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Abstract
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the

attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands
where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired
control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes
a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular
rates. The overall stability relies on the separation principle of the inner and outer control loops which must have
sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped
to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A
Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust
nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient
modular framework that makes it simple to interchange outer and inner control loops to readily setup new control
implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver
subject to an unknown external torque.

1. Introduction

Three-axes spacecraft attitude control continues to be an
active area of research. Extensive work has been per-
formed on both nonlinear1–6 and linear7 attitude closed
loop solutions. Such control solutions seek a stabilizing
control torque which drives both the attitude and rate er-
rors to zero. In essence, the linearized closed loop dynam-
ics resemble mathematically a spring-mass-damper sys-
tem. A particular challenge of the attitude feedback con-
trol development is handling complex rigid body kinemat-
ics simultaneously with the rigid body kinetics equations.
For example, popular non-singular control solutions are
developed for quaternions or Euler parameters1, 8 or Mod-
ified Rodrigues Parameters (MRPs).3, 9, 10 If Lyapunov’s
direct method is employed to argue closed loop stability,
care must be given in how the Lyapunov candidate func-
tion is formulated to provide insight into both the conver-
gence of attitude and rate errors.

In contrast, the robotic control community often em-
ploys a very different approach. Their multi-link manip-
ulator equations of motion are much more complex than
those of a single rigid body. Instead of developing a torque
level control to achieve the desired tracking, a kinematic
steering control is implemented where the rates are treated
as a control variable in an outer control loop.11, 12 To im-
plement such a kinematic control, an inner speed control

loop is required that has a much faster response time than
the outer loop. Using the separation principle stability is
examined by arguing that each loop individually is stable.
In the field of spacecraft attitude control the use of steer-
ing laws is common when employing single-axis Control
Moment Gyroscopes (CMGs). Here the control solution
is written in terms of the gimble rates, not in terms of gim-
bal axis torques.13–18 An inner control loop is assumed to
track the desired gimble rate trajectory.

The presented attitude control technique is related to
Backstepping Control method.19 Here a desired kinematic
response is created first which is then combined with a
servo control. However, a benefit of the backstepping
method is that the inner servo and outer kinematic stabil-
ity is developed simultaneously, thus avoiding the need for
the separation principle regarding the inner and outer loop
response times. For example, Reference 20 presents an
attitude control using the backstepping method for a reg-
ulation problem where all attitude and rate measures are
driven towards zero. Here too the rates are smoothly sat-
urated, but the stability proof is more complex due to the
direct integration of the inner and outer loops. In contrast,
if the separation principle is employed between the loops,
then more general outer attitude control behaviors can be
designed independent of the inner servo loop. For exam-
ple, Reference 21 presents an interesting outer steering
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loop that achieves autonomous conically constrained atti-
tude motion. Here body fixed vectors are either force to
remain outside a cone (i.e. sensor avoiding staring at sun)
or inside a cone (i.e. solar panel normal remaining within
a fixed angle relative to sun heading). This dual indepen-
dent control loop setup is convenient in that it provides
a readily modular design that allows the control loops to
be interchanged in the software design process. The in-
development Basilisk astrodynamics simulation software
framework1 creates a physics and control algorithm sim-
ulation framework where components can easily be ex-
changed. Reference 22 illustrates how Basilisk control
guidance modules can be exchanged to create complex at-
titude guidance solutions.

This paper investigates creating kinematic steering laws
to achieve novel three-axis attitude control laws suitable
for general reference attitude tracking. Lyapunov’s direct
method is employed on the kinematic differential equa-
tion to establish necessary outer loop stability conditions.
Specific implementations using the MRPs are developed
that enforce pre-specified spacecraft rotational speed lim-
its on the nominal closed loop control. Next, a spacecraft
angular velocity vector based closed loop servo control is
investigated for the inner speed servo loop. The nonlin-
ear rate servo module employs robustness modifications
using integral terms to reject unmodeled external torques.
The modular control solution is implemented using the
Basilisk framework to investigate how the overall control
can be broken up into modular components.

