric LEO orbit with a Hill-
frame-fixed, nadir-pointing attitude; this attitude assumption is reflective of the attitude control for
many active LEO satellites. The origin of this Hill/body frame H is used for all displacement vectors
unless otherwise noted. The RSO’s orbit is a randomly sampled LEO orbit in each instance of the
environment. The altitude of apogee and perigee are uniformly sampled between 500 and 1100 km,
and the angular orbital elements are uniformly sampled in their respective domains.

The servicer (i.e., the deputy) is an actively maneuvering satellite operating near the RSO. The
Hill-frame state of deputy d relative to the chief c is written as the position 4. and velocity vg..
The servicer is equipped with a body-fixed camera ¢ to inspect the RSO, and the attitude is ac-
tively controlled to point the instrument at the RSO (i.e., € is kept antiparallel to 74.). The servicer
can control its motion with a thruster that can produce impulsive thrusts Av of magnitude up to
Avpmax = 1 m/s in an arbitrary direction, followed by a passive drift period. Because the period
between thrusts tends to be long, this could be achieved by a variable-thrust thruster on an actu-
ated platform that reorients between maneuvers. At most, each servicer may use 10 m/s of Av to
complete the task.

To avoid collision, the deputy must stay out of the chief’s keep-out ellipsoid represented by a

3 x 3 positive definite matrix K consisting of the reciprocal squared semi-axes with a constraint in
the general form

rae () Krase(t) > 1 (1)

For a spherical keep-out region of radius Ry, (i.e., K = I/ Rl%), as is primarily considered in this
work, this constraint reduces to
I7ase(@)]l = Ry 2



Analysis of the relative motion dynamics of the system is necessary for the PRM-based solution.
The motion of the servicer can be described with a relative motion state transition matrix for the
unperturbed motion of a deputy spacecraft relative to a chief spacecraft in an eccentric orbit. In
the Hill frame H of the chief satellite C' (which is the same as its body frame due to the Hill-
fixed attitude assumption), the state transition matrix for the state vector x4/, = [Hrd /e Moy, /C] T
composed of the Hill-frame position and velocity of the deputy relative to the chief is given by

DL (t,t0) = Ac(t)BL(t,10) AL (to) 3)

where A.(t) is the linearized relative orbital element to Hill frame mapping matrix, and ®5% (¢, ¢,)
is the relative orbital element state transition matrix*. Left superscripts are used to denote the frame
the vector is expressed in.

Inspection Task

For the inspection task, a set of required inspection points P, the criteria for inspecting them, and
the criteria for task completion are established.

The RSO has a set of body-fixed inspection point structures p € P, each with an associated
body-fixed position (relative to the RSO origin) and normal vector p, = (7, 7tp). In this work, the
RSO’s geometry is modelled as a 1-meter radius sphere of |P| = 100 uniformly distributed points
with surface normals in the radial direction. Points are illuminated when the angle between the sun
Vector gy, and the point normal is less than ¢y, = 60° and the RSO is not being eclipsed by the
Earth. Illumination can be reduced to a function of the RSO’s mean anomaly:

L(pp, M) = =Eclipse(py, M) A Z(fip, Toun(M) — 7p) < Pmax )
The set £ of points that are illuminated for at least some time during the orbit is thus defined as

L={peP|3IM € |0,2nr] such that L(p, M) = True} (5)

To inspect an inspection point, the servicer must be in range of the point, the instrument must
have an acceptable relative angle, and the point must be illuminated. The range constraint requires
that the servicer is within Rp,.x = 250 m of the point p, being inspected:

Hrd/C(M) - Tp” < Rpax (6)

The squint angle constraint requires that the servicer’s instrument views the point p, from an angle
no more than 6, = 30°:

Z(fy, Td/c(M) —7p) < Omax @)
And the illumination constraint requires that L(p, M) is True. Combined, these constraints define
an inspectability indicator function

I(p,74/c, M) = Equation 6 A\ Equation 7 A L(p, M) )
that is a function only of mean anomaly and servicer position.

