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PLANAR SPACECRAFT CONTROL THROUGH ONE DEGREE OF
FREEDOM TIME-VARYING THRUSTER CONFIGURATIONS

William R. Schwend* and Hanspeter Schaub’

This paper investigates the use of thrusters mounted on one-degree of freedom robotic ma-
nipulators for planar control of the position and orientation of a spacecraft. The proposed
solution addresses the fuel consumption and mass concerns of fixed thruster configurations.
An analysis of the dynamics of the system and a cascaded control design is performed with
the coupling of spacecraft and manipulator dynamics being addressed through the incorpo-
ration of a prescribed torque to negate the hub accelerations that result from arm motion.
The stability of the control is analyzed using both linear and Lyapunov methods. Numerical
simulations are used to validate the control design for both regulation and tracking problems
and evaluate the viability of various momentum exchange devices in mitigating the effects
of reaction torques.

INTRODUCTION

As more ambitious mission concepts begin to be realized that make it infeasible for the launch of a fully
operational system, new cost-effective ways to update capabilities on-orbit need to be developed. In-space
Servicing, Assembly, and Manufacturing (ISAM) can improve performance, provide repairs, and extend
mission lifetime! over more traditional methods of never touching the system after launch making it a priority
for commercial space missions? in addition to several nation’s National Security interests.> These emerging
mission concepts often rely on physical grappling of other on-orbit objects as shown in the Hubble Space
Telescope upgrades as well as Northrop Grumman’s new Mission Extension Vehicle (MEV).* One of the
key considerations for the spacecraft performing these missions is their ability to carefully operate while
within a few craft radii of separation distance with minimal human oversight. Traditional positional and
attitude control methods for these missions rely on thruster clusters where the configuration is fixed relative
to the maneuvering spacecraft.»® While these fixed thruster configurations can take advantage of established
algorithms for mapping forces and torques to finite thruster burns that are computationally inexpensive,’
these body-fixed configurations demand a large number of thrusters to meet maneuverability requirements
and result in increased Av expenditure.®

Recently, more complex thruster configurations have been proposed to reduce the number of required
thrusters. These proposed configurations take advantage of the robotic manipulators often already on-board
the spacecraft by placing thrusters at the ends of the manipulators®'7 as shown in Figure 1. These more
complex time-varying configurations enable thrusters to be positioned in a manner that allows them to more
directly produce the control wrench required by the mission, maintaining the spacecraft’s maneuverability,
while reducing the number of thrusters and Av required to perform operations.'?"!”

The close proximity operations required for ISAM require the servicing spacecraft to fly a target object
relative path so that they can approach and hold a fixed position and orientation relative to the object onto
which the servicer will dock. Such non-Keplerian motion is challenging to control even when using fixed
thruster configurations as it requires coupled relative orbit and attitude control.!® This task is made more
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(a) Astroscale Lexi’ (b) Northrup Grumman MEV and MEP!°

Figure 1: Model renders of proposed spacecraft with thrusters on robotic arms

complex once time-varying thruster configurations, such as thrusters on robotic manipulators, begin to be
used. Due to the coupling between the motion of the robotic manipulator and the spacecraft hub, novel
control systems must be designed to ensure the relative orientation between the servicer and the object to
be grappled remains fixed. Significant work in this field has been performed studying the design of control
systems for spacecraft with attached robotic manipulators.'®?> These formulations still rely on traditional
control methods, however, and do not utilize the robotic manipulators for control actuation.

Several studies have been conducted that take advantage of variable thruster configurations. Calaon et al.?®
studied the use of thrusters mounted on a dual gimbaled platform for spacecraft momentum management.
However, the proposed control method relied on continuous thrust from the main electric thruster on the
spacecraft making it well suited to long-duration missions but ill fitted to proximity operations. Wei et al.'®
and Caverly et al.'>'* used thrusters mounted on robotic arms for joint station keeping and momentum
management of GEO spacecraft. These methods, however, took advantage of the long duration between
station keeping burns, often on the order of several hours, allowing for slow arm repositioning limiting the
torque impact on the spacecraft hub. This allowed them to utilize reaction wheels to assist with hub attitude
control. The necessity for faster arm repositioning when operating in close proximity leads to torques that
well exceed the control capability of reaction wheels, however. Finally, Prakash and Giri!” formulated a loop
dynamics approach that did not rely on external momentum transfer devices to accomplish attitude control.
This approach leaves the spacecraft hub free to experience acceleration during arm motion, something that
is undesirable when operating in close proximity to another spacecraft and trying to keep precise sensor
alignment and ensure proper separation.