2. Problem Statement

The kinematic control law is developed for a rigid space-
craft whose orientation is controlled through a cluster
of N Reaction Wheels (RWs) as illustrated in Figure 1.
The control goal is to drive a body-fixed frame B :
tb̂1, b̂2, b̂3u towards a time varying reference frame R :
tr̂1, r̂2, r̂3u as illustrated. The inertial frame is given by
N : tn̂1, n̂2, n̂3u. The RW coordinate frame is given
by Wi : tĝsi , ĝti , ĝgiu. Here ĝsi is a unique positive

1 http://hanspeterschaub.info/bskMain.html

spin axis unit direction vector, while the other two axes
complete a right-handed coordinate frame. Using MRPs
at the attitude error measure, the overall control goal is
σB{R Ñ 0. The reference frame orientation σR{N , angu-
lar velocity ωR{N and inertial angular acceleration 9ωR{N
are assumed to be known.

The rotational equations of motion of a rigid spacecraft
with N RWs attached are given by8

rIRWs 9ω “ ´rω̃s prIRWsω ` rGsshsq ´ rGssus `L (1)

where us is the set of RW motor torque, L is an external
torque, and the inertia tensor rIRWs is defined as

rIRWs “ rIss `
N
ÿ

i“1

`

Jti ĝti ĝ
T
ti ` Jgi ĝgi ĝ

T
gi

˘

(2)

The spacecraft inertial without the N RWs is rIss, while
Jsi , Jti and Jgi are the RW inertias about the body fixed
RW axis ĝsi (RW spin axis), ĝti and ĝgi . The 3 ˆ N
projection matrix rGss is then defined as

rGss “
“Bĝs1 ¨ ¨ ¨

BĝsN
‰

(3)

The RW inertial angular momentum vector hs is defined
as

hsi “ Jsipωsi ` Ωiq (4)

Here Ωi is the ith RW spin relative to the spacecraft, and
the body angular velocity is written in terms of body and
RW frame components as

ω “ ω1b̂1`ω2b̂2`ω3b̂3 “ ωsi ĝsi`ωti ĝti`ωgi ĝgi (5)

3. MRP Steering Law

3.1 Steering Law Stability Requirement

As is commonly done in robotic applications where the
steering laws are of the form 9x “ u, this section derives a
kinematic based attitude steering law. Let us consider the
simple Lyapunov candidate function8, 10

V pσB{Rq “ 2 ln
´

1` σTB{RσB{R
¯

(6)

in terms of the MRP attitude tracking error σB{R. Using
the MRP differential kinematic equations8

9σB{R “
1

4
rBpσB{Rqs

BωB{R “
1

4

”

p1´ σ2
B{RqrI3ˆ3s

` 2rσ̃B{Rs ` 2σB{Rσ
T
B{R

ı

BωB{R (7)

where σ2
B{R “ σTB{RσB{R, the time derivative of V is

reduced to the elegantly simple form of

9V “ σTB{R
`BωB{R

˘

(8)
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To create a kinematic steering law, let ωB˚{R be the
desired angular velocity vector of this body orientation
relative to the reference frame R. The steering law re-
quires a feedback control algorithm for the desired body
rates ωB˚{R relative to the reference frame to make 9V in
Eq. (8) negative definite. For this purpose, the general
control formulation

BωB˚{R “ ´fpσB{Rq (9)

is proposed where fpσq is an even function such that

σTfpσq ą 0 (10)

Substituting Eq. (9) into (8), the Lyapunov rate simplifies
to a negative definite expression:

9V “ ´σTB{RfpσB{Rq ă 0 (11)

The steering law in Eq. (9) allows for a broad range
of kinematic response to tracking errors. The control de-
signer can implement any even function fpq while guar-
anteeing global asymptotic stability.

3.2 Saturated MRP Steering Law

This section explores particular implementations of f to
consider different pointing scenarios. A very simple ex-
ample is to set a linear steering law of the form

fpσB{Rq “ K1σB{R (12)

where K1 ą 0. This yields a kinematic control where
the desired body rates are proportional to the MRP atti-
tude error measure. As the MRP error measure norm is
bounded by unity, the kinematic speed command is also
bounded. However, it is monotonically increasing until
the maximum error of 180˝ is reached.

