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Combining features of large space structures and free-flying formations has lead
to the tethered Coulomb structure (TCS) concept. Utilizing Coulomb forces to re-
pel a formation of spacecraft nodes that are connected with fine tethers can create
large quasi-rigid and lightweight space structures. There are numerous applica-
tions for a TCS ranging from interferometry and remote sensing to component
deployment and inflatable structures. This paper presents the first results on how
the nodal attitude motion impacts the TCS concept and required charge levels. Nu-
merical simulations analyze the complex and coupled relative motion, including
simple tether dynamic models and TCS node attitude motions. Quantitative anal-
ysis shows that increasing the inflationary Coulomb forces can stiffen the entire
structure to resist deformations due to initial nodal rotations. This can be achieved
while maintaining realistic charge levels. A two node system demonstrates the
ability to maintain shape and a taught tether under the disturbance of initial angu-
lar rate errors and solar radiation pressure. Further, a simple double-tether system
is shown to offer increased stiffening properties and resistance to perturbations.

INTRODUCTION

The use of spacecraft for remote sensing, interferometry, and telescopic operations is a progres-
sive area of research with large baselines sought to increase power, sensor accuracy and resolution.
Large space structures and free-flying spacecraft formations are two active development approaches
to address this need.

Large space structures offer a rigid and fixed configuration that may be required for highly accu-
rate observations. Inflatable and deployable systems can offer a low-mass, high mechanical packag-
ing efficiency and potentialy low cost solution that can been used for applications such as antennas
and booms.1, 2, 3 An ongoing area of research is the development and test of deployable components
and material membranes for large space structures.4 However, there are challenges to overcome
prior to large space structures becoming standard operating systems, including large mass, volume
and cost constraints to get to orbit, the need for on-orbit construction or complexities and reliability
of deployable components.

An alternate method of providing the same characteristics of a large space structure is to use
a cluster of spacecraft flying in a desired formation. The proposed NASA Goddard Stellar Im-
ager5 and the NASA JPL study on the proposed Terrestrial Planet Finder (TPF)6 are two missions
that intend to operate a formation of spacecraft creating a sensor baseline in the kilometer range.
One of the leading applications of a large space interferometer is observations from Geostationary
Earth Orbit (GEO). A study by Wertz of a GEO-based free-flying formation indicates that an Earth
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Figure 1. Illustration of the tethered Coulomb structure concept

surface resolution of 0.5-2 m is achievable.7 The Eyeglass concept is another investigation into a
GEO-based Earth surveillance platform with a 25-100 m aperture telescope. The diffractive lens is
designed to be folded in a sequence similar to a origami layout and will be deployed in orbit.8, 9 King
and Parker in Reference 10 investigate the use of Coulomb forces to control a free-flying formation
of spacecraft to develop a 20-30 m size array for interferometry at GEO.

One of the biggest challenges of a free flying formation in Earth orbit is controlling the non-
linear and strongly coupled relative orbits and achieving the desired cluster geometry. With the
use of conventional chemical thrusters there is a limitation of propellant and consequently mission
lifetime to maintain a desired formation. With close formations and sensitive instrument missions
there are also plume impingement concerns. Two formation control concepts mitigating high fuel
expenditure and plume impingement are electromagnetic11 and flux pinning, both of which require
high operational power levels.12 Coulomb thrust is a recent and novel method to control the sepa-
ration distance of spacecraft operating in close formations that does not have plume impingement
concerns, is virtually propellant-less, and requires only Watt-levels of power.10, 13, 14

One potential solution to achieving a low-mass large space structure is with the Tethered Coulomb
Structure (TCS) concept proposed in Reference 13. The TCS provides a hybrid combination of
features from space structures and free flying spacecraft formations. The TCS concept utilizes a
formation of spacecraft nodes that are held together with a 3D network of light-weight physical
tethers. This is in contrast to other Coulomb spacecraft research which investigates the use of
virtual tethers using electrostatic forces.15, 16 With the TCS concept each spacecraft node has the
ability to increase its electrostatic potential through the use of a charge control device that emits
either electrons or low mass ions. With each node having the same charge polarity they will repel
from each other and induce a tensile force on each tether. This Coulomb repulsive force essentially
inflates the spacecraft structure while the shape and size is maintained by the tethers. An illustration
of a four node TCS is shown in Figure 1.

