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STATISTICAL APPROACHES TO INCREASE EFFICIENCY OF 
LARGE-SCALE MONTE-CARLO SIMULATIONS 

David Shteinman,* Thibaud Teil,† Scott Dorrington, ‡ Huan Lin, §  

 Thomas Dixon, ** Hanspeter Schaub,†† John Carrico,‡‡ and Lisa Policastri§§ 

Numerical astrodynamics simulations are regularly characterized by a large input 

space and complex, nonlinear input-output relationships. Monte Carlo runs of these 

simulations are typically time-consuming and numerically costly. In this paper the 

Design and Analysis of Computer Experiments (DACE) approach is adapted to as-

trodynamics simulations to improve runtimes and increase information gain. Two 

case studies are presented: a satellite detumbling simulation using the BASILISK 

software, and orbit trajectory simulations in the IBEX-extended mission. The space-

filling and meta-modelling techniques of DACE are shown to provide significant 

improvements for astrodynamics simulations in speed of sensitivity analysis, deter-

mination of outliers and identifying extreme output cases not found by standard 

simulation and sampling methods.   

INTRODUCTION 

Many numerical astrodynamics analyses are characterized by a large input space with dispersions on those 

inputs. They also require numerical integration to propagate orbital trajectories, as well as the spacecraft atti-

tude and actuator states forward in time.  Often, Monte Carlo simulations are used, where each sample point is 

propagated numerically. These features all contribute to long Monte Carlo simulation times. Furthermore, the 

underlying input-output relationships are nonlinear with many variables interacting with one another. Hence, 

it is difficult to study the behavior in simulation of output responses as a function of the inputs - as that requires 

testing of a wide range of input values. Using traditional methods of varying one factor at a time and re-running 

the whole simulation for each instance is excessively time consuming. In addition, varying one factor at a time 

means the end user of the simulation’s results cannot be certain they have captured the full range of possible 

input values.   

The aim of this paper is to adapt a method for astrodynamics simulations from industrial statistics and empir-

ical  modeling, to achieve  the following outcomes:  

1) Significantly reduce the run time of large-scale Monte Carlo simulations;  

2) Ensure the simulation covers a wider range of values/worst case scenarios for significantly less runs than 

required under standard Monte-Carlo methods;  
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3) Increase the efficiency of Sensitivity Analysis and Optimization by using a fast/computationally cheap 

approximate model of the simulation, thus avoiding the need to re-run the simulation to test the effect of alternate 

input values on the output.   

To achieve outcomes 1-3, we adapt the techniques of Design & Analysis of Computer Experiments Techniques 

(DACE) to astrodynamics simulation and illustrate with two Case Studies.   

DESIGN & ANALYSIS OF COMPUTER EXPERIMENTS TECHNIQUES (DACE)  

DACE is an adaptation for simulations of the DOE approach (Design of Experiments) used in physical 

experiments on industrial processes. DOE is a statistical method of experimentation that varies all inputs in a 

simulation simultaneously (rather than one factor at a time) and achieves the following: 

• Determines the critical inputs (those with the largest effect on outputs of interest) 

• Quantifies the input/output relationships in an analytical form within the experimental range 

• Shows interactions between inputs. 

 

The method of DACE (see Reference 1) has been used extensively in the automotive and other manufac-

turing sectors, but so far as we know, not in astrodynamics. DACE is used to augment the limited number of 

runs of a simulation by fitting an approximate statistical model – a surrogate or “Meta-Model” – based on a set 

of limited observation data acquired by running the simulation at carefully selected design points, generated 

from a “Space Filling” design. The Meta-model is easier and faster to run than the simulation and is used to 

predict the simulation performance at unobserved input values. The approximate Meta-model is much simpler 

than the true one: it approximates the original model as closely as possible and is computationally cheap to 

compute. The Meta-model may be used for sensitivity analysis, optimization and prediction without needing 

to re-run the simulation. 

This paper investigates the applicability of DACE to two astrodynamics simulations that use Monte Carlo 

runs: The first is aimed at predicting the results of an  attitude control simulation using the Basilisk program 

developed by the Autonomous Vehicle Simulation (AVS) Laboratory at University of Colorado at Boulder.* 

The second is on using the sampling aspects of DACE in simulations of trajectory design for the Interstellar 

Boundary Explorer (IBEX) spacecraft - to seek out performance results not previously observed. 

In both case studies, we use a five-step process to adapt DACE to astrodynamics simulations (see Reference 

2): Step 1) Factor Screening; 2) Design the Simulation “Experiment” using a space -filling design; 3) Build a 

Meta-model; 4) Validating/Checking the Meta-model; 5) Using the Meta-model for Sensitivity Analysis. This 

process is demonstrated in Figure 1. 

                

Figure 1. Schematic showing concept of a Space-Filling Design and Meta-model as used in Design & 

Analysis of Computer Experiments Techniques 

 

The efficiency gain using DACE is highest when repeatedly running a large Monte-Carlo is a time-con-

suming process and unfeasible when large number of scenarios are to be tested. Also, DACE is highly effec-

tive in cases where it is required to quantify the effect of uncertainties and errors in inputs on some measure 

of performance. 