If the commanded rate should saturate at an earlier
tracking error angle, then fpq could be defined as

fpσB{Rq “

#

K1σi if |K1σi| ď ωmax

ωmaxsgnpσiq if |K1σi| ą ωmax
(13)

where σB{R “ pσ1, σ2, σ3q
T . A smoothly saturating

function is given by

fpσiq “ arctan

ˆ

σi
K1π

2ωmax

˙

2ωmax

π
(14)

where

fpσB{Rq “

¨

˝

fpσ1q
fpσ2q
fpσ3q

˛

‚ (15)

As σi Ñ 8 the function f smoothly converges to a max-
imum rate command of ˘ωmax. For small |σB{R|, this
function linearizes to

fpσB{Rq « K1σB{R ` H.O.T (16)

If the MRP shadow set parameters are used to avoid the
MRP singularity at 360˝, then |σB{R| is upper limited by
1. To control how rapidly the rate commands approach the
ωmax limit, Eq. (14) is modified to include a cubic term:

fpσiq “ arctan

ˆ

pK1σi `K3σ
3
i q

π

2ωmax

˙

2ωmax

π
(17)

The order of the polynomial must be odd to keep fpq an
even function. A nice feature of Eq. (17) is that the con-
trol rate is saturated individually about each axis. If the
smoothing component is removed to reduce this to a bang-
band rate control, then this would yield a Lyapunov opti-
mal control which minimizes 9V subject to the allowable
rate constraint ωmax.

Figure 2 illustrates how the parameters ωmax, K1 and
K3 impact the steering law behavior. The maximum steer-
ing law rate commands are easily set through the ωmax pa-
rameters. The gain K1 controls the linear stiffness when
the attitude errors have become small, while K3 controls
how rapidly the steering law approaches the speed com-
mand limit.

The required velocity servo loop design is aided by
knowing the body-frame derivative of BωB˚{R to imple-
ment a feed-forward component. Using the fpq function
definition in Eq. (15), this requires the time derivatives of
fpσiq.

BdpBωB˚{Rq

dt
“ ω1B˚{R

“ ´
Bf

BσB˚{R
9σB˚{R “ ´

¨

˚

˝

Bf
Bσ1

9σ1
Bf
Bσ2

9σ2
Bf
Bσ3

9σ3

˛

‹

‚

(18)

where

9σB˚{R “

¨

˝

9σ1
9σ2
9σ3

˛

‚“
1

4
rBpσB˚{Rqs

BωB˚{R

“ ´
1

4
rBpσB˚{RqsfpσB˚{Rq (19)

Using the general fpq definition in Eq. (17), its sensitivity
with respect to σi is

Bf

Bσi
“

pK1 ` 3K3σ
2
i q

1` pK1σi `K3σ3
i q

2
´

π
2ωmax

¯2 (20)

Next, let us investigate the closed loop performance.
For small errors, assuming a perfect rate-servo sub-
system, the closed loop dynamics is given in Eq. (16).
Using the MRP differential kinematic equation approxi-
mation 9σ “ ω{4, this is rewritten as the first order differ-
ential equation

9σB˚{R “ ´
K1

4
σB˚{R (21)
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Fig. 2: Illustrations of MRP Steering Parameters Influence.

The corresponding half-life of the exponential outer
closed-loop dynamics is

T1{2,Outer “
4 ln 2

K1
(22)

When picking the K1 gain, it is critical that this decay
time is sufficiently larger than the decay time of the rate-
servo inner loop.

4. Angular Velocity Servo Sub-System

4.1 Servo with Angular Rate Error Integral Measure

To implement the kinematic steering control, a servo sub-
system must be included which produces the required

torques to make the actual body rates track the desired
body rates. The angular velocity tracking error vector is
defined as

δω “ ωB{B˚ “ ωB{N ´ ωB˚{N (23)

where the B˚ frame is the desired body frame from the
kinematic steering law. Note that

ωB˚{N “ ωB˚{R ` ωR{N (24)

whereωR{N is obtained from the attitude navigation solu-
tion, and ωB˚{R is the kinematic steering rate command.
To create a rate-servo system that is robust to unmodeld
torque biases, the state z is defined as:

z “

ż tf

t0

Bδω dt (25)

The rate servo Lyapunov function is defined as

Vωpδω, zq “
1

2
δωT rIRWsδω `

1

2
zT rKI sz (26)

where the vector δω and tensor rIRWs are assumed to be
given in body frame components, rKis is a symmetric
positive definite matrix. The time derivative of this Lya-
punov function is

9Vω “ δωT
`

rIRWsδω
1 ` rKI sz

˘

(27)