The TCS concept offers a number of advantages for the development of large space structures.
Costs are kept low by launching the formation in a compact configuration that is inflated in orbit
using the Coulomb forces. Similarly, a deployable component or antenna could essentially be in-
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flated and held quasi-rigid from the spacecraft body using Coulomb force repulsion. Due to the
micro- to milli-Newton level of Coulomb forces it is only necessary to have a network of small
membrane-like tethers. This significantly reduces the TCS mass compared to traditional structural
components and does not require on-orbit construction. It is also envisioned that structures as large
as hundreds of meters are feasible by connecting multiple charged nodes with relative short and thin
tethers (tens of meters). Another key benefit of the concept is its ability to vary the shape and size
of the TCS configuration by varying the tether lengths. This allows adaptability and variation for
changing mission requirements.

There exists a variety of applications for space tether systems and studies typically utilize a spin-
ning system,17, 18 a gravity gradient or an atmospheric drag orientation to maintain tension.19, 20 A
unique advantage of the TCS concept is that tension is provided with Coulomb forces regardless
of the orbital orientation and can be used to overcome differential gravitational accelerations and
external perturbations.

Controlling a free-flying spacecraft formation with Coulomb forces or traditional methods is an
interesting dynamical challenge. On going research in this field includes equilibrium conditions
of Coulomb craft,21, 22 implementation of feedback stabilized virtual Coulomb structures with two
craft,23, 15, 16 and the control of three craft.24, 25 The navigational and dynamical motion complexi-
ties of operating tightly controlled free-flying formations are significantly simplified with the TCS
concept.

The TCS concept, with its many advantages, still requires further research to address the chal-
lenges such as low-tension tether dynamics and deployment mechanisms, the dynamics of charged
quasi-rigid structures with independently rotating nodes and variable TCS shape goals, the electrical
power requirements to maintain non-equilibrium charge levels, as well as the ability to maintain a
delicate TCS structure during orbital maneuvers such are semi-major axis corrections. The intent of
this paper is to study how the individual attitude motions of the TCS nodes impact the overall charge
requirements. The concern is that a node rotation due to small deployment errors or external torques
could cause the tethers to wind up or loose tension. The analysis investigates how the nodal charge
impacts the rotational stiffness for a simple two-node TCS configuration. This is an advancement
over the previous TCS modeling that used point mass nodes (ignoring nodal attitude motions) and
focused on how the overall structure motion and shape changes can be used to stabilize the TCS
orientation.13

A simple two-node, two degree of freedom (DOF) TCS model is developed. Through lineariza-
tion, analytic equations of motion are used to offer insight into expected translational and rotational
motions including the effects of varying model parameters. Non-linear simulations featuring dy-
namic tethers modeled as simple, mass-less, proportional and undamped springs are performed.
The results of dynamic studies investigating the systems ability to resist deformation from initial
angular rate errors or external disturbance forces are presented.

The primary intent of this study is to analyze the ability of the Coulomb force to stiffen the overall
TCS structure and resist deformation. This is further demonstrated with the results of reducing the
tether length under the presence of attitude rate errors as well as a simple solar radiation pressure
perturbation. Another focus of this study is determining the conditions that cause slack tethers, a
situation that may lead to damage or entanglement. Further, to enhance the orientational stiffening
capabilities of the Coulomb inflationary force, a TCS configuration with a redundant two-tether
connection is investigated. Results are generated by numerically simulating the full non-linear
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equations of motion for any general three-dimensional TCS size or shape using any number of
spacecraft nodes. This algorithm development is shown in the appendix. The presented research
results are a vital step for the future analysis of more complex systems and higher fidelity modeling
of the TCS relative motion.

TETHERED COULOMB STRUCTURE FORCES

This section develops the fundamental forces acting on a TCS system. The dynamic model
considered includes translational and rotational degrees of freedom of each TCS node, Coulomb
forces for inflation, and fixed deployed tether lengths to maintain a constant average size and shape.
The TCS shape will undergo small variations due to flexing of the tethers and motion of the nodes.

Coulomb Force

For the TCS system the Coulomb force is the controllable actuator. This force is generated from
the interaction of two charged bodies. The charge can either occur naturally due to interaction with
the space plasma, or be driven by a charge control device which continually emits charged particles.
In space, this force is reduced by shielding from the free-flying charged particles of the local plasma.
The strength of this shielding is defined by the Debye length λd.26 The Coulomb force Fc that is
generated between two craft of charges q1 and q2 is defined by:

|Fc| = kc
q1q2
x2

e−x/λd

(
1 +

x

λd

)
(1)

where x is the spacecraft separation distance and kc = 8.99×109 C−2Nm2 is the vacuum Coulomb
constant. The Debye length is based on the temperature and density of the local plasma. At GEO
the plasma is sufficiently hot and sparse to generate Debye lengths ranging from 80 -1000 m with an
average of approximately 200 m, allowing the use of Coulomb thrust when operating with spacecraft
separations of dozens of meters at GEO.14, 27 Low Earth orbit Debye lengths are typically cm level,
making the use of Coulomb thrust challenging.