                                                      

* http://hanspeterschaub/bskMain.html 
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SAMPLING METHODS 

Monte Carlo (MC) sampling is commonly used to obtain a sample space in a computer simulation.  How-

ever, as pointed out in Reference 3, while MC sampling is simple to use, a set of MC samples will often leave 

large regions of the design space unexplored. This occurs due to the random and independent nature of the 

sample sites produced by a random number generator. 

To address this problem, this paper tests a range of “Space Filling” designs to generate sampling schemes 

that capture the maximum information between the input-output relationships. The simulation and modeling 

performance are compared using five sampling methods: 

i. Random Sampling - each input parameter is drawn randomly from the distribution. 

ii. Hypercube - the 2n vertices of an n-dimensional hypercube. Hypercube sampling only samples from 

the vertices of the resulting n-dimensional hypercube and thus only considers data that are “rare”. 

Hence it only focuses on the extreme values/events and ignores the rest of the design space.  Sampling 

from the vertices only can be very fast and minimize the experimental runs. However, if the underly-

ing interest lies in the centre of the design space then sampling method such as hypercube will produce 

samples of limited value.  

iii. Latin Hypercube Sampling (LHS) - LHS is a design that is space-filling in every dimension of the 

input space that if collapsed in any one or more dimensions, would not result in duplicate test points. 

LHS has the chief advantage of spreading its runs out over the entire design space. The other main 

features of LHS are described in detail by References 3-5. In brief:  Given an equal number of sam-

ples, an LHS estimate of the mean will have less error than the mean value obtained by Monte Carlo 

sampling. Also, LHS is superior to simply creating a grid over the entire design space as, due to the 

Sparsity of Effects principle, few of the many inputs in a model will prove to be statistically signifi-

cant. When a computer model exemplifies effect sparsity, variation in the response Y will be signifi-

cant only when those few significant inputs are varied. If the significant inputs are kept constant and 

other inputs varied, the output Y will vary by a negligible amount (Reference 4, p. 14).  

 

iv. Maximin sampling:  Draws a Latin Hypercube Sample from a set of uniform distributions for use 

in creating a Latin Hypercube Design. This function attempts to optimize the sample by maximizing 

the minimum distance between design points (maximin criteria). 

 

v. Maximum Projection Sampling:  Draws a Latin Hypercube Sample from a set of uniform distribu-

tions for use in creating a Latin Hypercube Design. This function attempts to optimize the sample by 

the maximum projection (MaxPro) criterion: the average reciprocal product of squared one-dimen-

sional distances should be maximised (Reference 5).   

 

Figure 2a and 2b show examples of sample points generated from these methods over a 2D input space. 

 
Fig. 2a Comparison of Space-Filling Designs in 2-Dimesnional Space  



Page 4 of 19 

 

 
Figure 2b. Comparison of Modified LHS Space-Filling Designs in 2-Dimesnional Space  

(References 3,4,5) 

 

SURROGATE OR “META-MODELS” 

The objective of building a Meta-model is to construct an accurate, simple and easy to run model that 

approximates the true model of the simulation process.  

The initial runs of a sampling design are the “Screening” stage (Reference 6) where, due to the Principle 

of Sparsity of Effects, only a few input variables 𝑋1, . . , 𝑋𝑘  are identified as important for determining the target 

variable 𝑌 of interest. Each run of the simulation model for specific values (𝑋1
∗, . . , 𝑋𝑘

∗) will generate a model 

value 𝑌∗ = 𝑚(𝑋1
∗, . . , 𝑋𝑘

∗), where 𝑚(∙) is an unknown function.  

The Meta-model is determined by the following two steps: 

1. Sampling from a Space Filling Design: Generate a set of input values (𝑋1
1, . . , 𝑋𝑘

1), … , (𝑋1
𝑛 , . . , 𝑋𝑘

𝑛) which 

is representative of the whole input space and compute the corresponding values 𝑌1 =
𝑚(𝑋1

1, . . , 𝑋𝑘
1), … , 𝑌𝑛 = 𝑚(𝑋1

𝑛, . . , 𝑋𝑘
𝑛). 

 

2.  Model Development: On the basis of the computed pairs of function values and input values 𝑌𝑖 , 

(𝑋1
𝑖 , . . , 𝑋𝑘

𝑖 ) approximate the unknown function 𝑌 = 𝑚(𝑋1, . . , 𝑋𝑘).  

For Step 2, four main types of Meta-modeling techniques are compared and contrasted:  

1. Parametric models e.g. Second-order Polynomials:  These models employ a polynomial basis 

where are non-negative integers. The number of polynomial basis functions dramati-

cally increases with the number of input variables and the degree of polynomial. (Reference 1, p.27). For 

our Meta-modelling purposes, we note an issue with Polynomials is that for modelling large and complex 

simulations there may be many local minimums/maximums within the design space. This requires a high-

degree polynomial to approximate the true model (Reference 1, p.27). In such cases collinearity between 

inputs becomes a serious problem.   