Using the identitiesω1B{N “ 9ωB{N andω1R{N “ 9ωR{N´

ωB{N ˆ ωR{N ,8 the body frame derivative of δω is

δω1 “ 9ωB{N ´ω
1
B˚{R ´ 9ωR{N `ωB{N ˆωR{N (28)

Substituting Eqs. (1) and (28) into the 9Vω expression in
Eq. (27) yields

9Vω “ δωT
´

´ rω̃B{N s
`

rIRWsωB{N ` rGsshs
˘

´ rGssus `L` rKI sz

´ rIRWspω
1
B˚{R ` 9ωR{N ´ ωB{N ˆ ωR{N q

¯

(29)

Let rP sT “ rP s ą be a symmetric positive definite rate
feedback gain matrix. The servo rate feedback control is
defined as

rGssus “ rP sδω ` rKI sz

´ rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

´ rIRWspω
1
B˚{R ` 9ωR{N ´ ωB{N ˆ ωR{N q `L (30)

Defining the right-hand-side as Lr, this is rewritten in
compact form as

rGssus “ Lr (31)
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The array of RW motor torques can be solved with the
typical minimum norm inverse

us “ rGss
T
`

rGssrGss
T
˘´1

Lr (32)

To analyze the stability of this rate servo control, the
rGssus expression in Eq. (30) is substituted into the Lya-
punov rate expression in Eq. (29).

9Vω “ δωT
´

´ rP sδω ´ rω̃B{N s
`

rIRWsωB{N ` rGsshs
˘

` rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

¯

“ δωT
´

´ rP sδω ´ rĂδωs
`

rIRWsωB{N ` rGsshs
˘

¯

“ ´δωT rP sδω ă 0 (33)

Thus, in the absence of unmodeled torques, the servo con-
trol in Eq. (30) is asymptotically stabilizing in rate track-
ing error δω.

Next, the servo robustness to unmodeled external
torques is investigated. Let us assume that the external
torque vector L in Eq. (1) only approximates the true ex-
ternal torque, and the unmodeled component is given by
∆L. Substituting the true equations of motion and the
same servo control in Eq. (30) into the Lyapunov rate ex-
pression in Eq. (27) leads to

9Vω “ ´δω
T rP sδω ` δωT∆L (34)

This 9Vω is no longer negative definite due to the underde-
termined sign of the δωT∆L components. Equating the
Lyapunov rates in Eqs. (27) and (34) yields the following
servo closed loop dynamics:

rIRWsδω
1 ` rP sδω ` rKI sz “ ∆L (35)

Assuming that ∆L is either constant as seen by the body
frame, or at least varies slowly, then taking a body-frame
time derivative of Eq. (35) is

rIRWsδω
2 ` rP sδω1 ` rKI sδω “ ∆L1 « 0 (36)

As rIRWs, rP s and rKI s are all symmetric positive definite
matrices, these linear differential equations are stable, and
δω Ñ 0 given that assumption that ∆L1 « 0.

Next the performance of this inner rate servo-loop is
considered. Equating Eq. (27) and (33), the rate-servo
closed loop equations are given as the linear expression

rIRWsδω
1 ` rP sδω ` rKI sz “ 0 (37)

To simplify the following analysis, assume that rIRWs “

diagpI1, I2, I3q, rP s “ diagpP1, P2, P3q and rKI s “

diagpKI,1,KI,2,KI,3qs are diagonal matrices matrices.
The roots of the characteristic equation of Eq. (37) are

s1{2 “
´Pi ˘

a

P 2
i ´ 4IiKI,i

2Ii
(38)

If KI,i “ 0 and the integral feedback is turned off, then
the root simplifies to

s “ ´
Pi
Ii

(39)

where the inner rate servo loop half life is given by

T1{2,Inner “
Ii ln 2

Pi
(40)

Note that without the integral feedback the closed loop
response is always an exponentially decaying behavior.
The rate feedback gains Pi must be chosen that that
T1{2,Inner ! T1{2,Outer and the separation principle guaran-
teeing the stability of both the out and inner control loops
is valid.

If integral feedback is enabled, then two exponentially
decaying roots appear ifKI,i ă P 2

i {p2Iiq. For largerKI,i

values the servo response becomes under-damped and os-
cillatory.