When Equation 8 is satisfied for some point p, the point is added to the inspected set Z. The
RSO is considered fully inspected and the task is complete when at least 90% of the points in £
are in Z. This threshold is set since some points on the limb of the spacecraft may only be in-
stantaneously illuminated. The complete problem is then a constrained multiobjective optimization
problem: minimize the fuel consumed and time taken while completing the inspection task.

*see Reference 26, chapter 14.5 for the full 6 x 6 matrices for A., A ', and o=



Simulation Environment

A simulation of the problem is implemented using BSK-RL", a package for creating modular,
high-fidelity RL environments for spacecraft tasking.”’ The underlying spacecraft simulation is
Basilisk?, a high-performance spacecraft simulation package.”® Rigid multi-body dynamics in the
perturbed orbital environment and flight-proven flight software algorithms are used to simulate the
environment.

The environment is used for training and validating the RL solutions, and validating the PRM
solutions. Basilisk is ideal for offline agent training as its high computation speed enables efficient
training with a complex physics-based simulation, and BSK-RL implements the Gymnasium API?
for compatibility with other RL tooling. Because both methods are evaluated in the same realistic
simulation environment, the comparison is apples-to-apples.

METHODS: REINFORCEMENT LEARNING

The first of the two approaches considered in this paper is RL. RL is a method of solving se-
quential decision-making problems by first formulating the problem as a Markov decision process
(MDP), then using an algorithm to find a policy, or mapping from states to actions, that maximizes
the expected sum of future rewards.>® Notably, the learning agent does not know about the envi-
ronment explicity; instead, it must explore for and exploit high-reward regions of the environment
through trial and error. This section briefly reviews the formulation and methods developed more
completely in reference.?’

MDP Formulation

The single-servicer inspection task is formalized as partially-observable semi-Markov decision
process (POsMDP). The elements of the MDP tuple for the inspection task are as follows:

» State Space: The state of the simulator providing the generative model for the MDP. This
includes satellite dynamic states, flight software states, and environment states. Terminal
states for the servicer are encountered at the following conditions:

- > 90% of illuminated points are inspected, |Z|/|£| > 0.9.

— The servicer collides with the RSO, in violation of Equation 1.

— The servicer leaves the region surrounding RSO: |r;/.| > 1 km. This condition is in-
cluded to encourage “good” behavior when training, but is not a hard constraint enforced
by the shield when using the policy.

— The servicer runs out of available fuel: Avgy.; = O.
— The episode times out: ¢ > 10 orbits.
* Observation Space: The observation for the servicer is composed of a subset of the elements
of the state space and transformations thereof. The elements of the observation space are

given in Table 1. Two reference frames are used: the RSO Hill/body frame #, and the Earth-
Sun Hill frame S.

favslab. github.io/bsk_rl/
*avslab.github.io/basilisk/
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Table 1: Elements of the observation space for each servicer.

Element  Dim. Description
oy, /e 3 RSO-relative position
Vy/e 3 RSO-relative velocity
Mg 3 Sun direction
Se 3 orbital eccentricity vector
Sh 3 orbital angular momentum vector
Sp DE 3 orbital position
AVgyail 1 available Av
t 1 time since start of episode
(721,75 2 next eclipse start and end times
Yoinspect (P) M region inspection status

The region inspection status %inspect (P) is a compact way of representing what points on the
RSO have been jointly inspected, rather than a vector of |P| Booleans. For this observation,
of inspection points are grouped into M clusters. Each element of the observation is the
fraction of points in the corresponding cluster that have been inspected. In this environment,
M = 15 clusters are evenly spaced on the surface of the sphere, resulting in regions roughly
the same size as the servicer’s field of view. This observation does not explicitly tell the agent
what points will be illuminated at some point; the agent must infer that from the observations
of the orbital state.

Action Space: The servicer’s action space is @ € AvyaxBB2 X [0, Atyay]. The first three
elements specify the direction and magnitude of an impulsive thrust within a ball, and the last
element specifies the duration to drift before executing the next thrust.

Reward Function The reward R(s, s’) for the servicer is the sum of five functions. First,

reward is yielded for inspecting points on the RSO that have not yet been inspected by any

servicer.

|-z
d

A reward is also given to all agents for jointly reaching the goal state of 90% inspection of

illuminated points.