  

2. Radial Basis Functions:  Radial basis function (RBF) methods are techniques for exact interpolation of 

data in multi-dimensional space (Reference 7 and Reference 1, p.177-179). The RBF maps the inputs to 

the outputs using a linear combination of the basis functions. We tested an RBF interpolation with cubic 

and thin plate basis functions.   
  

3. Random Forests: Random forests have no formal distributional assumptions (hence a “non-parametric” 

regression), and automatically performs screening/variable selection. This is very useful in 

astrodynamics simulations where there a large number of input variables and need to reduce the 

dimensionality to the critical inputs with most significant effect on the output response. Random forests 

can also handle highly non-linear interactions. 
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4. Kriging: Also known as Gaussian Process Regression, Kriging is a non-parametric method of 

interpolation where the interpolated values are modelled by a Gaussian process governed by prior 

covariances. The general goal of Kriging is to predict the value of an underlying random function 

Y=Y(x) at any random location of interest x0. The main idea of Kriging is that near sample observed 

points should get more weight in the prediction to improve the estimate. Therefore, Kriging relies on the 

knowledge of some kind of spatial distance structure of the sample points, which is in turned modelled 

via the second-order properties, i.e. the prior covariance matrix. Kriging uses a form of Bayesian infer-

ence that produces both a deterministic prediction and a standard error that can be used to quantify confi-

dence intervals. 

 

The alternative modelling methods are assessed in terms of making satisfactory predictions at untried 

points. The chosen Meta-model is verified by using the Root Mean Square Error (RMSE) of prediction at 

untried points, which represents the departure of the Meta-model from the true model. The smaller the RMSE 

value, the better the Meta-model.  

CASE STUDY 1: ATTITUDE CONTROL SIMULATION  

The first case study applies the methods of DACE to an attitude control simulation of a tumbling spacecraft using 

the Basilisk software package developed by the Autonomous Vehicle Simulation (AVS) Laboratory at University of 

Colorado at Boulder. For a given initial state (attitude and rotation rate) and spacecraft design parameters, the software 

simulates a sun-pointing feedback control problem to determine the motor torques controls of the three orthogonal 

Reaction Wheels (RWs) to achieve a final target state, with zero rotation rate. 

The goal of the simulation is to assure that, given a range of initial states and uncertainties of real-life 

missions, a specific spacecraft design can achieve the de-tumbling maneuver while fulfilling a set of mission 

requirements. For this scenario the following mission requirements are assumed for an acceptable maneuver: 

• The attitude will enter and remain within 1º of the goal frame within 5 minutes  

• The RW speeds will not exceed 3000 RPM during the manoeuvre. 

Inputs & Dispersions 

The model contains 29 inputs, describing the initial state of the spacecraft, the initial rotation rates of the 

reaction wheels, and a set of spacecraft parameters. Each input has dispersions with either uniform or normal 

distributions (detailed in Table 1). 

 

Table 1. Dispersions on the 29 inputs. 

Input Factor Description Distribution Parameters Units 

Inertial Attitude 
(x,y,z) 

Initial attitude of spacecraft (Modi-
fied Rodrigues Parameters with re-
spect to inertial frame)  

UNIFORM [0,2π] (on each component) rad 

Inertial Rota-
tion rate (x,y,z) 

Initial rotation vector in inertial 
frame. 

NORMAL 
Mean 0, std dev 0.25 deg/s 
(on each) 

deg/s 

Mass Mass of the Spacecraft UNIFORM 
Bounds [712:5; 787:5], 
mean 750 

kg 

Centre of Mass 
Offset (x,y,z) 

Position of Centre of mass NORMAL 
Mean [0,0,1], std dev 
[0.0017,0.0017,0.0033] 

m 

Inertia Tensor 3x3 diagonal inertia tensor NORMAL 
Mean diag(900,800,600), 
std dev diag(0.1,0.1,0.1) 

kg.m2 
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Inertia Tensor 
Rotation Angle 

(x,y,z) 

Rotation of inertia tensor by 3 Euler 
angles 

NORMAL 
Mean 0, std dev 0.1 deg (on 
each) 

deg 

RW1 axes Spin axis of reaction wheel 1 NORMAL 
Mean [1,0,0], std dev 
[0.0033,0.0017,0.0017] 

- 

RW2 axes Spin axis of reaction wheel 2 NORMAL 
Mean [0,1,0], std dev 
[0.0017,0.0033,0.0017] 

- 

RW3 axes Spin axis of reaction wheel 3 NORMAL 
Mean [0,0,1], std dev 
[0.0017,0.0017,0.0033] 

- 

RW speeds Initial rotation speed of the 3 RWs UNIFORM 
RW1: [95,105], 
RW2: [190,210],  
RW3: [285,315] 

RPM 

Voltage to 
Torque Gain 

Gain in commanded voltage to actual 
torque of RWs 

UNIFORM 
Bounds: [0.019,0.021], 
Mean 0.020 

- 

 

Outputs 

The performance of the de-tumbling maneuver is determined by five output parameters: the rotation rates 

of the three RWs, and the times taken for the attitude and rotation rate to settle to their targeted states.  The 

main output of interest is attitude settle time. 