4.2 Linearized Closed Loop Dynamics Analysis

The closed-loop control in Eq. (30) is shown to be asymp-
totically stabilizing in the presence of a body-fixed distur-
bance torque. However, this stability assumes the separa-
tion principle holds and that the outer control decay time
constant is much larger than the inner rate-servo loop de-
cay time constant. In the absence of an unmodeled control
torque, the rate-servo closed loop dynamics are given by

rIRWsδω
1 ` rP sδω ` rKI sz “ 0 (41)

To develop the linearized Closed Loop Dynamics (CLD)
the reference motion R is set to be identical to the inertial
frame N . Here ωR{N “ 9ωR{N “ 0. Note that

δω “ ωB{N ´ ωB˚{N “ ωB{N ` fpσB{N q (42)

Next, assume that the inertia tensor is rIRWs “

diagpI1, I2, I3q, and the gain matrices are rP s “

diagpP1, P2, P3q and rKI s “ diagpKI,1,KI,2,KI,3q.
Using BωB{N “ pω1, ω2, ω3q and σB{N “ pσ1, σ2, σ3q
the CLD is then written as

Ii 9ωi`Ii 9fpσiq`Pipωi`fpσiqq`KI,i

ż

pωi`fpσiqqdt “ 0

(43)
Using small angular departure assumptions, the following
linearizations hold:

fpσiq « K1σi (44a)
ωi « 4 9σi (44b)

The time derivative of the fpq function uses Eq. (19) to
find

9fpσiq « K1 9σi “ K1

ωB˚{N,i

4

“
K1

4
p´K1σiq “ ´

K2
1

4
σi (45)
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The revised linearized CLD are now

4Ii:σi ` 4Pi 9σi `

ˆ

PK1 ` 4KI ´
IiK

2
1

4

˙

σi

`KI,iK1

ż

σidt “ 0 (46)

The roots of the associate characteristic equation are

s1 Ñ ´
K1

4
(47a)

s2,3 Ñ
1

2

ˆ

κ˘

c

κ2 ´ 4
KI,i

Ii

˙

(47b)

where
κ “ ´

Pi
Ii
`
K1

4
(48)

For the CLD to be stable, note that Pi and K1 must be
chosen such that

Pi
Ii
ą
K1

4
(49)

Using the results in Eq. (22) and (40), this stability condi-
tion is equivalent to saying

T1{2,Inner ă T1{2,Outer (50)

Next, consider the case where a large gain K1 is cho-
sen to increase the CLD stiffness, but it violates the above
stability condition. For example, such a setup would be
attractive for trajectory correction maneuvers where even
a small thruster miss-alignment will cause a large torque
onto the spacecraft. Tight pointing tolerances during a
burn require the control to rapidly respond to a pointing
error, and thus necessitate a large K1 value. In this case
the control could be modified by removing the outer-loop
feed-forward component to be

rGssus “ rP sδω ` rKI sz

´ rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

´ rIRWsp 9ωR{N ´ ωB{N ˆ ωR{N q `L (51)

Not having this feed forward term included means the
δω tracking won’t be perfect as long as 9f is not zero.
In essence, the neglected outer-loop feed-forward com-
ponent is treated as an unmodeled torque influence on the
CLD. However, in this case the linearized CLD become

4Ii:σi ` 4Pi 9σi ` pPK1 ` 4KIqσi

`KI,iK1

ż

σidt “ 0 (52)

which are guaranteed locally stable for any positive K1

and P gain values as long as the integral gain is suffi-
ciently small. Note that if K1 ą 4Pi{Ii then the control
will no longer act as the earlier outlined steering law as the

Table 1: Numerical Attitude Simulation Parameters

Symbols Value(s) Units
pI1, I2, I3q [500.0, 300.0, 200.0] kgm2

Bĝs1 [1, 0, 0]
Bĝs2 [0, 1, 0]
Bĝs3 [0, 0, 1]
Jsi 0.0796 kgm2

umax 0.2 Nm
Ω [100.0, 200.0, 300.0] RPM
L [0.01, -0.01, 0.005] Nm
K1 0.05
K3 0.75
ωmax 1.0 deg/s
P 150.0 Nms
Ki 5.0 Nm

inner loop is too slow to track the kinematic steering com-
mand. However, the resulting CLD is a stable response if
the outer-loop feedforward component is neglected. This
allows for the CLD stiffness to be increased, resulting in
a very stiff control response about a reference motion.