For the TCS system the Coulomb force is chosen to be repulsive to provide an inflationary force
to maintain tension on the tethers. This is achieved through a positive charge product, Q = q1q2,
with either both positive or negative qi values. This study uses spherical spacecraft bodies where a
charge level q results in a surface potential computed with the relationship:

q =
V r

kc
(2)

where V is the voltage and r is sphere radius. Note that this study does not consider non-homogeneous
charge distributions that can occur from induced charge effects of two neighboring conducting ob-
jects. Such effects will be very small compared to the absolute charge imparted on each node if the
node separation distance is multiple times greater than the node radius r.

Tether Force

The tethers are modeled as linear stretch springs that, when in a compressed state, go slack and
no force is produced. Consequently they only produce a force that opposes the repulsion of the
Coulomb force. The magnitude of the force is governed by the equation:

|Fs| =

{
ksδL δL > 0,
0 δL ≤ 0.

(3)
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where ks is the linear spring constant and δL is the stretch in the tether length between two nodes.

One option for a spacecraft tether material is AmberStrand R©∗. The property values of this ref-
erence material is used for all simulations in this paper. AmberStrand R© is an electrically con-
ductive hybrid yarn made up of a metal coated polymer that offers a flexible, low-mass and high
strength tether. Tests conducted at the University of Colorado at Boulder on a braid of three twisted
Amberstrand R© fibers resulted in the tether properties shown in Table 1.

Table 1. AmberStrand R© properties for 3 twisted fibers

Parameter Value Units

Modulus of elasticity (E) 9.5 N/m2

Cross sectional area (Abraid) 0.9425 mm2

Mass 3.1 g/m

The modulus of elasticity is measured in the elastic region of tensile test results. The modulus of
elasticity is related to a linear spring constant in the elastic region of the stress-strain curve with:

ks =
EAbraid

Lo
(4)

where E is the modulus of elasticity, Abraid is the cross sectional area of the braid of three twisted
fibers, and Lo is the un-stretched tether length.

Solar Radiation Pressure

A simplified solar radiation pressure (SRP) model is used to quantify the capability of the TCS
system to compensate for a constant external perturbation. The magnitude of the SRP force acting
on a spacecraft is governed by the relationship28

FSRP = PSRCRAs (5)

where PSR is the solar radiation pressure, CR is the surface reflectivity constant of the spacecraft,
and As is the surface area.

Sample Force Magnitudes

To appreciate the expected force magnitudes a TCS structure will encounter on orbit, consider
a two-node tethered system. With nodes of radius 0.5 m, separated by 2.5 m center to center and
charged to a surface potential of 30 kV the expected force levels are shown in Table 2. The Coulomb
force is computed with no plasma shielding, assuming a geostationary or deep space environment.
The solar radiation pressure is computed at 1 Astronomical Unit (AU) from the sun where the solar
radiation pressure is 4.56 × 10−6 N/m, and the surface reflectivity is 1. It should be noted that at
force equilibrium (without SRP) the nodes stretch apart only 1.1 mm.

SINGLE-TETHER CONFIGURATION MODELING

This section documents the dynamic modeling of the single-tethered system. This model is re-
duced to two degrees of freedom that is linearized to obtain insight into potential motions about
equilibrium.
∗Syscom Advanced Materials, Inc. www.amberstrand.com, 1/15/2010
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Table 2. Expected force magnitudes for a two-node TCS separated by 2.5 m

Force Value Units

Coulomb (Fc) 4.0 mN
Tether (Fs) 4.0 mN
SRP (FSRP ) 3.6 µN

Two Degree of Freedom Model

A simplified two degree of freedom TCS model is developed to provide insight into how TCS
node rotation impacts the charge requirements and related stiffness capabilities. While the numerical
simulation can handle general translational and rotational motion of N nodes, the results yield an
overwhelming amount of data, making it difficult to gain any insight. The TCS model is based in
deep space and features two nodes attached with a single-tether as shown in Figure 2.