 

Sampling 

To cover the input space, 1000 sample points are produced using the LHS sampling method with disper-

sions on the 29 parameters. For each sample point, time-series data is produced for the five output parameters 

over the duration of the de-tumbling maneuver, from which the maximum values were determined. Figure 3 

shows a time-series plot of the attitude error (from the targeted attitude). The attitude settle time is determined 

from the time at which the attitude error levels off to near-zero.   

 

Figure 3. Time-series data of the spacecraft attitude for the 1000 sample points. 
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Initial Meta-Models 

The inputs and outputs from these 1000 points are used to produce a Meta-model that is used to predict the 

outputs of any untested point in the input space. Several types of models are tested: non-parametric (Radial 

Basis Functions, Random Forests and Kriging) and parametric models (e. g Linear Regression, Quadratic Pol-

ynomials). 

Random Forest (RF) is an effective machine learning model for predictive analytics. It was initially chosen 

due to its ability to simultaneously perform automatic variable selection on the large number of inputs (29) in 

the attitude control simulation. As RF is a non-parametric method it does not assume any distributions, making 

it ideal for a large and complex simulations (as in astrodynamics) characterized by a large input space, and an 

unknown input/output relationship that is expected to be highly non-linear.  

The first RF model used was a full model, generated from all 29 input variables. The relative importance of 

each of the 29 input variables can be displayed using a Variable Importance plot (shown in Figure 4), where 

an output variable (in this case attitude settle time) is regressed against each input variable. From this figure, 

the initial attitude, rotation state and RW speeds were found to be the most significant contributors to the 

predicted attitude settle time. These results were used to decrease the dimensionality of subsequent models. 

 

Figure 4. Variable selection plot showing the significance of each input 
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Two additional random forest models are generated using 6 and 7 inputs: the 6 most significant variables 

(Figure 4), and the top 6 plus Hub Mass, respectively. The addition of the mass parameter to the modelling is 

based on its apparent importance to simulation results, according to co-authors’ advice. 

To test the predictive power of each method, 1000 points  are sampled for each input space, and produced 

a Meta-model. A ‘leave-p-out' cross-validation (where p=100) is used to build each meta-model:  900 ran-

domly selected pairs of inputs and outputs are included in the training set to build each meta-model; then pre-

dict the remaining 100 outputs in the test set and calculate their residuals (compared to the actual results gen-

erated from the simulation), along with the RMSE of the model. 

 

Figure 5 shows a plot of the actual vs the predicted attitude settle time for the 100 test points for the three 

Random Forest models, plus a Quadratic Polynomial model. From the plots, there is a noticeable spread in the 

predicted attitude settle time. Table 2 below shows the RMSE for 4 Meta-models and a Kriging polynomial 

model. The "best" model (lowest RMSE) was the Random Forest model of 6 inputs. 

 

 

Figure 5. Predicted vs. Actual outputs for various Meta-Models 
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Table 2. RMSE for various Meta-Models 

MODEL TYPE  RMSE 

Quadratic linear model based on 7 inputs 0.4685 

Kriging full model 0.384 

RF full model 0.357 

RF reduced 6 inputs model 0.3178 

RF reduced 7 inputs model 0.3186 

 

Alternate Sampling Plans & Sample Size 

In order to improve our predictive capabilities the effect of different input sampling schemes (LHS, MaxPro 

and Maximin) on the accuracy of subsequent meta models at a large sample  of  10,000 runs is explored. The 

dimensionality of each meta model is increased to 10 input parameters, to ensure symmetry across all three 

spatial dimensions – accounting for all initial attitudes, rotation rates and reaction wheel speeds (total of 9 

inputs), as well as the mass of the spacecraft. RMSEs across all five output dimensions for Random Forest 

(RF), Radial Basis Function (RBF) and Kriging models using each of these three sampling plans are presented 

below in Table 3. 

Table 3. RMSE for alternate meta models and sampling plans. 

MODEL TYPE Sampling TYPE  RMSE 

10 Input RF 

Latin Hypercube Sampling 0.075 

Maximin Sampling 0.066 

MaxPro Sampling 0.118 

RBF 

Latin Hypercube Sampling 0.585 

Maximin Sampling 0.655 

MaxPro Sampling 0.774 

Kriging 

Latin Hypercube Sampling 0.211 

Maximin Sampling 0.205 

MaxPro Sampling 0.200 
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Comparing the results of the models using a Maximin LHS sampling method, both RF and Kriging lead to 

better (lower RMSE) results for attitude Settle Time and Rate of Settle time. Random Forest models gives 

the lowest RMSE when the sampling scheme is based on Maximin LHS 

 

Exploratory Data Analysis  

In addition to producing a meta model, exploratory data analysis was performed on the results produced 

from the original 1000 sample inputs to identify output values that exceeded the mission requirements. Figure 

6 shows a histogram and box and whiskers plot of the actual attitude and rate settle times. The results show 

that 95% of the sample points had attitude settle times within the 5-minute constraint.  

These results suggest that the maneuver does not meet a 3-sigma success rate per the requirements. During 

mission design and testing, this analysis provides critical insight on the bounding cases and on the sensitivity 

to input parameters. This leads to a better understanding of the spacecraft’s dynamics and capabilities. In this 

specific scenario, the simulation would first be validated, and the inputs would be examined to ensure realistic 

values for this maneuver. If the success rate remains low, the design of the maneuver or the spacecraft could 

be modified. The requirements could also be put into question as slightly relaxing the required attitude settle 

time would yield positive results.  