This paper studies a planar coupled control design for a spacecraft with thrusters mounted on one-degree-
of-freedom (1-DOF) robotic arms. Looking at one-dimensional rotational motion challenges is illustrative,
but the long-term goal is developing a solution that can scale to three-dimensional rotations. The often large
and rapid repositioning required of the arms for operation in close proximity to other spacecraft, coupled with
the need to maintain a desired hub attitude, necessitates the inclusion of additional momentum management
systems. To this end a prescribed torque is utilized to offset undesirable hub accelerations during arm motion,
allowing the spacecraft to safely operate in close proximity to other spacecraft. What follows begins with the
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Figure 2: Variables and coordinate frames for the equation of motion derivation

formulation of the planar equations of motion (EOM), followed by a brief discussion of control allocation.
Next, a cascaded control loop is designed that utilizes a prescribed torque to allow for large and rapid arm
repositioning without affecting the spacecraft hub’s motion. Finally, numerical simulations for both a regula-
tion and tracking control problem are performed, with the results analyzed for both control accuracy as well
as control effort.

PLANAR EQUATIONS OF MOTION

This section develops the planar EOMs using Newtonian and Eulerian mechanics. EOMs are required for
the spacecraft translation, hub rotation and the arm motion. Figure 2 introduces the coordinate frames and
variables used for this formulation.

The spacecraft in Figure 2 has a rigid spacecraft hub with two 1-DOF arms mounted to it, each with 2
thrusters. The joints are modeled as motors which can produce a motor torque wg,. While only two arms
are shown the formulation allows for N, number of arms. There are four coordinate frames used throughout
the remainder of this paper. The inertial frame N : {71, fig, 723}, with origin IV is the basis from which the
dynamics are developed. The body fixed frame B : {l;l, b, fi3} has origin B and can be located anywhere
on the spacecraft hub, which has mass mpy,. The 7th arm frame, with mass m,,, is mounted at the sth hinge
joint H; with hinge joint frame #,; : {fzi’l, iLivg, fig }. H,; is fixed with respect to the B and is equivalent to the
arm frame A; : {d;1,d; 2,73} when the angle between the two frames 6; = 0. All coordinate frames share
the third axis ng which points out of the page in Figure 2.

The location of the total spacecraft center of mass is C, and B, is the body-fixed spacecraft hub center of
mass. The vector ¢ that points from B to C. The variable A; is the combined center of mass for the i arm



plus the attached thrusters and is located a distance d; away from the hinge H;.

Spacecraft Translational Equations of Motion

Using Newton’s second law for the center of mass of the spacecraft the translational EOMs are:

Fo = msc'};C/N (1)

where 7y is the vector pointing from point IV to point C, Fey is the sum of all external forces acting on
the spacecraft, and my. is the total spacecraft mass:

N(L
Mge = Mhup + Z My, (2)

i=1

The frame-independent vector equation for the translational motion of the spacecraft center of mass is fully
decoupled from the hub rotational motion as well as the motion of the arms.

Hub Rotational Equations of Motion

Next, the rigid body rotational motion of the hub are developed. The derivation begins with Euler’s equa-
tion for a body-fixed coordinate system not coincident with the center of mass of the body?* :

HSC,B = LB + msc'i;B/N X c (3)
where H . p is the angular momentum of the spaacecraft about point B and:
Tp/N =Tco/N —C “4)
the center of mass vector c is:
Na
MubT B, /B + D iy Ma, T A, /B

c= (&)

M

and L p is the total external torque about point B. Substituting Eq. (4) into Eq. (3) results in:

Hp=Lp+my(fc/y—¢) Xc (6)
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Following the derivation by Allard et al.~ and using the vector:

TA, H = di@i1 (7N
The inertial second time derivative of ¢ is expressed as:
é:c”—|-2wB/NXC/—FL;JB/NXC-FUJB/NX(wB/NXC) (8)

where wp /v is the angular velocity of the B frame relative to the A/ and the body relative first and second
time derivatives of c are:
N, . N, . .
¢ = Zi:l MM, dieial}? ¢ = Zi:l Ma, di(eiai,Q - 91'2041‘71) )

Mg Mg

The angular momentum vector of the spacecraft about point B is :

Hg.p =[Iwb.B.JwB/N + M0vTB./B X TB./B

N . ) . (10)
+ Z([Iai,Ai]wB/N +0ila, sz + M, T A, B X TA,/B)
=1

where [T, g, ] is the inertia of the spacecraft hub about its center of mass.



