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ABSTRACT

In this paper we investigate the boundedness and
time evolution of four generic types of formation
flights, grace, cartwheel, pendulum and lisa, due
to gravitational perturbations. We start our analysis
in a central field and step-wise add more complex-
ity: first J2, then further zonals and finally a realis-
tic gravitational field. The contribution of different
gravitational components is investigated by analysis
of the missions’ relative motion. In particular the
boundedness is quantified by the time behaviour or
the intersatellite baseline. Also, the role of perigee
precession is emphasized.

Key words: Formation flight; grace; cartwheel;
pendulum ; lisa.

1. INTRODUCTION

With the launch of the Gravity Recovery And Cli-
mate Experiment (grace) mission an old dream of
geodesists came true. It is the first realization of
the concept of Satellite-to-Satellite Tracking (sst)
in the low-low mode, i.e. the measurement of inter-
satellite baselinelength in a leader-follower configu-
ration, which globally portrays the Earth’s gravita-
tional field with unprecedented resolution and accu-
racy [14].

The monthly grace solutions consistently exhibit
typical erroneous North-South features [14]. Al-
though this error behaviour is often associated with
the ground-track of the near-polar grace satellites,
it was argued by [12] that the inherent culprit is
the non-isotropic sst observable. Grace’s K-band
range-rate observable is sensitive in the along-track
direction and carries no radial or cross-track informa-
tion in the signal content. It is asserted that any ob-
servation geometry that could include radial and/or
cross-track gravitational signal would enhance the

gravity signal and, hence, improve the gravity recov-
ery capability. Note that aliasing behaviour, due to
mass variations in the Earth system that are faster
than the one-month grace sampling rate, will not
be eliminated and will still produce North-South er-
ror features.

To support and quantify the above assertion [13]
describes a gravity recovery experiment that makes
use of the concept of formation flying. Four generic
types of Low-Earth Formations (lef) were simu-
lated: a grace-type leader-follower configuration,
a Cartwheel formation that performs a 2:1-relative
ellipse in the orbital plane, a Pendulum mission and
a lisa-type formation that performs circular relative
motion including out-of-plane motion. The dynam-
ics of such formations are easily understood in the
framework of homogeneous Hill equations, cf. [12],
although the implementation in a realistic gravity
field requires careful attention to many fine details.
All four lef considered will have a typical base-
line length of around 10 km. The names grace,
Cartwheel Pendulum and lisa will be used in this
paper as placeholders for these generic formations
and should not be mistaken for the actual missions.

This paper is concerned with demonstrating the fea-
sibility of such Formation Flying (ff) missions for
gravity recovery purposes. The relative motion be-
tween satellites within a formation is highly corre-
lated with the nature of the gravitational force of
the main attracting body. Thus, mission stability,
secular and periodic perturbation of the formation
can be explained to a great extent by analyzing the
gravitational perturbations.

In this study we therefore investigate the relative mo-
tion within a formation in different types of gravita-
tional fields. We start with a central force field and
gradually add gravitational complexity. The issue
of boundedness within a central field is elementary
and can be demonstrated analytically. The forma-
tion evolution in a J2-field and subsequently in a
general zonal field can partially still be discussed an-



alytically, although we show some numerically inte-
grated baseline evolutions, too. The development of
the intersatellite baseline in a full gravitational field
is analyzed by numerical integration over a period of
one month.

2. RELATIVE MOTION IN THE CEN-
TRAL FIELD

2.1. Hill equations

Let us adopt the following ff convention. All 4
formations consist of a chief satellite and a deputy
satellites. We assume a local orbital reference frame
(or Hill frame) with its origin in this chief satellite
and oriented in along-track (x), cross-track or orbit-
normal (y) and radial (z) direction. The relative
motion of the deputy in the local orbital reference
frame is described in general by [11]:

ẍ + zθ̈ + 2żθ̇ − x

(

θ̇2 −
µ

r3
c

)

= ax (1a)

ÿ +
µ

r3
c

y = ay (1b)

z̈ − z

(

θ̇2 + 2
µ

r3
c

)

− xθ̈ − 2ẋθ̇ = az (1c)

where µ is the gravitational constant and (ax, ay, az)
are non-Keplerian forces acting on the deputy satel-
lite. They could be due to atmospheric drag, Earth
oblateness effects or control thrusters.