 

Figure 6. Histogram and Box and Whiskers plot of attitude settle time for 1000 sample points 

Using the Meta-Models for Sensitivity Analysis  

Further testing of the RF Meta-model tested input values expected to lead to extreme output results that 

may exceed mission requirements. This Sensitivity Analysis will be used as a low cost /rapid development of 

the operating window of the entire system under a wide range of worst case scenarios. 

In particular, the Meta-model is used to search regions in the input space that exceed the constraints. By 

analyzing the outliers in the data –regions may be discovered around the outlier points, where all points within 

that region will exceed the bounds. 

Scenario 1: Prediction Using Extreme Input Values. 

The analysis of outliers described above are limited to the output values produced from running the finite 

sample inputs. While the increased 10,000-point set produced additional outliers, the computation time in-

creased significantly (by approximately 8 hours). Running additional sample points to further explore regions 

of interest would lead to long run times. The Meta-model produced may be used to rapidly explore the input 

space, without needing to re-run the simulation.  

Using the RF Meta-model, a Sensitivity Analysis is performed to test the range of outputs within a wider 

input space to see if the mission requirements are still met. Sets of points were generated to test extreme input 

cases that may be encountered during a mission. Two sets of extreme points were tested in the initial analysis: 

A. Initial speeds of 500 RPM on all 3 RWs, as well as a +3-sigma variations on the remaining parameters. 
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B. A Hypercube with ±3-sigma variation on the initial rotation rate, and +3-sigma variation on the remain-

ing inputs (a total of 23 = 8 points) 

The attitude settle time of Set A is found to be 6.166 minutes, exceeding the 5-minute threshold. This value 

is found to be in the upper range of the results from the 1000 tested, with only 3 points exceeded this value. 

Despite the increased initial speeds of the three RWs, the maximum speeds are all found to be below the 3000 

RPM threshold (the maximum was found to be 1628 RPM on RW2).  

The results from Set B show that none of the points exceeded the mission requirements on attitude settle 

time or RW speeds. This suggests that input regions that lead to exceeding  the mission requirement are not 

determined by maximum values on each of the input parameters but are instead determined by specific combi-

nations of values that may be non-deterministic. This confirms our expectation that the Hypercube sampling 

method may not be sufficient to ensure that none of the inputs lead to outputs that exceed the mission require-

ments.  

Scenario 2 Predict Specific Regions of Output Space  

Besides predicting the entire output space, we use the best performing Meta-models to predict spe-

cific regions of interest of the output space. Our co-authors suggested predicting specific ranges of attitude 

settle time and the reaction wheel (RW) speeds at settling. Figure 7 shows histograms of the actual output 

values for attitude settle time, and the settle speed of the RW 1 , for all 10,000 points. The attitude settle time 

shows a right-skewed distribution with a Mean of 3.4479 min, and standard deviation 0.6836 min. The settle 

speed for the first reaction wheel shows a Gaussian distribution with mean 80.32 RPM and standard devia-

tion 454.204 RPM. 

 

 

Fig. 7 Histogram of the actual attitude settle time and settle speed of RW1 for 10,000 

points 

 

 

Predicting Ranges of Attitude Settling Time   

As described above, Meta-models are generated from a set of 1000 points, with actual outputs from the 

simulation. To test the accuracy of the predicted attitude settle time, three sets of test points are generated 

across different regions of the attitude settle time from the 10,000 point set. 

1. Low: 500 points randomly sampled from the 6152 points with actual attitude settle time attST < 3.4479 

2. Medium: 500 points randomly sampled from the 3368 points with actual attitude settle time: 3.4479 < 

attST < 5 

3. High: All 480 points with actual attST > 5 min 
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The various Meta-models are used to predict the attitude settle times of these ranges of output.  For each 

point, the residual is calculated as the difference between the predicted and actual value generated from the 

simulation. The predictive accuracy of each meta-model in each of the three regions is compared using the 

RMSE of the residuals.  The results for the best- performing model  are summarized in Table 2 below.  In the 

majority of cases the Random Forest method performed better  than Radial Basis Functions and Kriging (as 

measured by RMSE of the residuals).   

 

Attitude Settle 

Time Regions 
Meta-Model 

Residuals  

Mean STD RMSE(Mins)  

Low (2.5-3.5 mins) Random Forest B -0.1081 0.1460 0.18 

Medium(3.5-5mins) Random Forest A 0.0862 0.3113 0.32 

High (>5mins) Random Forest A 0.9127 0.4969 1.04 

 

Table 2 Summary of Meta Model Performance: Predicting Ranges of Attitude Settling 

Time 

For Low attitude settle times the model slightly under-predicts the attitude settle times. The accuracy in this 

region is to within one standard deviation of 0.146 minutes (an accuracy of 2.92 % with respect to the 5 minute 

threshold). For Medium attitude settle times, the model slightly over-predicts the attitude settle times. The 

accuracy is to within one standard  deviation of 0.3155 mins (an accuracy of 6.31%). For High attitude settle 

times, the model over predicts the attitude settle time.  The standard deviation is still fairly small (an accuracy 

of 11.4 %), however the mean is far away from zero (0.9127 minutes). Figure 8 shows a histogram of residuals 

for the low and medium attitude settle time regions.  