The arm frame A, is assumed to be principal such that the arm inertia matrix about its center of mass when
defined in the A; frame is:

AL, 00
Ai[Iai,Ai} = 0 Iai,2 0 (11)
0 0 I(li,s

Similarly the body frame B is assumed to be principal in the 723 direction. Substituting this definition and the
value of wp /N = [0,0, #]T into Eq. (10) leads to:

N,
H.p = w3903 + MhwTB./B X TB./B + Z(Ia,-,s (¢4 0:)h3 +mayra, g X Ta,p)  (12)
i=1
Taking the time derivative of Eq. (12)
N,
H. g = Iwb3¢N3 + MuwTB, /B X PB./B + Z(Iai,s (¢4 0i)n3 +myra, /g X Ta,8)  (13)
i=1

The terms 7,/ p and 7 4, /g are found using the transport theorem?* taking advantage of r5_,p being fixed
in the body frame: ) _ _
P, /B = ¢N3 X TR /B + ¢ng X (pN3 X rp_/B) (14)

'f'A,;/B = ’I"in/B +2(]5’ng X 7‘:41,/3 +¢fL3 X TA;/B +¢’ﬁ3 X (¢ﬁ3 X T'AI/B) (15)

Substituting Eqs. (14) and (15) into Eq. (13) and simplifying by taking advantage of the planar nature of the
problem yields:

N,
H. g =Ihw, 3003 + M B, /B X N3 X TR /B + Z(Iai,is (¢ +0:)n3 (16)
i=1
erai'rAi/B X T’igi/B +rAi/B X 2¢ﬁ3 X T;li/B +mairAi/B X ¢ﬁ3 X TA,i/B)

where _
Ti4i/B = dzeiflz’g (17)

rigi/B = d;(0;a50 — 02a;1) (18)
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Using the parallel axis theorem for the inertia matrices™ a new frame independent inertia matrix for the

spacecraft about point B can be developed as:

[Inub, 5] = [Inuv,B.] + M7 5, /8175, /8]" (19
(I, 8] = [La;,a.] + ma,[Fa,/B][7 4, /8] (20)
Ng
[se,B] = [Inub,B] + Z [La;,B] 2D
i=1

Here we make use of the skew-symmetric matrix definition : u X v is the crossproduct between « and v and
can be expressed as [@]v where [@] is the skew-symmetric matrix built from w.

Due to the planar nature of the problem [l g]| is principal about the 73 axis. The element in the (3, 3)
position I 3 is extracted and reduces Eq. (16) to:

N,
Hyp=Ic3¢ns + Z ((Iai,gﬁs +ma, (A, X i2)) b;
i=1 (22)

— My, d7. 912 (’I’Ai/B X di,l) —+ 2¢mai dl 92 (rAi/B X (ﬁg X &172)))



Equating Egs. (6) and (22), moving all second order derivative to the left hand side, and taking the dot product
with 73 since all rotation is about that axis:

N
fig - (mgee X (Foyny — &) + Leadng + Y (Ia, 4 + ma,Ta, B X @i 2)0;)
=1
.. 23)
= ’ﬁg . (LB — Z2¢maidi9irAi/B X (’ﬁg X &i)g) — maidiﬁfrAi/B X di,l)
=1

This frame-independent vector equation for the planar rotational motion for the spacecraft hub with NV,
attached arms demonstrates the coupling that arises due to the multi-body interaction of the rigid bub and the
moving arms.

Arm Equations of Motion

The final set of EOMs needed to solve the full system of differential equations is for the 1-DOF arms. In
this derivation the ith arm frame A; is assumed to be a principal frame leading to the diagonal inertia matrix
provided in Eq. (11). Let the total torque acting about hinge point H; be:

Ly, = Li1a;1 + L;26;2 + L; 373 (24)
The hinge torque component acting about the inertially and body fixed hinge axis 73 is:
Liz=upg, + Ly, + N3 Text (25)

where u g, is the torque produced by the motor at the hinge, Ly, is the torque about the hinge produced by
the firing of the thrusters, and ng - T¢ is the total external torque acting on the arm projected onto the 73
direction. The structure of the hinge would produce the other two torques L; ; and L; 5.