5. Numerical Simulations

5.1 General Simulation Setup Using Basilisk

The performance of the outer- and inner-loop attitude
control strategies are demonstrated next using the MRP
formulation using a rigid spacecraft with three reaction
wheels attached. The nominal spacecraft and control pa-
rameters are shown in Table 1. A classical reaction wheel
alignment is assumed with the spin axes ĝsi aligned with
the principal body frame. The reaction wheel speeds are
given non-zero initial momentum values, and a body-fixed
unmodeled external torque is included. This torque is not
fed forward in any of the feedback control scenarios dis-
cussed next. The control objective is a tracking problem to
align the body frame with the Hill orbit frame. The Earth
orbit is defined through a semin-major axis of 10,000km,
an eccentricity of 0.1, an inclination angle of 0.1˝, ascend-
ing node of 48.2˝, argument of periapses of 347.8˝and an
initial true anomaly of 85.3˝. The dynamical differential
equations are integrated using a fourth order Runge-Kutta
scheme using a 0.1s integration and control update step.

The Basilisk (BSK) astrodynamics simulation frame-
work23 is used to simulate the spacecraft dynamics and
implement the MRP steering control solution in a modu-
lar fashion. A flow-diagram of the BSK modules used are
shown in Figure 3. The rigid spacecraft hub component
is connected to three balanced Reaction Wheel (RW) ef-
fectors, as well as a disturbance torque module for the
unmodeled body-fixed torque. The simulation is setup
to illustrate a regular problem where B Ñ R through
the hillPoint() module. The attitude tracking er-
ror model takes the actual and reference attitude states
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Fig. 3: Basilisk Simulation Setup Illustration

and outputs the tracking error information. The presented
MRP steering control is implemented through three dis-
crete modules shown with a thick orange border. The
outer steering loop rate control in Eq. (9) is the output of
the MRP Steering module. The rateServo() modules com-
puter the body-relative control torque vector solution Lr
in Eq. (30). The final module maps Lr to the set of RW
motor torques us. As the 3 RW axes line up with the B
frame, this is a simple identity mapping for this scenario.
The BSK torque mapping module implements a standard
minimum norm inverse if more than 3 RW are controlled.
The simulated communication paths (dashed lines) pro-
vide the rateServo() module with the RW speeds, and pass
on the RW motor torques us to the RW torque inputs.

No measurement noise is intentionally being modeled
here to illustrate the expected asymptotic performance of
the steering control implementation, and robustness to un-
modeled body-fixed external disturbance forces. As this
control reduces to a classical linear control solution for
small departures, standard noise impact theories from lin-
ear control apply here as well for small departure motions.

5.2 Large Maneuver and Detumble Response

The first simulation considers a very large reorientation
maneuver where the initial body and inertial frame differ
by a principal angle of 159.7˝, expressed as σB{N pt0q “
p0.5, 0.6,´0.3q . The large angular motion will illustrate
the desired angular rates reaching ωmax when far away
from the desired attitude, and then exponentially converg-
ing to the final orientation. In addition, an initial tumble
rate of ωB{N pt0q “ p0.01,´0.01,´0.01q rad/s is pro-
vided to illustrate the rate servo performance which must
compensate for large initial tumble rates. Note that no ref-
erence rate smoothing is employed here as might be added
in an actual application. This is to illustrate how robustly
the rates are driven to the desired values even if the actua-
tor mechanism saturates for a short period.

The nominal control gains shown in Table 1 yield an

outer time decay constant of about 55.45 seconds, while
the inner rate servo loop (without integral feedback) has a
much faster time decay constant of about 1.84 seconds.
This wide margin in the outer and inner loop response
times satisfies the classical separation principle of using
an inner servo loop.

The resulting performance is illustrated in Figure 4.
The attitude response is shown in Figure 4(a) where af-
ter the initial detumble period the attitude tracking error
decay approaches an exponential behavior as expected
from the outer attitude loop control analysis. The rate
tracking errors δω expressed in Eq. (23) as shown in Fig-
ure 4(b). For about the first minute the reference angular
rate (dashed lines) of the outer loop is requesting about
ωmax “ 1.0 deg/s for each axes. As the attitude errors
are reduced, the requested rates decrease exponentially.
As the spacecraft is initially tumbling in approximately
the opposite direction of the outer-loop reference rates ,
the servo loop has to initially aggressively arrest this tum-
ble and then asymptotically track the desired rates. This
initial effort is also seen in the saturated reaction wheel
motor torques shown in Figure 4(c).

