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Abstract—While Earth-observing constellations often collect im-
ages from an a priori request list, this paradigm greatly limits
the phenomena that can be observed: Emergent and unpredictable
events are often valuable imaging targets. Although tip-and-cue
architectures exist to image such events—usually with a “tipping”
leader satellite that cues observations by the follower satellite(s)—
these lack the flexibility or capacity desired from modern Earth-
observing constellations. In this work, reinforcement learning is
demonstrated as a way of autonomously and scalably tasking a
homogenous constellation of satellites with scanning and imaging
instruments. A per-agent policy is learned that is executable onboard
each satellite and able to respond to the high-uncertainty environ-
ment, solving a problem that traditional pre-planning approaches
cannot handle and demonstrating collaborative behavior between
agents. As satellites are added to a constellation, the performance
of the satellites working together grows faster than the number
of satellites. Depending on the location of a satellite within the
constellation, it may assume a specific role that biases it towards
scanning or imaging.
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1. INTRODUCTION
While Earth-observing constellations have become increas-
ingly prevalent, the operation of these systems has largely
developed within a self-limiting framework: Given a list
of a priori requests of varying values, operators create a
global schedule that maximizes the output of the constel-
lation subject to operational constraints [1]. However, the
increasing availability of increasingly capable satellites (both
with respect to sensing ability and onboard compute power)
enables previously unavailable mission architectures [2]. In
particular, emergent phenomena—such as natural disasters,
human events, and scientifically interesting occurrences—
cannot be responsively imaged in the existing paradigm, but
distributed autonomy would allow constellations to adapt in
order to exploit unpredictable and unanticipated events [3].
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Figure 1: Visualization of LEO satellites in the scanning
and imaging modes with unknown (gray), found (white), and
imaged (colored) targets, configured in the S = 6 satellite
ring constellation.

Such a system would extend existing tip-and-cue behavior,
in which a leader “tips” following satellites about events of
interest, to an automated, distributed, constellation-wide tip-
and-cue architecture [4].

In the traditional agile Earth-observing satellite scheduling
problem (AEOSSP), a list of requests with associated priori-
ties must be satisfied by a satellite or constellation of satellites
that can slew agilely (i.e., along and across track) to point at
and image targets. Solution methods tend to follow the same
general process [5, 6, 7]: First, a representation of feasible
request sequences (usually, a graph) is generated from the
request list, fulfillment constraints, and system parameters.
Then, a discrete optimizer, such as a mixed-integer linear
program (MILP) solver or iterative local search (ILS), is
used to find a feasible sequence that maximizes the value
fulfilled requests. Because such optimizers are computation-
ally expensive (especially as the number of satellites, number
of requests, and horizon increases), the previous steps are
completed on the ground, and the plan is uploaded to the
constellation at the next opportunity. Sometimes, satellites
will be equipped with a method of repairing small segments
of the plan onboard if they are interrupted [3].

Contrasting traditional methods with offline planning and
open-loop execution, reinforcement learning (RL) offers a
closed-loop, onboard approach to planning and scheduling.
References [8], [9] and [10] apply RL to satellite schedul-
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ing problems, demonstrating how mission objectives and
resource constraints for Earth observation can be managed
autonomously onboard a satellite. Reference [11] shows
that deep reinforcement learning (DRL) yields autonomous
policies that are capable of performing competitively with
optimal schedulers for the AEOSSP. This prior work lever-
ages the closed-loop properties of these results to plan for
a responsive scheduling problem that cannot be solved by
traditional methods.

Decentralized job allocation in constellations has been con-
sidered previously in order to avoid the computational ex-
pense of global planners. An early DRL algorithm is applied
in reference [12] to combine individual and collaborative
task planning for satellites. In reference [13], self-adaptive
complex system theory is used for multi-satellite mission
planning, with a focus on flexibility and robustness. Refer-
ences [14] and [15] formulate the allocation problem as a dis-
tributed constraint optimization problem (DCOP), allowing a
variety of algorithms with different levels of communication
requirement to be applied. In references [16] and [17],
policies learned in a single-agent RL environment are induced
to work together to deconflict requests. Unlike this paper,
these prior works all still assume an a priori task list to be
distributed.