Node 1 Node 2

Lo

x

δx

r
θ

L

θ

tether

FcFs

xo

xe

FsFc
r

Figure 2. Symmetric two-node system with two degrees of freedom

By constraining the nodes to symmetrically rotate by an angle θ the tether remains parallel to the
line of sight vector resulting in one dimensional translational motion with the Coulomb and Tether
forces (Fc & Fs) directly opposing each other. This reduces the model to one rotational degree of
freedom and one translational. The Coulomb force for this model is assumed to have negligible
shielding from the plasma environment due to the very small meter-level separation distances. This
is a reasonable assumption given the force magnitude is reduced 0.02% at a separation of 10 meters
in a 200 m Debye length plasma.

The translational equation of motion of this system is:

ẍ =
kcQ

mx2
− ks
m

[x− xo + 2r(1− cos θ)] (6)

where Lo is the un-stretched tether length and m is the node mass. With the tethers attached at fixed
locations on the spherical surfaces any rotation will result in a torque on the node. This is modeled
to examine the correlations between translational and rotational motions. The attitude is governed
by the rotational equation of motion:

θ̈ = −rks
I

[x− xo + 2r(1− cos θ)] sin θ (7)

where I is the mass moment of inertia of the modeled disk. For this two DOF model the mass of
each node is equal and the mass moment of inertia of a solid disk is used. This is one property
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that can be varied to analyze the effect of mass and its distribution on the dynamics of the system.
For practical reasons, the simulation is restricted to attitude angles less than ±90 degrees to prevent
tether entanglement.

Single-Tether Linearized model

Equation (6) has an equilibrium condition at a separation, x = xe and an attitude θ = 0. The
translational equation of motion is reduced to

ẍ = 0 =
kcQ

x2
e

− ks(xe − xo) (8)

which can be arranged to a cubic relationship between the equilibrium distance xe and the associated
charge product Q:

kcQ = ks(xe − x0)x2
e (9)

Of the three xe solutions on the real solution is practical. At this equilibrium separation distance the
Coulomb and tether forces are equal and the nodes remain stationary (with no external disturbances).
One interesting consequence of this equilibrium distance is that it is independent of the system
mass. The two DOF model given in Eqs. (6) and (7) is linearized about the equilibrium condition to
produce a reduced system model to study the dynamic behavior of oscillations about the equilibrium
states. Linearizing the translational motion for small departures (δx = x− xe) results in:

δẍ ≈ − 1
m

[
2kcQ
x3
e(Q)

+ ks

]
δx (10)

This approximate translation description is decoupled from the angular rotation and is the form
of the stable undamped harmonic oscillator equation. The natural frequency of this oscillatory
translational response is given by:

ωT =

√
1
m

[
2kcQ
x3
e(Q)

+ ks

]
(11)

The rotational equation of motion is linearized to the form:

θ̈ ≈ −rks
I

[xe(Q)− xo] θ (12)

This linearized rotational equation of motion also decouples and is of the form of the stable un-
damped harmonic oscillator equation. The natural frequency of this oscillatory rotational response
is given by:

ωR =

√
rks
I

[xe(Q)− xo] (13)

While these linearized models are only valid for small oscillations, in the results section they are
shown to offer insight into the response of the system about its equilibrium state.

7



SINGLE-TETHER SIMULATION RESULTS

The results of three studies providing insight into the dynamics and capabilities of the TCS con-
cept are shown. Two case studies analyze the properties and motions of the linearized system model.
The final case study demonstrates the TCS stiffening properties and capability to resist angular rate
errors for various separation distances.

Each simulation case is run for at least one full oscillation in the attitude rotation, or stopped
once the attitude goes beyond ±90 degrees. The TCS parameters common to each simulation case
are shown in Table 3. The simulations are conducted with three single-tether configurations, each
with a different un-stretched separation xo = 2.5, 5, and 10 m, measured from center to center.
The TCS motions are integrated using the full three-dimensional equations of motion detailed in the
Appendix. The two-degree of freedom models developed here, provide verification of the full 3D
model and simulation results.