 

Fig. 8 Histogram of Residuals for the Low and Medium Attitude Settle Time regions. 

 

Predicting Ranges of Reaction Wheel Speeds At Settling 

  The Reaction Wheel settled speed is important to understand the dynamics and momentum buildup after 

the maneuver has ended.   If a maneuver causes the RWs to exceed the limit for a small duration, that is typi-

cally satisfactory. However , if the wheels settle at a large wheel speed, causing a large new RW-cluster mo-

mentum vector, it makes the next maneuver much harder to manage.   
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As above,  Meta-models were generated from a set of 1000 points, with simulated outputs. The accuracy 

of these models to predict Reaction Wheel Speeds At Settling was tested on a set of points drawn from a set of 

10,000 points run through the simulator. To test the accuracy of the predicted Reaction Wheel Speeds At Set-

tling, two sets of test points were generated across different regions of the attitude settle time. 

i. Negative: RW1 Settle Speed <= 0 RPM 

ii. Positive : RW1 Settle Speed >= 0 RPM 

The results for the best- performing model  are summarized in Table 3 below. In the majority of cases the 

Kriging model performed better than Radial Basis Functions and Random Forests (as measured by RMSE of 

the residuals).   Figure 9 shows a histogram of residuals for the two RW1 settle speed regions.  

RW Settling 

Speeds 
Meta-Model 

Residuals for RW1  

Mean STD RMSE(RPM)  

RW1 < 0  Kriging  -14.2 94.9 95.99 

RW1 > 0  Kriging  3.1 57.77 57.85 

 

Table 3 Summary of Meta Model Performance: Predicting Ranges of RW Settling Speeds   

 

 

Fig.9 Histogram of Residuals for Reaction Wheel Speeds at Settling. 

 

The analytical form of the Kriging model is: 

 

𝑅𝑊1 𝑆𝑒𝑡𝑡𝑙𝑒 𝑆𝑝𝑒𝑒𝑑
= 7878.716 + 18.829283𝑥1 − 67.13862𝑥2 + 25.7522𝑥3 + 1492.338𝑥4 + 597.177𝑥5

− 328.0331𝑥6 − 12.28614𝑥7 − 201.581𝑥8 + 31.88362𝑥9 + 24.13904𝑥10

− 2.399211𝑥1
2 + 5.830943𝑥2

2 − 2.30998𝑥3
2 − 29.17384𝑥4

2 + 123.6164𝑥5
2 − 6.55749𝑥6

2

+ 0.008051773𝑥7
2 + 1.025763𝑥8

2 − 0.07848589𝑥9
2 − 0.04069705𝑥10

2  

 

where 𝑥1 to 𝑥10 are the 10 inputs of the model (Inertial attitude x-y-z, Inertial rotation rate x-y-z, spacecraft 

mass, and initial speeds of the three RWs).  
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Other Analysis Performed 

The results presented in this paper are limited to analyses deemed most relevant by the users of the attitude 

control simulation (our co-authors at University of Colorado). There were several other analyses performed, 

worth briefly noting. One of these used the meta-model to predict the region surrounding outliers to try to 

gauge the size of the causes of outlier region in input space.  Two outliers of Reaction Wheel (RW)  speeds > 

3000 RPM were identified. A 10-dimensional grid of test points was generated in the input space surrounding 

these points. The results show that the predicted RW speed of the outlier did not exceed the 3000 RPM limit, 

and as a result, neither did the surrounding points. These outliers were found in the 10,000 sample points.  It 

is expected that the 1000 points sampled did not have enough resolution to find this “hill” region of the out-

put , and so the meta-model smoothed over the region.   

For further research into outlier region prediction  we suggest  adding additional sample points in regions of 

the input space that are expected to produce outliers, to give a better resolution in these regions. 

CASE STUDY 2: MISSION ANALYSIS FOR IBEX 

The Interstellar Boundary Explorer (IBEX) mission is a NASA mission that was launched in 2008 with a 

goal of mapping the boundary of the solar system (Reference 8). At the conclusion of the primary mission, 

IBEX performed a series of maneuvers to change its orbit for an extended mission. Prior to launch, the flight 

dynamics team for the IBEX mission performed a covariance analysis on a number of mission segments in-

cluding the pre-launch trajectory design, post-launch orbit verification, post-launch ascension planning, and 

long-term orbit evolution. The purpose of the analysis was to ensure that given uncertainties in the initial state 

vector and uncertainties in the magnitudes of each maneuvers, the resulting trajectories would meet a set of 

mission requirements. The main mission objectives were that the orbit’s radius of perigee does not drop below 

2.3 Earth radii, and that the eclipse time in Earth's shadow does not exceed 4 hours.  

For each of these mission scenarios, a set of perturbed initial states were generated using two sampling 

methods: First, a traditional Monte Carlo simulation with 1000 random draws from the 3-sigma covariance 

ellipse, and secondly, the 3-sigma vertices of a Hypercube with 128 points. Each sample point was propagated 

using AGI's Systems Tool Kit (STK), producing time-series data of the perigee radius, eclipse/shadow time, 

and other trajectory parameters. This data was used to confirm the mission design would meet the trajectory 

constraints for a specified variance on the input parameters. The details of this analysis were presented in 

Reference 9. 