The necessity of having responsive satellites has also been
well-established in the literature. One of the earliest examples
of using data collected onboard to update the mission plan in
a closed-loop manner was on Earth Observing One (EO-1)
[18]. Over time, EO-1 and other assets have been used as part
of a larger sensor web in order to automate detection, tasking,
and data acquisition [19]. More recently, autonomous respon-
sive tasking has been demonstrated and flown in a single-
satellite architecture in a method known as dynamic targeting
[20, 21, 22]. This system uses a forward-looking sensor
to identify obstructed or valuable regions of the upcoming
ground track, then points the imaging instrument accordingly.
Other work studies decentralized consensus-based algorithms
for reactive replanning of Earth-observing satellites, finding
that the efficacy of replanning for reobservation of new events
is highly dependent on constellation geometry [23, 24].

This paper expands the Markov decision process (MDP)
formulation of the standard AEOSSP given in reference [11]
into a tip-and-cue problem with a constellation of agile low
Earth orbit (LEO) satellites (Figure 1). Instead of being given
an a priori request list, satellites are equipped with a wide
field-of-view scanning instrument that identifies new imaging
targets and a narrow field-of-view imaging instrument that
can collect reward-yielding images of those targets. To per-
form this task well, agents must learn a decentralized policy
that balances searching for new targets and exploiting known
targets; ultimately, this must be a collaborative behavior
between agent. In this work, policies are learned and tested
across a variety of constellations. By examining the individ-
ual and collective behaviors of the satellites, it is apparent that
agents learn to work together by diversifying roles within the
constellation and increasing overall performance.

2. PROBLEM FORMULATION
The search-and-image problem formulation (Figure 2) is a
modification of the standard AEOSSP environment described
in reference [11]. The primary changes are to the appearance
of potential targets in the environment, how targets are iden-
tified by the satellites, and how information is shared within

Figure 2: Constellation architecture for homogenous satel-
lites equipped with scanning and imaging instruments.

the constellation.

Target Model—In the problem, each target is defined by a
tuple of Earth-fixed location, priority, and appearance time
τi = (ri, ri, ti). When a new target appears at time ti, it
is added to the set of all targets T . New targets appear in
the environment at the rate τ̇ , which is randomized between
100 and 1000 targets per hour, with locations uniformly
distributed over Earth’s surface. When a satellite identifies
a previously unknown target using its scanning instrument,
the target is added to the set of known targets K. Once a
target is known, it may be imaged with a satellites imaging
instrument; this adds the target to the set of imaged targets I
and yields a reward equal to the target’s priority ri ∈ [0, 1].
Each of these sets is a subset of the previous: I ⊂ K ⊂ T .

Instrument Models— Each instrument in the homogenous
constellation has two instruments: a scanning instrument for
identifying unknown targets and an imaging instrument for
collecting images of known targets.

The imaging instrument works as described in reference
[11]. It is a camera with a body-fixed boresight ĉ that is
aimed using the agilely maneuvering satellite; the image is
automatically collected once the attitude controller [25] has
settled. This instrument can collect images of targets with
an elevation angle ϕ > 58◦, which corresponds to a circular
field-of-regard with a 500 km radius.

The scanning instrument is used when the satellite is in a
nadir-pointing attitude to reveal unknown targets within the
500 km-radius field-of-regard. When activated, the instru-
ment follows a sequence consisting of: 45 seconds of warm-
up and slewing time; 90 seconds of active scanning time; and
45 seconds of image processing time, during which targets
scanned with the instrument are identified.

Communication—Free communication is assumed within the
constellation. Once every 50 seconds, satellites broadcast a
list of newly scanned and imaged targets to update the con-
stellation’s knowledge of the environment. While this degree
of constellation-wide communication is unrealistic for cur-
rent systems, it is justified in two ways: advances in in-space
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Table 1: Observation vector elements; request observations
are given for next N = 32 upcoming unimaged targets in
K \ I.

Quantity Dim. Description
HωBE 3 Body angular rate
Hĉ 3 Hill-frame instrument direction

ErBE 3 Earth-fixed position
EvBE 3 Earth-fixed velocity
rn∈N N Target priorities
Hrn∈N 3N Target positions
δθn∈N N Target pointing errors

ton∈N , tcn∈N 2N Target opportunity windows

communication networks reasonably imply that bandwidth
may become a less restricted resource, and prior research has
demonstrated that in similar scenarios, local-only and global
communication produce similar results since only activities
from other physically proximate impact decision-making in a
time-sensitive way [26].