Table 3. Simulation Parameters Common For All Test Cases

Parameter Value Units

Initial attitude rate errors (θ̇0) 1-90 deg/min
Voltage range (V ) 5-50 kV
Spacecraft separations (xo) 2.5, 5, 10 m
Spacecraft node mass (m) 50 kg
Spacecraft node radius (r) 0.5 m

Natural Frequency Response of the Linearized Model

Using the linearized models of Equations 10 and 12 and the system properties of Table 3, it is
possible to gauge the expected stiffness of the TCS. The natural frequency of the linearized trans-
lational and rotational motions of Equations 11 and 13 is a measure of the TCS stiffness. Figure 3
shows the natural frequency of the linearized translational motion for three separation distances.
For the voltage range analyzed, the natural frequency of the response is essentially independent of
the spacecraft charge. The values change by less than 0.1%, indicating the translational stiffness is
largely determined by the tether material stiffness. As the separation distance between the nodes
decreases, the frequency of the system response increases due to the increased stiffness of shorter
tethers.
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Figure 3. Natural frequency of linearized translational motion
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Figure 4 shows the natural frequency of the linearized rotational motion, from Equation 13, for
three separation distances. In contrast to the translational stiffness which is essentially decoupled
from the magnitude of the electrostatic inflation force (assuming AmberStrand R©-like materials),
the rotational stiffness or natural frequency is directly related to the TCS nodal potentials.
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Figure 4. Natural frequency of linearized rotational motion

Note that the translational natural frequency is approximately an order of magnitude greater than
the corresponding rotational motion. For these uncoupled linearized systems and the system param-
eters analyzed this implies that the system will better constrain translational motion.

Impact of Tether Material on Rotational Motion

The linearized models are used to analyze the effect of varying the tether material stiffness
(spring constant) ks on the resulting rotational node motion. Equation 12 has the solution θ(t) =
A sin(ωRt+ φ) where the amplitude of oscillation A is defined as:

A =
2mrθ̇0

5

[
1

ks (xe(Q, ks)− xo)

]
︸ ︷︷ ︸

α

=
2mrθ̇0

5
α (14)

Here θ̇0 is the initial angular rate and θ0 is assumed to be zero. The amplitude A is proportional to
α, which depends on the tether stiffness ks and node charge product Q. Note that xe is a function
of ks so amplitude is not inversely proportional to the spring constant. For a 10 m separated system
using the nominal AmberStrand R© braid the spring constant is ks = 0.995. In this study this spring
constant is varied in value from ks × 10−5 through ks × 10, simply to investigate the impact of
a range of material properties on the rotational stiffness. The resulting amplitude multiplication
factor, α, of equation14 is shown in Figure 5.

This study indicates that changes in the tether spring constant have a minimal effect on the overall
amplitude of angular rotations. It requires a spring constant that is reduced by 100,000 times the
value of the 10 m separated case and nodes of 50 kV to increase the maximum angular rotation by
five.

Impact of Tether Length Variations on the Rotational Stiffness

After deployment the TCS nodes will not be perfectly at rest with respect to each other. This
analysis uses the full 3D non-linear equations of motion (see Appendix) to demonstrate the ability
of the Coulomb force to stiffen the structure and resist deformation due to a small initial angular
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Figure 5. Effect of varying tether spring constant on the amplitude of linearized angular oscillations

rate. Three two-node, single-tether configurations of different separations distances are simulated
with symmetric initial angular rotations. Here both nodes perform the same (but opposite) rotation
and consequently equivalent translational motion.

Figure 6 shows the maximum attitude angle that is reached by the nodes for each separation
distance case and initial angular rate error. This is shown as a function of the spacecraft surface
voltage. No material damping is considered in this study as the focus is on issues with tethers
wrapping up on nodes after a single oscillation. The weak material damping would only impact
long-term oscillation amplitudes.

Also shown in Figure 6 is what conditions will cause the tether to go slack. The solid lines
indicate that the tether remains taut for the simulation duration, where as the dashed regions have
the tether reach a slack state. For many of these conditions the tether may go slack only a small
fraction of the simulation time and is typically less than a millimeter from the un-stretched tether
length. This is a concern as the nodes are no longer at their desired separation distance and the
tether may undergo detrimental impact loads if the dynamics cause a sudden repulsion. For the
three separation cases analyzed the conditions that cause the angle of rotation to go above 27◦ will
result in a slack tether. Note that this rotation amplitude limit is dependant on the initial conditions
considered.