®

Rinspection (37 S,)

v
Rsuccess(sl) = /Bsuccess if H > 90% (10)

A penalty for fuel use is given at the time of a burn, weighted by the fuel use penalty a.
Rpuel(Av) = —af| Av|| (11
A penalty for time use is given per-step, weighted by the fuel use penalty .
Riime(At) = —ag At (12)

Finally, a failure penalty is given to a servicer that reaches any of the negative terminal states
(collision, running out of fuel, or leaving the region of space around the RSO)

Riaiture (') = —Brait if 8" € Sail (13)



* Transition Model: Instead of a probabilistic transition function, the transition model is im-
plemented as a deterministic generative model. When an action is taken, the environment
propagates the simulation forward in time until the next action is to be taken. The semi-
Markov decision process (sMDP) At is the duration for which the simulator propagated the
step, as selected by the action.

Training

Policies are trained in the high-fidelity implementation of this environment for a range of fuel use
penaltys a € [0.0, 3.0]. The RLIib implementation of proximal policy optimization (PPO) is used to
train policies.?!>3? The algorithm and training pipeline are modified to use semi-Markov discounting
for advantage estimation.>* The policies are represented by a fully connected multilayer perceptron
(MLP) neural network of size 2x 256, which takes about 100 us per decision to evaluate in inference.
The time use penalty oz = 0.05/0rbit, and Bgyecess = Brail = 1.0. The policies presented in this paper
are a refined version of those presented in reference,” with a 20M-step learning rate schedule of
5M steps at 10~%, 5M decreasing to 10~°, 5M decreasing to 10, and 5M holding at 1076, Values
are selected following an ablation study across algorithm and network parameters.

METHODS: PROBABILISTIC ROADMAP

The PRM-based approach for the problem consists of iteratively constructing a roadmap of way-
points, then using a mixed-integer quadratically constrained quadratic program (MIQCQP) to find
a trajectory in the roadmap that satisfies the solution constraints.

Algorithm Structure

Algorithm 1, PLANINSPECTIONTRAJECTORY, gives the general scheme of the trajectory plan-
ning algorithm. The trajectory space is discretized into waypoints w € WV that consist of the
RSO Hill- and body-frame position of the servicer and the mean anomaly of the inspection point,
Wy = (Tyw, My). In the first iteration, these waypoints are sampled (SEEDWAYPOINTS) in regions
of the state space that have inspectable RSO points in £. In following iterations, the waypoints are
resampled (RESAMPLEWAYPOINTS) around the incumbent solution from the previous iteration, in
order to improve beyond the initial discretization. With the waypoints sampled, a roadmap of dy-
namically feasible transitions is built between waypoints (CONNECTGRAPH). The roadmap is then
encoded into a MIQCQP that optimizes for fuel and time (weighted by ¢, which is akin to a in
the MDP formulation) with constraints for feasibility and complete inspection. The solution to the
MIQCQP provides a trajectory that satisfies the inspection task requirements.



Algorithm 1 Inspection trajectory planning function

1: function PLANINSPECTIONTRAJECTORY (7, My, L)
2 wo < (7’0, Mo)
3 for:; €1,2,3,...do
4 if i = 1 then
5: W <+ {wo} U SEEDWAYPOINTS(L, Nyeed)
6 else
7 W  {wo} U RESAMPLEWAYPOINTS (Wsol[1 :], Nyesample, Or, O 1)
8 & + CONNECTGRAPH(W, Neonn)
9: x < construct and solve MIQCQP (Equation 18-27)
10: Wiol < PARSESOLUTION(x, W)
11: return W,
wo 2n
. & ” [ & ._:‘ u‘ 33'5/2 _
o 2 {.:52:0 :r... -' » X -;%
‘o. 7 ':O .”.' 2 ¢ pe 4 J; '-:”A :
v ‘& S 9 &,"J E!
. S N & RSO I
y y - Z
200 m g
=
- 2
(a) Iteration ¢ = 1 (b) Iteration 7 = 2 (c) Iteration 7 = 3 i 0

Figure 2: PRM solution iterations.