The inertial angular velocity vector of the arm is:
WA, /N =Wa,/H, + W, /Bt WB/N (26)

where wyy, ;g = 0 since the hinge frame H; is fixed with respect to the body leading to:
wa, N = (& + 0, 27

Substituting the angular velocity into the rotational equations of motion of a rigid body with torques about
the center of mass** and noting that the first two equations are zero due to the planar nature of the problem
the general equation of motion for the arm is:

Iai,?’ (¢ + 91) = Lai.S (28)

where
L.

i

= La; G510 + Lag; ,052 + L, ;N3 (29)

The torque about the arm center of mass can related to the torque about the hinge through:
La, =Ly, —7a,/a, X Ma, T4, /N (30)
Finding the projection of Eq. (30) onto 75 and using Eq. (7) leads to the scalar equation:
Lo, , =um, + Ly, + N3 - Tex — Mg, diz - (@30 X ¥4, /N) (31)

Making use of 74, )y = T, /N + T4, /H,"

PN =y + (B4 )i x didiy + (6 + 0 x (3 +0)is x did ) (32)



Substituting Eq. (32) into Eq. (31) and making use of the identity u - (v X w) = (u X v) - w:
La; s = um, + Ly, + iy Tex — M didiz - 51,y — ma,d3 (6 + 67) (33)
Substituting this torque back into Eq. (28) produces:
(Lo, 5 + Mo, d2) () + 6;) + ma,dst 2 - T, N —um, — Ly,

i

- ﬁ3 *Text = 0 (34)

Finally, using g, )nv = (rc/n —€) + 7,/ and taking advantage of the hinge being fixed in the body frame

leads to:
maidia‘i,Q . (;’;C/N - C) + (Iai,3 + mdldg)((b + 91) + maidié&i,l ‘TH,/B (35)
= up, + Ly, + 73 - Text + Ma,di?di 2 - TH,/B

This scalar equation provides the N, arm EOMs needed to fully describe the motion of the spacecraft.

JOINT AND THRUSTER ALLOCATION

This section focuses on the methods to select the joint angles and thrust magnitude for each thruster on the
spacecraft.

Coupled Joint and Thruster Allocation

Following the approach developed by Caverly et al.!'* the selection of joint angles and thruster firings can
be done by solving an optimization problem:

Iéll}l (udes - ucontrol(oa f))TWu (udes - ucontrol(aa f)) + W?.f (36)

subject to
Omin < 0 < gmin
0<f < Frna

where ug.s € R6*! is the desired control wrench, weonrol (8, f) € RS> is the control wrench produced by
the N; joint angles, @ € R™i*1 and M thruster forces, f € RM*1 and W,, € R W ; € RM*! are the
weighting matrices corresponding to the control and thruster actuation respectively.

(37

This optimization problem can then be solved using a standard off the shelf solver with methods such as
multi-start sequential quadratic programing (SQP) to avoid local minima.

Decoupled Joint and Thruster Allocation

When using 1-DOF arms it is possible to choose the joint angles and thrust magnitudes separately and still
arrive at an optimal solution, so long as the arm and thruster configuration is such that any force vector can
be directly accessed while producing zero torque. In these instances the desired control wrench is:

Fdes
Udes = 38
d [ Ly, (33)
in inertial space F' and L are:
N Mo
NFow= |F2| MLaw= |0 (39)
0 Ls

From these equations an easy analytical solution for a valid joint configuration can be found using only
NF through:
6 = g(arctan2(Fy, F)) (40)

where ¢ is a function that maps between the thrust direction and the arm angles. Once the joint angles are
determined traditional thruster firing algorithms such as the Moore-Penrose pseudo-inverse’-2%?7 or linear
programming’-?® can be used to determine an optimal thruster firing that achieves the desired control wrench.



Torque Only Allocation The decoupled allocation approach detailed above relies on the requested force
vector to determine the joint angles. This necessitates the determination of the optimal joint angle for sce-
narios where the desired control wrench is only non-zero for torques. The optimal set of joint angles will
vary depending on the spacecraft configuration. Using the spacecraft detailed in Table 1 and Eq. (48) a
Monte Carlo trial was run using the parameters in Table 2 to identify the joint angles that minimized the total
required thruster force of the system.