Constellation Geometry—Two constellation geometries are
considered in this work, both parameterized by the number
of satellites S. The ring constellation consists of S satellites
equally spaced in a single-plane 90◦ × 800 km orbit. The
string constellation consists of S satellites separated by 10◦

true anomaly in a single-plane 60◦ × 800 km orbit.

Objective—The objective of the environment is straightfor-
ward: maximize the sum of priorities of imaged targets

maximize
∑
τi∈I

ri (1)

subject to the required operational sequence of scanning then
imaging and other environment dynamics.

MDP Formalization

In order to find a policy for this problem, it must be for-
mulated as a decentralized partially-observable semi-Markov
decision process (Dec-POsMDP). The properties of this for-
mulation are discussed in section 3. More detail about the
AEOSSP MDP that this is based on can be found in [11].
The elements of the MDP are defined as follows:

• State Space: The state space consists of all information
about the environment and the dynamics simulation neces-
sary to propagate the environment. Since the total state is
very high dimensional and most of these states are irrelevant
to decision-making, a hand-designed observation space is
selected.
• Observation Space: The per-satellite observation is as
given in Table 1. The observation consists of relevant in-
formation about the satellite, such as its position, velocity,
attitude, and pointing direction, as well as information about
the next N = 32 along-track targets in the known-but-not-
imaged set K \ I. Target information includes Hill-frame
H relative position and the angle δθ between the imaging
instrument boresight ĉ and the target. The positions of the
upcoming targets provide insight into whether the satellite
should scan to find more targets or try to image known targets.
• Action Space: Each satellite has N + 1 = 33 actions
available. Imaging actions aim,i account for 32 of the ac-
tions. With this action, the satellite attempts to image the
corresponding target in the observation space. The action is

not guaranteed to be successful, as the target may go out of
range before the controller has settled to point the instrument
at the target. If the action is successful, the target is added to
the imaged set I. The satellite also has the scanning action
ascan. This action activates the previously described sequence
of warm-up, scan, and cool-down, then adds any detected
targets to the known set K.
• Reward Function: The reward function reflects the opti-
mization objective defined in Equation 1. With Is being a
satellite’s imaged set before the step and I ′

s after the set, the
reward at a step for satellite s is

rs(Is, I ′
s) =

∑
τi∈I′

s\Is

ri (2)

unless multiple satellites have imaged the same target at the
same step, in which case the reward is distributed evenly
among them.
• Transition Model: Transitions are given by a generative
model (i.e., a simulator). At each step, the simulation is
propagated until any satellite completes an action. When that
action is done, a new action is selected for that satellite and
the simulation continues. Since actions can take different
amounts of time, this results in the satellites acting asyn-
chronously. Episodes are executed for 15 orbits before the
environment is reset and rerandomized.

Implementation—The MDP is implemented using BSK-RL2,
a package for defining high-speed, high-fidelity RL environ-
ments for spacecraft tasking [27]. The environment uses
Basilisk [28] for spacecraft dynamics and flight software
modelling, and it provides an interface to RL libraries using
the standard PettingZoo [29] and Gymnasium [30] APIs.

The fidelity of the simulation environment allows the results
to be applicable to a flight-like system; no major simplifica-
tions are made, and any additional effects that one may wish
to account for can be added to the simulation. In this work,
satellites are modelled using a multibody physics simulation.
Flight-proven flight software actuates the reaction wheels and
controls the instruments. Satellites are affected by J2 effects
and atmospheric drag. Solar system data is loaded using
SPICE [31]. System parameters are the defaults given in
BSK-RL, other than those specified in reference [11].

3. REINFORCEMENT LEARNING
The objective of RL is to find the policy a = π(s), or map-
ping from states (or observations) to actions, that maximizes
the expected γ-discounted sum of future rewards, which is
known as the value:

V π
MDP(s) = r + γE

[
V π
MDP(s

′)
∣∣T (s′|s, a), π(a|s)] (3)

= r0 + γr1 + γ2r2 + · · · =
∞∑
i=0

γiri (4)

The learning agent does not directly know information about
the environment; rather, it must explore the environment and
gain experience to maximize the performance of the policy
[32].

Modifications to the MDP

This problem requires various modifications to the stan-
dard MDP formulation, yielding a decentralized partially-

2https://avslab.github.io/bsk_rl/
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observable semi-Markov decision process (Dec-POsMDP).
The rationale for these modifications are described below.