Here we consider only formations where the chief
motion is essentially circular. In this case the chief
rate θ̇ is constant and equal to the mean orbit rate
n =

√

µ/r3
c . The equations of motion simplify to

the well-known linearized Hill Equations (he) [5], see
also [4]:

ẍ + 2nż = ax (2a)

ÿ + n2y = ay (2b)

z̈ − 2nẋ − 3n2z = az (2c)

Equation (2) has been used extensively in space-
craft formation flying mission analysis and control
research. They are reasonable as long as (x, y, z) are
small compared to the chief orbital radius and the
chief motion is essentially circular.

Since they are linear, the he can be solved analyt-
ically. Assuming no perturbations or thrusting is
present (ax = ay = az = 0), all possible deputy
relative motions can be expressed in the following
closed form [11]:

x(t) = −2A0 sin(nt + α) −
3

2
ntzoff + xoff (3a)

y(t) = B0 cos(nt + β) (3b)

z(t) = A0 cos(nt + α) + zoff (3c)

Note that the out-of-plane motion is decoupled from
the in-plane motion. The integration constants can
be expressed in terms of initial conditions through:

A0 =
1

n

√

ż2
0 + (2ẋ0 + 3nz0)2 (4a)

B0 =
1

n

√

ẏ2
0 + (ny0)2 (4b)
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(4c)

β = arctan
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−ẏ0
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)

(4d)

zoff =
2

n
(ẋ0 + 2nz0) (4e)

xoff = x0 −
2ż0

n
(4f)

The solution of the homogeneous he allows the anal-
ysis of arbitrary formation flight motion in terms of
the initial Cartesian state conditions used in (4).

2.2. Condition of bounded relative motion

For the relative motion to be bounded, we must re-
quire the drift term to vanish, i.e. zoff = 0 for all
missions. Therefore,

ẋ0 = −2nz0 (5)

Fulfilling this condition also removes the constant
offset in the radial component. Similarly one can
derive the equal phase angle condition α = β as,

y0 ż0 − ẏ0 z0 = 0. (6)

Eventually, setting xoff = 0 leads to a formation
flight with periodic along-track component with no
secular drift.

Equations (5) and (6) give the necessary conditions
for a bounded motion in a central gravity field. Al-
ternatively, [9] has derived the solution of the homo-
geneous he in terms of the classical Keplerian orbit
element differences as

x(t) = −2a∆e sin(ν ± π −∆ω)

+ a(∆u0 +∆Ωcos I) −
3

2
nt∆a (7a)

y(t) = a
√

∆I2 +∆Ω2 sin2 I cos(u − uy) (7b)

z(t) = a∆e cos(ν ± π −∆ω) + ∆a (7c)

with

uy = arctan

(

∆I

−∆Ω sin I

)

(8)

Analogously, the boundedness condition can also be
expressed using the differential classical Keplerian
orbit elements.

∆a = 0. (9)



An identical orbit period both for the chief and
deputy satellites is a direct consequence of this con-
dition. Furthermore, the constant bias of the radial
motion also vanishes. Note that while the condition
in equation (5) is a linear approximation result, the
equal orbit energy condition in equation (9) is the
full solution for the central gravity field model.

The equal phase angle condition is recast using clas-
sical orbit element differences into

tan(ω + ∆ω ± π) =
∆I

−∆Ω sin I
(10)

Eventually, fulfilling

∆u0 + ∆Ωcos I = n(2π), (11)

removes the constant term of the along-track com-
ponent.

Independent from the formation design, the bounded
motion condition (5) or (9) should be satisfied. How-
ever, the other conditions can be used to design dif-
ferent flying formations.

2.3. Formation design

The four generic ff types are characterized by the
following descriptions:

• grace is a pure along-track formation. All pe-
riodic terms are zero and the variable xoff deter-
mines the baseline length.

x(t) = ρ (12a)

y(t) = 0 (12b)

z(t) = 0 (12c)

which ρ is the baseline length between the space-
crafts.

• The pendulum scenario also has a constant
along-track term xoff , but additionally a non-
zero cross-track amplitude B0. The relative mo-
tion takes place in the xy-plane, i.e. the local
horizontal plane. The intersatellite baseline is
variable. Only its component in the along-track
direction (ρx) is constant whereas the cross-
track component ρy oscillates at twice the or-
bital frequency 1cpr.

x(t) = ρx (13a)

y(t) = ρy cos(nt + β) (13b)

z(t) = 0 (13c)

It is clear that the phase shift in the cross-track
component can be realized if the satellites or-
bit the Earth in orbital planes with different in-
clinations. The relationship between the cross-
track phase shift and the differential orbital el-
ements is explicitly expressed in (8). A non-
zero value for the differential inclination yields
a cross-track phase shift.