Figure 2 shows three iterations of the method on an example case. The differences between

first and later iteration waypoint sampling methods are clearly visible, and the incumbent solution
quality improves with each iteration.

Graph Sampling and Construction

Three algorithms are used for constructing a discrete graph in the waypoints space. SEEDWAY-
POINTS and RESAMPLEWAYPOINTS generate sets of waypoints for the PRM, and CONNECT-

GRAPH draws dynamically feasible edges between the sampled waypoints to produce a graph of
possible trajectories.

Algorithm 2, SEEDWAYPOINTS, generates waypoints for the initial iteration of PLANINSPEC-
TIONTRAJECTORY. While PRM-based methods generally sample the waypoint space uniformly,
a large portion of the domain does not result in inspected points and is thus irrelevant to the task;
including points from this region results in an intractably large optimization problem. Instead, Ngeeq



waypoints are sampled for each RSO point in £. The waypoint position r; is sampled uniformly
between the conjunction radius R and the maximum inspection radius R« in the inspection point
normal direction 7, The mean anomaly M/; is sampled uniformly over times where the point is
illuminated.

Algorithm 2 Generate Ng.oq Waypoints with visibility of each illuminated point

1: function SEEDWAYPOINTS(L, Ngeed)

2 W+ {}

3 for p, € L do

4 fori € 1,..., Nyeeq do

5: r; < 1p + Ny - Uniform(Ry, — |7y ||, Rmax)
6

7

8

M; < Uniform(M € [0,27] | L(pp, M) = True)
W+ Wu {(Ti, M,)}

return WV

In further iterations, Algorithm 3, RESAMPLEWAYPOINTS, is used to generate new waypoints
for the PRM in order to improve beyond the previous iteration’s discretization. For each waypoint
in the solution trajectory W1, Nresample NEW Waypoints are generated in addition to the waypoint
from the incumbent solution. These are sampled in a normal distribution around the solution point
with a standard deviation of o, in position and o, in true anomaly. Because the points in W, are
included, the new roadmap will be at worst as good as the previous iteration.

Algorithm 3 Generate Nyesample Waypoints around each waypoint in the solution

1: function RESAMPLEWAYPOINTS(Wsol, Nresample Or» O0r)
2 W {}

3 for w,, € W, do

4 W+ WU {wy}

5: fori € 1,..., Nresample dO

6 do

7 r; < Normal(ry, 0, I3x3)
8 while ||r;|| < Ry

9: M; < Normal(M,,, o)

10: W — WU {(ri, M;)}

11: return WV

Algorithm 4, CONNECTGRAPH, builds the PRM by drawing edges between nearby waypoints.
The structure of the problem is exploited to use the difference in mean anomaly as the distance
metric. The modulus operator is applied to the mean anomaly difference to transform it into the
range (0, 27| to reflect that any transition happens forward in time in at most one orbit. The Neonn
closest COLLISIONFREE child waypoints are connected from each waypoint, where collisions are
checked at discrete points between each pair using the STM to solve the two-point boundary value
problem (Equation 17).



Algorithm 4 Add edges between nearby waypoints

1:
2
3
4.
5:
6
7
8

function CONNECTGRAPH(W, N¢onn)

E+—{}
for w; € W do
for w; € Wdo
dj — (Mj — M,) mod (O,QW}
for Neonn smallest d; where COLLISTONFREE (w;, w;) do
E+—EU {('LUZ — u)j)}

return £

Mixed-Integer Formulation

With the waypoints WV and edges £ computed, a MIQCQP can be formulated to find the optimal
trajectory that satisfies the inspection percentage requirement. New notation is introduced for the
optimization variables and weights:

¢ € [0,1] is the fuel-time cost weight, with ( = 1 causing the optimizer to only minimize
fuel use and ¢ = 0 causing the optimizer to only minimize inspection time.

x;; is a binary optimization variable that indicates if the edge (i — j) is traversed in the
solution. One z; ; is created for every edge in £. The vector of all z; ; is @.

Avgr; is the Aw cost of the initial maneuver to travel from wq to w;.