Semi-MDPs—Semi-Markov decision processes (sMDPs) are
used to describe MDPs in which steps have a non-constant
time differential associated with them [33, 34]. While many
problems can be represented with fixed timesteps (e.g. turn-
based games, discretized continuous control, etc.), schedul-
ing problems often include tasks with different time costs
associated with them. In this problem, each imaging action
takes a variable amount of time, which is also different from
the duration of the scanning action; thus, using the sMDP
framework is advantageous. To encode this opportunity
cost in the value function, the discount factor γ becomes a
discount rate that is exponentiated by the amount of time
elapsed rather than the number of steps:

VsMDP(s0) = γ∆t0r
(γ)
0 + γ∆t0+∆t1r

(γ)
1 + . . . (5)

=

∞∑
t=0

γ
∑t

i=0 ∆tir
(γ)
t (6)

where the γ-discounted step reward is

r(γ) =

∫ ∆t

0

γtρ(t)dt (7)

where ρ(t) is a reward density function over the course of
a step; in this problem, all reward densities are given as a
Dirac-δ function at the end of the step. This modification is
also made within any value-like computations within training
algorithms, such as generalized advantage estimation [35].

Decentralization—Decentralization and partial observability
are common properties in multiagent RL environments [36].
In these cases, each agent receives an individual observa-
tion of the environment and independently acts accordingly.
For this problem, each agent makes decisions independently
based on their local view of the environment. However, all
experience is used to train the same policy, of which copies
are executed independently on each satellite for a scalable
solution.

Asynchronicity— Multi-agent sMDPs with decentralized
decision-making lead to asynchronicity: Because different
actions of different durations are taken by different agents,
decisions are not made at the same time. Reference [37]
demonstrates that learning is possible under these conditions
in similar scheduling problems.

Training Pipeline

In this work, proximal policy optimization (PPO) is used for
training policies [38]. PPO is a widely-used DRL algorithm
that has been demonstrated to perform well across domains
such as games and robotics. It has previously been demon-
strated on other Earth-observation scheduling problems [11].
The RLlib implementation of PPO is used [39], modified to
handle asynchronicity and semi-Markov intervals3.

A hyperparameter search was performed to find a strong
training configuration, yielding a learning rate of 3 × 10−5,
discount rate of 0.995 (with time units of s), and batch size

3Examples of these modifications are given in avslab.github.
io/bsk_rl/examples/time_discounted_gae.html and
avslab.github.io/bsk_rl/examples/async_multiagent_
training.html.

Table 2: Total reward (µ±σ) relative to Ring-6 policy across
all benchmarks [%].

Benchmark Constellation
Policy Ring String All
Ring-6 100.0± 0.0 100.0± 0.0 100.0± 0.0
Ring-12 92.1± 9.7 86.3± 13.4 88.8± 12.3
String-3 91.1± 7.7 94.0± 6.7 92.7± 7.3
String-6 93.5± 8.1 97.8± 6.0 95.9± 7.3

of 100 samples per thread. All other parameters use the
RLlib defaults. Policies are represented by a 2 × 2048
node multilayer perceptron (MLP). Each policy is trained
for 48 hours on 32 threads; this corresponds to 3.3M to
3.7M environment interactions and 8.8 to 13.8 satellite-years
on-orbit. Four policies are trained: String-3 and String-
6 are trained on a string constellation with S = 3 and 6
respectively, and Ring-6 and Ring-12 are likewise trained on
a ring constellation. In each episode, the target appearance
rate τ̇ is randomly sampled between 100 and 1000 targets per
hour. Each episode is propagated for 15 orbits of decision-
making.

4. POLICY PERFORMANCE
To evaluate the policies, each is benchmarked across different
constellations and target rates for 15 orbits. The ring and
string constellation are both tested for S between 1 and 36
satellites; other than a difference in inclination (90◦ versus
60◦), the two constellations are the same for S = 36. The
target rate τ̇ is varied between 100 and 1000 targets per hour,
as the agent was exposed to in training. The size of the policy
network makes its practical impact on storage and compute
negligible, with inference taking 10 to 20 ms at each decision.