• The Cartwheel configuration has a non-zero A0

value. Without cross-track motion (B0 = 0)
this results in an in-plane elliptical relative mo-
tion [8]. The maximum along-track separation
is twice as large as the maximum radial separa-
tion. Hence a 2:1 relative ellipse

x2

4ρ2
z

+
z2

ρ2
z

= 1, (14)

where ρz is the maximum radial separation.

• The lisa-type mission achieves a circular rela-
tive motion by setting B0 =

√
3A0 and matching

the phases α and β. Within the approximation
of the he, the baseline is constant. Projection
of the circular motion on the xy and xz forms
two ellipses whereas the relative motion in the
yz plane is a purely linear motion.

x2

ρ2
+

y2

3ρ2

4

= 1 (15a)

x2

ρ2
+

y2

ρ2

4

= 1 (15b)

y =
√

3z (15c)

Figure 1 shows the relative motion of the aforemen-
tioned formation types. All the three components
are constant for the grace type mission whereas
the Pendulum has a constant along-track and a vari-
able cross-track component. The Cartwheel’s com-
ponents vary both in the along-track and radial di-
rections. The lisa type mission has variable compo-
nents in all three directions.
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Figure 1. Relative motion of four formation types
in the Hill frame: grace (top left), Cartwheel (top
right), Pendulum (lower left) and lisa (lower right).

The necessary condition for achieving these configu-
rations and the corresponding differential elements in
the Hill frame are summarized in table 1. These dif-
ferential elements can be converted to inertial orbital



Table 1. Initial conditions and state vectors of different formation types.

formation initial conditions initial position (ρ0) initial velocity (ρ̇0)

grace A0 = B0 = zoff = 0 (ρ, 0, 0) (0, 0, 0)
Pendulum A0 = zoff = 0 (ρx, ρy cos β, 0) (0,−nρy sin β, 0)
Cartwheel B0 = xoff = zoff = 0 (±2

√

4a2e2 − z2
0 , 0, |z0| ≤ 2ae) (−2nz0, 0,±n

√

4a2e2 − z2
0)

lisa xoff = zoff = 0; α = β
B0 =

√
3A0 =

√
3ρ/2 (±

√

ρ2 − 4z2
0 ,±

√
3z0, |z0| ≤ ρ/2) (−2nz0,±

√
3n

√

ρ2/4 − z2
0 ,±n

√

ρ2/4 − z2
0)

elements for integration purposes [1]. In table 1, rel-
ative position and velocity vectors are expressed in
terms of the chief satellite’s Kepler elements (a, e, u)
and the baseline length ρ. The latter two configura-
tions are defined by setting the free parameter (z0).

3. RELATIVE MOTION IN J2 FIELD

The homogeneous he are a helpful tool for first or-
der formation design. However, the solution in (3)
is no longer valid if the chief motion is not circu-
lar. Even small amounts of eccentricity can produce
modelling errors comparable to those produced by
J2 gravitational perturbations or atmospheric drag.
Moreover, the analytical relative motion solutions in
equation (3) have been derived based on the Keple-
rian motion. In reality, satellites are perturbed by
different disturbing forces. Among them, the Earth
flattening dominantly affects leo satellites motion in
such a way that the aforementioned constraints are
not sufficient to guarantee the desired relative orbit
geometry. Therefore, formation flight design would
be more realistic if we take J2-field perturbation into
account.

In general, the gravitational potential for an arbi-
trary point with spherical coordinates (r, θ, λ) can
be represented as:

V (r, θ, λ) =
µ

r
+ R(r, θ, λ, C̄lm, S̄lm), (16)

with µ = GMe, the universal gravitational constant
times mass of the Earth. The contribution of the
spherical harmonic coefficients C̄lm and S̄lm is rep-
resented by the disturbing function R. They lead
to time variable orbital elements known as osculat-
ing elements. The equations of motion, describing
the time evolution of these elements, are Lagrange’s
Planetary Equations (lpe), cf. [7].