Table 1: Spacecraft parameters

Parameter Symbol Value
Mass of the Hub Mhub 330 kg
82.1150 0 0
Body Frame Inertia of the Hub B L. 5.] 0 98.3950 0 kg-m?
0 0 121.0220
Body Frame Location of Hub Center of Mass  “rp_ /B [0,0,0]" m
Mass of Arm ¢ My, 10 kg
Number of Thrusters per Arm Nur 2
Body Frame Location of Hinge 1 By, /B [0.79,0,0]" m
Body Frame Location of Hinge 2 By, s [-0.79,0,01" m
Arm Frame j Location of Arm j COM Rela- A, /H, [0.75,0,0]7 m

tive to Hinge j
Arm Frame j Location of Thruster i Relative 4y, su, 1,0, 0]7 m

to Hinge j
Arm Frame j Thrust Unit Vector of Thruster Aigl [0,1,0"
1
Arm Frame j Thrust Unit Vector of Thruster g, [0, —1,0]"
2
[0.0250 0 0
Arm Frame j Inertia of Arm j AJ[Iajy A,] 0 1.0542 0 kg-m?
L0 0 1.0542
[1 0 0
Body Frame to Hinge 1 Frame Direction Co- [BH;] 0 1 0
sine Matrix (DCM) 0 0 1
(-1 0 0
Body Frame to Hinge 2 Frame DCM [BHs) 0 -1 0
| 0 0 1
Mean Total Spacecraft Inertia about the 3 axis  Iic 3,mean  161.9083 kg-m?
Minimum Joint Angle for Allocation of Joint Hminj —5 rad
J
Maximum Joint Angle for Allocation of Joint Qmaxj 5 rad
J
Maximum Thrust from Thruster ¢ fi.min 15N
Maximum Motor Torque from Motor ¢ UH,; max 1.5 N-m

Figure 3 shows that for the spacecraft in Table 1 the inertia is at a maximum when the arms are both at 0°
and is minimized when the arms are both at +90°. Despite this the total thruster force required to correct for
a given error is minimized when the arms are at 0° as shown in Figure 4. Only cases where §; = 65 were
considered in Figure 4 since those are the only configurations capable of producing a pure torque solution
for this spacecraft configuration. As such for this configuration the optimal joint angle for the torque only
control wrench is 8; = 65 = 0°.



Table 2: Torque only joint angle Monte Carlo parameters

Parameter Symbol Value

Hub Orientation Error Y0 —5:5deg

Hub Angular Velocity Error Y0 —0.1:0.1rad/s
Desired Angular Acceleration  ¢ges —0.05 : 0.05 rad/s?
Environmental Torque Leny 0 N-m

Number of Monte Carlo Trials  Nyials 100
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Figure 3: Total spacecraft inertia based on Figure 4: Total thruster force required for
joint angles. control torque.

Coupled and Decoupled Solution Comparison

To evaluate the quality of the decoupled solution a Monte Carlo trial was run comparing the results of the
optimization shown in the coupled solution section to those found using the decoupled method detailed above.
Table 1 details the parameters of the spacecraft used for this evaluation and Table 3 shows the parameters used
for the Monte Carlo trial. To solve the optimization problem from the previous section the SQP option in
MATLAB?’s finincon was used with the default options except the optimality tolerance was lowered to 10~%
and the maximum function iterations was raised to 3000. A targeted multistart was used whenever fmincon
failed to solve or if any component of the control wrench error |tges — Ucontrol (0, f)| exceeded 10~%. To solve
the decoupled approach Dual Simplex Highs in MATLAB’s linprog was used with the default options.

Table 3: Joint and thruster allocation Monte Carlo parameters

Parameter Symbol Value
Control Weight Matrix W, diag{10*}
Thrust Weight Matrix W 10721
Desired Force Magnitude Friag 0.1:1.25N
Desired Force Direction Ydes —m 7 rad
Desired Torque Les —1:1N-m

Number of Monte Carlo Trials  Nyjas 9,960

Figure 5 clearly shows the advantage of the decoupled solution. It is readily seen that the decoupled
solution leads to a more accurate replication of the desired control while requiring approximately the same
total thruster force and taking an order of magnitude less computation time.
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Figure 5: Comparison of performance metrics between coupled and decoupled allocation methods.

CLOSED LOOP CONTROL

This section focuses on the design of the control system for the 3-DOF planar control of the spacecraft. The
cascaded control approach shown in Figure 6 is used where the outer control loop finds the desired control
wrench which is fed into the joint angle and thruster firing allocation algorithm. This outputs the desired joint
angles as well as firing times for each thruster. The desired joint angle is fed into the robotic arm controller
which outputs the prescribed torque needed to negate hub accelerations. Once the joints reach their desired
angle, the thrusters are fired based on the firing times output by the allocation algorithm. During this phase
the joint motors provide the torque required to negate any arm accelerations. The process is then repeated
until the system has reached its desired state.

Quter Control Loop

The outer loop controller is designed to track a reference trajectory X ges. Due to the decoupling of the
translational motion in the problem from the rotational motion, the controller can be split into 2 parts.