A few key metrics are examined to understand the behavior
and performance of the policies under different conditions.
The known percentage K% and imaged percentage I% reflect
the fraction of targets with at least one opportunity that are
respectively scanned and imaged by the constellation; this
metric is used so that the performance is not diluted by targets
that no satellite has access to over the course of the simulation
purely due to geometry. Imaged per known I/K gives the
fraction of scanned targets that are eventually imaged. The
scanning mode percent is the fraction of time spent taking the
scanning action (as opposed to an imaging action) on average
by all satellites in the constellation. The total reward ΣR is
the sum of the priorities of imaged targets, i.e., the undis-
counted sum of rewards. The normalized reward ΣR/Sτ̇ is
the previous metric normalized by the target appearance rate
and the number of satellites.

The four policies, Ring-6, Ring-12, String-3, and String-6,
are compared in cross-sections of the benchmark in Figure 3.
The Ring-6 policy performs best across all satellite counts
when deployed in the ring constellation (Figure 3a) at τ̇ =
500, while for the target appearance rate τ̇ = 1000 String-6
policy is generally best when deployed in the string constel-
lation (Figure 3b). This is expected based on the hypothesis
that policies perform best when the deployment environment
is more similar to the training environment. However, Table 2
shows that on average the Ring-6 constellation is best, even
if other policies slightly outperform it in certain cases. The
Ring-6 policy is used throughout the remainder of the paper
due to its strong ability to generalize.
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(a) Ring benchmark with τ̇ = 500 targets per hour.
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(b) String benchmark with τ̇ = 1000 targets per hour.

Figure 3: Policy performance comparison on a subset of
benchmark cases.

The full benchmark of the Ring-6 policy on the ring and
string constellations are given in Figure 4a and Figure 5,
respectively. One of the most important trends is in the I/K
ratio: as long as S > 1, at least a majority of scanned targets
are imaged, with fractions > 75% in both constellations if
S ≥ 6. Unsurprisingly, increasing the number of satellites
“saturates” the environment: with enough satellites, nearly
all possible targets are scanned and imaged. As the number of
satellites increases, the fraction of time spend in the scanning
mode also increases in order to avoid exhausting the known
target list.

5. EVIDENCE FOR COLLABORATION
A critical goal of this work is demonstrating that the agents
have learned to collaborate. There are two questions that can
be investigated to demonstrate this:

1. Does increasing the number of agents scale performance
at a rate greater than one?
2. Do agent behaviors diversify when working with other
agents?

Both of these questions can be answered affirmatively by
examining the behavior of the agents across various cases.

Multi-Satellite Performance Gain

The first question to test for collaboration—whether in-
creasing the number of satellites disproportionately improves
performance—can be addressed by comparing the behavior
of the policy and constellation with and without communica-
tion. In the no communication cases, the satellite known Ks
and imaged Is sets are maintained individually, without ever

updating based on other satellites’ knowledge.

Communication Benchmark Comparison—The communica-
tion case (Figure 4a) and no communication case (Figure 4b)
are compared across all metrics. The no communication case
is uniformly worse than the standard case with communica-
tion. The percent of known targets is slightly depressed, and
the percent of imaged targets is considerably lower. This
is despite the fact that the no communication case spends
as much or more time than the communication case in the
scanning mode.

Image Counts—It remains a possibility that the no commu-
nication case primary does poorly relative to the standard
environment due to many images being duplicates of those
already taken by another satellite. Previous work has shown
that simply introducing a request deduplication mechanism
between independent imaging agents improves performance,
but this does not imply learned collaboration [17].

To examine this, Figure 6 compares the ratios of unique and
total (unique + duplicated) images between the communica-
tion and no communication cases. As expected, communica-
tion dominates no communication for the number of unique
images in all cases. Also unsurprisingly, when there are a
large number of satellites and relatively few targets, the no
communication case dominates for total images since each
target can be reimaged by many satellites (which communica-
tion prevents). The evidence for collaboration lies in the low
satellite count, high target count region of the total images
plots: In these cases, communication leads to more total
images (without any duplication) than the no communication
case (which could be duplicating images). This implies that
the satellites are working together in a way that improves
overall performance beyond what communication-based im-
age deduplication induces.

Individual Behaviors

Collaboration is also implied by implicit role assignment or
diversification of behaviors within the constellation. If a
satellite acts differently due to the presence and actions of
another satellite, and that positively impacts the constellation-
wide performance, collaboration is occurring.