The disturbing potential R causes periodic and secu-
lar perturbations on the orbital elements. In partic-
ular, the degree 2 zonal harmonic J2, corresponding
to the Earth’s flattening, causes strong drift effects,
long-term oscillations and short-term oscillations at
twice the orbital frequency [3].

For purposes of formation keeping at least the secu-
lar relative drift between the satellites should be can-

celled. For this purpose the cyclic short- and long-
period terms are averaged out of the J2 disturbing
function:

R̄2(a, e, I) =
ε(a, e)ηµ

2a

(

1

3
−

1

2
sin2 I

)

(17)

with ε(a, e) = 3J2a2
e/a2η4 and the eccentricity mea-

sure η =
√

1 − e2. Inserting (17) into the lpe gives
expressions for the first-order secular perturbation:

ȧ = ė = İ = 0, (18a)

Ω̇ = −
ε(a, e)

2
n cos I, (18b)

ω̇ =
ε(a, e)

4
n(5 cos2 I − 1), (18c)

Ṁ = n

[

1 +
ε(a, e)

4
η(3 cos2 I − 1)

]

. (18d)

with the chief mean motion being n =
√

µ/a3. First,
the secular rates are independent from Ω, ω and M .
Consequently, they can be selected freely to form a
desired formation. Second, the right ascension of the
ascending node Ω, the argument of perigee ω and
the mean anomaly M all experience drift. There-
fore, a cluster of satellites retains its relative ge-
ometry if the drifts of the satellites are identical.
Reference [10] refers to such relative orbits as J2-
invariant. For simplicity, consider a cluster with two
satellites whose mean Keplerian elements are given
by (a1, e1, I1,Ω1, ω1,M1) and (a2, e2, I2,Ω2, ω2,M2).
A formation will not experience secular drift in a J2

gravity field if the following constraints are fulfilled:






∆Ω̇12 = Ω̇2 − Ω̇1 = 0
∆ω̇12 = ω̇2 − ω̇1 = 0
∆Ṁ12 = Ṁ2 − Ṁ1 = 0

(19)

The conditions define a nonlinear system of 3 equa-
tions in a1, a2, e1, e2, I1, I2. In formation design one
usually fixes the orbital parameters of one satellite.
The aim is to find the differential elements ∆a,∆e
and ∆I that realize a bounded formation. Hence,







∆Ω̇12(∆a,∆e,∆I) = 0
∆ω̇12(∆a,∆e,∆I) = 0
∆Ṁ12(∆a,∆e,∆I) = 0

(20)

Since the differential elements ∆a,∆e and ∆I are
usually small, the nonlinear equations (20) can be



replaced by a linearized system of equations

JΩ̇,ω̇,Ṁ
a,e,I (a1, e1, I1)x = 0. (21)

with x = [∆a, ∆e, ∆I]T . The Jacobian J contains
the partial derivatives of the drift toward the metric
Kepler elements a, e, I, evaluated in the master satel-
lite. The linear system (21) is a homogeneous system.
If rankJ = 3 it will have the trivial solution only.
Otherwise the system has many non-trivial solutions.
Solving all three conditions in equation (21) leads to
satellite clusters with very large separation distances.
Instead, it is common to only solve a sub-set of con-
ditions. For example the original J2-invariant rela-
tive motion conditions require that ∆Ω̇12 = 0 and
∆ω̇12 +∆Ṁ12 = 0 is true to first order.

4. ZONAL GRAVITATIONAL FIELD

4.1. Secular perturbations

Although the Earth’s flattening, represented by J2,
is the dominant gravitational perturbation, other
spherical harmonic components give rise to perturba-
tions, too. In this section we consider the zonal field,
i.e. that part of the gravitational field that does not
depend on longitude. Such an axi-symmetric gravi-
tational field is expressed as:

V (r, θ) =
µ

r

[

1 −
N

∑

n=2

(

R

r

)n

J̄nP̄n(sin θ)

]

. (22)

Equivalently the disturbing force is

Rz(r, θ, C̄n0) = −
µ

r

N
∑

n=2

(

R

r

)n

J̄nP̄n(sin θ) (23)

where P̄n0 are the Legendre polynomials of degree
n, The Jn are the zonal coefficients, which can also
be expressed as Jn = −Cn,0, i.e. as non-normalized
spherical harmonic coefficients of order 0.