Mission Scenario  

In this case study, we repeat the same analysis as that presented in Reference 9, focusing on the extended 

mission of IBEX (Reference 10). Following its two-year primary mission, the spacecraft performed a series  of 

orbit maintenance maneuvers (OMM) to place it into a highly elliptical orbit of period 9.1 days, resonant with 

the Moon’s orbit. 

The inputs to the simulation are the initial state of the spacecraft prior to the final OMM (three-dimensional 

position and velocity), and the magnitude of the delta-V of the final OMM. Perturbations are added to each of 

these 7 inputs to account for the uncertainty of the initial state, and the performance of the maneuver execution. 

The uncertainty in the initial state is described by a 6x6 covariance matrix, generated from orbit determination. 

The coordinates of the perturbed states are expressed in the frame of the principal axis of this covariance matrix, 

found through a Cholesky decomposition. 

The uncertainty in the delta-V of the maneuver is normally distributed with mean a mean around 77 m/s 

with an uncertainty of about 3%. (The uncertainty is due to the uncertainty in the predicted tank pressure at the 

time of maneuver ignition.) 

Application of Sampling Methods 

The previous analyses (Reference 9) generated two sets of perturbed initial states using 1) Random sam-

pling over 1000 points and 2) Hypercube (HC) sampling on a 7-dimensional Hypercube with vertices at ±3-
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sigma in each input. Similar to Case Study #1 above, in this Case Study we have tested a range of space- filling 

designs: 

• Latin Hypercube Sampling (LHS)  

• Maximin 

• MaxPro 

 

Each of the sample points is propagated forward in STK for 100 orbits (approximately 2 years) producing 

time-series data of the perigee, eclipse times and other orbit parameters. The objective is to confirm that for 

any perturbation of the initial state, the trajectory will meet constraints on the minimum periapsis radius and 

maximum eclipse time. 

Results and Analysis 

Simulation outputs for three-sigma HyperCube (HC), Latin Hypercube Sampling (LHS), Maximin Sam-

pling and MaxPro Sampling were assessed for the occurrence of outputs that strayed beyond the bounds of the 

mission (Reference 10). The goal of this analysis is to identify cases (if any) where the three-sigma hypercube 

input had not mapped to the most extreme output cases. Results for each output are grouped by orbit – as such, 

our analysis compares the extrema for each input case at every orbit separately.  

The orbital properties examined were;  

• Perigee Altitude 

• Time of Perigee 

• Maximum shadow duration  

• Angle between Apogee and Helionose (the tip of the bow shock where the solar wind collides with 

the interstellar wind)  

 Perigee Altitude 

For the extended IBEX mission (Reference 10) the principal perigee requirement was that the post-maneu-

ver perigee remained above 2.3 earth radii for the duration of the mission.  Comparison of the minimum sim-

ulated perigee at each orbit shows that this is maintained in all cases, and that there appears to be little difference 

in the output extrema for 3-sigma hypercube and space-filling input schemes – the 3-sigma approach ade-

quately captured the output extremes for perigee. Overlaid minimum perigees are displayed below in Figure 

10.  

  

Figure 10. Minimum Perigee for differing input sampling regimes. No deviation between input 

schemes was observed.  
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Time of Perigee  

In examining if hypercube sampling missed errant perigee times, the total range of possible occurrence 

times for each perigee were compared for the different input schemes (Figure 11). It was found that each input 

scheme generates perigee times with a periodic uncertainty, with sub 1-hour ranges at minima to ranges of up 

to 7 hours at maxima. At some of these uncertainty maxima, the comprehensive input schemes (LHS, MaxPro, 

Maximin) predict a larger range of possible times – up to 30 minutes more than the 3-sigma HC. Although 

relatively minor compared to the total range of uncertainty, this difference suggests that wayward values were 

missed by the hypercube sampling – the extreme input case (HC) did not effectively identify the most extreme 

possible perigee times.  

  

Figure 11. Range of Perigee Times, per perigee, across different sampling schemes. Minor dif-

ferences are seen at the extremes.  

Maximum Shadow/Eclipse Time  

For both the prime and extended IBEX missions, constraints were placed on the largest continuous time the 

spacecraft could be in shadow. The concern with hypercube analysis was that the original 3-sigma input may 

underestimate shadow duration or miss shadows completely. To test this, the maximum possible shadow du-

ration is compared per-orbit for our four input schemes. Firstly, instances where the same shadow was predicted 

across multiple orbits were identified – these outputs would skew the data by indicating ‘missing’ shadows in 

some cases, where they have simply shifted to an adjacent orbit for that particular input value. The spread of 

shadows over orbits can be seen in Figure 12 – for all input cases, the spread increases through time, as the 

system becomes more chaotic. Importantly, some comprehensive input schemes (LHS and MaxPro) show an 

increase in shadow-spread over the 3-Sigma HC case. 