Translational Control The translational controller is designed to drive dx = & — xg4es — 0 and dx =

& — Xges — 0. Using Feyy = Fepy + F'. where Feyy are the forces from the environment and F',. is the
thruster control forces Eq. (1) becomes:

Fen + Fr = msc'f'C/N (41)

selecting the control to be:

F. = —[Kluans0T — [Plirans0T + MseBdes — Feny (42)

10
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Figure 6: Control loop design

where [Kians, [Pluans € R?*? are gain matrices for the translational motion. This leads to the closed loop
dynamics:

é = [A] trans € (43)
where: )
x
.o [51} (44)
and:
B 0 Izx2
[Altrans = [_ L [Klyans  —7[P] lan (45)

This means the controller will be globally asymptotically stabilizing if [ K ]ans and [P]yans are positive definite
matrices.

Hub Rotational Control The goal of hub rotational controller is to drive ¢ = ¢ — Pges — 0 and 6(;5 =
(;5 — qz'SdeS — 0. Assuming control gains are selected to enforce a separation in timescales, and leveraging the
asymptotic stability of the arm controller as shown in the next section, the rotational EOM for the hub shown
in Eq. (23) can be reduced to the standard planar rotational EOM for a rigid body:

Iie 36 = Leny + Ly (46)
where L,y is the torque from the environment, L,. is the thruster control torque and:
Lenv + L’I" = ﬁ?) : LB (47)

selecting the control to be: ' B
Lr = - r0t6¢ - Rol6¢ + Isc,3¢des - Lenv (48)

where K., Pot € R are the gains for the rotational motion and following the same steps as in the translational

controller leads to:
0 1
[A]rot = [_@Krot _Iscl,sp“"} (49)

As before this leads to the controller being globally asymptotically stabilizing if K. and P,y are positive.

Robotic Arm Movement Control

The robotic arm movement control is designed to drive 60 = 0 — 04, — 0 and 0 — 0. During the move-
ment it is assumed that the thrusters are inactive, so ', = 0 and L,, = 0. Additionally, a prescribed torque
Tprescribed 18 assumed to cancel any reaction torque due to arm acceleration, resulting in no hub accelerations.
Under these assumptions the arm dynamics reduce to:

(M6 = upy + C (50)
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where [Mj] € R(NaxNa) is the lower right hand corner of the full system mass matrix [M] € RWNVat1xNa+1),
wy € RNa*1 is the vector of hinge motor control torques u m,,and C = [Cy,--- ,Cp, T with:

N N
Ci =N3 + Text + Ma, did 02 - T, /B

Ng )2 A
F. 2 my. di0%a;, . . . (1))
— ma,didii 2 ( ey 2=t MBI g ot g x (i % c))
Mge M
Defining the Lyapunov function:
. 1.17. 1 T
V(66,0) = 50 0+ 560 [Kp]00 (52)
where [Ky] € RWaxNa) jg a positive definite gain matrix. Taking the derivative leads to:
V(56,0) = 0" (6 + [K4]00) (53)
due to Oges = 0. Forcing V' to be negative semi-definite by setting it equal to V (50, 0) = fQT[Pg]é with

[Py] € RWaxNa) being another positive definite gain matrix and substituting in the value for 6 from Eq. (50)
leads to: o .
) [[Mg]_l(uH +C) + [Py)0 + [Ko]68] =0 (54)

setting the term inside the brackets to zero and solving for the motor control torque vector produces the
stabilizing control:
up = [Mp|(—[Ko|660 — [P]0) — C (55)

The resulting control law renders the arm movement dynamics globally stable.

Asymptotic Stability To show the asymptotically stabilizing nature of the control, the method developed
by Mukherjee and Chen?’ is utilized. The first derivative of the Lyapunov function is found to be zero on the
set 2 : {0 = 0}. Taking the second derivative of V and evaluating over 2 leads to V = 0 since the value of
6 is bounded as previously proven. Finally taking the third derivative of V' and evaluating over €2 leads to the
negative definite expression:

V = —2((ug + C)"[ Mg~ [Po][Mo] (un + C)) (56)

This shows that the control developed above is globally asymptotically stabilizing as required for the hub
rotational control and with proper selection of K, Pot, [Kg], and [Py] the separation of timescales can be
ensured to allow the spacecraft to be treated as a rigid body in the outer control loop.