Orbits of satellites around an axi-symmetric Earth
are subject both to secular and periodic perturba-
tions [2]. Similar to the J2-field perturbation, the
secular variations of the orbit elements caused by
the higher zonal harmonics can be derived from the
lpe. Metric orbital elements (a, e and I) experience
no secular variations, e.g. [2, 15]:

ȧz = ėz = İz = 0. (24)

Therefore, satellite orbits around an Earth with axi-
ally symmetric mass distribution are size-shape sta-
ble1.

1An orbit is called size-shape stable if its semi-major axis
and eccentricity are constant on average [6]

Similar to the J2 scenario, the angular elements (Ω,
ω and M) do experience secular variations by the
higher zonal harmonics. However, the secular per-
turbations in these elements are induced only by even
zonal harmonics [7]. Reference [15] derives such per-
turbations by means of zero-degree Hansen coeffi-
cients. The rate of secular perturbations are only
functions of the metric elements a, e and I.

Ω̇sz = Ω̇ + δΩ̇(a, e, I) (25a)

ω̇sz = ω̇ + δω̇(a, e, I) (25b)

Ṁsz = Ṁ + δṀ(a, e, I) (25c)

which says that the secular rates, due to the gen-
eral zonal gravity field, is composed of the J2 secular
rate (first term at right side) and a residual part
from higher degree even zonal terms. For example,
a leo satellite with orbital elements {a, e, I,Ω, ω} =
{6768 km, 0.000 07, 89.5◦, 0, 0} is considered. Table 2
provides its secular rates for the gravitational field
up to degree 6. As can be expected from the numer-

Table 2. Secular perturbation due to J2 and J2–J6.

Element J2 J2 + J4 + J6

Ω̇ −0.0706[deg/day] −0.0709[deg/day]
ω̇ −4.0463 −4.0578
Ṁ −4.0469 −3.9880

ical dominance of J2, the residual effect of the higher
degree terms is moderate.

In the general zonal field the satellites within a
formation experience identical secular variations in
their angular elements as long as they have identi-
cal metric elements. Therefore, the conclusions from
the previous section apply here as well. A formation
that is drift-free in a J2 field will be drift-free in an
axially symmetric gravitational field, too.

4.2. Periodic perturbations

As discussed in section 3, the expressions for secu-
lar perturbations are achieved through averaging the
cyclic terms in the disturbing functions. Thus, in re-
ality non-secular variations will occur in all elements
due to all zonal harmonics [2]. Such periodic varia-
tions of orbital elements can be formulated in terms
of zero-order Hansen coefficients [15]. The general
form of the expression for the long-periodic varia-
tions is

k̇pz = k̇p2(a, e, I, ω) + δk̇(a, e, I, ω) (26)

in which k can denote any of the Keplerian elements
{a, e, I,Ω, ω}. The pz subscript stands for periodic
variations produced by zonal harmonics whereas p2
represents the J2-field periodic perturbation. They



are decomposed into the second and higher zonal har-
monics perturbations. Perturbations induced by sec-
ond and higher degree zonals are functions of a, e, I
and ω. In contrast to the previous statement about
secular zonal perturbations, the satellites in a for-
mation with identical metric elements are subject to
different periodic variations.

To summarize these analytical findings: a forma-
tion’s evolution will be bounded—in the sense that
all differential secular motion is zero—as long as
the individual satellites have identical Keplerian el-
ements a, e and I. At the same time a differential
perigee angle δω will give rise to a differential (long)
periodical motion, despite the identical metric ele-
ments. Consequently, the intersatellite baseline will
show long period cyclic motion, too.

One interaction between secular and periodic evolu-
tion within the formation arises from perigee preces-
sion. The line of apsides continuously rotates due
to the Earth’s flattening. Thus, the satellites in
a formation display different time-dependent long-
periodic perturbations even if they have identical
metric elements.

As a representative example, let us consider the
Cartwheel type formation with the following differ-
ential elements:

∆a = ∆e = ∆I = ∆Ω = 0, (27a)

∆ω = ∆M = π. (27b)

The chief satellite’s Keplerian elements are identi-
cal to the given values above Table 2. The long-term
cyclic variations of the formation’s differential orbital
elements for a complete revolution of perigee are an-
alyzed in a J2 + J4 gravitational field (by analytical
means). The results are shown in Figures 2–6 as a
function of the argument of perigee and compared to
the corresponding variations in a J2 field.
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Figure 2. δ∆a long-periodic variation.