A reduction in the spacecraft separation distance results in two key changes on the system as
shown in Figure 6. Firstly, the tether spring constant increases and secondly the spacecraft will
be closer together, increasing the Coulomb force for an equivalent charge level. This increases the
stiffening of the rotational motion, as indicated by the earlier linear analysis. This simulation now
quantifies the enhanced ability of a stiffened TCS to resist deformation due to an initial angular
rate error on the nodes. Figure 6(a) shows that a 10 meter nodal separation with 35 kV potentials
requires an initial nodal rotation rate less than 10 deg/min, a small value. Otherwise, the tethers
will go slack at times, or the nodes could wrap up with the tethers. In contrast, Figure shows that
reducing the separation to 2.5 m and maintaining a 35 kV potential will constrain a 40 deg/min
angular rate. Shorter separation distances yield significant increases to the rotational stiffness of the
TCS nodes.
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Figure 6. Maximum attitude reached as a function of initial attitude rate error

An alternate method of showing the maximum angle reached for this two-node configuration is
with the contour plots of Figure 7. Once again, the rotations are limited to ±90 degrees, the limit
of node wrap up. Note that slack line conditions are not illustrated here, but are simulated. These
plots again illustrate how the rotational stiffness can be increased with shorter tether lengths. Large
separation distances of 10 meters are shown to be challenging with dozens of kilo-Volt potentials,
as shown with the large area of 90 deg attitudes in Figure 7(a). Instead, the TCS is practical with
shorter meter level separations as illustrated with the larger operational area of Figure .
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Figure 7. Contour plot of maximum attitude reached as a function of initial attitude rate error

SOLAR RADIATION PRESSURE DISTURBANCE RESPONSE

At GEO, where the TCS concept is to be operated, solar radiation pressure (SRP) can play a
significant role as a disturbance force on the inertial orbital motion of satellites.29 The intent of the
following study is to quantify the capabilities of the two-node TCS configuration to resist deforma-
tion from an external perturbation.
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Solar Radiation Pressure Model

The same single-tether configuration operating in deep space is used as a baseline model. The
solar radiation pressure is added as a bias force that is compressing the system along the direction of
the tether line as shown in Figure 8. The SRP force is acting on both nodes, but increasing the size
of node 1 produces a differential SRP that attempts to compress the nodes. The concern is wether
the Coulomb forces are large enough to maintain tension in this setup. The parameters of the study
are shown in Table 4.

tether

Node 2

FcFs

Node 1

Fc
FSRPFSRP Fs

Area 1

Area 2

xo

xe

Figure 8. Two-node, 2DOF Solar radiation pressure model

Table 4. Case 3 Simulation Parameters

Parameter Value Units

Spacecraft Area Ratios (As) 1-10
Spacecraft node radius (r) 0.5 m
Spacecraft separation (xo) 10 m
Solar pressure (1 AU) 4.56×10−6 N/m
Surface reflectivity 1

Only one node separation of 10 m is used, as this is the worst case scenario of the three sepa-
ration distance configurations analyzed earlier. If the Coulomb forces are found to be sufficient to
maintain tension for this challenging larger separation distance, then TCS systems of shorter sepa-
ration distances should not be significantly compressed by differential SRP. The sunlit surface area
of node 1 is increased linearly in multiples from one to ten, where one is the nominal surface area
corresponding to a 0.5 meter radius circle. An increase in the surface area will cause the homoge-
neously distributed charge to also increase for a fixed nodal potential. This would further increase
the stiffening capabilities of the TCS system. To maintain a worst-case scenario, this model does
not incorporate any change in the Coulomb force as the surface area of node 1 is increased.

TCS Compression Due to Differential Solar Radiation Pressure

The numerical simulation is set up with the craft initially at their undisturbed equilibrium states.
The contour plot of Figure 9 shows what the worst-case percentage of the buffer between equilib-
rium distance and un-stretched distance is compromised by the SRP disturbed relative motion. This
value is calculated using:

% =
Le −min(L)
Le − Lo

100 (15)
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This indicates how close the tether length is from becoming slack as a function of both charge and
the surface area ratio between the craft. The top left portion of the figure indicates that the crafts
relative motion compress to the point of causing the tether to go slack at times.
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Figure 9. Tether distance from becoming slack under varying SRP disturbances

As indicated in Figure 9 an increase in charge will stiffen the system to resist perturbations.
For shorter separation distances of less than 10 meters the system is further stiffened reducing the
voltage requirements to resist the same disturbance force levels. Note that even with a very large
TCS node size ratio of 10 and 25 kV potential, the compression due to this worst-case alignment
of the differential SRP disturbance would only cause approximately a 20% compression of the
equilibrium distance buffer. For TCS separation distances on the meter level, considering near
equal nodal sizes, the differential SRP will have a minimal impact on the TCS shape.