Av?l;.ag is the Av cost of maneuver that must take place at w; when coming from w; heading

to wg, via wj.

Zp 1s a binary optimization variable indicating if inspection point p on the RSO is inspected
in the solution. One z, is created for every point in the illuminated set £. The vector of all 2,
is z.

I is the inspectability matrix, which is size len(z) x len(a). It is structured such that entries
at the row corresponding to 2, and column corresponding to x; ; are the points of the RSO
inspectable on the edge between w; and w;:

M;

Loy = /\ Iprisi(M), M) (14)
M=M,

where 7;_,;(M) is the position along the trajectory between two waypoints w; and w; as a
function of mean anomaly M.

The linear and quadratic Av costs are given by

Av(l)ig = |lvo — vin(wj, wy)|| (15)
AvER = Jwou (wi, wj) — vin(w;s, wy)]| (16)

10



To compute the incoming vj, and outgoing v, velocities for the trajectory edge between w; and
wj, the equation

Vout Vin

[Tﬂl = ®(M; + ((M; — M;) mod 27), M;) [m} (17

is solved for vy, and vgy.

The complete MIQCQP for path planning over a set of waypoints ¥V and edges £ is formulated
in Equation 18 through 27. It is assumed that all summations are over the indices for which the
respective variables are explicitly defined (i.e. >, > ; Zi,j only sums over existing edges).

o : 11—
minimize ( Z Av&’;xo’i + Z Z Z xiJAvglfng,k + TC Z Z AM; jx;;  (18)
i i j ok i

subjectto x;; € {0,1} V(w; — w;) €€ (19)
> aip <Y wmij+b<1 Vjb=1ifj=0elseb=0 (20)
k i
n; € {0, ..., Mmax } YV w; € W; Nmax = 10 20
0< (2m(nj —ng) + M.j — Mi)zi; <2 ¥V (w; — w;) € E (22)
20, =0 Vi | Avgh > Avmax (23)
Tij+aip <1 Vi, j, k| Av;‘;?;: > AUmax 24)
zp € {0,1} Vpel (25)
Tz > —M(1 — z) M > 1 (26)
> 2 > 09|L] 27
p

The objective function (Equation 18) consists of two terms: the fuel cost term, weighted by ¢, and
the time cost, weighted by 1 — ¢ and converted to time by division by the mean motion n. The fuel
cost consists of a linear term for the cost of the initial maneuver based on which outgoing edge from
wy is selected and a quadratic term based on the necessary incoming and outgoing velocities at each
visited waypoint. The time cost sums the AM between waypoints on traveled edges.

Constraints 19 through 22 are used to guarantee a single trajectory originating at wg. Equation 20
is the traditional traveling salesman problem in-out constraint: edges can only be traveled if they
come from the starting waypoint (b = 1) or another traveled edge (b = 0), and the path cannot
branch or merge. However, that alone allows for disconected cycles in the solution. To prevent
these, Equation 22 is introduced which assigns an integer orbit number n; to each waypoint w; and
requires that for sequential waypoints in a solution trajectory, the absolute mean anomaly is always
increasing with a difference in (0, 27]. As a result, no cycles can be formed and the less-than-one
orbit connection is used.

Constraints 23 and 24 are added for every Av that exceeds Avpax. For the linear objective term,
the corresponding constraint (23) trivially sets infeasible edges to be unselected; for the quadratic

11



objective, the corresponding constraint (24) allows for incoming or outcoming edges to be selected
but prevents both from being selected for maneuvers that are infeasible.

Finally, constraints 25 through 27 use a big-M formulation to ensure that at least 90% of illumi-
nated points are inspected by the trajectory. For a trajectory with traveled edges encoded by x, Ix
results in a vector that is O for uninspected points and > 1 for inspected points. The big-M formu-
lation, with M arbitrarily set to 10000, allows for a minimum threshold on the number of inspected
points to be a constraint.

Parsing the Optimization Solution

Algorithm 5 gives the method for extracting the sequence of waypoints in the solution from the
optimization variable x.