Finally, as an unmodeled body-fixed external torque is
included in the simulation, this simulation illustrates that
the integral feedback in the rate servo successfully pro-
vides robust to such a disturbance and still yields expo-
nential convergence. However, as with any angular mo-
mentum based control system compensating for an ex-
ternal torque, the reaction wheel speeds must continue to
grow over time as is illustrated in Figure 4(d).

To illustrate the impact of the integral feedback term
in the rate servo control, the above simulation is repeated
with the integral feedback turned off. The resulting per-
formance is shown in FIgure 5. The rate tracking in Fig-
ure 5(b) is no longer asymptotic due to this unmodeled
disturance, and the attitude tracking is now only bounded
(i.e. Lagrange stable) as illustrated in Figure 5(a).
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Fig. 4: Large Attitude Stabilization using Unknown External Torque.

5.3 Aggressive Outer Loop Gains that Violate the Sepa-
ration Principle

Next a simulation is run where the outer-loop is set to have
a much more aggressive response to attitude tracking er-
rors. This might be required during an orbit trajectory
correction control burn sequence where the thruster head-
ing must be maintained within a small margin. The nom-
inal simulation setup in Table 1 is reused here, but K1 is
increased to a value of 2.2. This results in the outer loop
having a decay time constant (see Eq. (22)) of 1.2 seconds,
smaller then the rate servo control loop time constant of
1.85 seconds (see Eq. (40)).

In this scenario the linearized stability analysis predicts
an unstable response if an unmodified control implemen-
tation of Eq. (30) is employed. To numerically illustrate
this behavior, the simulation is run with the smaller ini-
tial state errors σB{Rpt0q “ p0.001, 0.002,´0.003q and
ωB{R “ nı̂h are used to study the local small departure
stability. As predicted in the analysis, violating the sepa-
ration principle with this steering and servo control yields
a locally unstable response. As the full nonlinear equa-
tions are being simulated, the attitudes do not drive to-
wards infinity, but rather are stabilized in a limit cycle
through the nonlinear contributions as illustrated in Fig-
ures 6(a) and 6(b).

However, if the ω1B˚{R term in Eq. (30) is removed,

then the linear stability analysis predicted a locally sta-
ble response even with this aggressive outer loop. Fig-
ures 6(c) and 6(d) illustrate the resulting converging per-
formance. The requested and actual rates don’t converge
in this scenario, but this is not expected in this setup. The
overall response is locally asymptotically stable, however,
as predicted by the linear stability analysis. In essence,
by removing the ω1B˚{R term the attitude steering con-
trol reverts to a more classical feedback control. While
the asymptotic stability is only analytically predicted for
small departures, numerical simulations with large depar-
tures indicate always resulting in a stable response as well.

6. Conclusions

This paper discusses a two-stage attitude control imple-
mentation where an outer guidance loop uses the attitude
tracking errors to develop the desire body rates relative to
a time varying reference frame, and then an inner servo
loop seeks to track these rate commands. This allows for
three-dimensional attitude response to be shaped through
rate commands similar to how may robotic systems are
controlled. The presented Modified Rodrigues Parame-
ter (MRP) and principal rotation parameter based steer-
ing laws provide convenient smoothly saturation behav-
iors for large angular motions resulting in the spacecraft
reaching a predictable maximum coast rate to approach
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Fig. 5: Large Attitude Stabilization using Unknown External
Torque Without Integral Feedback.

a target orientation. This large-scale rotation behavior
is then coupled with a tunable linear response behavior
for rotations close to the reference frame, resulting in the
closed-loop tracking error decaying exponentially. The
servo loop musts satisfy the separation principle to pro-
vide overall stability. It is implemented to asymptotically
track a desired rate command history. Robustness to un-
modeled torques is achieved by including an integral rate
error measure into the nonlinear rate servo loop. A benefit
of this approach is that the shown rate servo can readily be
replaced with alternate rate servo solutions. Finally, if the
outer loop decay time is more aggressive than the inner
loop a simple modification is presented that still leads a
stable closed loop response.
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