DOUBLE TETHER CONFIGURATION

Having a TCS system that incorporates a redundant set of tethers between the nodes, with the
attachment points distributed across the nodes surface, is a method of increasing the rotational TCS
node stiffness. The following numerical simulation results quantify by how much the rotational
TCS node stiffness can be increased if a double-tether setup is employed.

Two Degree of Freedom Model

A development for the TCS concept is a double-tethered craft system as shown in Figure 10. The
intent of the redundant double-tether is to induce additional rigidity and resistance to deformation
to the TCS. The system is modeled with symmetric motions so that it can once again be reduced to
two degrees of freedom to gain analytical insight.

The translational equations of motion of the symmetric double-tether system is:

ẍ =
kcQ

mx2
− 2ks

m
[x− xo + 2r cosφ(1− cos θ)] (16)

where φ is the half angle between the tether attachment points. The rotational equation of motion is
given by:

θ̈ = −2rks sin θ
I

{
cosφ(x− xo) + 2r

[
cos θ + cos2 φ− 2 cos θ cosφ

]}
(17)

The rotational equation of motion is significantly more complex than the single-tether setup. How-
ever, linearizing the double-tether motions about the equilibrium states, still produces a decoupled
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set of equations. The translational motion for small departures about the equilbrium (δx = x− xe)
is:

δẍ ≈ − 2
m

[
kcQ

x3
e(Q)

+ ks

]
δx (18)

This linearized translational motion is of the form of a stable undamped harmonic oscillator. It
is also equivalent to the single-tether case of Equation 10 with the additional factor of two. This
increases the natural frequency and stiffness of the translational response. The rotational equation
of motion is linearized to the form:

θ̈ ≈ −2rks
I

[
(xe(Q)− xo) cosφ+ 2r(1− cos2 φ)

]
θ (19)

This linearized rotational equation of motion decouples from the translational motion and is a stable
undamped harmonic oscillator equation. Unlike the single-tether rotational motion of Equation 12
this linearization features a factor of two as well as dependance on the tether attachment angle φ.
Figure 11 plots the natural frequency of Equation 19 as a function of charge and tether attachment
angle. This figure shows how stiffening is increased with the tether angle φ. This geometric stiff-
ening is a consequence of the larger moment arm acting on the node from equilibrium. The data in
this figure is generated with nodes of 0.5 m radius and separated by 2.5 m.
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Figure 11. Natural frequency of linearized rotational motion of double-tether model

Figure 4 showed for the single-tether case that increasing charge increases the natural frequency
of the rotational response. This also occurs with the natural frequency of the double-tether shown
in Figure 11, however has less contribution than the geometric stiffening. Utilizing a double-tether
will increase the ability to resist nodal angular rotations.
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Double Tether System Response to Angular Rate Errors

In this simulation case the double-tether response to angular rate errors is compared to that of
a single-tether configuration. A two-node configuration with a separation of 2.5 m is analyzed.
The simulation is performed using the full 3D and non-linear coupled equations of motion. The
parameters of the symmetric simulation are shown in table 5.

Table 5. Double Tether Simulation Parameters

Parameter Value Units

Initial attitude rate errors (θ̇0) 1-2 deg/min
Spacecraft node radius (r) 0.5 m
Spacecraft separation (xo) 2.5 m
Tether attachment point angle (φ) 20 deg

Using two initial angular rate errors for each tethered system the resulting maximum attitude
angle reached is shown in Figure 12 on a y-axis log plot. There is a noticeable difference in the
systems responses. The double-tethered system performing better at reducing maximum rotation
due to initial rate errors. The results indicate that the resulting moment arm from the double-tether
configuration significantly increases the systems response to angular rates. While the double-tether
system has the advantage of producing a stiffer system, it is also prone to having a tether go slack as
shown by the dashed lines in the figure. This can be overcome by maintaining a higher, yet realistic,
charge level. In contrast, during this simulation case the single-tether system remains taut for any
charge level, at a cost of reaching attitude angles at least a magnitude higher.
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Figure 12. Double-tether vs single-tether attitude response to angular rate errors

The results of this simple double-tether simulation indicate that a TCS system can be significantly
stiffened beyond an equivalent single-tether system. This offers enhanced capabilities to resist dis-
turbance or deployment motions. An additional advantage is the safety provided by having two
tethers on the system. In case one tether is severed, the remaining tether would still maintain the
TCS shape, although with reduced accuracy. Future work will investigate three dimensional TCS
configurations to consider more complex multi-tether nodal connections.
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CONCLUSIONS

The novel TCS concept offers unique on-orbit advantages. Large space structures are envisioned
that can be launched in a low-mass and compact configuration and deployed and resized once on or-
bit. To advance the concept, this study analyzes the complex relative motion of the closely operated
tethered spacecraft nodes. Results are produced by implementing the full three dimensional non-
linear equations of motion that incorporate the coupling forces of the attitudes of each spacecraft in
the TCS formation. Future studies will incorporate alternate tether materials and models.