Despite the vanishing secular perturbations, long pe-
riodic variations do change the semi-major axes. The
variations in a J2 + J4 field are equal to those in a
J2 field. The maximum deviation of the semi-major
axes amounts to a few meters at 400 km altitude.
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Figure 3. δ∆e long-periodic variation.

Also the differential eccentricity will undergo long-
period variation as the apsidal line rotates. Different
patterns are observed for J2 and J2 + J4 fields.
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Figure 4. δ∆i long-periodic variation.

A similar comparison is shown for differential inclina-
tion behaviours. It is differently influenced by differ-
ent zonal harmonics. Deviations of differential incli-
nation from the nominal difference are mapped into
the cross-track component.
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Figure 5. δ∆Ω long-periodic variation.

Differential right-ascension is similarly affected by
the zonal harmonics. The size of its deviation is
about the variations of differential inclination.

The differential argument of perigee is significantly
perturbed by the higher zonal harmonics. Its devia-
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Figure 6. δ∆ω long-periodic variation.

tions is nearly two orders of magnitude greater than
the variations in ∆I and ∆Ω.

5. FULL GRAVITATIONAL FIELD

Beyond the zonal field, the real Earth gravity field is
comprised of a full spectrum of spherical harmonic
components. Without writing down the correspond-
ing force function in terms of spherical harmonics, we
consider here the longitude-dependent gravitational
forces leads to

R(r, θ, λ) = Rz(r, θ) + Rt,s(r, θ, λ) (28)

in which the subscript t denotes tesseral and s de-
notes sectorial harmonics. The tesseral, sectorial or
longitude-dependent component Rt,s of the Earth’s
disturbing forces will additionally perturb the satel-
lite orbit. Except for cases of resonance, they impose
no secular perturbations.
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Figure 7. Cartwheel intersatellite distance in a J2

field.

Reference [7] derived analytical expressions for per-
turbations of orbital elements due to given harmonics

C̄nm or S̄nm. Alternatively, [13] employed numeri-
cal integration to show the effect of the low-degree
tesseral harmonics. The presence of the tesseral har-
monics causes periodic variations on the intersatellite
distance of all the formations (grace, Cartwheel,
Pendulum and lisa).
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Figure 8. Cartwheel intersatellite distance in a full
degree-2 field.

Figures 7 and 8 are the result of such a numerical
integration of a Cartwheel type formation (relative
ellipse about 10:20 km) over a 30-day period. The
top panel of figure 7 shows that the baseline oscillates
in the 1:2 ratio in a very stable way during the first
day. After 30 days, the baseline oscillation is not
in a 1:2 ratio anymore. Figure 8 demonstrates that
in a full gravity field up to degree 2, including the
non-zonal terms, this behaviour becomes even worse.

Simulations for the generic formation types grace,
Pendulum and lisa show similar behaviour. The
boundedness of formation evolution is mostly de-
cided by the J2 secular perturbations. But even if
a formation is designed under the boundedness con-
ditions higher harmonics will still cause periodic per-
turbations on the intersatellite distance.

As a last example, figure 9 shows what happens to
the baseline in a low-Earth lisa formation due to
the full gravity field. The orbits were integrated
again over a 30-day period in order to capture the
effects of perigee precession. The top panel shows a
nearly constant intersatellite distance during the first
day, which is expected for the circular relative lisa

motion. After 30 days (bottom panel) the baseline
wildly fluctuates, i.e. the relative circle does not exist
anymore. This effect, mostly due to secular rotation
of the apsidal line, is clearly demonstrated in the Hill
frame, figure 10, particularly the top left panel.
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Figure 9. Lisa intersatellite distance in a full gravity
field.

6. CONCLUSIONS

By a stepwise increase in complexity of the gravity
field, we analyzed the boundedness and more gen-
eral behaviour of formation flights. The dominance
of the Earth-flattening in the perturbation spectrum
requires certain boundedness conditions. Identical
metric elements lead to a bounded motion formation
in a higher degree axi-symmetric gravitational field.
Although the secular evolution can be kept in check,
periodic effects will remain.

The perigee precession due to J2 (and higher even
zonals) is of particular concern as it induces long
period effects to all Keplerian elements and, hence,
deform the formation shape and the intersatellite dis-
tance itself. Higher spherical harmonic terms cause
further periodic perturbations, mostly short term.
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Figure 10. Lisa relative motion in a full gravity field,
viewed in the local orbital reference frame.
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