Discontinuity for Single Satellites—The first evidence that
satellite behavior changes when working together is apparent
in the policy benchmarks (Figure 4a and Figure 5). The
S = 1 cases are discontinuous relative to the multisatellite
behavior in many of the metrics. Both the types of actions
being taken and the outcomes of those actions are consider-
ably different when there are not other satellites impacting the
environment.

Per-Agent Scanning Frequency—In the string constellation,
a satellite’s position in the string is predicted to influence
the behaviors exhibited by that satellite. Figure 7 tests
this hypothesis by plotting the amount of time spent in the
scanning mode versus the satellite’s position in the string.
The leader scans 40% to 68% of the time, since known targets
are sparse in the upcoming ground track. The fourth to sixth
satellite spends the smallest fraction of time (13% to 47%) in
the scanning mode, since the leading satellites have found a
dense list of targets to be scanned. As one looks farther back
in the string, scanning fractions increase since most possible
targets have been scanned and imaged, so these followers can
only find newly appearing targets.

Differing scanning behavior is also expected among agents
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(a) In the standard environment with communication.
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Figure 4: Ring constellation performance of the Ring-6 policy with varying target rate τ̇ and satellite count S.
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Figure 5: String constellation performance of the Ring-6 policy with varying target rate τ̇ and satellite count S.

500

1000
Ring String

0

1

2

3

Un
iqu

e I
ma

ge
s R

ati
o

1 9 18 27 36

500

1000

1 9 18 27 36
0

1

2

3

To
tal

 Im
ag

es 
Ra

tio

Satellites S

 [t
gt/

h]

Figure 6: Ratio of unique and total (unique + duplicated)
images between constellations with and without communica-
tion.

in the ring constellation, but due to the constellation’s sym-
metry, a bias towards scanning versus imaging is expected to
change over time. Figure 8 shows the orbit-by-orbit scanning
percentage of each agent in an S = 6 string constellation.
While initially the behaviors are homogenous for the first
two orbits, diversification of behaviors is first evident for
orbits two through five, where the even-indexed satellites
take a scanning-heavy role, while odd-indexed satellites
tend towards imaging. This behavior inverts—though less
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Figure 7: Scanning time fraction of each satellite in various
string constellations.

prominently—during orbits six through eight. In essence,
the constellation has dynamically created tip-and-cue pairs,
as needed. Through the end of the episode, scanning is less
frequent throughout the constellation since many targets are
available to image that were scanned but not imaged during
earlier opportunities.

Scan-Image Delays—The final evidence for collaboration is
that the satellite that scans a given target is typically not the
satellite that images it. Figure 9 shows a histogram of the
scan-image delay for all imaged targets in a ring constellation
with S = 6 and τ̇ = 1000 targets per hour. On the left
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side of the plot, each grouping is a different follower satellite
imaging the scanned target. As such, only 6.7% of targets
are imaged by the same satellite that scanned it, while 59.4%
are imaged by one of the next three following satellites (at
which point Earth’s rotation has moved the target out of the
ground track). The remainder of images are taken a half-day
later when the satellites have another opportunity to image
them; at this point, the specific agent that images a target
is irrelevant. Satellites are working together because the
majority of images are collected with minimal delay by a later
satellite.

6. CONCLUSIONS
This work presents a scalable solution to constellation-wide
tip-and-cue scheduling, in which satellites must first scan re-
gions to reveal new targets before imaging those targets. For-
mulating the problem as a Markov decision process (MDP)

and solving it using deep reinforcement learning (DRL) is
identified as a promising method for task, as it allows for per-
satellite, closed-loop scheduling behaviors to be learned. This
is necessary, as traditional preplanning methods are unable
to account for target locations that are dynamically revealed.
Benchmarks of the policy across constellation configurations
and target appearance rates yield desirable performance; this
shows that the method generalizes and scales well, and is not
tied to a specific constellation architecture.

A significant finding of this work is that satellites appear to
actively collaborate within the environment. As satellites are
added to a constellation, the performance of the satellites
working together grows faster than the number of satellites.
Individually, the policy yields diverse behaviors among the
agents: Depending on the location of a satellite within the
constellation, it may assume a specific role that biases it
towards scanning or imaging. As a result, it is clear that
the policy found with reinforcement learning (RL) learns
collaborative behaviors for the tip-and-cue constellation en-
vironment.

Future work will include implementing and comparing the
policy’s performance to a heuristic method as well as study-
ing the performance of the system under more flight-like
communication conditions and request distributions.
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