Figure 12. Number of possible orbits for each shadow instance. Different input schemes predicted specific 

shadows occurring over two or three orbits – this is the primary variation between the sampling schemes. 
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Secondly, the maximum duration of shadow was calculated at each shadow instance (normalized across 

orbits), for each input scheme. The maximum allowable shadow duration of the original IBEX mission (Ref-

erence 9) was four hours – this was used as a suitability benchmark for each predicted shadow. Figure 13 shows 

the maximum duration of each shadow per orbit, formatted to display only the ‘central orbit’ of each shadow 

(if the predictions spread across multiple orbits). Strong agreement is found between all input schemes in early 

timesteps, but a diverging behavior as the number of orbits increases. Overall, the comprehensive input scheme 

presents similar, if slightly higher, estimates for the maximum shadow duration at each orbit, with these dif-

ferences increasing over time. Certain input schemes (Maximin) predict shadow-spreads that are ‘centered’ 

around different orbits – this is merely an artefact of the analysis and does not indicate a staggered output. 

Nevertheless, we can conclude that the HC input scheme was not completely sufficient in mapping the output 

space– without a space filling simulation regime, possible shadow-containing orbits would remain unidentified, 

as would the full range of possible shadow durations. 

 

  

Figure 13. Maximum shadow time for all input schemes across a range of 45 orbits. Shadows 

with a predicted spread across multiple orbits are normalized to a single orbit for magnitude compari-

son. 

 

Helionose Angle  

For the extended IBEX mission (Reference 10), it was preferable to orient the orbit apogee as close as 

possible to the direction of the helionose, a supposed bow shock between solar wind and the surrounding in-

terstellar medium. As with perigee, the concern was that three-sigma hyper cube analysis did not locate every 

extreme output – within the input space, some non-extreme combinations would yield a substantial deviation 

once propagated forward. However, as Figure 14 shows, HC, LHS and other input methods all yield identical 

results for max helionose angle; the 3-sigma input scheme adequately surveyed the full range of helionose 

output. Similar results were found for the minimum angle of helionose at each orbit (not shown). 
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Figure 14.  Maximum angle of Helionose for HyperCube and space filling input schemes. No 

deviation between input schemes was observed.  

Analysis Conclusions - Case Study 2 

The use of non-random space filling methods to generate simulation inputs allows a more comprehensive 

assessment of the state of the output space. For the IBEX extended mission, where identifying large scale 

deviations from normal output conditions is the goal of the simulation scheme, it was found that a three-sigma 

hypercube - where simulation inputs are simply combinations of the highest-expected-errors – provided ade-

quate coverage of much of the output space, particularly angular and distance measurements. However, timing 

of orbit events and the existence of particular phenomena (eclipses/shadows) during each orbit showed non-

negligible improvements in output range when a more comprehensive input scheme is used, suggesting that 

within the input space there are cases which non-extreme combinations of inputs generate extreme outputs for 

chaotic/resonant orbits. As such, a space filling input regime is a welcome improvement to any simulation 

experiment set, both to verify that the extreme-input cases do identify the outputs of concern, and to identify 

missed occurrences / underestimated magnitudes from an extremes-only system.  

 

CONCLUSIONS 

The adaption of DACE methods to astrodynamics simulations in these proof of concept experiments has 

yielded promising results that warrant further attention.  The use of space-filling designs to identify data ex-

tremes provide economic advantage over Monte-Carlo sampling schemes and can identify anomalous outputs 

missed by a conventional extremes-only hypercube. Time-based outputs (Attitude Settle Time, Case Study 1 

and Shadow Time, Case Study 2) are found to be particularly susceptible to extreme values from seemingly 

innocuous inputs. In addition, these space filling designs can validate that a prior hypercube or Monte-Carlo 

analysis has successfully explored the output space for less chaotic parameters. 

Meta-modelling to reduce simulation complexity provides a low-cost for data exploration, sensitivity design 

and analysis. However, as shown in Case Study 1, the upfront costs of developing a meta model are steep – 

one must first identify the most significant inputs, decide on a sampling scheme and iterate through several 

meta models until one with suitable accuracy is developed. Nevertheless, meta-modelling can perform an im-

portant function in any simulation regime, particularly if the per-run costs of the simulation are high. Meta-

models with a sufficiently low RMSE can be used to pre-estimate results for previously untested data points, 

reducing the need for additional simulation runs if the predicted outputs are below/above design thresholds.  

One potential use for the Meta-model is in screening regions of the input space to give a quick indication of 

whether or not the inputs will produce outliers. If we know that the Meta-Model is accurate within a certain 

percentage (%), then any output point that we predict to be below the threshold less the error (i.e. Predicted 

output < Threshold – Error), we can be confident that the output for that input point will be within the bounds. 
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If the predicted output is close to the outlier (within the accuracy of the model), the input point may or may not 

be causing an outlier (it is in a grey area). If the predicted output is above the threshold plus the error of the 

model, we can be confident that this input point will lead to an exceedance of the bounds.  
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