The results of this dynamical motion study indicate that a TCS will inflate under Coulomb forces
and with increased charge will become quasi-rigid and resist deformation from external forces. It
is shown that for realistic and achievable charge levels a TCS can maintain both its shape and its
tethers in tension under the influence of disturbances such as initial nodal angular rate errors and
compressive solar radiation pressure at GEO. This algorithms versatility and ability to examine any
general TCS system will lead to numerous future investigations exploring the operating feasibility
of the TCS concept.
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APPENDIX - THREE DIMENSIONAL TCS MODELING

The simplified two degree of freedom TCS models offer insight into translational and rotational
motion. Shown here is the development of the full three dimensional non-linear equations of motion
that can accommodate general TCS spacecraft configurations. The algorithm simulates the TCS
in deep space, or under the gravitational attraction of orbit and incorporates external disturbance
forces. Although not performed in this study, the intent of this simulator is to fully explore the
capabilities and operating regimes of the TCS along with a study of its dynamic behavior under
realistic disturbance environments.

The algorithm is general to accommodate TCS relative motion studies featuring any number of
nodes and tethers in any initial orbit configuration. The location of each spacecraft node, Ri, is
defined in a Earth centered inertial (ECI) frame as defined in Figure 13.

At epoch each nodes body frame is aligned with the ECI frame. The relative separation of each
nodes center ρij at epoch defines the desired separation distances. The relative alignment of each
node at epoch also defines the tether connection point at each nodes spherical surface. The tether
connection point lies on the straight line between each nodes center point. It is not necessary to
have a tether connecting each node as a tether connection matrix, [Kij ], defines which nodes are
connected.

Tether Force

The separation of the nodes spherical surface at epoch defines the desired tether length xij =
ρij(0)− 2r. The tethers are modeled as linear springs that are stretched beyond this optimal length
from either the nodal relative motion or from attitude rotations as shown in Figure 14. The tether
length increase is defined by δxij and the resulting tensile force acting on node i from the tether
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connected to node j is:

Tij = ksδxij τ̂ij (20)

where τij is the vector defining the tether connecting node i to j. When the tether length is shorter
than desired, the tether goes slack and there is no force acting on the corresponding nodes.

Translational Equation of Motion

Using the Coulomb force of equation 1, tensile force and the gravitational force, the resulting
equations of motion of each node is calculated using:

R̈i = − µ

|Ri|2
R̂i +

N∑
j=1

Kij
Tij
mi

+
N∑
j=1

kcqiqj(−ρ̂ij)
miρ2

ij

e−ρij/λd

(
1 +

ρij
λd

)
, i 6= j (21)

where µ = 3.986× 1014 m3s−2 is the gravitational coefficient for Earth, mi is the spacecraft node
mass, N is the total number of nodes in the TCS model. Note that these charges do not influence the
relative motion. They simply provide an inflating force, relative to the systems center of mass, that
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increases the tether tensions. The scalars Kij are the tether connection matrix components which
define which nodes are connected by a tether. The motion of each node is propagated in time using
a variable step Runge-Kutta algorithm. A external disturbance force is added as an inertial vector to
Equation 21.

Nodal Rotational Equation of Motion

The attitude of each spacecraft node is also propagated by computing the torque acting on the
node from each tether:

BΓi =
N∑
j=1

(
Kij
Bpij × [BI]iITij

)
, i 6= j (22)

Where pij is the body fixed vector that defines the location of the tether connection point on node i
that connects to node j and [BI]i is the direction cosine matrix of the attitude of node i relative to
the inertial frame. The angular acceleration of each node is defined in the body frame with Euler’s
rotational equations of motion:30

[I]ω̇i = −ωi × ([I]ωi) + Γi (23)

The attitude of each node is represented with the modified Rodrigues parameters (MRP) which are
integrated using the differential kinematic equation:

σ̇i =
1
4
[
(1− σ2

i )[I3x3] + 2[σ̃]i + 2σiσTi
]
ωi (24)

The MRP set will go singular with a rotation of ±360◦. To ensure a non-singular description, the
MRP description is switched to the shadow set whenever |σ| > 1.30
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