Algorithm 5 Parse the MIQCQP solution

1: function PARSESOLUTION(x, W)
2 Wol < [wO]

3 while True do

4 wW; <— Wsol[_l]
5: forj | z;; € x do
6

7

8

9

if Tg 5 = 1 then
APPEND (Wqo1, wj)
break
else > Return if no w; is connected from w;

10: return W,

Algorithm Parameters

When evaluating the algorithm, the following parameters are used: Neonn = 40, Ngeed = 5,
Nresample = 8, 0p = 10 m, opy = 0.2, and iterations = 3. For iterations 7 > 2, the solver can be
warm-started with the previous iteration’s solution. The problem is likely too large to solve exactly
in reasonable time, so a non-optimal but feasible incumbent may be accepted instead. In the first
iteration, the solver is run for 120 seconds beyond when the first incumbent solution is found; on the
following warm-started iterations, the solver is run for 120 seconds per iteration or until the optimal
solution is found. Gurobi is used to solve the MIQCQP.3*

When executing the plan, the 2-point boundary value problem in Equation 17 is solved for each
maneuver according to the current true state to reach the next waypoint. This prevents perturbations
from compounding over the course of execution.

RESULTS

The PRM-based solver is compared to the RL benchmark over randomly seeded environments.
The PRM-based solver is solved for a range of objective weights ¢ while the RL policies are trained
with a range of fuel penalties « to find the fuel-time Pareto front for each method. The resulting
trajectories for some representative cases are also compared.

12
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Figure 3: Pareto fronts for PRM and RL solutions for /V seeds at each value of ¢ or «, respectively;
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Figure 4: Open loop PRM planning time versus closed loop RL execution time.

Pareto Fronts

Figure 3 shows the mean Pareto front for the PRM solver across ¢ for N = 20 seeds and the RL
solutions across « for N = 1000 seeds. Both methods produce reasonable results, clearly showing
the time-fuel tradeoff as the respective weighting parameter is changed. The PRM solver shows
stronger performance than the RL solution across the front.

While the RL Pareto front is expectedly dominated by the PRM solver, this comes at significant
computational—and thus operational—cost. Figure 4 compares the execution times of each method:
The PRM method takes about 10 minutes on an Apple M2 Pro with 12 cores to converge, using the
Gurobi solver that cannot be (trivially) used on a spacecraft computer. Computing these trajectories
onboard is therefore infeasible with typical spacecraft resources, requiring a paradigm of offline
planning and open-loop execution. Comparatively, the RL solution is very cheap to evaluate due
to its representation as a small (2 x 256 node) MLP, which requires a trivial amount of storage
and compute; even larger and more network architectures that would reasonably be considered for
this problem have low enough inference costs to be useable onboard. As a result, it operates in a
closed-loop, online manner. Not only does this allow for execution at arbitrary times, if some part
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Figure 5: Comparison of PRM and RL solutions.

of the RSO needed to be dynamically reinspected, the RL solution could trivially handle that case
while the PRM would need an additional planning cycle.

As a result, the tradeoff between the two methods is autonomy and responsiveness at the cost
of some additional fuel or time. For a science or security mission with opportunistic events, those
benefits of RL may outweigh the costs. In scenarios such as deep space missions where resources
are limited and ample planning time is available, the PRM method is superior.

Example Solutions

Figure 5 compares the trajectories of the PRM and RL solutions in two cases, one with high
illumination and one with low illumination due to the 3 angle of the orbit. The PRM uses ( = 0.5
and the RL solution uses the o = 0.1 policy. The solutions are qualitatively similar. The most
notable difference is that the PRM is more “comfortable” with trajectories that get very close to the
RSO, while the RL solution is more conservative due to the collision penalty that is has learned.

CONCLUSIONS

A PRM-MIQCQP approach to planning for the RSO inspection problem is developed and com-
pared to an RL-based approach presented in previous work. Both methods result in a fuel-time
Pareto front, allowing selection between faster and more fuel-efficient trajectories. The PRM front
dominates the RL front, but at the cost of a more expensive planner that must be evaluated of-
fline; the RL solution allows for closed-loop and responsive inspection due to its low computational
requirements. Depending on application, both methods offer novel developments for the RSO in-
spection task.
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