Prescribed Torque Calculation The robotic arm movement control above required a prescribed torque to
be acting on the body to negate any potential hub accelerations. Using the wy found by the controller it is
possible to back solve for the Tyrescribed required to enforce this condition. Using the mass matrix to rewrite
the three rotational EOMs and taking advantage of the thrusters being inactive leads to:

of]-t)-E

where:

N,
D = Lewy — 13 - (Z |:2¢maidi0irAi/B X (g X i) — My, dib7T 2, /8 X di,l}

A, . (58)
Fenv “ d192A1 . . .

—Mge€ X ( + i M dibidin 203 X ¢ — ¢ng x (¢png x c)))
Mg Mg

12



setting ¢ = 0 and inverting [M] so that:

My M 11
M]™h= : (59)
MY 11 Mz‘\'} +1,N,+1
enables Tprescribed t0 be found using:
Tprescribed = -D — 1nv Z Min;_i,.l qu + C]) (60)

Application of this prescribed torque during arm movement enforces gi) = 0, thereby ensuring that the as-
sumptions underlying the robotic arm movement controller remain valid.

Arm Control During Thruster Firing

Once the arms have reached their desired orientations and 8 = 0, the spacecraft transitions to the thruster
firing phase to execute the outer-loop control objectives. During this phase, the hinge motors apply the
torques necessary to counteract any torques induced at the joints by thruster activity. This maintains 6=o0,
and together with the zero joint velocities, ensures that the spacecraft behaves as a rigid body throughout
the thruster firing phase. Adjusting Eq. (57) to account for the thruster firing and removal of the prescribed

torque leads to:
o] =Ltra o[

where E = [Ey, -+, En,]T and:

F,
E; = My, di&i,Q : (62)
Mgc
denoting the lower right N, x N, corner of [M]~! as [M™] and building the vector b = [by,--- ,bn,]"
where:
bj =M™ (L, + D + i3 - (c x F,) Z 1Ly, + Cx + Ey) (63)
the hinge motor torque vector can then be found using:
ug [va] (b) (64)

Applying these motor torques during thruster firing enforces @ = 0, ensuring that the spacecraft behaves as a
rigid body throughout the firing phase, as assumed in the outer-loop control design.

NUMERICAL SIMULATION

This section presents numerical simulations of the 3-DOF planar spacecraft control system using thrusters
mounted on robotic arms. Two scenarios are considered: regulation control and tracking control. The rect-
angular spacecraft for both simulations is detailed in Table 1 and is operating in a gravity free environ-
ment with no other external forces or torques. While the desired joint angles are selected within the range
0 € [—n/2,7/2], the simulated joint dynamics are unconstrained and may exceed these bounds during arm
motion. Table 4 shows the control gains used in both simulations. Both simulations use an outer loop control
period of 10s with thruster actuation triggered once both |50/, |0| < 10~%. A simple Discrete Pulse Thrusting
using ROUND?” firing algorithm was implemented with a minimum pulse time of 0.01s.
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Table 4: Simulation control gains

Parameter [K trans] [-Ptrans] K, rot Prol [K 0] [P 0]
Value 0.5615%2 28I54o 0.4373 13.1193 9.86961542 9.4248152

Regulation Control

For the regulation control simulation the spacecraft was initialized to a position of [1.2, —0.9]7 m, velocity
of [0.004, —0.005]7 m/s, hub attitude of 2 deg, and hub angular rate of 0.3 deg/s. All arm states were
initialized to zero. The goal of the regulation control was to drive all non-arm states to zero while the final
states related to the arms were left free.

Figure 7a shows the positional error of the spacecraft converging in around 200s while Figure 7b shows the
attitude error converging in under 100s. Figures 8a and 8b show that translational and angular velocity errors
converge within the first 100-200 seconds. Together Figures 7 and 8 confirm effective outer loop regulation
control.
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Figure 7: Spacecraft center of mass position and hub attitude error
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Figure 8: Spacecraft center of mass velocity and hub angular velocity error

Figure 9a demonstrates the prescribed torque required to negate hub accelerations during arm movement.
It can easily be seen that the required prescribed torques (peaking at upwards of 6 N-m) well exceed the
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torques traditional momentum management devices like reaction wheels (RWs) can produce.’! This implies
that more complex devices such as variable speed control moment gyroscopes (VSCMGs) would be required
to produce this torque. Figure 9b shows that the 3-DOF spacecraft control is achieved without exceeding the
1.5 Nm torque capability of the motors. Figure 10 demonstrates how both joint angles converge to the desired
value in less than the 10 s control period leaving ample time for thruster firing during each control period.
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Figure 9: Prescribed torque and hinge motor torques
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Figure 10: Joint angles over time. The solid line represents the desired joint angle, while the dashed line
shows the actual angle achieved.

Tracking Control

For the tracking control simulation the spacecraft was initialized to a position of [—10, —10]7 m, velocity
of [0.0064, —0.0093] m/s, hub attitude of 45 deg, and hub angular rate of —0.045 deg/s. All arm states
were initialized to zero. The goal of the tracking problem was to mimic a 60 min close proximity inspection
operation by flying the trajectory shown in Figure 11 while keeping the deputy spacecraft’s northern face
pointed at the chief spacecraft located at (0,0). The mean total spacecraft inertia about the 3 axis Isc 3 mean
was used as a constant value in Eq. (48).

Figure 12 demonstrates the very accurate position and attitude tracking of the outer loop control with the
maximum positional error over the 60 min inspection being less than 25 mm and the max hub attitude error
being less than 0.2 deg. Figure 13 shows similar tracking performance for the velocity and angular velocity.
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Figure 12: Spacecraft center of mass position and hub attitude error

Figure 14a once again shows the prescribed torque exceeding the capabilities of most RWs. It also shows
three large spikes of more than double the nominal prescribed torque, all of which correspond to the large joint
angle changes (> 100 deg) seen in Figure 15. These large joint angle changes also lead to large overshoots
in the actual joint angle when compared to the desired joint angle. Both the large prescribed torque and
overshoot in joint angle could likely be addressed through input shaping within the robotic arm movement
control in future work. Figure 14b once again shows that the maximum hinge motor torque is never exceeded.
With the exception of the three instances of overshoot discussed above, Figure 15 shows that once again the
joint angles accurately track their desired values.

The simulation results show the efficacy of the proposed robotic arm mounted thruster system with pre-
scribed hub torque control system. The position, attitude, and rate errors all quickly converge to zero and stay
there, allowing for accurate regulation and tracking control. The joint angles quickly converge to their desired
values with minimal instances of large overshoot, enabling proper thruster alignment. The large prescribed
torque values indicate a need to utilize more complex spacecraft hub attitude actuation capabilities such as
VSCMGs for close proximity manuevers as opposed to the simpler and more traditional RWs that gave been
shown to work for stationkeeping maneuvers.'?>~!® The large prescribed torques also demonstrate the need for
a subsystem to control hub motion during arm movement as the reaction torques that the subsystem would
offset could lead to significant undesirable acceleration of the hub between thruster firings.

16



Velocity Error (m/s)

Prescribed Torque (Nm)

Joint Angle (deg)

Angular Velocity Error (deg/s)
2
&

— 0y
-2.5 T T T T T | -0.02 T T T T - .

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min) Time (min)

(a) Velocity error, d& (b) Angular velocity error, 8¢

Figure 13: Spacecraft center of mass velocity and hub angular velocity error

15 1
101 =
<
g
5 g
(=]
2
S
0 o
=
]
2
-5 =
-10 + . - - . ) - - - : v )
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min) Time (min)
(a) Required prescribed torque, Tprescribed (b) Hinge motor torques, w i
Figure 14: Prescribed torque and hinge motor torques
100 1 100 -
N Actual 50 = Actual
0 2 o
z
o
-50 1 S .50
<
IS
-100 A ! '3 -100 1 I
l ° :
|
-150 : -150 1 !
-200 . . . . . . -200 : . . . . .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min) Time (min)
(a) Arm 1 joint angle, 61 (b) Arm 2 joint angle, 0

Figure 15: Joint angles over time. The solid line represents the desired joint angle, while the dashed line

shows the

actual angle achieved.

17



CONCLUSION

This paper presents a planar spacecraft control system employing thrusters mounted on robotic arms, in-
corporating prescribed torques to counteract hub accelerations induced by arm motion. The inclusion of these
prescribed torques enables the use of reconfigurable thruster systems for close proximity operations. A cas-
caded control architecture was developed and its stability established using both linear analysis and Lyapunov
methods. An expression for the prescribed torque required to negate hub acceleration was derived. Numer-
ical simulations demonstrated high-accuracy position and attitude control in both regulation and trajectory
tracking scenarios, validating the proposed method’s effectiveness.

Future work will extend these methods to full 6-DOF spacecraft dynamics. Enhancements to the robotic
arm controller, such as incorporating input shaping, will be explored to reduce large prescribed torques and
mitigate joint overshoot. In addition, joint angle allocation strategies will be refined to minimize arm reposi-
tioning requirements and further improve control efficiency.

DISCLAIMER

The views expressed in this article are those of the author and do not reflect the official policy or position
of the Department of the Air Force, Department of Defense, or the U.S. Government.
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